CHARACTERIZATION OF BROWN LAYERS ON FAÇADES OF ARCHAEOLOGICAL BUILDINGS IN SLOVENIA

Polonca Ropret¹, Peter Bukovec²

¹Institute for the Protection of Cultural Heritage of Slovenia, Restoration Center, Poljanska 40, 1000 Ljubljana, Slovenia ²Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia

Darko Hanžel

J.Stefan Institute, Jamova 39, 1111 Ljubljana, Slovenia

Received 22-02-2000

Abstract

Brown layers have occurred just below the façade surface of some archaeological buildings. They are a consequence of chemical changes, which can give rise to further destruction. Brown layers and undamaged plaster underneath the brown layers consist of CaCO₃, SiO₂, Ca₂SiO₄, CaMg(CO₃)₂, silicate minerals containing Ca, Al, Mg, K, Fe, metal hydroxides and sulphates, with some surface bound water. In both layers coordination of Fe³⁺ ions is tetrahedral and octahedral. In brown layers there are more Fe³⁺ ions at octahedral sites and there is an evidence of a change in chemical environment of ferric ions. The difference between brown layers and undamaged plaster underneath the brown layers is in goethite (α -FeOOH) formation. It is microcrystalline and some of the Fe³⁺ ions are substituted by a non magnetic ion, probably Al³⁺. Iron in oxidation state 2+ is present only in the brown layer of sample ZMV 7. One of the possible ways of its genesis is reduction of Fe³⁺ due to SO₂ present in the air.

Introduction

A change of colour on archaeological objects often agitates restorers and architects because it is aesthetically unattractive and it can also give rise to further destruction of those objects. On some constructions of historical value in Slovenia, built or renewed around year 1910, brown layers just below the facade surface have occurred. Those layers are hard and thin, usually 1-2mm. There are parts where brown colour has entered even further into the interior of the plaster. In the Centre for Restoration of the Republic of Slovenia they have prepared colour studies¹ of samples taken from building facades. Those studies were done by microscopic observations. Since the borderline between brown layers and undamaged plaster beneath is not sharp, they assumed that brown

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

layers were not created by adding a pigment into the external layer of building facades, but are a consequence of chemical changes.

Some of the former investigations^{2,3,4} of cements and iron containing material, have shown, that iron could be included into chemical changes of building plaster. D. Hanžel, D. Dimic and D. Lasič studied hydration behaviour of two Yugoslav cements by Mössbauer spectroscopy.² According to their investigation cement contains minerals with ferric ions at octahedral and tetrahedral sites in ferrites of brownmillerite-like structure having the generic formula $2CaO \cdot (Fe_2O_3)_{1-x} \cdot (Al_2O_3)_x$. Spectra of hydrated samples differ from those of nonhydrated samples. This indicates a change in chemical environment of ferric ions during the process of hydration. There is also an evidence that the ferrite phase might take part in the complex cementing action during ageing.

Analysis of thin black layers on building stone^{3,4} showed that the layers mainly consist of various iron oxides and iron oxide hydroxides, sulphates, soot and silicate minerals, with smaller amounts of metal, rubber and asphalt particles. In low concentration are present also the organic constituents.

The aim of this investigation was to characterise brown layers formed on building facades. Various techniques including electronic microanalysis, thermogravimetric and differential thermal analysis, X-ray powder analysis, IR and Mössbauer spectroscopy were used to analyse these layers.

The samples

Samples were taken from 4 archaeological buildings in Slovenia. Three of them are placed in Ljubljana (Zmaj bridge-sample ZMV 7, Barrier on river Ljubljanica-sample ZAP 10, Auersperger palace-sample AUE 37), and one in Domžale (Social home Domžale-sample DDD 36). From each of the four buildings one sample was analysed. In each case, a sample of corresponding undamaged plaster underneath the brown layer was collected for comparison.

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

Brown layers and undamaged plaster were separated by a diamond knife. The knife was used because the material is very hard, and to avoid contamination. For electronic microanalysis samples were prepared in a shape of a flat tile. For all other analyses samples were milled into powder and homogenised.

Instrumental analysis

Electronic microanalyses were done on an electronic microscope JEOL JSM 35, equipped with energy disperse spectrometer Tractor. Thermo gravimetric and differential thermal analyses were taken on a Perkin-Elmer 7 Series Thermal Analysis system in air flow. The heating rate was 5 °C/min. X-ray powder patterns were taken on a Huber Guinier camera 620 (Cu K_{α}). The patterns were compared with standard patterns in the PDF⁵ using µPDSM computer program.⁶ Infrared spectra were taken on a Perkin-Elmer FT-IR 1720 X spectrometer in nujol matrix in CsI single crystal windows. Mössbauer spectra were measured by using a Wissel constant acceleration spectrometer. The spectra were analysed by a non-linear least squares fitting procedure. Metallic iron was used as a reference for isomer shift parameter as well as for calibration of the velocity scale. The γ -ray source was ⁵⁷Co in rhodium matrix.

Results

Elemental composition was determined by electronic microanalysis. The surface of the samples is inhomogeneous. Therefore electronic microanalysis was used only as a qualitative analysis. As it is shown in Table 1 the main component in both layers is calcium. Other elements are present in smaller concentration. Sample AUE 37 - undamaged plaster is unsuitable for this investigation because it is in a form of fine dry particles and it was impossible to get it in a shape of a flat tile.

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

TABLE 1. The results of the electronic microanalysis given in weight percent considering oxides.a.) brown layer

b.) undamaged plaster underneath the brown layer

1., 2., 3., 4. – different locations of the same sample

Remark: sample AUE 37-b.) is unsuitable for this investigation

	Ca	Si	K	Mg	Al	S	Fe	Ti	Р	Cl
DDD 36 a.) 1.	52.26	4.77	19.19	0.09	3.89	12.91	5.68	0.09		
2.	77.61	10.04	4.34	1.09	1.86	1.53	1.89	0.48		
3.	50.80	2.85	0.77	0.53	12.05			1.03		
b.) 1.	67.64	19.47		0.79	4.76	0.29	5.76	0.21		
2.	87.39	6.58		0.46	1.93	1.37	0.87	0.16		
ZMV 7 a.) 1.	5.03	86.47	1.94		2.05		3.30			
2.	80.80	8.09	1.98	1.54	2.48	1.03	1.65			
3.	80.25	6.77	1.45	2.66	1.54	1.23	2.87	0.65	1.28	
4.	73.99	2.25		17.29	0.38	0.85	1.65		0.86	
b.) 1.	2.60	96.47								
2.	70.65	10.57		8.04	4.49	2.15	2.68			
3.	75.39	1.21		21.99						
4.	69.23	18.13	0.98	5.29	2.64	0.72	1.73			
ZAP 10 a.) 1.	80.93	10.82	0.63		1.04	2.92	1.24			0.59
2.	23.76	39.94	4.71		5.22	18.98	5.85	0.47		
3.	44.42	9.98			2.87	39.34	0.31			
b.) 1.	96.52	1.50							0.64	
2.	41.57	40.62	1.28	0.95	5.68	2.10	5.77	0.98		
3.	93.53	2.63	0.70	0.24	0.39	0.85	0.17	0.10		
AUE 37 a.) 1.	74.53	10.51	2.51	1.03	3.07	2.94	4.13			
2.	68.77	12.49	4.28	1.61	3.29	3.54	5.05			
3.	64.34	13.08	6.92	0.90	3.29	3.23	6.99			

Thermo gravimetric and differential thermal analyses gave similar results for all samples as well as for corresponding undamaged plaster underneath. In both cases TG curves show two significant mass losses, one up to 100 °C and another one more intense in the temperature range of 600-900 °C (Figure 1). At these temperatures DTA curves show two corresponding endothermal peaks. In TG curves a slow, continuous weight loss is noticeable in the temperature range of 100-500 °C. TG analysis of samples DDD 36-undamaged plaster (Figure 2) and ZMV 7-undamaged plaster shows another mass loss at temperature 400-450 °C.

FIGURE 1. TG and DTA analysis of the sample DDD 36 - brown layer

FIGURE 2. TG and DTA analysis of the sample DDD 36 - undamaged plaster underneath the brown

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

Infrared spectra were taken on a sample DDD 36 – brown layer and on a residual after TG analysis of the same sample. Characteristics:

1. DDD 36 - brown layer

- a.) Broad band in the area of $3700 3000 \text{ cm}^{-1}$.
- b.) Strong, broad band ranging from 1500 to 1400 cm⁻¹.
- c.) Broad band in the area of $1200 800 \text{ cm}^{-1}$ with one sharp peak at 873 cm⁻¹.
- d.) Strong, sharp peak at 713 cm⁻¹.
- 2. The rest after TG analysis of sample DDD 36 brown layer
 - a.) Sharp band at 3640 cm^{-1} .
 - b.) Broad band in the area of $1200 800 \text{ cm}^{-1}$.

X-ray powder analyses were done on all samples and on TG residuals. Powder patterns show many broadened or overlapping diffraction lines. It is therefore difficult to determine the exact composition of samples. Components which show the best matching of lines comparing to lines of components from PDF computer database are: CaCO₃, SiO₂, Ca₂SiO₄ and CaMg(CO₃)₂. It was often easier to determine composition of the rest after TG analysis because the lines are sharper and less overlapping. Tables from 2 to 17 show the results of x-ray powder analysis.

