Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series historia naturalis, 25, 2015, 2 KOPER 2015 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 25, leto 2015, številka 2 UREDNIŠKI ODBOR/ Dunja Bandelj Mavsar, Nicola Bettoso (IT), Christian Capapé (F), COMITATO DI REDAZIONE/ Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda BOARD OF EDITORS: Umani (IT), Andrej Gogala, Daniel Golani (IL), Mitja Kaligarič, Gregor Kovačič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Alenka Malej, Patricija Mozetič, Martina Orlando - Bonaca, Michael Stachowitsch (A), Tom Turk, Elena Varljen Bužan Glavni urednik/Redattore capo/ Darko Darovec Editor in chief: Odgovorni urednik naravoslovja/ Lovrenc Lipej Redattore responsabile per le scienze naturali/Natural Science Editor: Urednica/Redattrice/Editor: Patricija Mozetič Lektor/Supervisione/Language editor: Polona Šergon (sl.), Petra Berlot (angl.) Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Dušan Podgornik, Lovrenc Lipej Graphic design: Prelom/Composizione/Typesetting: Grafis trade d.o.o. Tisk/Stampa/Print: Grafis trade d.o.o. Izdajatelj/Editore/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Societa storica del Litorale - Capodistria© Za izdajatelja/Per Editore/ Salvator Žitko Publisher represented by: Sedež uredništva/Sede della redazione/ Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Address of Editorial Board: Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 20. 12. 2015. Sofinancirajo/Supporto finanziario/ Javna agencija za raziskovalno dejavnost Republike Slovenije Financially supported by: (ARRS) Annales - series historia naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales series historia naturalis je vključena v naslednje podatkovne baze: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL). Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 25, Koper 2015, številka 2 ISSN 1408-533X VSEBINA / INDICE GENERALE / CONTENTS RECENTNE SPREMEMBE V SREDOZEMSKI IHTIOFAVNI CAMBIAMENTI RECENTI NELLA ITTIOFAUNA MEDITERRANEA RECENT CHANGES IN THE MEDITERRANEAN ICHTHYOFAUNA Sihem RAFRAFI-NOUIRA, Olfa EL KAMEL­MOUTALIBI, Mohamed Mourad BEN AMOR, Christian CAPAPÉ Additonal records of Spinetail devilray Mobula japanica (Chondrichthyes: Mobulidae) from the Tunisian coast (Central Mediterranean) ................ Nov zapis o pojavljanju mante vrste Mobula japanica (Chondrichthyes:Mobulidae) vzdolž tunizijske obale (osrednje Sredozemlje) Okan AKYOL & Ilker AYDIN Additional records of two lessepsian fish, Siganus luridus and Champsodon vorax from Izmir Bay (Aegean sea, Turkey) ............................................ Dodatni zapisi o pojavljanju dveh vrst lesepskih ribjih selivk, Siganus luridus in Champsodon vorax, iz Izmirskega zaliva (Egejsko morje, Turčija) SREDOZEMSKI MORSKI PSI SQUALI DEL MEDITERRANEO MEDITERRANEAN SHARKS Hakan KABASAKAL & Sait Özgür GEDIKOGLU Shark attacks against humans and boats in Turkey’s waters in the twentieth century ............... Napadi morskih psov na ljudi in plovila v turških vodah v dvajsetem stoletju Halit FILIZ & Hakan KABASAKAL Photographic record of the Spinner shark, Carcharhinus brevipinna (Müller & Henle, 1839), in Gokova Bay (south Aegean Sea, Turkey) ........... Fotografski zapis o kratkoplavutem morskem psu, Carcharhinus brevipinna (Müller & Henle, 1839), v zalivu Gokova Bay (južno Egejsko Morje, Turčija) 103 109 115 123 IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Balkis SALLAMI, Mohamed BEN SALEM, Sihem RAFRAFI-NOUIRA, Olfa EL KAMEL-MOUTALIBI, Christian REYNAUD & Christian CAPAPÉ Observations on Thinlip Conger Gnathophis mystax (Osteichthyes: Congridae) from the Tunisian Coast (Central Mediterranean) ....................................... Opazovanja dolgonosega ugorja Gnathophis mystax (Osteichthyes: Congridae) ob tunizijski obali (osrednji Mediteran) 131 Nicola BETTOSO & Govanni COMISSO Recent record of the Serpent Eel Ophisurus serpens (Ophichthidae) in the Gulf of Trieste (Northern Adriatic Sea) ........................................ Nov zapis o pojavljanju zobate jegulje Ophisurus serpens (Pisces: Ophichthidae) v Tržaškem zalivu (Severni Jadran) 141 Jakov DULČIĆ & Pero TUTMAN Additional record of Common bream Abramis brama (Cyprinidae) in the Adriatic drainage system (Norin River, Croatia) ................. Novi podatek o pojavljanju ploščiča (Abramis brama, Cyprinidae) v Jadranskem povodju (reka Norin, Hrvaška) 145 FAVNA FAUNA FAUNA Toni KOREN & Domen TRKOV Contribution to the Scarabeoidea (Coleoptera) of island Cres, Croatia ...................... Prispevek k poznavanju favne Scarabaeoidea (Coleoptera) otoka Cres, Hrvaška 151 MISCELLANEA Dejan PALISKA, Simon KERMA, Rudi ČOP & Flavio BONIN An attempt to demonstrate the influence of Maunder Minimum Climate on salt production and it’s price in the Slovenian Istria (Sečovlje Salt-Pans) .............................................. 163 Poskus prikaza vpliva podnebja iz obdobja Maunderjevega minimuma na proizvodnjo soli in njeno ceno v Slovenski Istri (Sečoveljske soline) Danijel IVAJNŠIČ & Mitja KALIGARIČ Can evapotranspiration be considered an additional indicator for understanding the changed landscape identity of the classic Karst? .............................................. 173 Ali lahko evapotranspiracijo smatramo kot dodatni pokazatelj za razumevanje spremenjene identitete klasičnega Krasa? DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÁ DEI NOSTRI ISTITUTI E DELLE NOSTRE SOCIETA ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS 22. Simpozij o okoljski biogeokemiji v Piranu (Jadran Faganeli in Nives Ogrinc) ......................... 185 OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Ocena knjige: »ENDEMI U HRVATSKOJ FLORI« avtorjev Tonija Nikolića, Milenka Milovića, Sandra Bogdanovića in Nenada Jasprice (Mitja Kaligarič) ................................................... 189 Anton Brancelj: JAMA VELIKA PASICA: ZGODOVINA, OKOLJE IN ŽIVLJENJE V NJEJ / THE VELIKA PASICA CAVE: THE HISTORY, ENVIRONMENT AND LIFE IN IT. Založba ZRC in Nacionalni inštitut za biologijo, Ljubljana, 2015, 110 str. (Lovrenc Lipej) ............................... 190 Navodila avtorjem ............................................... 193 Istruzioni per gli autori ......................................... 195 Instructions to authors .......................................... 197 Kazalo k slikam na ovitku ..................................... 200 Index to images on the cover ............................... 200 RECENTNE SPREMEMBE V SREDOZEMSKI IHTIOFAVNI CAMBIAMENTI RECENTI NELLA ITTIOFAUNA MEDITERRANEA RECENT CHANGES IN THE MEDITERRANEAN ICHTHYOFAUNA Original scienti.c article UDK 597.317.1:591.9(262.26) Received: 2015­09­21 ADDITIONAL RECORDS OF SPINETAIL DEVILRAY MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) FROM THE TUNISIAN COAST (CENTRAL MEDITERRANEAN) Sihem RAFRAFI­NOUIRA, Olfa EL KAMEL­MOUTALIBI Laboratoire d’Hydrobiologie Littorale et Limnique, Université de Carthage, Faculté des Sciences, Zarzouna, 7021 Bizerte, Tunisia Mohamed Mourad BEN AMOR Laboratoire des Sciences Halieutiques, Institut National des Sciences et Technologies de la Mer, port de peche, 2025 La Goulette, Tunisia Laboratoire de recherche de Biodiversité, Biotechnologies et Changements climatiques. Faculté des Sciences de Tunis,  Campus universitaire, 2090 El Manar II. Tunis, Tunisia Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 5, France E­mail: capape@univ­montp2.fr ABSTRACT The authors report on the capture of two specimens of spinetail devilray Mobula japanica (Müller & Henle, 1841) off the northeastern Tunisian coast: two females measuring 190 cm and 270 cm in disc width and weighing 90 kg and 110 kg, respectively. The captures, considered as Herculean immigrants from the eastern tropical Atlantic, con­.rm the occurrence of the species in the mentioned area. The article discusses and comments on the establishment of a sustainable population in the ar ea and further in the Mediterranean Sea. Key words:Mobulidae, Mobula japanica, Mediterranean Sea, Tunisian waters, abnormality NUOVE SEGNALAZIONI DELLA PRESENZA DEL DIAVOLO DI MARE MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) LUNGO LA COSTA TUNISINA (MEDITERRANEO CENTRALE) SINTESI Nella presente nota gli autori segnalano la cattura di due esemplari di una delle specie di diavoli di mare, Mobula japanica (Müller & Henle, 1841), al largo della costa tunisina nord­orientale. Si tratta di due femmine, la prima con 190 cm di larghezza del disco e 90 kg di peso, la seconda con 270 cm di larghezza e 110 kg di peso. Tali catture confermano la presenza nell’area studiata di questa specie, che arriva dall’Atlantico orientale tropicale ed entra nel Mediterraneo dallo stretto di Gibilterra (considerata pertanto fra i migrati di Ercole). Gli autori discutono e commen­tano la possibilita di stabilizzazione di una popolazione sostenibile nell’area e nella piu ampia regione mediterranea. Parole chiave: Mobulidae, Mobula japanica, mare Mediterraneo, acque tunisine, anomalia Sihem RAFRAFI­NOUIRA et al.: ADDITIONAL RECORDS OF SPINETAIL DEVILRAY MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) ..., 103–108 INTRODUCTION Spinetail devilray Mobula japanica (Müller & Henle, 1841) is widely distributed in tropical to warm tempe­rate waters of the Atlantic, Paci.c and Indian Oceans (Townsend & Kyne, 2010; Bustamante et al., 2012). Off the eastern Atlantic coasts, M. japanica was repor­ted as M. rancureli Cadenat, 1959 from the Ivory Coast (Cadenat, 1959) and the Gulf of Guinea (Blache et al., 1970). M. rancureli was afterwards considered as a juni­or synonym of M. japanica, which hence occurs off the western coast of Africa (Louisy, 2002). Additionally, in­vestigations regularly conducted off the Tunisian coasts allowed Capapé et al. (2015a) to report the captures of 11 specimens of M. japanica from northern areas, which constitute the .rst Mediterranean records of the species. Our actions to assess the status of M. japanica in Tu­nisian waters were supported by local .shermen, who Fig. 1: Map of Central Mediterranean showing the cap­ture sites of the Tunisian specimens of Mobula japani­ ca off the Tunisian coast. Legend: black star 1 records published in Capapé et al. (2015a); black star 2 records from this study. Sl. 1: Zemljevid osrednjega Sredozemskega morja z lo­kalitetami, kjer so bili ujeti primerki vrste Mobula ja­ panica ob tunizijski obali. Legenda: zvezdica s št. 1 – podatki, objavljeni v prispevku Capapé et al. (2015a); zvezdica s št. 2 – podatki iz pričujoče raziskave. contributed by reporting sightings and captures of spe­cimens. Within this cooperation, we were informed that two specimens had been caught by .shermen off the northern Tunisian coast. The aim of this paper is to de­scribe these captures with respect to the possible establi­shment of this species in the mentioned area, as well as in other regions of the Mediterranean Sea. MATERIAL AND METHODS Two specimens of Mobula japanica were captured on 14th and 15th May 2015 at night, during commercial light­.shing targeting European pilchard Sardina pil­chardus (Walbaum, 1792) and mackerel Scomber spp., at an approximate depth of 120­130 m, by means of gill­nets (mesh opening 18 mm), off the north­eastern coast of Tunisia (37° 36' N, 8° 54' E; Fig. 1). The .shing was carried out in that zone based on information provided by experienced .shermen. Both specimens were care­fully examined, photographed, weighed to the nearest kilogram and measured to the nearest centimetre, fol­lowing Capapé et al. (2015a); the results are summarised in Table 1. As the two specimens were dressed out, cut into piec­es by retailers and sold rapidly, only their heads were recovered and delivered to the laboratory for further ex­aminations. The heads were preserved in 10 % buffered formalin and deposited in the Ichthyological Collection of the Faculté des Sciences de Bizerte, under catalogue numbers: FSB­Mob­jap­06 and FSB­Mob­jap­07. RESULTS AND DISCUSSION The Tunisian Mobula japanica specimens were fe­males measuring 190 cm and 270 cm in disc width (DW), respectively, and weighing 90 kg and 110 kg in total body mass, respectively (Tab. 1). They were identi.ed by the following combinations of characteristics (Fig. 2): disc broad, anterior margins of the pectoral slightly convex, posterior margins concave, angles acute and rounded at the apex; head very short, rostral margin rather straight; elliptical spiracles locat­ed above the level of pectoral .ns, oval­based stinging spine at the base of the tail; origin of the dorsal .n a little in advance of the beginning of pelvic .ns, gill­.l­ter plates not fused with 18­28 lateral lobes, terminal lobe leaf­shaped with longitudinal ridges, mouth on un­dersurface of head, teeth minute and not arranged in rows, but spaced from each other, tooth height larger than crown width, dorsal surface dark blue with occa­sional lighter shoulder patches, characteristic white tip on dorsal .n (Fig. 3), belly whitish with dark patches, no dark margin anteriorly. The anterior margin of the smaller specimen (FSB­Mob­jap­06) was not straight due to an evident unusual wide indentation on the left side (Fig. 4). This morphological abnormality may either be a teratology or denote a wound despite the fact that Sihem RAFRAFI­NOUIRA et al.: ADDITIONAL RECORDS OF SPINETAIL DEVILRAY MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) ..., 103–108 Tab. 1: Morphometric measurements expressed in centimetres and percentages of disc width (% DW) related to the Tunisian specimens of Mobula japanica (FSB-Mob-jap-06 and FSB-Mob-jap-07). Tab. 1: Morfometrične meritve dveh tunizijskih primerkov vrste Mobula japanica (kataloški oznaki FSB-Mob-jap-06 in FSB-Mob-jap-07), izražene v centimetrih in v deležu širine diska (% DW) Reference FSB­Mob­jap­06 FSB­Mob­jap­07 Sex Female Female Measurements cm % DW cm  % DW Disc length 85 44.7 128 47.4 Disc width (DW) 190 100.0 270 100.0 Cephalic . n length  17 8.9 31 11.5 Diameter of eye ball 2.5 1.3 5 1.9 Cranial width 39 20.5 42 15.6 Preoral length 8.5 4.5 10 3.7 Mouth width 25 13.2 31 11.5 Internarial distance 20 10.5 24 8.9 Cephalic . n width 11 5.8 16 5.9 Space between . rst gill slit 22 11.6 28 10.4 Space between second gill slit 21 11.1 27 10.0 Space between third gill slit 21 11.1 31 11.5 Space between fourth gill slit 21 11.1 30.5 11.3 Space between . fth gill slit 21.5 11.3 31 11.5 Pre­. rst gill slit length 32.5 17.1 43.5 16.1 Pre­second gill slit length 37.5 19.7 49.5 18.3 Pre­third gill slit length 43.5 22.9 55.5 20.6 Pre­fourth gill slit length 48 25.3 62.5 23.1 Pre­. fth gill slit length 54 28.4 67.5 25.0 Rostrum to 1st gill openings 19 10.0 27.5 10.2 Rostrum to 5th gill openings 39 20.5 48 17.8 Distance between cephalic . ns tips 26 13.7 33 12.2 Distance between cephalic . ns 21 11.1 38 14.1 Distance between eyes 31.5 16.6 48 17.8 Interspiracular width 34 17.9 38 14.1 Dorsal . n base length 9 4.7 11 4.1 Total body mass (kg) 90 110 no healed scar was visible. Similarly patterned injuries generally occur during competition events with carnivo­rous species, so the possibility that this might also be the case for the specimen herein described cannot be totally excluded (see Capapé et al., 2015b). All observations about morphology, colour, morpho­metric measurements and head proportions are con­sistent with those provided by Notarbartolo Di Sciara (1987), Townsend & Kyne (2010), Bustamante et al. (2012) and Capapé et al. (2015a). The overall disc width of specimens captured in Tunisian waters (see Capapé et al., 2015a) ranged between 190 and 270 cm, so accor­ding to White et al. (2006), who noted that M. japanica reaches a maximum DW of 310 cm, but usually mea­sures less than 250 cm in DW, the specimens can be considered large. Generally, large elasmobranch speci­es have the ability to perform long migrations (Capapé, 1989), and the present captures of M. japanica off the Tunisian coast corroborate the previous opinion expres­sed by Capapé et al. (2015a). It can be deduced that all Sihem RAFRAFI­NOUIRA et al.: ADDITIONAL RECORDS OF SPINETAIL DEVILRAY MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) ..., 103–108 M. japanica specimens caught in Tunisian waters had come from the eastern tropical Atlantic and entered the Mediterranean Sea through the Strait of Gibraltar, whi­ch constitutes a Herculean migration (sensu Quignard & Tomasini, 2000). Is this species at present de.nitively established in the Mediterranean Sea? Could it be that several previous records of the closely related M. mobular were indeed of M. japanica, which fact, if adequately supported, corro­borates the above reported hypothesis? Despite the fact that all females caught in the area were probably adults (the size at sexual maturity is about 207 cm DW in the Gulf of California according to White et al., 2006), such hypothesis cannot be totally ruled out. However, further Fig. 4: The anterior margin of Mobula japanica, spec­imen FSB-Mob-jap-06 showing the broad indentation (black arrow), with scale bar = 10 cm. Sl. 4: Sprednji rob primerka vrste Mobula japanica s ka­taloško oznako FSB-Mob-jap-06 s široko zajedo (črna puščica) (merilo = 10 cm) records are needed to con.rm the successful establis­hment of a population of M. japanica in the western Me­diterranean Sea. Unfortunately, as is the case of other elasmobranch species, M. japanica is highly vulnerable due to its k­selected characteristics, and therefore it is at present considered as a threatened species (White et al., 2006). The recent increase of spinetail devilray catches in Tunisian waters requires urgent local conservation measures and .shing management to avoid a possible extinction of this species in the area. Sihem RAFRAFI­NOUIRA et al.: ADDITIONAL RECORDS OF SPINETAIL DEVILRAY MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) ..., 103–108 NOV ZAPIS O POJAVLJANJU MANTE VRSTE MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) VZDOLŽ TUNIZIJSKE OBALE (OSREDNJE SREDOZEMLJE) Sihem RAFRAFI­NOUIRA, Olfa EL KAMEL­MOUTALIBI Laboratoire d’Hydrobiologie Littorale et Limnique, Université de Carthage, Faculté des Sciences, Zarzouna, 7021 Bizerte, Tunisia Mohamed Mourad BEN AMOR Laboratoire des Sciences Halieutiques, Institut National des Sciences et Technologies de la Mer, port de peche, 2025 La Goulette, Tunisia Laboratoire de recherche de Biodiversité, Biotechnologies et Changements climatiques. Faculté des Sciences de Tunis, Campus universitaire, 2090 El Manar II. Tunis, Tunisia Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 5, France E­mail: capape@univ­montp2.fr POVZETEK V pričujočem zapisu avtorji poročajo o ulovu dveh primerkov mante vrste Mobula japanica (Müller & Henle, 1841)ob severovzhodni tunizijski obali. Obe sta bili samici, pri čemer je prva merila 190 cm v premeru diska in tehtala 90 kg, druga pa 270 cm in 110 kg. Ta ulov, pri katerem gre za priselitev Herkulovih selivk iz vzhodnega trop­skega Atlantika, potrjuje pojavljanje vrste v obravnavanem območju. Avtorji nadalje razpravljajo o morebitni ustalitvi populacije te vrste na obravnavnem območju in širšem Sredozemlju. Ključne besede: Mobulidae, Mobula japanica, Sredozemsko morje, tunizijske vode, anomalije Sihem RAFRAFI­NOUIRA et al.: ADDITIONAL RECORDS OF SPINETAIL DEVILRAY MOBULA JAPANICA (CHONDRICHTHYES: MOBULIDAE) ..., 103–108 REFERENCES Blache, J., J. Cadenat. & A. Stauch (1970): Clé de dé­termination des poissons de mer signalés dans l’Atlan­tique oriental (entre le 20ieme parallele N et le 15ieme parallele S). Faune Trop. ORSTOM, 18, 1­479. Bustamante, C., L. I. E. Couturier & M. B. Bennett (2012): First record of Mobula japanica (Rajiformes: Myliobatidae) from the south­eastern Paci.c Ocean. Marine Biodiversity Records, 5, e48. Cadenat, J. (1959): Notes d’Icthyologie ouest­afric­aine, XXV. Description d’une Mobula de grande taille a aiguillon caudal, de Côte d’Ivoire: Mobula rancureli, sp. nov. Bull. Inst. Fondam. Afr. Noire A, 21(4), 1326­1331. Capapé, C. (1989): Les Sélaciens des côtes méditer­ranéennes: aspects généraux de leur écologie et exem­ples de peuplements. Océanis, 15 (3), 309­331. Capapé, C., S. Rafra.­Nouira, O. El Kamel­Moutal­ibi, M. Boumaiza & C. Reynaud (2015a): First Mediter­ranean records of spinetail devilray Mobula japanica (Elasmobranchii: Rajiformes: Mobulidae). Acta Ichthyol. Piscat., 45 (2), 211­215. Capapé, C., M. Ali, A. Saad & C. Reynaud (2015b): Tail abnormalities in thornback ray Raja clavata (Chon­drichthyes: Rajidae) from the coast of Syria (eastern Mediterranean). Cah. Biol. Mar., 56 (2), 155­161. Louisy, P. (2002): Guide d’identi.cation des pois­sons marins Europe et Méditerranée. Ulmer édition, Par­is, 430 p. Notarbartolo Di Sciara, G. (1987): A revisionary study of the genus Mobula Ra.nesque, 1810 (Chon­drichthyes: Mobulidae). Zool. J. Linn. Soc., 91 (1), 1­91. Quignard, J.­P. & J. A. Tomasini (2000): Mediterra­nean .sh biodiversity. Biol. Mar. Medit., 7, 1­66. Townsend, K. A. & P. M. Kyne (2010): New records of the Japanese devilray Mobula japanica (Müller & Henle, 1814) for Australian waters. Mem. Qld. Mus. Nature, 55 (1), 225­230. White, W. T., T. B. Clark, W. D. Smith & J. J. Bizzarro (2006): Mobula japanica. The IUCN Red List of Threat­ened Species 2006: e.T41833A10576180. http://dx.doi. org/10.2305/IUCN.UK.2006.RLTS.T41833A10576180. en. Downloaded on 17 September 2015 Short scienti.c article UDK 597.5:591.9(262.4) Received: 2015­09­08 ADDITIONAL RECORDS OF TWO LESSEPSIAN FISH, SIGANUS LURIDUS AND CHAMPSODON VORAX FROM IZMIR BAY (AEGEAN SEA, TURKEY) Okan AKYOL and Ilker AYDIN Faculty of Fisheries, Ege University, Izmir, Turkey e­mail: okan.akyol@ege.edu.tr ABSTRACT Two Lessepsian .sh species, Siganus luridus (Siganidae) and Champsodon vorax (Champsodontidae) were re­ported for the second time from the Bay of Izmir, NE Aegean Sea and some morphometric and meristic characteris­tics of the specimens were also given. Keywords: Lessepsian .sh, new record, measurement, dispersion NUOVE SEGNALAZIONI DI DUE PESCI LESSEPSIANI, SIGANUS LURIDUS E  CHAMPSODON VORAX, DALLA BAIA DI SMIRNE (MAR EGEO, TURCHIA) SINTESI La presenza di due specie di pesci lessepsiani, Siganus luridus (Siganidae) e Champsodon vorax (Champsodon­tidae), e stata segnalata per la seconda volta nella baia di Smirne (Izmir), nel Mar Egeo nord­orientale. L’articolo riporta alcune caratteristiche mor fometriche e meristiche dei due pesci. Parole chiave: pesci lessepsiani, nuove segnalazioni, misurazioni, dispersione. Okan AKYOL & Ilker AYDIN: ADDITIONAL RECORDS OF TWO LESSEPSIAN FISH, SIGANUS LURIDUS AND ..., 109–112 INTRODUCTION The opening of the Suez Canal in 1869 linked the Mediterranean with the tropical Red Sea and this con­nection has led to a massive in.ux of Red Sea biota into the Mediterranean, including .sh species (Golani et al., 2006). The invasion of Red Sea organisms through the Suez Canal is known as the “Lessepsian migration” (after Ferdinand de Lesseps, who supervised the canal’s con­struction). On the Turkish coasts, Çinar et al. (2011) chronolog­ically listed a total of 400 alien species, including 58 .sh, with 27 Lessepsian .sh species reported from the Aegean Sea. Recently, Ergüden & Özdemir (2015) up­dated to a total number of 64 the Indo­Paci.c .sh spe­cies in Turkish marine waters, of which 61 species in the Southern coasts of Turkey, 38 in the Aegean Sea, 3 in the Sea of Marmara and one in the Black Sea. It is evident that a rapid range expansion of alien .sh occurred along the coasts of the Aegean Sea in recent years. Izmir Bay is a very important nursery and .shing area in the North­eastern Aegean Sea. About 276 .sh species has been recorded from the bay (Geldiay, 1969) and nowadays, increasing the Lessepsian .sh diversity in the area must be probably enhanced due to the warm­ing of the sea (Raitsos et al., 2010). Various Lessepsian .sh, such as Saurida undosquamis (Richardson, 1848), Lagocephalus sceleratus (Gmelin, 1788), Siganus luridus (Rüppell, 1829), S. rivulatus Forsskal, 1775, Champsod­on vorax Günther, 1867 and Stephanolepis diaspros Fra­ser­Brunner, 1940 were consecutively reported from the bay in the last decade (Akyol & Kara, 2003; Bilecenoglu et al., 2006; Kara & Akyol, 2011; Gurbet & Kara, 2013; Akyol & Özgül, 2015; Aydin & Akyol, 2015). Recently, Etrumeus teres was also found in the bay (O. Akyol, un­publ. data). Additional records of alien species in a certain area, accompanied by biological observations, improve knowledge on their establishment success. Thus, this paper documents the occurrence of two Lessepsian .sh, S. luridus and C. vorax caught in the Izmir Bay for the second time while some biological data of collected specimens are presented. MATERIAL AND METHODS During investigations, conducted in 2013 and 2015 in the Turkish Aegean Sea and focusing on the Lessepsi­an . sh distribution one specimen of Siganus luridus and one specimen of Champsodon vorax were collected from Izmir Bay (Fig. 1). After measurements to the nearest mil­limeter and counts, both specimens were . xed with 5 % formaldehyde solution and deposited in the . sh collecti­on of the Faculty of Fisheries, Ege University (ESFM­PIS). RESULTS AND DISCUSSION Siganus luridus (Rüppell, 1829) The specimen of Siganus luridus (197 mm of total length, ESFM­PIS/2013­004) (Fig. 2) was captured on 2 October 2013 at Urla coast of Izmir Bay (38° 30' 14” N, 26° 47' 00” E), with trammel net (72 mm stretched mesh size) at a depth of 8 m on sandy bottom with Posidonia meadows. Morphometric characteristics, meristic counts, se­lected body proportions (Tab. 1) and color pattern were in accordance with the description of Ben­Tuvia (1986), Golani et al. (2006) and Kara & Akyol (2011). Champsodon vorax Günther, 1867 The specimen of Champsodon vorax (125 mm of total length, ESFM­PIS/2015­002) (Fig. 3), was caught on 10 March 2015 with bottom trawl net (44 mm mesh size), east of Uzunada Island, Izmir Bay (38° 22' 21” N, 26° 45' 54” E), on muddy bottom at a depth of 50 m. Okan AKYOL & Ilker AYDIN: ADDITIONAL RECORDS OF TWO LESSEPSIAN FISH, SIGANUS LURIDUS AND ..., 109–112 Fig. 3: Champsodon vorax (ref. ESFM-PIS/2015-002), captured in Izmir Bay: (A) lateral view, (B) ventral view (scale bar = 50 mm). (Photo: O. Akyol) Sl. 3: Primerek vrste Champsodon vorax (ref. ESFM­PIS/2015-002), ujet v Izmirskemu zalivu: (A) pogled s strani, (B) pogled od spodaj (merilo = 50 mm). (Foto: O. Akyol) All measurements, counts, selected body propor­tions (Tab. 1) and color patterns were in accordance with previous descriptions of Aydin & Akyol (2015 and references therein). S. luridus has been a well­known colonizer of the southern Aegean Sea waters for a long time. In recent years, it has reached the northernmost latitude both in southern Chios Island (Katsanevakis & Tsiamis, 2009) and Sigri Bay, Lesvos Island, Greece (Evagelopoulos et al., 2015) and Edremit Bay, coast of Assos, Turkey (Işmen et al., 2015). After the .rst record of the species in Izmir Bay (17 individuals) given by Kara & Akyol (2011), the second one reported here may indicate that the species is establishing in the area. The second record of C. vorax in Izmir Bay, .rstly re­ported in the area by Aydin & Akyol (2015), documents a tendency to rapid expand towards the northern lati­tudes of the Aegean, since Gökova Bay record in 2014, SE Aegean Sea (Yapici et al., 2015). The .ndings reported in this ichthyological note fur­ther highlight that Izmir Bay, located in northern lati­tudes of the Mediterranean, is becoming step by step an area suitable to Lessepsian .sh introduction and estab­lishment, linked to the effects of global warming. ACKNOWLEDGEMENT The authors thank two anonymous reviewers for their insightful comments which led to a much impro­ved manuscript. Tab. 1: Morphometric measurements, ratios and counts of Siganus luridus and Champsodon vorax, captured from Urla coast, Izmir Bay. Tab. 1: Morfometrične meritve in meristični podatki za primerka vrst Siganus luridus in Champsodon vorax, ujetih na obrežju Urla v Izmirskem zalivu Species Siganus luridus Champsodon vorax Measurements Size (mm) Proportion Size (mm) Proportion Total length (TL) 197 125 Standard length (SL) 166 84.3 %TL 108 86.4 %TL Maximum body depth 70 35.5 %TL 18 14.4 %TL Predorsal . n length 42 21.3 %TL 36 28.8 %TL Prepectoral . n length 34 17.3 %TL 30 24.0 %TL Pre­anal . n length 87 44.2 %TL 54 43.2 %TL Head length (HL) 38 19.3 %TL 29 23.2 %TL Eye diameter 10 26.3 %HL 5.6 19.3 %HL Preorbitary length 14 36.8 %HL 8.5 29.3 %HL Counts 1st Dorsal . n rays XIV+10 V 2nd Dorsal . n rays ­ 20 Anal . n rays VII+9 18 Pectoral . n rays 16 12 Weight (g) 147 16 Okan AKYOL & Ilker AYDIN: ADDITIONAL RECORDS OF TWO LESSEPSIAN FISH, SIGANUS LURIDUS AND ..., 109–112 DODATNI ZAPISI O POJAVLJANJU DVEH VRST LESEPSKIH RIBJIH SELIVK, SIGANUS LURIDUSIN CHAMPSODON VORAX, IZ IZMIRSKEGA ZALIVA (EGEJSKO MORJE, TURČIJA) Okan AKYOL and Ilker AYDIN Faculty of Fisheries, Ege University, Izmir, Turkey e­mail: okan.akyol@ege.edu.tr POVZETEK Dve vrsti lespeskih ribjih selivk, Siganus luridus (družina Siganidae) in Champsodon vorax (družina Champ­sodontidae), sta bili drugič potrjeni v Izmirskem zalivu v severovzhodnem delu Egejskega morja. Avtorja podajata morfometrične in meristične podatke primerkov obeh vrst. Ključne besede: lesepske ribe, novi zapis, meritve, razširjanje REFERENCES Akyol, O. & A. Kara (2003): An investigation on the determination of catch composition of the bottom traw­ling and beach­seining in the Bay of Izmir (Aegean Sea). Ege J. Fish. Aquat. Sci., 20(3­4), 321­328. (In Turkish) Akyol, O. & A. Özgül (2015): Record of reticulated leather jacket, Stephanolepis diaspros Fraser­Brunner, 1940 (Tetradontiformes: Monacanthidae) from Izmir Bay, Aegean Sea, Turkey. J. Black Sea/Mediterranean En­vironment, 21, 316­322. Aydin, I. & O. Akyol (2015): First record of the In­do­Paci.c Champsodon vorax (Perciformes, Champ­sodontidae) from the Aegean Sea, Turkey. Acta Ichthyol. Piscat., 45, 207­209. Ben­Tuvia, A. (1986): Siganidae. In: Whitehead, P.J.P., M.­L. Bauchot, J.­C. Hureu, J. Nielsen & E. Torto­nose (eds.): Fishes of the North­eastern Atlantic and the Mediterranean. Vol. III. UNESCO, Paris, pp. 964­966. Bilecenoglu, M., M. Kaya & S. Akalin (2006): Range expansion of silverstripe blaasop, Lagocephalus scelera­tus (Gmelin, 1789), to the northern Aegean Sea. Aquatic Invasions, 1 (4), 289­291. Çinar, M. E., M. Bilecenoglu, B. Öztürk, T. Katagan, M. B. Yokeş, V. Aysel, E. Dagli, S. Açik, T. Özcan & H. Erdogan (2011): An updated review of alien species on the coasts of Turkey. Medit. Mar. Sci., 12 (2), 257­315. Ergüden, D. & O. Özdemir (2015): Indo­Paci.c .s­hes, distributed in Turkish seas and their effects. 