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Abstract

We study rare decays of heavy B and D mesons in the standard model and several
new physics models. For the extremely rare process b→ dds̄ we use the experimental
limit of B− → π−π−K+ to constrain parameter space of model with Z ′ gauge boson
and MSSM with broken Rp-parity. We predict upper bounds of several two-body
hadronic B− decay branching fractions which turn out to be of the order 10−7 in
the case of Z ′ model.

For the c → u`+`−, where ` = e, µ we study spectra and decay widths of
D → Pγ and D(s) → π(K)`+`−. We model the long distance amplitude with the
intermediate resonances using the Breit-Wigner shape. We find new bounds on
the new physics parameters coming from the D+ → π+µ+µ− experimental upper
bound and predict decay spectra and widths of the Ds → K`+`−. We find MSSM
with broken Rp-parity and the model with singlet leptoquark in SM representation
(3, 1,−1/3) have best prospects to be probed in experimental searches.

We use a combined heavy quark, large energy, and chiral symmetry of QCD and
make a prediction of photon spectra of B → Kηγ in a kinematic region with hard
photon and one soft meson. Precision of future experiments will allow for probing
b→ sγ transition in this kinematical region.

In experimental analyses of B− → D0`ν̄ decay there is a background of events
with additional undetectable soft photon. We find that D0∗ contributes dominantly
in this respect due to small mass splitting between D0∗ and D0. Future experiments
should be able to detect photons of energy below 100 MeV in order to extract Vcb
with precision of order 1%.

Keywords: weak decays of heavy mesons, flavour changing neutral current, new
physics searches, radiative decays
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Povzetek

V tezi razǐsčemo razpade težkih mezonov B in D v okviru standardnega modela
in nekaterih modelov nove fizike. Za izjemno redek proces b → dds̄ uporabimo
obstoječo zgornjo eksperimentalno mejo razpada B− → π−π−K+, da omejimo pa-
rametre modelov nove fizike, kot sta model z dodatnim umeritvenim bozonom Z ′

in minimalni supersimetrični standardni model s kršeno parnostjo Rp. Napovemo
zgornje meje razvejitvenih razmerij za nekatere dvodelčne hadronske razpadne ka-
nale mezona B−. Le-te so v primeru modela z bozonom Z ′ reda 10−7.

Razǐsčemo spektre in razpadne širine razpadov D → Pγ in D(s) → π(K)`+`−,
kjer je ` = e, µ, ki temeljijo na procesu c → u`+`−. Dolgosežne prispevke am-
plitude modeliramo z vmesnimi resonančnimi stanji in Breit-Wignerjevim nastav-
kom. Izhajajoč iz zgornje eksperimentalne meje razvejitvenega razmerja razpada
D+ → π+µ+µ−, izpeljemo nove meje parametrov za minimalni supersimetrični
model s kršeno parnostjo Rp in model s skalarnim leptokvarkom v reprezentaciji
(3, 1,−1/3). S temi parametri napovemo tudi spektre in razpadne širine razpadov
Ds → K`+`−. Omenjena modela nove fizike imata tudi največ možnosti zaznave v
eksperimentih.

Za radiacijski razpad B → Kηγ v kinematičnem območju z visokoenergijskim
fotonom in enim počasnim mezonom, z uporabo simetrije težkih kvarkov, efektivne
teorije visoke energije, in kiralne simetrije kvantne kromodinamike, napovemo fo-
tonski spekter. V prihodnosti bodo eksperimenti lahko merili prehod b → sγ v
omenjenem kinematičnem območju.

V eksperimentalnih analizah B− → D0`ν̄ ima pomembno vlogo dodatni foton,
ki ga eksperiment ne zazna in tako prispeva k ozadju semileptonskega razpada. Ugo-
tovimo, da je zaradi majhne razlike mas mezonov D0∗ in D dominantni mehanizem
takšnega ozadja resonančni proces preko vmesnega D0∗. Spodnji rez na fotone niz-
kih energij bi moral biti nižje od 100 MeV, da bi lahko iz analize semileptonskega
razpada ugotovili vrednost matričnega elementa Vcb z natančnostjo okrog 1%.

Ključne besede: šibki razpadi težkih mezonov, okus spreminjajoči nevtralni to-
kovi, iskanje nove fizike, radiacijski razpadi
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Notation

Greek indices µ, ν, . . . run over the spacetime coordinates 0, 1, 2, 3.

Spacetime metric gµν is diagonal with elements −g00 = g11 = g22 = g33 = −1.

Covariant derivative operator is ∂µ = ∂
∂xµ . d’Alambertian ∂2 is defined as ∂µ∂

µ.

The four-dimensional Levi-Civita tensor εµναβ is totally antisymmetric and has
ε0123 = +1.

Dirac gamma matrices γµ satisfy the anticommutation relation γµγν+γνγµ = 2gµν .
We define γ5 = iγ0γ1γ2γ3 = −i/4! εµναβγ

µγνγαγβ.

Left- and right-handed projection operators are defined as PL,R = (1∓ γ5)/2.

We use units where ~ = c = 1.

H.c. denotes a Hermitian conjugate of the preceding expression.
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Chapter 1

Introduction

The standard model of particle physics has been established as a satisfactory theory
of smallest verifiable distances and time scales. It is a model with 19 free parame-
ters which have been overconstrained by hundreds of measured observables collected
during the last three decades. Still to date there has been no direct experimental
evidence of an observable that would, including experimental and theoretical un-
certainties, deviate more than 3 standard deviations from the standard model pre-
dictions. The only exception is the observation of neutrino mixing, which cannot
be explained with massless neutrinos of the standard model.

1.1 Standard model and beyond

Further indirect experimental evidence supporting incompleteness of the standard
model (SM) originate from cosmological and astrophysical observations. Namely,
SM lacks dark matter particle which should not be a baryon and must interact very
weakly. However, there exists a possibility that axions of quantum chromodynamics
could comprise the required dark matter. The observed abundance of matter with
respect to antimatter in the present day universe requires baryogenesis with stronger
breaking of charge-parity (CP ) symmetry violation than is present in the SM.

One aspect of the SM experimental tests has been to look for new energy thresh-
olds where new degrees of freedom would become relevant. In this way, the gauge
structure of SM was confirmed directly at the weak scale ∼ 100 GeV at the Large
Electron Positron collider (LEP), where the weak bosons and neutral currents were
first discovered. The electroweak-breaking sector of the SM should be directly stud-
ied at Fermilab and the Large Hadron Collider (LHC) in the forthcoming years with
typical energy of partonic reactions of the order 1 TeV. On the other hand, Yukawa
sector of the SM exposes its richness in the quark flavor changing interactions, which
are well suited for study in hadron and τ lepton weak decays and are accessible at
energies much below the weak scale. From theoretical perspective, hadron states
are bound by a genuinely nonperturbative phenomenon of strong interactions —
confinement — which is interesting in its own right, but in this case blurs the view
of electroweak dynamics that drives the decay. Nonperturbative hadronic dynamics,
whose quantitative treatment makes theoretical predictions rather uncertain, thus
stands between a clean comparison of observables’ measured values and predictions
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18 Introduction

of SM or of a theory that would supersede SM at energies above the electroweak
scale.

Conceptual reasons have also been put forward for considering SM as merely an
effective low-energy theory of its yet unknown ultraviolet completion. Certainly SM
would fail to describe physical phenomena at the Planck scale (MP ' 1019 GeV),
at which gravity should be reconciled with principles of quantum mechanics. In
principle, SM could hold up to almost MP but in this case the fundamental scalar
field in the SM — the Higgs doublet — which breaks the electroweak symmetry
and provides masses for gauge bosons and fermions, seems unnaturally light. The
hierarchy problem is the problem of instability of Higgs mass term, which is, due to
being a coupling of relevant operator, naturally expected to be driven to the SM cut-
off scale Λ. Namely, first order additive quantum corrections to the Higgs mass scale
as Λ2 and setting Λ 'MP requires excessive fine-tuning of the tree-level Higgs mass
term. On the other hand, Higgs mass should not be too far from the electroweak
scale in order to satisfy all experimental constraints coming in particular from the
electroweak precision observables [1]. The common opinion about hierarchy problem
is that there should be a scale close to or not far above 1 TeV, at which SM might
loose its validity and is to be replaced by a more fundamental theory, usually termed
new physics (NP) in the literature. Currently there are many viable possibilities
about what the NP may be like, however none of them is clearly preferred over
others owing to good agreement of SM predictions with experimental data.

1.2 Flavour physics

Presently available experimental data from LEP, Fermilab experiments, B-factories,
and other low energy experiments as well as astrophysical and cosmological obser-
vations impose important constraints on NP models. The experiments based on the
colliding e+e− beams measured a whole plethora of quark flavor changing processes,
driven by the tree-level charged weak currents as well as flavor changing neutral cur-
rents (FCNC) which lead to rare meson decays and neutral meson mixing. Violation
of CP symmetry has been observed both in meson mixing amplitudes and directly
in the decay amplitudes. Important contributions have also come from Fermilab
experiments, most notably the discovery of Bs meson mixing.

1.2.1 Flavour sector of the standard model

The number of quark generations N is a free parameter in the SM, and so are the
quark masses and quark flavour mixing parameters. Anomaly cancellation condi-
tion [2] only requires that we have an equal number of quark and lepton generations,
while the asymptotic freedom of quantum chromodynamics requires N ≤ 8. It was
pointed out by Kobayashi and Maskawa [3] before the third generation of quarks was
discovered, that one needs at least N = 3 generations of quarks to accommodate
one CP -violating phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3, 4].
Thus the observed phenomenon of CP violation is not a prediction of the SM but
rather a consequence of observation of 3 generations. To put it differently, for ob-
servation of 3 generations SM predicts there should be exactly one real parameter
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describing all CP violating phenomena1. The magnitude of mixing is parameter-
ized by 3 angles in the CKM matrix, which are known to be small, i.e. the CKM
matrix is, to within λ = 0.22 error, diagonal. The flavour changing transitions are
hierarchically suppressed as λ, λ2, and λ3 for the respective transitions between
generations 1 ↔ 2, 2 ↔ 3, and 3 ↔ 1. Since the angles are free parameters, SM
cannot provide a reason for their smallness, and neither can for huge disparity be-
tween quark masses which span over 5 orders of magnitude. Questioning the reason
behind the measured flavour parameters is meaningful only in a suitable NP model.

1.2.2 Flavour changing neutral currents

The Glashow-Iliopoulos-Maiani (GIM) mechanism of SM suppresses FCNCs through
sums over intermediate quark flavours which contribute to the process at loop order.
Presence of FCNCs in the SM amplitude is recognized by a fermion line running
through the Feynman graph connecting two fermions of different generation but
same charge. GIM is directly related to unitarity of the CKM matrix and thus an
inherent property of SM amplitudes. It is broken only by the nondegenerate quarks
masses. NP models with new sources of flavor violation generally lack a mechanism
analogous to GIM, thus leading to severe experimental constraints on flavour viola-
tion parameters of the NP model or potentially result in a clean signal of NP with
small SM background. Moreover, since FCNCs are loop-induced they are sensitive
to short distance dynamics that might play a role in quantum corrections. One
well-known example is the study of dependence of the B → K∗γ decay width upon
the top quark mass [6].

However, all observables that involve quark flavour change confirm the CKM
mixing mechanism among the six quark flavours and is best illustrated by the uni-
tarity triangle shown on Figure 1.1. Absence of deviations at few percent level re-
quires a highly nontrivial flavour structure of NP around the 1 TeV scale, whereas
scale of a generic NP model is to be of the order 100 TeV or above. The above-
mentioned flavour constraints are in tension with the hierarchy problem as they
force the NP scale far above 1 TeV. The problem has been addressed in a model
independent framework called minimal flavour violation [8, 9], where the flavour
structure of NP is exactly aligned with the SM, i.e., the SM flavour group is broken
only by the SM Yukawa couplings.

1.2.3 Heavy meson decays

Heavy B (D) meson contains a heavy valence b (c) quark and another light valence
anti-quark. Mass above 5 GeV allows the B meson to decay weakly into numerous
final states resulting in many observables where one could find signatures of physics
beyond the SM. The CKM flavour mixing mechanism has been thoroughly tested
in K and B decay observables [10], the most important of the latter we list in the
following. Exclusive and inclusive charm decays can be used to constrain Vcb, while
charmless B decays constrain Vub. Time dependent CP asymmetry in B → J/ψKS

1Another source of CP violation is the θ term of quantum chromodynamics, which is however
constrained by the electric dipole moment of the neutron (|dn| < 3 × 10−26 ecm) which implies
θ < 10−9 [5].
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Figure 1.1: Unitarity of the CKM matrix is globally satisfied [7].

depends on the phase difference between the B0–B̄0 mixing amplitude and the decay
amplitude and provides a very precise measurement of sin 2β (see Figure 1.1). Decay
widths of several B → DK decay channels and hadronic channels B → ππ, ρπ, ρρ
provide constraints on the respective angles γ and α. The ratio of mass splittings
determined in B0 and Bs mixing is a measure of |Vtd/Vts|.

Semileptonic and leptonic charm meson decays can probe magnitudes of |Vcd|
and |Vcs|. Very recently also neutral charm meson mixing has been measured [11–
15], offering various new possibilities in the up-type quarks FCNCs. However, the
c ↔ u FCNC process is dominated by d and s quarks in the loop (b quark contri-
butions Cabibbo suppressed by factor λ5) and light hadronic resonances dominate
the decay widths.

From the theoretical viewpoint, large masses of heavy quarks, compared to the
QCD scale (mQ � ΛQCD ≈ 200 MeV), admit considering a limit, where we treat
the them as infinitely massive and thus static. In this case QCD is symmetric un-
der heavy quark spin and flavour rotations and consequently different form factors
between heavy mesons are related to a single Isgur-Wise function [16, 17]. In the
framework of heavy quark effective theory (HQET) one can systematically incor-
porate the 1/mQ symmetry breaking terms and αs radiative corrections. When
heavy meson decays to an energetic light hadron via heavy to light quark transition
Q → q, the light quark is almost on the light cone where additional symmetries
arise.
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1.3 Goals and methods

Considering the existing results from B-factories, with LHCb almost in the physics
run, and recent approval of the Belle 2 experiment, precision of D and B meson de-
cay observables will improve considerably. The two new experiments will hopefully
find an evidence for NP or provide a good handle for discrimination between NP
models.

In this thesis we set out to analyse rare decays of B and D mesons in framework
of SM and several NP models. We shall provide for considered decay channels
a comparison between the SM prediction and experimental results (or bounds at
90% confidence level (CL) if the decay in question has not yet been discovered).
Afterwards we study what would be the impact on observables of particular NP
model. Among these we will consider minimal supersymmetric standard model
with (MSSM) and without (/RpMSSM) Rp-parity conservation, models with extra
Z ′ neutral gauge boson, models with additional singlet up-type quark (EQS), and
class of models with scalar weak singlet leptoquark (LQ).

For meson decays dynamical heavy degrees of freedom like W bosons, t quark,
and short distance NP dynamics are integrated out and absorbed in the short dis-
tance Wilson coefficients of operator product expansion [18, 19]. Where necessary
we will account for the QCD corrections in the effective Lagrangian. For matrix
elements between meson states we will either use form factors calculated by dis-
persive methods (QCD sum rules, light-cone sum rules), lattice QCD, or use form
factors determined experimentally. Whenever feasible we shall utilize underlying
symmetries of QCD which arise in specific kinematic circumstances. For heavy
quarks interacting with light degrees of freedom this is the aforementioned heavy
quark symmetry and in the case of energetic light quark the large energy effective
theory, whereas low energy light degrees of freedom interact as dictated by chiral
symmetry of QCD.

1.4 Structure of thesis

In Chapter 2 we restate the mechanism of flavour violation in SM and outline the
procedure of separating short distance from long distance dynamics when treating
weak meson decays in SM. Relevant aspects of NP models will be described when
needed, in situ.

Chapter 3: Rare process b→ dds̄. Quark transition b → dds̄ and the corre-
sponding hadronic decay channels would be too rare to be detected if SM was
a complete theory. Currently, the best bound is obtained in B− → π−π−K+

channel. Experimental evidence would serve as indisputable proof of NP, but
already existing bounds on branching ratios can be used to constrain some
NP models and predict viability of searches in other hadronic modes.

Chapter 4: Neutral currents in charm and D → P`+`−. Semileptonic decay
channel D → π`+`− and Ds → K`+`− encompass the c → u`+`− process
and are sensitive to FCNCs of up-type quarks. With existing bounds on
parameters of NP models there is still some room for signals in the kinematical
region with low and high invariant mass of the dilepton pair.
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Chapter 5: Dalitz plot analysis of B → Kηγ decay. We focus on two corners
of Dalitz plot with one or other meson soft. We predict the photon spectra in
the two regions in the SM.

Chapter 6: Radiative background of B → D`ν̄. This exclusive decay channel
is used to extract the magnitude of Vcb. We explore the impact on precision of
Vcb measurement if the resonant D∗ meson decays into an unobserved photon
and a D meson.

In Chapter 7 we summarize the results and draw conclusions. Intermediate deriva-
tions and too long expressions are relegated to appendices whenever their presence
would bother the main line of thought.



Chapter 2

Flavour violation at low energies

2.1 Flavour violation in the standard model

In this section we will demonstrate how flavour violation arises in the standard
model (SM). SM is a realization of relativistic quantum field theory consistent with
Lorentz invariance and causality and has built in basic postulates of quantum me-
chanics like positivity and unitarity [20–22]. Structure of the SM interactions is
completely specified with local gauge group G = SU(3)c×SU(2)W ×U(1)Y and its
fermionic representations:

E(1, 2)−1/2 =

(
νL
`L

)
, `R(1, 1)−1,

Q(3, 2)1/6 =

(
u1
L

d1
L

)
,

(
u2
L

d2
L

)
,

(
u3
L

d3
L

)
,

uR(3, 1)2/3 =
(
u1
R u2

R u3
R

)
, dR(3, 1)−1/3 =

(
d1
R d2

R d3
R

)
,

(2.1)

where the numbers in the brackets denote representations of the respective color,
weak isospin, and weak hypercharge groups. The above gauge structure repeats
itself in three generations of matter, which are distinct only by the Yukawa couplings
in the SM Lagrangian (2.3). The Lagrangian density of SM is commonly split into
four terms

L = Lkin + Lgauge + LYuk + LEWB. (2.2)

These, in the order as written above, correspond to gauge-covariant kinetic terms
of fermions, kinetic terms of gauge bosons, and Yukawa couplings between fermions
and Higgs field. To break the electroweak symmetry and allow for masses of
the gauge bosons and fermions, an additional scalar field φ — the Higgs scalar
– in the representation (1, 2)1/2 is introduced [23–26]. The electroweak symme-
try breaking potential, present in LEWB, then triggers the Higgs field to develop
a spacetime-uniform vacuum expectation value (VEV). Parameters responsible for
fermion masses an flavour changing interactions of quarks are contained in

LYuk = −Q̄φY ddR − Q̄iτ2φ∗Y uuR − ĒφY eeR + H.c., (2.3)

23
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where Y d,u,e are the 3× 3 dimensionless Yukawa matrices in generation space. The
Higgs field has develops a VEV

〈φ〉0 =

(
0

v/
√

2

)
, (2.4)

and mass terms for the fermions arise in the Yukawa potential

LYuk 3 −
v√
2
d̄LY

ddR −
v√
2
ūLY

uuR −
v√
2
ēLY

eeR + H.c. . (2.5)

In order to operate with conventional Feynman rules with flavour-diagonal propa-
gators, we have to work in the mass-basis of fermion fields. For a general complex
matrix Y two unitary matrices U and V can always be found such that Y = U†DV,
where D is diagonal. We express the Yukawa matrices in terms of physical fermion
masses and unitary rotations

Y u = U†L diag(mu,mc,mt)UR, (2.6a)

Y d = D†L diag(md,ms,mb)DR, (2.6b)

Y e = E†L diag(me,mµ,mτ ) ER, (2.6c)

and absorb the rotations in fermion fields uL,R → U†L,RuL,R, dL,R → D†L,RdL,R,

eL,R → E†L,ReL,R in order to make the mass terms (2.5) diagonal. The flavour ro-
tations connecting the weak- and mass-basis fields cancel out in the kinetic and
neutral current terms of the SM Lagrangian because of their unitarity. This cancel-
lation does not occur in the quark charged current coupled to W boson where the
remnant physical parameter is the misalignment between rotations of up-type and
down-type left-handed quarks1

Lkin 3 −
g√
2
W+
µ ūiγ

µPL(ULD†L)ijdj + H.c., (2.7)

The CKM matrix V = ULD†L thus contains all parameters of the SM flavour chang-
ing interactions.

2.1.1 CKM matrix

The CKM matrix for N quark doublets is described by a total of N(N −1)/2 Euler
angles and N(N + 1)/2 phase factors. We may redefine the phases of each up- and
down-type quark fields — 2N of them — and get eliminate 2N − 1 phases from the
CKM matrix and end up with altogether

(N − 1)2 = N(N − 1)/2︸ ︷︷ ︸
Euler angles

+ (N − 2)(N − 1)/2︸ ︷︷ ︸
phases

(2.8)

real parameters. Based on observed CP violation in K0–K̄0 mixing and the above-
mentioned phase counting, Kobayashi and Maskawa [3] proposed existence of the

1We work here in the unitary gauge to avoid complications with flavour changing couplings of
Goldstone modes.
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third quark generation before even charm quark was discovered. For the N = 3
SM, three angles θ12, θ23, θ13, and phase δ are conventionally taken as

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 (2.9)

with cij ≡ cos θij , sij ≡ sin θij . Note that the CP phase is absent from CKM
matrix when s13 = 0. Experiments have established the smallness of all mixing
angles, meaning that CKM matrix is diagonal up to λ corrections, a fact which
we demonstrate below. Hierarchy of CKM elements becomes more lucid in the
Wolfenstein parameterization [27] which is a power expansion in λ ≡ s12 along with
redefined parameters [28, 29] s23 ≡ Aλ2, s13e

−iδ ≡ Aλ2(ρ− iη):

V =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4). (2.10)

Working to λ3 order we can take λ = 0.226± 0.001, value of Cabibbo angle cos θc,
while other parameters’ values are [28] A = 0.81 ± 0.02, ρ = 0.14+0.03

−0.02, and η =
0.36 ± 0.02. Mutual orthogonality relations between columns

∑
k VkiV

∗
kj = δij and

rows
∑

k VikV
∗
jk = δij of V can be depicted as six unitarity triangles, of which the

one corresponding to product between the first and the third column is commonly
used to illustrate the unitarity triangle analyses (Figure 1.1).

2.2 Operator product expansion in weak decays

Weak decays of heavy mesons are processes involving a typical kinematical energy
scales of at most few GeV. In contrast, the dynamical degrees of freedom triggering
a weak decay are the weak gauge bosons of a mass ∼ 100 GeV or even heavier
NP degrees of freedom. Full theory treatment becomes rather awkward due to
large disparity of scales in the problem. Thus, to facilitate calculations of decay
amplitudes and in particular their QCD renormalization effects one works instead
with effective f -flavour theory, where f = 5, 4, . . . is the number of dynamical quark
fields at the chosen renormalization scale µ. To this end, we will integrate over the
W boson field in the generating functional in the presence of external weak currents
J±µ . We integrate over the weak gauge bosons degrees of freedom whereas the weak
currents of fermions are here treated as external fields [29]

ZW [J+
µ ] =

∫
DW+DW− exp

[
i

∫
d4x

(
LW +

g√
2

(J+
µW

+µ + J−µW
−µ)

)]
. (2.11)

Coupling constant of the SU(2) weak isospin is denoted g. The functional integral
measure is defined as [30]

DW± = N(ε)
∏

x

dW±0 (x) dW±1 (x) dW±2 (x) dW±3 (x), (2.12)
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where Πx denotes the product over the points of infinitesimally discretized space-
time with spacing ε 2.

LW =− 1

2
(∂µW

+
ν − ∂νW+

µ )(∂µW−ν − ∂νW−µ) +m2
WW

+
µ W

−µ, (2.13)

J+
µ =Vij ūiLγµdjL + ν̄iLγµ`iL, J−µ = (J+

µ )†. (2.14)

We work in the unitary gauge of the electroweak interactions, where the Goldstone
scalars are absorbed by the longitudinal components of weak bosons. The kinetic
terms can be rewritten using per partes integration and dropping the surface terms

−∂µW+
ν ∂

µW−ν+∂µW
+
ν ∂

νW−ν +m2
WW

+
µ W

−µ

−→W+
ν ∂

2W−ν −W+
ν ∂

ν∂µW
−µ +m2

WW
+
µ W

−µ

=W+
µ K

µν(x, y)W−ν , (2.15)

Kµν(x, y) ≡δ4(x− y)
[
(∂2

(y) +m2
W )gµν − ∂µ(y)∂

ν
(y)

]
, (2.16)

where the introduced operator K is the inverse Feynman propagator of the W boson
∫
d4y Kµα(x, y) i∆αν(y, z) = gνµ iδ

(4)(x− z), (2.17)

i∆µν(x, y) =

∫
d4p

(2π)4

−i
(
gµν − pµpν

m2
W

)

p2 −m2
W + iε

e−ip·(x−y) (2.18)

Schematic structure of the action functional is then

S[W+,W−] = W+
x KxyW

−
y +

g√
2

(J+
x W

+
x + J−x W

−
x ), (2.19)

and may be completed into a square with obvious substitutions

W̃+
x = W+

x +
g√
2
J−y ∆yx, (2.20a)

W̃−x = W−x +
g√
2

∆xyJ
+
y . (2.20b)

Expressed in terms of the new variables (2.20) the action becomes

S[W̃+, W̃−] = W̃+
x KxyW̃

−
y −

g2

2
J−x ∆xyJ

+
y . (2.21)

At this point, we can integrate over the W̃ fields in the functional integral

ZW [J+
µ ] =

∫
DW̃+DW̃− exp

[
i

∫
d4x d4y

(
W̃+
µ (x)Kµν(x, y)W̃−ν (y) (2.22)

− g2

2
J−µ (x)∆µν(x, y)J+

ν (y)
)]
,

2The normalization constant N(ε) cancels out in the physical results.
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to find nonlocal interaction for the fermions

Snonlocal =
−ig2

2

∫
d4x d4y J−µ (x)∆µν(x, y)J+

ν (y). (2.23)

Now follows the crucial step — expanding the nonlocal operator under the integral
in terms of local operators, with consecutive highers orders carrying additional
powers of 1/m2

W . Higher order terms will necessary involve derivatives to account
for nonlocality, whereas the leading term is a point-like interaction

Snonlocal =
−ig2

2m2
W

∫
d4x d4y

[
J−µ (x)gµνδ(x− y)J+

ν (y) +O(1/m2
W )
]
. (2.24)

We read off the leading order term in the operator product expansion (OPE) [18, 19]
to be

LOPE = −4GF√
2
J−µ (x)J+µ(x) +O(1/m2

W )× (higher D operators). (2.25)

Of particular importance for weak decays are dimension-5 and 6 operators. For
definiteness we focus here on the dimension-6 composite operators

Ldim-6 = −4GF√
2

∑

i

Ci(µ)Qi(µ), (2.26)

Qi = (ψ̄i1Γiψi2)(ψ̄i3Γ′iψi4). (2.27)

Here i1,i2,i3, and i4 denote species of particles, while Γi, Γ′i are matrices in the Dirac
spinor space whose combination is scalar under homogeneous Lorentz transforma-
tion (barring discrete transformations like time-reversal and parity). Dimensionless
Wilson coefficients Ci(µ) depend on the renormalization scale µ, couplings, and
masses of heavy particles. On the other hand, composite operators’ µ-dependence
is indirect through µ-dependence of the renormalized fermion fields. We should em-
phasize that renormalization scale µ (also called factorization scale) is an artificially
introduced momentum scale, separating long distance dynamics (momentum scales
below µ) from short distance scales (scales above µ) [29]. For a process in question
we first choose a complete set of effective operators which will, together with their
corresponding Wilson coefficients, reproduce the invariant amplitudes of the full
theory below the matching scale Λ up to terms suppressed with additional powers
of 1/Λ2. Calculating hadronic amplitude amounts to determining the Wilson co-
efficients and then evaluating matrix elements of the composite operators between
hadronic asymptotic states

Ai→f = −4GF√
2

∑

i

Ci(µ) 〈f |Qi(µ) | i〉 . (2.28)

Any possible hadronic states in asymptotic states |i〉, |f〉 require the matrix el-
ements to be calculated in nonperturbative regime of QCD, which is notoriously
difficult to solve. The only ab-initio technique is a discrete formulation of QCD
on four dimensional lattice which employs direct evaluation of correlation functions
using the Feynman path integral representation [31, 32] analytically continued to
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imaginary time. From the point of view of OPE, the important feature of matrix
elements is their dependence on renormalization scale µ, which is cancelled against
µ-dependence of Wilson coefficients in the final expression for the amplitude. In
practice however, the nonperturbative methods are usually performed at a single
value of µ = mhad, namely at typical momentum scale of hadronic process. Cor-
respondingly also the Wilson coefficients’ values should be known at scale µhad.
In Appendix A we outline the procedure of composite operator renormalization as
applied to the b→ dds̄ transition.