Mössbauer spectra have been recorded on brown layers of samples DDD - 36 and ZMV - 7 and on the undamaged plaster underneath brown layers of these samples. Spectra of undamaged plaster of both samples consist of two overlapping doublet patterns (Figure 3). Similar patterns are present also in spectra of brown layers (Figure 4) except there is a change in quadrupole splitting parameter of approximately 0.2 mm/s and the ratio of relative intensities also becomes different. In the spectrum of sample ZMV - 7-brown layer (Figure 5) another quadrupole splitting doublet is present, with higher values for isomer shift and quadrupole splitting parameter but a very low intensity. Hyperfine parameters of Mössbauer spectra recorded at room temperature are given in Table 18 and 19.

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

•																																
	O ₁₅ H ₂	21	I/I ₀		19	42	19	6.4		6.4	3.2	6.4				13		22	13								22	13				
d are given.	Ca ₂ Al ₃ Si ₃ ((Zoisit)	13-056	d [Å]		3.068	2.874	2.790	2.720	200100000000000000000000000000000000000	2.536	2.516	2.280				2.101		2.019	1.984								1.601	1.541				
PDF car	CO3)2	26*	I/I_0			222	ļ	6	1011	2				42				22							22	29		6	3	4		
umber of]	CaMg(C	36-042	d [Å]			2.888		2.670		2.539				2.193				2.015							1.805	1.787		1.545		1.388		
nd the n	D 4	× 5	I/I ₀ -	89	8.9	4.4	8.9	18	4.4			4.4	44					4.4	8.9		18	35	27									
eral name a	Ca ₂ Si(33-030	d [Å]	3.322	3.021	2.895	2.775	2.671	2.588			2.302	2.242					2.019	1.982		1.912	1.878	1.836									
l its min		99	I/I_0	214								26			19				13				1	36	7		7	32		15	24	
compound	SiO	5-049	d [Å]	3.343								2.282			2.128				1.980					1.817	1.801		1.608	1.541		1.382	1.375	
or each	33	() (š	I/I_0		199						28	36					36			10	34	34					16		10			
database. F	CaCO	5-0586	d [Å]		3.035						2.495	2.285					2.095			1.927	1.913	1.875					1.604		1.525			
omputer	LE	/- ayer	I/I ₀	90	100	80	30	30	10	10	40	60	10	50	10	10	50	10	20	20	40	40	10	40	10	40	10	30	10	10	10	
μPDSM co	SAMP	brown la	d [Å]	3.324	3.037	2.889	2.778	2.698	2.608	2.536	2.494	2.284	2.236	2.191	2.127	2.111	2.096	2.015	1.977	1.925	1.910	1.876	1.846	1.816	1.805	1.788	1.604	1.541	1.525	1.381	1.373	

TABLE 2. Diffraction lines (d) and relative intensities (IJI₀) of the sample ZMV 7-brown layer compared to lines of the most probable components from

(1)2 Ca ₂ Al ₃ Si ₃ O ₁₂ (OH)	e) (Clinozoisite)	* 13-0563D	I/I ₀ d [Å] I/I ₀		3.033 21	193 2.885 60	2.789 21	8 2.669 18	2.634 9.6	2.587 18	6	14 2.397 12	2.300 2.4	37	2.097 15	19 2.014 4.8			1.813 6.0	19	25		4
CaMg(CC	(Dolomit	36-0426	d [Å]			2.888		2.670			2.539	2.404		2.193		2.015				1.805	1.787		1.388
4	()	*	I/I_0		4.8	П	52	16		23	4.8	7	2.2	27	0.5	8.1		3.2	1.6	4.8	3.8		
Ca ₂ SiO	(Larnite	33-0302	d [Å]		3.049	2.877	2.790	2.718		2.610	2.545	2.410	2.301	2.189	2.103	2.027		1.912	1.821	1.805	1.790		
		_	I/I_0	57									12						16				68
SiO ₂	(Quartz)	5-0490L	d [Å]	3.343									2.282						1.817				1 387
	~	*	I/I ₀		99								12		12		3.3	11				3.3	
CaCO ₃	(Calcite)	5-0586*	d [Å]		3.035								2.285		2.095		1.927	1.913				1.525	
E	.1	olaster	I/I_0	90	40	100	30	30	10	10	10	30	10	50	10	40	10	10	30	10	30	10	10
SAMPL	ZMV 7	indamaged F	d [Å]	3.324	3.037	2.888	2.777	2.695	2.637	2.607	2.540	2.402	2.282	2.192	2.105	2.015	1.929	1.905	1.817	1.802	1.785	1.525	1 3 8 1

TABLE 3. Diffraction lines (d) and relative intensities (I/I₀) of the sample ZMV 7-undamaged plaster compared to lines of the most probable components from HDDSM computer database. For each compound its mineral name and the number of PDF card are given.

				$/I_0$		4.1	3.3	33						17				33		41		17	17	83			1.1	17	33		
he	2SiO4	0556	0000	-		4	~											-		-							4				
ines of t	Mg	24	t	d [A]		3.460	3.340	3.210						2.850				2.680		2.620		2.510	2.480	2.440			2.270	2.230	2.200		
red to l given.	4	nite)		I/I_0		III			4					39	4	6										22			22	6	
iyer compa DF card are	CaSC	(Anhydi	°	d [Å]		3.498			3.118					2.849	2.797	2.473										2.328			2.208	2.183	
brown la ber of PL	o,	22	2	I/I_0				5							27				109	33		27			11			16	60		
ole ZMV 7-1 ad the numb	CaFe ₃	30.02	-70-0C	d [Å]				3.210							2.810				2.660	2.620		2.490			2.390			2.240	2.200		
the samp name ar	i ₁₆ O ₉₀	,	4	I/I_0			35				14	14			71	42	28				50					7.1			28	28	
G analysis of t nd its mineral	Ca ₅₄ MgAl ₂ S	12 007	170-CI	d [Å]			3.039				2.973	2.968			2.776	2.764	2.748			2.606	2.608					2.323			2.184	2.180	
t after T(compou	04	te)	2	I/I_0	4.8			4.8		11			23	17	86	95	49	94		74	18	12	26	2.9		17	35		61	10	2.9
) of the res	Ca ₂ Si	(Larni	coo-+7	d [Å]	1.264			3.175		3.048			2.878	2.841	2.793	2.748	2.732	2.717		2.610	2.582	2.503	2.493	2.452		2.305	2.282		2.189	2.166	2.132
ities (I/I ₀ database		Ω Ω		I/I_0	81		230																	28			28	14			21
ative intens M computer	SiO	(Quart	×+0-0	d [Å]	4.260		3.343																	2.458			2.282	2.237			2.128
and rel		a f	Ę	I/I_0												17									46						
on lines (d) onents from	CaO	(Lime	001-C+	d [Å]												2.777									2.405						
Diffracti le compo	er TG	-	yeı	I/I_0	20	40	100	40	10	10	10	10	10	10	10	70	70	60	30	40	40	10	10	40	50	10	50	20	40	40	50
TABLE 4. most probab	The rest aft	ZMV	DI UWII 18	d [Å]	4.238	3.485	3.330	3.178	3.109	3.029	2.997	2.965	2.884	2.841	2.795	2.769	2.741	2.689	2.662	2.625	2.598	2.505	2.471	2.449	2.396	2.320	2.276	2.229	2.200	2.183	2.119

	04	6	I/I_0			83			4.1		8.3		1.7			12	8.3			8.3	1	1.7	8.3	17										
	Mg ₂ Si(34-055	d [Å]			2.020			1.940		1.910		1.820			1.760	1.740			1.640		1.570	1.560	1.541										
	(ita)	D	I/I_0	11			7		4								13			15			7			7							6	
	CaSO	6-0226	d [Å]	2.086			1.993		1.938								1.749			1.648			1.564			1.490							1.365	
	0 [°]	56	I/I_0	71			27		6		3							21	,	e		7		20	10			22						
	CaFe ₃	30-02	d [Å]	2.107			1.973		1.933		1.897							1.699		1.650		1.581		1.546	1.508			1.469						
	i16 O 90	2	I/I_0				7.1	7.1	7.1	7.1		7.1	7.1			28	28				7.1			7.1		14	14	7.1	7.1					
	Cas4MgAl2S	13-027	d [Å]				1.977	1.983	1.938	1.923		1.824	1.823			1.766	1.761				1.629			1.541		1.490	1.488	1.465	1.459					
	04	D TD	I/I_0	18	20	5.7	22			5.7	28	5.7	4.8	17	11	10	6.7	14		7.6	8.6													
	Ca ₂ Si	24-003	d [Å]	2.106	2.047	2.026	1.984			1.913	1.894	1.847	1.821	1.809	1.791	1.767	1.762	1.707		1.635	1.628													
	Ĩ	D	I/I_0				14						39	5										35					7		10	25	21	6
	SiO ₂	5-0490	d [Å]				1.980						1.817	1.801										1.541					1.453		1.382	1.375	1.372	1.255
	• 6	ID	I/I_0															23												9	9			
UE	CaO T ime	43-100	d [Å]															1.701												1.450	1.389			
ONTIN	er TG	yer	I/I_0	70	20	20	10	10	30	30	10	10	70	20	20	10	10	30	30	10	20	10	10	30	50	10	50	10	10	10	10	10	40	20
TABLE 4 C	The rest aft	brown la	d [Å]	2.100	2.043	2.020	1.978	1.968	1.938	1.923	1.901	1.834	1.814	1.798	1.790	1.767	1.751	1.696	1.68/	1.644	1.628	1.573	1.565	1.541	1.499	1.490	1.486	1.463	1.455	1.449	1.381	1.373	1.370	1.255