18. Su­alti Bilim ve Teknoloji Toplantisi, SBT 2015, Bildiriler Kitabi, 14­15 Kasim, Urla, pp. 25­35. (In Turkish) Evagelopoulos, A., D. Poursanidis, E. Papazisi, V. Gerovasileiou, N. Katsiaras & D. Koutsoubas (2015): Records of alien marine species of Indo­Paci.c origin at Sigri Bay (Lesvos Island, North­eastern Aegean Sea). Marine Biodiversity Records, 8, e35. Geldiay, R. (1969): Important .shes found in the Bay of Izmir and their possible invasions. E.U. Fen Fakültesi Monogra.ler, Seri No. 11, 135 p. (In Turkish) Golani, D., B. Öztürk & N. Başusta (2006): The .s­hes of the eastern Mediterranean. Turkish Marine Rese­arch Foundation (Publ. No. 24), Istanbul, Turkey. Gurbet, R. & A. Kara (2013): Record of Lessep­sian marbled spinefoot Siganus rivulatus Forsskal and Niebuhr, 1775 from the Northern Aegean Sea (Izmir Bay, Turkey). J. Appl. Ichthyol., 29, 463­464. Işmen, A., A. Ayaz & Z. D. Yildirim (2015): North­ernmost record of the dusky spinefoot Siganus luridus in the Aegean Sea (Turkey coast). Marine Biodiversity Records, 8, e42. Kara, A. & O. Akyol (2011): Record of Lessepsian Rabbit.sh Siganus luridus from Northern Aegean Sea (Izmir Bay, Turkey). J. Appl. Ichthyol., 27, 1381­1382. Katsanevakis, S. & K. Tsiamis (2009): Records of alien marine species in the shallow waters of Chios Is­land (2009). Medit. Mar. Sci., 10, 99­107. Raitsos, D. E., G. Beaugrand, D. Georgopoulos, A. Zenetos, M. A. Pancucci­Papadopoulou, A. Theocharis & E. Papathanassiou (2010): Global climate change ampli.es the entry of tropical species into the Mediter­ranean Sea. Limnol. Oceanogr., 55, 1478­1484. Yapici, S., R. Fricke & H. Filiz (2015): Champso­dontids at the gates: .rst record of Champsodon vo­rax Günther, 1867 from the Aegean Sea (Teleostei: Champsodontidae). J. Appl. Ichthyol. (In press) SREDOZEMSKI MORSKI PSI SQUALI DEL MEDITERRANEO MEDITERRANEAN SHARKS Original scienti.c article UDC 597.311:591.57(262.4) Received: 2015­10­14 “Without sharks, you take away the apex predator of the ocean, and you destroy the entire food chain.” Peter Benchley SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS IN THE TWENTIETH CENTURY HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU Ichthyological Research Society, Tantavi mahallesi, Menteşoglu caddesi, Idil apartmani, No: 30, D: 4, Ümraniye TR­34764, Istanbul, Turkey E­mail: kabasakal.hakan@gmail.com ABSTRACT Thirteen shark attacks were recorded in Turkey’s waters between 1931 and 1983. Ten out of the 13 attacks (76.9 %) occurred in the Sea of Marmara, and were followed by 2 attacks recorded in the Mediterranean and 1 attack in the Aegean Sea. In 7 attacks (53.8 %) targets were the .shing boats, of which 6 of them wer e boats of tuna han­dliners, while 6 attacks (46.2 %) were directly against humans. In 3 incidents (23.1 %) skin or scuba divers, who caught .sh with a harpoon were attacked, while 3 attacks were against swimmers. Two attacks (15.3 %) were fatal. Large predator y sharks have been occurring in the vicinity of aquaculture cages, which are located along Turkey’s Aegean and Mediterranean coasts, as seen in the Güllük Bay incident; however, threats to public safety caused by the predator aggregations close to shorelines is still unknown. Keywords: shark attack, Turkey, .shery, aquaculture, public safety ATTACCHI DI SQUALI A UOMINI E BARCHE IN ACQUE TURCHE NEL VENTESIMO SECOLO SINTESI Tredici attacchi di squali sono stati registrati nelle acque della Turchia tra il 1931 e il 1983. Dieci dei 13 attacchi (il 76,9 %) si sono veri.cati nel Mar di Marmara, due attacchi nel Mediterraneo e un attacco nel mar Egeo. Sette volte (ossia nel 53,8 % dei casi) sono state attaccate barche da pesca, di cui sei erano barche per la pesca del tonno con le lenze. I bersagli dei restanti sei attacchi (pari al 46,2% dei casi) erano umani. In tre casi (23,1 %) sono stati attaccati apneisti o subacquei che pescavano con un arpione, mentre per tre volte gli squali hanno attaccato nuo­tatori. Due attacchi (15,3 %) sono stati fatali. I grandi squali predatori sono stati avvistati in prossimita delle gabbie per l’acquacoltura che si trovano lungo le coste turche dell’Egeo e del Mediterraneo, come nel caso dell’incidente nella baia di Güllük. Tuttavia, le conseguenze delle minacce alla sicurezza pubblica relative ai raggruppamenti di predatori vicino alle linee costier e restano sconosciute. Parole chiave: attacco dello squalo, Turchia, pesca, acquacoltura, sicurezza pubblica HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU: SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS ..., 115–122 INTRODUCTION The term shark attack has been considered to be any forceful or injurious exchange between man and any shark (Baldridge, 1988). This frightening incident has always been one of the more thoroughly examined is­sues of the challenge between man and shark. Because of their feeding mechanisms, including sharp teeth and powerful jaws, and since they could attain very large sizes (i.e., >4 m, in case of white or tiger sharks; Ebert & Stehmann, 2013), sharks are considered to be the top predators of the marine world, and as Baldridge (1988) stated, regardless of its size, any shark having both op­portunity and physical capacity for injuring humans can be considered dangerous. In an aquatic environment where most humans can at best keep their heads above the water, the physical and predatory capabilities of these top predators render land­based humans easy prey in such forceful encounters (Caldicott et al., 2001). In the early days of shark attack science, the opinion was that sharks, being cowardly scavengers, reserved their attention solely for the wounded and the dead. Most of the scientists of that era also believed that they did not attack live human beings, without being provoked (Baldridge, 1988). However, recent case studies have shown that sharks can attack live and active human beings due to a multiplicity of motivations (see Clua & Reid, 2013; Clua et al., 2014; Levine et al., 2014). Of more than 5700 cases recorded in the Global Shark Attack File (GSAF), 160 have occurred in the Med­iterranean Sea. According to the GSAF, only 2 attacks occurred in Turkey’s waters in the 1930’s. Until the last quarter of twentieth century, our knowledge on sharks occurring in Turkey’s waters had many gaps. Nowadays, one of the major questions to be answered is, whether the knowledge on shark attacks allegedly occurring in Turkey’s waters, re.ects the real situation or not? Fol­lowing several studies carried by the Ichthyological Re­search Society (IRS), a non­governmental and non­pro.t institution, dedicated for the research of sharks since 2000, authors acquired more data on several shark at­tacks that occurred in Turkey’s waters during the twenti­eth century. Some preliminary data has been published previously (Kabasakal, 2014, 2015a). In the present article, authors analyse the details of several fatal and non­fatal shark attacks against humans and boats that occurred in Turkey’s waters, in the light of available data. Furthermore, a brief discussion on predatory aggregations around aquaculture cages and the possible consequences in terms of public safety in coastal waters is also made. MATERIAL AND METHODS Data on shark attacks in Turkey’s waters were obtai­ned from the following sources: (1) news that has appe­ared in printed and internet media; (2) GSAF data base which is accessible via the following link: www.sharkat­tack.le.net; (3) interviews with .shermen, especially old tuna handliners, who actively .shed in Bosphoric waters Tab. 1: Chronological list of shark attacks occurred in Turkish waters. Numbers in the No column are same as the numbers in Figure 1. AE - Aegean Sea, MS - Mediterranean Sea, SM - Sea of Marmara. Tab. 1. Kronološki pregled napadov morskihpsov v turških vodah. Številke v stolpcih se ujemajo s številkami na zemljevidu obravnavanega območja na sliki 1. AE: Egejsko morje, MS: Sredozemsko morje, SM: Marmarsko morje. No Date Region Locality Activity Fatality Reference 1 1930 SM Yeşilköy Handlining No De Maddalena & Heim (2012) 2 17 Mar 1931 SM Bakirköy Handlining No Unpubl. data 3 8 Feb 1934 SM Haydarpaşa Handlining No Unpubl. data 4 16 Aug 1937 SM Istanbul Swimming No GSAF (2015) 5 17 Sept 1948 MS Yumurtalik Swimming Yes Unpubl. data 6 1958 SM Ahirkapi Handlining No Kabasakal (2014, 2015a) 7 1958 SM Ahirkapi Handlining No Kabasakal (2014, 2015a) 8 25 Dec 1958 SM Ahirkapi Handlining No Kabasakal (2014, 2015a) 9 1966 SM Sivriada Scuba diving and spear. shing No Unpubl. data 10 7 July 1967 SM Tuzla Scuba diving and spear. shing Yes Unpubl. data 11 1970 MS Antalya Swimming No Unpubl. data 12 1970 AE Izmir Handlining No Unpubl. data 13 1983 SM Dilovasi Spear. shing No Unpubl. data HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU: SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS ..., 115–122 between the 1930’s and 1990’s; and (4) available sci­enti.c literature. The selection of speci.c newspapers, magazines and websites for this study depended on their availability. The news were gathered through the use of library archives for the years prior to their inclusion in online newspaper databases, screening the daily issues of newspapers, and through an internet search. Approxi­mate locality of each shark attack was plotted on the map (Fig. 1). Voice records of interviews with .shermen, screened newspaper pages and internet articles saved as pdf .les are kept in the archives of IRS and available for inspection upon request. RESULTS AND DISCUSSION Analysis of the mentioned data sources revealed 13 shark attacks occurred in Turkey’s waters between 1931 and 1983. Ten out of the 13 attacks (76.9 %) oc­curred in the Sea of Marmara, and were followed by 2 attacks (15.3 %) recorded in the Mediterranean and 1 attack (7.7 %) in the Aegean sea. Four attacks (30.7 %) occurred during late spring (May), summer (July and August) and early autumn (September) months, when sea surface temperatures were > 20 oC, while 3 attacks (23.1 %) occurred during winter (December and Febru­ary) and early spring (March) months, when sea surface temperatures were < 20 oC (Tab. 1). In 7 attacks (53.8 %) targets were the .shing boats, of which 6 of them were boats of tuna handliners, while 6 attacks (46.2 %) were directed against humans. In 3 incidents (23.1 %) skin or scuba divers, who were harpooning .sh, were attacked. Additional 3 attacks were against swimmers. Two attacks (15.3 %) were fatal. The story of shark attacks in Turkey’s waters started in 1930. In that year, two British citizens went to sea aboard a small .shing boat off Santo Stefano (Yeşilköy, Sea of Marmara; Fig. 1, Tab. 1), and were attacked by a large shark (De Maddalena & Heim, 2012). The spe­cies of the shark was assumed to be a great white shark (Carcharodon carcharias), although this assumption has Fig. 1: Map showing the localities of shark attacks occurred in Turkey’s waters. (^) In the small map showing the approximate locality, where a spear.shing skindiver encountered a great white shark off Marmaris coast on 28 September 2011. Numbers on the map are same as the numbers in Table 1. Sl.1: Zemljevid obravnavanega območja z lokalitetami, kjer so se zgodili napadi moskih psov v turških vodah. Tri­kotnik (^) na manjšem zemljevidu označuje približno lokaliteto, kjer je ribič s podvodno puško srečal belega mor­skega volka blizu marmarske obale 28 septembra 2011. Številke na zemljevidu se ujemajo s številkami v tabeli 1. HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU: SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS ..., 115–122 never been con.rmed (De Maddalena & Heim, 2012). Following the Santo Stefano incident, a second shark at­tack on a tuna handliner ’s boat occurred on 17 March 1931, in close vicinity to Bakirköy (Sea of Marmara; Fig. 1, Tab. 1). According to the newspaper report, on that date three .shermen went to sea for handlining tuna and their boat was attacked by a large shark. The .shermen hit the shark with paddles to fend it off, but the preda­tory shark continued attacking the boat and eventually broke it up. Once overboard the .shermen spent almost 2 hours in water with shark, but fortunately none of them were harmed and all were rescued alive. Three years later, another tuna handliner ’s boat was attacked by a large shark on 8 February 1934 off Haydarpaşa (Sea of Marmara; Fig. 1, Tab. 1). Following the shark attack the Fig. 2: Newspaper clip reporting the fatal shark attack occurred of Yumurtalik coast on 17 September 1948 (case No 5 in Table 1). Translation of the newspaper clip reads: “Adana (interview via phone call) - A constructi­on worker, Mr. Ali Kaymaz from village of Islahiye, has been attacked by a shark, while he was swimming off Yumurtalik coast near Adana city. At .rst strike shark severed one of his legs, then he struggled to leave the water but the shark attacked again and severed the ot­her leg. The worker died because of severe bleeding.” Slika 2: Časopisni prispevek o napadu morskega psa na človeka s smrtnim izzidom ob obali Yumurtalik 17 sep­tembra 1948 (primer št. 5 v tabeli 1). Prevod prispevka se glasi: “Adana (intervju po telefonu) – Gradbenega delavca, gospoda Ali Kaymaz iz vasi Islahiye, je napadel morski pes, medtem ko je plaval ob obali Yumurtalik blikzu mesta Adana. V prvem napadu mu je morski pes odtrgal nogo, v drugem pa, medtem ko je Ali poskušal zbežati iz vode, še drugo nogo. Gradbeni delavec je kasneje umrl zaradi prehude izgube krvi.” .shing boat was damaged and sunk, and the wounded .shermen were saved. On 16 August 1937, a non­fatal attack to a swimmer occurred off the Istanbul coast (Sea of Marmara; Fig. 1, Tab. 1) (GSAF, 2015). The species of the shark which attacked the boats and a swimmer in 1930’s remained unknown. On 17 September 1948, a non­provoked fatal shark attack occurred off Yumurtalik (NE Mediterranean Sea; Fig. 1, Tab. 1). According to the newspaper report, a mi­grant worker was attacked by a shark while swimming off Yumurtalik. In the .rst strike the shark severed one of his legs, and then as the victim struggled to leave the water, the shark made a second attack, which resulted in severing his other leg. The victim died a very short time later due to hemorrhaging. The Yumurtalik incident is considered the .rst con.rmed fatal shark attack to have occurred in Turkey’s waters, which was proved by the newspaper report (Fig. 2). The species of the shark re­mains unknown. Ten years later, 3 shark attacks occurred against .shing boats in Bosphoric waters. In 1958, two .shing boats of tuna handliners were attacked by great white sharks, which were attempting to prey on hooked tunas off Ahirkapi (Sea of Marmara; Fig. 1, Tab. 1). According to the interview with Mr. Irfan Yürür, one of the few sur­viving legendary tuna handliners, who was active in the Bosporus Strait waters between the 1930’s and 1980’s, in one instance, a nearly 6 m long great white shark attacked his fellow .shing boat. The shark was hooked while it was attempting to feed on the captured tuna and attacked the boat (Kabasakal, 2015a). The great white shark struggled to get off the hook and attacked another boat upon getting free. Two of the many triangular and serrated edged teeth got stuck in the lagging of the boat, Mr. Yürür reported in the interview. Following these two incidents, on 25 December 1958, a third attack by a great white shark on a tuna handliners .shing boat occurred off Ahirkapi (Fig. 1, Tab. 1; Kaba­sakal, 2014). According to the newspaper report of the same date, the boat had been bitten several times by the great white shark and several teeth got stuck in boat’s hull, which are visible in the photograph accompanying the report. In 1966, an Istanbul based SCUBA diver Mr. Zareh Magar was spear.shing off Sivriada (Sea of Marmara; Fig. 1, Tab. 1). While he was searching .sh in the caverns, he suddenly noticed that a huge shark was approach­ing him. According to the report by Mr. Magar, which was published in Hayat magazine on 12 May 1966, the shark attacked the diver, but he left the water as soon as possible without injuries (Magar, 1966). According to Mr. Magar’s statement, dozens of tuna jumped out of the sea just a short time following his ascent. On 7 July 1967, another Istanbul based Scuba diver Mr. Güngör Güven dived off Tuzla coast (Sea of Marma­ra; Fig. 1, Tab. 1). According to the newspaper report of the same date, Mr. Güven was spear.shing only 200 HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU: SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS ..., 115–122 m off the coast at a depth of 10 m. Suddenly the water turned red and Mr. Güven never ascended to the sur­face. Just a few minutes later a large dorsal .n appeared at the surface, where Mr. Güven had been spear.shing. Search and rescue divers could only .nd the right hand, a .nger bearing teeth marks, the Scuba tank and the torn diving suit of the victim. Before 1970, a non­fatal shark attack occurred against a .shing boat off Kilizman near the city of Izmir (Aegean Sea; Fig. 1, Tab. 1), while a .sherman was hauling a drop­line set for red sea bream (Pagrus spp.). According to a newspaper report a 200 kg weighted shark attacked the hooked .sh, meanwhile the .sherman attempted to harpoon the shark. Follow­ing the response of the .sherman the shark attacked the boat and caused severe damage. Following the Kilizman incident, a shark attack against a swimmer occurred off Antalya near Konyaalti beach (Mediterranean Sea; Fig. 1, Tab. 1) in the early 1970’s. During that time, there had been a slaughter­house built along the seaside, which dumped its’ waste directly into the sea. Finally, in 1983 a non­fatal shark attack against a diver who was spear.shing, occurred off Dilovasi (Sea of Marmara; Fig. 1, Tab. 1). Although a great white shark is assumed to be responsible for this attack, this assertion is considered doubtful. The sea temperatures above 20 oC have been as­sumed to be a triggering factor for a shark attack (Spring­er & Gold, 1989). The extent of humans’ use of the sea and therefore their availability for attack was suggested by Baldridge (1988) to be certainly closely related to temperature. However, despite this environmental fact, signi.cant numbers of attacks have also been report­ed in the areas where water temperatures were below this assumed critical limit (Baldridge, 1988; Springer & Gold, 1989; GSAF, 2015). Based on the dates of attacks, 30.7 % of the attacks occurred in the periods of the year where the temperature is above 20 oC and 23.1 % of attacks occurred in cold seasons (< 20 oC sea surface temperature). Chronological data of the attacks with con.rmed dates show that the shark attacks in Turkey’s waters have occurred throughout the year (Tab. 1). Ten (76.9 %) out of 13 shark attacks mentioned ap­pear to be motivated by handlining or spear.shing (Tab. 1). Furthermore, the motivation of 1 attack (7.6 %; case 11, Tab. 1) was the waste from a slaughterhouse which was operating along the seaside. Thus, based on the present results, motivation of 11 (84.6 %) out of 13 shark attacks which occurred in Turkey’s waters had anthropo­genic factors such as .shing or waste dumping. Only 1 incident (7.6 %; case no 5, Tab. 1) was a non­provoked fatal shark attack on a swimmer. According to Baldridge (1988), shark attacks can occur due to several motiva­tions and 50 to 75 % of attacks against humans might have been triggered by non­feeding factors. Neverthe­less, feeding might very well be the primary motivation for attacks, as Baldridge (1988) suggested, and regarding the sharks as opportunistic feeders, a hooked tuna or a speared .sh can provide an easy feeding opportunity for the predator. The fact that 83 % of all documented shark attacks in Turkey’s waters occurred during .shing activi­ties emphasize the relationship between the attacks and the opportunistic feeding behaviour of sharks. According to Springer & Gold (1989) the length of the sharks which have been known to attack people var­ies from 2 to 8 m; however, Caldicott et al. (2001) stated that the lower limit of this scale might be as short as 45 cm. In general, any shark that can grow larger than 1.8­ 2.0  m is potentially lethal to a human (Baldridge & Wil­liams, 1969; op cit Caldicott et al., 2001). Juveniles of some of the prominent man eaters, (e.g. the great white shark, C. carcharias, and the tiger shark, Galeocerdo cu­vieri; Compagno, 1984), can make fatal attacks against humans (Clua & Reid, 2013; Clua et al., 2014). On 26 March 2009, a non­provoked fatal shark attack on a 19 year old male surfer occurred in waters off the western coast of New Caledonia (Clua & Reid, 2013). The infor­mation provided by a witness and the analysis of a par­tial bite on the right calf allowed the authors to identify a juvenile great white shark with an estimated total length of 2.7 m. Similarly, on 21 May 2011, a 15 year old male died following an attack by a juvenile tiger shark with an estimated total length of 2.8 m, in New Caledonia’s waters (Clua et al., 2014). Tricas & McCosker (1984) postulated that an on­togenetic development in dentition of C. carcharias at approximately 3.0 m in total length, may account for the shift in preferences of prey types and predatory be­haviour. Young and juvenile great white sharks less than 3.0  m in total length are known to feed on squid, small teleosts and cartilaginous .shes, while larger sharks feed on more energetic prey, like marine mammals and blue­.n tuna (Fergusson et al., 2000; Kabasakal, 2009, 2015a; De Maddalena & Heim, 2012). Furthermore, McCosker (1985) suggested that young great white sharks (. 2.5 m total length) can feed on pinnipeds and other marine mammals. Thus, attacks of juvenile great white sharks against humans can be the consequence of a learning phase, in which a young shark is improving its pred­atory abilities as a top predator (Clua & Reid, 2013). According to Guttridge et al. (2009), sharks can learn in an associative or non­associative means by which they can counteract the behavioural plasticity of their prey, .ne tuning foraging tactics and capture. Since the 1990’s a total of 14 great white sharks were either sighted or captured in coastal waters of Turkey’s Aegean Sea (Kabasakal, 2014; Kabasakal & Kabasakal, 2015). Total lengths of 5 out of 14 specimens were . 4.5 m; sizes of 3 out of 14 varied from 1.8 to 3.0 m, and the remaining 6 specimens which include new­borns had total lengths which were . 1.4 m. On 28 Septem­ber 2011, the great white shark with an estimated to­tal length of 5.0 m approached a skin diver who was spear.shing off Marmaris (Fig. 1) at a depth of 15 m (Kabasakal, 2014). The shark circled around the diver a HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU: SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS ..., 115–122 few times before it moved away. Based on the data pro­vided by Kabasakal (2014) and Kabasakal & Kabasakal (2015), it is obvious that juvenile and adult specimens of C. carcharias are occurring in coastal waters of Turkey’s Aegean Sea from February to late September. C. carch­arias is the only species occurring in Turkey’s waters, which is categorized as very dangerous by Compagno (1984) and responsible for many sharks attacks which have occurred over the entire Mediterranean Sea (De Maddalena & Heim, 2012). Besides the great white shark, the short.n mako (Isurus oxyrinchus) and blue sharks (Prionace glauca), which are categorized as dangerous sharks by Compag­no (1984), are known to occur in the coastal waters of Turkey’s Aegean and Mediterranean seas (Kabasakal, 2010, 2015b). On 16 August 2009 a female blue shark (3.5 m total length) was caught off Ayvacik (NE Aege­an Sea; Kabasakal, 2010), while another specimen (. 2 m total length) was observed near aquaculture cages in Güllük Bay (SE Aegean Sea; G. Balkan, pers. comm.). In 2 out of the 5 shark attacks that occurred in Sharm El Sheikh (Red Sea) in 2010, short.n mako sharks were the causal species, and the attacks occurred at most 40 m off the coast (Levine et al., 2014). Authors suggested that the dumping of sheep carcasses off the resort areas and the hand­feeding of sharks were likely triggers for the incidents. A similar shark attack outbreak due to an­thropogenic waste was observed off Recife (Brazil) over the 1992­2006 period (Hazin et al., 2008), which was also the causal factor of the shark attack that occurred off Antalya coast in 1970 (case no 11, Tab. 1). Based on GSAF (2015) data base, 54 shark attacks occurred in the Eastern Mediterranean to date, of which 34 of them were the incidents recorded in adjacent waters of Turkey. However, with the addition of pres­ent results these numbers are increased to 65 and 45 respectively. The most recent shark attack in adjacent waters to Turkey occurred on 29 September 2013 off Ashod (Israel; GSAF, 2015). CONCLUSIONS Chronological analyses of the shark attacks that have occurred in Turkey’s waters show that the incidents co­ver almost the entire 20th century (Tab. 1). The majority (84.6 %) of these attacks occurred during .shery opera­tions (handlining or spear.shing). Moreover, the causal factor of one of these shark attacks was the dumping of waste, as was the case for the attacks that occurred in Sharm El Sheikh and Recife. Therefore, it should be kept in mind that anthropogenic waste dumping from slaughterhouses or similar facilities can create sensorial stimulus for sharks to come closer to coastal areas. From this point of view, aquaculture cages set too close to shore lines or offshore transport cages of pelagic .sh like blue.n tuna can also create a stimulus for the attracti­on of predatory sharks (Galaz & De Maddalena, 2004; Papastamatiou et al., 2010; Kabasakal, 2014). Galaz & De Maddalena (2004) and Kabasakal (2014) reported on two cases from Mediterranean waters, in which the great white sharks followed and entered the tow cages of blue.n tuna. Historically, the coexistence of great white sharks and blue.n tuna in Mediterranean Sea is a very well known phenomenon (De Maddalena & Heim, 2012). According to Papastamatiou et al. (2010), preda­tory sharks exhibit site .delity around aquaculture cages in Hawaiian waters. As in the case of Güllük Bay inci­dent, large predatory sharks can occur in the vicinity of aquaculture farms set along Turkey’s coast, occasionally. Although, for the moment, threats to public safety of the­se aggregating top­predators is unknown, aquaculture farm planners should bear in mind that such marine ca­ges can create sensorial stimulus of easy source of prey for sharks, a predator capable of learning. ACKNOWLEDGEMENT Authors wish to thank tuna hand­liner, Mr. Irfan “Sa­matyali” Yürür, and the divers Mr. Güven Balkan and Mr. Aytug Toparlak, for sharing their data. We are also grateful to Mr. Mark Taylor, an Istanbul based SCUBA in­structor and underwater photographer, for the linguistic revision of the manuscript. Hakan Kabasakal extends his deep gratitude to his wife Özgür, and to his son Derin, for their endless love and support. HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU: SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS ..., 115–122 NAPADI MORSKIH PSOV NA LJUDI IN PLOVILA V TURŠKIH VODAH V DVAJSETEM STOLETJU Hakan KABASAKAL & Sait Özgür GEDIKOGLU Ichthyological Research Society, Tantavi mahallesi, Menteşoglu caddesi, Idil apartmani, No: 30, D: 4, Ümraniye TR­34764, Istanbul, Turkey E­mail: kabasakal.hakan@gmail.com POVZETEK Med letoma 1931 in 1983 so v turških vodah zabeležili trinajst napadov morskih psov. Deset od teh (76,9 %) se je zgodilo v Marmarskem morju, nadaljnja dva napada v sredozemskih vodah in eden v Egejskem morju. V sedmih primerih (53,8 %) so morski psi napadli plovila, med katerimi je bilo 6, s katerih so lovili tune na trnek. V ostalih šestih primerih pa je morski pes napadel človeka. V treh primerih (23,1 %) je morski pes napadel potapljača na dah oziroma potapljača z jeklenko, v drugih treh pa plavalce. Velike plenilske morske pse so pogosto opazovali ob kletkah ribogojnic, ki se nahajajo vzdolž turške egejske in sredozemske obale, npr. v zalivu Güllük. Kakorkoli že, o morebitni nevarnosti za varnost ljudi zaradi zbiranja morskih psov za zdaj ni nobenih podatkov. Ključne besede: napadi morskih psov, Turčija, ribištvo, akvakultura, varnost ljudi HAKAN KABASAKAL & SAIT ÖZGÜR GEDIKOGLU: SHARK ATTACKS AGAINST HUMANS AND BOATS IN TURKEY’S WATERS ..., 115–122 REFERENCES Baldridge H. D. (1988): Shark aggression against man: beginnings of an understanding. Calif. Fish and Game, 74 (4), 208­217. Baldridge, H. D. & J. Williams (1969): Shark attack: feeding or .ghting? Mil. Med., 134 (2), 130­133. Caldicott D. G. E., R. Mahajani & M. Kuhn (2001): The anatomy of a shark attack: a case report and review of the literature. Injury, Int. J. Care Injured, 32 (6), 445­ 453. Clua E. & D. Reid (2013): Features and motivation of a fatal attack by a juvenile white shark, Carcharodon carcharias, on a young male surfer in New Caledonia (South Paci.c). J. Forensic Leg. Med., 20 (5), 551­554. Clua E., P. ­M. Bescond & D. Reid (2014): Fatal at­tack by a juvenile tiger shark, Galeocerdo cuvier, on a kitesurfer in New Caledonia (South Paci.c). J. Forensic Leg. Med., 25, 67­70. Compagno, L. J. V. (1984): FAO species catalogue. Vol. 4. Sharks of the world. An annotated and illustrat­ed catalogue of shark species known to date. Part 2. Carcharhiniformes. FAO Fish. Synop., 4, 251­655. De Maddalena, A. & W. Heim (2012): Mediterranean Great White Sharks. A Comprehensive Study Including All Recorded Sightings. McFarland, Jefferson, 254 p. Ebert, D. A. & M. F. W. Stehmann (2013): Sharks, batoids and chimaeras of the North Atlantic. FAO Spe­cies Catalogue for Fishery Purposes, No. 7. FAO, Rome, 523 p. Fergusson, I. K., L. J. V. Compagno & M. A. Marks (2000): Predation by white sharks Carcharodon carch­arias (Chondrichthyes: Lamnidae) upon chelonians, with new records from the Mediterranean Sea and a .rst record of the ocean sun.sh Mola mola (Osteichthyes: Molidae) as stomach contents. Env. Biol. Fish., 58 (4), 447­453. Galaz, T. & A. De Maddalena (2004): On a great white shark, Carcharodon carcharias (Linnaeus, 1758), trapped in a tuna cage off Libya, Mediterranean Sea. An­nales, ser. hist. nat., 14 (2), 159­164. GSAF (2015): http://www.sharkattack.le.net/ (last accessed 13 October 2015). Guttridge, T. L., A. A. Myberg, I. F. Porcher, D. W. Sims & J. Krause (2009): The role of learning in shark behaviour. Fish and Fisheries. doi: 10.1111/j.1467­2979.2009.00339.x. Hazin, F. H. V., G. H. Burgess & F. C. Carvalho (2008): A shark attack outbreak off Recife, Pernambuco, Brazil: 1992­2006. Bull. Mar. Sci., 82 (2), 199­212. Kabasakal, H. (2009): Two juvenile great white sharks, Carcharodon carcharias (Linnaeus, 1758) (Chon­drichthyes; Lamnidae), caught in the northeastern Aege­an Sea. Annales, ser. hist. nat., 19 (2), 127­134. Kabasakal, H. (2010): On the occurrence of the blue shark, Prionace glauca (Chondrichthyes: Carchar­hinidae), off Turkish coast of northern Aegean Sea. Marine Biodiversity Records, 3, e31, doi:10.1017/ S1755267210000266. Kabasakal, H. (2014): The status of the great white shark (Carcharodon carcharias) in Turkey’s waters. Marine Biodiversity Records, 7, e109, doi:10.1017/ S1755267214000980. Kabasakal, H. (2015a): Büyük Beyaz Bilmece. Navi­ga Yayinlari, Istanbul, 176 p. Kabasakal, H. (2015b): Occurrence of short.n mako shark, Isurus oxyrinchus Ra.nesque, 1810, off Turkey’s coast. Marine Biodiversity Records, 8, e134, doi:10.1017/S1755267215001104. Kabasakal, H. & Ö. Kabasakal (2015): Recent re­cord of the great white shark, Carcharodon carcharias (Linnaeus, 1758), from central Aegean Sea off Turkey’s coast. Annales, ser. hist. nat., 25 (1), 11­14. Levin, M., R. S. Collier, E. Ritter, M. Fouda & V. Canabal (2014): Shark cognition and a human mediated driver of a spate of shark attacks. Open Journal of Ani­mal Sciences, 4, 263­269. Magar, Z. (1966): Dev bir köpekbaligi ile burun bu­runa. Hayat, 20, 16­20. McCosker, J. E. (1985): White shark attack be­haviour: observations and speculations about predator and prey tactics. S. Calif. Acad. Sci. Mem., 9, 123­135. Papastamatiou, Y. P., D. G. Itano, J. J. Dale, C. G. Meyer & K. N. Holland (2010): Site .delity and move­ments of sharks associated with ocean farming cages in Hawaii. Mar. Freshwater Res., 61, 1366­1375. Springer, V. G. & J. P. Gold (1989): Sharks in Ques­tion. The Smithsonian Answer Book. Smithsonian Insti­tution Press, Washington, D. C. and London, 187 p. Tricas, T. C. & J. E. McCosker (1984): Predatory be­havior of the white shark (Carcharodon carcharias), with notes on its biology. Proc. Calif. Acad. Sci., 43 (14), 221­ 238. Original scienti.c article UDK 597.311.412:591.9(262.4) Received: 2015­07­02 PHOTOGRAPHIC RECORD OF THE SPINNER SHARK, CARCHARHINUS BREVIPINNA (MÜLLER & HENLE, 1839), IN GÖKOVA BAY (SOUTH AEGEAN SEA, TURKEY) Halit FILIZ Faculty of Fisheries, University of the Mugla Sitki Kocman, Kotekli, Mugla, Turkey Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoglu caddesi, Idil apartmani, No: 30, D: 4, Ümraniye TR­34764, Istanbul, Turkey E­mail: kabasakal.hakan@gmail.com ABSTRACT In August 1998, a picture of a spinner shark, Carcharhinus brevipinna (Müller & Henle, 1839) was taken by an amateur group of divers at a depth of 3 m in Boncuk Bay (Gökova Bay, south Aegean Sea). Photographic evidence of this shark in Boncuk Bay contributes to our knowledge about the historical distribution of the species in Turkish waters. C. brevipinna is considered a very rare shark species in Turkish seas and needs immediate protection in Turk­ish territorial waters. The sighting of the spinner shark in the vicinity of a well­documented nurser y ground of the sandbar shark, C. plumbeus, does not necessarily indicate a breeding ground for C. brevipinna in the studied area, as well; however, the possibility of a hypothetical nurser y for the spinner shark in the Boncuk Bay area should be investigated in the future. Key words: spinner shark, Carcharhinus br evipinna, occurrence, distribution, Aegean Sea AVVISTAMENTO FOTOGRAFICO DELLO SQUALO TISSITORE, CARCHARHINUS BREVIPINNA (MÜLLER & HENLE, 1839), NEL GOLFO DI GÖKOVA (MAR EGEO MERIDIONALE, TURCHIA) SINTESI Nell’agosto del 1998 uno squalo tissitore, Carcharhinus brevipinna (Müller & Henle, 1839), e stato ripreso da un gruppo amatoriale di subacquei ad una profondita di 3 metri nella baia di Boncuk (golfo di Gökova, mar Egeo meridionale). Le prove fotogra.che della presenza di questo squalo nella baia di Boncuk contribuiscono alla cono­scenza sulla distribuzione storica delle specie in acque turche. C. brevipinna e considerato quale specie molto rara di squali nei mari della Turchia e ha pertanto bisogno di una protezione immediata nelle acque territoriali turche. L’avvistamento dello squalo tissitore in prossimita di una ben documentata zona di crescita dello squalo grigio, C. plumbeus, non indica necessariamente una zona di riproduzione per C. brevipinna nell’area studiata. Tuttavia, la possibilita di un’ipotetica zona di crescita per lo squalo tissitore nella baia di Boncuk dovrebbe venir veri.cata in un prossimo futuro. Parole chiave: squalo tissitore, Carcharhinus brevipinna, avvistamento, distribuzione, mar Egeo INTRODUCTION The spinner shark, Carcharhinus brevipinna (Müller & Henle, 1839), is a common coastal­pelagic, warm­­temperate and tropical shark of the continental and in­sular shelves, commonly found in shallow waters less than 30 m deep, though it is occasionally reported from a depth of at least 75 m (Ebert & Stehmann, 2013). C. brevipinna is a rare­to­occasional species in the whole Mediterranean, where it is recorded as bycatch in deep­­sea and pelagic longline .shing off the eastern Algerian and Tunisian coasts (Serena, 2005). Although Akşiray (1987) and Mater & Meriç (1996) included spinner shark in their ichthyological inventori­es of the seas of Turkey, the occurrence and status of C. brevipinna in the mentioned region had been a point of debate until the 2000s. Kabasakal (2002) reported the presence of C. brevipinna in Turkish waters based on 3 specimens recorded off the Kuşadasi and Marmaris coasts (Aegean Sea) and in Iskenderun Bay (NE Medi­terranean Sea). In the present article, authors report a specimen of C. brevipinna photographed in Gökova Bay (SE Aege­an Sea) in the late 1990s. The present article could be a signi.cant contribution to our current knowledge on the historical occurrence of the spinner shark in Aegean waters. MATERIAL AND METHODS In August 1998, a carcharhinid shark was observed and photographed by an amateur group of divers in Boncuk Bay (approximate location 36° 58' 42.0” N, 28° 12’ 52.5” E; Fig. 1) within the boundaries of the Gökova Special Environmental Protection Area (SEPA). The shark remained in close proximity to the divers for about 5 mi­nutes at a depth of 3 m. Due to the absence of a nearby reference object during photographing it was not pos­sible to estimate the size of the shark. The photograph was obtained from the archives of H. Lukas, F. Diestel and P. Rauhut by the .rst author in 2012. The shark was subsequently identi.ed by the authors as Carcharhinus brevipinna. The identi.cation of the species is based on Grace (2001), Serena (2005) and Bariche (2012). The photographs of the present specimen are held in the per­sonal archives of the both authors. RESULTS AND DISCUSSION The following description of the spinner shark is based on the specimen seen in Figure 2: a large, but slender shark with a long, sharply pointed snout, small eyes, long gill slits, and small pectoral .ns. The body is robustly fusiform, with a wide caudal peduncle. The origin of the .rst dorsal .n is over the behind/ rear tip of the pectoral .n. Between the two dorsal .ns there is no interdorsal ridge. The tips of the .ns are dark. A white band is visible on .anks. Carcharhinus brevipinna, like many of the large shark species, poses a particular dilemma, as it is yet unknown whether it is rare in the Mediterranean and adjacent waters, or just rarely caught and reported (Cavanagh & Gibson, 2007). For example, Branstetter (1984) reports C. brevipinna being present throughout the Mediterra­nean, even in the Adriatic; however, according to Lipej et al. (2004), there have been no con.rmed records of spinner shark occurrence in the Adriatic Sea. In a recent comprehensive study on the occurrences of large sharks in the open waters of the SE Mediterranean Sea, Da­malas & Megalofonou (2012) recorded 249 specimens representing 10 species, captured by Greek and Cypriot longline .shing vessels between 1998 and 2005. Altho­ugh the authors observed 4 carcharhinid taxa (C. plum­beus, Carcharhinus spp., Prionace glauca and Rhizopri­onodon acutus) in the investigated area, their catch data did not include C. brevipinna. To date, 11 carcharhinid species have been reported from Mediterranean waters (Serena, 2005). However, Carcharhinus is one of the lar­gest and most important genera of sharks, and the discri­mination between the species in the .eld is sometimes rather dif.cult, due to a strong resemblance between the black­tipped Carcharhinus species (brevipinna and lim­batus), which occur sympatrically in the Mediterranean Sea (Serena, 2005) and could possibly cause misidenti­.cations. Indeed, the .rst record of the spinner shark in the Mediterranean was provided by Tortonese (1963) (as Aprionodon brevipinna), and was based on an earlier misidenti.cation as C. limbatus by Tortonese (1938) (R. Fricke, pers. comm.). Based on the information obtained from available literature, the occurrence of the spinner shark in the eastern Levant dates back to the mid­20th century, when a shark specimen (total length 55 cm) was hooked in Haifa Bay (Israeli coast of the E Mediterranean) on 23rd November 1958, and was later identi.ed as A. brevi­pinna (Ben­Tuvia, 1966). According to Ben­Tuvia’s re­port (Ben­Tuvia, 1966), the identi.cation of the Haifa specimen was