2.3 Low energy QCD

Having separated the short distance dynamics by performing the perturbative OPE
and QCD renormalization procedure, we now have at hand the necessary set of short
distance Wilson coefficients, whereas the matrix elements in (2.28) must involve
some nonperturbative QCD method. In parameterizing the matrix elements we are
guided by the Lorentz covariance of quark bilinears which must be manifest in the
resulting form factor decomposition3. We will first introduce the customary form
factor decomposition for transitions of pseudoscalar or vector to vacuum (P, V → 0),
pseudoscalar to pseudoscalar meson (P → P ′) and pseudoscalar to vector (P → V ).
Later on we will briefly delve into the underlying symmetries of QCD which can
impose further constraints on the form factors.

2.3.1 Hadronic form factors

Decay constants

The standard decay constants of the pseudoscalar P and vector mesons V are defined

〈
0
∣∣ q̄′γµγ5q

∣∣P (p)
〉

= ifP p
µ, (2.29a)

〈
0
∣∣ q̄′γµγ5q

∣∣V (ε, p)
〉

= gV ε
µ, (2.29b)

where q̄′q are the flavours of P or V . Polarization vector of vector particle is denoted
ε, ε2 = −1, ε · p = 0.

Transitions between pseudoscalars

In semileptonic decays with one hadron in the final state we may encounter a quark
bilinear inserted between the two meson states. We will use the standard form

3Also the parity transformation properties must be preserved by the form factor decomposition
since we consider hadronic states as purely QCD bound states, not allowing for parity violation.
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factor parameterization [33, 34] between two pseudoscalar mesons

〈
P ′(p′)

∣∣ q̄′γµ(1± γ5)q
∣∣P (p)

〉
=F+(q2)

(
(p+ p′)µ − m2

P −m2
P ′

q2
qµ
)

(2.30)

+ F0(q2)
m2
P −m2

P ′

q2
qµ,

〈
P ′(p′)

∣∣ q̄′σµν(1± γ5)q
∣∣P (p)

〉
=is(q2)

[
(p+ p′)µqν − qµ(p+ p′)ν ± iεµναβ(p+ p′)αqβ

]
,

(2.31)

where q = p− p′ is the momentum transfer.

Pseudoscalar to vector transitions

Matrix elements between a pseudoscalar and a vector meson are decomposed as
customary

〈
V (ε, p′)

∣∣ q̄′γµq
∣∣P (p)

〉
=

2V (q2)

mP +mV
εµναβε∗νpαp

′
β, (2.32a)

〈
V (ε, p′)

∣∣ q̄′γµγ5q
∣∣P (p)

〉
=iεν∗

[
2mVA0(q2)

qµqν

q2
(2.32b)

+ (mP +mV )A1(q2)

(
gµν − qµqν

q2

)

− A2(q2)

(mP +mV )

(
(p+ p′)µ − m2

P −m2
V

q2
qµ
)
qν

]
,

〈
P (p′)

∣∣ q̄′qµσµν(1± γ5)q
∣∣V (ε, p)

〉
=iελ

[
− 2iT1(q2)ενµρλpµp

′
ρ (2.33a)

± T2(q2)
(

(m2
V −m2

P )gλν − qλ(p+ p′)ν
)

± T3(q2)qλ
(
qν − q2

m2
V −m2

P

(p+ p′)ν
)]

.

2.3.2 Heavy quark symmetry

Hadronic phenomena are effects determined by QCD in the nonperturbative regime,
namely at scale ΛQCD, where the perturbative expansion in powers of αs cannot
be used. Typical energy of quark and gluon degrees of freedom in a hadron are
of order ΛQCD. A heavy quark Q and accompanying light antiquark q comprise a
heavy-light mesons, and since mQ � ΛQCD the heavy quark acts as almost static
triplet colour charge interacting with dynamical light degrees of freedom [16, 17].
Accordingly, momentum of heavy quark is split into kinematic part owing to velocity
of the parent hadron and a small residual fluctuation k ∼ ΛQCD

pQ = mQv + k. (2.34)
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On the level of QCD Lagrangian of heavy quarks (c, b) we can introduce new velocity
dependent fields which have the momentum scales of order mQ factored out [35]

hv(x) = eimQv·x
1 + /v

2
Q(x) (2.35)

Hv(x) = eimQv·x
1− /v

2
Q(x), (2.36)

where Q(x) is a quark field of QCD. Projectors (1±/v)/2 project out the particle and
antiparticle components of Dirac spinors, and Hv corresponds to small components
which would vanish exactly in the limit mQ → ∞. Lagrangian of QCD expressed
with new fields is [35]

LHQET = h̄viv ·Dhv + h̄vi /D⊥
1

iv ·D + 2mQ − iε
i /D⊥hv, (2.37a)

Dµ
⊥ = Dµ − v ·Dvµ.

We have used D as standard covariant derivative of QCD. In the exact heavy quark
symmetry limit (HQS) only the first term survives. It is manifestly independent
of quark mass and owing to the absence of Dirac gamma matrices interaction with
gluons are independent of the heavy quark spin. Spin-independence implies that
physical states of heavy-light mesons are grouped into doublets of according to spin
of light degrees of freedom j` which is summed with the heavy quark spin jh into
total spin of a hadron

J = jh + j`. (2.38)

The two degenerate doublet members’ spin difference comes from ±1/2 contribution
of heavy spin. The ground state j` = 1/2 doublet can be represented by a velocity-
dependent field

Ha(v) =
1 + /v

2

(
/P
∗
a(v)− γ5Pa(v)

)
(2.39)

with v the meson velocity and a the flavour of light antiquark. The factor (1 + /v)/2
projects out the large quark components, fields P ∗a and Pa annihilate vector and
pseudoscalar mesons, whereas Dirac matrices γµ and γ5 are added to ensure that
field Ha(v) transforms as a fermionic bilinear under the Lorentz group. Ha(v) are
useful entities for incorporating the chiral symmetry of QCD, which couples to the
light quark indices a.

2.3.3 Chiral perturbation theory

Chiral perturbation theory (CHPT) is the effective theory of QCD valid below
the chiral symmetry breaking scale Λχ ∼ 1 GeV. Perturbative expansion in αs is
meaningless in this regime and because of confinement also the quark degrees of
freedom cannot be used. We consider Lagrangian of QCD in the approximation
where we neglect masses of light quarks

L0
QCD = ψ̄γµ

(
i∂µ + gs

λa

2
Gaµ

)
ψ − 1

4
GaµνG

aµν , ψ =
(
u d s

)T
. (2.40)
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Here gs is the strong coupling constant, λa are the standard Gell-Mann genera-
tors of SU(3)c fundamental representation, whereas Gaµ is the gluon field4. The
above Lagrangian is invariant with respect to SU(3)L × SU(3)R × U(1)V × U(1)A
global transformations. The U(1)V symmetry, acting as a phase rotation of all
quarks simultaneously, is conserved even with quarks massive and its generator is
the baryon number. The U(1)A is broken by the Abelian anomaly [36]. Remaining
G = SU(3)L×SU(3)R is the group of chiral transformations that act independently
on the left- and right-handed components of the quark fields

ψL,R → gL,RψL,R. (2.41)

The chiral group transformations (2.41) can equivalently be parameterized with the
vector gV ≡ gL+R and axial gA ≡ gR−L transformations. The global symmetry of
dynamics should be imprinted in degeneracy of physical states. The vector sub-
group gV when acting on physical states spans the familiar octet of pseudoscalar
mesons [37, 38], which are quite far from being degenerate because of questionable
assumption of massless s quark. Once we consider only u and d as massless the gV
becomes the isospin SU(2) symmetry which manifests itself in highly degenerate
multiplets of hadrons (i.e. mass splittings in the nucleon doublet and pion triplet
are tiny).

Global axial symmetry gA, on the other hand, would, if conserved predict de-
generacy also between multiplets of opposite parities. No such degeneracies are
observed in the physical spectrum, which indicates that gA must be broken some-
how. The central idea of CHPT lies in the assumption of axial symmetry breaking
by the vacuum expectation value of the quark condensate

〈
0
∣∣ψψ̄

∣∣ 0
〉
6= 0 and in

identifying the broken generators with Goldstone bosons [39, 40], which are the
lightest pseudoscalar mesons of the spectrum. To construct the effective theory one
has to include in the Lagrangian all terms with Goldstone fields that are symmet-
ric under G [41] and devise power counting to be able to truncate the expansion.
Higher dimension operators are suppressed by more powers of p/Λχ [42], where p
is a typical momentum of the process. Very convenient method to construct the
terms in the effective Lagrangian is the CCWZ formalism [43]. The group element
G is a product of axial and vector generators

g = eξaA
a
eηaV

a
. (2.42)

Group generators can be taken as V a = iλa/2 and Aa = V aγ5 where λa are the
Gell-Mann matrices. G is broken into H = SU(3)V , and the Goldstone boson
fields are represented by coordinates ξa of the coset space G/H. We study the
transformations of the broken subgroup elements u(ξa) ≡ eξaAa , defined by

gu(ξa) ≡ u(ξ′a)e
η′aV

a ≡ u(ξ′a)h(g, ξa). (2.43)

Transformation of u(ξa) is found to be nonlinear

u(ξa)→ u(ξ′a) = gu(ξa)h
−1(g, ξa) = h(g, ξa)u(ξa)L(g)−1, (2.44)

4Gluon field strength is Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGaµG
b
ν , where fabc are SU(3) structure

constants.
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where g ∈ G is arbitrary and L(g) denotes g with left and right components in-
terchanged. Group element h belongs to the unbroken group H. A useful block of
building invariants is Σ ≡ u2 field which transforms as

Σ(ξa) = u(ξa)
2 → gRu(ξa)h

−1(g, ξa)h(g, ξa)u(ξa)g
−1
L = gRΣ(ξa)g

−1
L (2.45)

and can be parameterized as

Σ = ei
√

2Π/f . (2.46)

We fix our parameterization of the Goldstone boson fields by specifying matrix Π
which contains the octet of pseudoscalar mesons

Π =
1√
2
πaλ

a =




π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K̄0 −2η8√
6


 . (2.47)

Parameter f with dimension of mass is introduced to cancel the pseudoscalar fields
mass-dimension. The unique chiral invariant with two derivatives that reproduces
the conventional normalization of kinetic terms is

f2

4
∂µΣab(∂µΣ†)ba. (2.48)

To generalize the framework to include also explicit breaking of G, we find in the
first order of light quark masses

L2 =
f2

4
∂µΣab(∂µΣ†)ba + λ0(m̂abΣ

ab + (Σ†)abm̂ba). (2.49)

Light quark mass-matrix is here m̂ = diag(mu,md,ms). The chiral noninvariant
term accounting for the finite quark masses shares the same transformation prop-
erties under G as quark mass terms in the QCD Lagrangian [44, 45]. Expanding
the leading chiral-order Lagrangian (2.49) leads to interactions of even number of
pions whose vertices are accompanied by one power of external momentum p. In the
low energy limit the leading order Lagrangian dominates as the terms with higher
number of derivatives contain more powers of p. The power counting even works
for loop integrals in the effective theory [41].

Heavy meson CHPT

In our calculation in Chapter 5 we shall encounter the amplitude for emission of soft
Goldstone boson off a heavy meson line. One can combine both chiral symmetry of
QCD and the heavy quark symmetry to construct the heavy meson chiral perturba-
tion theory (HMχPT) (c.f. [46] and references therein). We use the velocity depen-
dent heavy meson fields Ha(v) for the ground state negative parity-doublet (2.39).
They transform under the unbroken light flavour group H as

Ha → Hb(h
−1)ba. (2.50)
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Fields Ha can be combined into chiral invariants together with the derivatives of
Goldstone fields

Aµ =
i

2

(
u†∂µu− u∂µu†

)
, (2.51)

Vµ =
i

2

(
u†∂µu+ u∂µu

†
)
. (2.52)

Leading order effective Lagrangian is

LHMχPT =
〈
Ha(v)vµ(δabi∂

µ + Vµab)H̄b(v)
〉

+ g
〈
Ha(v)Aµabγµγ5H̄b(v)

〉
, (2.53)

H̄a(v) ≡ γ0H†a(v)γ0 =
(
/P
∗†
a (v) + γ5P

†
a (v)

) 1 + /v

2
. (2.54)

Brackets 〈. . .〉 denote traces over Dirac indices. The above Lagrangian contains
vertices with two heavy meson lines along with even number of Goldstones (terms
with V), which are entirely fixed from the symmetry. Interaction with odd number of
Goldstones, contained in A, introduces a coupling constant g that can be extracted
from experiment or calculated with nonperturbative methods.





Chapter 3

Rare process b→ dds̄

In the standard model (SM) the only source of flavour violation is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix whose unitarity ensures that flavour chang-
ing currents are charged. Moreover, the multiple W exchanges, which may lead
to flavour changing neutral currents (FCNCs), are suppressed by the Glashow-
Iliopoulos-Maiani (GIM) mechanism. Some of the FCNC processes including the
neutral meson mixing require effective operators with flavour structures that are
driven by box diagrams at leading order. These involve double W boson exchange
between the two internal quark lines and therefore these diagrams are suppressed
by two independent GIM sums. The quark-level process b → dds̄ is mediated by
box diagram in the SM and, as expected from the above arguments, is rendered
negligible in the SM.

In this chapter we will study the b→ dds̄ and its corresponding hadronic decay
channels in the context of SM and some of the well known new physics (NP) sce-
narios: the minimal supersymmetric standard model (MSSM), supersymmetry with
violated R-parity (/RpMSSM), and the model with family nonuniversal Z ′ gauge bo-
son (Z ′). In contrast with the SM, in some some of the NP models inclusive and
exclusive branching fractions of b→ dds̄ transition may be enhanced to a level close
to current experimental sensitivity. Currently the b→ dds̄ mediated exclusive decay
channel B− → K+π−π− has been searched for in both B-factories [47, 48] and the
strongest bound to this date has been set by BaBar collaboration whose analysis
based on 426× 10−6 fb−1 data sample yields [49]

B(B− → π−π−K+) < 9.5× 10−7 at 90% C.L. . (3.1)

The literature on the subject is rich and focuses also on the analogous process
b→ ssd̄ [50–56].

3.1 Effective Hamiltonian

The most convenient approach to the problem is to employ the operator product
expansion to obtain the effective Hamiltonian. The virtue of effective Hamiltonian
is its versatility in the sense that a complete basis of effective operators can embed
all low-energy effects of a generic short distance dynamics. Moreover, QCD renor-
malization calculation of effective operators is more feasible in the effective rather

35
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than in the full theory. We start with

Heff. =

5∑

n=1

[
CnOn + C̃nÕn

]
, (3.2)

written as a linear combination of four-quark operators with flavour structure
(d̄b)(d̄s) and accompanied by their respective Wilson coefficients

O1 = (d̄αLγ
µbαL) (d̄βRγµs

β
R),

O2 = (d̄αLγ
µbβL) (d̄βRγµs

α
R),

O3 = (d̄αLγ
µbαL) (d̄βLγµs

β
L),

O4 = (d̄αRb
α
L)(d̄βLs

β
R),

O5 = (d̄αRb
β
L)(d̄βLs

α
R). (3.3)

We denote with Õi the chirally-flipped set of operators obtained from Oi by inter-
change L ↔ R. Color contractions of the quark fields are indicated by repeated
indices α and β. For convenience we supplemented the operator basis introduced
in [57] with additional scalar operators O4,5, Õ4,5, which are however redundant and
can be reduced to O2,1, Õ2,1 via Fierz transformation

O4,5 = −1

2
O2,1, Õ4,5 = −1

2
Õ2,1. (3.4)

3.1.1 QCD corrections

Given an underlying full theory valid at short distances we perform matching to
the effective theory (8.8) by equating the 4-quark 1-particle irreducible Green func-
tions calculated in both theories. In this way we obtain the short-distance Wilson
coefficients, as described in Sections 2.2 and A.1. In Appendix A also the anoma-
lous dimension matrix of operators O1...3 are determined in leading order in αs and
leading logarithm approximation. For the O1,...,5 we get

γ =
αs
2π




1 −3 0 0 0
0 −8 0 0 0
0 0 2 0 0
0 0 0 −8 0
0 0 0 −3 1



. (3.5)

The operator O3 does not mix into its color-flipped counterpart (which has color
contractions between the two currents), which is due to the two d̄L fields and Fierz
rearrangement, equal to the original O3. Obviously, with (3.4) the anomalous di-
mensions for O1,2 and O5,4 are the same. We solve the renormalization group
equations which govern evolution of the Wilson coefficients as the renormalization
scale runs from Λ down to µ ' mb, where the hadronic matrix elements are cal-
culated 1. These corrections might be substantial due to large separation between

1We will consistently denote Λ and µ for the matching scale and the scale where hadronic matrix
elements are calculated, namely µ ' mb.
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scales Λ & mW and µ ' mb. The resulting evolution matrix

U(µ,Λ) = Tg exp

[∫ g(µ)

g(Λ)
dg′

γT (g′)
β(g′)

]
(3.6)

then relates the Wilson coefficients at the scale µ to their values obtained at the
matching scale

Ci(µ) = U(µ,Λ)ijCj(Λ). (3.7)

Using the standard parametrization of the beta function (A.10) we obtain the sub-
blocks of the evolution matrix from where we can directly read the Wilson coeffi-
cients at scale µ. The QCD corrections mix the operator O1 into O2

C1(µ) =

[
αs(µ)

αs(Λ)

]−1/β0

C1(Λ), (3.8a)

C2(µ) =
1

3

([
αs(µ)

αs(Λ)

]8/β0

−
[
αs(µ)

αs(Λ)

]−1/β0
)
C1(Λ) +

[
αs(µ)

αs(Λ)

]8/β0

C2(Λ), (3.8b)

while C3 is multiplicatively renormalized

C3(µ) =

[
αs(µ)

αs(Λ)

]−2/β0

C3(Λ). (3.9)

We reproduce the mixing behaviour reported in [57]. To find mixing of C4 and C5

one is to substitute in expressions (3.8) C1 → C5 and C2 → C4. The beta-function
coefficient β0 = (33− 2f)/3 depends on f , the number of dynamical quark flavours
between scales µ and Λ. Evolution matrix depends on whether the matching scale
Λ is above mt and when this is the case we compose U from consecutive evolution
matrices valid at f = 6 and f = 5

U(µ,Λ)|Λ>mt = U(µ,mt)|f=5U(mt,Λ)|f=6. (3.10)

Note that expressions (3.8),(3.9) assume that the number of dynamical quark flavours
f is constant between µ and Λ. Renormalization of the Wilson coefficients C̃1,...,5

of chirally-flipped operators is governed by the same set of equations as for C1,...,5.

3.2 Inclusive decay width

In this section we will calculate inclusive decay width of b → dds̄ in frameworks
of SM, MSSM, /RpMSSM, and the Z ′ model. Model with down-type singlet quark
has been studied in [58]. First we will match the full theory onto the effective
Hamiltonian (8.8) at scale Λ to find relevant Wilson coefficients Ci (we denote these
without the scale argument). The RGE techniques, described in the last section,
are then applied to obtain a set of Ci(µ), C̃i(µ) in the given framework. Finally, we
express the inclusive decay width in terms of relevant parameters of the underlying
theory and its numerical value, if the parameters are already bounded from other
observables.



38 Rare process b→ dds̄

ui

W W

uj

dL

bL

sL

dL

Figure 3.1: Box diagram generating b→ dds̄ in the SM.

3.2.1 Standard model

In the SM process b → dds̄ is mediated by box diagram 3.1 with two W bosons
exchanged between the quark lines. The leading term of the order 1/m2

W in the
OPE is local and thus independent of external momenta [59] so we set the external
momenta to zero in calculating the box diagram of Figure 3.1. One should in

principle also add nonlocal contributions of H(c̄b)(d̄c)
eff. and H(c̄s)(d̄c)

eff. , which have been
shown to be smaller than short distance contributions for decay B → K−K−π+ [54,
55] and we choose to neglect them as they cannot change the order of magnitude of
our predictions. All the vertices are of the (V −A)⊗ (V −A) color-singlet type so
only O3 is generated at scale Λ ' mW . Note that we used the SM with dynamical
t quark and integrated out both W and t at common scale mW .

CSM
3 =

G2
Fm

2
W

8π2

∑

i,j

λiλ̃jf (xi, xj) (3.11)

The sum runs over the charge 2/3 quark flavours (i, j = u, c, t) with CKM weights
λi = VibV

∗
id and λ̃j = VjsV

∗
jd. Remaining dependence on masses of the quarks in the

loop is contained in function f(xi, xj)
2, where xi ≡ m2

ui/m
2
W

f(x, y) = − 3xy

(x− 1)(y − 1)
+

xy

x− y

[(
1− 6x− 3

(x− 1)2

)
lnx− [x→ y]

]
. (3.12)

The above f(x, y) suppresses contributions of light quarks in the loop (see however
Section A.2). Intricate hierarchy of quark masses and CKM factors in (3.11) renders
negligible all but two of the terms. Relative size of all 9 terms contributing to CSM

3 ,
using the simple Cabibbo angle λ = cos θc = 0.22 power-counting is given below.
The two important ones are with i = t and j = c or t. Two top quarks contribute
dominantly although the Cabibbo suppression is ∼ λ8. The subleading contribution
comes from top and charm in the loop and its milder (∼ λ4) Cabibbo suppression is
compensated by small value of f(xt, xc) and is at par with the dominant contribu-
tion. With the abovegiven Wilson coefficient (3.11), adapted for the b→ ssd̄ decay,
our numerical value of CSM

3 agrees with the expressions reported in [50]. In analogy
with K0–K̄0 and B0–B̄0 mixing processes we do not expect the QCD corrections
to change significantly the decay rate [60]. Indeed, the RG evolution (3.9) only

2For inherent ambiguity in the choice of f(x, y) that is related to GIM cancellation, see Sec-
tion A.2.
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j u c t
i

u 4× 10−7 5× 10−6 2× 10−8

c 5× 10−6 5× 10−2 1× 10−3

t 9× 10−6 0.4 1

(3.13)

Table 3.1: Hierarchy of contributions of virtual quarks in the SM box diagram for
b→ dds̄.

changes CSM
3 by a negligible factor of 0.9. Using values for the parameters from the

Particle Data Group [28], we get

CSM
3 ≈ 5.3× 10−13 GeV−2. (3.14)

To obtain the decay width, one has to consider two distinct cases, namely when:
(i) the two final state d quarks have the same color and they cannot be distinguished,
or else, (ii) when d quarks’ colors are different and we can tell which one belongs
to which of the currents in O3. In the end, these two cases have to be summed
incoherently, i.e., on the level of decay width. The resulting inclusive decay rate,
averaged and summed over spins and colors of quarks is

ΓSM
incl. =

∣∣CSM
3

∣∣2m5
b

384π3
(3.15)

which amounts to B(b → dds̄)SM = (8 ± 2) × 10−14. This is far below the current
and foreseeable experimental sensitivity and discovery of this decay mode would
undoubtedly be a signal of NP.

3.2.2 Minimal supersymmetric SM

In the supersymmetric extensions of the SM the b→ dds̄ process can be mediated by
additional diagrams involving squarks and gluinos in the box [61]. The contribution
depends on the quark-squark-gluino vertices which are flavour nonconserving in
the mass-basis of fields [62]. A universal framework for dealing with these flavour
violating interactions in the general low-scale supersymmetry is the mass insertion
approximation (MIA) [63] where one chooses a mass-basis for squarks where the
vertices with gluino are flavour diagonal, whereas the squark mass matrix and the
squark propagator are flavour nondiagonal. One can expand the squark propagator
in powers of a (matrix) parameter δij = ∆ij/(md̃i

md̃j
), where ∆ij are the off-

diagonal terms in the squark mass matrix and md̃j
are the squark masses. Single

insertion in the squark line is denoted by a cross (see Figure 3.2).