	32SiO4	-0556	I/I ₀							_	ec of the		ALO.	0.7.0	.0150*	I/I_0		3.4	5 2.4		2.4			3 0.5	3.4		5 1.9			4 31	3 48
	W	34	d [Å							_	rred to lir		Č	5	32-	d[Å		4.40	4.21		3.35			3.128	3.05		2.810			2.71	2.69.
	0 4	(D	I/I_0	7		4		0	1	4	somos	given	1.05	lerite)	6*	I/I_0												14			19
	CaSC	(Alliya 6-022	d [Å]	1.237		1.216		1.199	1.178	1.166	aged nlaster	DF card are	Ca,(Al.Fe	(Brownmil	30-022	d [Å]												2.784			2.673
	30 ⁵	256	I/I ₀							_	smebuu-	iber of P	_	se)	2C	I/I_0															
	CaFe	30-0	d [Å]								nle ZMV 7	nd the nun	MøO	(Pericla	43-102	d [Å]															
	Si ₁₆ O ₉₀	72	I/I ₀							_	the sam	al name a	0.0	71.20	õ	I/I_0		4.3		73											
	Ca ₅₄ MgAl ₃	13-02	d [Å]								analveic of	nd its minera	Mø,Al,Si		30-0788	d [Å]		4.460		3.510											
	04	D (a)	I/I_0							_	t after T(compour	Ö	te)	D	I/I_0	12				15	17	15		17	43	25	124	112	118	50
	Ca ₂ Si	(Länn 24-003	d [Å]) of the rec	e. For each	CarSi	(Larni	9-035	d [Å]	4.900				3.377	3.241	3.175		3.046	2.876	2.814	2.795	2.780	2.744	2.716
			I/I_0		5		12	6	6	_	ities (I/I	databas	_	. (Z	D	I/I_0			56		159										
	SiO,	5-0490	d [Å]		1.228		1.200	1.184	1.180		ative intens	M computer	SiO	(Quart	5-0490	d [Å]			4.260		3.343										
	- 1	D	I/I_0				2.3				and rel	uPDS1	_		ID	I/I_0												35			
UE	CaO	(LIIII) 43-100	d [Å]				1.203				on lines (d)	ments from	CaO	(Lime	43-100	d [Å]												2.777			
ONTIN	er TG	- yer	I/I ₀	10	30	10	10	10	10	10	Diffracti	le compo	er TG		plaster	I/I_0	30	10	20	10	90	20	10	10	10	20	70	70	100	20	06
TABLE 4 C	The rest aft	brown la	d [Å]	1.238	1.227	1.214	1.204	1.183	1.179	1.162	TARLES	most probabl	The rest afte	7 VMZ	undamaged	d [Å]	4.905	4.406	4.259	3.493	3.346	3.269	3.137	3.117	3.074	2.886	2.827	2.782	2.753	2.731	2.696

	0 ⁶	*0	I/I_0						9.6	1.9			1.0	1.0			1.4		17	1.4	0.5		0.5	0.5		0.5				1.4	17	9.6		
	Ca ₃ Al ₂	32-015	d [Å]						2.206	2.186			2.048	2.032			1.963		1.919	1.906	1.828		1.797	1.768		1.699				1.625	1.564	1.551		
)205	(anne) \$*	I/I_0	54		1.1						4.3	19						19		24		1.6								7.6	2.2	7.6	4.3
	Ca ₂ (Al,Fe	30-0226	d [Å]	2.644		2.472						2.210	2.051						1.928		1.815		1.795								1.578	1.564	1.538	1.501
		ase) 2C	I/I_0			7.9						73																						
	Mg(43-102	d [Å]			2.432						2.106																						
	i ₃ 0 ₁₂	80	I/I_0		81	13	34					86							4.3						34					77		4.3		
	Mg ₃ Al ₂ S	30-078	d [Å]		2.592	2.440	2.380					2.097							1.930						1.752					1.623		1.546		
	04	D	I/I_0		81	25	25			15	15	110	25	15	43					12	7	15	15	7		17			5	17	15	12		
	Ca ₂ Si	9-035	d [Å]		2.608	2.453	2.407			2.196	2.130	2.099	2.048	2.041	1.983					1.913	1.821	1.808	1.791	1.768		1.707			1.661	1.634	1.575	1.552		
			I/I_0			19		10			14					10					27	2						11	2				24	
	SiO ₂	5-0490	d [Å]			2.458		2.237			2.128					1.980					1.817	1.801						1.672	1.659				1.541	
			I/I_0				95																			47								
UE	CaC	(LIIII) 43-100	d [Å]				2.405																			1.701								
ONTIN	er TG	- plaster	I/I_0	60	60	30	70	10	50	50	30	60	20	20	80	10	10	50	20	20	40	40	40	30	30	50	30	10	10	50	10	10	30	10
TABLE 5 C	The rest aft	undamaged	d [Å]	2.640	2.608	2.455	2.399	2.236	2.201	2.192	2.126	2.106	2.049	2.040	1.998	1.980	1.966	1.938	1.928	1.908	1.819	1.803	1.791	1.768	1.757	1.699	1.691	1.672	1.655	1.629	1.575	1.555	1.541	1.504