later con.rmed by world­renowned shark experts J. Garrick and V. G. Springer. Following the .rst Haifa specimen, another spinner shark (total length 110 cm) was hooked in the same area on 27th May 1964. Lat­er, Ben­Tuvia (1971) reported on the capture of a third spinner shark (length 29 cm) without giving detailed in­formation about the specimen or the .shing locality. Be­fore the observation of the present specimen in Boncuk Bay, Kabasakal (2002) reported on the capture of 3 spin­ner sharks off the coast of Turkey (2 in Aegean waters and 1 in the eastern Mediterranean). Since the .eld sur­vey of Kabasakal’s study was carried out between 1995 and 1999 (Kabasakal, 2002), the capture of these 3 spin­ner sharks does not necessarily con.rm the contempo­rary occurrence of C. brevipinna in Turkish waters, nor does the present specimen observed in 1998. Therefore, the current presence of C. brevipinna in the seas of Turkey requires clari.cation. On this same note, a record of C. brevipinna can indeed be found in the updated checklist of the marine .shes of Turkey (Bilecenoglu et al., 2014), however, it is based on the distributional data given by Branstetter (1984). Similarly, Hadjichristophorou (2006) includes C. brevipinna in the list of Cypriot sharks, but his record is based on the dis­tributional information of spinner shark provided quite some time ago by Compagno (1984); whereas a recent list of sharks recorded off the Syrian coast (E Mediterra­nean; Saad et al., 2006) does not include C. brevipinna at all. Although Ben­Tuvia (1966, 1971) and Golani (2006) conclude that C. brevipinna is a common or prevalent shark in the Mediterranean waters of Israel, Bariche (2012) suggests that it is a rare­to­occasional shark in the region. Supporting Bariche’s suggestion (Bariche, 2012), Serena (2005) also considers C. brevipinna as a rare­to­occasional shark throughout the Mediterranean, contrasting with the alleged commonness of the spin­ner shark off the Israeli coast (Ben­Tuvia, 1966, 1971; Golani, 2006). The origin of C. brevipinna in the eastern Mediter­ranean waters has been a constant point of debate since Ben­Tuvia’s milestone study on the Red Sea .shes found in the Mediterranean (Ben­Tuvia, 1966). In one of his classical studies of Lessepsian .sh in the Levantine Ba­sin, based on the supposition that no records of C. brevi­pinna from the western Mediterranean existed at that time, Ben­Tuvia (1966) assumed a Red Sea origin for the spinner shark. In contrast to his assumption (Ben­Tuvia, 1966), there are now numerous records of C. brevipinna in western Mediterranean waters available (see Hemida et al., 2002; Bradai et al., 2006; Psomadakis et al., 2012; Sperone et al., 2012). Our current knowledge on the species of the Car­charhinus genera occurring in the seas of Turkey consists of rudimentary data (Başusta et al., 1998; Kabasakal, 2015). Earlier accounts of the occurrence of spinner shark in Turkish waters were based on reports of gen­eral ichthyological inventory studies carried out in the mentioned region (e.g. Mater & Meric, 1996; Başusta et al., 1998; Fricke et al., 2007; Bilecenoglu et al., 2014), in which the occurrence data for C. brevipinna is based on Branstetter (1984), Akşiray (1987) and Fischer et al. (1987). Even Akşiray’s record of C. brevipinna from Turk­ish waters fails to provide information on where the ex­amined specimens had been caught or stored (Akşiray, 1987). Kabasakal (2002) provided the .rst reliable re­port on the presence of C. brevipinna, based on the three specimens he had collected from Kuşadasi, Marmaris and Iskenderun Bays, respectively. This historical photographic evidence of the spin­ner shark is also the .rst record for Gökova Bay. Since Gökova Bay is a SEPA, the monitoring of the status and of the possible changes in biodiversity is there­fore an important issue. So far, 15 studies have been carried out in Gökova SEPA in order to assess the .sh fauna occurring in the area (e.g. Ögretmen et al., 2005; Öziç & Yilmaz, 2006), but none of them included C. brevipinna in their inventories of the recorded .sh spe­cies. Since Boncuk Bay, which is located on the east­ern coast of Gökova SEPA, provides a nursery area for sandbar shark (C. plumbeus), annual monitoring stud­ies have been conducted there since 2006, but the spinner shark has never been observed or otherwise recorded in these studies (Bilecenoglu, 2008; Akça, 2010; Filiz et al., 2012). Today, the conservation status of C. brevipinna in the Mediterranean Sea is estimated as data de.cient – DD (Cavanagh & Gibson, 2007), and endangered (EN) in Turkish seas (Fricke et al., 2007). In the Northwest At­lantic, C. brevipinna is considered a vulnerable shark by IUCN (Serena, 2005). The scarcity of records about C. brevipinna in the studied area could be explained as a consequence of a rapid decline of this shark (Ferretti et al., 2008). Occurrence of the spinner shark in the vicin­ity of a well­documented nursery ground of the sandbar shark does not necessarily indicate a possible breeding ground for C. brevipinna in the studied area, though this possibility should be in the future investigated in the Boncuk Bay area. ACKNOWLEDGEMENT We thank Ronald Fricke for his useful comments about the earlier records of the species in the Mediterra­nean Sea, and H. Lukas, F. Diestel and P. Rauhut for gen­erously sharing their photograph of the spinner shark, which is seen in Figure 2. The authors are indebted to Dr E. Irmak (Izmir Katip Çelebi University) and Dr M. Bilecenoglu (Adnan Menderes University) for the veri.­cation of species identi.cation, and to two anonymous referees for their valuable comments for the improve­ment of the content of the article. FOTOGRAFSKI ZAPIS O KRATKOPLAVUTEM MORSKEM PSU, CARCHARHINUS BREVIPINNA (MÜLLER & HENLE, 1839), V ZALIVU GÖKOVA BAY (JUŽNO EGEJSKO MORJE, TURČIJA) Halit FILIZ Faculty of Fisheries, University of the Mugla Sitki Kocman, Kotekli, Mugla, Turkey Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoglu caddesi, Idil apartmani, No: 30, D: 4, Ümraniye TR­34764, Istanbul, Turkey E­mail: kabasakal.hakan@gmail.com POVZETEK Avgusta 1998 so amaterski potapljači posneli kratkoplavutega morskega psa, Carcharhinus brevipinna (Müller & Henle, 1839), na globini 3 m v zalivu Boncuk (zaliv Gökova, južno Egejsko morje). Fotogra.ja te vrste, posneta v za­livu Boncuk, je nov doprinos k poznavanju zgodovinske razširjenosti kratkoplavutega morskega psa v turških morjih. Vrsta C. brevipinna je opredeljena kot zelo redka vrsta v turških morjih in kot taka potrebna takojšnjega varovanja na območju turških ozemeljskih voda. Opažanje kratkoplavutega morskega psa v bližini znanega razmnoževalnega območja sivega morskega psa, C. plumbeus, še ne pomeni, da se tudi ta vrsta v tem okolju razmnožuje, vsekakor pa bi bilo to smiselno pr everiti na območju zaliva Boncuk v bližnji prihodnosti. Ključne besede: kratkoplavuti morski pes, Carcharhinus br evipinna, pojavljanje, razširjenost, Egejsko morje REFERENCES Akça, N. (2010): Underwater observations on the bioecology of Carcharhinus plumbeus (Nardo, 1827) inhabiting Boncuk Bay (Gökova Gulf). M. Sc. Thesis. Adnan Menderes University, Aydin, 45 p. (In Turkish) Akşiray, F. (1987): Türkiye Deniz Baliklari Ve Tayin Anahtari, 2nd Edition. Publications of Istanbul Universi­ty, Istanbul, no. 3490, 811 p. Bariche, M. (2012): Field identi.cation guide to the living marine resources of eastern and southern Medi­terranean. FAO Species Identi.cation Guide for Fishery Purposes. FAO, Rome, 610 p. Başusta, N., Ü. Erdem & C. Çevik (1998): An inves­tigation on chondrichthyes in Iskenderun Bay. Celal Ba­yar University, Journal of the Science and Arts Faculty, Ser. Nat. Sci., 1, 63­69. Ben­Tuvia, A. (1966): Red Sea .shes recently found in the Mediterranean. Copeia, 1966, 254­275. Ben­Tuvia, A. (1971): Revised list of the Mediterra­nean .shes of Israel. Isr. J. Zool., 20, 1­39. Bilecenoglu, M. (2008): Project of Conservation and Monitoring of Sandbar Shark (Carcharhinus plumbeus) in Boncuk Bay in Gökova Special Environmental Pro­tection Area. Project Report. Environmental Protection Agency for Special Areas, Ministry of Environment and Forestry, Ankara, 32 p. (In Turkish) Bilecenoglu, M., M. Kaya, B. Cihangir & E. Çiçek (2014): An updated checklist of the marine .shes of Tur­key. Turk. J. Zool., 38, 901­929. Bradai, M. N., B. Saidi, S. Enajjar & A. Bouain (2006): The Gulf of Gabes: A spot for the Mediterranean elasmo­branchs. In: Başusta, N., Ç. Keskin, F. Serena & B. Seret (eds.): The Proceedings of the International Workshop on Mediterranean Cartilaginous Fish with Emphasis on Southern and Eastern Mediterranean. 14­16 October 2005, Istanbul, Turkey. Turkish Marine Research Foun­dation, pp. 107­117. Branstetter, S. (1984): Carcharhinidae. In: White­head, P. J. P., M.­L. Bauchot, J.­C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the North­eastern Atlantic and the Mediterranean. Vol. I. UNESCO, Paris, pp. 102­114. Cavanagh, R. D. & C. Gibson (2007): Overview of the conservation status of cartilaginous .shes (Chon­drichthyans) in the Mediterranean Sea. IUCN, Gland, Switzerland and Malaga, Spain, 42 p. Compagno, L. J. V. (1984): FAO species catalogue. Vol. 4. Sharks of the world. An annotated and illustrat­ed catalogue of shark species known to date. FAO Fish. Synop., (125) Vol. 4, 655 p. Damalas, D. & P. Megalofonou (2012): Occurrences of large sharks in the open waters of the southeastern Mediterranean Sea. J. Nat. Hist., 46, 43­44. Ebert, D. A. & M. F. W. Stehmann (2013): Sharks, batoids and chimaeras of the North Atlantic. FAO Spe­cies Catalogue for Fishery Purposes, No. 7. FAO, Rome, 523 p. Ferretti, F., R. A. Myers, F. Serena & H. K. Lotze (2008): Loss of large predator sharks from the Mediter­ranean Sea. Conserv. Biol., 22, 952­964. Filiz, H., A. Gülşahin, H. Cerim & G. Bilge (2012): The pursuit of the sandbar shark [Carcharhinus plumbeus (Nardo, 1827)]. Harmonization of Biodiversity and Ma­rine Industries, Turkey­Japan Marine Forum. November 5­12, 2012, Izmir, Turkey. Abstract Book, pp. 16. Fischer, W., M. L. Bauchot & M. Schneider (1987): Fiches FAO d’identi.cation des especes pour les besoins de la peche. Méditerranée et mer Noire. Zone de peche 37. FAO, Rome, 760 p. Fricke, R., M. Bilecenoglu & H. M. Sari (2007): An­notated checklist of .sh and lamprey species (Gnatho­stomata and Petromyzontomorphi) of Turkey, including a Red List of threatened and declining species. Stuttg. Beitr. Natkd. A. Biol., 706, 169 p. Golani, D. (2006): Cartilaginous .shes of the Med­iterranean coast of Israel. In: Başusta, N., Ç. Keskin, F. Serena & B. Seret (eds.): The Proceedings of the Inter­national Workshop on Mediterranean Cartilaginous Fish with Emphasis on Southern and Eastern Mediterranean. 14­16 October 2005, Istanbul, Turkey. Turkish Marine Research Foundation, pp. 95­100. Grace, M. A. (2001): Field guide to requiem sharks (Elasmobrachiomorphi: Carcharhinidae) of the Western North Atlantic. U.S. Dep. Commer., NOAA Tech.Rep. NMFS153, 32p. Hadjichristophorou, M. (2006): Chondrichthyes in Cyprus. In: Başusta, N., Ç. Keskin, F. Serena & B. Seret (eds.): The Proceedings of the International Workshop on Mediterranean Cartilaginous Fish with Emphasis on Southern and Eastern Mediterranean. 14­16 October 2005, Istanbul, Turkey. Turkish Marine Research Foun­dation, pp. 162­168. Hemida, F., R. Seridji, N. Labidi, J. Bensaci & C. Capapé (2002): Records of Carcharhinus spp. (Chon­drichthyes: Carcharhinidae) from off the Algerian coast (southern Mediterranean). Acta Adriat., 43, 83­92. Kabasakal, H. (2002): Elasmobranch species of the seas of Turkey. Annales, Ser. Hist. Nat., 12 (1), 15­22. Kabasakal, H. (2015): Historical occurrence of Carcharhinus spp. in the Sea of Marmara during the 1950s. Marine Biodiversity Records, 8, e48. Lipej, L., A. De Maddalena & A. Soldo (2004): Sharks of the Adriatic Sea. Knjižnica Annales Majora, Koper, 253 p. Mater, S. & N. Meriç (1996): Deniz Baliklari. In: Kence, A. & C. C. Bilgin (eds.): Türkiye Omurgalilar Tür Listesi. TÜBITAK, Ankara, pp. 129­172. Ögretmen, F., F. Yilmaz & H. Torcu Koç (2005): An investigation on .shes of Gökova Bay (Southern Aegean Sea). BAÜ Fen. Bil. Enst. Dergisi, 7, 19­36. Öziç, F. & F. Yilmaz (2006): Gökova Körfezi demer­sal baliklari üzerine bir araştirma. Ekoloji, 58, 16­20. Psomadakis, P. N., S. Giustino & M. Vacchi. (2012): Mediterranean .sh biodiversity: an updated inventory with focus on the Ligurian and Tyrrhenian seas. Zoot­axa, 3263, 1­46 Saad, A., M. Ali & B. Seret (2006): Shark exploitation and conservation in Syria. In: Başusta, N., Ç. Keskin, F. Serena & B. Seret (eds.): The Proceedings of the Inter­national Workshop on Mediterranean Cartilaginous Fish with Emphasis on Southern and Eastern Mediterranean. 14­16 October 2005, Istanbul, Turkey. Turkish Marine Research Foundation, pp. 202­208. Serena, F. (2005): Field identi.cation guide to the sharks and rays of the Mediterranean and Black Sea. FAO Species Identi.cation Guide for Fishery Purposes, FAO, Rome, 97 p. Sperone, E., G. Parise, A. Leone, C. Milazzo, V. Cir­costa, G. Santoro, G. Paolillo, P. Micarelli & S. Tripepi (2012): Spatiotemporal patterns of distribution of large predatory sharks in Calabria (central Mediterranean, southern Italy). Acta Adriat., 53, 13­24. Tortonese, E. (1938): Uno squalo nuovo per il Medi­terraneo. Natura, 29, 157­160. Tortonese, E. (1963): Elenco riveduto dei Leptocar­di, Ciclostomi, pesci cartilaginei e ossei del mare Medi­terraneo. Ann. Mus. Civ. Stor. Nat. Giacomo Doria, 74, 156­185. IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Original scienti.c article UDK 597.535.4:591.49(262.26) Received: 2015­05­26 OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX (OSTEICHTHYES: CONGRIDAE) FROM THE TUNISIAN COAST (CENTRAL MEDITERRANEAN) Balkis SALLAMI & Mohamed BEN SALEM Laboratoire de recherche de Biodiversité, Biotechnologies et Changements climatiques, Faculté des Sciences de Tunis, Campus universitaire, 2090 El Manar II. Tunis, Tunisia Sihem RAFRAFI­NOUIRA, Olfa EL KAMEL­MOUTALIBI Laboratoire d’Hydrobiologie Littorale et Limnique, Université de Carthage, Faculté des Sciences, Zarzouna, 7021 Bizerte, Tunisia Christian REYNAUD Centre d’Ecologie Fonctionnelle et Evolutive – CNRS UMR 5175, 1919 route de Mende, 34293 Montpellier cedex 5, France Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 5, France e­mail: capape@univ­montp2.fr ABSTRACT The paper reports on some aspects of morphology, morphometric measurements, meristic counts and colour of all Gnathophis mystax found in northern Tunisian waters. Some measurements, such as pre­dorsal length, pre­anal length, pectoral length and pre­pectoral length are in correlation with size; however, the b < 3 values display nega­tive allometr y. The relationship between total length (TL) and the hepatosomatic index (HSI) is linked to size. Similar observations were recorded between TL and the gonadosomatic index (GSI), and between TL and condition (K). Of the 48 stomachs examined for contents, 29 were empty. A total of 19 items were found in the stomach contents, although partially digested. Key words: Gnathophis mystax, morphology, meristic counts, hepatosomatic index, gonadosomatic index, feeding habits OSSERVAZIONI SUL GRONGO NASUTO GNATHOPHIS MYSTAX (OSTEICHTHYES: CONGRIDAE) LUNGO LA COSTA TUNISINA (MEDITERRANEO CENTRALE) SINTESI Gli autori riportano alcuni aspetti che si riferiscono a morfologia, misurazioni morfometriche, conte meristiche e colorazione di tutti gli individui di Gnathophis mystax ritrovati nelle acque tunisine settentrionali. Alcune misura­zioni, quali la lunghezza pre­dorsale, lunghezza pre­anale, lunghezza pettorale e la lunghezza pre­pettorale, sono correlate con le dimensioni degli individui. Tuttavia, i valori di b sono risultati minori a 3, indicando allometrie ne­gative. Il rapporto tra la lunghezza totale (TL) e l’indice epatosomatico (HSI) e leg ato alle dimensioni. Osser vazioni simili sono state registrate tra la TL e l’indice gonadosomatico (GSI), e tra la TL e la condizione (K). Dei 48 contenuti di stomaco esaminati, 29 erano vuoti. In totale, 19 pezzi sono stati trovati nei contenuti di stomaco, tuttavia gia parzialmente digeriti. Parole chiave: Gnathophis mystax, morfologia, conte meristiche, indice epatosomatico, indice gonadosomatico, abitudini alimentari Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 INTRODUCTION Thinlip conger Gnathophis mystax (Delaroche, 1809) is known to be commonly found off the eastern Atlantic coast extending from the south of Portugal to Morocco, southwardly the occurrence of the species re­mains doubtful and needs con.rmation (Blache & Bau­chot, 1972; Blache, 1977); it is replaced off the South African coast by southern Atlantic conger Gnathophis capensis (Kaup, 1856), following Smith (1990). In the Atlantic, the species is also reported off Madeira and the Canary Islands (Rucabado et al., 1978). G. mystax is well­known throughout the Mediterranean Sea and the Black Sea (Rucabado et al., 1978; Bauchot & Saldanha, 1986). The species has been reported as rather common off the northern Tunisian coast (Bradai et al., 2004) and rare southwardly, where Bradai (2000) recorded 2 speci­mens measuring 335 mm and 448 mm in total length, respectively. G. mystax is a benthic species inhabiting muddy and sandy bottoms, dwelling at depths between 80 and 800 m (Bauchot & Saldanha, 1986). Little is known about the biology of G. mystax; Bauchot & Saldanha (1986) noted that spawning occurred in warm season, August to October in the Mediterranean Sea, with the egg av­eraging 2.5.3.0 mm in diameter, and probably referred to Blache (1977) when adding that leptocephali are characterized by long larval life, 12 months in tropical Atlantic. On the other hand, three papers focused on the diet and feeding habits of G. mystax specimens from the coast of Spain (Rucabado et al., 1978; Casadevall & Matallanas, 1990) and the Tyrrhenian Sea (Carpentieri et al., 2007). The capture of specimens in northern Tunisian wa­ters has allowed us to con.rm the occurrence of the species in this area, as well as presenting herein some data about its morphometry, reproductive biology, diet and feeding habits. Such data constitute a .rst step to expanding the knowledge about the species in this area and to improving, if nothing else, its ecological role in it, as was the case with the Mediterranean moray eel Muraena helena Linnaeus, 1758 (Sallami et al., 2014). MATERIALS AND METHODS A total of 48 blacktail conger, Gnathophis mystax, were obtained between January 2010 and December 2011 at the .sh markets of Zarzouna near Bizerte in northern Tunisia, and Kelibia, in the northern Cape Bon. All the specimens had been captured off the northern and north­eastern Tunisian coasts, including the Gulf of Tunis (Fig. 1). According to the information provided by experienced .shermen who are well­acquainted with the local .shing grounds, they were caught by commer­cial .shing vessels using trawl over sandy/muddy bot­toms and longlines on rocky bottoms, at depths ranging from 50 to 200 m. All fresh specimens were measured in situ for total length (TL) to the nearest millimetre, and each specimen was weighed for total body weight (TBW) to the nearest gram. The specimens were then delivered to the laboratory, and the morphometric meas­urements recorded there in each specimen are plotted in Figure 2; relationships between total length and each measurement are expressed in logarithmic co­ordinates. We studied two meristic counts: vertebral number and number of pores in linea lateralis. In order to clearly ex­pose the vertebral column, we kept the specimens in warm water prior to removing their .esh; following Bau­chot & Saldanha (1986), we counted the numbers of ab­dominal vertebrae, caudal vertebrae and total vertebrae, and with special regard to linea lateralis we counted the pre­pectoral and pre­anal pores. Once removed, the gonads, the liver, and the stom­ach contents were weighed to the nearest decigram. Additionally, the stomach contents were sorted out and identi.ed to the lowest taxonomic level (or species level, where possible) using taxonomic keys and .eld guides (Perrier, 1964, 1975; Riedl, 1991; Louisy, 2002; Quéro et al., 2003). Prey items were counted and weighed to the nearest decigram, after surface water had been blot­ted off them with tissue paper. Whenever the prey recov­ered from the stomach was incomplete, its count was based on the number of different typical parts, such as beaks for cephalopods, claws and legs for various crus­ Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 taceans, carapaces for decapod crabs, shell and foot for bivalves, operculum and shell for gastropods, and a whole vertebral column and otoliths for teleost species. Unidenti.ed prey was preserved in 10% buffered forma­lin to be examined later by specialists. The sample was evaluated for normality by means of the Shapiro­Wilk’s test (W), with P< 0.05. The chi­square (.2) test was used to determine signi.cance (P< 0.05). The relation between total length (TL) and total body weight (TBW) was used as a complement to feeding studies fol­lowing Froese et al. (2011). Linear regression was expressed in decimal logarithmic coordinates and correlations were assessed by least­squares regression. Comparison of means was carried out by ANOVA. These two latter tests were performed via STAT VIEW 5.0 logistic model. The analyses of food composition and feeding habits of G. mystax were studied by using indices suggested by Hureau (1970), Hyslop (1980) and Rosecchi & Nouaze (1985­86), such as: •  vacuity index, VI = (number of empty stomachs / total number of stomachs) × 100, •  mean number of preys per stomachs, MN = to­tal number of prey ingested / total number of full stomachs, •  percentage of numerical abundance, %N = (num­ber of prey items i/ total number of preys) × 100, •  weight percentage, %W = (weight of prey i/ total weight of all prey items) × 100, •  frequency of occurrence percentage, %F = (num­ber of stomachs containing prey items i / total number of full stomachs) × 100. The main food items were identi.ed using the index of relative importance (IRI) of Pinkas et al. (1971), as modi.ed by Hacunda (1981): IRI =%F × (%N + %W) This index was expressed as: IRI %IRI = .IRI × 100 All the indices listed above contributed to a better understanding of the importance of individual prey items in the feeding habits of the .sh species under study. The trophic level for any consumer species iis: G TROPH = 1 + DC................ × TROPH........ ........-1 where TROPHj is the fractional trophic level of prey j, DCij represents the fraction of jin the diet of i and G is the total number of prey species (Pauly et al., 1998; Pauly & Christensen, 2000; Pauly & Palomares, 2000). The TROPH and standard errors (SE) of G. mystax in the study area were calculated using TrophLab (Pauly et al., 2000), a stand­alone Microsoft Access routine for estimat­ing trophic levels, downloadable from FishBase (Froese & Pauly, 2014). Statistical differences (P< 0.05) in the basic diet composition as a function of size and season were es­tablished by applying a .2 test (Sokal & Rohlf, 1987). Hepatosomatic index (HSI), gonadosomatic index (GSI) and condition factor (K) were calculated as: LM HSI = TBW × 100 GM GSI = TBW ×100 TBW K= TL3 × 100 with TL = total length, LM = liver mass, GM = gonad mass, and TBW = total body weight. Variations in HSI and GSI related to size were considered in all catego­ries of specimens. Tests for signi.cance (P < 0.05) were performed by using ANOVA and a .2 test, with special regard to variations in HSI and GSI related to size. RESULTS Sample description The distribution of the sampled Gnathophis mystax is presented in Figure 2 (Shapiro­Wilk test, W= 0.98; P < 0.001); that allows us to state that the studied sample came from a normally distributed population. Of the 48 specimens collected, 31 were females and signi.cantly outnumbered the males (.2 = 19, df = 1, P < 0.05). The smallest specimen measured 170 mm in total length and weighed 8.3 g, whereas the largest specimen measured 363 mm and weighed 61.4 g. Morphological measurements and meristic counts The specimens of G. mystax were identi. ed as fol­lows: snake­like body, scaleless, rounded in anterior half, rather compressed behind anus, snout prominent, point­ed and slender, eye large and oval, interorbital space nar­row, mouth moderately large, labial . ange narrow on up­per lip, broader on lower lip, anterior nostril opening in a . exible tube at snout near to premaxillary teeth, poste­rior nostril a horizontal slit with a slightly crenulate edge, opening before and near eye. Colour brownish, rather darker dorsally, belly lighter, posterior edges of dorsal and anal . ns blackish, distal end of caudal . n black. Three G. mystax are preserved in the Ichthyological Collection of the Faculté des Sciences of Tunis and the Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 Faculté des Sciences of Bizerte and registered under the following catalogue numbers: FSB­Gna­mys 01, FST­Gna­mys 02 and FST­Gna­mys 03, respectively; some Fig. 3: Measurements recorded in G. mystax: (A) 1 - to- measurements (Fig. 3) were carried out on these three tal length, 2 - Pre-anal length; (B) 3 - Pre-dorsal length, specimens and summarized in Table 1. 4 - Pre-pectoral length, 5 - Pectoral length. Additionally, the relationships between total length Sl. 3: Meritve, opravljene na primerkih dolgonosih ugor­ (TL) and some measurements such as pre­dorsal length jev: (A) 1 - celotna dolžina, 2 - dolžina do zadnjične pla­ (Pre Dors length), pre­anal length (Pre Anal length), pec­ vuti; (B) 3 - razdalja do hrbtne plavuti, 4 - razdalja do toral length (Pect length) and pre­pectoral length (Pre prsne plavuti, 5 - razdalja do trebušne plavuti. Tab. 1: Morphometric measurements, meristic counts and weights carried out in three specimens of Gnathophis mystax caught off the northern Tunisian coast. Tab. 1: Morfometrične meritve, meristika in masa pri treh primerkih dolgonosega ugorja, ujetih v severnotunizijskih vodah Specimen FST­Gna­mys 01 FST­Gna­mys 02 FST­Gna­mys 03 Measurements mm %TL mm %TL mm %TL Total length (TL) 248 100 309 100 370 100 Pre anal length 92 37.23 117 37.86 140 37.83 Pre dorsal length 46 18.00 56 18.14 68 18.37 Pre pectoral length 39 16.73 48 15.60 63 17.02 Pectoral length 12 4.36 15 4.85 20 5.13 Counts Abdominal vertebrae 43 43 43 Caudal vertebrae 89 91 91 Total vertebrae 132 134 134 Pre pectoral pores 5 5 6 Pre anal pores 32 32 32 Weights (g) Total body weight 16.8 31.3 70.7 Eviscerated body weight 15.2 27.5 65.2 Liver weight 0.2 0.4 1.3 Gonad weight 0.2 0.3 1.1 Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 Fig. 4: Relationship expressed in logarithmic co-ordinates: total length (TL) vs. (A) Pre-anal length, (B) Pre-dorsal length, (C) Pre-pectoral length, (D) Pectoral length, for the studied sample of G. mystax. Sl. 4: Premosorazmerni odnosi med logaritemsko izraženimi parametri, in sicer celotna dolžina (TL) proti (A) razdalji do zadnjične plavuti, (B) razdalji do hrbtne plavuti, (C) razdalji do prsne plavuti in (D) dolžini prsne plavuti pri vzorcu dolgonosih ugorjev. Pect length) are plotted in Figure 4, as follows: (A)  log Pre Anal length = 1.01 × log TL ­ 0.436 (r = 0.97, P< 0.001) (B)  log Pre Dors length = 1.07 × log TL ­ 0.90 (r = 0.97, P< 0.001) (C)  log Pre Pect length = 1.024 × log TL ­ 0.856 (r = 0.90, P< 0.01) (D)  log Pect length = 1.14 × log TL ­ 1.66 (r = 0.81, P< 0.001) Vertebral counts were carried out in 39 specimens: the number of abdominal vertebrae ranged between 38 and 44, with 43 as the modal value and a mean of 41.90 ± 1.41; they were outnumbered by caudal vertebrae, which ranged between 88 and 98, with 90 as the modal value and a mean of 90.55 ± 12.20. The total number of vertebrae ranged between 130 and 142, with 133 and 134 as the modal values and a mean of 131.02 ± 16.5. The results are similar to those recorded in the Mediter­ranean (Tab. 2). Pores were counted in 48 specimens; 5 pre­pectoral pores were recorded in 32 specimens, and 6 in 16 specimens, and were outnumbered by pre­anal pores, which ranged between 30 and 33, with 33 as the modal value and a mean of 32.10 ± 1.13. Biological observations The relationship between total length and the hepato­somatic index (HSI) is plotted in Figure 5, and it appears  Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 Tab. 2: Number of vertebrae counted in G. mystax caught off the northern Tunisian coast, compared to those re­corded in the Mediterranean. Tab. 2: Število preštetih vretenc v raziskanem vzorcu s severnotunizijske obale v primerjavi s podatki iz Sredozemlja Number of vertebrae Area Authors Abdominal Caudal Total 43­47 ­ 134­141 Mediterranean Sea Bauchot & Saldanha (1986) 43­47 91­94 134­141 Mediterranean Sea Aboussouan (1994) 38­44 88­98 134­141 Tunisian coast This study that HSI values increase with size. The highest values were recorded in the largest specimens and were signi. ­cantly different (t­test = 13.41, df = 47, P < 0.01), similar observations were recorded between TL and the gonado­somatic index, GSI (Fig. 6), and between TL and condi­tion, K (Fig. 7), with t­test = 7.37, df = 47, P < 0.05 for the former, and t­test = 67.71, df = 47, P < 0.05 for the latter. Additionally, the relationship between TL and total body weight (TBW) was: log TBW = 3.09 × log TL ­5.88 (r = 0.96, n = 48) (Fig. 8). Diet Of the 48 stomach examined for contents, 29 were empty, and the assessed vacuity index (VI) was relatively high, reaching 60.41 %. 19 items in all were found in the stomach contents. They were already partially di­gested, therefore the species­level identi. cation was dif­.cult; nevertheless, remains of crustaceans and osteich­thyans were observed (Tab. 3). Crustaceans were the preferential prey with %IRI = 98.85, osteichthyans were secondary with %IRI = 1.14. Additionally, crustaceans constituted the most impor­tant prey items in term of abundance (%N = 89.47), fre­quency of occurrence (%F = 89.47) and biomass (%W = 92.64). The TROPH value calculated for G. mystax was 3.51 ± 0.6. DISCUSSION The morphology, morphometric measurements, meristic counts and colour of all available Gnathophis mystax found in northern Tunisian waters were in to­tal agreement with Albuquerque (1954­1956), Saldanha (1967), Bauchot & Saldanha (1986), Aboussouan (1994), Louisy (2002) and Quéro et al. (2003). Such records con.rm the occurrence of the species in the study area. Also, some measurements, such as pre­dorsal length, pre­anal length, pectoral length and pre­pectoral length, are correlated with size; b values, however, were < 3, displaying negative allometries. Since the species lives burrowed into muddy bottoms, it is less prone to long­distance migrations, its snake­like morphology allows it to move covered by mucous around its habitat, and the use of .ns is not fundamental. G. mystax inhabits deep marine areas (Bauchot & Saldanha, 1986; Casadevall & Matallanas, 1990), as are those close to the shore of the northern Tunisian coast (Castany, 1955; Ben Mustapha, 1966). The Gulf of Gabes in the south, on the other hand, is a very shallow basin with an underwater depth of less than 50 m extending as far as 110 km off the coast, and the 200 m isobath runs at a distance of 250­400 km away from the coast (Seurat, 1934; Ben Othman, 1971). Such ecological parameters could explain why G. mystax is more frequently caught off the northern Tunisian coast (Bradai et al., 2004). Ad­ditionally, according to the information given by Tunisian . shermen, the species is discarded at sea due to its low commercial value and thus rarely found in local . shery landing sites or . sh markets, as con. rmed by the sample studied in the present paper, which only comprised 48 specimens. For the time being, the species is not consid­ered as threatened and, following Papaconstantinou et al. (2011), is probably still present in all the areas where it has been previously recorded, including Tunisian waters. Tab. 3: Diet composition for total sample of G. mystax caught off the northern Tunisian coast. Legend: %N - per­centage by number, %W - percentage by weight, %F - percentage by occurrence, %IRI - index of relative impor­tance. Tab. 3: Sestava prehrane dolgonosih ugorjev, ujetih ob severnotunizijski obali. Legenda: %N - delež števila prim­erkov plena, %W - delež mase, %F - frekvenca pojavljanja, %IRI - indeks relativne pomembnosti plena. Prey items %N %W %F %IRI Crustaceans 89.47 92.64 89.47 98.85 Osteichthyans 10.52 7.35 10.52 1.14 Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 The values of HSI, GSI and K of G. mystax increased with size; the well­correlated growths suggest that the species had suf. cient food available in its life area to develop (Froese et al., 2011). Additionally, a larger liver  Fig. 7: Total length (TL) vs. condition factor (K) for the studied sample of G. mystax. Sl. 7: Odnos med celotno dolžino (TL) in indeksom kondicije (K) pri dolgonosih ugorjih may allow both males and females to maximize gonadal production, as shown by the concomitant increase of GSI values in larger specimens. The high values of K and the positive allometry calculated from the total length vs. to­ Fig. 8: Relationship between total length (TL) and total body weight (TBW) expressed in logarithmic co-ordi­nates for the studied sample of G. mystax. Sl. 8: Odnos med celotno dolžino (TL) in celokupno maso (TBW) (izražen v logaritemskih vrednostih) pri dolgonosih ugorjih Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 tal body weight relationship could con. rm such pattern. Conversely, VI displayed a high value in total ac­cordance with Casadevall & Matallanas (1990), which could be accounted for by the manner of sampling, by the type of biological environment, by the fact that the preys were unavailable in both bottom and in the water column, and .shing methods cannot be ruled out either. All the specimens sampled off the northern Tunisian coast were caught by trawling and generally spent quite some time in the nets before being landed; the prey they had consumed had thus been completely digested and their stomachs were found empty when analysed. This hypothesis was corroborated by the unidenti.able re­mains of digested prey items found inside the stomachs. Two zoological groups were recorded in the stomach contents, crustaceans and osteichthyans, con.rming ob­servations of previous studies carried out in other marine areas. However, Rucabado et al. (1978), Casadevall & Matallanas (1990) and Carpentieri et al. (2007) discov­ered other preys, such as annelids, bivalves, cephalo­pods and echinoderms, probably because their sample was larger than ours; furthermore, ontogenic changes are probably related to the biological environment and therefore prey availability. The TROPH value of the sampled G. mystax was 3.51 ±0.6, close to that estimated by Stergiou & Kar­pouzi (2002), which ranged between 3.42 and 3.62. It follows that G. mystax is a carnivorous species playing a major role in the regulation of marine ecosystems; it is a top predator just like the elasmobranch species and many marine mammals with a TROPH ranging between 3.10 and 4.74 (Cortés , 1999) and 3.20 and 4.50 (Pauly et al., 1998), respectively. G. mystax exploits similar resources as other high­level marine consumers of the area, but since it dwells at greater depths, the pressure of competition for food is probably avoided, especially since its closely related species of conger eel (Conger conger), which forages the same prey items, inhabits shallow coastal waters with a rocky bottom and a depth ranging from 0 to 100 m (Bauchot & Saldanha, 1986). OPAZOVANJA DOLGONOSEGA UGORJA GNATHOPHIS MYSTAX (OSTEICHTHYES: CONGRIDAE) OB TUNIZIJSKI OBALI (OSREDNJE SREDOZEMLJE) Balkis SALLAMI & Mohamed BEN SALEM Laboratoire de recherche de Biodiversité, Biotechnologies et Changements climatiques, Faculté des Sciences de Tunis, Campus universitaire, 2090 El Manar II. Tunis, Tunisia Sihem RAFRAFI­NOUIRA, Olfa EL KAMEL­MOUTALIBI Laboratoire d’Hydrobiologie Littorale et Limnique, Université de Carthage, Faculté des Sciences, Zarzouna, 7021 Bizerte, Tunisia Christian REYNAUD Centre d’Ecologie Fonctionnelle et Evolutive – CNRS UMR 5175, 1919 route de Mende, 34293 Montpellier cedex 5, France Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 5, France e­mail: capape@univ­montp2.fr POVZETEK Avtorji poročajo o nekaterih morfoloških vidikih, morfometričnih in merističnih meritvah ter barvnem vzorcu razpoložljivih primerkov dolgonosega ugorja (Gnathophis mystax) v severnotunizijskih vodah. Nekatere meritve, kot npr. razdalja do hrbtne plavuti, razdalja do zadnjične plavuti, razdalja do prsne plavuti in razdalja do trebušne plavuti, so povezane z velikostjo, vendar kaže vrednost b < 3 na negativno alometrično rast. Avtorji so ugotovili pre­mosorazmerno korelacijo med hepatosomatičnim indeksom (HIS) in celotno dolžino telesa. Podobno povezanost so ugotovili med gonadosomatičnim indeksom (GSI) in dolžino telesa ter kondicijskim indeksom (K). Pregledali so tudi 48 želodcev, od katerih je bilo 29 praznih. V želodcih so našli 19 različnih skupin plena, ki pa je bil že delno prebavljen. Ključne besede: Gnathophis mystax, morfologija, meristika, hepatosomatični indeks, gonadosomatični indeks, prehrana Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 REFERENCES Aboussouan, A. (1994): Intéret des formules verté­brales pour l’identi.cation des poisons de la mer Médi­terranée. Cybium, 18, 177­197. Albuquerque, R. M. (1954­1956): Peixes de Portugal e Ilhas Adjacentes (Chaves para a sua determinaçao). Port. Acta Biol. B, 5, 1­1164. Bauchot, M.