We will use Wilson coefficients of the effective ∆S = 2 Hamiltonian derived
in [61] and adapt them for the process b → dds̄. The left-handed squark contribu-
tions, (δdij)LL, contribute to the O3 operator:

CMSSM
3 = − α2

s

216m̄2
q̃

(δd13)LL(δd12)LL

[
24xf6(x) + 66f̃6(x)

]
(3.16)
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Here x ≡ m̄2
d̃
/m2

g̃ is the squared ratio of average squark mass to the mass of gluino

and the loop functions f6 and f̃6 are [61]

f6(x) =
6(1 + 3x) lnx+ x3 − 9x2 − 9x+ 17

6(x− 1)5
, (3.17a)

f̃6(x) =
6x(1 + x) lnx− x3 − 9x2 + 9x+ 1

3(x− 1)5
. (3.17b)

The recent limits on δd∗21δ
d
13 [64–66] disallow significant contributions from the mixed

and the right-handed squark mass insertion terms. Therefore, we only include the
dominant left-left insertions given in the expression (3.16). We follow [65] and take
x = m̄2

d̃
/m2

g̃ = 1 and the corresponding values of
∣∣(δd13

)
LL

(x = 1)
∣∣ ≤ 0.14 and∣∣(δd21

)
LL

(x = 1)
∣∣ ≤ 0.042 [61]. We take for the average mass of squarks m̄d̃ =

500 GeV and for the strong coupling constant αs = 0.11, and find

∣∣CMSSM
3

∣∣ < 1.6× 10−12 GeV−2. (3.18)

Using then (3.15) and substituting for the CMSSM
3 Wilson coefficient one finds that

in the MSSM the branching fraction of b→ dds̄ inclusive decay is at most 7×10−13.

g̃ g̃

dL

bL

sL

dL

(δd13)LL

(δd12)LL

dL

bL

sL

dL

g̃

g̃

(δd13)LL

(δd12)LL

Figure 3.2: The box diagrams in the MSSM with gluinos and down-type squark
lines with δdLL mass insertions.

3.2.3 MSSM with broken Rp-parity

One way to generalize the MSSM is to relax the implicit assumption of R-parity (Rp)
conservation which prevents violation of baryon (B) and lepton (L) numbers. A
complete review on the topic is available in [67]. Once the supersymmetric particles
are assigned the same B and L numbers as their SM partners, the Rp of a given
particle is given in terms of its spin (S), B, and L [68]

Rp = (−1)2S(−1)3B+L =

{
+1 ; SM
−1 ; SUSY

, (3.19)

which implies that all “normal” particles are Rp even and their superpartners Rp
odd. Consequently, in the MSSM supersymmetric particles can only form in pairs
and the lightest supersymmetric particle is stable. Another important virtue of Rp
conservation is the absence of interaction terms which would violate B or L, and
thus the proton is stable in MSSM.
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All the above features are not guaranteed in supersymmetric models with Rp
violation (/RpMSSM). The superpotential is supplemented by terms with trilinear
couplings

W/Rp
=

1

2
λijkLiLjE

c
k + λ′ijkLiQjD

c
k +

1

2
λ′′ijkU

c
iD

c
jD

c
k (3.20)

of which λ and λ′ violate L while λ′′ violates B. Note that the proton cannot decay
if at least one of the B, L is conserved [69]. In addition, λ′ coupling induces a flavour
changing neutral current in the down-type quark sector mediated by a sneutrino
exchange

Lν̃ = −λ′ijkν̃iLd̄kRdjL + H.c. . (3.21)

In this supersymmetric framework, the tree-level exchange of a sneutrino (Fig-

ν̃n

dL

bL

sR

dR

λ′
n31

λ′∗
n12

ν̃n

dR

bR

sL

dL

λ′∗
n13

λ′
n21

Figure 3.3: Tree-level exchanges of sneutrino via trilinear couplings.

ure 3.3) is expected to be the dominant contribution to b→ dds̄ transition and its
OPE at common sneutrino mass scale Λ ' mν̃ is

C
/Rp
4 = −

3∑

n=1

λ′n31λ
′∗
n12

m2
ν̃n

, (3.22)

C̃
/Rp
4 = −

3∑

n=1

λ′n21λ
′∗
n13

m2
ν̃n

. (3.23)

The renormalization group evolution of C
/Rp
4 down to scale µ ' mb is according

to (3.8) with substitutions C1 → 0 and C2 → C
/Rp
4 (with omission of squarks and

gluinos contributions in the QCD beta function). The resulting multiplicative renor-
malization is contained in fQCD

C
/Rp
4 (mb) = fQCD(mν̃)C

/Rp
4 (3.24)

where

fQCD(Λ) =





[
αs(mb)
αs(mt)

]24/23 [
αs(mt)
αs(Λ)

]24/21
; Λ > mt

[
αs(mb)
αs(Λ)

]24/23
; Λ < mt

. (3.25)

In range of common sneutrino mass the fQCD assumes values from fQCD(200 GeV) ≈
2 to fQCD(1 TeV) ≈ 2.5 and we will fix fQCD = 2.2. Also C̃

/Rp
4 is renormalized by

fQCD. Inclusive b-quark decay width is then

Γ
/Rp
incl. =

m5
bf

2
QCD(mν̃)

2048π3

(
|C /Rp

4 |2 + |C̃ /Rp
4 |2

)
. (3.26)
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Present experimental bounds on the individual λ′ couplings contributing to the

Wilson coefficients C
/Rp
4 and C̃

/Rp
4 do not constrain this mode, and we extract the

bounds on the relevant combination from exclusive decays in Section 3.4.

3.2.4 Family nonuniversal Z ′

In many extensions of the SM [70] an additional neutral gauge boson appears. Heavy
neutral bosons are also present in grand unified theories, superstring theories and
theories with large extra dimensions [71]. This induces contributions to the effective
tree-level Hamiltonian from the operators O1,3 as well as Õ1,3. Following [70, 71],
the Wilson coefficients for the corresponding operators read at the interaction scale
Λ ' mZ′

CZ
′

1 = −4
√

2GF yB
dL
12 B

dR
13 , C̃Z

′
1 = −4

√
2GF yB

dR
12 B

dL
13 , (3.27a)

CZ
′

3 = −4
√

2GF yB
dL
12 B

dL
13 , C̃Z

′
3 = −4

√
2GF yB

dR
12 B

dR
13 , (3.27b)

where y = (g2/g1)2(ρ1 sin2 θ + ρ2 cos2 θ) and ρi = m2
W /m

2
i cos2 θW . Here g1, g2,

m1 and m2 stand for the gauge couplings and masses of the Z and Z ′ bosons, re-
spectively, while θ is their mixing angle. Weinberg angle is denoted θW . Again,
renormalization group running induces corrections and mixing between the opera-
tors. According to the RG evolution equations (3.8) the operator O1 (Õ1) mixes
into O2 (Õ2) and for typical mass of mZ′ & 500 GeV their Wilson coefficients at the
scale µ ' mb are expressed in terms of fQCD given in (3.25)

CZ
′

1 (mb) = [fQCD(mZ′)]
−1/8CZ

′
1 (3.28a)

CZ
′

2 (mb) =
1

3

(
fQCD(mZ′)− [fQCD(mZ′)]

−1/8
)
CZ

′
1 , (3.28b)

whereas the value of C3(mb) is

CZ
′

3 (mb) = [fQCD(mZ′)]
−1/4CZ

′
3 . (3.29)

In particular, for a Z ′ boson scale of mZ′ ' 500 GeV [70] one gets numerically
fQCD(mZ′) ' 2.3 and

CZ
′

1 (mb) = 0.90CZ
′

1 , CZ
′

3 (mb) = 0.81CZ
′

3 , (3.30)

CZ
′

2 (mb) = 0.47CZ
′

1 .

Again, the chirally flipped operators Õ1,2,3 are renormalized in the same manner.

The inclusive b→ dds̄ decay width is given in the closed form as

ΓZ
′

incl. =
m5
b

768π3

[
1

3
(f2
QCD + 8f

−1/4
QCD)(|CZ′1 |2 + |C̃Z′1 |2) + 2f

−1/2
QCD(|CZ′3 |2 + |C̃Z′3 |2)

]

(3.31)
In Section 3.4 we discuss bounds on Wilson coefficients CZ

′
1,3 and C̃Z

′
1,3 which might

be estimated from the B− → π−π−K+ decay rate.
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3.3 Exclusive B− decay modes

We only consider the charged B meson decays driven by the b → dds̄ transition,
since the antiquark ū is a spectator in this process and one should not worry about
possible contributions of the SM penguins. In calculating decay widths of the B−

meson decay channels driven by the b → dds̄ transition, we will make use of form
factors available in the literature. Alternative approach taken in [55] exploits the
SU(3) flavour symmetry of light quarks to relate the amplitudes to the measured
ones.

3.3.1 Vacuum saturation of matrix elements

Since we aim for ∼ 30% precision we can use the vacuum saturation (VSA, also
called näıve factorization) approximation assuming that vacuum state, inserted be-
tween the two currents, contributes dominantly with respect to other states [33, 72,
73]. The matrix elements in VSA are factorized and it is clear that long distance
contributions between the two hadronic currents are neglected. Obtained matrix
elements of single current operators are then decomposed into standard form factors
(see Section 2.3.1). For B → π(ρ) transitions we use form factors calculated in the
relativistic constituent quark model, with numerical input from the lattice QCD at
large q2 [74]. For the Ds → D and K → π form factors we use results of [75, 76]
where the approach combining heavy quark and chiral symmetries was used.

3.3.2 Hadronic amplitudes

For three-body decays of B meson to pseudoscalars P , P1 and P2 we provide below
the kinematically simplified expression for the factorized matrix element of the O3

operator, contributing in the frameworks of SM, MSSM, and Z ′

〈
P2(p2)P1(p1)

∣∣ d̄γµs
∣∣ 0
〉 〈
P (p)

∣∣ d̄γµb
∣∣B−(pB)

〉
= (3.32)

= (t− u)FP2P1
1 (s)FPB1 (s)

+
(m2

P1
−m2

P2
)(m2

B −m2
P )

s

[
FP2P1

1 (s)FPB1 (s)− FP2P1
0 (s)FPB0 (s)

]
.

We introduced Mandelstam variables s = (pB − p)2, t = (pB − p1)2, and u = (pB −
p2)2. Crossing symmetry relates the transition 0 → P1P2 to the P1 → P2, whose
form factors are known. The above expression (3.32) also holds for contribution of
operators Õ3, O1, and Õ1 to the B → PP1P2 amplitude, as only the vector parts of
currents have the correct parity. Explicit parameterization of form factors F1 and
F0 are shown in Appendix A.3.

For the matrix elements of (pseudo)scalar operators O4 and Õ4 in the /RpMSSM
framework one can use equation of motion for the quark fields

i /Dq = mqq, Dµ = ∂µ − igGµ (3.33)
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to express the operators as divergences of (axial) vector currents

q̄iqj =
i∂µ(q̄iγ

µqj)

mqj −mqi

, (3.34a)

q̄iγ
5qj = − i∂µ(q̄iγ

µγ5qj)

mqj +mqi

. (3.34b)

Using (3.34) we write down matrix element expressed in terms of scalar form factor
F0(q2)

〈
P2(p2)P1(p1)

∣∣ d̄s
∣∣ 0
〉 〈
P (p)

∣∣ d̄b
∣∣B−(pB)

〉
=

(m2
P1
−m2

P2
)(m2

B −m2
P )

(mb −md)(ms −md)
FP2P1

0 (s)FPB0 (s). (3.35)

Again due to parity conservation, pseudoscalar components of operators O4 and
Õ4 are irrelevant for the matrix element of B → PP1P2. In the Z ′ model we also
encounter contributions of the operators O2 and Õ2, whose color structure is Fierz
rearranged to O4 and Õ4 and then (3.35) applies as well.

In two-body decays to vector meson V and pseudoscalar meson P in the final
state we sum over the polarizations of V . The sum in our case reduces to

∑

εV

|ε∗V (pV ) · pB|2 =
λ(m2

B,m
2
V ,m

2
P )

4m2
V

, (3.36)

where εV is the polarization vector of V and λ is defined as λ(x, y, z) = (x + y +
z)2 − 4(xy + yz + zx).

For decay to two vector mesons we use the helicity amplitudes formalism as
described in [77]. Unpolarized decay width is expressed as sum of the three helicity
widths

Γ =
|p1|

8πm2
B

(
|H0|2 + |H+1|2 + |H−1|2

)
, (3.37)

where p1 is momentum of the vector meson in B meson rest frame and helicity
amplitudes are expressed as

H±1 = a±

√
λ(m2

B,m
2
1,m

2
2)

2m1m2
c, (3.38a)

H0 = −m
2 −m2

1 −m2
2

2m1m2
a− λ(m2

B,m
2
1,m

2
2)

4m2
1m

2
2

b. (3.38b)

Vector meson masses are denoted m1,2, while definition of the constants a, b and c
is in terms of general Lorentz decomposition of the amplitude

Hλ = ε∗1µ(λ)ε∗2ν(λ)

(
agµν +

b

m1m2
pµBp

ν
B +

ic

m1m2
εµναβp1αp2β

)
, (3.39)

where ε1,2 and p1,2 are the respective vector mesons’ polarizations and momenta.
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3.3.3 Hadronic decay widths

B− → π−π−K+

Hadronic matrix element entering in the amplitude for B− → π−π−K+ in SM
(MSSM) is readily given by (3.32) after identifying P = π−, P1 = K+, P2 = π− and
using appropriate form factors whose explicit form can be found in Appendix A.3.
Expression (3.35) is used instead for /RpMSSM, while for the Z ′ model the amplitude
consists of both contributions (3.32) and (3.35).

The two final state pions are indistinguishable and the crossed term with in-
terchange u ↔ s is to be present in the amplitude. After phase space integration
the hadronic decay widths can be written in a compact form with only Wilson
coefficients on the matching scale Λ left in symbolic form:

Γ
(MS)SM
ππK =

∣∣∣C(MS)SM
3

∣∣∣
2
× 2.0× 10−3 GeV5, (3.40)

Γ
/Rp
ππK =

∣∣∣C /Rp
4 + C̃

/Rp
4

∣∣∣
2

× 8.9× 10−3 GeV5, (3.41)

ΓZ
′

ππK =
∣∣∣CZ′1 + C̃Z

′
1

∣∣∣
2
× 3.5× 10−3 GeV5

+
∣∣∣CZ′3 + C̃Z

′
3

∣∣∣
2
× 1.3× 10−3 GeV5

+ Re
[(
CZ

′
1 + C̃Z

′
1

)(
CZ

′
3 + C̃Z

′
3

)∗]
× 3.2× 10−3 GeV5. (3.42)

B− → π−D−D+
s

In calculation of the B− → π−D−D+
s decay rate again we use (3.32) and (3.35),

now with P = π−, P1 = D+
s and P2 = D−. Numerically this yields

Γ
(MS)SM
πDDs

=
∣∣∣C(MS)SM

3

∣∣∣
2
× 8.7× 10−9 GeV5, (3.43)

Γ
/Rp
πDDs

=
∣∣∣C /Rp

4 + C̃
/Rp
4

∣∣∣
2

× 8.2× 10−5 GeV5, (3.44)

ΓZ
′

πDDs =
∣∣∣CZ′1 + C̃Z

′
1

∣∣∣
2
× 1.6× 10−5 GeV5

+
∣∣∣CZ′3 + C̃Z

′
3

∣∣∣
2
× 5.7× 10−9 GeV5

+ Re
[(
CZ

′
1 + C̃Z

′
1

)(
CZ

′
3 + C̃Z

′
3

)∗]
× 5.9× 10−7 GeV5. (3.45)

This mode turns out less favourable than B− → π−π−K+ due to phase space
suppression.

B− → π−K0

In [57] this decay was addressed as the mode with the wrong kaon mode, being
highly suppressed in the SM compared to the decay with K̄0 in the final state. The
operators O1,3 and Õ1,3 that are present in SM, MSSM, and Z ′ model have the
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following contribution:
〈
K0(pK)

∣∣ d̄γµγ5s
∣∣ 0
〉 〈
π−(pπ)

∣∣ d̄γµb
∣∣B−(pB)

〉

= i(m2
B −m2

π)fKF
πB
0 (m2

K). (3.46)

In the /RpMSSM and also in the Z ′ framework, operator O2 is first Fierz trans-

formed to O4 and Õ4, which then result in
〈
K0(pK)

∣∣ d̄γ5s
∣∣ 0
〉 〈
π−(pπ)

∣∣ d̄b
∣∣B−(pB)

〉

=
im2

K(m2
B −m2

π)

(mb −md)(ms +md)
fKF

πB
0 (m2

K). (3.47)

However, in /RpMSSM and Z ′ models, the two chirally flipped contributions to the
amplitude have opposite signs, resulting in a slightly different combination of Wilson
coefficients compared to the B− → π−π−K+ decay width

Γ
(MS)SM
πK =

∣∣∣C(MS)SM
3

∣∣∣
2
× 3.9× 10−4 GeV5, (3.48)

Γ
/Rp
πK =

∣∣∣C /Rp
4 − C̃ /Rp

4

∣∣∣
2

× 5.0× 10−4 GeV5, (3.49)

ΓZ
′

πK =
∣∣∣CZ′1 − C̃Z

′
1

∣∣∣
2
× 6.8× 10−5 GeV5

+
∣∣∣CZ′3 − C̃Z

′
3

∣∣∣
2
× 2.6× 10−4 GeV5

− Re
[(
CZ

′
1 − C̃Z

′
1

)(
CZ

′
3 − C̃Z

′
3

)∗]
× 2.7× 10−4 GeV5. (3.50)

B− → ρ−K0

Using the form factors parameterization (2.32) of the pseudoscalar to vector meson
transition we derive the following two factorized matrix elements of axial-vector and
pseudoscalar operators:

〈
K0(pK)

∣∣ d̄γµγ5s
∣∣ 0
〉 〈
ρ−(ερ, pρ)

∣∣ d̄γµγ5b
∣∣B−(pB)

〉

= −2mρfKA
ρB
0 (m2

K)ε∗ρ · pB, (3.51)
〈
K0(pK)

∣∣ d̄γ5s
∣∣ 0
〉 〈
ρ−(ερ, pρ)

∣∣ d̄γ5b
∣∣B−(pB)

〉

=
2mρm

2
K

(mb +md)(ms +md)
fKA

ρB
0 (m2

K)ε∗ρ · pB. (3.52)

Finally, we sum over polarizations of the ρ meson using (3.36), and the unpolarized
decay rates read

Γ
(MS)SM
ρK =

∣∣∣C(MS)SM
3

∣∣∣
2
× 3.9× 10−4 GeV5, (3.53)

Γ
/Rp
ρK =

∣∣∣C /Rp
4 + C̃

/Rp
4

∣∣∣
2

× 5.0× 10−4 GeV5, (3.54)

ΓZ
′

ρK =
∣∣∣CZ′1 + C̃Z

′
1

∣∣∣
2
× 7.5× 10−4 GeV5

+
∣∣∣CZ′3 + C̃Z

′
3

∣∣∣
2
× 2.6× 10−4 GeV5

− Re
[(
CZ

′
1 + C̃Z

′
1

)(
CZ

′
3 + C̃Z

′
3

)∗]
× 8.8× 10−4 GeV5. (3.55)
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B− → π−K∗0

Factorized matrix element here is a product of vector meson K0∗ creation ampli-
tude (2.29b) and B− → π− transition amplitude. Operators with vector currents
result in

〈
K∗0(εK , pK)

∣∣ d̄γµs
∣∣ 0
〉 〈
π−(pπ)

∣∣ d̄γµb
∣∣B−(pB)

〉
= 2gK∗F

πB
1 (m2

K∗)ε
∗
K · pB,

(3.56)

while the density operators O4 and Õ4 do not contribute as a result of (3.34) and
(2.29b). Thus the /RpMSSM model does not contribute to this channel in the naive
factorization approximation.

Γ
(MS)SM
πK∗ =

∣∣∣C(MS)SM
3

∣∣∣
2
× 7.4× 10−4 GeV5, (3.57)

ΓZ
′

πK∗ =
∣∣∣CZ′1 + C̃Z

′
1

∣∣∣
2
× 5.9× 10−4 GeV5

+
∣∣∣CZ′3 + C̃Z

′
3

∣∣∣
2
× 4.8× 10−4 GeV5

+ Re
[(
CZ

′
1 + C̃Z

′
1

)(
CZ

′
3 + C̃Z

′
3

)∗]
× 1.1× 10−3 GeV5. (3.58)

B− → ρ−K∗0

Like in the previous case, this channel does not receive factorizable contributions in
the /RpMSSM framework. In SM, MSSM, and Z ′ we calculate unpolarized hadronic

amplitudes of the operators O1,3 and Õ1,3 by utilizing the helicity amplitudes for-
malism. With form factor decomposition (2.29b), (2.32) we express the polarized
amplitude as in (3.39) and identify constants a, b and c:

a = − i
4

(mB +mρ)gK∗A
ρB
1 (m2

K∗)(C − C̃), (3.59a)

b =
i

2

mK∗mρ

mB +mρ
gK∗A

ρB
2 (m2

K∗)(C − C̃), (3.59b)

c = − i
2

mK∗mρ

mB +mρ
gK∗V

ρB(m2
K∗)(C + C̃). (3.59c)

C and C̃ are combinations of the Wilson coefficients present in a considered model.
We have

C = C
(MS)SM
3 , C̃ = 0 (3.60)

in the SM and MSSM and

C = [fQCD(mZ′)]
−1/8CZ

′
1 + [fQCD(mZ′)]

−1/4CZ
′

3 , (3.61)

C̃ = [fQCD(mZ′)]
−1/8C̃Z

′
1 + [fQCD(mZ′)]

−1/4C̃Z
′

3 (3.62)
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in the Z ′ model. Decay rates are then

Γ
(MS)SM
ρK∗ =

∣∣∣C(MS)SM
3

∣∣∣
2
× 9.2× 10−4 GeV5, (3.63)

ΓZ
′

ρK∗ =
∣∣∣CZ′1 + C̃Z

′
1

∣∣∣
2
× 2.8× 10−5 GeV5

+
∣∣∣CZ′1 − C̃Z

′
1

∣∣∣
2
× 7.2× 10−4 GeV5

+
∣∣∣CZ′3 + C̃Z

′
3

∣∣∣
2
× 2.3× 10−5 GeV5

+
∣∣∣CZ′3 − C̃Z

′
3

∣∣∣
2
× 5.8× 10−4 GeV5

+ Re
[(
CZ

′
1 + C̃Z

′
1

)(
CZ

′
3 + C̃Z

′
3

)∗]
× 5.0× 10−5 GeV5

+ Re
[(
CZ

′
1 − C̃Z

′
1

)(
CZ

′
3 − C̃Z

′
3

)∗]
× 1.3× 10−3 GeV5. (3.64)

3.4 Constraints on the short distance parameters

We have investigated the b→ dds̄ transition within the SM, MSSM without and with
/Rp terms and within a model with an extra Z ′ gauge boson. The SM contribution
leads to extremely small branching ratio for this transition.

Roughly one order of magnitude increase in the MSSM compared to the SM
predictions is still too insignificant for any experimental search. The supersymmetry
with /Rp terms, however, might give significant contributions and a possibility to
exclude down the parameter space even further. The Z ′ model exhibits its structure
through interplay of different types of effective interactions and might also give
opportunity to constrain its relevant parameters.

In the b→ dds̄ decay a particular combination of the model parameters appear
which can be constrained using the B− → π−π−K+ decay mode. In our calcu-
lation we have relied on the näıve factorization approximation, which is sufficient
to obtain correct gross features of new physics effects. One might think that the
nonfactorizable contributions might induce large additional uncertainties, but we do
not expect them to change the order of magnitude of our predictions. Additional
uncertainties might originate in the poor knowledge of the input parameters such
as form factors. However, we do not expect these to exceed 30%.

Using the most stringent experimental bound for the B(B− → π−π−K+) <
9.5 × 10−7 [49] and normalizing the masses of sneutrinos to a common mass scale
of 100 GeV we derive bounds on the /RpMSSM terms given in (3.21)

∣∣∣∣∣
3∑

n=1

(
100 GeV

mν̃n

)2 (
λ′n31λ

′∗
n12 + λ′n21λ

′∗
n13

)
∣∣∣∣∣ < 6.6× 10−5. (3.65)

Complementary bounds coming from measurements of K–K̄ and B–B̄ mixings have
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been established in [78]
∣∣∣∣∣Re

[
3∑

n=1

(
100 GeV

mν̃n

)2

λ′n31λ
′∗
n12

]∣∣∣∣∣ < 2.6× 10−6, (3.66a)

∣∣∣∣∣Im
[

3∑

n=1

(
100 GeV

mν̃n

)2

λ′n31λ
′∗
n12

]∣∣∣∣∣ < 2.9× 10−8, (3.66b)

∣∣∣∣∣Re

[
3∑

n=1

(
100 GeV

mν̃n

)2

λ′n21λ
′∗
n13

]∣∣∣∣∣ < 2.9× 10−4. (3.66c)

From (3.66a) and (3.66b) it becomes apparent that the λ′n31λ
′∗
n12 term is negligible

in (3.65), and the bound becomes simpler
∣∣∣∣∣

3∑

n=1

(
100 GeV

mν̃n

)2

λ′n21λ
′∗
n13

∣∣∣∣∣ < 6.6× 10−5, (3.67)

now being more restrictive than the bound (3.66c), obtained from B–B̄ mixing
alone.

Assuming that new physics arises due to an extra Z ′ gauge boson we derive
bounds on the parameters given in (3.27). We neglect interference between Wilson
coefficients, namely the third term in (3.42). Experimental bound of this simplified

expression now confines
(
|CZ′1 + C̃Z

′
1 |, |CZ

′
3 + C̃Z

′
3 |
)

to lie within an ellipse with

semiminor and semimajor axes as upper limits

y
∣∣∣BdL

12 B
dR
13 +BdR

12 B
dL
13

∣∣∣ < 3.2× 10−4, (3.68a)

y
∣∣∣BdL

12 B
dL
13 +BdR

12 B
dR
13

∣∣∣ < 5.2× 10−4. (3.68b)

Complementary bounds of the same couplings originate from neutral meson mass-
splittings and CP violation in kaon system and have been derived [70]

y
∣∣∣Re [(B

dR,L
12 )2]

∣∣∣ < 10−8, (3.69a)

y
∣∣∣Re [(B

dR,L
13 )2]

∣∣∣ < 6× 10−8, (3.69b)

y
∣∣∣Im [(B

dR,L
12 )2]

∣∣∣ < 8× 10−11. (3.69c)

The above bounds are stronger than our (3.68). Nevertheless, the bounds (3.65)
and (3.68) are interesting since they offer an independent way of constraining the
particular combination of the parameters, which are not constrained by the B0

d–B̄0
d ,

B0
s–B̄0

s , K0–K̄0 oscillations, or by B− → K−K−π+ decay rate (c.f. [79]).
Using these inputs we predict the branching ratios for the various possible two-

body decay modes and the B− → π−D−D+
s decay. We apply the bound (3.65) on

expressions for hadronic decay widths Γ
/Rp
B−→X from the previous section and find the

experimental sensitivity to /RpMSSM couplings of the given channel. The procedure
is straightforward except for the B− → π−K0 and B− → ρ−K∗0 decay channels.
In those we have to assume as in [51, 52] that interference term CRPV4 C̃RPV ∗4 is
negligible, which leads to the approximation |CRPV4 − C̃RPV4 | ' |CRPV4 + C̃RPV4 |.
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In the case of the Z ′ model there are contributions from Wilson coefficients
“1” (CZ

′
1 and C̃Z

′
1 ) and “3” (CZ

′
3 and C̃Z

′
3 ). We have already neglected the inter-

ference terms between “1” and “3” in (3.42) to find bounds (3.68) and we assume
that these terms are small for all considered decay modes. Using (3.68) we can
now predict branching ratios for decay modes B− → π−D−D+

s , B− → ρ−K0, and
B− → π−K∗0. The remaining two decay widths B− → π−K0 and B− → ρ−K∗0

can be approached after we neglect interference terms CZ
′

1 C̃Z
′∗

1 and CZ
′

3 C̃Z
′∗

3 . The
results are summarized in Table 3.2.