Cato SiO ₃ Ca ₅ SiO ₄ Mg.sAl ₅ SiO ₁₂ Mg.sAl ₅ SiO ₁₂ Ca ₆ Al ₄ Si ₁ O ₁₂ Ca ₆ Al ₄ SiO ₁₂ Ca ₆ Al ₄ Si Un d [Å] U ₆ d							-						100		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		CaO		SiO ₂	~	Ca ₂ Si	(04 ite)	Mg ₃ Al ₂	Si ₃ O ₁₂	(Deric	(ase)	Ca ₂ (Al,Fe (Brownmil	e)205	Ca ₃ Al	٥٥
II II II II II II II III III III III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		43-100	9	5-0490	D	9-035	ID (30-07	880	43-10	122C	30-022	6*	32-015	*0
$ \begin{vmatrix} 1.418 & 2 & 1.418 & 2 \\ 1.382 & 11 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.375 & 18 \\ 1.256 & 6 \\ 1.1266 & 6 \\ 1.1266 & 6 \\ 1.1266 & 6 \\ 1.1266 & 6 \\ 1.1258 & 4.3 \\ 1.258 & 4.3 \\ 1.258 & 4.3 \\ 1.216 & 11 \\ 1.133 & 1200 \\ 11 \\ 1.153 & 3 \\ 1.216 & 11 \\ 1.133 & 1200 \\ 11 \\ 1.153 & 3 \\ 3 & 1210 \\ 1.153 & 3 \\ 3 & 1210 \\ 1.153 & 3 \\ 3 & 1210 \\ 1.153 & 3 \\ 3 & 1210 \\ 1.153 & 3 \\ 3 & 1216 \\ 1.1 \\ 1.133 & 0 \\ 5 & 0 \\ 5 & 0 \\ 5 & 0 \\ 1 & 11 \\ 3 & 0 \\ 6 & 0 \\ 5 & 3 \\ 3 & 1 & 2 \\ 2 & 4 \\ 1 & 1 \\ 1 & 10 \\ 1 & 1 \\ 1 & 10 \\ 1 & 1$		d [Å]	I/I ₀	d [Å]	I/I_0	d [Å]	I/I ₀	d [Å]	I/I ₀	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0
9 12 1418 2 1.417 12 1.417 12 1.416 30 32 1.414 1 1.382 11 1.397 13 1 1.397 13 32 1.414 1 1.375 18 1.397 1 1.392 4.3 1.270 4.3 1.390 3.2 1.414 1 1.355 6 1 1.373 39 4.3 1.270 4.3 1.347 1.347 35 4.8 1.206 8 4.3 1.216 1.1 1.347 1.347 1.347 1 1.256 6 1.128 4.3 1.216 4.3 1.347 1.347 1 1.153 3 1.200 8 4.3 1.216 1.1 1.366 1.32 1.347 1 1.153 3 1.250 4.3 1.216 1.1 1.366 1.347 1.347 1 cdiote 1.123 36-brown layer compared to lines of the most probable components from µ 1.347 1.347 1.347						1.485	10			1.490	37			1.493	1.4
99 12 1.382 11 1.397 7 1.392 4.3 1.390 3.2 1 1.375 18 1.397 7 1.392 4.3 1.390 3.2 1 1.375 18 1.397 7 1.392 4.3 1.390 3.2 1 1.256 6 11 1.269 4.3 1.270 4.3 1.347 1 1.153 3 1.216 1 4.3 1.216 1.1 1 1.153 3 1.216 4.3 1.216 4.3 1.347 1 1.153 3 1.2268 4.3 1.216 4.3 1.347 1 1.153 3 1.2268 4.3 1.216 1.1 1 1.169 11 1.226 4.3 1.216 1.1 1 th compound its mineral name and the number of PDF card are given. 1.216 1.1 1.1 1 th compound its mineral name and the number of PDF card are given. 1.216 1.1 1.1 1 th compound its mine				1.418	7	1.417	12	1.410	30					1.414	0.5
$ \begin{vmatrix} 1.382 & 11 \\ 1.375 & 18 \\ 1.256 & 6 \\ 1.256 & 6 \\ 1.258 & 4.3 \\ 1.258 & 4.3 \\ 1.216 & 11 \\ 1.258 & 4.3 \\ 1.216 & 11 \\ 1.258 & 4.3 \\ 1.216 & 11 \\ 1.16 & 11 \\ 1.258 & 4.3 \\ 1.216 & 11 \\ 1.16 & 11 \\ 1.258 & 4.3 \\ 1.216 & 11 \\ 1.16 & 1.200 \\ 1.21 & 3.00 & 69 \\ 1.1 & 1.1 & 1.1 \\ 1.1 & 1.1 & 1.$	_	1.389	12			1.397	2	1.392	4.3			1.390	3.2		
$ \begin{vmatrix} 1.375 & 18 \\ 1.256 & 6 \\ 1.256 & 6 \\ 1.258 & 4.3 \\ 1.258 & 4.3 \\ 1.200 & 8 \\ 1.153 & 3 \end{vmatrix} $ $ \begin{vmatrix} 1.373 & 39 \\ 1.258 & 4.3 \\ 1.216 & 11 \\ 1.15 & 3 \end{vmatrix} $ $ \begin{vmatrix} 1.347 \\ 1.369 & 4.3 \\ 1.216 & 11 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.347 \\ 1.3 \\ 1.216 & 11 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.347 \\ 1.3 \\ 1.216 & 11 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.347 \\ 1.3 \\ 1.216 & 11 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.347 \\ 1.3 \\ 5.68 \\ 21 & 2.90 \\ 5.586 \\ 21 & 3.33 \\ 69 \\ 5.5 \\ 24 & 11 \\ 3.00 & 69 \\ 55 & 21 & 3.33 \\ 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 55 & 24 & 11 \\ 3.00 & 69 \\ 56 & 21$				1.382	Π										
$ \begin{vmatrix} 1.347 \\ 1.256 \\ 3 \end{vmatrix} \begin{vmatrix} 1.256 \\ 1.153 \\ 3 \end{vmatrix} \begin{vmatrix} 1.269 \\ 1.153 \\ 3 \end{vmatrix} \begin{vmatrix} 4.3 \\ 1.216 \\ 1.153 \end{vmatrix} \begin{vmatrix} 1.370 \\ 4.3 \\ 1.216 \\ 1.1 \end{vmatrix} \begin{vmatrix} 1.347 \\ 1.1 \end{vmatrix} \end{vmatrix} $ $ \begin{vmatrix} 1.347 \\ 1.268 \\ 4.3 \\ 1.216 \\ 1.1 \end{vmatrix} \begin{vmatrix} 1.364 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 4.3 \\ 1.216 \\ 1.1 \end{vmatrix} \begin{vmatrix} 1.368 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 4.3 \\ 1.216 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 4.3 \\ 1.216 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 4.3 \\ 1.216 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 4.3 \\ 1.216 \\ 1.1 \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 5.28-0775 \\ \hline Al \\ \hline III \end{vmatrix} $ $ \begin{vmatrix} 1.269 \\ 4.3 \\ 1.216 \\ \hline III \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 4.3 \\ 1.216 \\ \hline III \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 5.28-0775 \\ \hline Al \\ \hline III \end{vmatrix} $ $ \begin{vmatrix} 1.368 \\ 5.28-0775 \\ \hline Al \\ \hline III \end{vmatrix} $ $ \begin{vmatrix} 1.333 \\ 69 \\ 55 \\ 24 \\ 41 \\ 55 \\ 50 \\ 1.88 \\ 31 \\ 2.28 \\ 41 \\ 10 \end{vmatrix} $				1.375	18			1.373	39						
$ \begin{vmatrix} 1.256 & 6 \\ 1.258 & 6 \\ 1.153 & 3 \\ 1.2100 & 8 \\ 1.153 & 3 \\ 1.153 & 3 \\ 1.153 & 3 \\ 1.153 & 3 \\ 1.153 & 3 \\ 1.153 & 3 \\ 1.216 & 11 \\ 1.153 & 11 \\ 1.153 & 11 \\ 1.216 & 11 \\ 1.1216 & 11 \\ 1.11 & 1.153 & 11 \\ 1.11 & 1.11 & 1.1216 \\ 1.11 & 1.11 & 1.11 \\ 1.11 $														1.347	5.8
33 4.8 1.256 6 1.258 4.3 1.216 11 33 4.8 1.200 8 1.120 8 1.120 8 5 (d) and relative intensities (II_0) of sample DDD 36-brown layer compared to lines of the most probable components from μ 1.153 3 4.8 1.123 3 1.216 11 1.163 1.153 3 26 21 20 6 (calcite) $(Line)$ 28 $11/0$ $11/0$ $5-0586*$ $28-0775$ $28-0775$ 86 $5-0586*$ 220 3.33 69 $5-0586*$ 21 3.33 69 $5-0586*$ 21 3.33 69 $5-0586*$ 21 3.33 69 $5-0586*$ 21 3.33 69 $5-0586*$ 21 3.33 69 $5-0586*$ 21 3.33 69 $5-0586*$ 21 3.33 69 $5-0586*$ 21 3.20 28 31 2.28 41 329 191 110 95 224 28 31 2.09 28 95 21 111 320 28 91 21 92 191 93 191 92 191 92 191 92 191 92 191 92 191 92 191 92 191 931								1.269	4.3	1.270	4.3				
3 4.8 1.200 8 1.200 8 3 1.153 3 3 1.153 3 3 (d) and relative intensities (I/I_0) of sample DDD 36-brown layer compared to lines of the most probable components from μ h compound its mineral name and the number of PDF card are given. 1.126 11 h compound its mineral name and the number of PDF card are given. $cacO_3$ CaO $cacO_3$ CaO $5-0586*$ $28-0775$ $5-0586*$ $28-0775$ $5-0586*$ $28-0775$ $5-111$ 3.00 69 69 35 171 3.00 69 55 24 21 2.09 28 21 31 2.09 28 21 32 111 320 28 95 21 31 2.09 28 21 31 2.09 28 21 32 111 320 28 95 211 29 1.91 1.91 41 1.91 2.00 28 21 212 22 41 23 212 24 212 228 41 231 2.09 231 2.09 231 2.09 231 2.09 232 332 212 333 212 333 212				1.256	9			1.258	4.3						
33 4.8 1.200 8 1.153 3 3 1.153 3 3 1.153 3 3 1.153 3 3 1.153 3 3 1.153 3 3 1.153 3										1.216	Ξ				
$ $		1.203	4.8	1.200	8										
s (d) and relative intensities (I/I_0) of sample DDD 36-brown layer compared to lines of the most probable components from μ compound its mineral name and the number of PDF card are given. CaCO_3 CaCO_3 CaCO_3 CaCO_3 CaCO_3 CaCO_4 CaCO_5 CaCO_5 CaCO_5 CaCO_6 Calcie Calcie CaCO_6 Calcie CaCO_6 Calcie CaCO_6 CaCO_				1.153	m										_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•						,						
$\begin{array}{c ccc} (Calcite) & (Lime) \\ \hline S-0586* & 28-0775 \\ \hline S-0586* & 28-075 \\ \hline S-0586* & 28-0775 \\ \hline S-0586* & 28-0775 \\ \hline S-0586* & 28-0775 \\ \hline S-0586* & 28-075 \\ \hline S-0586* & 28-0775 \\ \hline S-0586* & 28-075 \\ \hline S-0586* \\ \hline S-0586* \\ \hline S-0586* \\ \hline S-058$	the second se	CaC	03		CaO										
5-0586* 28-0775 Å] I/I ₀ d [Å] I/I ₀ 86 21 3.33 69 35 171 3.00 69 95 24 28 41 85 31 2.28 41 95 224 28 41 13 2.09 28 41 13 2.90 1.88 41	_	(Calc	cite)	0	Lime)										
Å] I/I ₀ d [Å] I/I ₀ 86 21 3.33 69 35 171 3.00 69 95 224 41 85 31 2.28 41 95 31 2.28 41 95 31 2.09 28 95 31 2.09 28 95 31 2.09 28 96 1.91 41 41 75 29 1.91 41	_	5-05	86*	5	3-0775										
86 21 3.33 69 35 171 3.00 69 95 24 69 85 31 2.28 41 13 29 1.91 41 13 29 1.91 41 75 70 188 41		d [Å]	I/I ₀	d [Å		I/I_0									
86 21 3.33 69 35 171 3.00 69 95 24 8 85 31 2.28 41 95 31 2.09 28 13 29 1.91 41 75 20 1.88 41															
35 171 3.33 69 95 24 3.00 69 95 24 2.28 41 95 31 2.28 41 95 31 2.09 28 95 31 2.09 28 95 31 2.09 28 95 31 2.09 28 13 2.9 1.91 41 75 70 1.88 41	-	3.86	21												
35 171 3.00 69 95 24				3.33		69									
95 24 85 31 2.28 41 95 31 2.09 28 113 2.9 1.91 41 75 20 1.88 41		3.035	171	3.00		69									
(85 31 2.28 41 95 31 2.09 28 13 29 1.91 41 75 20 1.88 41		2.495	24												
95 31 2.09 28 113 29 1.91 41 75 70 1.88 41		2.285	31	2.28		41									
13 29 1.91 41 75 20 1.88 41		2.095	31	2.09		28									
125 20 1 88 41		1.913	29	1.91		41									
		1.875	29	1.88		41									
	2	11 CaC 10	o davorio	.viobil											