­L. & L. Saldanha (1986): Congridae (in­cluding Heterocongridae). In: Whitehead, P. J. P., M.­L. Bauchot, J.­C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the north­eastern Atlantic and the Mediterra­nean. Vol. II. UNESCO, Paris, pp. 567­574. Ben Mustapha, A. (1966): Présentation d’une carte de peche pour les côtes nord de la Tunisie. Bull. Inst. Natl. Sci. Tech. Oceanogr. Peche Salammbô, 1 (1), 21­ 36. Ben Othman, S. (1971): Observations hydrologiques, dragages et chalutages dans le sud­est tunisien. Bull. Inst. Natl. Sci. Tech. Oceanogr. Peche Salammbô, 2 (2), 103­120. Blache, J. (1977): Leptocéphales des poissons an­guilliformes dans la zone sud du golfe de Guinée. Faune Tropicale, 20, 1­381. Blache, J. & M.­L. Bauchot (1972): Contribution a la connaissance des Poissons Anguilliformes de la côte occidentale d’Afrique. 13eme note: les genres Verma, Apterichthus, lchthyapus, Hemerorhinus, Caecula, Dalophis avec la description de deux genres nouveaux (Fam. des Ophichthidae). Bull. Inst. fond. Afr. noire A, 34 (3), 692­773. Bradai, M. N. (2000): Diversité du peuplement ichtyque et contribution a la connaissance des sparidés du golfe de Gabes. Ph. D. Thesis. University of Sfax, Tunisia, 600 p. Bradai, M. N., J. P. Quignard, A. Bouain, O. Jarboui, A. Ouannes­Ghorbel, L. Ben Abdallah, J. Zaouali & S. Ben Salem (2004): Ichtyofaune autochtone et exotique des côtes tunisiennes: recensement et biogéographie. Cybium, 28 (4), 315­328. Carpentieri, P., F. Colloca & G. Ardizzone (2007): Rhythms of feeding activity and food consumption of two Mediterranean burrowing .shes: Gnathophis mys­tax (Delaroche) and Chlopsis bicolor Ra.nesque. Mar. Ecol., 28, 487­495. Casadevall, M. & J. Matallanas (1990): Feeding hab­its of Gnathophis mystax (Delaroche, 1809), (Anguil­liformes, Congridae) in the western Mediterranean. J. Fish. Biol., 37, 827­829. Castany, G. (1955): Le haut bassin Siculo­ Tunisien, étude de morphologie et de géologie sous marine. Bull. Inst. Natl. Sci. Tech. Oceanogr. Peche Salammbô, 52, 3­17. Cortés, E. (1999): Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci., 56, 707­ 717. Froese, R., A. C. Tsikliras & K. I. Stergiou (2011): Editorial note on weight­length relations of .shes. Acta Ichthyol. Piscat., 41, 261­263. Froese, R. & D. Pauly (2014): FishBase. [version 06/2014] http://www..shbase.org Hacunda, J. S. (1981): Trophic relationships among demersal .shes in coastal area of the Golf of Main. Fish. Bull., 79, 775­788. Hureau, J. (1970): Biologie comparée de quelques poissons antarctiques (Notothenudae). Bull. Inst. Océ­anogr, Monaco, 68 (1391),1­244. Hyslop, E. J. (1980): Stomach contents analysis: a review of methods and their application. J. Fish Biol., 17, 411­429. Louisy, P. (2002): Guide d’identi.cation des pois­sons marins. Europe et Méditerranée. Eds. Eugene Ul­mer, Paris, 430 p. Papaconstantinou, C., E. Massuti, A. Palmeri & Ç. Keskin (2011): Gnathophis mystax. The IUCN Red List of Threatened Species (ver. 2014.3). www.iucnredlist. org (accessed on 4 May 2015) Pauly, D. & V. Christensen (2000): Trophic levels of .shes. In: Froese, R. & D. Pauly (eds.): Fish Base: Con­cepts, Design and Data Sources. ICLARM, Manila, Phil­ippines, pp. 181. Pauly, D. & M. L. Palomares (2000): Approaches for dealing with three sources of bias when studying the .shing down marine food web phenomenon. In: Briand, F. (ed.): Fishing down the Mediterranean food webs? CIESM Workshop Series, no 12, pp. 61­66. Pauly, D., A. Trites, E. Capuli & V. Christensen (1998): Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci., 55, 467­481. Pauly, D., R. Froese, P. Sa­a, M. L. Palomares, V. Christensen & J. Rius (2000): TrophLab Manual. ICLARM, Manila, Philippines. Perrier, R. (1964): La faune de la France illustrée. 1B. Vers et némathelminthes. Delagrave, Paris, 179 p. Perrier, R. (1975): La faune de la France illustrée. II. Arachnides et crustacés. Delagrave, Paris, 220 p. Pinkas, L., M. S. Oliphant & I. L. K. Iverson (1971): Food habits of albacore, blue­.n tuna, and bonito in California waters. Fish Bull., 152, 1­105. Quéro, J. C., P. Porché & J. J. Vayne (2003): Guide des poissons de l’Atlantique européen. Les Guides du naturaliste. Delachaux & Niestlé, Lonay (Switzerland)­Paris, 465 p. Riedl, R. (1991): Fauna e .ora del Mediterraneo. Franco Muzzio Editore, Padova, 777 p. Rosecchi, E. & Y. Nouaze (1985­86): Comparaison de cinq indices alimentaires utilisés dans l’analyse des contenus stomacaux. Rev. Trav. Inst. Pech. Marit., 49 (3­4), 111­123. Rucabado, J., D. Lloris & J. Carrillo (1978): Nuevas perspectivas sobre la sobre la distribución y hábitat de Gnathophis mystax (Delaroche, 1809), Anguilliformes, Congridae. Res. Exp. Cient. B/O Cornide., 7, 145­154. Balkis SALLAMI et al.: OBSERVATIONS ON THE THINLIP CONGER GNATHOPHIS MYSTAX ..., 131–140 Saldanha, L. (1967): Un poisson anguilliforme (Con­gridae) nouveau pour la faune du Portugal: Gnathophis mystax (Delaroche, 1809). Arq. Mus. Bocage 2eme Sér., 1, 425­442. Sallami, B., M. Ben Salem, C. Reynaud & C. Capapé (2014): Diet of Mediterranean moray Muraena helena (Actinopterygii: Anguilliformes: Muraenidae) from the northeastern Tunisian coast (central Mediterranean). Acta Ichthyol. Piscat., 44 (4), 273­283. Seurat, L. G. (1934): Formations littorales et es­tuaires de la Syrte Mineure (Golfe de Gabes). Bull. Stn. Océanogr. Salammbô, 32, 1­65. Smith, D. G. (1990): Congridae. In: Quéro, J. C., J. C.Hureau, C. Karrer, A. Post & L. Saldanha (eds.): Check­list of the .shes of the eastern tropical Atlantic (CLOFE­TA). JNICT, Lisbon, SEI, Paris and UNESCO, Paris, Vol. 1, pp. 156­167. Sokal, R. R. & F. J. Rohlf (1987): Biometry. Freeman, San Francisco (CA), 859 p. Stergiou, K. I. & V. S. Karpouzi (2002): Feeding hab­its and trophic levels of Mediterranean .sh. Rev. Fish Biol. Fish. 11, 217254. Short scienti.c article UDC 597.535:591.9(262.32) Received: 2015­12­02 RECENT RECORD OF THE SERPENT EEL OPHISURUS SERPENS (PISCES: OPHICHTHIDAE) IN THE GULF OF TRIESTE (NORTHERN ADRIATIC SEA) Nicola BETTOSO ARPA FVG, via A. La Marmora 13, 34139 Trieste, Italy Giovanni COMISSO Riserva Naturale Regionale “Valle Canal Novo”, via delle Valli 2, 33050 Marano Lagunare (UD), Italy ABSTRACT On 19th November 2015 one specimen of serpent eel Ophisurus serpens (Linnaeus, 1758) (Ophichthidae) was caught by .shermen in the Gulf of Trieste. This species could be considered as exceptionally rare in the northernmost area of the Adriatic Sea, because it was recorded only once in the last hundred years. Keywords: serpent eel, Ophisurus serpens, Gulf of Trieste, northern Adriatic Sea. RECENTE SEGNALAZIONE DEL PESCE SERPENTE OPHISURUS SERPENS (OPHICHTHIDAE) NEL GOLFO DI TRIESTE (ALTO ADRIATICO) SINTESI Il 19 novembre 2015 un esemplare di pesce serpente Ophisurus serpens (Linnaeus, 1758) (Ophichthidae) e stato catturato dai pescatori nel Golfo di Trieste. Questa specie puo essere considerata eccezionalmente rara nell’area piu settentrionale del Mare Adriatico, in quanto e stata segnalata solamente una volta nell’arco di un secolo. Parole chiave:pesce serpente, Ophisurus serpens, Golfo di Trieste, Alto Adriatico Nicola BETTOSO & Giovanni COMISSO: RECENT RECORD OF THE SERPENT EEL OPHISURUS SERPENS (PISCES: OPHICHTHIDAE) IN ..., 141–144 INTRODUCTION The serpent eel Ophisurus serpens (Linnaeus, 1758) (family Ophichthidae) is a marine, brackish, reef­associ­ated and benthic species living from shallow waters to depths of 300 m (Bauchot, 1986). The serpent eel buries its body and exposes only the head in sandy or mud­dy bottoms, feeding mainly on benthic invertebrates and .sh (Bauchot, 1986; Froese & Pauly, 2015). It is a cosmopolitan species, widely distributed in the Atlan­tic Ocean (northern coast of Iberian peninsula to South Africa, and also Madeira) and the Indo­Paci.c Ocean (southern Mozambique to South Africa; north to Japan, south to Australasia) (Bauchot, 1986). In the Mediterranean Sea, O. serpens has been re­ported from Greece, western Aegean Sea (Stergiou et al., 1997); the Tuscan and Latium coasts of Italy (Biagi et al., 2002); the Alboran Sea (Abad et al., 2007); the Ligurian Sea (Relini et al., 2007); the Tunis Southern Lagoon (Ben Amor et al., 2009); and the northwestern Ionian Sea (Maiorano et al., 2010). Moreover, Borges et al. (2003) recorded 6 specimens of O. serpens from the Algarve coast (southern Portugal), near the Gibraltar Strait. This species is very rare in the Adriatic Sea, where it lives between 30 and 400 m depth on sandy and san­dy­muddy bottom (Jardas, 1996). The last record was dated to 2005, when 18 specimens were caught in the eastern central Adriatic (Dulčić et al., 2005). After Perugia (1866), who reported on this species in the harbor of Trieste in 1866, the present paper rep­resents the most recent record of this species for the Gulf of Trieste, the northernmost area of the Adriatic Sea. MATERIAL AND METHODS One specimen of Ophisurus serpens was caught on 19th November 2015, using a hydraulic dredge for the harvesting of the bivalve Ensis minor (Chenu, 1843). The .shermen photographed the specimen by a mobile phone (Fig. 1) and subsequently released it alive. O. ser­pens can be easily distinguished from all other Mediter­ranean snake eels by its very long snout, its slender and elongate jaws that are incapable of closing completely in adults, the presence of temporal, post­orbital and in­terorbital pores, and the absence of a caudal .n with a hard caudal tip (McCosker, 1977; Smith & McCosker, 2008). These characteristics, in particular the presence of pores, were immediately observed by .shermen on board, thus con.rming the species identi.cation of the specimen. RESULTS AND DISCUSSION The capture site of Ophisurus serpens was located in front of Sant’Andrea Island (Fig. 2) at a depth of approx­imately 3 m, on sandy bottom. Due to the release of the specimen, it was not possible to get the main morpho­metric data. We can only estimate a total length of about 50 cm from Fig. 1, because the expanded polystyrene box used for .sh packaging is 50 cm in length. McCoster & Castle (1986) reported that maximum length for this species is 250 cm (as total length TL), whereas Jardas (1996) noted a maximum TL of 240 cm, although usual TL in catch ranged between 50 and 150 cm. The serpent eel could be considered as a relatively rare species in the Adriatic Sea, but .shing gear for pro­viding target species must be taken into account when considering their rarity (Dulčić et al., 2005). Most of Fig. 2: Records of O. serpens in the Adriatic Sea: 0 pres­ent record in the Gulf of Trieste, . record of Perugia (1866) in the harbour of Trieste. Data in the eastern Adriatic are also presented. See Dulčić et al. (2005 ) for the details of localities. Sl. 2: Podatki o pojavljanju zobate jegulje v Jadranskem morju: 0 novi podatek za Tržaški zaliv, . podatek o na­jdbi, ki jo navaja Perugia (1866) v tržaškem pristanišču. Označeni so tudi podatki o pojavljanju zobate jegulje v vzhodnem Jadranu. Podatke o natančnih lokalitetah navajajo Dulčić s sodelavci (2005). Nicola BETTOSO & Giovanni COMISSO: RECENT RECORD OF THE SERPENT EEL OPHISURUS SERPENS (PISCES: OPHICHTHIDAE) IN ..., 141–144 the .shing gear could be inappropriate to catch a spe­cies living buried with only its head exposed. In fact all catches in the eastern Adriatic were done only by long line (Dulčić et al., 2005). The present specimen was caught by an hydraulic dredge able to eject water under pressure (1.2–2.5 bar), easing the advancement of the gear and the harvesting of buried species (Romanelli et al., 2009), such as in the case of O. serpens. The present record is the .rst of.cial for the northern sector of the Adriatic Sea after the historical record of Perugia (1866), who reported on a specimen caught in the harbor of Tri­este and deposited in the museum ­“Civico Museo Fer­dinando Massimiliano” in Trieste. Following the de.ni­tions for degrees of rarity suggested by Morović (1973), this species could be considered as exceptionally rare in the Gulf of Trieste, because this .sh was recorded only once in the last hundred years (Bello et al., 2014). In addition, the present record represents the northern­most one for the Mediterranean, and the most recent for this basin are those of Ula. & Akiol (2015) and F.l.z et al. (2015) in the Turkish waters of the Aegean Sea. This record of O. serpens in the Gulf of Trieste con.rms the precious collaboration with .shermen, who are daily involved in the marine environment, and often are the .rst to meet rare and/or alien species, especially .sh and crabs. Without their contribution a lot of occurrences would have passed unnoticed (Azzurro et al., 2013). AKNOWLEDGEMENT We wish to thank .shermen Luciano Lian, Gianpiet­ro Corso and Tiziano Ghenda from Marano Lagunare, Dr. Alessandro D’Aietti for technical assistance and Dr. Alessandro Acquavita for valuable suggestions. NOV ZAPIS O POJAVLJANJU ZOBATE JEGULJE OPHISURUS SERPENS (PISCES: OPHICHTHIDAE) V TRŽAŠKEM ZALIVU (SEVERNI JADRAN) Nicola BETTOSO ARPA FVG, via A. La Marmora 13, 34139 Trieste, Italy Giovanni COMISSO Riserva Naturale Regionale “Valle Canal Novo”, via delle Valli 2, 33050 Marano Lagunare (UD), Italy POVZETEK Devetnajstega novembra 2015 so ribiči v Tržaškem zalivu ujeli primerek zobate jegulje Ophisurus serpens (Linna­eus, 1758) (Ophichthidae). Ta vrsta je v najsevernejšemu delu Jadrana izjemno redka, saj je bila pred tem v zadnjih sto letih samo enkrat ulovljena. Ključne besede: zobata jegulja, Ophisurus serpens, Tržaški zaliv, severni Jadran. Nicola BETTOSO & Giovanni COMISSO: RECENT RECORD OF THE SERPENT EEL OPHISURUS SERPENS (PISCES: OPHICHTHIDAE) IN ..., 141–144 REFERENCES Abad, E., I. Preciado, A. Serrano & J. Baro (2007): Demersal and epibenthic assemblages of trawlable grounds in the northern Alboran Sea (western Mediter­ranean). Sci. Mar., 7, 513­524. Azzurro, E., E. Broglio, F. Maynou & M. Bariche (2013): Citizen science detects the undetected: the case of Abudefdus saxatilis from the Mediterranean Sea. Manag. Biol. Invasion., 4 (2), 167­170. Bauchot, M. L. (1986): Ophichthidae (including Echelidae). In: Whitehead, P. J. P., M. L. Bauchot, J. C. Hureau, J. Nielsen & E. Tortonese (eds.): Fish of the north­eastern Atlantic and the Mediterranean, Vol. 2. Unesco, Paris, pp. 583­584. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposed best practice approach to overcome unveri­.ed and unveri.able “.rst records” in ichthyology. Cy­bium, 38 (1), 9­14. Ben Amor, M.M., J. Ben Souissi, M. Ben Salem & C. Capapé (2009): Con.rmed occurrence of the longjaw snake eel, Ophisurus serpens (Osteichthyes: Ophichthi­dae) in Tunisian waters (Central Mediterranean). Panam. J. Aquat. Sci., 4, 251­254. Biagi, F., P. Sartor, G. D. Ardizzone, P. Belcari, A. Bel­luscio & F.Serena (2002): Analysis of demersal assem­blages off the Tuscany and Latium coasts (north­western Mediterranean). Sci. Mar., 66, 233­242. Borges, T. C., S. Olim & K. Erzini (2003): Weight­length relationships for .sh species discarded in com­mercial .sheries of the Algarve (southern Portugal). J. Appl. Ichthyol., 19, 394­396. Dulčić, J., S. Matić­Skoko & M. Kraljević (2005): New record of serpent eel Ophisurus serpens (Linnaeus, 1758) (Ophichthidae) in the Adriatic waters with a re­view of recent Adriatic records. Annales, Ser. Hist. Nat., 15 (2), 181­184. F.l.z, H., C. Ate., S. Yapici & S. Agdamar (2015): Fill­ing the gap: .rst con.rmed record for the Ophisurus ser­pens (Anguilliformes: Ophichthidae) from the Anatolian coast of the South Aegean Sea. Mar. Biodiver. Rec., 8, e63. Froese, R. & D. Pauly (2015): Fishbase World Wide Web electronic publication. http://www..shbase.org (18.12.2015). Jardas, I. (1996): Adriatic ichthyofauna. Školska kn­jiga, Zagreb, 533 p. Maiorano, P., L. Sion, R. Carlucci, F. Capezzuto, A. Giove, G. Costantino, M. Panza, G. D’Onghia & A. Tursi (2010): The demersal fauna assemblage of the north­western Ionian Sea (central Mediterranean): cur­rent knowledge and perspectives. Chem. Ecol., 26, 219­ 240. McCosker, J. E. (1977): The osteology, classi.cation, and relationships of the eel family Ophichthidae. Proc. Calif. Acad. Sci., 41, 1­123. McCosker, J. E. & P. H. J. Castle (1986): Ophichthi­dae. In: Smith, M. M. & P. C. Heemstra (eds.): Smiths’ sea .shes. Springer­Verlag, Berlin, pp. 176­186. Morović, D. (1973): Rijetke ribe u Jadranu. Pomorski zbornik, 11, 367­383. Perugia, A. (1866): Catalogo dei pesci dell’Adriatico. Civ. Museo. Ferd. Mass. Ed., Trieste, 21 pp. Relini, G., M. Relini, G. Palandri, S. Merello & E. Beccornia (2007): History, ecology and trends for arti.­cial reefs of the Ligurian Sea, Italy. Hydrobiologia, 580, 193­217. Romanelli, M., C. A. Cordisco & O. Giovanardi (2009): The long­term decline of the Chamelea gallina L. (Bivalvia: Veneridae) clam .shery in the Adriatic Sea: is a synthesis possible? Acta Adriat., 50 (2), 171­205. Smith, D.G. & J. E. McCosker (2008): Family Ophichthidae. In: Gomon, M. F., Bray D. J. & R. H. Kuit­er (eds.): Fishes of Australia’s Southern Coast. Reed New Holland, Sydney, pp. 166­169. Stergiou, K. I., C. Y. Politou, E. D. Christou & G. Pe­trakis (1997): Selectivity experiments in the NE Mediter­ranean: the effect of trawl codend mesh size on species diversity and discards. ICES J. Mar. Sci., 54, 96­102. Ula., A. & O. Akiol (2015): Occurrence of the ser­pent eel, Ophisurus serpens (Linnaeus, 1758) (Osteich­thyes: Ophichthidae), close to the Bay of Izmir (Aegean Sea, Turkey). Turk. J. Zool., 39, 191­193. Short scienti.c article UDC 597.551.2:591.9(282.249.1) Received: 2015­12­01 ADDITIONAL RECORD OF COMMON BREAM ABRAMIS BRAMA (CYPRINIDAE) IN THE ADRIATIC DRAINAGE SYSTEM (NORIN RIVER, CROATIA) Jakov DULČIĆ & Pero TUTMAN Institute of Oceanography and Fisheries, POB 500, HR­21000 Split, Croatia E­mail: dulcic@izor.hr ABSTRACT On 14 March 2015 an adult specimen of common bream Abramis brama was caught with .sh trap in Norin River (right bank tributary of the Neretva River, Adriatic drainage system, near settlement Vid, Croatia). This represents the second record of this species for the Adriatic drainage system in Croatia. Key words:Cyprinidae, Abramis brama, Adriatic drainage system, Croatia NUOVE SEGNALAZIONI DELL’ABRAMIDE COMUNE ABRAMIS BRAMA (CYPRINIDAE) NEL SISTEMA DI DRENAGGIO ADRIATICO (FIUME NORIN, CROAZIA) SINTESI Il 14 marzo 2015 un esemplare adulto dell’abramide comune (Abramis brama) e stato catturato con una nassa nel .ume Norin (af.uente della riva destra del .ume Neretva, sistema di drenaggio dell’Adriatico, vicino al villaggio di Vid, in Croazia). Questa cattura rappresenta la seconda segnalazione della specie nel sistema di drenaggio adria­tico in Croazia. Parole chiave:Cyprinidae, Abramis brama, sistema di drenaggio dell’Adriatico, Croazia Jakov DULČIĆ & Pero TUTMAN: ADDITIONAL RECORD OF COMMON BREAM ABRAMIS BRAMA (CYPRINIDAE) IN THE ADRIATIC DRAINAGE ..., 145–148 INTRODUCTION The common bream, Abramis brama (Linnaeus, 1758) (Cyprinidae), inhabits most European draina­ges from Adour (France) to Pechora (White Sea ba­sin); Aegean Sea basin, in Lake Volvi and Struma and Maritza drainages (Kottelat & Freyhof, 2007). It is not native to Iberian Peninsula, Adriatic basin, Italy, Scot­land, and Scandinavia north of Bergen (Norway) and 67 °N (Finland). It is locally introduced in Ireland, Spain, north­eastern Italy, from Marmara basin (Turkey) and eastward to Aral basin, in Lake Baikal and upper Ob and Yenisei drainages (Kottelat & Freyhof, 2007). In Croatia, this species is found only in the waters of the Black Sea drainage system (Glamuzina et al., 2013). MATERIAL AND METHODS On 14 March 2015 an adult specimen (Fig. 1) of common bream was caught with .sh trap in Norin River (right bank tributary of the Neretva River, Adriatic dra­inage system, near settlement Vid, Croatia) (43.081644 °N, 17.629486 °E). This represents the second record of this species for the Adriatic drainage system in Croatia. RESULTS AND DISCUSSION The .rst record of the common bream for the Adria­tic drainage system (Mala Neretva River, wider area of Neretva River estuary, Croatia) was on 17 April 2010 (male, total length = 43.8 cm, weight = 1047 g) (Bartu­lović et al., 2010). One question could arise after this additional record in the wider area of Neretva River estuary: “Has this spe­cies established a population?” Although there is still no evidence of a permanent population in the study area (not enough available reports con.rmed on a scienti­.c basis), the capture described here might be an indi­cation of that since some .shermen have signalled the species in some parts of Neretva river delta during 2015 (Dugandžić, pers. comm.). The only possible explanati­on for such record is a not suf.ciently controlled intro­duction (in this case of a non­native species). The common bream has been introduced to the Ne­retva River and now represents a potential threat to the natural equilibrium of their community. This species may develop stunted high density populations becoming locally abundant, with potential negative consequen­ces both within and beyond the local .sh community due to competition for food resources or hybridization (Bartulović et al., 2010). Furthermore, common bream often has a pronounced migratory behaviour and may consequently perform considerable distances to lakes within a river system (Volta et al, 2013). Successful non­­native species are often characterized by high physio­logical tolerance and functional characteristics different from those of the members of invaded communities and have been reported to affect the functional diversity of communities with possible strong impacts on food webs and ecosystem functioning (see Bartulović et al., 2010). These features make the common bream a potentially effective and highly undesirable invader of southern Eu­ropean waters (see Volta et al, 2013). It is quite clear that non­native species can have signi.cant effects on the composition of entire com­munities by displacement of local species with similar trophic level, by altering the behaviour or habitat selec­tion of prey, resulting in a signi.cant disturbance of the local communities interactions (Cucherousset & Olden, 2011). However, at this point it is not known to what Fig. 1: (Left) Abramis brama caught in Norin River (Croatian coast, Adriatic drainage system); (right) male, with nuptial tubercles on the head. (Photo: B. Markota) Sl. 1: Ploščič(Abramis brama), ujet v reki Norin (hrvaška obala, jadransko povodje) (levo); samec, dobro vidni pa­ritveni grebenčki na glavi (desno). (Foto: B. Markota) Jakov DULČIĆ & Pero TUTMAN: ADDITIONAL RECORD OF COMMON BREAM ABRAMIS BRAMA (CYPRINIDAE) IN THE ADRIATIC DRAINAGE ..., 145–148 extent the occurrence of the common bream in the Ne­retva watershed is related to environmental quality and to natural biodiversity. Therefore it is evident that un­derstanding on all aspects of the invasion process, from introduction to the establishment, spread and impacts is still required. Prevention measures should be taken by the admini­stration to avoid the spreading of this species to other re­servoirs and river basins. Eradication of introduced .sh is practically impossible in large freshwater ecosystems, so prevention of further introductions and translocations is of primary concern. ACKNOWLEDEGEMENT We thank Mr. Branko Markota (Vid, Croatia) for pro­viding photos and data on specimen of the common bream. NOVI PODATEK O POJAVLJANJU PLOŠČIČA (ABRAMIS BRAMA, CYPRINIDAE) V JADRANSKEM POVODJU (REKA NORIN, HRVAŠKA) Jakov DULČIĆ & Pero TUTMAN Institute of Oceanography and Fisheries, POB 500, HR­21000 Split, Croatia E­mail: dulcic@izor.hr POVZETEK 14. marca 2015 je bil v ribiško mrežo ujet odrasel primerek ploščiča (Abramis brama) v reki Norin (jadransko povodje, desni pritok reke Neretve pri naselju Vid, Hrvaška). Gre za drugi primer pojavljanja te vrste v jadranskem povodju na Hr vaškem. Ključne besede: Cyprinidae, Abramis brama, jadransko povodje, Hrvaška Jakov DULČIĆ & Pero TUTMAN: ADDITIONAL RECORD OF COMMON BREAM ABRAMIS BRAMA (CYPRINIDAE) IN THE ADRIATIC DRAINAGE ..., 145–148 REFERENCES Bartulović, V., J. Dulčić, I. Bogut, J. Pavličević, E. Hasković & B. Glamuzina (2010): First record of the freshwater bream, Abramis brama in the river Mala Ne­retva, Adriatic drainage system of Croatia. Cybium, 35 (2), 165­166. Cucheroussert, J. & J. D. Olden (2011): Ecological impacts of non­native freshwater .shes. Fisheries, 36, 215­230. Glamuzina, B., J. Pavličević, P. Tutman, L. Glamuzi­na, I. Bogut & J. Dulčić (2013): Ribe Neretve. Udruga CEAV ­ Centar za zaštitu i promicanje endemskih i au­ tohtonih ribljih vrsta, Mostar, Republika Bosna i Herce­govina, Mostar /Metković, Modrozelena ­Zadruga bra­nitelja, Metković, 261 str. Kottelat, M. & J. Frejhof (2007): Handbook of Eu­ropean Freshwater Fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany, 646 p. Volta, P., E. Jeppesen, B. Leoni, B. Campi, P. Sala, L. Garibaldi, L. Lauridsen Torben & I. F. Win.eld (2013): Recent invasion by a non­native cyprinid (common bream Abramis brama) is followed by major changes in the ecological quality of a shallow lake in southern Eu­rope. Biol. Invasions, 15 (9), 2065­2079. FAVNA FAUNA FAUNA Original scienti.c article UDC 595.76:591.9(497.5Cres) Received: 2015­11­02 CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA Toni KOREN Croatian Herpetological Society–Hyla, I. Lipovac 7, 10000 Zagreb, Croatia E­mail: koren.toni1@gmail.com Domen TRKOV National Institute of Biology, Marine Biology Station Piran, SI­6330 Piran, Fornače 41, Slovenia ABSTRACT The .rst recent overview of the Scarabaeoidea of the Croatian island of Cres is presented. The material for this su­rvey was collected during several .eld trips organized between 2011 and 2014. A total of 44 species were recorded, 21 of which represent .rst records for the area. With the records of 10 additional species found in the literature, the number of species known to occur on Cr es is 54. Key words: dung beetles, diversity, Osmoderma eremita, Lucanus cer vus CONTRIBUTO ALLA CONOSCENZA DELLA FAUNA DEGLI SCARABAEOIDEA (COLEOPTERA) SULL‘ISOLA DI CHERSO, CROAZIA SINTESI L’articolo presenta una prima panoramica recente della fauna degli Scarabaeoidea sull’isola croata di Cherso. Per l’indagine il materiale e stato raccolto nel corso di diversi lavori sul campo organizzati tra il 2011 e il 2014. In totale sono state trovate 44 specie, di cui 21 sono state registrate per la prima volta in quest’area. Durante l’analisi della letteratura disponibile sul tema, gli autori hanno trovato le segnalazioni di 10 altre specie, pertanto il numero totale di specie confermate per l’isola di Cherso e al momento pari a 54. Parole chiave: scarabei stercorari, diversita, Osmoderma eremita, Lucanus cer vus Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 INTRODUCTION The Scarabaeoidea (formerly known as Lamellicor­nia) is a superfamily of beetles belonging to the suborder Polyphaga. This diverse superfamily consists of more than 35 000 species described to date, distributed in all continents except Antarctica. The Scarabaeoidea can be easily recognized by the presence of clubbed antennae, the apical segments of which are in the form of lamellae of variable size (Ballerio et al., 2010). A large part of this superfamily consists of dung bee­tles. Traditionally, dung beetles are de.ned as coproph­agous members of the Coleopteran families Aphodiidae, Scarabaeidae and Geotrupidae (Halffter & Matthews, 1966). Most species consume dung as a primary source of food and utilize it as a nesting resource, and as such, they are key providers of several ecological services such as waste removal, secondary seed dispersal and verte­brate parasite suppression (Mathison & Ditrich, 1999; Andresen & Feer, 2005; Horgan, 2005). Feeding on ver­tebrate dung makes dung beetles likely to be in.uenced by changes in mammal communities, e.g. the abandon­ment of pastures has a big in.uence on communities of dung beetles (Estrada et al., 1999). Furthermore, veteri­nary treatments have one of the most harmful effects on dung beetle communities that feed on dung, especially the anti­parasitic compounds in the faeces of domestic livestock. In particular, Ivermectin, a broad­spectrum veterinary drug, reduces species diversity and increases the dominance of certain species (Wall & Strong, 1987; Lumaret et al., 1993; Lumaret, 1994; Krüger & Scholtz, 1996). Because of their ecology, dung beetles are useful as bioindicators for investigating the anthropogenic im­pact on ecosystems (Halffter & Matthews, 1966; Halffter & Edmonds, 1982; Hanski & Cambefort, 1991). The beetle fauna of the Adriatic islands has been in­vestigated as early as the beginning of the 19th century; however, most records were collected sporadically, and unsystematically. The best source of information for all the Adriatic islands is probably the masterwork of Petar Novak (Novak, 1952, 1964) who compiled all available published and unpublished references and manuscripts till the middle of the 20th century, along with a great number of data from his entomological collection, and the collections of his contemporaries. More than 60 years since then, his book still remains the richest source of information for most of the Adriatic islands (Novak, 1952). In the last few decades, new data about island beetle fauna have been published for only a few islands: Kornati and Murter (Vujčić­Karlo et al., 1995) and Kor­nat, Lavsa and Žut (Koren et al., 2010). Here we present the results of the .rst recent survey of the superfamily Scarabaeoidea on the northern Adri­atic island of Cres. Our goal is to: (i) present the results of the recent survey of the area, (ii) create a checklist of the Scarabaeoidea of the area and (iii) discuss new records of interesting or rare species. Overall, the main goal is to contribute to the knowledge of the superfamily Scarabaeoidea of Croatia. MATERIAL AND METHODS Study area Cres is located in the northern part of the Adriatic Sea, and is the largest island in the Adriatic (405.70 km2) (Duplančić et al., 2004). It is about 66 km long and 12 km wide at the widest part. The island is in.uenced by both the Mediterranean and continental climate (Straži­čić, 1981). The northern part of Cres has a submediterra­nean climate, while the central and southern parts have the true Mediterranean climate, where hot, dry summers and wet winters prevail (Stražičić, 1981). Geologically, Cres represents the unsubmerged part of the Mt. Učka mountain range, which decreases in altitude from the northern to the southern part of the island. The highest peak on the island is Gorice (648 m a.s.l.). In the central part of Cres, there is a freshwater lake known as Vransko jezero, which is the biggest fre­shwater lake in the Adriatic archipelago. The main ge­ological basal rocks on the island consist of Cretaceous limestone and dolomites (Stražičić, 1981). As regards vegetation composition, Cres can be di­vided into three parts. The northern part is covered by mixed deciduous forests of Quercus pubescens, Car­pinus orientalis and Ostrya carpinifolia (Klepac et al., 1993). The largest forest on the island is named Tramun­tana and is located in the northern part of Cres, from the village of Križić to cape Jablanac (Stražičić, 1981). In the central part, only forest fragments remain, and the habitat includes mostly karst and stony pastures. The southern part of the island is covered by Eu­Mediterra­nean evergreen forests and karst grasslands and pastures (Stražičić, 1981). Forests are the most common habitat type and cover 38% of the island’s surface area. Pastures are grazed mostly by sheep, while horses and donkeys are also present on the island. Many large wild vertebra­te species are present on the island, including the wild boar (Sus scrofa), roe deer (Capreolus capreolus), fallow deer (Dama dama) and mu.ons (Ovis musimon), most of which have been introduced on the island. Scarabaeoidea survey This .eld work took place throughout the island, par­ticularly in the northern and central parts. We visited 16 sample sites between 2011 and 2014 (Fig. 1). Dung beetles were collected manually from vertebrate dung. Other scarabs were collected mostly unsystematically using hand and net collecting from .owers, trees, tree trunks and tree hollows. To collect additional species, pyramid light traps were used at several localities. Sca­rabaeid beetles that could not be identi.ed in the .e­ld were sacri.ced and later identi.ed at the laboratory Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 using standard identi.cation keys (Mikšić, 1958; Bara­ud, 1992 and Ballerio et al., 2010). All the collected beetles are stored in the private insect collections of the authors. The nomenclature follows Ballerio et al. (2010), while zoogeographic af.liation is according to Brelih et al. (2010). Additional data about the Scarabaeoidea fa­una of Cres was found in several papers (Müller, 1923; Novak, 1952, 1964; Pittino, 1991; Ranius et al., 