Decay channel SM MSSM /RpMSSM Z ′

B− → π−π−K+ 1× 10−15 1× 10−14 constraint constraint
B− → π−D−D+

s 6× 10−21 6× 10−20 9× 10−9 4× 10−9

B− → π−K0 3× 10−16 3× 10−15 5× 10−8 2× 10−7

B− → ρ−K0 3× 10−16 3× 10−15 5× 10−8 4× 10−7

B− → π−K∗0 5× 10−16 5× 10−15 — 5× 10−7

B− → ρ−K∗0 6× 10−16 6× 10−15 — 6× 10−7

Table 3.2: The branching ratios for the ∆S = −1 decays of the B− meson calculated
within SM, MSSM, /RpMSSM, and Z ′ models. The experimental upper bound for
the B(B− → π−π−K+) < 9.5 × 10−7 has been used as an input parameter to fix
the unknown combinations of the /RpMSSM terms (IV column) and the model with
an additional Z ′ boson (V column).

The SM gives negligible contributions. The MSSM increases them by one order
of magnitude, which is still insufficient for the current and foreseen experimental
searches. Using constraints for the particular combination of the /RpMSSM param-
eters present in the B− → π−π−K+ decay we obtain the largest possible branching
ratios for the two-body decays of B− → ρ−K0 and B− → π−K0, while for the
B− → π−K∗0 and B− → ρ−K∗0 the RPV contribution is suppressed by the van-
ishing of factorizable contributions. However, these two decay channels are most
likely to be observed in the model with an additional Z ′ boson, if we assume that
interference terms are negligible.

Since in the experimental measurements only KS or KL are detected and not
K0 or K̄0, it might be difficult to observe new physics in the B− → π−K0 decay
mode. Namely, the branching ratio B(B− → π−K̄0) = (23.1±1.0)×10−6 [80] is two
orders of magnitude higher than our upper bound for the B(B− → π−K0) making
the extraction of new physics from this decay mode almost impossible. Therefore,
the two-body decay modes with K∗0 in the final state seem to be better candidates
for the experimental searches of new physics in the b→ dds̄ transitions.



Chapter 4

Neutral currents in charm and
D → P`+`−

Charm mesons are the only low energy window into flavour changing currents (FC-
NCs) involving up-type quarks. There are essentially two distinct up-type quark
FCNC processes in the SM at low energy. One of them is the decay c→ uγ, which
can be either on-shell or virtual, and other the neutral meson mixing cū↔ c̄u. This
is to be contrasted with wealth of experimental information on FCNCs in the down-
type quark sector. Top quark physics will bring in additional input but already a
handful of charm observables is worth studying as new possibilities opened up with
the recent measurement of D0–D̄0 oscillations.

The mixing was reported by Belle, BaBar, and CDF collaborations [11–15].
Combining the measured quantities [80] resulted in determination of mass splitting
between the two CP -eigenstates ∆mD as well as ∆ΓD

x ≡ ∆mD

Γ̄D
= (0.98± 0.25)× 10−2, (4.1a)

y ≡ ∆ΓD
2Γ̄D

= (0.83± 0.16)× 10−2. (4.1b)

These results immediately stimulated many studies (c.f. [81–86]). In light of the
long distance dominated SM prediction for x and y, ranging from 10−5–10−2 [87–
90], the measured values of x and y are not in favour of NP effects. However,
they give additional constraints on physics beyond the SM as observed in [82, 83].
On the other hand, also the study of rare D meson decays is not considered very
informative in current searches of physics beyond the SM [91–98], as it is expected
from B physics. Namely, most of the charm meson FCNC processes are dominated
by virtual d and s quarks, signaling strong presence of long distance (LD) resonant
contributions, which dominate over genuine short distance (SD) effects [91–99]. In
light of new data on charm meson mixing we will study rare decays D → π`+`−

and Ds → K`+`−, where ` = e, µ, and provide updated constraints of Rp-violating
MSSM and a model with scalar leptoquark.

51
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4.1 Charm decays and resonances

Conspiracy of CKM elements and quark masses makes FCNC charm decays very
susceptible for presence of low energy QCD dynamics. Up to ∼ λ2 Cabibbo order,
the third generation of quarks does not mix with the first two and in CP -conserving
processes hadronic states of the first two generations saturate the decays widths.
As for the genuine short distance contribution, the GIM mechanism and smallness
of the down-type quark masses renders the radiative c → uγ decay width strongly
suppressed at the leading order in the SM [91, 95]. The QCD effects enhance it
up to the order of 10−8 [100], however the overall decay width is saturated with
the long-distance resonant contributions. We will show that when one includes into
consideration the possible effects of MSSM with non-universal soft breaking terms
on c → uγ [101, 102], the enhancement relative to the SM value is a factor 10,
still too small to give any observable effects in D → V γ decays (V is a light vector
meson). The dominant long-distance (LD) contributions in the D → V γ decays
give the branching ratios of the order B ∼ 10−6 [91, 95], which makes the search for
new physics effects impossible in D → V γ.

Another possibility to search for the effects of new physics in the charm sector is
offered in the studies of D → P`+`− or D → V `+`− exclusive decays which might be
result of the c→ u`+`− transition [84, 92, 93, 96, 97, 99]. Within the SM inclusion of
renormalization group improved QCD corrections of c→ u`+`− gave an additional
significant suppression leading to the inclusive rates Γ(c → ue+e−)/ΓD0 = 2.4 ×
10−10 and Γ(c → uµ+µ−)/ΓD0 = 0.5 × 10−10 [103]. These transitions are largely
driven by a virtual photon at low dilepton mass q2 ≡ (p+ +p−)2, while the total rate
for D → X`+`− is saturated by the LD resonant contributions at dilepton invariant
masses q2 = m2

ρ,m
2
ω,m

2
φ [92, 97]. NP could possibly modify the dilepton invariant

mass spectra below ρ or above φ resonant peaks. In the q2 spectrum of D → π`+`−

decay there is a broad kinematical region of dilepton invariant mass above the φ
resonance which presents a unique possibility to study c → u`+`− [97]. In order
to compare effects of NP and the SM we have to estimate size of the resonant
contributions. We will also extend our analysis on FCNC decays to the charm-
strange mesons Ds → Kµ+µ−, whose upper bounds are currently much weaker
than for the corresponding D decays.

There are intensive experimental efforts by CLEO [104, 105] experiment and
Fermilab collaborations [106, 107] to improve the upper limits on the rates for
D → X`+`− decays. Two events in the channel D+ → π+e+e− with q2 close to m2

φ

have already been observed by CLEO [104]. Currently the upper bounds are

B(D+ → π+e+e−) < 7.4× 10−6 [108], (4.2a)

B(D+ → π+µ+µ−) < 3.9× 10−6 [109]. (4.2b)

Other rare D meson decays are more difficult to access experimentally, but with the
plans to make more experimental studies in rare charm decays at CLEO-c, Tevatron
and charm physics sections of the forthcoming LHCb and Belle 2 experiments makes
the study of rare D decays more attractive.
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4.2 New physics scenarios

4.2.1 Additional up-type quark singlet

Some models of new physics contain an extra up-type heavy quark singlet [110, 111]
inducing FCNCs driven by Z boson exchange in the up-type quark sector [94, 112–
115], while the neutral current for the down-type quarks is the same as in SM. The
most stringent bound on parameters of these models comes from the measured x of
D0–D̄0 mixing as given in (4.1). In our calculation, we analyze how these bounds
on the FCNC vertex cuZ affect the D → P`+`− decays. A particular version of the
model with tree-level up-quark FCNC transitions is the Littlest Higgs model [116].
In this case the magnitude of the relevant c→ uZ coupling is further constrained by
the large scale f ≥ O(1 TeV). The smallness implies that the effect of this particular
model on c→ u`+`− decay and relevant rare D decays is insignificant [94]. Similar
effect can be produced in the model with an extra Z ′ gauge boson, which couples
as c → uZ ′, and was shown to produce weaker constraints in D0 → `+`− than in
D0–D̄0 mixing [117].

4.2.2 Supersymmetry

The leading contribution to c→ uγ in MSSM with conserved Rp-parity comes from
one-loop diagram with gluino and squarks in the loop [92, 97, 102]. Using the new
bound on the mass insertion parameters within MSSM [81, 82] from the D0–D̄0

oscillations constraints (4.1) and constraints from the MSSM vacuum neutrality
we will argue there are no good prospects for using D → V γ as probe of MSSM.
Same holds for the tree-level photon exchange which enhances the short distance
c → u`+`− spectrum at small q2. Bounds on the mass insertion parameters make
the abovementioned enhancement in D → P`+`− decay negligible [92, 93].

On the other hand, among popular models of NP the supersymmetric extension
of the SM including the Rp-parity violation (/RpMSSM) is still not constrained
as other NP models. As noticed in [92, 103] one can test some combinations of
the Rp-parity violating contributions in D+ → π+`+`− decays. We place new
constraints on the relevant parameters and demonstrate the effects of /RpMSSM in
the D+

s → K+`+`− decays which might be interesting for the future experimental
studies.

4.2.3 Weak singlet leptoquark

Leptoquark states are expected to exist in various extensions of SM. They were
first introduced in the early grand unification theories (GUTs) in the seventies
[1,2]. Scalar leptoquarks are expected to exist at TeV scale in extended techni-
color models as well as in models of quark and lepton compositeness. Squarks in
supersymmetric models with Rp violation may also have leptoquark-type Yukawa
couplings. Usually, they are present due to some symmetry between leptons to
quarks in the fundamental theory and consequently their interactions may trigger
lepton and baryon number violation which might lead to proton decay. Recently,
leptoquarks were revived in search of resolution of the so-called fDs puzzle [118].
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Namely, the measured decay widths of Ds → µν, τν have been with moderate sig-
nificance > 2σ larger than the prediction in terms of GF , Vcs, and fDs :

ΓSMDs→τν =
G2
Fm

2
τ |Vcs|2 f2

Ds
mDs

8π

[
1−

(
mτ

mDs

)2
]2

. (4.3)

It was first pointed out in [118] that scalar leptoquark exchange could, in contrast
to other mechanisms such as s-channel charged Higgs exchange, add positively to
the SM decay width of Ds → `ν. Several studies have been done [119–122] but in
the meantime the fDs puzzle has lost its significance [123, 124] Either way, weak
singlet scalar leptoquark can also contribute to the effective operators mediating
c → u`+`−. In [119] this state was part of the 45-dimensional representation of
the SU(5) group, which contains also other scalars states which might be light and
contribute notably in low energy phenomena or top quark physics [125].

4.3 c→ uγ

Given the recent observation of D0–D̄0 mixing, we evaluate the possible effect of
MSSM on c → uγ, taking into account the D0–D̄0 mixing parameters (4.1). Since
MSSM with universal soft-breaking terms is known to have negligible effect [102], we
consider the case of non-universal soft-breaking terms. We take into account only
the gluino exchange diagrams through (δu12)LR and (δu12)RL, since the remaining
mass insertions cannot have sizable effect as shown in [101, 102]. The maximal
value of (δu12)LR,RL insertions has been constrained by saturating parameter x with
the gluino exchange mechanism in [82]. Their results corresponding to a value
x = (0.79±0.34)×10−2 are shown in second column of Table 4.1. Another constraint
is obtained by requiring of minima of MSSM scalar potential not to break electric
charge or colour and they are bounded from above (δu12)LR,RL ≤

√
3mc/mq̃ [126],

with values given in third column of Table 4.1. The second constraint is obviously
stronger for mq̃ ≥ 350 GeV, while ∆mD gives more stringent constraint for lighter
squarks. Using (δu12)LR,RL ≤

√
3 mc/mq̃, mq̃ = mg̃ = 350 GeV, mc = 1.25 GeV and

expressions from [102] we get the upper bound

Γ(c→ uγ)/ΓD0 ≤ 8× 10−7, (4.4)

which is one order of magnitude larger than the SM prediction Γ(c → uγ)/ΓD0 =
2.5×10−8 [100]. However, this possible MSSM enhancement by 1 order of magnitude

mq̃ = mg̃ max |(δu12)LR,RL| max |(δu12)LR,RL|
from ∆mD from stability bound

350 GeV 0.007 0.006
500 GeV 0.01 0.004
1000 GeV 0.02 0.002

Table 4.1: Upper bounds on mass insertions |(δu12)LR,RL| from measured ∆mD and
stability bound [126].
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would not affect the rate of the D → V γ decays, which are completely dominated by
LD contributions with B ∼ 10−6 [91–93, 95, 99]. The only theoretically sound ob-
servable probing the c→ uγ remains the Bc → B∗uγ decay, where LD contributions
are strongly suppressed and thus comparable in size with SD contributions [127].

4.4 D → P`+`− decays: short distance amplitudes

4.4.1 SM

The c → u`+`− transition is induced at one loop level in the SM. We will use the
effective theory description where W boson, t and b quark degrees of freedom are
already integrated out. Here we will follow the procedure taken in [103]. Starting
at the weak scale µW ' mW we have

Leff = −4GF√
2


λd

∑

i=1,2

Ci(µW )(Qdi −Qbi) + λs
∑

i=1,2

Ci(µW )(Qsi −Qbi)


 , (4.5)

with standard current-current operators

Qq1 = (ūαLγ
µqβL) (q̄βLγµc

α
L), (4.6a)

Qq2 = (ūLγ
µqL) (q̄LγµcL), (4.6b)

where we have denoted CKM mixing factors λi = V ∗ciVui. The direct quark-lepton
operators

Q9 =
e2

(4π)2
(ūLγ

µcL) (¯̀γµ`) (4.7a)

Q10 =
e2

(4π)2
(ūLγ

µcL) (¯̀γµγ5`) (4.7b)

are not present in SM and neither are the standard QCD penguin operators Q3...6

(c.f. [128]). Operators Q9 and Q3...6 are not present as a consequence of CKM
unitarity since at the matching scale mW we sum over all down-type quarks which
are considered massless and GIM cancellation is exact.Operator Q10 is negligible in
the SM and does not mix with other operators [103]. The electromagnetic dipole
contribution

Q7 =
emc

(4π)2
(ūLσ

µνcR)Fµν (4.8)

is further suppressed by α and thus neglected in (4.10). Matching of the Wilson
coefficients at the weak scale is performed at NLO in QCD [128]

C1(mW ) =
11

2

αs(mW )

4π
, (4.9a)

C2(mW ) = 1− 11

6

αs(mW )

4π
. (4.9b)

The scale dependent Wilson coefficients C1,2(µ) are then run down to the b quark
threshold using the 2 × 2 anomalous dimension matrix given in [128]. At µb the
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5-flavour effective theory is matched onto the 4-flavour theory, which generates the
penguin operators (see Appendix A of [103]). Evolution of the Wilson coefficients

Cd,s1,2 and C3...6,9 down to hadronic scale µc is performed using the 7× 7 anomalous
dimension matrix (see [128], eqs. (6.25), (6.26) for C1...6, and (8.11), (8.12) for C9).
Finally, the effective Lagrangian at the charm scale µc is then [103]

LSM
eff = −4GF√

2


λd

∑

i=1,2

Ci(µc)Q
d
i + λs

∑

i=1,2

Ci(µc)Q
s
i − λb

∑

i=3,...,10

Ci(µc)Qi


 ,

(4.10)
The term in (4.10) containing QCD penguins Q3...6, dipole operators Q7,8, and
operators with (axial)vector lepton current Q9,10 are in SM rendered negligible due
to strong Cabibbo suppression λb ' λ5. The dominant contribution comes from the
two loop diagrams on Figure 4.1 with Q2 insertion and additional virtual gluon [100].
The amplitude of the free quark decay c → u`+`− in SM can be parameterized by

c u

ℓ+ℓ−

c u

ℓ+ℓ−

c u

ℓ+ℓ−

c u

ℓ+ℓ−

c u

ℓ+ ℓ−

c u

ℓ+ ℓ−

Figure 4.1: Dominantly contributing diagrams to c → u`+`− in SM. Box vertex
denotes the Q2 insertion.

the electromagnetic dipole operator Q7 (4.8) which is generated by the insertions
of Q2 operator (Fig. 4.1). We take for the effective coefficient Ĉeff

7 [100, 103]

Ĉeff
7 = λs(0.007 + 0.020i)(1± 0.2). (4.11)

4.4.2 Models with additional up-type quark singlet

The class of models with an extra up-like quark singlet (EQS) induce FCNCs at
tree level [94, 110]

LEQS =
g

cos θW
Zµ(Jµ

W 3 − sin2 θWJ
µ
EM). (4.12)
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Electromagnetic current is denoted JµEM, while the weak neutral current contains
the singlet quark T

Jµ
W 3 = Q̄iLγ

µ τ3

2
ΩijQjL =

1

2
ūiLγ

µΩijujL −
1

2
d̄iLγ

µdiL. (4.13)

There is mixing among up-type quarks present in (4.13) [116], where u1...4 and d1...3

are the quark mass eigenstates. Using the convention where we assign the physical
flavour rotations to up-type quark sector, the CKM matrix is generalized to 4 × 4
unitary matrix

TUL =




Vud Vus Vub Θu

Vcd Vcs Vcb Θc

Vtd Vts Vtb Θt

VTd VTs VTb ΘT


 , (4.14)

which causes tree-level FCNCs in the interaction term Jµ
W 3Zµ in the up-type sector.

The mixing matrix of the up-type quarks Ω contains the elements of the last column
of matrix TUL

Ω =




1− |Θu|2 −ΘuΘ∗c −ΘuΘ∗t −ΘuΘ∗T
−ΘcΘ

∗
u 1− |Θc|2 −ΘcΘ

∗
t −ΘcΘ

∗
T

−ΘtΘ
∗
u −ΘtΘ

∗
c 1− |Θt|2 −ΘtΘ

∗
T

−ΘTΘ∗u −ΘTΘ∗c −ΘTΘ∗t 1− |ΘT |2


 . (4.15)

The unitarity of the extended CKM matrix then implies that off-diagonal elements
of Ω could be non-zero, e.g. Ωuc ≡ −ΘuΘ∗c = VudV

∗
cd + VusV

∗
cs + VubV

∗
cb 6= 0. The

effects are encoded in Wilson coefficients C9 and C10. Relative to the negligible SM
values, they are modified by the presence of an extra up-like quark:

VubV
∗
cbδC9 =

4π

α
Ωuc(4 sin2 θW − 1), (4.16a)

VubV
∗
cbδC10 =

4π

α
Ωuc . (4.16b)

The element Ωuc of the up-type quark mixing matrix is constrained by the mea-
surements of D0–D̄0 mixing (4.1). Using expression ∆mD = 2 × 10−7 |Ωuc|2 GeV
derived in [116], we find

Ωuc < 2.8× 10−4 . (4.17)

4.4.3 MSSM

The leading contribution to c → u`+`− in MSSM with conserved Rp-parity comes
from the gluino exchange diagram via virtual photon and could enhance c→ u`+`−

at small q2. However, this enhancement is sizable only in vector decay channels,
e.g. D → ρ`+`− [92], whereas gauge invariance cancels the 1/q2 behaviour as the
decay to D → Pγ with on-shell photon is forbidden. To clarify this, consider the
amplitude for D(p)→ P (p′)γ∗(q, ε) with virtual photon

AD→Pγ∗ ∼ A(q2)
[
q2(p+ p′)µ − (m2

D −m2
P )qµ

]
ε∗µ, (4.18)
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which, as written is gauge invariant and vanishes in the limit q2 → 0. Scalar function
A(q2) summarizes hadronic form factors and is analytic at q2 = 0. Replacing the
photon polarization with propagator and coupling it to a lepton pair gives

AD→Pγ∗→P`` ∼ A(q2)
[
q2(p+ p′)µ − (m2

D −m2
P )qµ

] 1

q2
ū(p−)γµv(p+) (4.19)

∼ A(q2)ū(p−)(/p+ /p
′)v(p+), (4.20)

where the term proportional to qµ dropped out and the remaining term cancelled
the 1/q2 enhancement. Consequently, penguin diagrams with gluino exchanges in
MSSM can not produce interesting signatures in D → P`+`− and we will not pursue
them any further.

4.4.4 /Rp violating MSSM

In MSSM with broken Rp-parity (/RpMSSM), the c → u`+`− process is mediated
by the tree-level exchange of down squarks [92] (see the discussion about aspects of
/RpMSSM in Section 3.2.3). The relevant trilinear interaction terms are contained
in the superpotential [67]

L/Rp 3 λ
′
ijkd̃

∗
kR(liL)cujL + H.c.. (4.21)

Integrating out the squarks leads to the effective four-fermion interaction

Leff =
3∑

k=1

λ̃′i2kλ̃
′∗
i1k

2m2
d̃kR

(ūLγ
µcL)(¯̀

iLγµ`iL), (4.22)

Note that down squark is a leptoquark with SM quantum numbers (3, 1,−1/3)
whose effects in a more general setting will be studied in the next section. The CKM-
rotated couplings between the L, Q, and D supermultiplets in the superpotential
are denoted [92]

λ̃′ijk = λ′irsULrjD∗Rsk , (4.23)

where UL and DR matrices transform the up-type left-handed quarks and down-type
right-handed squarks from mass to weak basis, respectively. In the effective theory
framework (4.10), the tree-level squark exchanges contribute in Wilson coefficients
C9,10 [103]

V ∗cbVubδC9 = −V ∗cbVubδC10 =
sin2 θW

2α2

3∑

k=1

(
mW

md̃kR

)2

λ̃′i2kλ̃
′∗
i1k, (4.24)

where i = 1 (2) is relevant for the e+e− (µ+µ−) mode. The λ̃′12k and λ̃′11k have
been constrained from tests of charged current universality and neutrinoless double
β-decay searches [103, 129]

λ̃′11k < 0.021
md̃

100 GeV
, (4.25a)

λ̃′12k < 0.043
md̃

100 GeV
. (4.25b)
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Taking into account (4.25a) we determine the maximum value of δCe9,10 to be

|V ∗cbVubδCe9,10| < 4. (4.26)

Value of
∑

k λ̃
′
22kλ̃

′
21k can be inferred from the experimental upper limit B(D+ →

π+µ+µ−) < 3.9 × 10−6 [109]. The latter experimental bound is almost saturated
with LD amplitude. Analysis is undertaken where we include in the amplitude both
long distance SM and short distance /RpMSSM contributions in order to constrain

the λ̃′2xx/md̃ couplings.

4.4.5 Scalar leptoquark (3, 1,−1/3)

Interactions of the scalar ∆ particle in the (3, 1,−1/3) representation of the SM
gauge group with SM fermions are

L∆ = Y ij
L Q

c
i iτ2∆∗Lj + Y ij

R u
c
Ri∆

∗eRj (4.27)

Here we have restricted ourselves to the dimension-4 interactions. Doublets Q and
L denote left-handed leptons and quarks in the mass basis, and we assigned the
physical flavour rotations in the quark sector to down-type quarks

Qi =

(
ui

V ijdj

)
, (4.28)

where V is the CKM matrix. YL,R are arbitrary matrices with i, j denoting gener-
ation indices, whereas ψc ≡ Cψ̄T 1. Omitted colour indices are contracted between
quark and ∆ fields, both of which are the fundamental (anti)triplets of SU(3)c.
Note that both YL and YR couple ∆ to up-type quarks and charged leptons. Their
contribution to the effective Lagrangian for the c→ u`+`− decay is

VubV
∗
cbδC9 = −VubV ∗cbδC10 =

sin2 θW
2α2

m2
W

m2
∆

Y 2i
L Y

1i∗
L , (4.29a)

VubV
∗
cbδC̃9 = VubV

∗
cbδC̃10 =

sin2 θW
2α2

m2
W

m2
∆

Y 2i
R Y

1i∗
R , (4.29b)

where C̃9,10 are Wilson coefficients of the chirality flipped operators

Q̃9 = (ūRγ
µcR) (¯̀γµ`), (4.30a)

Q̃10 = (ūRγ
µcR) (¯̀γµγ5`). (4.30b)

Comparison of (8.28) and (4.24) suggests that the /RpMSSM model can be em-

bedded into the LQ model if one sets Y 2i
L Y

1i∗
L /m2

∆ →
∑

k λ̃
′
i2kλ̃

′∗
i1k/m

2
d̃kR

. As the

right-handed down-type squarks d̃kR have the quantum numbers of ∆ they act as
leptoquarks with exclusively left-handed couplings. In addition to Q9,10 and Q̃9,10,
∆ exchange induces scalar (S) and tensor (T ) operators

LSTeff =
Y 2i
L Y

1i∗
R

2m2
∆

[
−(ūRcL) (¯̀

R`L) + (ūσµνc) (¯̀
Rσµν`L)

]
(4.31)

+
Y 2i
R Y

1i∗
L

2m2
∆

[
−(ūLcR) (¯̀

L`R) + (ūσµνc) (¯̀
Lσµν`R)

]
.

1For charge conjugation matrix we take C = iγ2γ0.
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Their contribution is small because new upper bounds [130] of leptonic branching
fractions

B(D0 → e+e−) < 7.9× 10−8, (4.32a)

B(D0 → µ+µ−) < 1.4× 10−7, (4.32b)

put strong constraints on the mixed helicity products of couplings Y 2i
R Y

1i∗
L , Y 2i

L Y
1i∗
R .

Namely, saturating the above branching fractions with pure ∆ exchange

Γ∆
D0→`+`− =

f2
Dm

5
D0

256πm2
c

|Y 2i
L Y

1i
R |2 + |Y 2i

R Y
1i
L |2

m4
∆

, (4.33)

where we use fD = 206 MeV [131], mc = 1.25 GeV, and m` = 0, to find bounds

|Y 21
L(R)Y

11
R(L)|

(m∆/100 GeV)2
< 1.2× 10−4, (4.34a)

|Y 22
L(R)Y

12
R(L)|

(m∆/100 GeV)2
< 1.6× 10−4, (4.34b)

which apply for the couplings to electrons (4.34a) and muons (4.34b). SM contribu-
tion is of the order 10−13 [92] and thus negligible with respect to the bounds (4.32).
Clearly the products of the same helicity couplings YRYR or YLYL contribute to
D0 → `+`− width with helicity suppression factor m2

` . Thus B(D0 → `+`−) is not
a good probe of those coupling combinations.

On the other side, in the D+ → π+`+`− all terms of (8.28) and (4.31) contribute.
Differential decay width can be written in a quite compact way

d2ΓD+→π+`+`−

dq2 dt
=

1

(16πmD)3m4
∆

[(∣∣Y 2i
L Y

1i
L

∣∣2 + |Y 2i
R Y

1i
R |2

)
F 2

+(q2)(q2 −m2
D)2

(4.35)

+
(
|Y 2i
L Y

1i
R |2 + |Y 2i

R Y
1i
L |2

)(
s(q2)(m2

D −m2
π − q2 − 2t) +

m2
D

mc
F0(q2)

)2

q2

]
.