SiO	ite)	0D	I/I_0	68		6.3	4.9		19	14	241.420	7.8	6.3	4.9		6.3	9.2		4.9	20	11)	1.4	4.9	4.9				1	4.9	1.4
Ca Mo.	(Bredig	35-026	d [Å]	2.672		2.599	2.424		2.233	2.215		2.176	2.113	2.081		2.028	2.004		1.954	1.924	1.899		1.622	1.576	1.548					1.399	1.386
_	se)	2C	I/I_0										29													15					
MaO	(Pericla	43-102	d [Å]										2.106		0											1.4895					
è	ŝ	9*	I/I_0	67			3.3*	2.0*	0.7*												20		0.7*	0.7*	16	0.7*		0.7*	0.7*		0.7*
CarAld	Turch	38-142	d [Å]	2.6987			2.4135	2.2752	2.2506												1.9079		1.6270	1.5744	1.5578	1.4895		1.4110	1.4050		1.3876
-	e)	2*	I/I_0			20	8.6	10			24	6.2	0.5*	2.9*	6.7	7.1		9.5			2.9	2.4	5.7	2.4							
Ca.Sid	(Larnit	33-030	d [Å]			2.610	2.403	2.281			2.189	2.165	2.103	2.083	2.050	2.027		1.987			1.9115	1.6964	1.6282	1.5738							
	(ID	I/I_0				171															84					22				22
0°U	(Lime	43-100	d [Å]				2.405															1.7008					1.4504				1.3887
her TG	36-	ayer	I/I_0	40	30	30	100	10	10	10	30	10	20	20	10	10	10	10	20	20	10	80	10	10	20	10	40	10	10	10	30
The rest af	DDD	brown l	d [Å]	2.6994	2.6384	2.6086	2.4032	2.2837	2.2409	2.2256	2.1906	2.1675	2.1030	2.0815	2.0534	2.0238	1.9955	1.9876	1.9431	1.9264	1.9062	1.7000	1.6320	1.5748	1.5554	1.4875	1.4496	1.4106	1.4054	1.3984	1.3883

										toom	SOILIOSI																
										the of the	nes oi und	Si _{0.38} O ₈		69	I/I ₀			13		28						3	51
										il of pomore	omparea to u	Ca1.82Al3.64		26-055	d [Å]			4.09		3.84							2.977
	SiO4	D	I/I ₀							- lotton	plaster c re given.	4	a	6I	I/I_0		4.4					70					79
	Ca _{1.7} Mg _{0.2}	35-026	d [Å]								o-undamaged of PDF card a	CaSO		43-060	d [Å]		4.360					3 485	22				3.018
	100	se) 2C	I/I_0				4.4				e UUU 3 number (3	ite)	4D	I/I_0							13					
	MgO	43-102	d [Å]			0,10,1	1.2162			1	of the sample name and the	Fe ₂ O	(Hemat	13-053	d [Å]							3.66					
	0¢	9*	I/I_0	0.7*	9		0.7*				r analysis mineral		(z	D	I/I_0		31							89			
	Ca ₃ Al ₂	38-142	d [Å]	1.3760	1.3490	0, 10, 1	1.2142				e rest atter 1 (compound its	SiO ₂	(Quart	5-0490	d [Å]		4.26							3.343			
) 4	e) 2*	I/I_0								1/10) of th For each	D 4	(e)	D	I/I_0	15			3	12	12		18		21	21	
	Ca ₂ Si(33-030	d [Å]							:	e intensities (ter database.	Cs ₂ Si((Larnit	9-0351	d [Å]	4.90				3.827	3.783		3 377		3.241	3.046	
		D)	I/I_0				¢	y	9 22		nd relative M compu	e)205	lerite)	6*	I/I_0							29	٢				
UE	CaO	(Lime 43-100)	d [Å]					1.2026	1.1036	-	on lines (d) ar s from µPDSI	Ca ₂ (Al,Fo	(Brownmil	30-022	d [Å]							3.654	3 406				
NITNOC	ter TG	oo- ayer	I/I ₀	10	10	20	10	20 10	10 30	-	Diffraction	ter TG	36-	l plaster	I/I ₀	30	20	20	20	20	10	10	0t 6	30	10	10	60
TABLE 8 (The rest af	brown la	d [Å]	1.3755	1.3489	1.2615	1.2158	1.2022	1.1031		TABLE 9. probable co	The rest af	DDD	undamaged	d [Å]	4.9054	4.2933	4.1381	4.0073	3.7979	3.7529	3.6817	2 3637	3.3317	3.2203	3.0267	2.9993

5i _{0.38} Os	I/I_0		4.1									30			3.0	9.1			2.0	3.0			2.0	2.0		41				
Ca _{1.82} Al _{3.64} S 26-055	d [Å]		2.847									2.509			2.400	2.307			2.205	2.173			2.138	2.100		2.042				
4 6I	I/I_0			44	17											8.7	4.4			8.7		17		4.4				17	4.4	
CaSO 43-060	d [Å]			2.797	2.723											2.339	2.282			2.182		2.146		2.104				2.013	1.986	
3 tte)	I/I_0							54				27					1.1	16							1.1					
Fe ₂ O, (Hemati) 13-053-	d [Å]							2.69				2.51					2.285	2.201							2.070					
<u>م</u>	I/I ₀												11				11	5.3					8.0						5.3	
SiO ₂ (Quart 5-0490	d [Å]												2.458				2.282	2.237					2.128						1.980	
D4	I/I_0		30	136	144	61				98	21		30	12	30	6	53		18	98	30		18	12	12	30	18	30		53
Cs ₂ SiC (Larnit 9-0351	d [Å]		2.814	2.780	2.744	2.716				2.608	2.543		2.451	2.433	2.407	2.322	2.282		2.196	2.188	2.163		2.130	2.094	2.083	2.048	2.041	2.019		1.983
e)2O5 lerite) 6*	I/I_0			46				64	184	31				7					15		16					64				
Ca₂(Al,F (Brownmil 30-022	d [Å]			2.784				2.673	2.644	2.576				2.434					2.210		2.155					2.051				
fter TG 36- 1 plaster	I/I_0	30	40	90	100	90	10	60	60	80	10	10	20	10	80	40	70	10	10	40	10	10	10	20	10	60	10	40	10	40
The rest a DDD undamaged	d [Å]	2.8836	2.8389	2.7716	2.7378	2.7187	2.7088	2.6835	2.6322	2.5982	2.5314	2.5050	2.4447	2.4281	2.3960	2.3187	2.2787	2.2353	2.1962	2.1815	2.1607	2.1490	2.1244	2.0985	2.0785	2.0446	2.0335	2.0195	1.9915	1.9790

TABLE 9 CONTINUE

Si_{0.38}O 8	I/I_0			13			2.0								5.1					2.0				7.1					
Ca _{1.82} Al _{3.64}	d [Å]			1.919			1.846								1.699					1.584				1.529					
1 4 06I	I/I_0			17			35					26			26	8.7		4.4					4.4	4.4		26		8.7	
CaSC 43-060	d [Å]			1.917			1.848					1.743			1.697	1.680		1.618					1.546	1.526		1.509		1.479	
3 ite) 4D	I/I_0						22									32	2.2		8.6									19	
Fe₂O (Hemat 13-053	d [Å]						1.838									1.690	1.634		1.596									1.484	
D)	I/I_0							15	0.9										0.9				13						
SiO 2 (Quart 5-0490	d [Å]							1.817	1.801										1.608				1.541						
D4	I/I_0			15	6		6	6	18	18	6		6	6	21		21	12	6	6		15		12				12	
Cs ₂ SiG (Larni 9-0351	d [Å]			1.913	1.897		1.845	1.821	1.808	1.791	1.768		1.727	1.718	1.707		1.634	1.627	1.603	1.587	1.575	1.552		1.523				1.485	
e)2 O 5 lerite) 6*	I/I_0		64			16		82		5			13							26	7		26	13		15			
Ca ₂ (Al,F ₁ (Brownmil 30-022	d [Å]		1.9283			1.8632		1.8149		1.7952			1.7327							1.5784	1.5638		1.5380	1.5202		1.5013			
fter TG 36- 1 plaster	I/I_0	30	30	40	50	10	20	10	40	20	10	40	10	10	30	40	30	30	10	10	20	30	20	10	10	10	50	40	20
The rest a DDD undamageo	d [Å]	1.9424	1.9320	1.9161	1.9042	1.8653	1.8367	1.8126	1.7995	1.7882	1.7661	1.7504	1.7359	1.7266	1.6977	1.6861	1.6327	1.6279	1.6007	1.5841	1.5713	1.5528	1.5378	1.5255	1.5116	1.4999	1.4915	1.4824	1.4699

TABLE 9 CONTINUE

(Brownmillerite)
30-0226* 9-0351D
d [Å] I/I ₀ d [Å]
1.4524 7 1.445
1.3669 5
6 00001
CaSO ₄ ·2H ₂ O CaCO ₃
(Gypsum) (Calcite)
21-0816* 24-0027D
d [Å] I/I ₀ d [Å] I/
7.61 108
4.28 216
3.852 4
3.80 19
3.07 72
3.030 14
2.871 240
2.834 3*
2.788 48
2.684 120