2005; Harvey et al., 2011). RESULTS AND DISCUSSION During this survey we recorded a total of 44 species belonging to the superfamily Scarabaeoidea, of which 31 species belong to dung beetles (Scarabaeidae: Aphodi­inae, Scarabaeinae and Geotrupidae). With the records of additional species found in the literature, the known number of species is 54 (Tab. 2). Most recorded species have a Turanic­European (8), Palearctic (7) or Asian­Eu­ropean (6) distribution. As many as 22 recorded species have some kind of Mediterranean distribution patterns  (e.g. strictly Mediterranean, east Mediterranean etc.). The recorded number of species represents about 25% of the known members of the superfamily Scarabae­oidea known from Croatia (Mikšić, 1970). With this in mind, more species records are to be expected, but with no complete overview of the Scarabaeoidea of the Adri­atic islands, it is impossible to guess how many species on average inhabit each island. How poorly Cres was surveyed in the past is revealed by the fact that 21 spe­cies recorded during this survey represent .rst records for the island. What is necessary to emphasize is that during this survey we concentrated mostly on the dung beetle fauna and all other species were collected only occasionally and unsystematically; and this is visible in the results as some of the common species (e.g. Amphi­mallon solstitiale (Linnaeus, 1758)) were not recorded during this study. However, we found that the inclusion of additional records from the family Scarabaeoidea would be bene.cial, and give a more comprehensive picture about the beetle fauna of the island. With only limited literature data about the Scarabaeoidea of Cres (Müller, 1923) any meaningful comparison with the his­torical data is not plausible. For some species, this area represents their northern distribution border, and they are accordingly rarer (e.g. Bubas bison (Linnaeus, 1767), Scarabaeus (Scarabaeus) typhon (Fischer von Wald­heim, 1823). One such species, S. typhon, was recorded only once during this survey, and the record was based on a dead individual. This is one of the largest species of the genus Scarabaeus in Croatia. It is primarily coproph­agous, but occasionally also necrophagous (Ballerio et al., 2010). Adults are active from early spring to autumn. We searched for this species in the same locality several times, at different vegetation seasons but we were un­successful. In Croatia, it is distributed from the southern part of Istria, across the Adriatic islands to the southern­most parts of Dalmatia (Mikšić, 1970). Based on our experience, this species is presently very local and rare in Croatia, but can also be relatively common in some localities (e.g. the surroundings of river Zrmanja or on the island of Pag). For any meaningful conclusions, the current knowledge about the distribution of the genus Scarabaeus in Croatia needs updating, as many species records are based on a very small number of observa­tions (see Mikšić, 1958, 1970), most of which are not con.rmed. Based on our results, it appears that the dung beetle fauna of Cres is very diverse. The major food source for the scarab beetles on the island is sheep dung. Since sheep dung is usually very small in surface area, it is greatly in. uenced by high temperatures. As a result, sheep dung dries rapidly. This prevents most of the dung beetles from feeding on sheep dung. This is most obvious during the summer months (June­August), when we visited many lo­cations, but were unable to . nd any dung beetles due to the fact that all the excrements were dry. As a result, in summer months we were able to collect at only three of more than ten visited locations. And since sheep are the  Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 Tab. 1: List of surveyed localities. Tab. 1: Seznam vzorčenih lokalitet. No. Locality Habitat Dung type Dates of .ndings Lat. (N) Long. (E) 1. Porozine harbour xerotermophilous slopes and forest edge / 21.5.2011 45.132588 14.288063 2. Beli, Tramuntana forest grassland surrounded by mixed forest, with occasional bushes sheep 17.4.2011, 21.4.2011, 15.6.2011, 7.7.2011, 14.4.2012, 17.4.2013, 30.8.2013, 3.10.2013, 21.11.2013 45.112663 14.334926 3. Beli village surroundings rocky pasture with bushes sheep 17.4.2011, 19.4.2011, 15.6.2011, 14.4.2012 45.111634 14.354582 4. Filozići village stony karst grassland with small patches of trees sheep 19.3.2014 45.105544 14.292301 5. Dragozetići village karstic pasture sheep 19.3.2014 45.098815 14.312048 6. Sv. Petar village forest path with small grassland clearings sheep 21.5.2011 45.092853 14.348487 7. Predošćica village karst grassland sheep 9.5.2012 45.074421 14.306250 8. Road to Beli, near the clifs rocky pasture with bushes sheep 21.11.2013 45.060790 14.363079 9. Merag, 1,5 km SW of the harbour karstic pasture sheep, horse 17.4.2013, 11.5.2013 44.969600 14.435610 10. Cres city surroundings olive grows with grassy undergrowth sheep 21.5.2011, 19.3.2014 44.962874 14.404268 11. Loznati, 200 m E of the village rocky karstic pasture sheep 11.5.2013, 19.3.2014 44.925439 14.436275 12. Zbišina, 1 km N of the village karstic pasture sheep 20.6.2013 44.875213 14.407711 13. Hrasta village karstic pasture sheep 19.3.2014 44.814127 14.419507 14. Belej village surroundings karstic pasture sheep 20.3.2014 44.784898 14.426039 15. Ustrine village karstic pasture sheep 20.3.2014 44.750044 14.414820 16. Osor, near the village dry karstic pasture, bushy vegetation donkey 20.3.2014 44.694649 14.400351 main source of dung on the island, this could present a problem for the survival of dung beetles. In the past, other livestock such as cows, donkeys and horses were more common on Cres, as well as on other Adriatic islands, but are now rapidly disappearing. The only exceptions are the islands offering signi.cant tourism services, where such animals are still kept for meat or cheese production. Also, on some islands, hors­es are becoming more common, again because of tour­ism. These practices may indeed conserve dung beetle populations on the Adriatic islands, but for the popula­tions on some of the smaller islands (e.g. Šćedro, Čiovo) the livestock has almost completely disappeared. On the other hand, the situation on the island of Cres there is even more interesting, due to the several large herbi­vores that were introduced to the island (mentioned in the introduction). These species, along with the present livestock, should allow for the survival of dung beetles on the islands. Negative practices that are becoming common in Dalmatia (e.g. destruction of entire karst pastures and grasslands and converting them into arable land or vine­yards) were not observed on Cres. Apart from the dung beetles, two other interesting members of the Scarabaeoidea superfamily were recor­ded during this survey; both were previously recorded for the island (Ranius et al., 2005; Polak, 2006; Harvey et al., 2011). These two species are of a particular in­ Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 Tab. 2: Species recorded on the island of Cres (* Species recorded in the area for the .rst time; **Numbers of lo­calities correspond to those given in Tab. 1.). Tab. 2: Zabeležene vrste na otoku Cres (* prvič zabeležene vrste na raziskanem območju; ** število lokalitet us­treza številom v Tab. 1.). No. List of species Locality numbers** Literature records Biogeography GEOTRUPIDAE Latreille, 1802 1. Anoplotrupes stercor osus (Scriba, 1791)* 2, 14 / European­Siberian 2. Geotrupes (Geotrupes) mutator (Marsham, 1802) / Müller (1923), Novak (1952) Turanic­European 3. Geotrupes (Geotrupes) puncticollis Malinowsky 1811 2, 11 Novak (1964) Turanic­European 4. Jekelius (Jekelius)brullei (Jekel, 1866) 2, 4, 5, 14 Müller (1923), Novak (1952) Mediterranean 5. Trypocopris (Trypocopris) vernalis (Linnaeus, 1758)* 2, 3, 4, 5, 11 / European species SCARABAEIDAE Latreille, 1802 SCARABAEINAE Latreille, 1802 6. Bubas bison (Linnaeus, 1767) / Müller (1923), Novak (1952) West Mediterranean 7. Caccobius schreberi (Linnaeus, 1758) 2 Müller (1923), Novak (1952) Turanic­European­Mediterranean 8. Copris lunaris(Linnaeus, 1758) 11 Müller (1923), Novak (1952) Asian­European 9. Euonthophagus amyntas (Olivier, 1789) 10, 11 Müller (1923), Novak (1952) Asian­European 10. Euoniticellus fulvus (Goeze, 1777)* 2, 4, 5, 6, 12, 14 / Palearctic 11. Gymnopleurus geoffroyi (Fuessly, 1775)* 11 / European­Mediterranean 12. Onthophagus coenobit a (Herbst, 1783) 2, 9, 10, 11 Müller (1923), Novak (1952) Turanic­European 13. Onthophagus fracticornis (Preyssler, 1790) 2, 3, 4, 5, 9, 10, 11, 12, 15 Müller (1923), Novak (1952) Siberian­Turanic­European 14. Onthophagus grossepunctatus Reitter, 1905* 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16 / Southern and central European 15. Onthophagus lemur (Fabricius, 1781) 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16 Müller (1923), Novak (1952) Turanic­European 16. Onthophagus ru.capillus Brullé, 1832* 6 / Turanic­European 17. Onthophagus verticicornis (Laicharting, 1781)* 2, 6, 7, 9, 11 / Turanic­European 18. Onthophagus medius Kugelan 1792* 10, 11, 13, 14 / Asian­European 19. Onthophagus furcatus (Fabricius, 1781) 2, 7, 9 ,11 Müller (1923), Novak (1952) Turanic­European­Mediterranean 20. Onthophagus taurus (Schreber, 1759)* 2, 3, 8, 11, 12 / Palearctic 21. Scarabaeus variolosus Fabricius, 1787 6, 9 Müller (1923), Novak (1952) Mediterranean Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 22. Scarabaeus (Scarabaeus) typhon (Fischer von Waldheim, 1823)* 6 / Asian­southern European 23. Sisyphus schaefferi (Linnaeus, 1758) 2, 6 Müller (1923), Novak (1952) Turanic­European­Mediterranean APHODIINAE Leach, 1815 24. Acrossus luridus(Fabricius, 1775) 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16 Müller (1923), Novak (1952) Palearctic 25. Amidorus thermicola (Sturm, 1800)* 2, 5, 13, 15 / Turanic­European 26. Aphodius .metarius (s.l.) 2, 9, 10 Müller (1923), Novak (1952) Subcosmopolitan 27. Calamosternus granarius (Linnaeus, 1767) / Müller (1923), Novak (1952) Palearctic 28. Chilothorax paykulli (Bedel, 1907)* 2, 5, 8, 11 / European­Mediterranean 29. Colobopterus erraticus(Linnaeus, 1758) 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16 Müller (1923), Novak (1952) Asian­European­Mediterranean 30. Esymus merdarius (Fabricius, 1775) / Müller (1923), Novak (1952) Central Asian­European­Mediterranean 31. Eudolus quadriguttatus (Herbst, 1783)* 2, 3, 7, 11 / Palearctic 32. Melinopterus consputus (Creutzer, 1799)* 2 / Turanic­European­Mediterranean 33. Melinopterus prodromus (Brahm, 1790) 2, 3, 9, 11, 12 Müller (1923), Novak (1952) Asian­European­Mediterranean 34. Nimbus johnsoni (Baraud, 1976)* 2, 5 / South European 35. Volinus sticticus (Panzer, 1798)* 2 / Turanic­European 36. Oxyomus sylvestris (Scopoli, 1763) / Müller (1923), Novak (1952) Turanic­European­Mediterranean DYNASTINAE MacLeay, 1819 37. Pentodon bidens(Pallas, 1771) 2 Müller (1923), Novak (1952) Asian­European­Mediterranean 38. Oryctes nasicornis (Linnaeus 1758)* 2 / Palearctic CETONIINAE Leach, 1815 39. Tropinota hirta(Poda, 1761)* 1 ­ 16 / Asian­European­Mediterranean 40. Oxythyrea funesta (Poda, 1761) 1 ­ 16 Müller (1923), Novak (1952) European­Mediterranean 41. Cetonia aurata(Linnaeus, 1761) 1 ­ 16 Müller (1923), Novak (1952) Asian­European 42. Valgus hemipterus (Linnaeus, 1758)* 2 / Palearctic 43. Protaetia angustata (Germar, 1817) 1, 11 Müller (1923), Novak (1952) Mediterranean 44. Protaetia cuprea(Fabricius, 1775) 2, 3 Müller (1923), Novak (1952) Asian­European 45. Osmoderma eremita (Scopoli, 1763) 2 Ranius et al. (2005); Polak (2006) European MELOLONTHINAE Leach in Samouelle, 1819 46. Holochelus fraxinicola (Hope, 1825) / Müller (1923), Novak (1952) Eastern­European­Mediterranean 47. Amphimallon solstitiale (Linnaeus, 1758)  / Müller (1923), Novak (1952) Asian­European 48. Haplidia transversa (Fabricius, 1801) 2 Müller (1923), Novak (1952) Eastern Mediterranean RUTELINAE MacLeay, 1819 49. Anisoplia .avipennis (Brullé, 1832) / Müller (1923), Novak (1952) Eastern European 50. Anisoplia monticola (Erichson, 1848) / Müller (1923), Novak (1952) Central­Mediterranean LUCANIDAE Latreille, 1804 51. Dorcus parallelipipedus (Linnaeus, 1785)* 2 / Turanic­European­Mediterranean 52. Lucanus cer vus(Linnaeus, 1758) 1, 2, 3 Harvey et al. (2011) Turanic­European TROGIDAE MacLeay, 1819 53. Trox litoralisPittino, 1991 / Pittino (1991) Eastern Mediterranean 54. Trox scaber(Linnaeus, 1767)* 2 / Subcosmopolitan terest as both are listed in the Annexes of the Habitat Directive; O. eremita is listed in both Annexes II and IV, while L. cer vus is listed in Annex IV (COUNCIL DI­RECTIVE 92/43/EEC). During this survey, we recorded L. cer vus in great numbers at dusk across the Tramuntana forest during the summer months of each year. Also, a large number of dead as well as live individuals were re­corded on tree barks and on the ground during the day. With many old trees, and an extensive forest area, the survival of this species is probably not threatened here. On the other hand, we recorded only a single adult spe­cimen of O. eremita in the same forest, but this is pro­bably due to lack of systematic surveying on our part. The larvae of this species use hollows in old trees. The Tramuntana forest is known for the large number of very old Quercus trees, and as such probably represents a suitable habitat for this species, which was also noted by Polak (2006) who recorded a large number of species in the forest. A more extensive survey of this species on the island is needed to access the current distribution, po­pulation structure and conservation status. Our record represents the second recent record of this species in Croatia (Koren et al., 2011). The island of Cres is still rich in diverse habitats. Tramuntana forest in the north represents an ideal ha­bitat for the development of saproxylic beetles such as O. eremita and L. cer vus. On the other hand, pastures scattered across the island represent suitable habitats for many dung beetle species. While this survey contribu­ted to the knowledge of dung beetles and other scarabs of the islands, the knowledge is far from complete and additional surveys are needed. Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 PRISPEVEK K POZNAVANJU FAVNE SCARABAEOIDEA (COLEOPTERA) OTOKA CRES, HRVAŠKA Toni KOREN Croatian Herpetological Society–Hyla, I. Lipovac 7, 10000 Zagreb, Croatia E­mail: koren.toni1@gmail.com Domen TRKOV National Institute of Biology, Marine Biology Station Piran, SI­6330 Piran, Fornače 41, Slovenia POVZETEK Predstavljamo prvi recentni pregled favne Scarabaeoidea hrvaškega otoka Cres. Material za raziskavo smo zbrali v času terenskega dela med letoma 2011 in 2014. Skupno smo zabeležili 44 vrst, od katerih jih je bilo 21 prvič za­beleženih za to območje. V literaturi najdemo podatke še za 10 vrst, ki pa jih v času raziskave nismo našli. Število znanih vrst za otok Cres se je tako dvignilo na 54. Ključne besede: koprofagni hrošči, pestrost, Osmoderma eremita, Lucanus cer vus Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 REFERENCES Andresen, E. & Feer, F. (2005): The role of dung beetles as secondary seed dispersers and their effect on plant regeneration in tropical rainforests. In: Forget, P.M., Lambert, J.E., Hulme, P.E. & Vander Wall, S.B (ed.): Seed Fate: Predation, Dispersal and Seedling Establish­ment. Oxon, CABI International, 331– 349. Ballerio, A., Rey, A., Uliana, M., Rastelli, M., Rastel­li, S., Romano, M. & Colacurcio, L. (2010): Coleotteri scarabeoidei d’italia. Tarantola. Brescia. [dvd] Baraud, J. (1992): Coléopteres Scarabaeoidea d’Eu­rope. Faune de France et Régions Limitrophes 78. Lyon, Fédération française des Sociétés de Sciences naturelles et Société linnéenne de Lyon. Brelih, S., Kajzer, A. & Pirnat, A. (2010): Gradivo za favno hroščev (Coleoptera) Slovenije 4. prispevek: Polyphaga: Scarabaeoidea (= Lamellicornia). Scopolia 70, 3­392. The Council Directive 92/43/EEC on the Conserva­tion of Natural Habitats and of Wild Fauna and Flora ­“The Habitat Directive”. Duplančić, L., Ujević, T. & Čala, M. (2004): Dul­jine obalne crte i površine otoka na hrvatskom dijelu Jadranskog mora određene s topografskih karata mjerila 1:25 000. Geoadria 9(1): 5–32. Estrada, A., Anzures, A. & Coates­Estrada, R. (1999): Tropical rain forest fragmentation, Howler Monkeys (Alouatta palliata) and Dung Beetles at Los Tuxtlas, Mex­ico. American Journal of Primatology 48, 253–262. Halffter, G. & Edmonds, W. D. (1982): The nesting behavior of dung beetles (Scarabaeinae): an ecological andevolutive approach. Mexico, Instituto de Ecologia. Halffter, G. & Matthews, E. G. (1966): The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomologica Mexi­cana, 12–14: 1–312. Hanski, I. & Cambefort, Y., (1991): Dung beetle ecol­ogy. New Jersey, Princeton university press, 350­365. Harvey, D.J., Gange, A.C., Hawes, C.J., & Rink, M. (2011): Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe. Insect Conservation and Diversity 4, 23–38. Horgan, F.G (2005): Effects of deforestation on diver­sity, biomass and function of dung beetles on the eastern slope of the Peruvian Andes. Forest Ecology and Man­agement 216, 117–133. Klepac, D., Pelcer, Z. & Lončar, B. (1993): Šume otoka Cresa i Lošinja, Otočki ljetopis Cres­Lošinj, Mali Lošinj – Rijeka: 77–90. Koren, T. Burić, I., Lauš, B., Rojko, I., Svoboda, P. & Šerić Jelaska, L. (2010): Carabidae, Cerambycidae and Scarabaeoidea (Insecta: Coleoptera) fauna of Kornat, Lavsa and Žut Islands, Croatia. Entomologia Croatica 14(3–4), 53–62. Koren, T., Rojko, I., & Lauš, B. (2011): Additions to the faunal list of scarabaeoid beetles (Insecta, Scarabae­oidea) of the river Zrmanja and its surroundings, Cro­atia. Annales, Series historia naturalis 21(2), 125–132. Krüger, K. & Scholtz, C. H. (1996): Lethal and sub­lethal effects of ivermectin on the dungbreeding bettles Euoniticellus intermedius (Reiche) and Onitis alexis Klug (Coleoptera, Scarabaeidae). Agriculture, Ecosystems, and Environment 61(2–3): 123–131. Lumaret, P. J. (1994): La Conservation de l’ento­mofaune dans les aires naturelles protégées. In Jimé­nez­Peydro, R. & Angeles Marcos­Garcia M. (ed.): En­vironmental Management and Arthropod Conservation. Valencia. Asociación espanola de Entomologia, 57–65. Lumaret, J.P., Galante, E., Lumbreras, C., Mena, J., Bertrand, M., Bernal, J.L., Cooper, J.F., Kadiri, N. & Crowe, D. (1993): Field effects of ivermectin residues on dung beetles. Journal of Applied Ecology 30, 428–436. Mathison, B. & Ditrich, O. (1999): The fate of Cryp­tosporidium parvum oocysts ingested by dung beetles and their possible role in the dissemination of crypto­sporidiosis. Journal of Parasitology 85, 678–681. Mikšić, R. (1958): Scarabaeidae Jugoslavije, I. Odjel­jenje Privredno­Tehničkih nauka, 2, Naučno Društvo NR Bosne i Hercegovina, Sarajevo, 1–150. Mikšić, R. (1970): Katalog der Lamellicornia Ju­goslawiens (Insecta­Coleoptera). Sarajevo, Institut za šumarstvo. Müller, J. (1923): Materiali per una Fauna Coleotte­rologica delle isole e gli scoglie dell’Adriatico. ­„Libur­nia”, Sezione di Fiume del Club Alpino Ital., 16: 3–10, 50–69. Novak, P. (1952): Kornjaši jadranskog primorja. Ju­goslavenska akademija znanosti i umjetnosti. Zagreb. Novak, P. (1964): Coleoptera of Dalmatia. Atti del Museo civico di storia naturale, 26(3): 53–132. Polak, S. (2006): Northern region of the Cres island ­Tramuntana, as the area of international importance for the protection of some beetle species (Coloptera). 2nd Scienti.c Symposium Prirodoslovna istraživanja ri­ječkog područja Natural History researches of the Rijeka region 14th – 17th June 2006 Rijeka, Croatia, 74. Pittino, R. (1991): On some Palaearctic “taxa” al­lied to Trox hispidus (Pontoppidan), with a brachypter­ous new species from Italy, Malta, Crete and the Balkan peninsula(Coleoptera, Trogidae) (XXXIV Contribution to the Knowledge of Coleoptera Scarabaeoidea). Bolletti­no Dell’ Associazione Romana Di Entomologia 45(1–4), 57–87. Ranius, T., Aguado, L.O., Antonsson, K., Audisio, P., Ballerio, A., Carpaneto, G.M., Chobot, K., Gjurašin, B., Hanssen, O., Hujibregts, H., Lakatos, F., Martin, O., Neculiseanu, Z., Nikitsky, N.B., Paill, W., Pirnat, A., Rizun, V., Ruicănescu, A., Stegner, J., Süda, I., Szwałko, P., Tamutis, V., Telnov, D., Tsinkevich, V., Versteirt, V., Vi­gnon, V., Vögeli, M. & Zach, P. (2005): Osmoderma ere­mita (Coleoptera, Scarabaeidae, Cetoniinae) in Europe. Animal Biodiversity and Conservation 28, 1–44. Toni KOREN & Domen TRKOV: CONTRIBUTION TO THE FAUNA OF SCARABAEOIDEA (COLEOPTERA) OF CRES ISLAND, CROATIA, 151–160 Stražičić, N. (1981): Otok Cres: prilog poznavanju Wall, R. & Strong, L. (1987): Environmental conse­ geogra.je naših otoka. Otočki ljetopis 4. M. Lošinj: SIZ quences of treating cattle with the antiparasitic drug Iv­ kulture Cres­Mali Lošinj. ermectin. Nature 327, 418–421. Vujčić­Karlo, S., P. Durbešić, B. Gjurašin & Krčmar, S. (1995): Istraženost kornjaša (Coleoptera) Kornatskog otočja i Murtera. Ekološka monogra.ja 7, 219–227. MISCELLANEA Original scienti.c article UDK 661.42:551.583.2(497.4Sečovlje)«1645/1715« Received: 2015­06­24 AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION AND IT’S PRICE IN THE SLOVENIAN ISTRIA (SEČOVLJE SALT­PANS) Dejan PALISKA SI­6280 Ankaran, Frenkova 3, Slovenia E­mail: dejan.paliska1@gmail.com Simon KERMA University of Primorska, Faculty of Tourism Studies – Turistica, SI­6320 Portorož, Obala 11a, Slovenia Rudi ČOP Zavod Terra Viva, SI­6333 Sečovlje, Sv. Peter 115, Slovenia Flavio BONIN Maritime museum “Sergej Mašera” Piran, SI­6330 Piran, Cankarjevo nabrežje 3, Slovenia ABSTRACT This paper investigates the harvest of sea salt in the former Pirano Commune from 1637 to 1744 under the rule of the Venetian Republic. The period from 1645 to 1715 coincides with the so called Maunder minimum when mini­mum solar activity was detected. As the indicator of solar activity the sunspot numbers were used. The paper reviews different historical climate records and presents the results of empirical analysis of possible relationship between solar activity during the Maunder minimum and salt production, as well as its price. The results imply a causal con­nection between solar activity and salt price series, but the problems with the unreliable and short time series and missing data compelled our research to use statistical methods that might produce inconsistent and spurious results. Key words: Maunder minimum, sunspot number, solar activity, climate in pre­instrumental period, salt production, Sečovlje salt­pans TENTATIVO DI DIMOSTRARE L’INFLUENZA DEL CLIMA DURANTE IL MINIMO DI MAUNDER SU PRODUZIONE E PREZZO DEL SALE NELL’ISTRIA SLOVENA (SALINE DI SICCIOLE) SINTESI L’articolo esamina la raccolta del sale marino nell’ex Comune di Pirano dal 1637 al 1744, sotto il dominio della Repubblica di Venezia. Il periodo 1645­1715 coincide con il cosiddetto minimo di Maunder, quando fu registrato il minimo dell’attivita solare. Il numero di macchie solari e stato usato quale indicatore dell’attivita solare. Diverse regi­strazioni climatiche storiche sono state esaminate e vengono presentati i risultati dell’analisi empirica della possibile relazione tra l’attivita solare durante il minimo di Maunder e la produzione ed il prezzo del sale. I risultati implicano un nesso causale tra l’attivita solare e la serie dei prezzi del sale, ma i problemi legati alle brevi e poco af.dabili serie storiche nonché i dati mancanti hanno portato gli autori all’uso di metodi statistici che potrebbero aver prodotto risultati inconsistenti e fuor vianti. Parole chiave: Minimo di Maunder, numero di macchie solari, attivita solare, clima nel periodo pre­strumentale, produzione del sale, saline di Sicciole Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 INTRODUCTION It is commonly known that salt production by so­lar evaporation of brine is highly dependent on the weather, mainly on solar irradiance (clouds), rainfall and wind. Rainfall during the salt harvesting season and extended winters, as well as lower summer temperatures can cut down the harvest of salt. In his model of solar brine evaporation, Akridge (2008) stresses the impor­tance of high sunlight duration and its intensity, and low relative humidity and rainfall in traditional salt making procedures. The aim of this article is to search for pos­sible connections between weather conditions during the Maunder minimum (hereafter referred to as the MM) and salt production in the Sečovlje salt­pans, as well as its price. During the time of the MM, the Slovenian Istria was part of the Venetian Republic. In the Venetian Re­public, salt was one of the most important trading goods and consequently the reason for numerous wars. As one of the state monopolies, salt production and trade were carefully monitored and its prices were strictly regulated by the Salt Magistracy (Magistrato al Sale). The Piran salt­pans were the largest North Adriatic salt­pans, and after 1460 probably the most important in the entire Venetian Republic (Bonin, 2001; Darovec, 2001). In 1636, the Salt Magistracy decided that the Piran Commune should harvest 5,200 modio yearly (1 modio = 801 kg). This quantity was the standard until 1749, when this limit was abolished. The Salt Magistracy also regulated the price of the harvested salt (Bonin, 2001). We would like to point to the fact that at the beginning of the MM salt price increased twice (1650, 1664) and remained high until the end of the MM when it de­creased. Such price .uctuation could suggest a connec­tion between salt price and low solar activity during the MM. The question arises as to whether it is possible that the Venetian Republic incorporated the natural cycles in the state policy, and how the MM in.uenced the salt harvesting in the Sečovlje salt­pans. In this paper we dis­cuss the possible relationship between salt production and sunspot number, and between sunspot number and salt price. Moreover, the speci.c focus is on describ­ing the weather conditions in the region during the MM, which might in.uence the salt production. Connection between solar activity – climate and between solar activity – agricultural economics The period from 1645 to 1715 coincides with the MM when minimum solar activity was detected. In his­tory, different indicators have been employed as meas­ures of solar activity. The basic indicator and also the most commonly used parameter is the number of sun­spots visible on the solar disk. During the MM, the num­ber of sunspots was the lowest recorded in history; the fact was .rst recognized by Spörer and later con.rmed by other authors (Spörer, 1887; Maunder, 1922; Eddy, 1976; Lean et al., 1995). With the modern era satellite observation, it has been established that the solar irra­diance variations are correlated with sunspot number ( Wilson & Hudson, 1988 , 1991; Frohlich, 2000; Lean, 2001). Many authors in the past showed a great interest in the reconstruction of the climate during the MM. Some studies rely on historical data (mostly annals, chronicles and historiographical records), while others use various proxies to re.ect variations in air and sea temperature. The majority of studies have shown that the MM deline­ates a period with an increase in climatic variability over Europe and the coldest period of Little Ice Age (P.ster, 1999; Wanner et al., 2000), with extremely cold winters (P.ster, 1994, 1999; Kington, 1995, 1997, 1999; Wan­ner et al., 1995; Koslowski & Glaser, 1999; Luterbacher, 2000; Luterbacher et al., 2000). The reduction of winter mean temperatures over wide areas of Europe is esti­mated to be of the order of 1–1.5 °C compared to pre­sent levels (P.ster, 1994, 1999; Xoplaki et al., 2001). Estimates of the reduction of solar irradiance are in the order of 0.2 to 0.4 % relative to present levels (Lean & Rind, 1998, 1999). Several studies reported that the climate during the MM in the eastern and western Mediterranean was gen­erally slightly wetter, colder, and highly variable with severe and more frequent droughts and .oods than in the previous century (Barriendos, 1997; Rodrigo et al., 2000; Xoplaki et al., 2001). Similar conclusions for the region of the Slovenian Istria can be drawn from the chronicles of severe weather and climate anomaly con­ditions, researched by Ogrin (1995). The period was not exceptional in all records context, except for the strong storms with hale and strong wind, which were more fre­quent during the MM. Ogrin (1995, 2005) also analysed the correlation between salt production in the Sečovlje salt­pans from 1926 to 1937 and from 1946 to 1959 and rainfall occurrence. He found strong inverse correlation (r > 0.71, P < 0.01) between rainfall occurrence (mm) during the salt harvesting season and salt production (kg/m2). In the past, many different authors analysed the cor­relation between the solar activity and the climate. How­ever, the reported results are contradictive, from strong negative to strong positive correlation, sometimes also no correlation at all was found, depending on the loca­tion, the time interval and the analysis technique (Tsiro­poula, 2003). The most commonly used meteorologi­cal parameters in Sun–weather correlation studies are temperature, rainfall and cloud cover, all very important in production of salt by brine evaporation. Several stud­ies point to the fact that solar activity has a good cor­relation with the Earth’s global climate and temperature (Eddy, 1977; Friis­Christensen & Lassen, 1991; Soon et al., 1996; Baliunas & Soon, 1996; White et al., 1997; Parker, 1999; Baker, 2000; Lean & Rind, 2001; Rozelot, 2001; Tsiropoula, 2003; Tan et al., 2004; Georgieva Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 et al., 2005; Haigh, 2007), and with the Earth’s cloud cover (Svensmark & Friis­Christensen, 1997; Svensmark, 1998; Marsh & Svensmark, 2000). One of the .rst papers that directly discuss the Sun ­climate correlation was published by Koppen (1914), who concluded that there is a negative correlation be­tween the 11­year solar cycle and Earth’s mean surface temperature. Similar results were later reported also by Labitzke & Van Loon (1988, 1992) who suggested a correlation between the 11­year solar cycle and a wide range of stratospheric parameters, and by Reid (1991) who found striking similarities between sea surface temperatures and sunspot number solar cycle. Different results were reported also for solar activity and rainfall association. Clayton (1923) determined that continen­tal middle latitude winter precipitations are negatively correlated with solar activity, while summer precipita­tions are positively correlated with it. Xanthakis (1973) reported a strong positive or negative correlation be­tween precipitation and the 11­year cycle depending on latitude and longitude bands. Different authors also report a moderate to strong correlation between solar activity and rainfall or the monsoon rainfall variability (Ananthakrishnan & Parthasarathy, 1984; Parthasarathy et al., 1993; Jain & Tripathy, 1997; Rodrigo et al. 2000; Hiremath & Mandi, 2004; Hiremath, 2006). The history of studying the possible in.uence of so­lar activity on the agricultural economics is rather long. In the past, researchers focused mostly on the in.uence of solar activity on wheat price (Jevons, 1884). Jevons (1884) studied the .uctuation of wheat prices over 140 years (1259­1400). He discovered a causal connection between the 11­year solar cycle and wheat price. Some more recent works (Pustilnik & Yom Din, 2004, 2009) have shown that a possible nonlinear causal connec­tions between solar activity and wheat prices may ex­ist, and that the in.uence is not homogenous, but varies with latitude (Pustilnik & Yom Din, 2009). According to the reviewed literature, we could draw a conclusion that variability in solar activity somehow in.uences temperature, Earth’s cloud cover and rainfall. Since salt production in traditional salt­pans is highly sensitive to weather conditions, especially summer rain­fall and low temperatures, we can speculate about pos­sible physical connection between sunspot number and salt production as well as its price during the period of the MM. MATERIAL AND METHODS The relevant data on salt production and its price was collected from original sources. The Piran Archive has been an important and reliable source of information regarding salt harvesting and salt price. The .rst record mentioning salt production is from 1637, while the re­corded data can be found until 1685 with the exception of years 1657, 1658, 1663 and 1672, which were not recorded. In 1685, after the salt clerk Giorgio Giraldio .nished his long career, the systematic record of these data also came to an end. During all this time, the salt workers of Piran were allowed to produce 5,200 modio per year or 26,000 modio every .ve years. If they did not produce the agreed quantity during a particular year, they were allowed to produce more in subsequent years to reach the agreed limit. During the period 1637 – 1646, the salt workers of Piran exceeded the agreed quantity by 3,453 modio. According to the data, they produced much less than agreed over the next three decades. Also in the decade 1730 – 1739, when they produced 42,497 modio of salt, they did not reach the allowed quantity of salt. The exceptionally bad harvests were in years 1649 (259 modio), 1650 (1,219 modio), 1652 (1,697 modio), 1675 (1,747 modio) and 1677 (1,530 modio). Not only the inclement weather conditions, but also the poor maintenance of the salt .elds and protective dykes were reported as reasons for the bad harvest. On September 21st 1675, the salt workers Domenico and Bernardino Caldana asked the Salt Magistracy for a loan of 500 duc­ats in order to improve the salt .elds. In their application they stated that salt seasons had been very poor, and that they also had low production of oil and wine. Despite overall bad decades for salt production during the MM, some exceptions were also recorded. The records of very good harvests can be found for years 1637 (10,078 modio), 1659 (10,155 modio), 1683 (10,522 modio) and 1685 (10,537 modio). In 1718 they produced as much as 12,000 modio. According to the economic policy of the Venetian Republic, the salt production was strictly regulated and the overproduction not allowed. To limit the production in good seasons, the authorities prohib­ited daily salt harvesting and limited the work to every second or third day and sometimes even to every fourth day. For example, at the beginning of the salt season in May 1707, the authorities issued a decision ordering the salt workers of Piran to harvest salt every third day. This measure was taken also to improve the quality of the salt. If the salt workers harvested the maximum quan­tity of salt allowed, they were forbidden to harvest any more from 20th August onward. If the warehouses were full and the salt workers harvested too much salt, they threw the surplus back into the sea. If the quantity of the salt produced was too small, the season was extended through September. During the 17th and 18th century, the size of the salt­pans remained unchanged. As mentioned before, at the beginning of the MM the salt price increased twice: in 1650 by 13.7 % and in 1664 by additional 10.6 %. The .nal salt price of 19 lire per modio was maintained during the remaining 50 years of the MM. In 1721, im­mediately after a larger number of sunspots emerged, the price of salt decreased by 25.3 % to 14.2 lire. The organized data series for salt harvesting and salt price from year 1637 to year 1744 was partially published in Bonin (2001). Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 Fig. 1: Time series of salt production, salt price, and average sunspot number (dash lines represent 11-year running average smoothed data). Sl. 1: Časovna vrsta pridelave soli, cene soli in povprečnega števila sončevih peg (črtkana črta prikazuje 11-letne drseče sredine) Several sources of historical records have been used for historical climatic reconstruction. In collect­ing and organizing the historical records from different sources, substantial work was done by Ogrin (1995). In his book, he published the most complete record of cli­mate related occurrences from the 7th to the 19th centu­ry for the Slovenia Istria, and updated previously pub­lished Braun’s chronicles of weather conditions (Braun, 1934) with new historical sources. The sources contain direct or indirect information about the weather or me­teorological phenomena. Most of the data he used are descriptive documentary data, in some cases describ­ing weather consequences (.ood, famine, and drought) rather than weather conditions. According to available information, he divided the weather conditions into six groups; hard winters, mild winters, drought in vegeta­tion period, wet vegetation period, strong storms with wind and hail, years of famine and shortage. Cammuffo (1987), who researched the freezing of the Venetian Lagoon in the past, points out to the fact that during the Venetian Republic i.e. until 1797 the new year be­gan after the March 1 and that this must be kept in mind when comparing Gregorian, Venetian and mod­ern climatological dating. This, in some cases, could cause one year .ctive difference between the events that occurred in the same year. Although we noticed some possible differences in dating of the same events studied in the course of this research, this problem is of secondary importance, since the data time series were smoothed for the analysis. In order to study the correlation between sunspot number, salt production and price and different climate occurrences during the MM, the annual average sunspot number time series for the period from 1610 to 1950 was obtained from the National Geophysical Data Cen­tre in Boulder USA (National Oceanic and Atmospheric Administration). Visual inspection of Figure 1 shows a possible corre­lation between the sunspot number series and salt price series and some indices of correlation between the sun­spot number series and salt production. Different statistical tools were used to detect the rela­tionship between different variables. For the analysis of a possible relationship between solar activity and histori­cal events of extreme weather, the data of sunspot num­ber and the data of extreme weather conditions were Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 Tab. 1: Correlation coef.cients (rpb) of relationship between average sunspot number (original data and 11-year running average) and historical events of extreme weather (1610-1850). Tab. 1: Korelacijski koe.cienti (rpb) med povprečnim številom sončevih peg (izvirnimi podatki in 11-letno vrsto drsečih sredin) in pojavnostjo ekstremnih vremenskih dogodkov Variable rpb Sig. (P) Occurrence during MM (event/year) Occurrence outside MM (event/ year) Fisher exact sig. (P) Hard winter ­0.087 0.874 0.11 0.15 0.541 Mild winter ­0.041 0.522 0.04 0.04 0.929 Wet vegetation period 0.092 0.148 0.06 0.02 0.093 Drought in vegetation period 0.024 0.703 0.04 0.11 0.102 Strong storms ­0.101 0.112 0.16 0.07 0.034* Correlation coef.cient for smoothed data Hard winter ­0.104 0.143 RESULTS AND DISCUSSION The overlapping period 1610­1850 of two time se­ries, average sunspot number and extreme weather con­ Mild winter ­0.072 0.161 Wet vegetation period ­0.136 0.008* Drought in vegetation period 0.072 0.163 Strong storms ­0.192 0.000* *coef.cients are statistically signi. cant at 0.05 levels used. Weather conditions reported as hard winter, mild winter, drought in vegetation period, wet vegetation pe­riod and strong storms can be considered a dichotomous variable, with value 1 if the condition occurs. Sunspot number time series is a continuous quantitative variable. To study the relationship between these two variables, the point biserial correlation seems to be the most ap­propriate. Fisher ’s exact tests were used to identify differ­ences in the frequency of extreme weather events during the MM compared with both earlier and later period. In order to determine how low sunspot number during the MM in.uenced the salt production and salt price, a cross­correlation analysis was applied. The data series of salt production were incomplete, covering only the years from 1637 to 1685 and from 1718 to 1744 with some gaps. One of the main prob­lems is the 33­year gap from 1686 to 1717. After the year 1680, the data is less accurate and the gaps in records are more frequent. For the period from 1730 to 1740 the records are available only as a sum of .ve years produc­tion. In Figure 1 the data for this period are presented as .ve yearly averages. Since the data for the second period is less accurate, only the .rst part of data series was used in the analysis. However, no data have been found for years 1657, 1658, 1663 and 1673. Instead, the mean values for the series were used. dition occurrence were used to investigate the in.uence of the MM on the Slovenian Istria climate. Additionally, to assess the in.uence of the MM on the frequency of a single group of extreme weather events, Fisher exact test was applied. Results of point biserial correlative analysis and Fisher exact test are presented in Table 1. From the second and the third column it is evident that no signi.cant correlation between observed vari­ables exists. Relating the number of sunspots with cli­mate/weather, it has been established (Reid, 1991; Wa­ple, 1999; Hiremath & Mandi, 2004; Hiremath, 2006) that changes in climate are associated with the 11­ year solar cycle. As suggested by previous studies (Lebitzke & Van Loon, 1988; Bottomley et al., 1990; Tsiropoula, 2003), the sunspot number data were smoothed with 11­year running average and new values of correlation coef.cients for sunspot number smoothed curve were calculated. This method also gained poor correlation (rpb < 0.19). However, the results suggest a possible negative correlation with wet vegetation period (rpb = ­0.136; P= 0.008) and strong storms (rpb = ­0.192; P= 0.000). The proposed signi.cant correlation for strong storms and wet vegetation period is in good accordance with the .ndings of other studies, in which authors re­ported on the association between reduced solar activity and increased storminess (Björk & Clemmensen, 2004; Van der Schrier & Barkmeijer, 2005; Clarke & Rendell, 2009), and increased rain/snow precipitation (Sven­smark & Friis­Christensen, 1997; Marsh & Svensmark, 2000; Kniveton & Todd, 2001). As seen in Figure 2, re­cords of wet vegetation period are distributed only dur­ Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 Fig. 2: Extreme weather events in the Slovenian Istria from 1600-1850. Sl. 2: Prikaz ekstremnih vremenskih pojavov v slovenski Istri od leta 1600 do 1850 ing the two periods of reduced solar activity (Maunder and Dalton minima). The last column in Table 1 shows the signi.cance of Fisher exact tests. The results con.rm higher frequency of strong storms with hail and strong wind during the MM compared with both earlier and later period (P = 0.034). Given the validity of the correlation between average sunspot number and some extreme weather events, the correlation between salt production and ex­treme weather events was also investigated. The results suggest a statistically weak positive correlation between strong storms and salt production (rpb = 0.255, P = 0.046). According to the .ndings in the reviewed literature, we expected a signi.cant negative correlation between average sunspot number and hard winter occurrences. However, the results in both models show no relation­ship (rpb < |0.104|, P > 0.143). As it is clearly evident from Figure 2, hard winters frequently occurred over the whole time period from 1650 to1850 regardless of the single solar cycle. The reason for poor correlation might be the fact that we analysed only a time segment in the period of the so called Little Ice Age (variously assessed as AD 1430­1850), while longer time series extended over the Little Ice Age may be required to con.rm the proposed relationship between variables. The purpose of this study was also to identify the possible in.uence of the MM on salt production and its price. For this purpose, data series of salt production from 1637 to 1687 and data series of salt price from 1937 to 1744 were cross­correlated with average sun­spot number. For the salt production data series, the largest correlation coef.cient (r = 0.316) was found at lag of ­10 years. A larger correlation coef.cient was ob­tained by using 11­year running average (r = 0.571) with lag of 6 years. In order to understand how the lag var­ies in time, a cross­correlation was calculated for every solar cycle before 1645 and the period after. In the .rst three cycles the lag has a decreasing trend, with cor­relation coef.cients up to r = 0.80, afterwards the lag changes from positive to negative. It seems that the lag between average sunspot number and salt production varies in time with no understandable pattern. In other words, since the salt production was not limited only by weather but mostly by political decisions, the salt production time series contains “social noise” that is dif.cult to quantify, and strongly in.uences the results. The production of salt was strictly regulated with the salt contracts and limited to yearly production of 5,200 or 2,600 modio in total for the .ve­year period. In good seasons the authorities prohibited daily salt harvesting and even ordered the harvested salt to be thrown back into the sea when the warehouses were full. With strict regulation and control of salt production in good sea­sons, the authorities had much more in.uence on har­vested quantity than the weather conditions. As evident from Figure 1, there is almost no variabil­ity after year 1640 in sunspot number series, resulting in the largest discrepancy between the two series. Assum­ing that both, the lack of variability in average sunspot number during the MM, as well as “social noise” in salt production series are the causes of poor results, an ex­tended time series over the end of the MM would be needed to completely understand the nature of the rela­tionship. To gain complete understanding of how good individual harvest seasons were, additional information Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 i.e. the end of the season in a particular year, or the limitations of work in the salt­pans, would be needed to distinguish between good and excellent seasons. The fact that climate variations during the MM could in a certain year lead to favourable weather conditions for salt production (as in 1659, 1983, 1985) must also be considered since the salt production is less sensitive to annual totals or averages of different parameters (precip­itation, irradiation, temperature) than to the distribution of this parameters in form of weather anomalies during the harvest season. Apart from this, one must not forget that the production of salt was arduous, labour intensive and time consuming process in which also poor main­tenance of the salt .elds and protective dykes could be the reasons for bad harvest. Thus, the question of the in.uence of low solar activity on the salt production in the Sečovlje salt­pans remains unanswered. Furthermore, a cross­correlation between average sunspot number and salt price data series showed a moderate negative relationship (r = ­0.518, P = 0.000). Even largest correlations coef.cient exits between 11­year running average sunspot number series and 11­year running average salt price series (r = ­0.848, P = 0.00). Since there is no statistical evidence of relation­ship between salt production and salt price (r < 0.103, P > 0.482), the in.uence of solar activity on salt price cannot be explained through the chain of linear con­nections: solar activity­terrestrial climate­salt produc­tion­salt price. It is possible that the link among sunspot numbers, salt production and price are not always lin­ear, and relatively small variation in salt production can cause a sharp change in prices (similar to wheat prices ­described in depth by Pustilnik & Yom Din, 2004). In a relatively isolated and monopolized salt market, the variability in weather conditions or low number of sun­spots during the MM may lead to a precaution of the Salt Magistracy in salt price forming policy. CONCLUSION Although the in.uence of solar activity/weather on the salt production in open salt­pans is evident, our results failed to con.rm a signi.cant relationship be­tween sunspot number and salt production. There are several reasons that could explain the lack of correla­tion, perhaps the two most important being the strictly regulated and limited salt production (mostly to keep the high salt price) and the absence of a common time in­terval extend to reliable sunspot observation data. The low variability in sunspot number observation data and salt price data causes a lot of problems in the analysis, as well. Another concern is the used methodology. The missing data in time series constrain us to smooth the series with 11­years running average, what may cause spurious results and .ndings should be interpreted with caution. Thus, the question of how if at all the climate during the MM in.uenced the salt production remains unanswered. By analysing the frequency of extreme weather events during the period from 1610­1850 and the solar activity, overall conclusions are as follows: 1.  The results suggest a possible negative correla­tion with wet vegetation period (rpb = ­0.136, P = 0.008) and strong storms (rpb = ­0.192, P = 0.000). 2.  During the MM, strong storms with hale and strong wind were statistically more frequent com­pared to both earlier and later period (P= 0.034). 3.  Opposite to our expectations, the results in both models show no relationship (rpb < |0.143|, P > 0.143) between hard winters and average sun­spot number. 4.  The weak correlation established between ex­treme weather conditions and solar activity may indicate that the MM in.uenced the climate in the Slovenian Istria. Additionally, the results imply a causal connection between solar activity and salt price series (r = ­0.848, P = 0.00). However, since the salt price changed only three times during the MM, these results are inconsist­ent and spurious due to lack of variability in the dataset. There are some other parameters that might in.uence the salt price, and caution should be taken in interpret­ing the results. Despite our efforts, many questions remain unan­swered. Additional data sets and much further investiga­tion would be needed in order to understand how if at all, the MM in.uenced the salt production in the Slove­nian Istria. The possibility of using other proxy of solar activity as 10Be isotopes from Greenland ice (Beer et al., 1998), and extended time series of salt production data could give us another chance of .nding the answer to our question. Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 POSKUS PRIKAZA VPLIVA PODNEBJA IZ OBDOBJA MAUNDERJEVEGA MINIMUMA NA PROIZVODNJO SOLI IN NJENO CENO V SLOVENSKI ISTRI (SEČOVELJSKE SOLINE) Dejan PALISKA SI­6280 Ankaran, Frenkova 3 E­mail: dejan.paliska1@gmail.com Simon KERMA Univerza na Primorskem, Fakulteta za turistične študije – Turistica, SI­6320 Portorož, Obala 11a Rudi ČOP Zavod Terra Viva, SI­6333 Sečovlje, Sv. Peter 115 Flavio BONIN Pomorski muzej Sergej Mašera Piran, Cankarjevo nabrežje 3, SI­6330 Piran POVZETEK V članku obravnavamo žetev morske soli v Sečoveljskih solinah v letih 1637–1744, ki so tedaj spadale pod Bene­ško republiko. Obdobje 1645–1715 sovpada s t. i. Maunderjevim minimumom, ko so opazovalci ugotovili minimal­no sončevo aktivnost. Kot kazalnik sončeve aktivnosti smo uporabili število sončevih peg. Pregledali smo različne historične klimatske podatke in predstavili rezultate empirične analize možne povezave med sončevo aktivnostjo v obdobju Maunderjevega minimuma in proizvodnjo soli kot tudi njeno ceno. Rezultati sicer kažejo na vzročno pove­zavo med sončevo aktivnostjo in ceno soli, a nas je težava z nezanesljivimi in kratkimi časovnimi vrstami ter manjka­jočimi podatki prisilila v uporabo statističnih metod, ki lahko privedejo do nekonsistentnih in zavajajočih rezultatov. Na podlagi rezultatov analize zato ni možno potrditi povezanosti med pridelavo soli, ceno in sončevo aktivnostjo. Ključne besede: Maunderjev minimum, število sončevih peg, sončeva aktivnost, podnebje v predinstrumentalnem obdobju, proizvodnja soli, Sečoveljske soline. Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 REFERENCES Akridge, D. G. (2008): Methods for calculating brine evaporation rates during salt production. J. Archaeol. Sci., 35, 1453­1462. Ananthakrishnan, R. & B. Parthasarathy (1984): In­dian rainfall in relation to the sunspot cycle: 1871­1978. J. Climatol., 4, 149­169. Baker, D. N. (2000): Effects of the Sun on the Earth’s environment. JASTP, 62, 1669­1681. Baliunas, S. & W. Soon (1996): The sun­climate con­nection. Sky and Telescope, vol. 92, pp. 38­41. Barriendos, M. (1997): Climatic variations in the Iberian Peninsula during the Late Maunder Minimum (AD 1675­1715): An analysis of data from rogation cer­emonies. Holocene 7, 105­111. Beer, J., S. M. Tobias & N. O. Weiss (1998): An ac­tive Sun throughout the Maunder Minimum. Solar Phys., 181, 237­249. Björk, S. & L. Clemmensen (2004): Aeolian sediment in raised bog deposits, Halland, SW Sweden: a new proxy record of Holocene winter storminess variation in southern Scandinavia? The Holocene, 14, 677­688. Bonin, F. (2001): Proizvodnja soli v Piranskih solinah od 16. do druge polovice 18. stoletja. Annales, Ser. Hist. Sociol., 11 (24), 93­104. Bottomley, M., C. K. Folland, J. Hsiung, R. E. Neell & D. E. Parker (1990): Global ocean surface temperature atlas “GOSTA”. Meteorological Of.ce, Bracknell, UK and the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cam­bridge, USA, 20 p., 313 plates. Braun, G. (1934): Notizie meteorologiche e clima­tologiche della Regione Giulia (Trieste, Istria e Friuli Orientale). Consiglio Nazionale della Ricerche, Roma. Camuffo, D. (1987): Freezing of the Venetian La­goon since the 9th century A.D. in comparison to the cli­mate of the Western Europe and England. Clim. Chang., 10, 43­66. Clarke, M. L. & H. M. Rendell (2009): The impact of North Atlantic storminess on western European coasts: a review. Quatern. Int., 195, 31­41. Clayton, H. H. (1923): World weather, including a discussion of the in.uence of solar radiation on the weather. Macmillan, New York. Darovec, D. (2001): Solarstvo v severozahodni Is­tri od 12. do 18. stoletja. Annales, Ser. Hist. Sociol., 11 (24), 71­92. Eddy, J. A. (1976): The Maunder Minimum. Science, 192, 1189­1202. Eddy, J. A. (1977): Climate and the changing sun. Clim. Chang., 1, 173­190. Friis­Christensen, E. & K. Lassen (1991): Length of the solar cycle: an indicator of solar activity closely as­sociated with climate. Science, 254, 698­700. Frohlich, C. (2000): Observations of irradiance vari­ability. Space Sci. Rev., 94, 15­24. Georgieva, K., B. Kirov & C. Bianchi (2005): Long­term variations in the correlation between solar activity and climate. Mem. S. A. It., 76 (4), 965­968. Haigh, D. (2007): The sun and the Earth’s climate. Living Rev. Solar Phys., 4 (2). http://www.livingreviews. org/lrsp­2007­2 (cited on 24. 6. 2015) Hiremath, K. M. (2006): The in.uence of solar activ­ity on the rainfall over India: Cycle to cycle variations. J. Astrophys. Astron., 27, 367­372. Hiremath, K. M. & P. I. Mandi (2004): In.uence of the solar activity on the Indian Monsoon rainfall. New Astron., 9, 651­662. Jain, R. M. & S. C. Tripathy (1997): Correlation study between sunspot and rainfall in Udaipur sub­region. Mausam, 48 (3), 405. Jevons, W. S. (1884): The Solar Period and the Price of Corn. In: Foxwell, H. S. (ed.): Investigations in Cur­rency and Finance, 1st Ed. London, Macmillan, 194 p. Kington, J. (1995): The severe winter of 1694:95. Weather, 50, 160­163. Kington, J. (1997): The severe winter of 1696:97. Weather, 52, 386­391. Kington, J. (1999): The severe winter of 1697:98. Weather, 54, 43­49. Kniveton, D. R. & M. C. Todd (2001): On the rela­tionship of cosmic ray .ux and precipitation. Geophys. Res. Lett., 28 (8), 1527­1530. Koppen, W. (1914): Lufttemperaturen, Sonnen.ecke und Vulkanausbriiche. Meteorol. Z., 31, 305­328. Koslowski, G. & R. Glaser (1999): Variations in re­constructed Ice winter severity in the Western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Clim. Chang., 41, 175­191. Labitzke, K. & H. van Loon (1988): Associations be­tween the 11­year solar cycle, the QBO and the atmo­sphere. I. The troposphere and stratosphere in the north­ern hemisphere in winter. JASTP, 50, 197­206. Labitzke, K. & H. van Loon (1992): Association be­tween the 11­year solar cycle and the atmosphere. Part V: Summer. J. Climatol., 5, 240­251. Lean, J. (2001): Solar irradiance and climate forcing in the near future. Geophys. Res. Lett., 28 (21), 4119­4122. Lean, J., J. Beer & R. S. Bradley (1995): Reconstruc­tion of solar irradiance since 1610: Implications for cli­mate change. Geophys. Res. Lett., 22, 3195­3198. Lean, J. & D. Rind (1998): Climate forcing by chang­ing solar radiation. J. Climate, 11, 3069­3094. Lean, J. & D. Rind (1999): Evaluating Sun­climate relationships since the Little Ice Age. JASTP, 61, 25­36. Lean, J. & D. Rind (2001): Earth’s response to a vari­able Sun. Science, 292, 234. Lebitzke, K. & H. van Loon (1988): Association be­tween the 11­year solar cycle, the QBO and the atmo­sphere. Part III: Aspects of the association. J. Climate, 2, 554­565. Dejan PALISKA et al.: AN ATTEMPT TO DEMONSTRATE THE INFLUENCE OF MAUNDER MINIMUM CLIMATE ON SALT PRODUCTION ..., 163–172 Luterbacher, J. (2000): The Late Maunder Minimum (AD 1675­1715) – climax of the Little Ice Age in Europe. In: Jones, P. D., A. E. J. Ogilvie, T. D. Davies & K. R. Briffa (eds.): Climate and climate impacts: The last 1000 years. Kluwer/Plenum, 295 p. Luterbacher, J., R. Rickli, E. Xoplaki, C. Tinguely, C. Beck, C. P.ster & H. Wanner (2000): The Late Maun­der Minimum (1675–1715) – a key period for studying decadal scale climatic change in Europe. Clim. Chang., 49, 441­462. Marsh, N. & H. Svensmark (2000): Cosmic rays, clouds, and climate. Space Sci. Rev., 94, 215­230. Maunder, E. W. (1922): The prolonged sunspot min­imum 1675 – 1715. Journal of the British Astronomical Association, 32, 140­145. Ogrin, D. (1995): Podnebje Slovenske Istre. Knjižni­ca Annales, vol. 11. Zgodovinsko društvo za južno Pri­morsko, Koper, 381 p. Ogrin, D. (2005): Spreminjanje podnebja v holoce­nu. Geografski vestnik, 77 (1), 57­66. Parker, E. N. (1999): Sunny side of global warming. Nature, 399, 416­417. Parthasarathy, B., K. Rupa Kumar & A. Munot (1993): Homogeneous Indian Monsoon Rainfall: Variability and prediction. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 102, 121­155. P.ster, C. (1994): Switzerland: The time of icy win­ters and chilly springs. In Frenzel, B., C. P.ster & B. Gläser (eds.): Climatic trends and anomalies in Europe 1675–1715. Gustav Fischer, Stuttgart, pp. 205­224. P.ster, C. (1999): Wetternachersage. 500 Jahre Kli­mavariationen und Naturkatastrophen 1496–1995. Paul Haupt Verlag, Bern, Stuttgart, Wien, 304 p. Pustilnik, L. & G. Yom Din (2004): In.uence of solar activity on the state of the wheat market in medieval England. Solar Phys., 223, 335­356. Pustilnik, L. & G. Yom Din (2009): Possible space weather in.uence on the Earth wheat market. Sun and Geosphere, 4, 35­43. Reid, G. C. (1991): Solar total irradiance variation and the global sea surface temperature record. J. Geo­phys. Res., 96, 2835­2844. Rodrigo, F. S., M. J. Esteban­Parra, D. Pozo­Vá zquez & Y. Castro­Diez (2000): Rainfall variability in southern Spain on decadal to centennial time scales. Int. J. Clima­tol., 20, 721­732. Rozelot, J. P. (2001): Possible links between the solar radius variations and the Earth’s climate evolution over the past four centuries. JASTP, 63, 375­386. Soon, W. H., E. S. Posmentier & S. L. Baliunas (1996): Inference of solar irradiance variability from ter­restrial temperature changes, 1880­1993. Astrophys. J., 472, 891­902. Spörer, F. W. G. (1887): Über die Periodizität der Sonnen.ecken seit dem Jahre 1618, vornehmlich in Bezug auf die heliographische Breite derselben, und Hinweis auf eine erhebliche Störung dieser Periodizität während eines langen Zeitraumes. Vjschr. Astron. Ges. Leipzig, 22, 323­329. Svensmark, H. (1998): In.uence of cosmic rays on Earth’s climate. Phys. Rev. Lett., 81, 5027­5030. Svensmark, H. & E. Friis­Christensen (1997): Vari­ation of cosmic ray .ux and global cloud coverage – a missing link in solar­climate relationships. JASTP, 59, 1225­1232. Tan, M., J. Hou & T. Liu (2004): Sun­coupled climate connection between eastern Asia and northern Atlantic. Geophys. Res. Lett., 31, 1­3. Tsiropoula, G. (2003): Signatures of solar activi­ty variability in meteorological parameters. JASTP, 65, 469­482. Van der Schrier, G. & J. Barkmeijer (2005): Bjerknes’ hypothesis on the coldness during AD 1790­1820 revis­ited. Clim. Dynam., 24, 355­371. Wanner, H., C. P.ster, R. Brázdil, P. Frich, K. Frydendahl, T. Jonsson, J. Kington, H. H. Lamb, S. Rosenorn & E. Wishman (1995): Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675–1704). Theor. Appl. Climatol., 51, 167­175. Wanner, H., D. Gyalistras, J. Luterbacher, R. Rick­li, E. Salvisberg & C. Schmutz (2000): Klimawandel im Schweizer Alpenraum. vdf Hochschulverlag AG an der ETH Zürich, 285 p. Waple, A. M. (1999): The sun­climate relationship in recent centuries: a review. Prog. Phys. Geog., 23, 309­ 328. White, W. B., J. Lean, D. R. Cayan & M. D. Dettinger (1997): Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res., 102 (C2), 3255­3266. Wilson, R. C. & H. S. Hudson (1988): Solar luminos­ity variation in solar cycle 21. Nature, 332, 810­813. Wilson, R. C. & H. S. Hudson (1991): The Sun’s lu­minosity over a complete solar cycle. Nature, 351, 42­ 44. Xanthakis, J. (1973): Solar activity and precipitation. In: Xanthakis, J. (ed.): Solar activity and related inter­planetary and terrestrial phenomena. Springer­Verlag, Berlin, p. 19. Xoplaki, E., P. Maheras & J. Luterbacher (2001): Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Clim. Chang., 48, 581­615. Original scienti.c article UDK 556.13:551.4(497.4Kras). Received: 2015­12­15 CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING THE CHANGED LANDSCAPE IDENTITY OF THE CLASSIC KARST? Danijel IVAJNŠIČ Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, Maribor, Slovenia, E­mail: dani.ivajnsic@um.si Mitja KALIGARIČ Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, Maribor, Slovenia  & Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, Hoče, Slovenia E­mail: mitja.kaligaric@um.si ABSTRACT Evapotranspiration (ET) change is one of the most obvious ecohydrological effects of land use or vegetation cover change. In this regard, the landscape change process was initially observed by determining the fractional green vegetation cover difference between two time windows over a span of 12 years (2002 – 2014), followed by an estimation of the June mean daily actual evapotranspiration change within the Karst area in Slovenia, based on LANDSAT satellite imagery. Most of the study area has faced a clear gain in ET (74%), which perfectly matches the increase in scrub encroachment and forest progression. Furthermore, many surfaces with an ET rate decrease were also identi.ed in the category of persistent forest land use mainly in the eastern part of the study area (76%), a .nding which can be explained by the severe sleet event during the winter of 2014. It can be concluded that the estimated ET change rate can be an important complementary indicator for assessing the landscape change process from a more functional perspective. Keywords: classic Karst, evapotranspiration, landscape change, land use, NDVI (normalized difference vegetation index) PUO L’EVAPOTRASPIRAZIONE ESSERE CONSIDERATA UN NUOVO INDICATORE PER CAPIRE L’IDENTITA MUTATA DEL PAESAGGIO DEL CARSO CLASSICO? SINTESI Il cambiamento legato all’evapotraspirazione (ET) e uno dei piu evidenti effetti eco­idrologici abbinati all’uso del suolo o alla modi.ca della copertura vegetazionale. In tale luce, il processo di cambiamento del paesaggio e stato inizialmente osser vato determinando la differenza frazionaria della copertura vegetale verde tra due .nestre tempo­rali in un inter vallo pari a dodici anni (2002 ­ 2014), seguita da una stima della media giornaliera del cambiamento evapotraspirazione reale nel mese di giugno all’interno della zona carsica in Slovenia, basata su immagini satellitari LANDSAT. La maggior parte dell’area di studio ha subito un evidente aumento in termini di ET (74%), che si abbina perfettamente all’aumento della vegetazione arbustiva e alla progressione della foresta. Molte super.ci che hanno subito una diminuzione dei tassi di ET, invece, sono state identi.cate nella categoria d’impiego persistente dei ter­reni forestali, principalmente nella parte orientale dell’area di studio (76%), un dato che puo essere spiegato con il grave evento nevischio veri.catosi durante l’inverno del 2014. Gli autori asseriscono che il tasso di variazione di ET stimato puo essere considerato un indicatore complementare importante per valutare il processo di cambiamento del paesaggio da un prospettiva piu funzionale. Parole chiave: Carso classico, evapotraspirazione, cambiamento del paesaggio, uso del suolo, NDVI (indice normalizzato differenza vegetazione) Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 INTRODUCTION The Karst (Kras, Carso) is a limestone karst plateau, lying above the bay of Trieste in the northernmost part of the Adriatic Sea, and is known for its geological, geo­morphological, and speleological phenomena. It is still perceived as a traditionally stony grassland area, where the clear­cuts existed since ancient times and where the black pine (Pinus nigra) ­planted in the 19th century ­is a symbolic tree. The deforestation actually started in Roman times and continued in the Middle Ages with population growth and an orientation to pastoralism. The peak of deforestation, reinforced by the processes of water and wind erosion, which substantially lessen the soil layer (sometimes to bare rock), is thought to have been in the seventeenth to nineteenth centuries (Kaligarič et al., 2006), a .ning which was con.rmed using reliable cartographic materials such as the Au­strian Military survey from the second half of the 18th century (Rajšp & Ficko, 1996). Large socio­economic changes in the .rst half of the 20th century caused ne­gative demographic changes, which resulted in land abandonment, which became even more pronounced in the period after WWII. Thus, it was already perceived by the 80's that spontaneous reforestation was a key driving force for landscape change in the classic Karst (Feoli & Feoli Chiapella, 1979; Feoli et al., 1980; Feo­li & Scimone, 1982; Lausi et al., 1979). These authors produced the .rst predictions and models, forecasting the forest progression on the abandoned karst grasslan­ds (Favretto & Poldini, 1986); it was forecasted that the Trieste Karst area (the portion of the area on Italian terri­tory) will be completely forested by 2013. The landsca­pe identity really changed, as interpret by Kaligarič et al. (2006), but the situation is not so serious: there was still almost 20% of grassland present in 2012 (Kaligarič & Ivajnšič, 2014). However, the trends calculated on the basis of a ten­year time frame veri.cation are strai­ghtforward: grasslands could cover 18 km2 less area in 2025 compared to 2012 and could then shrink to just 6 km2 (3%) in 2100. The forested area will expand by 18 km2 by 2025 and could cover 88% of the whole stu­dy area by 2075, then achieving an almost steady­state situation in 2100 (Kaligarič & Ivajnšič, 2014). All the previous studies showed that the combined methods involving old maps, remotely sensed data and .eld surveys clearly show historical trends in assessing and changing the landscape identity – in this case in the classic Slovenian Karst. This methodology allowed us to demonstrate that an almost treeless stony grassland lan­dscape was converted to a forest­dominated landscape in only 250 years (Kaligarič & Ivajnšič, 2014). Howe­ver, is landscape change only the response of relatively simple two­dimensional input data on vegetation cover or land use? What happens to the landscape when the transition of grassland to scrub, or scrub to forest has occurred? Are there further changes that affect the lan­dscape identity but which are not detectable through simple surface land use data? At this point we could perhaps re­consider the de.nition of “landscape iden­tity”. The de.nition of the European Landscape Con­vention is wide: “landscape is an area, as perceived by the people, the character of which is the result of the action and interaction of natural and/or human factors” (Council of Europe, 2000). Nevertheless, the basis for any interaction between the human and natural cha­racter of a landscape is its physical features, such as geomorphology (usually not changed), vegetation and climate. Is there any other complementary parameter that could replace or supplement the land use or ve­getation cover data in order to better de.ne landscape identity changes? In this regard, remote sensing offers the promise of several spatially distributed geophysical variables (Brunsell & Gillies, 2000). Vegetation is important in climate studies, owing to its role in the hydrolog­ic cycle with the actual evapotranspiration (ET) rate (Montandon & Small, 2008). ET change is one of the most obvious ecohydrological effects of land use/cov­er change (Riekerk, 1989; Li et al. 2012). Accordingly, remotely sensed land surface re.ectance can be used to calculate those parameters such as the green vegeta­tion fraction (Fg) or the Leaf Area Index (LAI), needed to represent vegetation in climate and hydrologic models. These two parameters represent the horizontal and the vertical density of live vegetation, respectively (Gut­man & Ignatov, 1997). Both Fg and LAI are normally inferred from the Normalized Difference Vegetation In­dex (NDVI), an index calculated from re.ectance mea­surements in the red and near­infrared wavelengths. These measurements are typically acquired by satellites over large areas (landscapes) divided into sub­units (pixels) that represents the average re.ectance over a smaller area. A frequently used method for calculating Fg is to create a simple linear mixing model between two NDVI endmembers: bare soil NDVI (NDVI0) and full vegetation NDVI (NDVI.). In fact, the estimate of actual ET on a landscape level can then be calculated as a function of reference evaportranspiration and Fg (Ranade & Irmak, 2008). Many studies have been con­ducted to address the response of ET to climate change (Goyal, 2004; Diodato et al., 2010; Liu & Yang, 2010), but little work has been done to investigate the impact of land use change on the pattern and process of ET (Jin et al., 2009). In this paper we initially aimed to identify and mea­sure landscape change, perceived as the fractional gre­en vegetation cover difference between two time win­dows over a span of 12 years (2002 – 2014). Secondly, the change in estimated actual evapotranspiration as its consequence was simultaneously determined, in order to look into the previously identi.ed changed landsca­pe identity of the classic Karst from a more functional perspective. Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 MATERIALS AND METHODS Study area A major part of the Karst Plateau in Slovenia (202km2; 85% of the total area, owing to cloudiness in the north­ernmost part in the 2014 satellite image) was chosen to study relative actual evapotranspiration change over the last 12 years as a function of the green vegetation fraction (Fig. 1). Its geographical position lies between the Adriatic Sea and the Pre­Alpine region in Slovenia and north­eastern Italy (45,77°N and 13,84°E (Fig. 1)). It represents the north­easternmost branch of the Dinaric mountain range. The limestone dominated Karst Plateau stretches from 100 to 500 m a.s.l. and is characterized by its geomorphological phenomena (rocks, karst poljes, dolinas, caves, etc.) (Kaligarič et al., 2006). Climate conditions are sub­Mediterranean (Ogrin, 1995). The precipitation quantity varies from 900 to 1000 mm by the sea coast directly below the Karst Pla­teau (Portorož and Trieste), to around 1500 mm directly on the Karst Plateau (Ogrin, 1995). The characteristic strong bora wind causes desiccation and erosion in the area. The mean annual temperature on the Karst Plateau is 12°C (time interval from 1970 to 2000), but the mean annual temperature amplitude reaches 49°C (ARSO, 2015). Poldini (1989) characterized the climate as tran­sitional between Mediterranean and continental pre­Al­pine, with rainy cool winters and long dry summers. NDVI data source Landsat 5 and Landsat 8 (OLI/TIRS) systematic terra­in­corrected (Level 1T) satellite images were obtained for Path 191, Row 28 for June 28, 2002 and June 27, 2014 from the Earth Explorer USGS site (http://earthexplorer. usgs.gov/) in order to gain insight into vegetation densi­ty change between the selected time frames (2002 and 2014) in the study area. Both satellite images were con­verted to re.ectance (a physical property of the surface, where values near 0 represent surfaces that are very absorptive at a particular wavelength, and those near 1 very re.ective) and additionally processed for atmo­spheric correction to remove haze with ATMOSC (Lan­dsat 5 image) and LANDSAT (Landsat 8 image) modules in TerrSet (Eastman, 2015) by applying the Dark­object subtraction method. The normalized difference vegeta­tion index (NDVI) for both observed time windows was further calculated by using the appropriate red and near­­infrared bands of the satellite images. Estimating fractional green vegetation cover change The fraction of green vegetation cover (Fg) was de­termined by applying the method proposed by Brunsell and Gillies (2002). This method scales the NDVI to ob­tain the fraction of vegetation cover and then scales the fraction between the emissivity of bare soil and of a full canopy. Fg = (NDVI ­ MDVI)/(NDVI ­ NDVI)2 0max0 Where NDVI0 is the bare soil NDVI value of the scene and NDVI is the maximum NDVI value of the scenario  max corresponding to full cover dense vegetation. It is usu­ally assumed that NDVI0 is close to zero (NDVI0 . 0.05) and is generally chosen from the lowest observed NDVI values. In contrast, Montandon and Small (2008) proved that underestimating NDVI0 yields overestimating the gre­en vegetation fraction. However, because the main fo­cus of this study is orientated towards relative change of actual evapotranspiration between two time windows in the same study area as a function of vegetation density change, the most commonly used NDVI0 value (0.05) was chosen for Fg estimation (Zeng et al., 2000; Oleson et al., 2000; Matsui et al., 2005; Gan & Burges, 2006).  Spatial distribution of reference ET The reference evapotranspiration ( ET0) data, based on the Penman­Monteith method (ARSO, 2016), from all .ve adjacent meteorological stations (Bilje, Godnje, Postojna, Vojsko and Portorož) were used to produce a reference evapotranspiration surface for both observed time windows over the study area. The daily mean value of ET0 for the month of June for each geolocated point representing the meteorological station was calculated and then interpolated by applying the Spline method in ArcGIS 9.3 Spatial analyst tools (ESRI, 2010). Estimating relative actual ET change Actual ET (June daily mean in mm/m2) was calcu­lated by multiplying the fraction of vegetation cover with the reference ET surface for either the 2002 or the 2014 time window ( Ranade & Irmak, 2008). Additional­ Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 ly, both ET images were transformed, having a relative scale and then subtracted (ET2014 ­ET2002), resulting in a relative ET difference map measured in proportion of change. The relation between landscape and actual ET change In order to link change in actual ET between the ob­served time span with the land use change processes which took place in the study area, the resulting actu­al ET difference image was ovelayed with the land use change (transition from one to another category) and persistence maps developed with the Land Change Mo­deler tool in Terrset (Eastman, 2015). The Zonal statistics module within ArcGIS 9.3 Spatial analyst tools was ap­plied to determine mean relative actual ET change and the corresponding standard deviation per land use tran­sition or persistence category identi.ed beneath the ET loss or ET gain areas. Land use data for both observed time windows (2002 and 2014) were gathered from the freely accessible database owned by the Slovenian Mi­nistry of Agriculture, Forestry and Food (http://rkg.gov.si/ GERK/; 4.1.2016). RESULTS 12 years of land use and vegetation density change A decreasing trend in the land use categories of gras­sland, overgrowing and .elds was detected (Fig. 2). The largest retreat in area can be assigned to the grassland category (4.4%), followed by overgrowing areas (3.1%), which were mostly replaced by forest (in 98%). The lat­ter expanded to 33.7 km2 (5.7 % of area), followed by an 2.3 km2 (0.4%) increase in settlement and infrastructure area. However, the NDVI, based on LANDSAT imagery (Fig. 2), enabled the estimation of fractional green ve­getation cover (Fg) change in the study area between 2002 and 2014 (Fig. 3). In only 2.1% of the study area (4,2 km2) was a decrease in fraction of green vegetation within a pixel detected. Two square kilometers of area remained unchanged, whereas all other parts of the ob­served classic Karst area (196.8 km2) did in fact increase in vegetation greenness. The intensity of Fg change in those 12 years is measured in a range from a 60% dec­rease to a 90% increase. Spatial distribution of actual evapotranspiration change as a climatic indicator for landscape identity change By comparing the June daily mean reference ET sur­faces of 2002 and 2014, a general spatial pattern can be recognized (Fig. 4). There is a clear decreasing ET trend from the SW to the NE direction, which has recently be­come more pronounced (Fig. 4B). The largest difference in the June daily mean reference ET between the two time windows was observed at the Godnje and Vojsko meteorological stations (both with a 0.6 mm/m2 decrea­se). The other three stations do not differ more than 0.1 mm/m2 in June daily mean reference ET. However, the estimate of the June daily mean actual ET difference as a function of fractional green vegetation cover change, triggered by land use dynamics, shows a more detailed geospatial pattern of local climate change (Fig. 5A, B). In 17.6% of the study area (35.5 km2), mo­ Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 stly in the E and SE part, a clear decrease in actual ET (ET Loss) can be detected. An area of 17.4 km2 (8.6%), more or less randomly scattered over the study area, remained constant, according to the June daily mean actual ET (ET Persistence). Consequently, almost 74% of the area (149.4 km2) shows a clear increase (up to 75%) in ET (ET Gain). The northern part of the observed classic Karst has evidently been pumping more water into the June atmosphere in recently than it was in 2002. By looking into the estimated actual ET loss category from the angle of land use dynamics between 2002 and 2014, it became clear that 23% of the super. cial cover in that category did in fact change in land use, while 77% persisted (Table 1). In other words, the estimated actual ET rate has been lower recently, even though most are­as remained under the same land use (76% forest, 17%  Fig. 5: Relative actual ET difference between 2002 and 2014 in the study area (A) and the indication of ET loss, gain and persistence distribution (B). Sl. 5: Prostorska razporeditev relativne razlike v povprečni dnevni junijski ET med letoma 2002 in 2014 (A) ter območja izgubljanja, ohranjanja in pridobivanja vrednosti ET(B). grassland, 3% vineyards and orchards). The highest ave­rage decrease in actual ET, measured at 9%, was detec­ted in the Vineyards and orchards land use category, fol­lowed by Fields (8%) and Settlements and infrastructure (6%). The highest percentage of area exhibiting a land use transition and simultaneously an actual ET decrease surprisingly coincided with the Grassland to Forest transi­tion (25%) and the Overgrowing area to Forest transition (27%). On the other hand, these two transitions have the lowest negative mean change in actual ET (­4% and ­5%) compared to other land use transitions. The highest relati­ve mean change in actual ET belongs, as expected, to the transition Grassland to Settlement (­11%).  In the actual ET gain category, 25% of the area cor­responds to changed land use, whereas 75% relates to persistent land use. Here, as expected, Grassland to Fo­rest (32%) and Overgrowing area to Forest (30%) are the most frequent land use transitions showing an actual ET increase. Nevertheless, the highest positive mean chan­ge in actual ET is recorded in the Grassland to Vineyards and orchards transition (15%), followed by the transition Field to Grassland (14%). As in the actual ET loss cate­gory, even in this case the estimated actual ET change trend (now positive) is super.cially grater in persistent land use, which indicates the ongoing landscape chan­ge process beyond the simple two­dimensional scale of geospatial land use data. DISCUSSION We found that by far the largest proportion of the study area has faced a clear gain in ET, which perfec­tly matches with the increased scrub encroachment on grassland surfaces in the given time frame, following the fact that more scrub/trees means higher ET. Howe­ver, this was already well documented in the literatu­re; scrub encroachment actually has many functional effects, among which, the increased evapotranspiration estimate is one of most visible and measurable (Zhang et al., 2001; Huxman et al., 2005). Further increases in evapotranspiration occur in conjunction with forest pro­gression. We found that, among those polygons where land use has changed and ET increased, one­third of the surfaces represent the transition “grassland to forest” and another third the transition “overgrowing areas to forest”, which was expected according to the above mentioned trends. However, the surprising outcome of this study is that, among the total area which gained ET, 75% are “land use persistence” polygons. In other words, for three­quarters of the areas with increased evapotranspiration, no land use change was detected between the given time windows. From the view of the two­dimensional vegetation perception of the landsca­pe, nothing has changed here. Of course, most changes occurred in the most widespread land use categories – forest and grassland. 70% of the areas where land­use was stable but ET increased are forests. It explains that Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 Table 1: The relation between relative actual ET change and land use dynamics in the study area. Tabela 1: Zveza med relativno spremembo v ET in procesom spreminjanja rabe tal med letoma 2002 in 2014. LAND USE CATEGORY ET GAIN ET LOSS % AREA MEAN CHANGE IN % STD % AREA MEAN CHANGE IN %  STD Total percentage of area corresponding to persistent land use 75 77 LAND USE PERSISTENCE FIELDS 0.6 14.1 8.8 0.5 ­8.0 6.3 VINEYARDS AND ORCHARDS 2.5 12.1 8.3 3.3 ­9.0 8.9 GRASSLAND 22.2 11.7 7.8 17.4 ­5.9 4.9 FOREST 69.6 8.3 5.2 75.7 ­4.8 4.5 OVERGROWING AREA 1.4 9.7 6.1 0.8 ­5.2 6.2 SETTLEMENTS AND INFRASTRUCTURE 3.6 9.2 5.9 2.2 ­6.4 5.8 Total percentage of area corresponding to changed land use 25 23 LAND USE CHANGE GRASSLAND to FIELD 3.0 11.8 8.1 5.1 ­8.9 7.0 GRASSLAND to VINEYARDS AND ORCHARDS 3.3 14.6 9.4 3.2 ­7.6 6.0 FIELD to GRASSLAND 6.1 14.2 8.7 4.8 ­7.7 6.0 VINEYARDS AND ORCHARDS to GRASSLAND 2.3 11.6 7.8 3.3 ­8.1 6.4 FOREST to GRASSLAND 3.3 10.1 6.8 5.5 ­7.4 7.5 OVERGROWING AREA to GRASSLAND 2.8 8.9 5.9 3.4 ­6.1 6.3 GRASSLAND to FOREST 31.9 9.5 6.0 24.9 ­4.4 3.8 OVERGROWING AREA to FOREST 29.7 8.8 5.5 26.7 ­4.8 4.5 GRASSLAND to OVERGROWING AREA 6.4 10.8 7.0 3.9 ­5.6 5.5 FOREST to OVERGROWING AREA 1.9 13.7 11.8 2.2 ­7.6 7.0 GRASSLAND to SETTLEMENTS AND INFRASTRUCTURE 1.5 10.9 7.0 3.5 ­10.8 10.1 LAND USE TRANSITION BELOW THE 10 Ha TRESHOLD 8.0 0.0 0.0 13.0 0.0 0.0 when forest is perceived, its development has not ce­ased: succession is an ongoing process, where woody species turnover takes place, and the trees are growing and increasing their above­ground phytomass. Thus, if functional features of the landscape are in­vestigated, the simple forest/non­forest landscape cate­gorization is simply too weak. The age of the forest, or at least roughly de.ned forest typology, is essential to explain the relation between the ET change. Furthermore, 20% of the area where land­use has not changed and ET nevertheless increased, constitutes gras­sland. This means that some functional differences must have occurred in that time interval, even though grasslan­ds were perceived. However, the weakness of remotely sensed data was discussed and questioned from the early beginning of remote sensing tools development (e.g. Con­galton & Green, 2008). How remotely sensed data can lead to misleading results, if no measurements, or at least observations, are made on the ground, has been shown in several examples. One of these refers to the study area: Watts (2004) identi. ed eleven “communities” along the altitudinal range on the basis of satellite survey data only.  Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 However, among them, two “communities” do not exist in the northern Balkans at all, and other types were incor­rectly geo­located and named. The discrepancy between the remotely sensed map of agricultural land use and a .eld­surveyed habitat (ve­getation) map was substantially found in the study by Kaligarič et al. (2006), performed on 626 Ha in the same Karst area. With remote sensing, only one half of the identi.ed grasslands were found to be without tall­herb invasions (Apiaceae, Dictamnus albus, Thalictrum aqui­legiifolium, Paeonia of.cinalis, Asparagus acutifolius) or dominance of forest edge species (Geranium sanguine­um, Polygonatum odoratum, Aconitum, Aquilegia). The­se are all long­leaved perennial plants, which have been recognized to decline slowly and may survive for deca­des after environmental change (Eriksson, 1996; Helm et al., 2006; Lindborg, 2007). Since there may exist a considerable time lag between the onset of habitat change (abandonment) and the .nal demise of populati­ons (Eriksson & Ehrlén, 2001), the fragmented grasslands are still .oristically rich, but their .oristic composition has changed in favour of long­leaved perennials; among these, most are tall herbs with substantial above­ground phytomass, prone to high evapotraspiration rates. In other words – within the category “grassland” identi.­ed by remote sensing tools, substantial functional and morphological changes can occur derived from species turnover and plant growth. Can however, the opposite also appear? Tat ET rates on the surface decline within the time frame, while the land­use category remains unchanged? Of course, it is crucial here in which time period of the year the near in­fra­red (satellite) images are taken – in the beginning, at the peak, or at the end of the vegetation cycle. We con­sidered and processed satellite images that were taken in the same time period in both time windows (one day difference), in order to minimize the difference regar­ding the vegetation development stage. However, there are also surfaces where ET decreased in the unchanged land­use category. Here, by far the highest rates again belonged to forest (76% of all such surfaces). This would be hard to explain if the map (Fig. 5) had not shown that such cases are concentrated in the eastern part of the study area. This part was severely damaged by sleet during the winter of 2014. The spatial data (http://www. zgs.si/slo/delovna­podrocja/varstvo­gozdov/sanacija­­posledic­ujme­2014/index.html; 20.11.2015) show that the areas damaged by varying quantities of sleet over­lap perfectly with the forest category in which an ET decrease was identi.ed. Sleet substantially affected the landscape of Slovenia in 2014 (mostly in the central and western regions). Some trees collapsed; some of them lost their usual appearance, owing to reduced canopies, and the forest tree composition might change in the long run, not to mention potential forest pests, which spread out on the damaged wood (Chen & Yang, 2009). Are these factors the precise ones that can change landscape identity? We can conclude that the estimated ET rate can be an important indicator in assessing landscape change from a more functional perspective than from a rather static approach to land­use or vegetation change. So, the .nal answer to the question raised in the title of the paper is “yes”: there are several landscape attributes – from climatic and natural, to cultural and socio­econo­mic – which are in.uenced by ET and contribute to a changed landscape identity, which goes far beyond the usual two­dimensional assessment of land use change. Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 ALI LAHKO EVAPOTRANSPIRACIJO SMATRAMO KOT DODATNI POKAZATELJ ZA RAZUMEVANJE SPREMENJENE IDENTITETE KLASIČNEGA KRASA? Danijel IVAJNŠIČ Oddelek za biologijo, Fakulteta za naravoslovje in matematiko, Univerza v Mariboru, Koroška 160, Maribor, Slovenija, E­mail: dani. ivajnsic@um.si Mitja KALIGARIČ Oddelek za biologijo, Fakulteta za naravoslovje in matematiko, Univerza v Mariboru, Koroška 160, Maribor, Slovenija in   Fakulteta za agronomijo in biosistemske vede, Univerza v Mariboru, Pivola 10, Hoče, Slovenija POVZETEK Sprememba evapotranspiracije (ET) je ena izmed najbolj očitnih sprememb povezanih s spremembo rabe tal oziroma vegetacijske odeje; povezava med njima pa je še slabo poznana. V tem prispevku smo krajinske spremem­be najprej zaznali kot spremembo vegetacijske odeje med dvema časovnima oknoma (2002 – 2014), nato pa to spremembo povezali s spremembami v ocenjeni dnevni ET za mesec junij na območju klasičnega Krasa v Sloveniji, pri čemer smo se poslužili posnetkov satelita LANDSAT. Tako smo relativne razlike v ET povezali z dinamiko spreme­njene rabe tal v omenjenem časovnem intervalu in tako pogledali na spreminjanje kraške identitete z bolj “funkcio­nalnega” zornega kota. Na večini površine (74%) se je ET v obdobju 12 let povečala, kar se ujema z dejstvom da se krajina zarašča; najprej z grmišči in nato z gozdom, kar pomeni višje vrednosti ET. Vendar pa so površine s povečano ET sovpadale tudi s površinami, kjer v časovnem intervalu ni bilo sprememb, še posebno v kategoriji gozd (75%). To je bilo še posebej očitno na vzhodnem delu območja, kar razlagamo s hudim žledom pozimi 2014. Lahko zaključi­mo, da je sprememba v ocenjeni ET lahko pomembno orodje in dopolnilna mera za obravnavo krajinskih sprememb z bolj »funkcionalneg a vidika«. S tega stališča bi morali morda pojem »krajinske identitete« ustrezno razširiti. Ključne besede: klasični Kras, evapotranspiracija, krajinske spremembe, raba tal, NDVI Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 REFERENCES ARSO (2015): Arhiv Urada za meteorologijo (Slove­nian Environmental Agency). Ljubljana. Brunsell, N. D. & R. R. Gillies (2000): The effect of emissivity on evaporation. Remote Sens. Hydrol., 267, 276­280. Brunsell, N. A. & R. R. Gillies (2002): Incorporation of surface emissivity into a thermal atmospheric correc­tion. Photogramm. Eng. Rem. S., 68, 1263–1269. Chen, X & Z. Yang (2009): The effects of unusual sleet and freezing weather on the forest pest and control measures. Journal of Sichuan Forestry and Technology, 2, 1­10. Congalton, R.G & K. Green (2008): Assessing the Accuracy of Remotely Sensed Data: Principles and Prac­tices, 2 ed. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp. 183. Council of Europe (2000): European Landscape Convention. Firenze, 20. Diodato, N., M. Ceccarelli & G. Bellocchi (2010): GIS­aided evaluation of evapotranspiration at multi­ple spatial and temporal climate patterns using geoin­dicators. Ecological Indicators, 10(5), 1009­1016. doi: 10.1016/j.ecolind.2010.02.009 Eastman, J. R. (2015): TerrSet. Worcester, MA: Clark University. Eriksson, O. (1996): Remnant dynamics of plants: a review of evidence for remnant, source­sink and meta­populations. Oikos, 77, 248–258. Eriksson, O. & J. Ehrlén (2001): Landscape fragmen­tation and the viability of plant populations. Integrating Ecology and Evolution in a Spatial Context (eds J. Silver­town & J. Antonovics), pp. 157–175. Blackwell Publica­tions, Oxford. ESRI (2010): ArcGIS Desktop. Release 9. 3. Redlan­ds, CA: Environmental Systems Research Intitute. Favretto, D. & L. Poldini (1986): Extinction time of a sample of karst pastures due to bush encroachment. Ecol. Model., 33, 85–88. Feoli, E. & L. Feoli Chiapella (1979): Changements of vegetation pattern towards reforestation. Colloquia Phytosociology, 8, 74–81. Feoli, E., L. Feoli Chiapella, P. Ganis & A. Sorge (1980): Spatial pattern analysis of abandoned grasslands of the Karst region by Trieste and Gorizia. Studia Geo­bot., 1(1), 213–221. Feoli, E. & M. Scimone (1982): Gradient analysis in the spontaneous reforesta­tion process of the Karst region. Gortania ­Atti Museo Friul. Storia Naturale, 3, 143–162. Gan, T. Y. & S. J. Burges (2006): Assessment of soil­based and calibrated parameters of the Sacramento model and parameter transferability. J. Hydrol., 320, 117-131. Goyal, R. K. (2004): Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajas­than (India). Agricultural Water Management, 69(1), 1­11. doi: 10.1016/j.agwat.2004.03.014 Gutman, G. & A. Ignatov (1997): Satellite­derived green vegetation fraction for the use in numerical weath­er prediction models. Adv. Space Res., 19, 477-480. Helm, A., I. Hanski & M. Pärtel (2006): Slow re­sponse of plant species richness to habitat loss and frag­mentation. Ecol. Lett., 9, 72–77. Huxman, T.E., B.P. Wilcox, D.D. Breshears, R.L. Scott, K.A. Snyder, E.E. Small, K.R. Hultine, W.T. Pock­man, R.B. Jackson (2005): Ecohydrological implication of woody plant encroachment, Ecology, 86: 308 – 319. Irmak, A. & S. Irmak (2008): Reference and crop evapotranspiration in south central Nebraska: II. Mea­surement and estimation of actual evapotranspiration for corn. J. Irrig. and Drain. Eng., 700­715. Jin C., B. Zhang, K. Song et al. (2009): RS­based analysis on the effects of land use/cover change on regional evapotranspiration ­A case study in Qian’an County, Jilin Province. Arid Zone Research, 26(5): 734–743. Kaligarič, M. M. Culiberg & B. Kramberger (2006): Recent vegetation history of the north Adriatic grasslan­ds: Expansion and decay of an anthropogenic habitat. Folia Geobot., 41(3), 241–258. Kaligarič, M. & D. Ivajnšič (2014): Vanishing lan­dscape of the »classic« Karst: changed landscape iden­tity and projections for the future. Landscape Urban Plan., 132, 148­158. Lausi, D., S. Pignatti & L. Poldini (1979): Statistische Untersuchungen über die Wiederbewaldung auf dem Triester Karst (Statistical studies on the regrowth of the Karst of Trieste). In Tüxen R. & W. H. Sommer (Eds.), Gesellschaftsentwicklung (Syndynamik) (pp. 445–457). Cramer, Vaduz: Liechtenstein. Li, H., G. Liu & B. Fu (2012): Estimation of region­al evapotranspiration in alpine area and its response to land use change: A case study in three­river headwaters region of Qinghai­Tibet plateau, China. Chin. Geogra. Sci., 22(4), 437–449. Linborg, R. (2007): Evaluating the distribution of plant life­history traits in relation to current and histori­cal landscape con. gurations. J. Ecol., 95, 555­564. Liu, Q. & Z.F. Yang (2010): Quantitative estima­tion of the impact of climate change on actual evapo­transpiration in the Yellow River Basin, China. Journal of Hydrology, 395(3–4): 226–234. doi: 10.1016/j.jhy­drol.2010.10.031 Matsui, T., V. Lakshmi, & E. E. Small (2005): The ef­fects of satellite­derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. J. Climate, 18, 21-40. Montandon, L.M. & E.E. Small (2008): The impact of soil re.ectance on the quanti.cation of the green vege­tation fraction from NDVI, Remote Sens. Environ., 112, 1835­1845. Danijel IVAJNŠIČ & Mitja KALIGARIČ: CAN EVAPOTRANSPIRATION BE CONSIDERED AN ADDITIONAL INDICATOR FOR UNDERSTANDING ..., 173–182 Ogrin, D. (1995): Podnebje Slovenske Istre (The cli­mate of Slovenian Istria) (Knjižnica Annales, 11). Koper: Zgodovinsko društvo za južno Primorsko. Oleson, K. W., W. J. Emery & J. A. Maslanik (2000): Evaluating land surface parameters in the biosphere–at­mosphere transfer scheme using remotely sensed data sets. J. Geophys. Res., 105, 7275-7293. Poldini, L. (1989): La vegetazione del Carso Isontino e Triestino (Vegetation of Goriziaand Trieste karst). Lint, Trieste. Riekerk, H. (1989): In.uence of silvicultural prac­tices on the hydrology of pine .atwoods in Florida. Wa­ter Resources Research, 25(4), 713­719. doi: 10.1029/ WR025i004p00713 Rajšp, V. & M. Ficko (1996): Slovenija na vojaškem zemljevidu (Josephinische Lan­desaufnahme 1763– 1787 für das Gebiet der Republik Slowenien). Ljubljana: ZRC SAZU and Arhiv Republike Slovenije. Zhang, L., W.R. Dawes & G.R. Walker (2001): The response of mean annual evapotranspiration to vegeta­tion changes at catchment scale. Water Resour. Res., 37(3), 701–708. doi: 10.1029/ 2000WR900325 Zeng, X., R. E. Dickinson, A. Walker, M. Shaikh, R. S. DeFries & J. Qi (2000): Derivation and evaluation of global 1­km fractional vegetation cover data for land modeling. J. Appl. Meteorol., 39, 826-839. Watts, D. (2004): Quaternary biotic interactions in Slovenia and adjacent regions: the vegetation. In: Grif­.ths, H.I., B. Kryštufek & J. Reed (eds.), Balkan biodiver­sity, Kluwer, Dordrecht, pp. 69­78. DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÁ DEI NOSTRI ISTITUTI E DELLE NOSTRE SOCIETA ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS DELA NAŠIH ZAVODOV IN DRUŠTEV, 185­186 22. SIMPOZIJ O OKOLJSKI BIOGEOKEMIJI V PIRANU V dneh med 28. septembrom in 3. oktobrom 2015 je potekal v Piranu 22. simpozij o okoljski biogeokemiji v organizaciji Morske biološke postaje Nacionalnega in­štituta za biologijo in Odseka za znanosti o okolju Insti­tuta Jožef Stefan (www.iseb22.ijs.si). Tovrstne simpozije že več kot trideset let vsako drugo leto pripravlja Med­narodno združenje za okoljsko biogeokemijo (Internati­onal Society for Environmental Biogeochemistry – ISEB). S svojo naravno lepoto, zgodovinskimi in kulturnimi znamenitostmi in ugodno zemljepisno lego v Tržaškem zalivu je Piran skoraj idealna lokacija za tovrstne kon­grese. Tržaški zaliv in severni Jadran nasploh sta bila v zadnjih petdesetih letih področji intenzivnih biogeoke­mijskih raziskav, kar ju uvršča med znanstveno­razisko­valno relevantna področja za simpozij. ISEB se je v svoji zgodovini delovanja posvečal razvoju znanstvene misli in uporabi ter izobraževanju na področju okoljske bi­ogeokemije. Ker je ISEB vedno stremel k združevanju raziskovalcev iz različnih disciplin, je tudi tokratni sim­pozij privabil znanstvenike s področja znanosti o tleh, mikrobne ekologije ter znanosti o morju in atmosferi in limnologije. Simpozija se je udeležilo več kot 100 raziskovalcev iz 23 držav. Glavni namen simpozija je bil razširiti spoznanja in izmenjati izkušnje s področja interdisciplinarnih biogeokemijskih raziskav, ki se na­vezujejo na znanosti o okolju, mikrobiologijo, kemijo, pedologijo, geologijo, limnologijo, ekologijo, študij morskih in kopenskih procesov in ekosistemov. Posebna pozornost je bila namenjena biogeokemijski problema­tiki onesnaženja tal, voda in ozračja, pri čemer sta za njeno reševanje izredno pomembna povezovanje in iz­menjava znanja, izkušenj ter dobrih praks na lokalnem in globalnem nivoju. Sekcije so bile organizirane v obli­ki sledečih tematskih sklopov: morsko in obalno oko­lje, površinske in talne vode, tla, klimatske spremembe, mikrobna biogeokemija, nanodelci in koloidi, izotopi v biogeokemijskih procesih, biogeokemija onesnaževal in arheološka biogeokemija. Program je vseboval tudi dve DELA NAŠIH ZAVODOV IN DRUŠTEV, 185­186 sekciji GMOS in GEOTRACES (raziskave morskega in obalnega okolja) ter GLOBAQUA (raziskave površinskih in podzemnih vod). Sekcije o biogeokemiji tal so bile posvečene Mednarodnemu letu tal (IYS), njihov glavni namen je bil širjenje pomena o varnosti hrane, prila­gajanju kmetijstva klimatskim spremembam, zmanjše­vanju revščine in trajnostni razvoj. Močna mednarodna zasedba šestih vabljenih predavateljev, 54 ustnih pred­stavitev in 54 posterjev je v štirih dneh predstavila da­našnjo okoljsko biogeoekmijsko tematiko. Program je vseboval še strokovni ogled Piranskih solin in Morske biološke postaje ter izlet v Lipico, Škocjanske jame in Hrastovlje. Drugi dan simpozija je udeležence sprejel piranski župan. Jadran Faganeli in Nives Ogrinc OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS OCENE IN POROČILA, 189­191 Ocena knjige: »ENDEMI U HRVATSKOJ FLORI« avtorjev Tonija Nikolića, Milenka Milovića, Sandra Bogdanovića in Nenada Jasprice V letu 2015 je kot učbenik Zagrebške univerze (Sve­učilište u Zagrebu) v produkciji založniške hiše Alfa d. d. na skoraj 500 (!) straneh izšla bogato ilustrirana in tudi sicer likovno izvrstno opremljena knjiga o ende­mitih Hrvaške. Avtorji pripadajo srednji oziroma mlajši generaciji hrvaških botanikov; kot prvi avtor je zapisan Toni Nikolić, profesor sistematske botanike na zagrebški Naravoslovno­matematični fakulteti. Milenko Milović je prizadeven in razgledan .orist, ki poučuje na šibeniških srednjih šolah. Sandro Bogdanović je taksonom in .orist z zagrebške Agronomske fakultete. Nenad Jasprica pa prihaja z dubrovniške univerze. Vsi so izvrstni pozna­valci .ore, nekateri tudi avtorji pomembnih taksonom­skih in .logenetskih znanstvenih del, ki obravnavajo hrvaško .oro. Kratkemu predgovoru sledi Uvod (avtor Toni Nikolić), kjer so jasno, a koncizno razdelani pojmi biodiverzitete, .ore, endemizma kot pojava in posebej še endemizma v hrvaški .ori. Beseda teče tudi o stopnji raziskanosti in ogroženosti endemitov. Sledijo poglavja, v katerih je temeljito obdelanih 155 taksonov, v manjši meri pa je obravnavanih še dodatnih 53 taksonov, kar pa pomeni »le« 54 % hrvaških endemi­tov, kot jih avtorji razumejo na osnovi literaturnih virov. Hkrati pripominjajo, da kritični pregled skozi 384 na hr­vaškem prepoznanih endemitov kaže na to, da je obstoj nekaterih skrajno dvomljiv, tako da ocenjujejo, da so v knjigi vendarle obdelali okrog tri četrtine (76 %) hrvaških endemitov. Kakorkoli že, temeljita obravnava 155 vrst zasluži pozornost tudi slovenskih botanikov in ljubitel­jev rastlin z več vidikov. Na prvo mesto bi postavil sam način obdelave: vsaka obravnava posameznega taksona je avtorsko delo enega od soavtorjev in vsebuje vse re­levantne podatke od mesta prve objave, locus classicus, sinonimov, ljudskih in tujih domačih imen v hrvaškem, italijanskem, angleškem, nemškem, francoskem in slo­venskem jeziku. Sledi obširen opis vrste in razširjenosti, pri čemer je dodana tudi karta razširjenosti. Opisani so rastišče in ekologija rastišča, ogroženost ter zgodovin­ske in druge zanimivosti. Sledi obširen pregled relevant­ne literature za posamezno vrsto. Seveda je vsaka vrsta ilustrirana z več barvnimi fotogra.jami, pogosto pa še z risbami, herbarijskimi polami, starimi opisi in ilustracija­mi iz zgodnjih botaničnih del, fotogra.jami pomembnih botanikov, botaničnimi znamkami in podobnim materia­lom, ki vsestransko osvetli obravnavano vrsto z vseh vi­dikov. Ponekod so za boljše prepoznavanje taksonov do­dani ključi za določanje, ki pa so lahko tudi v obliki tabel ali narisanih morfoloških ali mikroskopskih detajlov. Knjiga je zanimiva za slovenske bralce tudi zato, ker se endemizem ne konča na političnih mejah, ampak na naravnih mejah. Zato je znaten delež obravnavanih taksonov razširjen tudi v Sloveniji (in drugih državah, ki mejijo na Hrvaško ali celo širše). Obravnavanih je nekaj vrst, ki jih tudi v Sloveniji obravnavamo kot ka­rizmatične iz različnih razlogov. Tako so v knjigi zajete vrste in podvrste, ki so tudi v Sloveniji deležne posebne pozornosti – ali zato, ker so bile v Sloveniji opisane, ker so avtorji opisov Slovenci, ker se imenujejo po slo­venskih botanikih, ker gre za rastline, ki v Sloveniji do­sežejo mejo areala, se imenujejo po naših toponimih, ki jih je Slovenija predlagala na seznam »evropsko po­membnih rastlin« ali pa so na kak drug način »razvpite«: Seseli malyi, Seseli tommasinii, Gra.a golaka, Genista holopetala, Drypis spinosa subsp. jacquiniana, Allyssum montanum subsp. pluscanescens, Astragalus monspes­sulanium subsp. Illyricus, Crocus weldenii, Scabiosa silenifolia, Cerastium dinaricum, Dianthus tergestinus, Campanula cespitosa, Campanula waldsteiniana, Cam­panula justiniana, Chouardia (Scilla) litardieri, Arabis scopoliana, Edrianthus tenuifolius, Iris illyrica, Iris cro­atica, Moehringia tommasiniana itd. Med opisanimi je veliko t. i. submediteransko­ilirskih vrst, ki sestavljajo .oro kraških suhih travišč ter gozdnih ilirsko­balkanskih vrst. Oba geoelementa segata tudi v Slovenijo. Prave poslastice za bralca pa so seveda hrvaški ste­noendemiti, med katerimi je kar nekaj otoškega ende­mizma, pa endemizma posameznih predelov Jadrana (Kvarner) in Dinaridov (Biokovo). OCENE IN POROČILA, 189­191 Treba je opozoriti, da hrvaški taksonomi »ne miruje­jo« in da nastajajo tudi v tem desetletju novi opisi ende­mičnih vrst. Primer je Campanula teutana z otoka Visa, opisana leta 2014. Knjiga pomeni tudi izziv za slovenske botanike, saj ima kateri od endemičnih taksonov, opisanih v knjigi, morda širšo razširjenost in sega tudi v Slovenijo, pa to do sedaj še ni bilo dovolj zabeleženo v literaturi (Ber­beris croatica, Anthyllis