We have set m` = 0 and introduced t = (p′ + p+)2. For matrix elements of scalar
operators the QCD equations of motion (3.33) are used (3.34). Note that the decay
spectrum is independent of possible phases contained in Y matrices. We will in the
following set to zero products of type YL(R)YR(L) as they are too strongly constrained
by leptonic decay branching fractions (4.34).

4.4.6 D(s) → π (K) form factors

Evaluating the matrix elements of operators Q7,9,10 requires the knowledge of vector
and tensor form factors of D → P transition:

〈
P (p′)

∣∣ ūγµ(1− γ5)c
∣∣D(p)

〉
=F+(q2)

[
(p+ p′)µ − m2

D −m2
P

q2
qµ
]

(4.36)

+ F0(q2)
m2
D −m2

P

q2
qµ,

〈
P (p′)

∣∣ ūσµν(1± γ5)c
∣∣D(p)

〉
=is(q2)

[
(p+ p′)µqν − qµ(p+ p′)ν ± iεµναβ(p+ p′)αqβ

]
,

(4.37)
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where P denotes π+ (K+) in the case of D+ (D+
s ) decay. Momentum transfer

q = p− p′ equals momentum of the lepton pair. For the F+ form factor we use the
double pole parameterization [132] of the analysis performed in the heavy meson
chiral perturbation theory [133]

F+(q2) =
F+(0)

(1− q2/m2
D∗)(1− aq2/m2

D∗)
, (4.38)

with values F+(0) = 0.54 (0.62) for the D → π (Ds → K) transitions, whereas we fix
a = 0.58 for both cases [133]. The latter parameter was determined also in the exper-
imental analyses of D → P`ν decays with the result a = 0.52(10) (c.f. [134] and ref-
erences therein). Lattice simulation, on the other hand provided a = 0.44(4) [135].
We approximate the tensor form factor s(q2) by F+(q2)/mD which is valid in the
limit of heavy c quark and zero recoil limit [136]. Finally, expression for the SD
amplitude of c→ u`+`− decay is

ASD = −i4παGF√
2

λb

[
Ceff

10

16π2
ū(p−)/pγ5v(p+)+ (4.39)

+

(
Ceff

7

2π2

mc

mD
+
Ceff

9

16π2

)
ū(p−)/pv(p+)

]
F+(q2).

Momenta p, p+ and p− belong to the decaying D (Ds) meson and the leptons in
the final state, respectively. We neglect the lepton masses in our further study.

4.5 Long distance contributions in D → P`+`−

The dominant short distance part of the SM amplitude is generated by the operator
Q2 and the light quark loops accompanied by the virtual gluon. In addition to SD,
poles in momentum transfer q2 may appear due to bound (quasi)stable states of
QCD, whose properties are governed by nonperturbative QCD. The background
they produce is crucial for isolating short distance physics in semileptonic decays
D → P`+`−. Following procedure described in [94] we model the LD contributions
with vector resonances V of appropriate quantum numbers. D meson first weakly
decays to P and a neutral vector meson V , followed by decay of V → `+`−. Weak
nonleptonic decay is controlled by the Q1,2 operators of (4.10), which are, after
Fierz transforming the operator with color non-singlet currents Q1

Lnonlep = −GF√
2

∑

q=d,s

VuqV
∗
cq [a1ūγ

µ(1− γ5)q q̄γµ(1− γ5)c

+a2ūγ
µ(1− γ5)c q̄γµ(1− γ5)q] (4.40)

The effective Wilson coefficients of näıve factorization on the scale mc = 1.25 GeV
are [73, 103]

a1 = 1.26± 0.10, a2 = −0.49± 0.15. (4.41)

The flavour structure of (4.40) allows intermediate resonance V to be either ρ, ω or
φ. Since branching fractions of separate stages in the cascade are well measured,
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we shall not use a factorization approximation (4.40,4.41) but will instead make use
of currently available experimental data. Resonant decay spectrum must contain a
pole due to intermediate resonance [137, 138]

dΓ

dq2
(D → KV → K`+`−) =

1

π
ΓD→PV (q2)

√
q2

(m2
V − q2)2 +m2

V Γ2
V

ΓV→`+`−(q2).

(4.42)
Here ΓD→KV (q2) and ΓV→`+`− would be decay rates if mass of V were

√
q2 and

these rates are known experimentally at q2 = m2
V . Since the resonances V = ρ, ω, φ

are relatively narrow (ΓV � mV ) the narrow width (NW) approximation holds

B
[
D → PV → P`−`+

]
' B [D → PV ]× B

[
V → `−`+

]
. (4.43)

The Breit-Wigner resonant amplitude that reproduces the above behaviour (4.43)
is then

ALD
[
D → KV → K`−`+

]
= eiφV

aV
q2 −m2

V + imV ΓV
ū(p−) /p v(p+). (4.44)

In the NW approximation the aV coefficient dependence on q2 is irrelevant and
we assume aV to be free parameters. We included phase φV explicitly, so that
individual aV are positive. Equivalent description of the long distance amplitude
was used in [92, 103] where they instead included it in the Ceff

9 coefficient.

4.5.1 D+ → π+`+`−

Right-hand side of (4.43) are measured experimental branching fractions (Table 4.2)
which in turn fix the parameters aV of (4.44). Decay mode D+ → π+ω has not been

decay channel D+ → π+ρ D+ → π+ω D+ → π+φ

B [10−3] 0.82± 0.15 < 0.34 5.53± 0.24

Table 4.2: Branching ratios of decays of D+ meson to the intermediate resonant
states [28].

decay channel ρ→ e+e− ω → e+e− φ→ e+e−

B [10−5] 4.7 7.3 30

Table 4.3: Branching ratios of vector resonances decays to lepton pairs [28].

measured yet, but we can relate aω and its phase to the well measured contribution
of the ρ resonance relying on the underlying nonleptonic weak Lagrangian (4.40) as
in [94]. Relative phases and magnitudes of the resonances can be derived by consid-
ering the flavour structure of nonleptonic weak Lagrangian (4.40) and electromag-
netic coupling of V resonance to photon. The flavour structure of the resonances
then determines relative sizes and phases of resonant amplitudes. Detailed analysis
has already been done in [94], where the relative phases of ρ and ω contributions
were found to be opposite in sign, while for the ratio of their magnitudes it was
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found aω/aρ = 1/3. Also the phases of ρ and φ are opposite. Thus we get for the
final LD amplitude

ALD =

[
aρ

[
BW(q2, ρ)− 1

3
BW(q2, ω)

]
− aφ BW(q2, φ)

]
ū(p−) /p v(p+), (4.45)

with individual contributions aρ = (2.6± 0.2)× 10−9 and aφ = (4.0± 0.2)× 10−9,
where uncertainties are estimated from the experimental ones. We have defined

BW(q2, V ) ≡ (q2 −m2
V + imV ΓV )−1. (4.46)

4.5.2 D+
s → K+`−`+

In this case only the branching ratio of D+
s → K+ρ is known (see Table 4.4).

Contributions of ρ and ω are related like in the case of D+ meson, namely aω/aρ =

decay channel D+
s → K+ρ D+

s → K+ω D+
s → K+φ

B [10−3] 2.7± 0.5 — < 0.28

Table 4.4: Branching ratios of D+
s meson to the intermediate resonant state [28].

1/3 with relative minus sign between the two amplitudes. In the same way as for
the D decays, we determine aρ = 7.1× 10−9. However, we cannot determine the aφ
in the same manner due to unknown width of Ds → Kφ. Consequently, the total
LD amplitude for resonant decay Ds → V K → K`+`− is a sum of two terms:

ALD = aρ

[
BW, (q2, ρ)− 1

3
BW(q2, ω)

]
ū(p−) /p v(p+) +ALD

φ . (4.47)

Last term of above amplitude can be calculated in the factorization approxima-
tion using the nonleptonic weak Lagrangian (4.40), which determines the width of
Ds → Kφ. Both a1 and a2 parts of (4.40) can generate the flavour quantum numbers
of φ and K+. The a1 part connects initial D+

s state to φ through a charged cur-
rent (s̄c)V−A, while the (ūs)V−A creates the K+ out of vacuum. Neutral currents,
namely the a2 part, act in the following way: D+

s → K+ and 0 → φ. Subsequent
decay φ → `+`− is measured (Table 4.3). The resulting φ contribution to the LD
amplitude in the factorization approximation is

ALD
φ = i

4π
√

2

3
GFVusV

∗
csα

gφ
q2(q2 −m2

φ + imφΓφ)

×
[
a1mφfKA0(m2

K) + a2gφf+(q2)
]
ū(p−)/pv(p+). (4.48)

where gφ is a φ decay constant, defined as

〈0 | s̄γµs |φ(q, ε)〉 = gφε
µ, gφ = 0.233 GeV2. (4.49)

Value of gφ is determined from Γφ→e+e−

Γφ→e+e− =
4πg2

φα
2

27m3
φ

, (4.50)

the value of which is taken from [28]. Transition D+
s → φ is parametrized by the

form factor A0 (see Section 2.3.1) whose shape we take from [139].
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4.6 Decay spectra and widths of D(s) → π(K)`+`−

From the point of view of resonances it is by far most convenient to show spectra
in variable q2, where one can isolate the resonance dominated region. Using the
combined approach described in the previous section, where we account for the SD
and resonant LD dynamics, we now show the impact of SD physics on decay spec-
tra with respect to LD resonant background. Since the SD contribution of SM and
MSSM is completely overshadowed by LD, we will only estimate the experimental
prospects for discovering or constraining EQS and /RpMSSM models. Current con-
straints on EQS model coming from the D0–D̄0 mixing already indicate only minor
role in the total decay width. On the other hand, the contribution of /RpMSSM
model is still allowed by existing constraints to show up in the nonresonant part of
the decay spectrum. When deriving the upper bounds for the underlying parame-
ters of /RpMSSM model we always vary free phases in the Lagrangian as to achieve
the most conservative constraint.

4.6.1 D+ → π+`+`−

decay experiment res. EQS res.+/RpMSSM/LQ

D+ → π+e+e− < 7.4× 10−6 1.7× 10−6 < 1.3× 10−9 < 4.2× 10−6

D+ → π+µ+µ− < 3.9× 10−6 1.7× 10−6 < 1.6× 10−9 constraint on λ′

Table 4.5: Comparison of experimental branching fractions with predictions for
branching fractions of D+ → π+`+`− decay. In the last three columns, separate
predictions of resonant amplitude, short distance EQS amplitude, and the total
amplitude in the /RpMSSM or LQ case, are given.

Branching fractions are listed in Table 4.5. Clearly, the EQS model is already too
stringently constrained from D0–D̄0 mixing and measuring the D → P`+`− cannot
bring any further information with current experimental sensitivities (Figure 4.2).

On the other hand, relevant couplings for the electron final states in the /RpMSSM
are already constrained (4.25a) and moderately increase the branching ratio almost
to the upper experimental bound. Deviation from the LD amplitude is pronounced
in the nonresonant region, either at q2 < m2

ρ or q2 > m2
φ (Figure 4.3). However, the

most promising mode is the channel with muons. The LD contribution (1.7×10−6)
is at par with the experimental upper bound 3.9 × 10−6 and should be combined
together with the SD part to derive constraints on the Wilson coefficients. The
bound we obtained by saturating the experimental bound entirely with /RpMSSM
contributions was |V ∗cbVubC

µ
9,10| < 18, whereas more stringent bound resulted after

we included resonant amplitude in the analysis:

|V ∗cbVubCµ9,10| < 14. (4.51)

The latter bound is the most conservative with respect to the unknown phase of
λ′ couplings. Although the inclusion of the LD term does not make substantial
difference in resulting bound, it should be included as the experiment will eventually
measure a signal with branching fraction of the order 1.7× 10−6. All the branching
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Figure 4.2: Distributions of the branching fractions in the EQS model for the decay
channels D+ → π+e+e− (top) and D+ → π+µ+µ− (bottom). Blue line represents
the combined resonant and EQS contribution, with EQS mixing matrix element
Ωuc constrained from D0–D̄0 mixing (4.17). Red, green, and light blue lines show
individual contributions of resonances, short distance EQS, and short distance SM,
respectively.
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Figure 4.3: Distributions of branching fractions in the /RpMSSM model for the
decay mode D+ → π+e+e−. Blue line represents total contributions of resonances
and /RpMSSM with parameters λ′12k/md̃, λ

′
11k/md̃ constrained from charged current

universality and neutrinoless double β-decay (4.25a). Red, light blue, and green
lines show separate contributions of resonances, SM short distance amplitude, and
/RpMSSM, respectively.
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Figure 4.4: Distributions of the branching fractions in the /RpMSSM model for
the decay mode D+ → π+µ+µ−. Blue line represents total contributions of reso-
nances and /RpMSSM with parameters λ′22k/md̃, λ

′
21k/md̃ adjusted as to saturate

the experimental upper bound (4.2b). Red, light blue, and green lines show sepa-
rate contributions of resonances, SM short distance, and /RpMSSM contributions,
respectively.
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ratios within the /RpMSSM model with muons in the final state (Tables 4.5, 4.6) and
their kinematical distributions (Fig. 4.4,4.7) are calculated using the bound (4.51).

In the singlet leptoquark framework the couplings Y 2i
L,R and Y 1i

L,R, with i denoting

the lepton flavour, result in various terms, contributing to D+ → π+`+`−. In the
leading order, we only consider the resonant amplitude and its interference with the
LQ amplitude, while dropping the LQ amplitude squared. The decay spectrum of
intereference terms is

dΓLQinterf.
D→π`+`−
dq2

=
1

3(8π)3m3
D

[
((mD +mπ)2 − q2)((mD −mπ)2 − q2)

]3/2
(4.52)

×=
[
Xres.(q

2)
Y 2i
L Y

1i∗
L + Y 2i

R Y
1i∗
R

m2
∆

]

where a resonant shape was introduced

Xres. =

[
aρ

[
BW(q2, ρ)− 1

3
BW(q2, ω)

]
− aφ BW(q2, φ)

]
. (4.53)

Spectrum (4.52) depends only on sum of the products of couplings of the same
chirality, namely YLY

∗
L or YRY

∗
R. However, when trying to impose a limit on this

particular combination by requiring 0 < B(Y ) < Bexperiment, where B(Y ) denotes
the branching fraction without the LQ amplitude squared, we find no limit on
|Y 2i
L Y

1i∗
L + Y 2i

R Y
1i∗
R |. So it happens that there exist a special direction in complex

plane of parameters, where a large cancellation of phases takes place between LQ
couplings and the resonant amplitudes. The allowed region is shown on Figures 4.5
with blue triangles. It is clear however, that in regions where the LQ couplings get
large, one should also include the LQ amplitude squared

dΓLQ
D→π`+`−
dq2

=
1

(16πmD)3

(∣∣∣∣
Y 2i
L Y

1i
L

m2
∆

∣∣∣∣
2

+

∣∣∣∣
Y 2i
R Y

1i
R

m2
∆

∣∣∣∣
2
)

(4.54)

× F 2
+(q2)(m2

D − q2)2
[
((mD +mπ)2 − q2)((mD −mπ)2 − q2)

]1/2
.

We have not included the terms with mixed chirality YL(R)YR(L) due to very strong
constraints (4.34). Note the parabolic shape of (4.54) which admits no cancellations
between Y 2i

L Y
1i
L and Y 2i

R Y
1i
R and therefore the flat direction (blue triangles on Fig-

ure 4.5) will not be allowed anymore. Instead we get a bounded region of allowed
couplings shown with red circles on Figure 4.5. Derived bounds are complementary
to those coming from B(D0 → `+`−) (4.34)

∣∣∣Y 21
L(R)Y

11∗
L(R)

∣∣∣
(m∆/100 GeV)2

< 1.6× 10−3, (4.55a)

∣∣∣Y 22
L(R)Y

12∗
L(R)

∣∣∣
(m∆/100 GeV)2

< 1.0× 10−3 (4.55b)

4.6.2 D+
s → K+`+`−

Current experimental bounds of D+
s → K+`+`− cannot compete with the bounds

fromD0–D̄0 (4.17) mixing, charged current universality, neutrinoless double β-decay
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Figure 4.5: Allowed region for couplings of the singlet leptoquark scenario, where,
(i) only the interference term was considered (blue triangles), or, (ii) entire lepto-
quark contributions taken into account (red circles), for the semileptonic decays to
electrons (above) and muons (below).
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(4.25a), or D+ → π+µ+µ− decay (4.51) and we use all those processes as input to
decay process Ds → K`+`−. The branching fractions contributions are summarized
in Table 4.6. Again, the EQS model has negligible effect (Figure 4.6). /RpMSSM has
notable effect, especially in the µ+µ− mode, where it increases branching ratio by
an order of magnitude (Figure 4.7). In this case, /RpMSSM contributions overshad-
ows the LD contribution throughout the phase space, except in the close vicinity of
the resonant peaks.

decay experiment res. EQS res. + /RpMSSM/LQ

D+
s → K+e+e− < 1.6× 10−3 6.0× 10−7 < 3.4× 10−10 < 1.9× 10−6

D+
s → K+µ+µ− < 2.6× 10−5 6.0× 10−7 < 3.8× 10−10 < 1.8× 10−6

Table 4.6: Comparison of experimental branching fractions with predictions for
branching fractions of D+

s → K+`+`− decay. In the last three columns, separate
predictions for the resonant amplitude, short distance EQS amplitude, and total
resonant amplitude including the /RpMSSM or LQ contributions, are given.

4.7 Summary

Recently measured D0–D̄0 mass difference constrains the value of tree-level flavour
changing neutral coupling c→ uZ, which is present in the models with an additional
singlet up-type quark. We have studied the impact of this coupling on rare D+ →
π+`+`− and D+

s → K+`+`− decays, where its effects are accompanied by the long
distance contributions. Long distance contributions in D+

s → K+`+`− have been
assessed following the same phenomenologically inspired model as it has been done
previously in the case of D+ → π+`+`−. The constraint coming from D0–D̄0

mixing render the effects of additional singlet up-type quark to be too small to
be seen in dilepton invariant mass spectra of either decay mode. In a previous
study [94] forward-backward asymmetry in D0 → ρ0`+`− was considered and very
small effect was found. New constraint reduces that asymmetry even more, making
it insignificant for the experimental searches.

Present constraints on mass insertions in MSSM with conserved Rp-parity still
allow for increase of c → uγ rate by one order of magnitude. For this reason
MSSM could significantly increase c → u`+`− rate at small lepton invariant mass
q2. However, this MSSM enhancement is not drastic in D decays, since D → V γ
and D → V `+`− have large long distance contributions in the small q2 region, while
D → P`+`− rate is multiplied by factor of q2 owing to gauge invariance.

The remaining possibility to search for new physics in rare D decays is offered
by the MSSM models which contain Rp-parity violating terms or in a more general
model with scalar weak singlet leptoquark. We have found new bounds on the
combinations of these parameters in D+ → π+`+`− by including the long distance
effects. Using current upper bound on the width of D+ → π+µ+µ− decay we derive
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Figure 4.6: Distributions of branching ratios in the EQS model for the decay modes
D+
s → K+e+e− (top) and D+

s → K+µ+µ− (bottom). Blue line represents the
combined LD and SD contributions. Red line represents the resonant contributions,
whereas green and light blue lines are the pure short distance spectra of EQS model
and the SM.
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Figure 4.7: Distributions of the branching ratios in the /RpMSSM model for the decay
modes D+

s → K+e+e− (top) and D+
s → K+µ+µ− (bottom). Blue line represents

combined LD and SD contributions. Red line represent the resonant contributions,
whereas green and light blue lines are the pure SD spectra of the EQS model and
the SM.
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limits for the couplings of a weak singlet leptoquark model

∣∣∣Y 21
L(R)Y

11∗
L(R)

∣∣∣
(m∆/100 GeV)2

< 1.6× 10−3, (4.56a)

∣∣∣Y 22
L(R)Y

12∗
L(R)

∣∣∣
(m∆/100 GeV)2

< 1.0× 10−3. (4.56b)

Second bound applies also for the Rp-violating MSSM, namely

3∑

k=1

∣∣∣λ̃′22kλ̃
′∗
21k

∣∣∣
(md̃kR

/100 GeV)2
< 1.0× 10−3. (4.57)

Since at Belle 2 there are plans to investigate rare D decays [140] we have used upper
bounds (4.56b), (4.57), and calculated the dilepton invariant mass spectrum for the
decay D+

s → K+`+`−. This bound still gives small increase of the dilepton invariant
mass distribution for the larger invariant dilepton mass, making it attractive for the
planned experimental studies.





Chapter 5

Dalitz plot analysis of the
B → Kηγ decays

An interesting proposal has been made by the authors of [141] on the possible effects
of new physics in B → P1P2γ decays. Namely, in these decays new physics might
affect the polarization of outgoing photons. As it is known, in the SM photon emit-
ted in b→ sγ is dominantly left-handed [142, 143]. Since most of experiments only
have access to photon momentum and energy one has to rely on an indirect method
of measuring photon polarization. Suitable observable is the time-dependent CP
asymmetry of neutral B decays to a CP -eigenstate f and a photon:

Γ(B̄(t)→ fγ)− Γ(B(t)→ fγ)

Γ(B̄(t)→ fγ) + Γ(B(t)→ fγ)
= Sfγ sin(∆mt)− Cfγ cos(∆mt). (5.1)

Mixing induced parameter Sfγ has been studied in radiative decays of neutral B
decays to K∗γ [142], B → PPγ [141, 144], and also B → PV γ [145], where P and V
are a light pseudoscalar and vector meson. For three-body decay B̄0 → KSπ

0γ the
authors in [144] used Soft Collinear Effective Theory (SCET) in the region with soft
pion. They used the Breit-Wigner ansatz for the resonant channel via intermediate
K∗γ and concluded that right-handed photons are mainly due to the resonance and
related interference effects.

In this chapter we focus on the decay width spectrum of B → Kηγ in kinematical
region with the hard photon carrying energy of the order ∼ mB/2 and one soft
pseudoscalar whose energy is of the order ΛQCD. Obviously, the remaining light
meson is necessarily hard under these circumstances. These restrictions will allow
us to simplify considerably evaluation of hadronic matrix elements. Emission of soft
pseudoscalar off a heavy B meson line is driven by the leading order heavy meson
chiral perturbation theory, whereas we use heavy quark symmetry and large energy
effective theory for transition of heavy state transition to light energetic meson.
We predict differential decay widths in these regions. This decay channel has been
already observed by Belle and BaBar experiments [146–148], with the branching
fractions [148]

B(B0 → K0ηγ) = (7.1+2.1
−2.0 ± 0.4)× 10−6, (5.2a)

B(B+ → K+ηγ) = (7.7± 1.0± 0.4)× 10−6. (5.2b)

75
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Quoted errors are statistical and systematic, respectively.
On the list of excited strange mesons, compiled by the Particle Data Group [28],

one finds only two strange resonances with spin 2 and 3 which potentially con-
tribute to the B̄0 → K̄0ηγ decays in the low to intermediate region of low K and
η invariant mass MKη. Their effects are not so important, as for the K∗2 (1430),
the product B(B → K∗2 (1430)γ) × B(K∗2 (1430) → Kη) ∼ 10−6 is one order of
magnitude below branching fractions (5.2) and we can neglect it in the first ap-
proximation. Similar contribution from K∗3 (1780) is 10−8 which is completely neg-
ligible. Smallness of resonant contributions has been confirmed by Belle experi-
ment [146]. On the other hand, spectra of BaBar [148] show some excess of events
in the 1.4 GeV < MKη < 1.8 GeV region, but due to large error bars one can-
not draw any conclusion. Following this features we do not include any resonant
contributions in our approach.

5.1 Framework

The b→ sγ is induced by the ∆B = 1 effective Hamiltonian [128]

Leff = −GF√
2
V ∗tsVtb

[
6∑

i=1

CiQi + C7Q7 + C8Q8

]
(5.3)

The most important contribution in SM is due to electroweak penguin operator Q7

which couples tensor current between b and s quarks to the electromagnetic tensor

Q7 =
e

8π2
[mbs̄σµν(1 + γ5)b+mss̄σµν(1− γ5)b]Fµν . (5.4)

Final state photons coming from the above operator are dominantly left-handed,
with right-handed ones being suppressed by ms/mb on the amplitude level. Keeping
only Q7, this suppression is evident also in the asymmetry (5.1), however, it was
shown that in multibody decays Qc2 = (s̄γµ(1−γ5)c)(c̄γµ(1−γ5)b) can induce charm-
loop mediated b→ sγg, with equal rates for γL and γR, and lift the suppression to
∼ 10% [143]. For our purpose of calculating decay width we can neglect the ms-
proportional term of (5.4) as well as the Qc2 effects, keeping only left-(right-)handed
photons from the decay of b (b̄) quark.

In decay of B meson to three light particles, at least two final state particles
will have energy of the order mb/3. We shall study kinematical region of soft η
and energetic K, or vice-versa, whereas the photon will always be energetic (Eγ ∼
mb/2), as shown on Figure 5.1, where Eη and Kη invariant mass MKη are used as
kinematical variables.

Feynman graphs in the leading order in psoft/Λχ, ΛQCD/mb are shown in Fig-
ure 5.2, where heavy meson emits a soft pseudoscalar and is excited to a vector
state which subsequently decays weakly through Q7 insertion to energetic photon
and meson. We stress that those two diagrams are for two different final states,
i.e. with different momentum configurations, and their sum has no physical inter-
pretation. Each of them corresponds to precisely defined kinematical region where
light meson, attached to heavy line has low momentum. This is unlike the decay
B̄ → K̄0π0γ [144], where one cannot apply effective description in the soft K region,
due to lack of ss̄ component in π0.
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Figure 5.1: B̄0 → K̄0ηγ phase space regions where soft pseudoscalars have energy
below 1.2 GeV (0.8 GeV) in the light-gray (gray) region. Left corner corresponds
to soft η and right one to soft K.

Figure 5.2: On the left-hand side, the leading contribution in the region of soft η.
On the right-hand side K is soft. They govern the decay amplitude in the left and
right region in Figure 5.1, respectively.