TABLE 9 CONTINUE

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

	(0 3)4	(e)	16	I/I_0		27			22	13				22			13		4	4	44	2*		2*	4	4		
	Mg ₃ Ca(C	(Huntit	14-409	d [Å]		2.604			2.432	2.284				1.991			1.896		1.821	1.796	1.765	1.656		1.611	1.445	1.418		
	3	e)	QL D	I/I_0				10*		27		40			9	25		50						ж т	7	4	1	4
	CaCO	(Calcit	24-002	d [Å]				2.495		2.284		2.094			1.9261	1.9071		1.8726						1.6259	1.4405	1.4168		1.1536
	H ₂ O	n)	6*	I/I_0		5		48	14		14	34	48	5			10	14	10	14		10	5	10	10	5		
NUE	CaSO ₄ ·2]	(Gypsu	21-081	d [Å]		2.595		2.496	2.454		2.220	2.087	2.073	1.993			1.900	1.880	1.812	1.798		1.664	1.646	1.622	1.440	1.418		
CONTIN	LE	-0	ayer	I/I_0	10	10	10	50	20	50	50	60	50	30	10	20	20	40	20	20	20	10	10	30	20	10	10	10
TABLE 10	SAMP	ZAP 1	brown la	d [Å]	2.6394	2.5913	2.5360	2.4934	2.4529	2.2817	2.2169	2.0882	2.0734	1.9946	1.9265	1.9101	1.8990	1.8757	1.8126	1.7982	1.7616	1.6662	1.6444	1.6212	1.4391	1.4196	1.2616	1.1526

of the sample ZAP 10-undamaged plaster compared to lines of the most probable components fror ame and the number of PDF card are given.		Ť.																									
nsities (I/I ₀) (ts mineral na	2H ₂ O	32D	I/I_0	112	146	19	11, 11, 10, 10, 10, 10, 10, 10, 10, 10,	80		61	12	45	12		13		16		13	12	7		3	3*			
lative inter ompound i	CaSO ₄	36-04	d [Å]	7.59	4.279	3.795		3.061		2.875	2.789	2.683	2.499		2.215		2.087		1.8973	1.8781	1.6199			1.4396			
(d) and re or each c	03 ite)	86*	I/I_0			39			321				45	58			58	16	55	55	13	26	16	16	10		10
ion lines (itabase. Fo	Calc	5-05	d [Å]			3.86			3.035				2.495	2.285			2.095	1.927	1.913	1.875	1.626	1.604	1.525	1.440	1.422		1.1538
Diffract nputer da	CE 9-	plaster	I/I_0	30	30	40	30	10	100	30	10	10	50	50	10	20	60	30	60	60	30	40	40	40	10	30	30
TABLE 11. µPDSM cor	SAMP.	undamaged	d [Å]	7.6179	4.2806	3.8506	3.3463	3.0668	3.0312	2.8855	2.7845	2.6812	2.4914	2.2817	2.2143	2.1924	2.0917	1.9250	1.9094	1.8731	1.6244	1.6031	1.5239	1.4391	1.4272	1.4206	1.1526

of the most	
to lines of	
compared	given.
vn layer o	card are
10-brov	r of PDF
nple ZAF	ie numbe
of the sar	me and the
analysis	ineral na
after TG	und its m
f the rest	h compo
s (I/I ₀) of	. For eac
intensitie	database
l relative	computer
es (d) and	μPDSM
iction line	nts from
12. Diffra	compone
TABLE	probable

	$1_{3}O_{12}$	ç	I/I ₀				1.8		5.9	7.1	7.T	3.5			5.3	2.4	11		3.5	47	24	15	3.0	5.9	4.7	3.5	1.8	5.9	7.7	3.5	
	CasMgS	34-135	d [Å]				3.891		3.489	3.377	3.320	3.227			2.906	2.871	2.837		2.758	2.727	2.687	2.655	2.602	2.581	2.558	2.525	2.454	2.426	2.391	2.345	
re given.	_	09	I/I	ł															7.6		6.0*				28					32	
of PDF card a	CuO	44-070	d [Å]																2.7752		2.7047				2.5444					2.3380	
number o	%		I/I			2.2*									4.4				24	6.6	1.3*		44				44		2.2	8.7	
name and the	CaAl ₁₂	25-012	d [Å]			4.019									2.907				2.781	2.735	2.695		2.622				2.479		2.408	2.352	
mineral 1		z) 1*	I/I ₀		24					108																					
compound its	SiO ₂	(Quart 33-116	d [Å]		4.257					3.342																					
For each (ر م	I/I ₀																54										149		
ter database.	CaO	(Lime 37-140	d [Å]																2.7774										2.4059		
M compu	4	(ite)	I/I				28		471				19			165		19									38				
s from µPDS	CaSO	(Anhydi 6-0226	d [Å]				3.87		3.498				3.118			2.849		2.797									2.473				
omponent	fter TG	10- aver	I/I ₀	10	20	10	40	10	100	30	10	10	30	10	10	90	10	30	50	10	20	20	10	10	10	10	50	10	80	10	
probable co	The rest a	ZAP	d [Å]	4.9167	4.2650	4.0263	3.8780	3.7773	3.4860	3.3495	3.2799	3.2172	3.1218	3.0040	2.8997	2.8493	2.8251	2.7973	2.7741	2.7252	2.6980	2.6367	2.6180	2.5822	2.5449	2.5145	2.4710	2.4294	2.4040	2.3468	

	gSi ₃ O ₁₂	3500	I/I_0	8.3		18	21	0.6		9.5	4.1	9.5	7.7	12		24	П	12				11									
	Ca ₅ M	34-1	d [Å]	2.322		2.269	2.236	2.216		2.169	2.112	2.086	2.062	2.008		1.928	1.914	1.903				1.841									
		60	I/I_0										6.4							13*						6.0				8.3	
	CuO	44-070	d [Å]										2.0474							1.8722						1.7814				1.7168	
	0°	2D	I/I_0		13			4.4*	4.4*		26			15				1.3*				2.2*								1.3	
	CaAl ₁₂	25-012	d [Å]		2.287			2.211	2.188		2.110			2.010				1.908				1.838								1.720	
	Ĩ	<i>د)</i>]*	I/I_0		6		4																	15	1*						
	SiO ₂	33-116	d [Å]		2.282		2.237																	1.8179	1.8021						
	•	*1	I/I_0																												80
	CaO	37-149	d [Å]																												1.7009
	14 ita)	ê Q	I/I_0	94				94	38			47			28	19				75	19							56			
NUE	CaSO	6-0226	d [Å]	2.328				2.208	2.183			2.086			1.993	1.938				1.869	1.852							1.749			
CONTI	fter TG	ayer	I/I_0	90	10	10	10	90	60	30	10	70	10	10	60	40	10	10	10	90	40	10	10	10	10	10	20	90	10	10	70
TABLE 12	The rest a	brown]	d [Å]	2.3270	2.2841	2.2646	2.2379	2.2087	2.1814	2.1654	2.1129	2.0844	2.0472	2.0162	1.9938	1.9375	1.9230	1.9034	1.8845	1.8687	1.8523	1.8411	1.8305	1.8223	1.7986	1.7798	1.7702	1.7491	1.7346	1.7157	1.7004

	1 ₃ O ₁₂		00	I/I_0																												
	CasMgSi		34-1350	d [Å]																												_
			60	I/I_0									П						10				11									
	CuO		44-070	d [Å]									1.5102						1.4164				1.3801									
	°0°		2D	I/I_0	1.3*		4.4		2.2*	6.6	28	1.3*	8.7	1.3*	2.2*							31	4.4			1.3*						_
	CaAl ₁₂		25-012	d [Å]	1.681		1.605		1.563	1.540	1.534	1.525	1.515	1.487	1.454							1.388	1.380			1.347						
		(z	1*	I/I_0	4		1*			10					1*				1*				~	6						1*		_
	SiO ₂	(Quart	33-116	d [Å]	1.6719		1.6082			1.5418					1.4536				1.4189				1.3752	1.3718						1.2285		_
		a	7*	I/I_0											24							24										_
	CaO	(Lime	37-149	d [Å]											1.4505							1.3888										
	04	rite)	Q	I/I_0		99		19	28			19*	6	28				19	6		19				6		19*	6	28			_
NUE	CaSC	(Anhydi	6-022(d [Å]		1.648		1.594	1.564			1.525	1.515	1.490				1.424	1.418		1.398				1.365		1.319	1.296	1.277			
CONTI	fter TG	10-	ayer	I/I_0	10	80	10	30	30	20	10	50	10	50	40	10	10	40	20	10	40	40	10	10	10	10	60	10	60	10	10	10
TABLE 12	The rest a	ZAP	brown	d [Å]	1.6763	1.6482	1.6091	1.5941	1.5649	1.5419	1.5363	1.5251	1.5147	1.4904	1.4508	1.4432	1.4386	1.4249	1.4187	1.4119	1.3973	1.3886	1.3773	1.3714	1.3651	1.3482	1.3200	1.2977	1.2769	1.2298	1.2227	1.2188