montana subsp. atropurpurea, nekatere vrste rodu Ophrys, ipd.). Dalo bi se razpravljati tudi o podrobnostih, na primer o izboru vrst ali nomenklaturi, ki je bila uporabljena za to knjigo, vendar gre za zanemarljive podrobnosti. Avtor teh vrstic je očaran nad bogato opremljenim delom, ki prinaša ogromno informacij in vsakega – profesionalnega ali ama­terskega – ljubitelja rastlin kar »naganja« v naravo, na Hr­vaško, da se z obravnavanimi taksoni tudi osebno sreča. Na koncu bi rad čestital avtorjem za odlično opravl­jeno delo; za njim je ogromno porabljenega časa in tru­da, ki ga profesionalni botaniki v 21. stoletju – vsaj v Sloveniji – na žalost moramo porabiti za vse prej kot pa za pisanje takšnih časovno in vsebinsko zahtevnih znan­stvenih monogra.j. Slovenski prenormiran sistem vred­notenja znanstveno­raziskovalnega dela (vzdrževanje sistema potrebuje vedno več sredstev in ljudi, medtem ko se sredstva za samo raziskovalno delo rapidno zman­jšujejo) takšnim monogra.jam, ki nastajajo leta in za ka­tere je potrebno enormno znanje, odmeri zanemarljivo pičle »točke«. Morda zato takšna knjiga v Sloveniji še ne bo nastala kmalu … želel pa bi si , da se motim. Mitja Kaligarič Anton Brancelj: JAMA VELIKA PASICA: ZGODOVINA, OKOLJE IN ŽIVLJENJE V NJEJ / THE VELIKA PASICA CAVE: THE HISTORY, ENVIRONMENT AND LIFE IN IT. Založba ZRC in Nacionalni inštitut za biologijo, Ljubljana, 2015, 110 str. Prof. dr. Tone Brancelj je vrhunski zoolog in biospe­leolog, ki se je že v mladih letih zapisal raziskovanju jamskega življa. Spoznal sem ga še kot dijak, ko je bil mentor na taboru nekje proti koncu sedemdesetih let prejšnjega stoletja, ki so ga priredili entuziasti Obalnega kluba mladih raziskovalcev iz Kopra. Danes je dr. Bran­celj aktiven predvsem v dveh znanstvenih disciplinah, in sicer limnologiji in biospeleologiji. Zanimajo ga razne skupine jamskih nevretenčarjev, predvsem raki cepo­nožci (Copepoda) in vodne bolhe (Cladocera). Opisal je številne nove vrste pravih vodnih jamskih nevretenčarjev (stigobionti) in o tem tudi že pisal v reviji Annales. Tokrat je pripravil monografsko delo o jami Velika Pasica, ki ima v tradiciji jamskega raziskovanja zelo ve­lik pomen, pa čeprav gre za komajda 100 m dolgo jamo. Knjiga je napisana v privlačnem slogu in obsega zanimi­va zgodovinska odkrivanja te jame ter sodobne raziska­ve z novimi tehnikami vzorčenja. Slikovno gradivo je raznoliko, od ličnih fotogra.j, zemljevidov, diagramov in raznih ilustracij do originalnih dokumentov iz kata­stra Društva za raziskovanje jam. Jama Velika Pasica ni samo nahajališče novih in red­kih vrst, ampak pomembna lokaliteta tudi s stališča zgo­dovine biospeleologije. V tej jami so raziskovala zveneča imena, kot so Ferdinand Schmidt, Georg Frauenfeld, Giu­seppe Müller, Ljudevit Kuščer, Egon Pretner in drugi. Veli­ka Pasica je povrhu vsega še lahko dostopna in nezahtev­na, zato ne preseneča dejstvo, da so jo že pred poldrugim stoletjem obiskovali navdušeni zbiralci jamskih hroščev. Znani pa so tudi primeri vandalizma, saj so mnogi rado­vedneži iz Velike Pasice jemali jamske suvenirje, o čemer pričajo polomljeni kapniki. Danes jama ni več dostopna za obisk, pač pa so v njej postavili jamski laboratorij z namenom rednega merjenja ekoloških parametrov. V monogra.ji izvemo veliko o različnih aspektih Ve­like Pasice. Velik del monogra.je avtor nameni sodob­nim raziskavam, ki jim je posvetil osem let kontinuiranih raziskav živih in neživih dejavnikov v jami. Še posebej so ga zanimale prenikle vode. V različnih poglavjih av­tor opiše raziskave meteoroloških in hidroloških značil­ OCENE IN POROČILA, 189­191 nosti, kemijske sestave in jamske biodiverzitete. S tega vidika je še posebej zanimiva ekologija vodnih vrst in njihovih prilagoditev. In zakaj je jama Velika Pasica nekaj posebnega? V Veliki Pasici so zoologi opisali 13 vrst jamskih nevre­tenčarjev, začenši z letom 1853, ko je Sturm opisal jam­skega dlakavega brezokca (Anophthalmus hirtus). Štiri izmed novo opisanih vrst je odkril avtor sam. Opisal je štiri jamske ceponožce, ki jih je lovil v curkih prenikle vode in v lužicah pod curki. Avtorjeva raziskovanja so odprla tudi veliko novih vprašanj o tako nabranih ali, bolje rečeno, odkritih živalskih vrstah. V jami Velika Pasica so doslej našli 31 vrst jamskih živali, od katerih je 22 stigobiontov (vodnih jamskih ži­vali) in 9 troglobiontov (kopenskih jamskih živali), kar je zelo veliko, saj je bilo doslej na svetu najdenih le še osem jam ali jamskih sistemov z večjim številom vrst. Če pa upoštevamo samo stigobionte, je jama Velika Pa­sica na sedmem mestu po številu vrst. Avtorju je s knjigo uspelo dokazati, da je majhna jama nedaleč od Ljubljane še eden izmed izjemnih bi­serov z vidika biodiverzitete, s katerim se lahko ponaša naša deželica. Lovrenc Lipej Dr. Anton Brancelj pri vzorčenju v Veliki Pasici. (Foto: D. Tome) Dr. Anton Brancelj during sample collection in the Velika Pasica cave. (Photo: D. Tome) NAVODILA AVTORJEM 1. Revija ANNALES (Anali za istrske in mediteranske študije Series historia naturalis) objavlja izvirne znanstve­ne in pregledne članke z naravoslovnimi vsebinami, ki obravnavajo posebnosti različnih podpodročij sredozem­skega naravoslovja: morska biologija in ekologija, ihtio­logija, geologija s paleontologijo, krasoslovje, oljkarstvo, biodiverziteta Slovenije, varstvo narave, onesnaževanje in varstvo okolja, fizična geografija Istre in Mediterana idr. Vključujejo pa tudi krajše znanstvene prispevke o zaključenih raziskovanjih., ki se nanašajo na omenjeno področje. 2. Sprejemamo članke v angleškem, slovenskem in italijanskem jeziku. Avtorji morajo zagotoviti jezikovno neoporečnost besedil, uredništvo pa ima pravico članke dodatno jezikovno lektorirati. 3. Članki naj obsegajo do 48.000 znakov brez pre­sledkov oz. 2 avtorski poli besedila. Članek je mogoče oddati na e-naslov annales@mbss.org (zaželjeno) ali na elektronskem nosilcu (CD) po pošti na naslov uredništva. Avtor ob oddaji članka zagotavlja, da članek še ni bil objavljen in se obvezuje, da ga ne bo objavil drugje. 4. Naslovna stran članka naj vsebuje naslov članka, ime in priimek avtorja (avtorjev), ime in naslov inštitucije, kjer je (so) avtor(ji) zaposlen(i) oz. domači naslov in na­slovom elektronske pošte (samo prvi oz. korespondenčni avtor). 5. Članek mora vsebovati povzetek in izvleček. Izvle­ček je krajši (cca. 10 vrstic) od povzetka (cca. 30 vrstic). V izvlečku na kratko opišemo namen, metode dela in rezultate. Izvleček naj ne vsebuje komentarjev in priporočil. Povzetek vsebuje opis namena in metod dela ter po­vzame analizo oziroma interpretacijo rezultatov. V pov­zetku ne sme biti ničesar, česar glavno besedilo ne vse­buje. V povzetku se avtor ne sklicuje na slike, tabele in reference, ki so v članku. 6. Avtorji naj pod izvleček članka pripišejo ustrezne ključne besede (največ 6). Zaželjeni so tudi angleški (ali slovenski) prevodi izvlečka, povzetka, ključnih besed, podnapisov k slikovnemu in tabelarnemu gradivu. V na­sprotnem primeru bo za prevode poskrbelo uredništvo. 7. Glavni del besedila naj vključuje sledeča poglavja: Uvod, Material in metode, Rezultati, Razprava ali Rezul­tati in razprava, Zaključki (ali Sklepi), Zahvala (če avtor želi), Literatura. Dele besedila je možno oblikovati v pod­poglavja (npr. Pregled dosedanjih objav v Uvodu, Opis območja raziskav v Material in metode). Podpisi k slikam so priloženi posebej za poglavjem Literatura. 8. Tabele avtor priravi posebej na ločenih straneh v programu Word, tako kot rokopis, jih zaporedno oštevilči in opremi z naslovom – kratkim opisom. V glavnem delu besedila se sklicuje na tabele tako, da jih na ustreznem mestu označi z npr. “(Tab. 1)”. 9. Slikovno gradivo (grafi, zemljevidi, fotografije, table) avtor posreduje v ločenih datotekah (jpeg, tiff) z najmanj 300 dpi resolucije pri želeni velikosti. Največja velikost slikovnega gradiva je 17x20 cm. Vsa potrebna dovoljenja za objavo slikovnega gradiva (v skladu z Za­konom o avtorski in sorodnih pravicah) priskrbi avtor sam in jih predloži uredništvu pred objavo članka. Slike je po­trebno tudi podnasloviti in zaporedno oštevilčiti (glej toč­ko 7). V glavnem delu besedila se avtor sklicuje na slike tako, da jih na ustreznem mestu označi z npr. “(Sl. 1)”. 10. Bibliografske opombe, s čimer mislimo na citat – torej sklicevanje na druge publikacije, sestavljajo na­slednji podatki v oklepaju: avtor in leto izida; npr. (No­vak, 2007). Če sta dva avtorja, se izpišeta oba (Novak & Kranjc, 2001), če so trije ali več pa se izpiše samo prvi, ki mu sledi okrajšava et al. (Novak et al., 1999). Več citatov je med seboj ločenih s podpičjem in si sledijo kronološko -z naraščajočo letnico izdaje, npr. (Novak et al., 1999; Adamič, 2001; Kranjc & Zupan, 2007). Osebno informa­cijo (ustno, pisno) izpišemo prav tako v oklepaju z naved­bo kratice imena in priimka posredovalca informacije, za vejico pa dodamo “osebno sporočilo”, npr. (J. Novak, osebno sporočilo). 11. Celotni bibliografski podatki so navedeni v po­glavju Literatura v abecednem vrstnem redu. Pri tem avtor navede izključno dela, ki jih je v članku citiral. Če ima isti avtor več bibliografskih podatkov, se najprej kronološko izpišejo tisti, kjer je edini avtor, sledijo dela v soavtorstavu še z enim avtorjem in dela v soavtorstvu z več avtorji. Imena revij, v katerih so izšla citirana dela, se izpišejo okrajašano (splošno priznane okrajšave re­vij). Članki, ki še niso bili publicirani, se lahko citirajo le, če so bili dokončno sprejeti v tisk, pri čemer se na koncu bibliografskega podatka doda beseda “v tisku”. Člankov, ki so šele bili poslani v recenzijo, se ne sme citirati. Primeri navajanje različnih tipov bibliografskih podat­kov: članki v revijah: Klock, J.-H., A. Wieland, R. Seifert & W. Michaelis (2007): Extracellular polymeric substances (EPS) from cyanobac­terial mats: characterisation and isolation method optimi­sation. Mar. Biol., 152, 1077-1085. Knjige in druge neserijske publikacije (poročila, di­plomska dela, doktorske disertacije): Wheeler, A. (1969): The fishes of the British Isles and North-West Europe. McMillan, London, 613 p. Poglavje v knjigi: McEachran, J. D. & C. Capapé (1984): Myliobatidae. In: Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 205­ 209. 12. Drugo: latinski izrazi kot npr. in vivo, in situ, e.g., i.e., ter rodovna (Myliobatis sp.) in vrstna (Myliobatis aqui­la) imena se izpišejo v fontu italic. Kadarkoli je možno, se uporabljajo enote iz sistema SI (Systeme international d'unités). 13. Prvi odtis člankov uredništvo pošlje avtorjem v korekturo. Avtorji so dolžni popravljeno gradivo vrniti v enem tednu. Besedilo popravljamo s korekturnimi zna­menji, ki jih najdemo na koncu Slovenskega pravopisa (2001), Ljubljana, ZRC SAZU, 24–25. Širjenje obsega besedila ob korekturah ni dovoljeno. Druge korekture opravi uredništvo. 14. Za dodatna pojasnila v zvezi z objavo člankov je uredništvo na voljo. UREDNIŠTVO ISTRUZIONI PER GLI AUTORI 1. La rivista ANNALES (Annali per gli studi istriani e mediterranei, Series historia naturalis) pubblica articoli scientifici originali e compendii dai contenuti scientifi­ci relativi ai vari settori della storia naturale e pertinen­ti l’area geografica del Mediterraneo: biologia marina, ecologia, ittiologia, geologia, paleontologia, carsologia, olivicoltura, biodiversita della Slovenia, tutela della natu­ra, inquinamento e tutela dell’ambiente, geografia fisica dell’Istria e del Mediterraneo ecc. La rivista pubblica an­che articoli scientifici brevi relativi a ricerche concluse pertinenti a tali settori. 2. La Redazione accetta articoli in lingua inglese, slo­vena e italiana. Gli autori devono garantire l’ineccepibi­lita linguistica dei testi, la Redazione si riserva il diritto di una revisione linguistica. 3. Gli articoli devono essere di lunghezza non su­periore alle 48.000 battute senza spazi, ovvero 2 fogli d’autore. Possono venir recapitati all’indirizzo di posta elettronica annales@mbss.org (preferibilmente) oppure su supporto elettronico (CD) per posta ordinaria all’indirizzo della Redazione. L’autore garantira l’originalita dell’articolo e si impe­gnera a non pubblicarlo altrove. 4. Ogni articolo deve essere corredato da: titolo, nome e cognome dell’autore (autori), denominazione ed indirizzo dell’ente di appartenenza o, in alternativa, l’indirizzo di casa, nonché l’indirizzo di posta elettronica (solo del primo autore o dell’autore di corrispondenza). 5. I contributi devono essere corredati da un riassunto e da una sintesi. Quest’ultima sara piu breve (cca. 10 ri­ghe) del riassunto (cca 30 righe). Nella sintesi si descriveranno brevemente lo scopo, i metodi e i risultati delle ricerche. La sintesi non deve contenere commenti e segnalazioni. Il riassunto riportera in maniera sintetica lo scopo, i metodi delle ricerche e l’analisi ossia l’interpretazione dei risultati. Il riassunto non deve riferirsi alle tabelle, fi­gure e alla bibliografia contenuta nell’articolo. 6. Gli autori sono tenuti ad indicare le parole chiave adeguate (massimo 6). Sono auspicabili anche le tradu­zioni in inglese (o sloveno) della sintesi, del riassunto, delle parole chiave, delle didascalie e delle tabelle. In caso contrario, vi provvedera la Redazione. 7. Il testo principale deve essere strutturato nei se­guenti capitoli: Introduzione, Materiali e metodi, Risul­tati, Discussione o Risultati e discussione, Conclusioni, Ringraziamenti (se necessari), Bibliografia. Il testo puo essere strutturato in sottocapitoli (ad es. sottocapitolo Rassegna delle pubblicazioni nell’Introduzione; sottoca­pitolo Descrizione dell’area di ricerca nel capitolo Ma­teriali e metodi). Le didascalie devono essere presentate separatamente, a seguito del capitolo Bibliografia. 8. Le tabelle saranno preparate in forma elettronica come il manoscritto (formato Word) e allegate in fogli se­parati alla fine del testo. Gli autori sono pregati di con­trassegnare ogni tabella con un numero e il titolo ossia una breve descrizione. Nel testo la tabella viene richia­mata come segue: (Tab. 1). 9. Il materiale grafico (grafici, carte geografiche, fo­tografie, tavole) va preparato in formato elettronico (jpeg o tiff) e consegnato in file separati, con una definizione di 300 dpi alla grandezza desiderata, purché non ecceda i 17x20 cm. Prima della pubblicazione, l’autore provve­dera a fornire alla Redazione tutte le autorizzazioni ri­chieste per la riproduzione del materiale grafico (in virtu della Legge sui diritti d’autore). Tutto il materiale grafico deve essere accompagnato da didascalie (vedi punto 7) e numerato.. Nel testo i grafici vengono richiamati come segue: (ad es. Fig. 1). 10. I riferimenti bibliografici (citazioni) richiamano un’altra pubblicazione (articolo). La nota bibliografica, riportata nel testo, deve contenere i seguenti dati tra parentesi: cognome dell’autore, anno di pubblicazione, ad es. (Novak, 2007). Se gli autori sono due, verranno indicati entrambi (Novak & Kranjc, 2001), nel caso di tre o piu autori verra indicato soltanto il primo, seguito dall’abbreviazione et al. (Novak et al., 1999). Vari rife­rimenti bibliografici in una stessa nota vanno divisi dal punto e virgola e segnalati in ordine cronologico, ad. es. (Novak et al., 1999; Adamič, 2001; Kranjc & Zu­pan, 2007). La testimonianza (orale, scritta) verra indi­cata tra parentesi con l’abbreviazione del nome e con il cognome di chi l’ha trasmessa, seguiti dalla virgola e la dicitura “informazione personale”, ad es. (J. Novak, informazione personale). 11. La bibliografia completa va inserita in ordine alfabetico nel capitolo Bibliografia. L’autore indichera esclusivamente i lavori e le edizioni citati nell’articolo. Se si citano piu lavori dello stesso autore, verranno indi­cati prima in ordine cronologico i lavori in cui l’autore appare solo, poi quelli in cui l’autore compare assieme ad un secondo coautore, seguiti infine da quelli in cui egli compare tra piu coautori. I nomi delle riviste in cui sono pubblicati i lavori citati saranno indicati nella forma abbreviata (abbreviazioni ufficialmente riconosciute). Gli articoli inediti si possono citare soltanto se sono in cor­so di pubblicazione, facendo loro seguire la dicitura “in corso di pubblicazione”. Gli articoli, non ancora recensiti non possono essere citati. Esempio di lavoro bibliografico: Articoli in riviste: Klock, J.-H., A. Wieland, R. Seifert & W. Michaelis (2007): Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation me­thod optimisation. Mar. Biol., 152, 1077-1085. Libri ed altre pubblicazioni non periodiche (relazioni, tesi di laurea, dissertazioni di dottorato): Wheeler, A. (1969): The fishes of the British Isles and North-West Europe. McMillan, London, 613 p. Capitoli di libro: McEachran, J. D. & C. Capapé (1984): Myliobatidae. In: Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 205-209. 12. Altro: Le espressioni latine come ad es. in vivo, in situ, e.g., i.e., i nomi dei generi famiglie (Myliobatis sp.) e delle specie (Myliobatis aquila) si scrivono con il caratte­re italic. Quando possibile saranno utilizzate le unita del sistema SI (Systeme international d’unités). 13. Gli autori ricevono le prime bozze di stampa per la revisione. Le bozze corrette vanno quindi rispedite entro una settimana alla Redazione. In questa fase, i testi cor­retti con segni adeguati (indicazioni in merito si trovano alla fine della pubblicazione “Slovenski pravopis” (2001), Ljubljana, ZRC SAZU, 24-25, non possono essere piu am­pliati. La revisione delle bozze e svolta dalla Redazione. 14. La Redazione rimane a disposizione per eventuali chiarimenti. LA REDAZIONE INSTRUCTIONS TO AUTHORS 1. The journal ANNALES (Annals for Istrian and Mediterranean Studies, Series historia naturalis) publishes original scientific and review articles in the field of natural studies related to the specifics of various subfields of Mediterranean natural studies: marine biology and ecology, ichthyology, geology with paleontology, karst studies, olive growing, biodiversity of Slovenia, nature protection, pollution and environmental protection, physical geography of Istria and the Mediterranean, etc. It also publishes short scientific papers on completed research projects related to the above-mentioned sub-fields. 2. The articles submitted can be written in the English, Slovene or Italian language. The authors should ensure that their contributions meet acceptable standards of language, while the editorial board has the right to have them language edited. 3. The articles should be no longer than 48,000 characters (spaces excluded) or 32 typewritten double-spaced pages. They can be submitted via e-mail annales@mbss.org (preferably) or regular mail, with the electronic data carrier (CD) sent to the address of the editorial board. Submission of the article implies that it reports original unpublished work and that it will not be published elsewhere. 4. The title page should include the title of the article, the name and surname of the author(s), their affiliation (institutional name and address) or home address, and e-mail address (of the first author or the corresponding author only). 5. The article should contain the summary and the abstract, with the former (c. 30 lines) being longer than the latter (c. 10 lines). The abstract contains a brief description of the aim of the article, methods of work and results. It should contain no comments and recommendations. The summary contains the description of the aim of the article and methods of work and a brief analysis or interpretation of results. It can contain only the information that appears in the text as well. It should contain no reference to figures, table and citations published in the main text. 6. Beneath the abstract, the author(s) should supply appropriate keywords (max 6) and, if possible, the English (or Slovene) translation of the abstract, summary, keywords, and captions to figures and tables. If unprovided, the translation will be provided by the editorial board. 7. The main text should include the following chapters: Introduction, Material and Methods, Results, Discussion or Results and Discussion, Conclusion, Acknowledgement (not obligatory), References. Individual parts of the text can form a sub-chapter (e.g. Survey of Previous Studies under Introduction; Description of Research Area under Material and Methods). Captions to figures should appear on a separate page beneath References. 8. Each table should be submitted on a separate page in Word programme (just like the main text). It should be numbered consecutively and supplied with the title – brief description. When referring to the tables in the main text, use the following style: (Tab. 1). 9. Illustrative matter (diagrams, maps, photographs, plates) should be submitted as separate files (in jpeg or tiff format) and saved at a minimum resolution of 300 dpi per size preferred, with the maximum possible publication size being 17x20 cm. Prior to publication, the author(s) should obtain all necessary authorizations (as stipulated by the Copyright and Related Rights Act) for the publication of the illustrative matter and submit them to the editorial board. All figures should be captioned and numbered consecutively (cf. Item 7). When referring to the figures in the main text, use the following style: (Fig. 1). 10. Bibliographic notes or citations – i.e. references to other articles or publications – should contain the following data: author and year of publication, e.g. (Novak, 2007). If there are two authors, include both surnames (Novak & Kranjc, 2001); if there are more than two authors, include the surname of the first author followed by a comma and the abbreviation et al. (Novak et al., 1999). If there is more than one reference, separate them by a semicolon and list them in ascending chronological order, e.g. (Novak et al., 1999; Adamič, 2001; Kranjc & Zupan, 2007). When citing information obtained through personal communication (oral, written), provide the initial letter of the name and full surname of the informant followed by a comma and the phrase personal communication, e.g. (J. Novak, personal communication). 11. The entire list of bibliographic data should be published under References in alphabetical order. The author(s) should list only the works cited in the article. If you are listing several works by the same author with some of them written in co-authorship, first list those written by the author him/herself, then those written in co-authorship with another author, and finally those written in co-authorship with more than one author, with the entries listed in chronological order. The names of journals in which the works cited were published should be abbreviated (cf. list of official journal abbreviations). Unpublished articles can be cited only if they have been approved for publication, which should be indicated by adding the phrase in press to the end of the relevant bibliography entry. Some examples of how to cite different types of bibliographical data: Articles published in serial publications: Klock, J.-H., A. Wieland, R. Seifert & W. Michaelis (2007): Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Mar. Biol., 152, 1077-1085. Books and other non-serial publications (reports, diploma theses, doctoral dissertation): Wheeler, A. (1969): The fishes of the British Isles and North-West Europe. McMillan, London, 613 p. Chapters published in a book: McEachran, J. D. & C. Capapé (1984): Myliobatidae. In: Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 205-209. 12. Miscellaneous: Latin phrases such as in vivo, in situ, e.g., i.e., and names of genera (Myliobatis sp.) and species (Myliobatis aquila) should be written in italics. Whenever possible, use the SI units (Systeme international d’unités). 13. The authors are sent the first page proofs. They should be returned to the editorial board within a week. When reading the proofs, the authors should use the correction signs listed at the end of the book Slovenski pravopis (2001), Ljubljana, ZRC SAZU, 24–25. It is not allowed to lengthen the text during proof­reading. Second proof-reading is done by the editorial board. 14. For additional information regarding article publication contact the editorial board. EDITORIAL BOARD KAZALO K SLIKAM NA OVITKU SLIKA NA NASLOVNICI: Čeprav bi mante ali morske vrage običajno pričakovali le v tropskih morjih, ena izmed vrst, Mobula mobular, na­seljuje tudi Sredozemsko morje. Pred kratkim pa je bila v njem odkrita še druga vrsta, M. japanica. Na sliki ena od tropskih mant tik pod površino. (Foto: B. Furlan) Sl. 1: Morski psi, ki so nekoč vzbujali strah in trepet morij in oceanov, so danes ponekod priljubljena turistična atrakcija, ki privablja čedalje več potapljačev. (Foto: B. Furlan) Sl. 2: Sečoveljske soline danes niso samo znana ornitološka lokaliteta in pomembno mokrišče, ampak jo raziskujejo tudi strokovnjaki iz drugih strok. (Foto: I. Škornik) Sl. 3: O žetvi soli v Sečoveljskih solinah in njeni ceni izvirajo pomembni zapisi v piranskem mestnem arhivu že iz leta 1637. (Foto: I. Škornik) Sl. 4: Srečanja med potapljači in morskimi psi so danes zaradi hudega upada populacij morskih psov v mnogih morjih sveta znatno redkejša kot včasih. Do njih lahko pride predvsem v okoljih, ki so dovolj oddaljena od obrežnih mest. (Foto: B. Furlan) Sl. 5: Rastline z večjo biomaso imajo večjo listno površino, kar pomeni večjo evapotranspiracijo. V tej luči je po­membno, da razumemo, da se vegetacija ne spreminja zgolj v smislu vrstnega obrata in zunanjega izgleda, ampak tudi s funkcionalnega stališča. (Foto: M. Kaligarič) Sl. 6: Kraški rob je biolog Andrej Gogala primerjal s koralnim grebenom. Zaraščanje z visokimi steblikami in grmi pa pomeni z vrstami najbogatejšo fazo v sukcesiji, ki vodi v gozd. (Foto: M. Kaligarič) INDEX TO IMAGES ON THE COVER FRONT COVER: Although manta rays or devilrays would only be expected to inhabit topical seas, there is one species, the giant devilray Mobula mobular, that can also be found in the Mediterranean. Recently, a second species of devilray, M. japonica, has been discovered to reside in this region. The photo shows one of the tropical manta rays, swimming just below the surface. (Photo: B. Furlan) Fig. 1: Sharks, which used to have a fearsome reputation, are nowadays in certain sites considered a tourist attrac­tion, drawing more and more divers. (Photo: B. Furlan) Fig. 2: Today, the Sečovlje salina is not only appreciated as a renowned ornithological locality and important coastal wetland, but is also investigated by researchers from other scientific fields. (Photo: I. Škornik) Fig. 3: The Piran Archive has been an important source of information about salt harvesting and salt prices in the Sečovlje salina. (Photo: I. Škornik) Fig. 4: Shark encounters have become increasingly rarer due to a steep decline in the shark populations in the seas around the world. Divers are more likely to run into sharks in areas away from coastal cities. (Photo: B. Furlan) Fig. 5: Plants with higher biomass have a larger leaf area and, consequently, a higher evapotranspiration rate. In this light, it is important to understand that vegetation is changing not only in terms of species turnover and physical appearance, but also from a functional point of view. (Photo: M. Kaligarič) Fig. 6: Biologist Andrej Gogala compares the Karst Edge to the coral reef. The tall-herb and scrub encroachment is the most species-rich phase in a succession towards the forest. (Photo: M. Kaligarič) Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 25, Koper 2015, številka 2 ISSN 1408-533X VSEBINA / INDICE GENERALE / CONTENTS SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL Occurrence of the angular rough shark, Oxynotus centrina (Chondrichthyes: Oxynotidae) in the eastern Mediterranean ............ Pojavljanje morskega prašiča, Oxynotus centrina (Chondrichthyes: Oxynotidae) v vzhodnem Sredozemskem morju Hakan KABASAKAL & Özgür KABASAKAL Recent record of the great white shark, Carcharodon carcharias (Linnaeus, 1758), from central Aegean Sea off Turkey‘s coast ........... Novejši zapis o pojavljanju velikega belega volka, Carcharodon carcharias (Linnaeus, 1758), iz osrednjega Egejskega morja ob turški obali TUJERODNE VRSTE SPECIE ALIENE ALIEN SPECIES Mouna RIFI, Khadija OUNIFI BEN AMOR, Sonia MANSOUR, Raouia GHANEM & Jamila BEN SOUISSI Growth of the invasive cockle Fulvia gracilis (Mollusca: Bivalvia) in northern Tunisia (central Mediterranean) ........................................ Rast invazivne školjke Fulvia fragilis (Mollusca: Bivalvia) iz severne Tunizije (osrednji Mediteran) Nicola BETTOSO & Giovanni COMISSO First record of the Chinese mitten crab (Eriocheir sinensis) in the Lagoon of Marano and Grado (northern Adriatic Sea) ........................ Prvi zapis o pojavljanju kitajske volnoklešče rakovice Eriocheir sinensis v maranski in gradeški laguni (severni Jadran) Khadija OUNIFI BEN AMOR, Mouna RIFI & Jamila BEN SOUISSI Description, reproductive biology and ecology of the Sphaeroma walkeri (Crustacea: Isopoda) alien species from the Tunis Southern Lagoon (northern Tunisia, central Mediterranean) ............. Opis, razmnoževalna biologija in ekologija tujerodne mokrice Sphaeroma walkeri (Crustacea: Isopoda) iz Tuniške južne lagune (severna Tunizija, osrednji Mediteran) 1 11 17 29 35 FAVNA FAUNA FAUNA Dušan DEVETAK, Predrag JAKŠIĆ, Toni KOREN & Danijel IVAJNŠIČ Two sibling green lacewing species, Chrysopa pallens and Chrysopa gibeauxi (Insecta: Neuroptera: Chrysoidae) in Slovenia and western Balkan countries ............................... Vrsti tenčičaric, Chrysopa pallens in Chrysopa gibeauxi (Insecta: Neuroptera: Chrysopidae), v Sloveniji in deželah zahodnega Balkana 47 Marco BERTOLI, Giacomo BRICHESE, Davide MICHIELIN, Morana RUZIČ, Elisabetta PIZZUL, Fabio VIGNES & Alberto BASSET Seasonal dynamics of macrozoobenthic community in the wetland of the Natural Regional Reserve of the Isonzo River mouth, northeast Italy: A three-years analysis ................... Sezonska dinamika makrozoobentoških skupnosti v regionalnem naravnem rezervatu izliva Soče, severna Italija: triletna analiza 55 SREDOZEMSKA FLORA FLORA MEDITERRANEA MEDITERRANEAN FLORA Amelio PEZZETTA Le Orchidaceae della Puglia (Italia meridionale) ... Kukavičevke Apulije (južna Italija) 69 OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Egidio Trainito, Mauro Doneddu: Nudibranchi del Mediterraneo. 2a edizione, riveduta e ampliata. Il Castello, 2014, 192 p. (Lovrenc Lipej) ................................ 93 Navodila avtorjem ............................................... Istruzioni per gli autori .......................................... Instruction to authors .......................................... 95 97 99 Kazalo k slikam na ovitku ..................................... 102 Index to images on the cover ................................ 102 RECENTNE SPREMEMBE V SREDOZEMSKI IHTIOFAVNI CAMBIAMENTI RECENTI NELLA ITTIOFAUNA MEDITERRANEA RECENT CHANGES IN THE MEDITERRANEAN ICHTHYOFAUNA Sihem RAFRAFI-NOUIRA, Olfa EL KAMEL­ MOUTALIBI, Mohamed Mourad BEN AMOR, Christian CAPAPÉ Additonal records of Spinetail devilray Mobula japanica (Chondrichthyes: Mobulidae) from the Tunisian coast (Central Mediterranean) ................ 103 Nov zapis o pojavljanju mante vrste Mobula japanica (Chondrichthyes:Mobulidae) vzdolž tunizijske obale (osrednje Sredozemlje) Okan AKYOL & Ilker AYDIN Additional records of two lessepsian fish, Siganus luridus and Champsodon vorax from Izmir Bay (Aegean sea, Turkey) ............................................ 109 Dodatni zapisi o pojavljanju dveh vrst lesepskih ribjih selivk, Siganus luridus in Champsodon vorax, iz Izmirskega zaliva (Egejsko morje, Turčija) SREDOZEMSKI MORSKI PSI SQUALI DEL MEDITERRANEO MEDITERRANEAN SHARKS Hakan KABASAKAL & Sait Özgür GEDIKOGLU Shark attacks against humans and boats in Turkey’s waters in the twentieth century ............... 115 Napadi morskih psov na ljudi in plovila v turških vodah v dvajsetem stoletju Halit FILIZ & Hakan KABASAKAL Photographic record of the Spinner shark, Carcharhinus brevipinna (Müller & Henle, 1839), in Gokova Bay (south Aegean Sea, Turkey) ........... 123 Fotografski zapis o kratkoplavutem morskem psu, Carcharhinus brevipinna (Müller & Henle, 1839), v zalivu Gokova Bay (južno Egejsko Morje, Turčija) IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Balkis SALLAMI, Mohamed BEN SALEM, Sihem RAFRAFI-NOUIRA, Olfa EL KAMEL-MOUTALIBI, Christian REYNAUD & Christian CAPAPÉ Observations on Thinlip Conger Gnathophis mystax (Osteichthyes: Congridae) from the Tunisian Coast (Central Mediterranean) ....................................... Opazovanja dolgonosega ugorja Gnathophis mystax (Osteichthyes: Congridae) ob tunizijski obali (osrednji Mediteran) Nicola BETTOSO & Govanni COMISSO Recent record of the Serpent Eel Ophisurus serpens (Ophichthidae) in the Gulf of Trieste (Northern Adriatic Sea) ........................................ Nov zapis o pojavljanju zobate jegulje Ophisurus serpens (Pisces: Ophichthidae) v Tržaškem zalivu (Severni Jadran) Jakov DULČIĆ & Pero TUTMAN Additional record of Common bream Abramis brama (Cyprinidae) in the Adriatic drainage system (Norin River, Croatia) ................. Novi podatek o pojavljanju ploščiča (Abramis brama, Cyprinidae) v Jadranskem povodju (reka Norin, Hrvaška) FAVNA FAUNA FAUNA 131 141 145 Toni KOREN & Domen TRKOV Contribution to the Scarabeoidea (Coleoptera) of island Cres, Croatia ...................... Prispevek k poznavanju favne Scarabaeoidea (Coleoptera) otoka Cres, Hrvaška 151 MISCELLANEA Dejan PALISKA, Simon KERMA, Rudi ČOP & Flavio BONIN An attempt to demonstrate the influence of Maunder Minimum Climate on salt production and it’s price in the Slovenian Istria (Sečovlje Salt-Pans) .............................................. 163 Poskus prikaza vpliva podnebja iz obdobja Maunderjevega minimuma na proizvodnjo soli in njeno ceno v Slovenski Istri (Sečoveljske soline) Danijel IVAJNŠIČ & Mitja KALIGARIČ Can evapotranspiration be considered an additional indicator for understanding the changed landscape identity of the classic Karst? .............................................. 173 Ali lahko evapotranspiracijo smatramo kot dodatni pokazatelj za razumevanje spremenjene identitete klasičnega Krasa? DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÁ DEI NOSTRI ISTITUTI E DELLE NOSTRE SOCIETA ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS 22. Simpozij o okoljski biogeokemiji v Piranu (Jadran Faganeli in Nives Ogrinc) ......................... 185 OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Ocena knjige: »ENDEMI U HRVATSKOJ FLORI« avtorjev Tonija Nikolića, Milenka Milovića, Sandra Bogdanovića in Nenada Jasprice (Mitja Kaligarič) ................................................... 189 Anton Brancelj: JAMA VELIKA PASICA: ZGODOVINA, OKOLJE IN ŽIVLJENJE V NJEJ / THE VELIKA PASICA CAVE: THE HISTORY, ENVIRONMENT AND LIFE IN IT. Založba ZRC in Nacionalni inštitut za biologijo, Ljubljana, 2015, 110 str. (Lovrenc Lipej) ............................... 190 Navodila avtorjem ............................................... 193 Istruzioni per gli autori ......................................... 195 Instructions to authors .......................................... 197 Kazalo k slikam na ovitku ..................................... 200 Index to images on the cover ............................... 200