For strong emission of the soft pseudoscalar off the heavy-meson line, we utilize
the low energy chiral Lagrangian combined with the heavy quark symmetry (see
Section 2.3.3)

Lstrong = g
〈
Ha(v)Aµabγµγ5H̄b(v)

〉
. (5.5)

The low energy pion coupling to heavy pseudoscalar and vector has been calculated
on the lattice with unquenched quarks [149] and its value is g = 0.5 ± 0.1, in
agreement with the value extracted in [150]. Contribution of the effective weak



78 Dalitz plot analysis of the B → Kηγ decays

vertex Q7 in the left-hand graph of Figure 5.2 is

e

8π2
mb

〈
K̄0(k)γ(q, ε)

∣∣ s̄(0)σµνFµν(0)(1 + γ5)b(0)
∣∣B∗(η, p)

〉
(5.6)

=
e

8π2
mb 〈γ(ε, q) | 2∂µAν | 0〉 ×

〈
K̄0(k)

∣∣ s̄σµν(1 + γ5)b
∣∣B∗(η, p)

〉

=
iemb

4π2
qµε
∗
ν

〈
K̄0(k)

∣∣ s̄σµν(1 + γ5)b
∣∣B∗(η, p)

〉
,

where η and ε are the respective polarizations of B∗ meson and the photon. For
soft K̄0 (right-hand graph of Figure 5.2), the above manipulations are performed on
flavor rotated states (B∗s , η) ↔ (B∗, K̄0). Virtuality of intermediate B∗ is zero up
to 1/mb corrections, so use of the heavy quark spin symmetry is justified up to hard
spectator effects [151]. In this picture, we assume heavy-quark interacts with light
degrees of freedom solely through soft gluon exchanges and thus we use only upper-
components field hv for the b-quark. This is similar to approaches in [151, 152].

5.2 Large energy limit of B → P form factor

In the following, we shall relate the B∗ → K̄0 tensor form-factors to the vector ones
of B → K̄0. We repeat the standard form factors

〈
K̄0(k)

∣∣ s̄qµσµν
∣∣B∗(η, pB)

〉
=2TBK1 (q2)ενµρσpB,µkρησ, (5.7a)

〈
K̄0(k)

∣∣ s̄qµσµνγ5b
∣∣B∗(η, pB)

〉
=iTBK2 (q2)

[
(M2 −m2

K)η − η · q(pB + k)
]ν

(5.7b)

+ iTBK3 (q2)(η · q)
[
q − q2

M2 −m2
K

(pB + k)

]ν
,

〈
K̄0(k)

∣∣ s̄γνb
∣∣B(pB)

〉
=FBK+ (q2)

[
pB + k − M2 −m2

K

q2
q

]ν
(5.7c)

+ FBK0 (q2)
M2 −m2

K

q2
qν ,

where M and mK are the B and K meson masses, respectively, and q = pB − k.
Now we can use underlying heavy quark and large energy symmetries to constrain
the number of independent form factors. Following [151], we express the matrix
element between B and energetic K̄0 as Dirac-trace of their wave functions and the
matrix Γ which is the Dirac structure of interaction

〈
K̄0(En−)

∣∣∣ s̄nΓhv

∣∣∣B(∗)(η,Mv)
〉

= Tr
[
A(E)MKΓMB

]
. (5.8)

E =
M2+m2

K−q2
2M is the energy of K and n− is a light-cone vector almost parallel to

the K momentum

k = En− + k′, n2
− = 0. (5.9)

Residual momentum k′ is of the order ΛQCD. sn is the effective large-energy field
of the s quark with factored out dependence on large energy

sn(x) = eiEn−·x
/n−/n+

4
s(x), (5.10)
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and n+ = 2v − n−. Long distance physics is parameterized by function A(E),
which does not depend on Γ, since Hamiltonians of heavy quark effective theory
and large energy effective theory commute with quark spin operators. The most
general parameterization of A(E) is then in terms of the four energy-dependent
functions [151]:

A(E) = a1(E) + a2(E)/v + a3(E)/n− + a4(E)/n−/v. (5.11)

For wave functions of mesons we use Dirac structures transforming as fermionic
bilinears under the Lorentz transformations

MK = −γ5
/n−/n+

4
, MB =

1 + /v

2

{
/η ; B = B∗(η,Mv)

(−γ5) ; B = B(Mv)
. (5.12)

Evaluating the traces on the right-hand side of (5.8), one can connect form factors
with functions a1(E), . . . , a4(E) and find at q2 = 0 the symmetry relation

TBK1 (0) = TBK2 (0) = TBK3 (0) = FBK+ (0). (5.13)

Consequently, matrix element of Q7 for B∗ → K̄0 transition
〈
K̄0(k)

∣∣ s̄qµσµν(1 + γ5)hv
∣∣B∗(v, η)

〉
= FBK+ (0)

[
2Mενµρσvµkρησ (5.14)

+ iM2ην − iη · q(Mv + k)ν
]

is proportional to FBK+ (0), the value of which has been determined with the light-
cone sum rules approach [153]

FBK+ (0) = 0.33± 0.04. (5.15)

5.3 Hard photon spectra

The diagram on the left-hand side in Figure 5.2, representing the soft η region is
then

Aη soft =− iGFV ∗tsVtbC7(mb)
emb

8π2
FBK+ (0)

g

f

(
cos θ√

6
− sin θ√

3

)

× (pσ − v · p vσ)

v · p
[
2Mενλρσvλkρ + iM2gσν − i(Mv − k)σ(Mv + k)ν

]
ε∗ν ,

(5.16)

where θ = −15.4◦ is the η8 − η1 mixing angle [154] and f = 93 MeV is the pion
decay constant. Wilson coefficient C7 on scale of the b quark is C7(µ = 5 GeV) =
−0.30 [128]. Electromagnetic gauge invariance is found to be valid in the limit of
small Eη.

The right-hand side diagram of Figure 5.2 with soft K̄0 represents the amplitude
of similar form

AK soft =iGFV
∗
tsVtbC7(mb)

emb

8π2
FBK+ (0)

g

f

√
2 cos θ + sin θ√

3

× (kσ − v · k vσ)

v · k
[
2Mενλρσvλpρ + iM2gσν − i(Mv − p)σ(Mv + p)ν

]
ε∗ν ,

(5.17)
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In comparison to the soft η amplitude (5.16), the soft K amplitude (5.17) has
interchanged momenta p↔ k and η8 − η1 mixing factors now originate from B∗sηγ
vertex, where we rely on flavor SU(3) symmetry to estimate form factor FBsη+ .

To find the amplitude for η′ in the final state, one only has to modify η8 − η1

mixing coefficients in the amplitudes (5.16), (5.17) and find for soft η′

A′η′ soft =− iGFV ∗tsVtbC7(mb)
emb

8π2
FBK+ (0)

g

f

(
sin θ√

6
+

cos θ√
3

)

× (pσ − v · p vσ)

v · p
[
2Mενλρσvλkρ + iM2gσν − i(Mv − k)σ(Mv + k)ν

]
ε∗ν .

(5.18)

Momentum of η′ is here denoted by p. Amplitude for soft K and energetic η′ is

A′K soft =− iGFV ∗tsVtbC7(mb)
emb

8π2
FBK+ (0)

g

f

cos θ −
√

2 sin θ√
3

× (kσ − v · k vσ)

v · k
[
2Mενλρσvλpρ + iM2gσν − i(Mv − p)σ(Mv + p)ν

]
ε∗ν .

(5.19)
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Figure 5.3: B̄0 → K̄0ηγ spectra. Left: Photon spectrum in the region of Eη <
0.8 GeV (short dashes), Eη < 1.0 GeV (solid line), and Eη < 1.2 GeV (long dashes).
Right: same for soft K, EK < 0.8, 1.0, 1.2 GeV.

Figure 5.4: B̄0 → K̄0η′γ spectra. Left: Photon spectrum in the region of
Eη′ < 1.1 GeV (short dashes), Eη′ < 1.2 GeV (solid line), and Eη′ < 1.3 GeV
(long dashes). Right: same for soft K, EK < 0.8, 1.0, 1.2 GeV.
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5.4 Summary

We have investigated photon spectra of the B → η(η′)Kγ decays in the region of
Dalitz plot with energetic photon and one soft meson. We applied the combined
heavy quark, large energy, and chiral symmetries. Use of this approach is justified
owing to the fact that in the considered regions of Dalitz plot kinematical config-
uration allows simultaneous expansion in soft momentum, 1/mb, and 1/Ehard. In
the approach we proposed only the nonresonant production is taken into account,
neglecting in particular the resonant B → K∗γ → Kηγ decay. Since η and η′ are
isosinglets we do not expect any significant final state effects.

Partial branching ratio integrated over both regions in Figure 5.1 with up-
per bound on soft meson energies set to 1.2 GeV accounts for about 10 % of the
B̄0 → K̄0ηγ branching ratio (5.2a). Thus, with increasing statistics, these two cor-
ners of phase space could be studied more thoroughly and bring in complementary
information on the magnitude of C7.





Chapter 6

Radiative background of
B → D`ν decays

Many efforts have been devoted to experimentally check validity of the Cabibbo-
Kobayashi-Maskawa (CKM) mechanism which predicts that all quark flavor observ-
ables agree with the unitary CKM matrix which connects all CP -violating processes.
If one is to confirm the CKM mixing then either measuring sides or the angles of
the unitarity triangle the apex (ρ̄, η̄) should come out unique. The value of Vcb
determines lengths of the two sides adjacent to the apex, among them also the side
opposite to the angle β which is precisely measured. CP -violating parameter εK
of K–K̄ mixing is one of the most important experimental inputs of the unitarity
triangle analyses and is also extremely sensitive to the value of |Vcb|. Full expres-
sion can be found in [155], here we isolate the dependence on CKM values and
nonperturbative physics, which contribute largest uncertainties:

|εK | ∝ B̂KηA2λ6. (6.1)

Scale invariant bag-parameter of matrix element of ∆S = 2 matrix element between
K0 and K̄0 states has been denoted B̂K , while η, A, and λ are the CKM parameters
in the Wolfenstein parameterization (2.10). Letting A = Vcb/λ

2, we find

|εK | ∝ B̂Kη|Vcb|2λ2. (6.2)

Cabibbo angle λ = 0.226± 0.001 [28] is known with good precision. Bag parameter
B̂K has been computed on the lattice and in the last years unquenched results with
relatively small errors have become available. Recent average of results amounts
to [156]

B̂K = 0.731(7)(35), (6.3)

where the numbers in brackets represent the respective statistical and systematic
errors. A 5% percent error of the bag parameter is becoming less important than the
error of |Vcb|2, whose current values, determined by the inclusive and the exclusive
methods disagree

|Vcb| = (38.6± 1.2)× 10−3, exclusive B → D`ν and B → D∗`ν [157], (6.4a)

|Vcb| = (41.5± 0.4± 0.6)× 10−3, inclusive B → Xc`ν and B → Xsγ [80]. (6.4b)

83
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Values from exclusive analyses are consistently below the inclusive analyses. Preci-
sion of the inclusive method is better but in future flavor experiments one expects
to approach precision of about 1% even for the exclusive method.

6.1 Extraction of Vcb in B → D`ν

The problem with extraction of the Vcb value using measured spectra and decay
widths of a exclusive process are the ever pertaining hadronic dynamics. Effects
and uncertainties of these are encoded in the form factors, which are to this day the
main source of theoretical uncertainty. Spectrum of B → D`ν semileptonic decay
to a light lepton is conventionally expressed with G(w) form factor, where w = v · v′
is the product of the two mesons’ velocities

dΓ

dw
(B → D`ν) =

G2
F |Vcb|2
48π3

m3
D(mB +mD)2(w2 − 1)3/2G2(w). (6.5)

For the heavy → heavy transition B → D mediated by the (axial-)vector weak
currents, starting point is the heavy quark symmetry (HQS) at the point where B
and D velocities are equal and the light degrees of freedom dynamics is described by
the Isgur-Wise [16] function. Then one has to invoke HQS breaking corrections in
powers of αs and especially ΛQCD/mQ (Q = c, b) to account for the relatively light c-
quark. The HQS supplemented by the breaking terms provides a reliable theoretical
prediction for the form factors at the zero-recoil, a kinematical point with maximum
momentum transfer squared between the heavy mesons tmax = (mB −mD)2.

However, phase space vanishes at zero-recoil point and the decay spectrum is
correspondingly small. Experimentalists measure the bulk of semileptonic events in
the region away from the zero-recoil limit, where no theoretical predictions based on
HQS are available. The usual procedure in this case is to fit the data to a physically
viable shape of the form factor and extrapolate the measured spectrum to obtain
the value of VcbG(w = 1). Commonly used parametrization is the one of Neubert,
Lellouch, and Caprini [158] (CLN) which resides on the analytical properties of the
current correlators and HQS. On the other hand, lattice QCD simulations have pro-
vided in the last years quenched values of the form factor G(w) at several points away
from the zero-recoil thus establishing direct contact with experimental data [159–
161]. In future also unquenched results will be at hand for the heavy-to-heavy form
factors, computed at several w [162].

In this chapter we will study the possible background of B → D`ν decay due
to radiative events, which are not recognized by the experiment. The control over
systematics is very important if we are to reconcile the inclusive and exclusive values
of Vcb. Furthermore, the exclusive decay B → D is determined by two hadronic
form factors that are accessible to lattice QCD and have now been computed at
several values of q2. In our case the dominant contribution to radiative events with
soft photons will turn out to be the D0∗ resonance which decays to D0 and a photon,
and is always very soft in the B meson rest frame.
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6.2 Amplitude decomposition

Radiative process b→ clνγ is induced by the effective weak Lagrangian accompanied
by the electromagnetic interaction.

Leff = −GFVcb√
2

HµL
µ, (6.6a)

LQED = eBµ(x)Jµ. (6.6b)

We use Bµ for the electromagnetic field, whereas weak currents Hµ, Lµ and elec-
tromagnetic current Jµ are defined as

Hµ = c̄γµ(1− γ5)b ≡ Vµ −Aµ, (6.7a)

Lµ = ¯̀γµ(1− γ5)ν, (6.7b)

Jµ = −¯̀γµ`+ 2/3ūγµu− 1/3d̄γµd+ 2/3c̄γµc− 1/3s̄γµs− 1/3b̄γµb. (6.7c)

Leading order S-matrix element for B(p)→ D(p′)`(p`)ν(k)γ(ε, q) is

〈Dlνγ |S |B〉 =

〈
Dlνγ

∣∣∣∣−
∫
d4x d4y T [Leff(x)LQED(y)]

∣∣∣∣B
〉

=(2π)4δ4(Σipi)
eGFVcb√

2
ε∗µ
[
〈D |Hν(0) |B〉

∫
d4y eiq·y 〈lν |T [Jµ(y)Lν(0)] | 0〉

+ 〈lν |Lν(0) | 0〉
∫
d4y eiq·y 〈D |T [Jµ(y)Hν(0)] |B〉

]
. (6.8)

T in the above expression denotes the time-ordering operator. The resulting invari-
ant amplitude is

A(B(p)→ D(p′)`(pl)ν̄(k)γ(ε, q)) = (6.9)

=
eGFVcb√

2
ε∗µ ū(pl)

[
− Fν(t)

2pl · q
γµ(/pl + /q +ml) + Vµν −Aµν

]
γν(1− γ5)v(k).

First term in brackets is the amplitude for photon emission from the lepton leg, and
is proportional to the vector form factors of B → D transition:

Fν(t) ≡ i
〈
D(p′)

∣∣∣H(†)
ν (0)

∣∣∣B(p)
〉
, t = (p− p′)2. (6.10)

The last two terms in bracket of (6.9) correspond to photon coupled to the heavy
line (Figure 6.1), and is given in terms of vector and axial hadronic correlators

Vµν ≡
∫
d4y eiq·y

〈
D(p′)

∣∣T [Jµ(y)Vν(0)]
∣∣B(p)

〉
, (6.11a)

Aµν ≡
∫
d4y eiq·y

〈
D(p′)

∣∣T [Jµ(y)Aν(0)]
∣∣B(p)

〉
. (6.11b)

Gauge invariance of the amplitude (6.9) (i.e. vanishing of the amplitude after we
have replaced ε by q) is guaranteed by the nontrivial Ward identities for Vµν and
Aµν (see Section B.1):

qµVµν = (QD −QB)Fν(t) = Fν(t), (6.12a)

qµAµν = 0, (6.12b)
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where QD,B denote electric charges of mesons. Correlator of vector current Vµν can
be decomposed into inner bremsstrahlung (IB) and structure dependent (SD) parts
according to

− iVµν = V IB
µν + V SD

µν , qµV SD
µν ≡ 0. (6.13)

Vµν and Aµν depend on momenta of respective momenta of B, D, and γ: p, p′, and
q. Their most general Lorentz covariant parameterization, consistent with Ward
identities (6.12) is in terms of eight scalar functions of momenta V1...4, A1...4

V IB
µν =

pµ
p · qFν(t), (6.14a)

V SD
µν =V1

(
p′µqν − p′ · q gµν

)
+ V2 (pµqν − p · q gµν) (6.14b)

+ (p · q p′µ − p′ · q pµ)
(
V3 pν + V4 p

′
ν

)
,

Aµν =A1εµναβ p
αqβ +A2εµναβ p

′αqβ +
(
A3pν +A4p

′
ν

)
εµαβγ p

αqβp′γ . (6.14c)

Note that one has a freedom in splitting the vector current correlator Vµν to SD and
IB parts, namely one can freely move gauge invariant parts from one to another.
Explicit choice of V IB

µν clearly defines what is included in V SD
µν . Adding a term

qνεµαβγp
αqβp′γ to the axial correlator Aµν might seemed legitimate but then the

Schouten’s identity

∑

(µαβγν)

εµαβγqν = 0, (µαβγν) cyclical permutations (6.15)

would render this term redundant, since it can be absorbed by the parameteriza-
tion (6.14c).

6.2.1 Single particle poles in Vµν and Aµν

B∗

γ

D∗

γ

Figure 6.1: Possible one particle intermediate states’ contributions.

Inserting the sum over all possible intermediate states into correlators (6.11)
exposes the pole structure connected to all possible single particle states. Excited
B and D states generate poles in variables (p− q)2 and (p′ + q)2 invariant masses,
respectively (left and right Feynman graphs of Figure 6.1).

V poles
µν =

∑

n

∫
d4y eiq·y

∫
d3pn

(2π)32En
(6.16)

[
Θ(y0)

〈
D(p′)

∣∣ Jµ(0)
∣∣D∗n(pn)

〉
〈D∗n(pn) |Vν(0) |B(p)〉 e−i(pn−p′)·y

+Θ(−y0)
〈
D(p′)

∣∣Vν(0)
∣∣B∗n(pn)

〉
〈B∗n(pn) | Jµ(0) |B(p)〉 e−i(p−pn)·y

]
.
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Sum runs over all beauty (B∗n) and charm (D∗n) flavoured states. Of the B∗n in-
termediate states, only B− introduces a pole in the physical region when photon
is soft (Eγ → 0). This pole contribution precisely matches the V IB

µν . Amplitude
for bremsstrahlung off the lepton leg is also singular at Eγ = 0. Consequently, the
two amplitudes together are gauge invariant (as can be seen by comparing Ward
identities (6.12) and the amplitude (6.9)) and they comprise the well-known soft di-
vergence of quantum electrodynamics. According to Bloch-Nordsieck theorem [163]
it cancels against one-loop virtual correction on the level of decay width.

SD amplitude is divergence free at Eγ → 0, however, additional poles appear at
finite Eγ due to D∗n states, and since the outgoing photon is assumed to be soft, only
the lowest excited states should contribute dominantly. Here we will consider only
the first excited state D∗ and argue in the end why contribution of higher states is
not substantial. Close to the D∗ pole V SD

µν takes the following form

i 〈D(p′) | Jµ |D∗(p′ + q)〉 〈D∗(p′ + q) |Vν |B(p)〉
(p′ + q)2 −m2

D∗ + imD∗ΓD∗
, (6.17)

where we accounted for the finite width of the D∗ via the Breit-Wigner ansatz. Aµν
also has the same pole structure, only with axial current Aν in place of Vν .

6.3 Hadronic parameters of B → D∗ and D∗ → Dγ tran-
sitions

D0∗ → D0γ

This decay is governed by the magnetic-dipole transition

〈
D0(p′)γ(k, η)

∣∣D0∗(p, ε)
〉

= egD0∗D0γε
µναβηµενpαp

′
β, (6.18)

whose value gD0∗D0γ = 2.0 ± 0.6 GeV−1 was computed on the lattice [164] along
with the strong coupling constant gD∗Dπ = 20 ± 2. We combine the lattice results
with the measured ratio [28]

Rπ/γ ≡
Γ(D0∗ → D0π0)

Γ(D0∗ → D0γ)
= 1.74± 0.13 (6.19)

to find a tighter constraint: 1.8 < gD0∗D0γ < 2.5 (see Figure 6.2). Knowledge
of gD0∗D0γ allows us to predict the decay width of D0∗ meson from the measured
branching fraction B(D0∗ → D0γ) = 0.381± 0.029 [28]:

53 keV < ΓD0∗ < 108 keV. (6.20)

This is much lower than the current experimental upper bound ΓD0∗ < 2.1 MeV [28].

B− → D0∗

Vector and axial-vector form factors of B → D0∗ (see Section 2.3.1) have been
computed using the quenched lattice simulation [165] at several values of w =
(t−m2

B −m2
D∗)/(2mBmD∗). We perform the chi-squared fit on their stated values

and errors using the CLN shapes of the form factors [158].
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Figure 6.2: Blue region represents the lattice allowed values of gD0∗D0π and gD0∗D0γ ,
and red region is allowed by the measurement of Rπ/γ .

The resulting contribution of the D∗ resonance to structure dependent functions
A1...4, V1...4 (6.14a) are expressed in terms of form factors V BD∗ , aBD

∗
0,1,2 (we use

lowercase a for the form factors (2.32) to avoid ambiguity with functions A1...4 used
in decomposition of Aµν). Their explicit expressions are stated in the Section B.2.

6.4 Irreducible background to B− → D0`ν channel from
D0∗ → D0γ

The resonant decay chain B → D∗`ν followed by D∗ → Dγ forms an irreducible
background to B → D`ν if the experiment overlooks the final state soft photons
whose energy is Eγ = 137 MeV in the center-of-mass frame of D∗. Depending
on the experimental ability to discern events accompanied by the photon from
ordinary semileptonic events, a number of fake events are included in the sample of
semileptonic events.

The available experimental data [28] is sufficient to estimate the importance of
B− → D0∗`ν pollution in B− → D0`ν. Using the narrow width approximation
gives for the branching fraction of resonant B− → D0γ`ν a value of (2.2 ± 0.2)%,
which is of the same size as non-radiative decay [28]. This clearly poses a serious
problem since the major part of the photons are quite soft due to small mass splitting
between D0∗ and D0.

We show the photon spectrum, calculated using the framework defined in Sec-
tions 6.2 and 6.3, on Figure 6.3. The 137 MeV photon in the D0∗ rest frame is
boosted to energies up to ≈ 350 MeV in the B meson rest frame. Figure 6.4 shows
the ratio of radiative events recognized as B− → D0`ν to the total sum of radiative
and semileptonic events.
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Figure 6.3: Spectrum of resonant B → D0∗`ν → D0γ`ν.

Figure 6.4: Fraction of misidentified events in the sample depending on the photon
energy resolution of the analysis. The uncertainty corresponds to the range allowed
for the ΓD∗ .

6.5 Summary

Precision of Vcb determined by measuring an exclusive b → c decay channel is
important in reconciling a discrepancy between inclusive and exclusive methods of
Vcb extraction.

Unitarity triangle analyses rely heavily on the CP -violating parameter of K–K̄
mixing εK , and largest uncertainties are stemming from errors of the bag parameter
B̂K and the value of Vcb. Advances in unquenched lattice calculations have provided
a value of bag parameter with a good precision of ∼ 5%. Thus, experimental value
of |Vcb| is becoming a dominant source of errors in using εK as an experimental
input to unitarity triangle analyses.

Since B− → D0`ν channel is expected to be measured also at future Belle 2
experiment we have analysed the background radiative events B− → D0`νγ. We
have found the dominant contribution due to D0∗ resonance, decaying into D0γ. We
have shown spectrum (Figure 6.3) and the fraction of fake events in the experimental
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sample (Figure 6.4). Due to small mass splitting 142 MeV between mD0 and mD0∗ ,
all the photons are soft in the B meson rest frame. Higher excited charm states
would necessarily produce more energetic photons, which experiment could detect,
so those states have been of minor importance in our analysis. We have come to
conclusion that for a required precision of Vcb of the one percent order, experiment
should be sensitive to the photons of energy well below 100 MeV.



Chapter 7

Concluding remarks

The search for new physics in precision low-energy observables has been a long
lasting aim of joint experimental and theoretical efforts. The physics programme
of B-factories even exceeded the original goals and, together with input from other
experiments, confirmed that a global fit of the standard model quark Yukawa sector
shows no serious anomalies. The unitarity triangle analyses tested the Cabibbo-
Kobayashi-Maskawa mixing mechanism at the ∼ 10% level. The most precisely
measured and theoretically unproblematic observables like CP -violation parameters
in K–K̄ mixing already push the scale of new physics up to ∼ 100–1000 TeV. It has
become clear that new physics contributes to the quark flavour observables on the
level of few percent or even smaller. It is thus crucial to have the standard model
theoretical predictions under good control.

In first part of the thesis we have put emphasis on comparison between standard
model and new physics signatures in rare decays. The standard model contributions
in that context act as background of new physics signals. In Chapter 3 however,
we studied a process b → dds̄, occurring at a negligibly slow rate in the standard
model. This allowed us to consider contributions of the new physics scenarios alone.
We found that certain hadronic decay channels shall play a role in constraining a
model of supersymmetry with broken Rp-parity and a model with additional Z ′

gauge boson, once the experiment is able to probe their branching fractions on the
10−7 level. Chapter 4 dealt with semileptonic charm decays D → P`+`−, which are
notorious for their poorly controlled long distance contributions. In this case we
had to model the resonant background, whereas the short distance standard model
contributions proved negligible. Same quark level transition c→ u`+`− triggers the
well constrained leptonic decaysD → `+`−, which give useful additional information
in this case. We showed that experiment is on the verge of discovery of D → π`+`−

and currently puts severe bounds on the Rp-parity violating supersymmetry and
a more general singlet leptoquark model. All the abovementioned decays will be
searched for in future at LHCb and the Belle 2 experiments and will provide useful
exclusion bounds in parameter spaces of new physics models.

In the second part, namely in Chapters 5 and 6 we did not focus on any partic-
ular new physics model but instead devised methods of testing the standard model
predictions themselves. For the B → Kηγ decay we predicted in the standard model
photonic spectra for the decay channels with η and η′ in final state. These spectra
will be recorded at the Belle 2 and LHCb experiments and will probe the chiral

91



92 Concluding remarks

nature as well as the scale of b → sγ coupling. In Chapter 6 we exposed the pit-
fall present in the exclusive determination of Cabibbo-Kobayashi-Maskawa element
|Vcb|, a very important parameter in the unitarity triangle analyses. Namely, the
discriminating power between B → D`ν̄γ and B → D`ν̄ decays depends crucially
on the lower cut on photon energy. For the case of B− → D0 we identified the
dominantly contributing resonance D0∗ and estimated the number of misidentified
radiative events depending on the photon cut. Results of these two chapters may
prove to be valuable in progressively stringent tests of the standard model.

The quark flavour observables studied in the thesis constitute important aspect
of new physics searches. The precision low-energy experiments, although affected by
hadronic uncertainties, are best-suited to assess the new physics flavour properties.
In forthcoming era of the Large Hadron Collider a fruitful interplay between the
high pT experiments at hadron colliders and precision flavour physics will further
test the standard model and hopefully expose the principles behind it.