Si.O.	gui3012	3500	I/I_0																								
Ca.M	TATSPA-	34-1	d [Å]																								
-		60	I/I_0				7.3					7.6								8.0				7.3			
CirC		44-070	d [Å]				1.1968					1.1586								1.0922				1.0742			
č	6	2D	I/I_0																								
CaAl.		25-012	d [Å]																								
	(z	1*	I/I_0				7		3				1^*			1*									1*		
SiO	(Quart	33-116	d [Å]				1.1999		1.1843				1.1532			1.1405									1.0438		
	(7*	I/I_0															9*						24			
CaO	(Lime	37-149	d [Å]			1.2026												1.1037						1.0758			
_	ite)	D	I/I_0	19			6				19			6			28	19					9*				
CaSC	(Anhydr	6-0226	d [Å]	1.216			1.1993				1.1663			1.1483			1.1062	1.1044					1.0785				
fter TG	10-	ayer	I/I_0	30	10	30	10	10	10	10	40	10	10	20	10	10	40	40	10	10	10	10	30	40	30	30	10
The rest at	ZAP	brown I	d [Å]	1.2165	1.2082	1.2022	1.1992	1.1904	1.1843	1.1731	1.1656	1.1603	1.1519	1.1491	1.1434	1.1417	1.1071	1.1041	1.0956	1.0927	1.0888	1.0838	1.0789	1.0760	1.0431	1.0405	1.0313

nes of the	3i ₁₆ O ₉₀	5	I/I_0								11		4.6			23	9.2					16			2.3					9.2
compared to li jven.	Ca ₅₄ MgAl ₂ 9	13-027	d [Å]								3.034		2.973			2.776	2.748					2.608			2.323					2.184
d plaster o card are g	I)2	(alite)	I/I_0	50					15												67									
0-undamage ther of PDF	Ca(OF	4-073	d [Å]	4.9					3.112												2.628									
ole ZAP 1 Id the num	i ₃ 0 ₁₂	0	I/I_0			2.2*								4.2*			18	18	8.9	22					3.1*	0.4*	6.7	7.8	0.2	
is of the samp neral name an	CasMgSi	34-135	d [Å]			3.500								2.837			2.742	2.727	2.687	2.674					2.322	2.302	2.269	2.236	2.216	
rG analys ind its mir		<u>a</u> a	I/I_0		13		38																					2.3		
he rest after 7 each compou	SiO	(Quart 5-049(d [Å]		4.26		3.343																					2.237		
(I/I ₀) of ti base. For		e) (5	I/I_0													52								144						
ve intensities omputer data	CaC	(Lime) 37-149	d [Å]													2.7774								2.4059						
and relativ LPDSM co	04	D (j)	I/I_0			82			3.3*					29	3.3*								6.5		16				16	6.5
ion lines (d) onents from µ	CaSC	(Annya) 6-022(d [Å]			3.498			3.118					2.849	2.797								2.473		2.328				2.208	2.183
. Diffract ble comp	fter TG	l u- I plaster	I/I_0	10	10	50	30	10	30	30	10	10	10	30	20	70	20	10	10	20	60	60	10	100	20	10	10	10	20	40
TABLE 13 most proba	The rest a	ZAP undamaged	d [Å]	4.9167	4.2691	3.4995	3.3489	3.2699	3.1207	3.0947	3.0325	3.0095	2.9766	2.8497	2.8097	2.7762	2.7435	2.7123	2.6949	2.6722	2.6386	2.6165	2.4736	2.4033	2.3296	2.2956	2.2668	2.2397	2.2079	2.1880

702

-	
5.7 1.4	1.541 5.7 1.68 1.543 1.1 1.453
5.7 1.1	1.541 5.7 1.453 1.1
5.7 1.1	1.541 5.7 1.453 1.1
5.7 1.1	1.541 5.7 1.453 1.1
	1.541 1.453
23 23 23	
1.7009 78 1.4505 23 1.3888 23	1.7009 1.4505 1.3888
9.8 1.7009 11 4.9* 1.4505 23 23	9.8 1.7009 11 4.9* 1.4505 1.3888
1.749 9.8 1.7009 78 1.648 11 1.490 4.9* 1.4505 23 1.3888 23	1.749 9.8 1.749 9.8 1.7009 1.648 11 1.490 4.9* 1.4505 1.3888
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 1.749 9.8 10 1.749 9.8 10 1.7009 80 1.7009 10 1.648 10 1.648 10 1.648 10 1.648 20 1.490 20 1.490 10 1.450

(1 01),	uite)	*1	I/I_0		1.4		1.4	3.2	0.9			0.9		12	46	30	21		0.5	1.4				5.5	3.2	0.9	0.5		16	11
Ca ₃ Mg(S	(Merwin 25 050	600-00	d [Å]		4.3350		3.3248	3.1689	3.0666			2.8164		2.7562	2.6865	2.6712	2.6530		2.5086	2.4648				2.3206	2.2851	2.1916	2.1000		1.9111	1.8787
	e (e) *	*0	I/I_0							89									12						16		16	4.4	15	15
CaCC	(Calcit	000-0	d [Å]							3.035									2.495						2.285		2.095	1.927	1.913	1.875
	(z	2	I/I_0		38	110														13					13					
SiO,	(Quart	14+0-C	d [Å]		4.26	3.343														2.458					2.282					
0,	e)	3	I/I_0							6.8*	17	49	44	46				32		9.7	3.9*	9.7		2.9	17	5.8	3.9		4.9	
Ca,Si	(Larnit	1000-K	d [Å]							3.046	2.876	2.795	2.780	2.744				2.608		2.451	2.433	2.400		2.304	2.282	2.196	2.094		1.913	
Н,О	m)	*1	I/I_0	54	54				41		24	5.4*		1.1*		19		3.3	6.0	3.3*		2.2*					14			6.5
CaSO.2	(Gypsu	160-66	d [Å]	7.63	4.283				3.065		2.873	2.789		2.732		2.685		2.597	2.495	2.452		2.406					2.086			1.8795
LE	37- avor	ayer	I/I_0	10	50	90	10	10	40	100	50	30	30	20	70	10	20	10	10	20	20	20	10	10	30	10	10	10	10	10
SAMP	AUE	IIWUIU	d [Å]	7.6034	4.2941	3.3457	3.2942	3.1977	3.0650	3.0506	2.8798	2.7998	2.7761	2.7402	2.6965	2.6750	2.6375	2.6019	2.4921	2.4569	2.4246	2.4009	2.3761	2.3144	2.2801	2.1927	2.0911	1.9231	1.9077	1.8728

TABLE 14. Diffraction lines (d) and relative intensities (I/I₀) of the sample AUE 37-brown layer compared to lines of the most probable components from uPDSM commuter database. For each commond its mineral name and the number of PDF card are given

									nonents from		162 0 5		*	I/I_0		22		2		20				6				
									st probable con		Ca ₂ Al _{1.38} Fe ₆		42-1469	d [Å]		7.2485		3.8258		3.6332				3.3819				
	iO ₄) ₂	1*	I/I_0	0.5					f the mos		3iO4)8	ite)	9*	I/I_0			4*	6	9	2*	4	13	19					
	Ca ₃ Mg(S	35-059	d [Å]	1.8258					red to lines o		Ca ₁₄ Mg ₂ (S	(Bredig	36-039	d [Å]			4.19	3.849	3.797	3.586	3.566	3.485	3.372					
	(e) (e)) .*	I/I_0						er compa	/en.		e)	7D	I/I_0				43										
	CaCO (Calcit	5-0586	d [Å]						amaged plast	F card are giv	CaCO	(Calcit	24-002	d [Å]				3.852										
	(8		I/I_0	19		12			JE 37-und	ber of PD		(z	D	I/I_0			70							200				
	SiO ₂	5-0490	d [Å]	2.817		1.375			ie sample AL	and the num	SiO ₂	(Quart	5-0490	d [Å]			4.26							3.343				
	04	D G	I/I_0	2.9*	5.8				(I/Ia) of t	eral name	04	e)	2*	I/I_0				8	8				11		6	8		14
	Ca ₂ Si((Larnit	9-0351	d [Å]	1.821	1.791				ve intensities	ound its mine	Ca ₂ Si((Larnit	33-030	d [Å]				3.824	3.786				3.378		3.241	3.176		3.049
	H ₂ O	1*	I/I_0		4.9		0.5*		and relativ	ach comp	H,0	m)	1*	I/I_0	140		140		24							9		105
NUE	CaSO ₄ •2]	33-031	d [Å]		1.7844		1.3440		ion lines (d) a	itabase. For e	CaSO ₄ •2	(Gypsu	33-031	d [Å]	7.63		4.283		3.799							3.172		3.065
CONTI	LE 37-	ayer	I/I_0	20	10	10	10		. Diffract	mputer da	LE	37-	l plaster	I/I_0	10	20	40	10	10	10	10	40	20	80	10	10	10	10
TABLE 14	SAMP AUF 3	brown 1	d [Å]	1.8212	1.7857	1.3715	1.3449		TABLE 15	μPDSM coi	SAMP	AUE	undamaged	d [Å]	7.6002	7.2767	4.2495	3.8499	3.7594	3.5893	3.5374	3.4737	3.4091	3.3377	3.2369	3.1798	3.1056	3.0670