Appendix A

Technical aside on b→ dds̄
process

A.1 Matching and renormalization of composite oper-
ators

We choose to regularize the loop integrals in the effective theory using the naive
dimensional regularization (NDR) and renormalize them by minimal subtraction
scheme [166, 167] (MS). Using a mass-independent renormalization scheme like
MS results in a well defined power expansion in 1/m2

W of the amplitudes unlike
mass-dependent schemes, where loop contributions of higher dimensional (dimension-
8 and higher) composite operators is not suppressed.

When we choose to include virtual QCD corrections we work in the modified
minimal subtraction scheme [166, 167] (MS) to renormalize divergent loop inte-
grals. However, in MS scheme also the QCD beta function is mass-independent
and heavy particles do not decouple as the Appelquist-Carazzone theorem does not
apply [168, 169]. This is why we have to decouple a heavy particle1 with mass M
“by hand”, integrating it out on the scale µ ∼ Λ [170]. At matching scale Λ we de-
termine the Wilson coefficients, by imposing equality of 1-particle irreducible (1PI)
Green functions calculated in the full theory and the 1PI Green functions (GF)
calculated in the effective theory. Following [29] we demonstrate, how the match-
ing and operator renormalization is calculated in LO in αs and leading logarithm
approximation. First we express GF in the effective theory as

−
√

2

4GF
Aeff =

∑

i

Ci(Λ) 〈Qi(Λ)〉 =
〈
~QT (Λ)

〉
~C(Λ), (A.1)

where
〈
~Q
〉

denotes the vector of GFs calculated with composite operator inser-

tions (Fig. A.1). Assuming our basis of operators is complete under QCD renor-
malization, GFs can be expressed as combinations of tree-level GFs (i.e. calculated
without QCD correction), denoted ~S

〈
~Q(Λ)

〉
=
(

1 +
αs
4π
rT
)
~S. (A.2)

1Here qualification “heavy” should be understood as heavy with respect to typical momentum
scale of the problem, namely µhad �M .
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Figure A.1: 1PI Green function diagrams in the effective theory. Shaded squares
represent currents in the effective 4-fermion vertex.

The corresponding full theory GF is (Fig. A.2) (keeping only leading terms in
1/m2

W ):

Figure A.2: 1PI Green function diagrams in the full theory. Dots are the weak
currents.

−
√

2

4GF
Afull = ~ST

(
~A(0) +

αs(Λ)

4π
~A(1)

)
. (A.3)

The above full amplitude as written (A.3) is finite after we have accounted for the

external leg renormalization by adding factor Z
1/2
q for each external fermion. In the

leading order in αs the quark field renormalization constant is

Zq = 1− αs
4π

CF
ε

+O(α2
s), CF =

N2 − 1

2N
=

4

3
. (A.4)

Also the effective theory result (A.3) is finite, but there a mere multiplicative factor
Z2
q does not suffice to render the GF finite. That should come as no surprise since

the effective theory is not renormalizable as is the case with full theory. Especially
the UV behaviour is different in the two theories. One should treat Wilson coef-
ficients Ci as ordinary coupling constants and proceed with usual renormalization
procedure where also Wilson coefficients get renormalized. Equivalently we can
consider renormalizing the composite operators as

~Q(0) = Z ~Q. (A.5)

This renormalization is chosen to be done in the MS scheme, subtracting only the
1/ε poles2. Once we have adopted the same scheme for renormalization of QCD
divergences in both theories and having included composite operator in (A.2), we
read off the Wilson coefficients at the matching scale Λ from equality of (A.1)
and (A.3)

~C(Λ) = ~A(0) +
αs(Λ)

4π
( ~A(1) − rT ~A(0)). (A.6)

2We calculate the momentum loop diagrams in D = 4− 2ε spacetime dimensions.
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Our final goal are the values ~C(µhad) and thus we could in principle set Λ =
µhad in (A.6). However, if the αs-proportional terms in coefficients (A.6) contain
large logarithms of scale separation ln Λ2/M2 they would invalidate perturbative
treatment for Λ � M [29, 171]. Thus the matching calculation is valid only for
Λ 'M .

The aforementioned large logarithms can be summed using the renormalization
group improved theory, which amounts to performing a sequence of matching proce-
dures with infinitesimal scale separations, allowing one to write the renormalization
group equations (RGE) for a renormalized parameter. RG equations express the
rate of change or “running” or “evolution” of a parameter as the renormalization
scale µ is being changed. Renormalized Wilson coefficients’ running is determined
by the anomalous dimension matrix γ

d~C(µ)

d lnµ
= γT (g)~C(µ), (A.7)

where in the minimal subtraction scheme γ(g) is µ-dependent only indirectly through
g(µ). Same RG equation holds for the evolution matrix

dU(µ,Λ)

d lnµ
= γT (g)U(µ,Λ), ~C(µ) ≡ U(µ,Λ)~C(Λ). (A.8)

Since γ is a function of g in MS scheme, it is more suitable to treat g as independent
variable, namely

d

dg
U(µ(g),Λ) =

γT (g)

β(g)
U(µ(g),Λ)), (A.9)

where β is the standard beta-function of QCD

dg

d lnµ
= β(g), β(g) = −β0

g3

(4π)2
+O(g5), (A.10)

β0 = (33− 2f)/3. (A.11)

f is the number of dynamical quark flavours at scale µ. The solution to running
αs(µ) = g2/(4π) in leading order in αs is

αs(µ) =
αs(mZ)

1− β0
αs(mZ)

4π lnm2
Z/µ

2
=

4π

β0 lnµ2/Λ2
QCD

. (A.12)

Solution of (A.9) can be written iteratively resulting in

U(µ,Λ) = Tg exp

[∫ g(µ)

g(Λ)
dg′

γT (g′)
β(g′)

]
. (A.13)

Operator Tg enforces products of matrices to be coupling-ordered, meaning that
the matrix with largest g is placed leftmost, the one with second largest g is placed
next to the leftmost and so on, if g(Λ) < g(µ). If however, µ > Λ, then the ordering
must be reversed. The anomalous dimension matrix γ is connected to the composite
operator renormalization, in particular to coefficient Z1 of the 1/ε term of matrix
Z (A.5)

γ(g) = −2g2dZ1(g)

dg2
. (A.14)
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A.1.1 Mixing of effective operators in b→ dds̄

Working in the leading logarithm approximation we can perform matching on scale
Λ at order O(α0

s). To determine the anomalous dimension matrix of the opera-
tors (8.8) we have to calculate the insertions of operators O1...3 into the 1PI Green
function to first order in αs.

O1O2 mixing

We have to evaluate the loop diagrams on Figure A.1 with insertions of O1 and O2

〈
O(0)

1

〉
=
〈
O(0)

1

〉
0

[
1 +

αs
4π

2CF − 1

ε

]
+
〈
O(0)

2

〉
0

αs
4π

3

ε
, (A.15)

〈
O(0)

2

〉
=
〈
O(0)

2

〉
0

αs
4π

3

ε
, (A.16)

where 〈. . .〉0 denotes the tree-level insertion of operator, i.e. without QCD correc-
tions. Evidently, the operator O2 does not mix into O1. Insertions of the renor-
malized operators O1,2 into the four point functions are finite and are expressed
as

(
〈O1〉
〈O2〉

)
= Z2

qZ
−1



〈
O(0)

1

〉
〈
O(0)

2

〉

 . (A.17)

Inserting the quark field renormalizations (A.4) and CF = 4/3 we find for the
composite operator renormalization matrix

Z = 1 +
αs
4πε

(
−1 3
0 8

)
. (A.18)

The anomalous dimension matrix is determined by the 1/ε term in expansion of Z
in powers of ε (see (A.14))

γ =
αs
2π

(
1 −3
0 −8

)
. (A.19)

O3 renormalization

The O3 insertion into graphs of Figure A.1 also generates at O(αs) an operator with
the colour nonsinglet currents, which is not present in our basis. However, owing
to the presence of two d quark fields we can Fierz transform the abovementioned
operator back to O3. Thus, O3 only mixes into itself and will be multiplicatively
renormalized 〈

O(0)
3

〉
=

(
1 +

αs
4π

2CF − 2

ε

)〈
O(0)

3

〉
0
. (A.20)

After the quark field renormalization we find for the anomalous dimensions

Z = 1− αs
4π

2

ε
, γ =

αs
π
. (A.21)
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A.2 GIM mechanism in the b→ dds̄

Note that in (3.11) the two independent sums over quark flavors imply exact GIM
cancellation of any term in f(xi, xj) that does not depend on both xi and xj . Re-
sulting freedom in choice of f(x, y) is

f(x, y)→ f(x, y) + u(x) + v(y), (A.22)

with arbitrary functions u and v. In (3.12) we fixed u(x) and v(y) by imposing the
constraint f(x, 0) = f(0, y) = 0 to suppress the contribution of light quarks and
retain relatively simple form. We could also forbid contributions at chosen value of
x and y. For example, t quark would not explicitly contribute in the box diagram
if we redefined f(x, y) as

f(x, y)→ f(x, y)− f(xt, y)− f(x, xt) + f(xt, xt). (A.23)

A.3 Parameterization of B → π form factors

For the B− → π− and B− → ρ− transitions we use form factors calculated in the
relativistic constituent quark model with numerical input from lattice QCD at high
q2 [74].

A.3.1 B → π form factors

F πB1 (q2) =
F πB1 (0)

(1− q2/m2
B∗)[1− σ1q2/m2

B∗ ]
, F πB1 (0) = 0.29, σ1 = 0.48, (A.24a)

F πB0 (q2) =
F πB0 (0)

1− σ1q2/m2
B∗ + σ2q4/m4

B∗
, F πB0 (0) = 0.29, σ1 = 0.76, σ2 = 0.28,

(A.24b)

A.3.2 B → ρ form factors

V ρB(q2) =
V ρB(0)

(1− q2/m2
B∗)[1− σ1q2/m2

B∗ ]
, V ρB(0) = 0.31, σ1 = 0.59, (A.25a)

AρB0 (q2) =
AρB0 (0)

(1− q2/m2
B)[1− σ1q2/m2

B]
, AρB0 (0) = 0.30, σ1 = 0.54, (A.25b)

AρB1 (q2) =
AρB1 (0)

1− σ1q2/m2
B∗ + σ2q4/m4

B∗
, AρB1 (0) = 0.26, σ1 = 0.73, σ2 = 0.10,

(A.25c)

AρB2 (q2) =
AρB2 (0)

1− σ1q2/m2
B∗ + σ2q4/m4

B∗
, AρB2 (0) = 0.24, σ1 = 1.40, σ2 = 0.50.

(A.25d)
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The transition form factors between heavy mesons D−s → D− have been calculated
in the chiral Lagrangian approach in [75]

FDDs1 (q2) = 0, (A.26a)

FDDs0 (q2) =
q2

m2
Ds
−m2

D

(gπ/4)fK(1430)
√
mDsmD

q2 −m2
K(1430) + i

√
q2ΓK(1430)

. (A.26b)

A.3.3 K → π form factors

The same method has been used to obtain the K− → π− form factors [76]

F πK1 (q2) =
2gV K(892)gK∗

q2 −m2
K(892) + i

√
q2ΓK(892)(q2)

, (A.27a)

F πK0 (q2) =
2gV K(892)gK∗(1− q2/m2

K(892))

q2 −m2
K(892) + i

√
q2ΓK(892)(q2)

(A.27b)

+
q2

m2
K −m2

π

fK(1430)gSK(1430)

q2 −m2
K(1430) + i

√
q2ΓK(1430)(q2)

.

Here the decay widths of resonances K∗(892) and K(1430) are taken to be energy
dependent [76]

ΓK(892)(q
2) =

(
m2
K(892)

q2

)5/2

(A.28a)

×
(

[q2 − (mK +mπ)2][q2 − (mK −mπ)2]

[m2
K(892) − (mK +mπ)2][m2

K(892) − (mK −mπ)2]

)3/2

ΓK(892),

ΓK(1430)(q
2) =

(
m2
K(1430)

q2

)3/2

(A.28b)

×
(

[q2 − (mK +mπ)2][q2 − (mK −mπ)2]

[m2
K(1430) − (mK +mπ)2][m2

K(1430) − (mK −mπ)2]

)1/2

ΓK(1430).



Appendix B

Ward identity and amplitude
expressions for B−→ D0`ν̄γ

B.1 Ward identities

To derive the Ward identity of electromagnetic gauge invariance for Vµν , Aµν of
Chapter 6 we write out explicitly the time-ordering

qµVµν (B.1)

= −i
∫
d4y (∂µeiq·y) 〈D |T [Jµ(y)Vν(0)] |B〉

= i

∫
d4y eiq·y ∂µ

〈
D
∣∣Θ(y0)Jµ(y)Vν(0) + Θ(−y0)Vν(0)Jµ(y)

∣∣B
〉

= i

∫
d3y e−iq·y 〈D | [J0(y), Vν(0)] |B〉 .

Using the canonical commutation relations shows [138, p. 444] that [J0(y), F (x)] =
−qFF (x)δ(y − x), where F is a local function of fields, present in the Lagrangian,
and qF is the sum of charges of all the fields in F . So we have

qµVµν = i

∫
d3y e−iq·y(1/3 + 2/3)δ(y) 〈D |Vν |B〉 = Fν(t). (B.2)
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B.2 Invariant coefficients of the Vµν and Aµν in B− →
D0∗`ν̄ → D0`ν̄γ

B.2.1 Contribution to V SD
µν

V D∗
1 =

2gD∗DγV
BD∗(W 2)mBED

(mB +mD∗)
(
(p′ + q)2 −m2

D∗
) , (B.3a)

V D∗
2 =

−gD∗DγV BD∗(W 2) (m2
D +m2

D∗)

(mB +mD∗)
(
(p′ + q)2 −m2

D∗
) , (B.3b)

V D∗
3 = 0, (B.3c)

V D∗
4 =

−2gD∗DγV
BD∗(W 2)

(mB +mD∗)
(
(p′ + q)2 −m2

D∗
) (B.3d)

B.2.2 Contribution to Aµν

AD
∗

1 =
−gD∗Dγ(

(p′ + q)2 −m2
D∗
)
W 2

[
2mD∗a

BD∗
0 (W 2)− (mB +mD∗)a

BD∗
1 (W 2)

+
W 2 +m2

B −m2
D∗

mB +mD∗
aBD

∗
2 (W 2)

]
m2
D∗ −m2

D

2
, (B.4a)

AD
∗

2 =
gD∗Dγ(

(p′ + q)2 −m2
D∗
)
W 2

[
2mD∗p · q aBD

∗
0 (W 2)− (mB +mD∗)(p · q +W 2)aBD

∗
1 (W 2)

+
p · q (W 2 +m2

B −m2
D∗)

mB +mD∗
aBD

∗
2 (W 2)

]
, (B.4b)

AD
∗

3 =
−gD∗Dγ(

(p′ + q)2 −m2
D∗
)
W 2

[
−2mD∗a

BD∗
0 (W 2) + (mB +mD∗)a

BD∗
1 (W 2)

+
W 2 −m2

B +m2
D∗

mB +mD∗
aBD

∗
2 (W 2)

]
, (B.4c)

AD
∗

4 =
−gD∗Dγ(

(p′ + q)2 −m2
D∗
)
W 2

[
2mD∗a

BD∗
0 (W 2)− (mB +mD∗)a

BD∗
1 (W 2)

+
W 2 +m2

B −m2
D∗

mB +mD∗
aBD

∗
2 (W 2)

]
(B.4d)
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Poglavje 8

Razširjeni povzetek disertacije

8.1 Standardni model in njegove razširitve

Standardni model (SM) je preverjena fizikalna teorija veljavna na najmanǰsih do-
segljivih dolžinskih skalah (10−15 m). Skladen je s principi posebne relativnosti in
kvantne mehanike, ter za osnovne prostostne stopnje uporablja kvantna polja, kate-
rih ekscitacije predstavljajo delce. Vsebuje 19 prostih parametrov, ki kvantitativno
razložijo vse eksperimentalne opazljivke na omenjenih skalah v okviru teoretičnih
in eksperimentalnih napak. Edina izjema so opažene nevtrinske oscilacije, ki jih SM
ne napove, in nakazujejo na masivnost nevtrinov.

Ker v naboru interakcij SM ni gravitacije, je le-ta veljaven najdlje do Planckove
energijske skale (MP ' 1019 GeV), kjer zagotovo odpove klasičen (nekvanten) opis
gravitacije. V zvezi s tem se pojavi tudi problem hierarhije med skalo elektrošibkih
interakcij (∼ 100 GeV) in Planckovo skalo MP , kjer je težko razumeti, zakaj bi bila
masa Higgsovega bozona na šibki skali. To je tudi glavni teoretični argument za
veljavnost SM zgolj do skale ∼ 1 TeV, ali kvečjemu nekaj TeV. Obstaja mnogo
modelov, ki na skali okrog 1 TeV dopolnijo SM in so v literaturi poimenovani nova
fizika. V disertaciji obravnavamo efekte supersimetričnih razširitev z ohranjeno
ali kršeno parnostjo Rp, modelov z dodatnim umeritvenim bozonom Z ′, dodatnim
singletnim kvarkom, ali singletnim leptokvarkom z nabojem −1/3.

8.2 Fizika težkih kvarkovskih okusov

Eksperimenti v fiziki kvarkovskih okusov testirajo šibke interakcije, kjer lahko pride
do sprememb med šestimi okusi kvarkov 1. Za to so posebno pripravni šibki razpadi
mezonov, vezanih stanj kvarka in antikvarka. Težka mezona sta mezona D in B,
ki ustrezata težkima kvarkoma c in b, vezanima z enim od lahkih antikvarkov (u,
d, ali s). Torej je kvarkovska sestava težkih mezonov B = (bq̄) in D = (cq̄), kjer
q̄ označuje lahki antikvark. Masa težkih mezonov (. 5 GeV) je dva velikostna
reda pod šibko skalo, kar omogoča tvorbo parov težkih mezonov v velikih količinah
pri relativno nizkih energijah v t.i. tovarnah težkih mezonov (eksperimenta Belle in
BaBar). Ti eksperimenti slonijo na veliki statistiki, ki omogoča dobro natančnost pri

1Barvna in elektromagnetna interakcija ohranjata okus kvarkov.
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meritvi parametrov fizike okusov — 6 mas kvarkov in matrike Cabibbo-Kobayashi-
Maskawa (CKM), ki vsebuje 3 kvarkovske mešalne kote in fazni parameter δ.

Pri teoretični obravnavi razpadov je potrebno upoštevati neperturbativne učinke
barvnih interakcij, ki se v sistemu težkih mezonov lahko poenostavijo zaradi hierar-
hije med masama težkega in lahkega kvarka2. Zaradi masivnosti so na voljo mnogi
šibki razpadni kanali v vezana stanja lažjih kvarkov ter leptonov.

8.2.1 Kvarkovski okusi v SM

Interakcijske člene v Lagrangevi gostoti določa lokalna umeritvena invarianca pod
umeritveno grupo G = SU(3)c×SU(2)W ×U(1)Y . Reprezentacije fermionske snovi
v SM so leptonske (E, `R) in kvarkovske (Q, uR, dR):

E(1, 2)−1/2 =

(
νL
`L

)
, `R(1, 1)−1,

Q(3, 2)1/6 =

(
u1
L

d1
L

)
,

(
u2
L

d2
L

)
,

(
u3
L

d3
L

)
,

uR(3, 1)2/3 =
(
u1
R u2

R u3
R

)
, dR(3, 1)−1/3 =

(
d1
R d2

R d3
R

)
,

(8.1)

kjer številke v oklepajih označujejo, v katero reprezentacijo grupe G spada posa-
mezno fermionsko polje. Takó polje E(1, 2)−1/2 označuje singlet grupe SU(3)c,
dublet pod šibko grupo SU(2)W , ter hipernaboj Y = −1/2. Interakcije med fer-
mioni SM prenašajo umeritveni bozoni s spinom 1. Eksplicitni masni členi uničijo
umeritveno invarianco SM, zato simetrijo zlomimo s Higgsovim mehanizmom, ki
priskrbi mase šibkim umeritvenim bozonom W±, Z ter preko Yukawinih sklopitev
tudi mase fermionom. Po rotaciji kvarkovskih polj v masno bazo, nam v interak-
cijskih členih kvarkov z nabitimi šibkimi bozoni ostane unitarna mešalna matrika
CKM V s štirimi prostimi parametri:

Lkin 3 −
g√
2
W+
µ ūiγ

µPLVijdj + H.c.. (8.2)

Izmerjena skoraǰsnja diagonalnost matrike CKM nudi razvoj v vrsto (Wolfenstei-
nova parametrizacija) po elementu Vuc ≡ λ

V =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4), (8.3)

kjer je λ = 0.226± 0.001.
Vozlǐsče nabitega šibkega bozona s šibkim tokom kvarkov poleg spremembe

okusa povzroči tudi prehod med spodnjim (naboj −1/3) in zgornjim kvarkom (na-
boj 2/3). Okus spreminjajoči nevtralni tokovi (FCNC) se v SM pojavijo šele na
ravni kvantnih popravkov z virtualnim šibkim bozonom in so dodatno zastrti za-
radi unitarnosti matrike CKM preko mehanizma Glashow-Iliopoulos-Maiani (GIM).

2Težki mezon je analog vodikovemu atomu, kjer lahko maso jedra v prvem približku vzamemo
za neskončno.
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Posledično so vsi procesi, ki vključujejo spremembo okusa, a ne naboja, v SM zelo
redki. V modelih nove fizike ne pričakujemo mehanizma analognega GIMu, zato je
meritev procesov FCNC lahko okno v efekte nove fizike.

8.2.2 Razvoj produkta operatorjev v šibkih razpadih

Okus spreminjajoči kvarkovski procesi vključujejo izmenjavo šibkih bozonov mase
∼ 100 GeV (mW = 80.4 GeV, mZ = 90.2 GeV), mnogo večje od značilne energijske
skale pri razpadu težkih mezonov (∼ GeV). Izračuni z uporabo elektrošibke teorije
postanejo nepraktični, saj je v nizkoenergijskih procesih vzbujanje šibkih prosto-
stnih stopenj zastrto. Zelo pripravno je uporabiti efektivno teorijo, kjer obdržimo
le za dani proces relevantne prostostne stopnje, medtem ko propagacijo masivnih
prostostnih stopenj (kratkosežnih efektov) skrčimo v točkovno interakcijo. V pri-
meru interakcije 4 fermionov prek izmenjave šibkega bozona imamo v efektivni
Lagrangevi gostoti produkt dveh tokov povezanih s propagatorjem šibkega bozona
i∆µν(x, y) (glej enačbo (2.18))

−ig2

2

∫
d4x d4y J−µ (x)∆µν(x, y)J+

ν (y), (8.4)

ki ga formalno lahko razvijemo v potenčno vrsto okrog točke mW = ∞. Zgornja
nelokalna Lagrangeva gostota se tako zapǐse kot razvoj produkta operatorjev

−ig2

2m2
W

∫
d4x d4y

[
J−µ (x)gµνδ(x− y)J+

ν (y) +O(1/m2
W )
]
, (8.5)

kjer je razvidno, da je dominanten prispevek točkovna interakcija 4 fermionov, med-
tem ko so nelokalni operatorji vǐsjih dimenzij zastrti z vǐsjimi potencami 1/m2

W . V
vodilnem redu razvoja v 1/m2

W dobimo v Lagrangevi gostoti štiri-fermionske ope-
ratorje masne dimenzije 6

Ldim-6 = −4GF√
2

∑

i

Ci(µ)Qi(µ), Qi = (ψ̄i1Γiψi2)(ψ̄i3Γ′iψi4). (8.6)

Brezdimenzijske Wilsonove koeficiente določimo iz ujemalnih pogojev (ang. mat-
ching conditions), ki zahtevajo enakost štiritočkovnih enodelčno ireducibilnih Gre-
enovih funkcij v efektivni in celotni teoriji. V ujemanje obeh teorij lahko vključimo
tudi virtualne popravke barvnih interakcij. Ti v obravnavo uvedejo renormalizacij-
sko skalo µ, ki razmejuje kratkosežne od dolgosežnih efektov.

8.3 Redek proces b→ dds̄

V SM kvarkovski proces b→ dds̄ poteka preko izmenjave dveh bozonovW , ki tvorita
škatlasti diagram (Slika 8.1). Ta proces je zaradi dvojne vsote po notranjih gornjih
kvarkih dvojno-GIM zastrt, kar ga naredi eksperimentalno nevidnega. V skladu
s temi pričakovanji obstaja le zgornja meja na razvejitveno razmerje trodelčnega
razpada, ki ga na kvarkovskem nivoju sproži b→ dds̄

B(B− → π−π−K+) < 9.5× 10−7 pri 90% intervalu zaupanja . (8.7)
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ui

W W

uj

dL

bL

sL

dL

Slika 8.1: Izmenjava dveh bozonov W , ki sproži proces b→ dds̄ v SM.

V nasprotju z napovedmi SM lahko nekateri modeli nove fizike drastično povečajo
pogostost procesa b → dds̄. Analizirali bomo minimalni supersimetrični model
z ohranjeno (MSSM) in kršeno (/RpMSSM) parnostjo Rp ter model z dodatnim
nevtralnim umeritvenim bozonom Z ′.

8.3.1 Inkluzivni razpad

Za dani proces in študirane modele je efektivna Hamiltonova gostota linearna kom-
binacija

Heff. =

5∑

n=1

[
CnOn + C̃nÕn

]
, (8.8)

kjer so Wilsonovi koeficienti Cn z masno dimenzijo −2 množijo efektivne opera-
torje (3.3). V SM je prispevek le k koeficientu C3, ki vsebuje kvarkovska tokova
Lorentzove strukture (V − A)µ. Perturbativni učinki barvne interakcije so za ope-
rator O3 zanemarljivi. Za inkluzivno razpadno širino b→ dds̄ dobimo

ΓSM
incl. =

∣∣CSM
3

∣∣2m5
b

384π3
, CSM

3 ≈ 5.3× 10−13 GeV−2, (8.9)

in razvejitveno razmerje je mnogo premajhno za zaznavo v prihodnjih eksperi-
mentih (B(b → dds̄)SM = (8 ± 2) × 10−14). V modelu MSSM je tako kot v SM
neničelen le koeficient C3, ki se v tem primeru inducira preko škatlastih diagramov
s skvarki in gluini, katerih prispevki so bili izračunani za ∆S = 2 procese. Do-
bimo |CMSSM

3 | < 1.6× 10−12 GeV−2 ter posledično za zgornjo mejo razvejitvenega
razmerja 7× 10−13. V MSSM torej ni možnosti, da bi ta proces opazili.

Če v modelu MSSM sprostimo zahtevo po ohranitvi parnosti Rp, ki je za vsak
delec definirana kot

Rp = (−1)S(−1)3B+L =

{
+1 ; SM
−1 ; SUSY

, (8.10)

kjer je S spin, L leptonsko število, in B barionsko število delca, dovolimo člene v La-
grangevi gostoti, ki kršijo leptonsko ali barionsko število. V tem modelu (/RpMSSM)
sklopitve λ′ijk kršijo leptonsko število in lahko posredujejo okus spreminjajoče nev-
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tralne tokove med kvarki preko izmenjave snevtrina (Slika 8.2)

C
/Rp
4 = −

3∑

n=1

λ′n31λ
′∗
n12

m2
ν̃n

, (8.11)

C̃
/Rp
4 = −

3∑

n=1

λ′n21λ
′∗
n13

m2
ν̃n

. (8.12)

Učinke perturbativnih popravkov barvne interakcije upoštevamo z uporabo re-

ν̃n

dL

bL

sR

dR

λ′
n31

λ′∗
n12

ν̃n

dR

bR

sL

dL

λ′∗
n13

λ′
n21

Slika 8.2: Prehod b→ dds̄ preko izmenjave snevtrina v modelu /RpMSSM.

normalizacijske grupe, ki v tem primeru na nivoju razpadne širine prispeva faktor
fQCD, ki je za mase snevtrinov do 1 TeV približno 2.2.

Γ
/Rp
incl. =

m5
bf

2
QCD(mν̃)

2048π3

(
|C /Rp

4 |2 + |C̃ /Rp
4 |2

)
. (8.13)

Zgornja kombinacija parametrov λ′ijk iz drugih procesov še ni znana.
V modelu z dodatnim nevtralnim umeritvenim bozonom Z ′ so FCNC prav tako

inducirani na drevesnem redu in njihove prispevke upoštevamo v koeficientih

CZ
′

1 = −4
√

2GF yB
dL
12 B

dR
13 , C̃Z

′
1 = −4

√
2GF yB

dR
12 B

dL
13 , (8.14a)

CZ
′

3 = −4
√

2GF yB
dL
12 B

dL
13 , C̃Z

′
3 = −4

√
2GF yB

dR
12 B

dR
13 . (8.14b)

Mešanje operatorjev zaradi barvnih interakcij generira tudi končen C2, in za mZ′ =
500 GeV so koeficienti na skali mase kvarka b sledeči:

CZ
′

1 (mb) = 0.90CZ
′

1 , CZ
′

3 (mb) = 0.81CZ
′

3 , (8.15)

CZ
′

2 (mb) = 0.47CZ
′

1 . (8.16)

Na enak način se mešajo koeficienti C̃1,2,3. Meje na zgornje Wilsonove koeficiente
bomo izpeljali iz zgornje meje razpadne širine B− → K+π−π−.

8.3.2 Ekskluzivni razpadi mezona B−

Za izračun hadronske amplitude moramo upoštevati učinke neperturbativnih barv-
nih interakcij pri računanju razpadnih amplitud. Efektivno Lagrangevo gostoto je
potrebno izvrednotiti med začetnim in končnim stanjem hadronov. Najprej upo-
rabimo približek saturacije z vakuumom kot edinega vmesnega stanja. Amplituda



116 Razširjeni povzetek disertacije

se tako faktorizira v produkt dveh hadronskih matričnih elementov. V primeru za
razpad v tri psevdoskalarne mezone preko operatorja O3 dobimo

〈
P2(p2)P1(p1)

∣∣ d̄γµs
∣∣ 0
〉 〈
P (p)

∣∣ d̄γµb
∣∣B−(pB)

〉
= (8.17)

= (t− u)FP2P1
1 (s)FPB1 (s)

+
(m2

P1
−m2

P2
)(m2

B −m2
P )

s

[
FP2P1

1 (s)FPB1 (s)− FP2P1
0 (s)FPB0 (s)

]
,

kjer smo uvedli Mandelstamove kinematske spremenljivke s = (pB − p)2, t =
(pB − p1)2 in u = (pB − p2)2. Funkcije F so oblikovni faktorji, ki vsebujejo učinke
neperturbativnih barvnih interakcij. Definirani so v poglavju 2.3.1. Njihove funk-
cijske odvisnosti od kinematičnega parametra vzamemo iz literature. Za oblikovne
faktorje B → π(ρ) uporabimo vrednosti izračunane v relativističnem konstituen-
tnem kvarkovskem modelu [74]. Za prehoda Ds → D in K → π obstaja napoved
narejena v efektivni teoriji težkih kvarkov in kiralne perturbacijske teorije [75, 76].

Izračunali smo razvejitvena razmerja nekaterih dvo- in trodelčnih razpadnih
kanalov mezona B− (Tabela 8.1). Kot je bilo razvidno že iz inkluzivnih razvejitvenih

Razpadni kanal SM MSSM /RpMSSM Z ′

B− → π−π−K+ 1× 10−15 1× 10−14 omejitev par. omejitev par.
B− → π−D−D+

s 6× 10−21 6× 10−20 9× 10−9 4× 10−9

B− → π−K0 3× 10−16 3× 10−15 5× 10−8 2× 10−7

B− → ρ−K0 3× 10−16 3× 10−15 5× 10−8 4× 10−7

B− → π−K∗0 5× 10−16 5× 10−15 — 5× 10−7

B− → ρ−K∗0 6× 10−16 6× 10−15 — 6× 10−7

Tabela 8.1: Razvejitvena razmerja za ∆S = −1 hadronske razpade mezona B−,
izračunana v SM, MSSM, /RpMSSM in modelu z bozonom Z ′. Iz eksperimentalne
zgornje meje za razpad B(B− → π−π−K+) < 9.5× 10−7 smo določili zgornje meje
parametrov modela /RpMSSM (četrti stolpec) in Z ′ (peti stolpec).

razmerij, je model MSSM nemogoče opaziti v teh razpadih, saj poveča razvejitvena
razmerja glede na SM le za red velikosti. Veliki prispevki so možni v modelih
/RpMSSM in Z ′, kjer smo iz zgornje meje B(B− → π−π−K+) < 9.5× 10−7 določili
meje na parametre. Za /RpMSSM ta meja ustreza

∣∣∣∣∣
3∑

n=1

(
100 GeV

mν̃n

)2 (
λ′n31λ

′∗
n12 + λ′n21λ

′∗
n13

)
∣∣∣∣∣ < 6.6× 10−5, (8.18)

medtem ko v modelu Z ′ izpeljemo

y
∣∣∣BdL

12 B
dR
13 +BdR

12 B
dL
13

∣∣∣ < 3.2× 10−4, (8.19a)

y
∣∣∣BdL

12 B
dL
13 +BdR

12 B
dR
13

∣∣∣ < 5.2× 10−4. (8.19b)

Neenačbe (8.18) in (8.19) ustrezajo napovedim v zadnjih dveh stolpcih Tabele 8.1.
V Z ′ je največ možnosti za zaznavo dvodelčnih razpadov v K0∗, medtem ko so
faktorizabilni prispevki k tem razpadom v /RpMSSM ničelni, kanali s K0 pa so za
velikostni razred manǰsi.
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8.4 Nevtralni tokovi čarobnega kvarka in razpad D →
P`+`−

Čarobni mezoni so edini hadronski sistem za opazovanje nevtralnih kvarkovskih
tokov med gornjimi kvarki. Pomemben proces z nevtralnim tokom je c→ uγ, kjer
je lahko γ realen ali tvori par leptonov `+`− in žene proces c → u`+`−. V luči
nedavno izmerjenih parametrov mešanja nevtralnih mezonov D0

x ≡ ∆mD

Γ̄D
= (0.98± 0.25)× 10−2, (8.20a)

y ≡ ∆ΓD
2Γ̄D

= (0.83± 0.16)× 10−2, (8.20b)

bomo raziskali njihov vpliv na razpade c→ uγ in razpade mezona D v psevdoskalar
in leptonski par (D → P`+`−, ` = e, µ). Razpade bomo analizirali v SM, MSSM,
/RpMSSM, modelu s singletnim gornjim kvarkom, ter modelu z leptokvarkom. Gor-
nji meji za kanal s pionom in elektronom ali mionom sta znani

B(D+ → π+e+e−) < 7.4× 10−6 [108], (8.21a)

B(D+ → π+µ+µ−) < 3.9× 10−6 [109]. (8.21b)

8.4.1 Razpad c→ uγ v MSSM

V SM ima inkluzivni c → uγ razvejitveno razmerje Γ(c → uγ)/ΓD0 = 2.5 ×
10−8 [100]. V minimalnem supersimetričnem SM (MSSM) ta proces posredujejo dia-
grami z virtualnimi gluini, kjer se okus zamenja v prvem redu masnih vstavkov (ang.
mass insertions). Prispevata le masna vstavka (δu12)LR in (δu12)RL [101, 102], ki prav
tako generirata mešanje mezonov D0–D̄0. Iz zahteve, da vakuumsko stanje MSSM
ni niti električno niti barvno nabito, dobimo pogoje (δu12)LR,RL ≤

√
3mc/mq̃ [126],

kjer q̃ označuje maso skvarkov. Primerjava mej iz mešanja in stabilnosti vakuuma
za degenerirane mase skvarkov in gluinov je prikazana v Tabeli 8.2. Če privzamemo

mq̃ = mg̃ max |(δu12)LR,RL| max |(δu12)LR,RL|
omejitev iz ∆mD omejitev iz stabilnosti vakuuma

350 GeV 0.007 0.006
500 GeV 0.01 0.004
1000 GeV 0.02 0.002

Tabela 8.2: Zgornje meje na masne vstavke |(δu12)LR,RL| dobljene iz ∆mD in omejitev
na stabilnost vakuuma [126].

mase gluinov in skvarkov mq̃ = mg̃ = 350 GeV in uporabimo mejo iz Tabele 8.2
dobimo v MSSM

Γ(c→ uγ)/ΓD0 ≤ 8× 10−7, (8.22)

kar je en red velikosti nad napovedjo SM, vendar so hadronski razpadi D → V γ
povsem zasičeni z dolgosežnimi prispevki barvne interakcije.
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8.4.2 Kratkosežni prispevki k c→ u`+`−

SM

V SM nam proces c → u`+`− generira efektivna Lagrangeva gostota na skali mc

kvarka [103]

LSM
eff = −4GF√

2


λd

∑

i=1,2

Ci(µc)Q
d
i + λs

∑

i=1,2

Ci(µc)Q
s
i − λb

∑

i=3,...,10

Ci(µc)Qi


 ,

(8.23)
z operatorji definiranimi na strani 55. Dominantni prispevek je generiran z vstavi-
tvijo operatorja Q2 in dodatnim virtualnim gluonom. Končna amplituda je soraz-
merna z operatorjem Q7 s koeficientom [100, 103]

Ĉeff
7 = λs(0.007 + 0.020i)(1± 0.2). (8.24)

Dodaten singleten kvark z nabojem 2/3

V celem razredu modelov [94, 110] nastopajo šibko-singletni kvarki z nabojem 2/3,
ki lahko inducirajo okus spreminjajoče nevtralne tokove na drevesnem redu. Gornji
kvarki se mešajo z mešalno matriko Ωij

Jµ
W 3 = Q̄iLγ

µ τ3

2
ΩijQjL =

1

2
ūiLγ

µΩijujL −
1

2
d̄iLγ

µdiL. (8.25)

Prispevek je k dvema operatorjema, ki sta v SM zanemarljiva:

VubV
∗
cbδC9 =

4π

α
Ωuc(4 sin2 θW − 1), (8.26a)

VubV
∗
cbδC10 =

4π

α
Ωuc . (8.26b)

Isti parameter mešalne matrike nastopa v mešanju nevtralnih mezonov in iz izmer-
jenih parametrov dobimo Ωuc < 2.8× 10−4 [116].

MSSM in /RpMSSM

V MSSM bi naivno pričakovali, da bodo prispevki ojačani pri majhnih q2 zaradi
propagatorja fotona, vendar nam za končna stanja s psevdoskalarjem nastopa še
dodaten faktor q2. Zato se tu osredotočimo le na model /RpMSSM, kjer zaradi

sklopitev λ′ijk dolnji skvarki d̃ sklapljajo gornje kvarke in leptone. V vodilnem

redu razvoja v 1/m2
d̃

nam ti generirajo efektivna operatorja Q9,10 z Wilsonovima
koeficientoma

V ∗cbVubδC9 = −V ∗cbVubδC10 =
sin2 θW

2α2

3∑

k=1

(
mW

md̃kR

)2

λ̃′i2kλ̃
′∗
i1k. (8.27)



119

Skalarni leptokvark v reprezentaciji (3, 1,−1/3)

Sklaplja par lepton-kvark, kjer sta oba ali šibka singleta (desnoročna) ali šibka
dubleta (levoročna). Za vse prispevke je potrebno razširiti nabor operatorjev tudi
na tenzorske tokove, vendar so ti zaradi močnih mej iz meritev D0 → e+e−, µ+µ−

zelo zastrti. Dominantni prispevki so le k operatorjema Q9,10 in njunima kiralno
obrnjenima partnerjema Q̃9,10

VubV
∗
cbδC9 = −VubV ∗cbδC10 =

sin2 θW
2α2

m2
W

m2
∆

Y 2i
L Y

1i∗
L , (8.28a)

VubV
∗
cbδC̃9 = VubV

∗
cbδC̃10 =

sin2 θW
2α2

m2
W

m2
∆

Y 2i
R Y

1i∗
R . (8.28b)

8.4.3 Dolgosežni prispevki v D → P`+`−

V amplitudi razpada D → P`+`− lahko dobimo pole v spremenljivki q2 zaradi ve-
zanih stanj, ki se sklapljajo z operatorjema Q1 in Q2. Takšni resonančni efekti
so posledica vezanih stanj barvne interakcije in jih lahko modeliramo z Breit-
Wignerjevo obliko. Prispevek vektorskih resonanc, ki razpadajo v par lepton-
antilepton zapǐsemo

ALD
[
D → KV → K`−`+

]
= eiφV

aV
q2 −m2

V + imV ΓV
ū(p−) /p v(p+), (8.29)

kjer sta p± gibalni količini leptonov, mV , ΓV masa in razpadna širina resonance,
in aV prost brezdimenzijski parameter. Prispevajo nevtralne vektorske resonance
V = ρ, ω, φ, za katere lahko parametre aV določimo iz eksperimentalno znanih širin
ΓD→PV in ΓV→`+`− . Ker so resonance vse relativno ozke ΓV � mV , velja približek

B
[
D → PV → P`−`+

]
' B [D → PV ]× B

[
V → `−`+

]
. (8.30)

8.4.4 Primerjava resonančnih in kratkosežnih spektrov

Izkaže se, da je model z dodatnim singletnim kvarkom preostro omejen iz meritev
parametrov mešanja nevtralnih D mezonov in nanj spekter in razpadna širina nista
občutljiva. Po drugi strani model /RpMSSM in model z leptokvarkom lahko rezulti-
rata v opazljivih prispevkih tako v kanalu D+ → π+e+e−, kot tudi D+ → π+µ+µ−.
Sklopitve λ′, ki nastopajo v razpadu z elektroni v končnem stanju so omejene iz
testov univerzalnosti nabitih tokov in meritev breznevtrinskega dvojnega β raz-
pada. Po drugi strani pa je za kanal z mioni eksperimentalna zgornja meja (8.21b)
močneǰsa od mej na relevantne parametre λ′ v literaturi in iz nje izpeljemo

3∑

k=1

∣∣∣λ̃′22kλ̃
′∗
21k

∣∣∣
(md̃kR

/100 GeV)2
< 1.0× 10−3. (8.31)

Za sklopitve leptokvarkov dobimo
∣∣∣Y 21
L(R)Y

11∗
L(R)

∣∣∣
(m∆/100 GeV)2

< 1.6× 10−3,

∣∣∣Y 22
L(R)Y

12∗
L(R)

∣∣∣
(m∆/100 GeV)2

< 1.0× 10−3. (8.32)
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Slika 8.3: Distribucija razpadne širine po invariantni masi leptonov q2 za razpad
D+ → π+`+`− (levo) in Ds → K+`+`− (desno). V zgornji vrsti je ` = e, v spodnji
` = µ. Rdeče črte predstavljajo resonančni Breit-Wigner prispevek, temno modre
črte pa maksimalni prispevek v modelu /RpMSSM. Svetle modre črte predstavljajo
kratkosežni prispevek SM.
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Za analizo razpadov čarobno-čudnega mezona Ds, v primeru ko je končno stanje
K+µ+µ−, uporabimo mejo (8.31). Za končno stanje z elektroni uporabimo enake
sklopitve, kot smo jih za razpade D → Pe+e−.

Vsa razvejitvena razmerja so zbrana v Tabelah 8.3 in 8.4, značilno ojačanje
spektrov izven resonančnega območja pa je vidno na grafih 8.3.

razpad eksperiment res. res.+/RpMSSM/LQ

D+ → π+e+e− < 7.4× 10−6 1.7× 10−6 < 4.2× 10−6

D+ → π+µ+µ− < 3.9× 10−6 1.7× 10−6 omejitev sklopitev λ′

Tabela 8.3: Primerjava eksperimentalnih mej in predikcij za razvejitvena razmerja
razpadov mezona D+. Zadnja dva stolpca vsebujeta napovedi za resonančni spekter
in celoten spekter v modelu /RpMSSM ali modelu leptokvarkov.

razpad eksperiment res. res. + /RpMSSM/LQ

D+
s → K+e+e− < 1.6× 10−3 6.0× 10−7 < 1.9× 10−6

D+
s → K+µ+µ− < 2.6× 10−5 6.0× 10−7 < 1.8× 10−6

Tabela 8.4: Primerjava eksperimentalnih mej in napovedi za razvejitvena razmerja
razpadov mezona D+

s . Zadnja dva stolpca vsebujeta napovedi za resonančni spekter
in celoten spekter v modelu /RpMSSM ali modelu leptokvarkov.

8.5 Analiza Dalitzovega diagrama za razpad B → Kηγ

Razpad b→ sγ z realnim fotonom v SM poteka preko pingvinskega diagrama, kjer
k kromomagnetnem dipolnem operatorju

Q7 =
e

8π2
[mbs̄σµν(1 + γ5)b+mss̄σµν(1− γ5)b]Fµν . (8.33)

dominantno prispevata kvark t in šibki bozonom W v zanki. Najbolje raziskan raz-
padni kanal za meritev velikosti pripadajočega Wilsonovega koeficienta C7 je razpad
B → K∗γ. V tem razdelku bomo analizirali razpad B → Kηγ v kinematičnem
območju z energetskim fotonom in enim od lahkih mezonov. Razvejitveni razmerji
naslednjih dveh razpadov sta že izmerjeni

B(B0 → K0ηγ) = (7.1+2.1
−2.0 ± 0.4)× 10−6, (8.34a)

B(B+ → K+ηγ) = (7.7± 1.0± 0.4)× 10−6. (8.34b)

8.5.1 Pristop z efektivnimi teorijami kvantne kromodinamike

Za emisijo nizkoenergijskega mezona iz težkega mezona B uporabimo kiralno per-
turbacijsko teorijo težkih mezonov, kjer amplitude razvijemo v potenčno vrsto po
dveh majhnih parametrih: ΛQCD/mb in p/Λχ (p je gibalna količina lahkega mezona,
Λχ skala zlomitve kiralne simetrije ∼ 1 GeV). Vodilni člen v Lagrangevi gostoti te
efektivne teorije je

Leff = g
〈
Ha(v)Aµabγµγ5H̄b(v)

〉
. (8.35)
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Natančna definicija polj težkih in lahkih mezonov je dana v razdelku 2.3.3. Za preo-
stali nadaljnji razpad težkega mezona B na energetska γ in lahki mezon upoštevamo,
da sta oba delca v končnem stanju zaradi njune majhne mase skoraj na svetlobnem
stožcu. V limiti, ko je njuna energija zelo velika, lahko oblikovne funkcije za prehod
B∗ → K preko Q7 izrazimo z oblikovnimi funkcijami vektorskega toka

〈
K̄0(k)

∣∣ s̄qµσµν(1 + γ5)hv
∣∣B∗(v, η)

〉
= FBK+ (0)

[
2Mενµρσvµkρησ (8.36)

+ iM2ην − iη · q(Mv + k)ν
]
.

Naš pristop deluje za nizkoenergijski η ali K, kjer sta (Slika 8.4) Feynmanova dia-
grama za oba primera različna.

Slika 8.4: Diagram na levi je vodilni prispevek v kinematičnem območju z nizko-
energijskim mezonom η, na desni pa vodilni prispevek za nizkoenergijski mezon
K.

8.5.2 Fotonski spektri

Možnost resonančnih prispevkov nudijo vmesna stanja na masni lupiniB → K∗2 (1430)γ
ali B → K∗3 (1780)γ, vendar lahko iz znanih razvejitvenih razmerij teh resonanc [28]
ugotovimo, da je resonančno ozadje majhno. Prav tako v eksperimentalnih spektrih
teh razpadov [146, 148] ni evidentnih resonančnih prispevkov.

Napovedi fotonskih spektrov razpadov so dobljene v efektivnem pristopu, opi-
sanem v preǰsnjem razdelku. Za opis mešanja η in η′ uporabimo pristop [154], kjer
je mešalni kot θ med SU(3) oktetom η8 in singletom η1 enak −15.4◦. Spektri z η v
končnem stanju so vidni na Sliki 8.5. Ko pointegriramo spektra po obeh območjih
(EK < 1.2 GeV ali Eη < 1.2 GeV) za razpad B̄0 → K̄0ηγ zagotovimo približno 10%
razpadne širine (8.34a). Z naraščajočo natančnostjo eksperimentov bo v prihodno-
sti možno študirati velikost C7 tudi v omenjenih kinematičnih območjih razpadov
B → Kηγ.

8.6 Ozadje mehkih fotonov v razpadih B → D`ν

Meritve ekskluzivnih razpadov B → D`ν so pomembne za ekstrakcijo elementa Vcb
matrike CKM, še posebej zavoljo trenutnega razhajanja rezultatov med inkluzivno
in ekskluzivno metodo določanja Vcb. Vrednost Vcb postaja dominanten izvor napake
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Slika 8.5: Spektra razpada B̄0 → K̄0ηγ. Na levi fotonski spekter v območju
Eη < 0.8 GeV (kratko črtkana črta), Eη < 1.0 GeV (neprekinjena črta) in
Eη < 1.2 GeV (dolgo črtkana črta). Na desni iste oznake za nizkoenergijski K,
EK < 0.8, 1.0, 1.2 GeV.

pri teoretični napovedi parametra εK

|εK | ∝ B̂Kη|Vcb|2λ2. (8.37)

kjer je λ zelo natančno znan kosinus Cabibbovega kota. Napaka parametra vreče
B̂K iz simulacij kvantne kromodinamike na mreži je trenutno ∼ 5% in postaja
primerljiva z napako Vcb. Inkluzivna in ekskluzivna metoda imata do velike mere
neodvisne sistematične efekte. Za meritve Vcb v ekskluzivnih razpadih B → D`ν je
v prihajajočih tovarnah okusa pričakovana relativna natančnost ∼ 1%, kjer lahko
pridejo do izraza majhni sistematični efekti. Ker je tipičen eksperiment občutljiv
le na fotone do neke najmanǰse energije, se lahko za foton γ pod to mejo zgodi, da
eksperiment napačno prepozna razpad B → D`νγ kot B → D`ν.

8.6.1 Enodelčna vmesna stanja

Amplitude za radiacijski razpad se zapǐse kot

A(B(p)→ D(p′)`(pl)ν̄(k)γ(ε, q)) = (8.38)

=
eGFVcb√

2
ε∗µ ū(pl)

[
− Fν(t)

2pl · q
γµ(/pl + /q +ml) + Vµν −Aµν

]
γν(1− γ5)v(k),

kjer je Fν(t) matrični element vektorskega toka za prehod B → D in ustreza izsevu
fotona iz leptona, medtem ko je tenzor Vµν − Aµν hadronski korelator elektroma-
gnetnega in šibkega toka. Divergentni prispevki (odvisni le od nabojev hadronov)
se v limiti Eγ → 0 pokraǰsajo z virtualnimi elektromagnetnimi popravki na nivoju
razpadne širine, medted ko so strukturno odvisni prispevki v limiti Eγ → 0 končni.
V hadronskem korelatorju nam vmesna enodelčna stanja generirajo pole v invari-
antnih masah. V našem primeru bo zaradi majhne razlike mas med stanji D0∗ in
D0 dominantno prispeval ravno D0∗, ki lahko nastane na masni lupini, tako da nam
generira resonančno obliko amplitude

i 〈D(p′) | Jµ |D∗(p′ + q)〉 〈D∗(p′ + q) |Vν |B(p)〉
(p′ + q)2 −m2

D∗ + imD∗ΓD∗
. (8.39)
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8.6.2 Spekter mehkega fotona

PrehodD∗0 → D0γ v realni foton nam določa neperturbativni parameter gD0∗D0γ , ki
je bil izračunan na mreži, kot so bile tudi oblikovne funkcije (aksialno-)vektorskega
prehoda B → D∗ (za nabor oblikovnih funkcij glej razdelek 2.3.1). Spekter se v
celoti nahaja pod 350 MeV, z energijo večine fotonov v intervalu od 100 do 200 MeV.
Če bi bil torej eksperiment slep za fotone pod 350 MeV, bi v vzorec dogodkov

Slika 8.6: Delež napačno prepoznanih radiacijskih dogodkov kot funkcija najmanǰse
še zaznavne energije fotona.

B → D`ν zajel še vse dogodke B → D∗`ν → Dγ`ν. Na Sliki 8.6 je razvidno, da
resolucija eksperimenta 80 MeV ustreza približno 1% relativni napaki na Vcb samo
zaradi mehkih fotonov.

8.7 Zaključek

Fizika okusov, eksperimentalna in teoretična, je igrala pomembno vlogo pri preverbi
Yukawinega sektorja standardnega modela. Mehanizem mešanja kvarkovskih oku-
sov Cabibbo-Kobayashi-Maskawa je potrjen na nivoju 10% natančnosti in jasno je,
da so efekti nove fizike velikostnega reda tipično nekaj odstotkov ali manj.

V disertaciji smo analizirali razpade težkih mezonov, za katere je pričakovana
razpadna širina v okviru standardnega modela majhna, in so tako bolj občutljivi
za prispevke nove fizike. V tem kontekstu smo izpostavili modele nove fizike in
razpadne kanale, ki še ponujajo možnost za eksperimentalna iskanja. V drugem
delu disertacije smo predlagali metodi za preverjanje napovedi samega standar-
dnega modela, ki lahko kaj kmalu pokažejo na nekonsistenco meritev z napovedmi
standardnega modela in tako posredno kažejo na novo fiziko. Fizika okusov bo
igrala pomembno vlogo tudi v interpretaciji podatkov iz Velikega hadronskega tr-
kalnika (LHC), saj bo potrebno za odkritje novih delcev na LHC njihov vpliv najti
in preveriti tudi v virtualnih efektih, kjer do izraza pridejo drugi nabori parametrov
nove fizike. V tem oziru pričakujemo komplementarnost prihodnjih tovarn okusa in
velikega hadronskega trkalnika v iskanju fizike onkraj standardnega modela.
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