VUE CaSO42H2O Ca2	H ₂ 0 Ca ₂	Ca_2	Sic	0	SiO		CaCC		Ca ₁₄ Mg ₂ (SiO ₄) ₈	Ca ₂ Al _{1.38} F	e _{0.62} O5
(Gypsum) 33-0311*	1* I)		(Larnit 33-030	te) 12*	(Quart 5-049(D (I	(Calci) 24-002	(f) (7D	(Bredig 36-039	țite) 99*		42-146
d[ÅJ	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	
							3.030	148				
									2.955	11		
2.8	73	63	2.877	33								
			2.814	35					2.835	30		
2.78	68	14	2.783	158					2.778	11*		
			2.745	131					2.737	142	2.7567	
2.73	2	3*	2.718	47					2.723	152		
2.6	85	49										
									2.669	190	2.6535	
									2.638	8*	2.6293	
			2.610	66					2.598	13		
6	597	8							2.584	8*	2.5643	1
3	534	3*	2.545	14					2.553	6		
2	495	15					2.495	10*	2.484	8		
2.4	t52	8	2.448	19	2.458	24			2.448	13		
2	406	9	2.410	20					2.423	13	2.4130	m
			2.403	28								
									2.344	15		
			2.323	3*								
0	.291	1*	2.301	9								
			2.281	35	2.282	24	2.284	27				
					2.237	12			2.232	47		
ų	219	21							2.213	38	2.1938	1
			2.189	80								
			2.165	20					2.176	23		
											2.1406	_
2	142	Э	2.129	11	2.128	18			2.111	13		

	e _{0.62} O5	*6	I/I ₀					27					38	3*	12		16		7		7										6
	Ca ₂ Al _{1.38} F	42-146	d [Å]					2.0412					1.9118	1.8696	1.8487		1.8111		1.7853		1.7173										1.5798
	SiO ₄) ₈	(e) (9*	I/I_0	6		13	27		6	11		57	23			19						8	8	4*	9	2	8	4*	4	6	13
	$Ca_{14}Mg_2($	(bredig 36-039	d [Å]	2.106		2.083	2.073		2.029	2.024		1.924	1.902			1.838						1.670	1.663	1.660	1.649	1.639	1.622	1.613	1.604	1.583	1.576
	°.	1D	I/I_0		40							9	25	50													3*	22			
	CaCC	(Calci 24-002	d [Å]		2.094							1.9261	1.9071	1.8726													1.6259	1.6040			
			I/I_0								12						34	7				14		9				7			
	SiO ₂	5-0490	d [Å]								1.980						1.817	1.801				1.672		1.659				1.608			
	0	(e) (5 *	I/I_0	2	6		6	22	24	24	38	6	14			9	5	14	11	2*	8						19	16	17	6	8
	Ca ₂ Si	33-030	d [Å]	2.103	2.091		2.083	2.050	2.027	2.020	1.982	1.9115	1.8979			1.8441	1.8210	1.8018	1.7899	1.7657	1.7270						1.6282	1.6110	1.6040	1.5874	1.5738
	H ₂ 0	1* I)	I/I_0		35		21	8	1*		9		22	20	4		18	8	13				8		9		13		1*	9	
NUE	CaSO ₄ •2	(Uypsu) 33-031	d [Å]		2.086		2.074	2.048	2.032		1.992		1.8998	1.8795	1.8650		1.8118	1.7995	1.7844				1.6640		1.6456		1.6209		1.6005	1.5846	
CONTI	LE	o /- I plaster	I/I_0	10	30	40	20	30	30	30	20	10	30	20	10	10	40	20	20	20	10	30	20	10	10	10	20	20	20	10	20
TABLE 15	SAME	AUE undamagec	d [Å]	2.1061	2.0936	2.0844	2.0756	2.0486	2.0290	2.0187	1.9836	1.9234	1.9054	1.8724	1.8550	1.8370	1.8166	1.8030	1.7851	1.7642	1.7275	1.6694	1.6643	1.6555	1.6423	1.6379	1.6236	1.6050	1.6008	1.5847	1.5718

																				t		ູສ໌	e)	I/I_0			50
	e _{0.62} O5	9*	I/I_0	16			16	8			4		4	5				e		the mos		KAISi ₃ O	11croclin 2-06751	ÅJ			85
	2Al _{1.38} F6	42-146	[Å]	5649			5278	t955			1485		t095	3891				3546		lines of		т, 	5 0] p			4.2
	Ca		q	1.1			T	ì			ï		-i	1.				1	_	pared to	л.	i,Al) ₂ O ₆	ie))*	I/I_0		5.7	
	(SiO ₄) ^s	(90*	I/I ₀	27	13	11														yer com	are give	Ig,AI)(S	(Diopsid 41-137	ÅJ		34	_
	Ca ₁₄ Mg ₂	36-03	d [Å]	1.559	1.553	1.548														prown la	DF card	Ca(M		d [4.4	
			Io									_								UE 37-t	ber of P	03-SiO 2		I/I_0			
	CO ₃	027D	I																_	mple A	he num	0-Al ₂ C	-07360				_
	Cac	24-0	d [Å]									1.4405								s of the sa	name and t	CaO-Mg	17	d [Å]			
	(Q Q	I/I_0			30					9				14	22	18			G analysi	mineral r	04	D @	I/I_0			_
	SiO ₂	5-0490	d [Å]			1.541					1.453				1.382	1.375	1.372			le rest after T	ompound its	Ca ₂ Si((Larnit 9-0351	d [Å]			
	4	. *	I/I_0																	I/I ₀) of th	or each o		O (e)	I/I_0			
	Ca ₂ SiO	33-0302	d [Å]																	e intensities (er database. F	CaSO4	(Anhydri 6-0226]	d [Å]			
	H ₂ 0	u) 1*	I/I_0				3	1*		4		7	З				7		1*	und relativ	M comput		ΩΩ	I/I_0			33
NUE	CaSO ₄ •2]	33-031	d [Å]				1.5327	1.4947		1.4591		1.4392	1.4015				1.3657		1.3440	ion lines (d) a	s from µPDSN	SiO ₂	(Quart: 5-0490	d [Å]			4.26
CONTI	LE 7_	plaster	I/I_0	10	30	30	10	20	10	10	20	20	10	10	20	40	20	10	10	. Diffract	mponent	ter TG	s/- ayer	I/I_0	10	10	10
TABLE 15	SAMP.	undamaged	d [Å]	1.5579	1.5532	1.5414	1.5322	1.4910	1.4840	1.4614	1.4511	1.4401	1.4031	1.3874	1.3808	1.3744	1.3662	1.3566	1.3475	TABLE 16	probable co	The rest af	AUE 3 brown 1	d [Å]	7.2648	4.3949	4.2849

	INUE	-		-	t	-					3	
SiO ₂ (Quartz) 5-0490D	0 [z]		CaSO (Anhydr 6-0226	D ite)	Ca₂Si (Larni 9-035)	D (10	CaO-MgO-AI 17-073	1, 0,-Si0 , 60	Ca(Mg,Al) (Diop 41-1)(Si,Al) ₂ O ₆)side) 370*	KalSi ₃ (Microc 22-067	SD (jue)
d [Å] I	_	I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I ₀	d [Å]	I/I_0
			3.87	26							3.856	6.1
					3.827	5.2						
					3.783	5.2*	3.76	9.8			3.746	32
							3.72	20				
											3.593	7.1
											3.563	7.8
			3.498	438							3.515	6.1
											3.474	40
3.343 95	95								3.339	5.7*	3.335	46
							3.27	2.4*			3.292	87
					3.241	9.1			3.220	47	3.241	83
					3.175	7.8						
			3.118	18								
							3.09	39				
							3.01	9.8			3.005	23
									2.958	95	2.979	25
							2.97	2.4			2.946	4.3
							2.94	9.8	2.943	52		
							2.88	49	2.891	28	2.898	23
					2.876	23						
			2.849	153								
					2.814	13	2.81	20				
			2.797	18	2.795	65						
					2.780	59	2.776	49			2.774	9.6
					2.744	62						
					2.731	26	2.715	20				
	_						2.656	2.4				

	°°.	line) 5D	I/I_0		7.8	18	4.3		0.9	4.3	6.1		3.5	5.2		1.7	1.7	1.7	2.6	14	7.8			2.6	3.5			3.5	4.3	4.3	1.7
	KalSi	(Microc 22-067	d [Å]		2.612	2.556	2.528		2.463	2.420	2.401		2.366	2.329		2.278	2.251	2.207	2.192	2.160	2.115			2.065	2.049			2.017	2.000	1.980	1.947
	Si,Al) ₂ O ₆	ide) 70*	I/I_0			19	28								13		3.8	5.7		15	17	11				11		6.6		5.7	
	Ca(Mg,AI)((Diops 41-13	d [Å]			2.555	2.512								2.301		2.228	2.204		2.146	2.125	2.102				2.032		2.018		1.969	
	I ₂ O ₃ -SiO ₂	60	I/I_0			2.4	9.8	9.8	9.8	9.8	9.8		20	9.8			20					20		9.8		39	20			9.8	39
	CaO-MgO-A	17-073	d [Å]			2.550	2.521	2.463	2.452	2.434	2.409		2.362	2.336			2.245					2.107		2.067		2.038	2.027			1.975	1.936
	0	(D	I/I_0		42	9.1			13	5.2*	13			3.9*	3.9	23		7.8	42				5.2*		13		13	13		23	_
	Ca ₂ Si	(Larni 9-0351	d [Å]		2.608	2.543			2.451	2.433	2.407			2.322	2.304	2.282		2.196	2.188				2.083		2.048		2.026	2.019		1.983	
	4	Ite) D	I/I_0					35						88				88	35				44						26		18
	CaSO	(Anhydr 6-0226	d [Å]					2.473						2.328				2.208	2.183				2.086						1.993		1.938
	,	D (2	I/I_0						11							П	5.7													5.7	_
NUE	SiO ₂	(Quart 5-0490	d [Å]						2.458							2.282	2.237													1.980	
CONTI	fter TG	37- ayer	I/I_0	40	20	20	20	40	20	20	20	20	10	80	20	10	10	90	50	30	10	30	70	10	30	30	20	10	40	10	40
TABLE 16	The rest a	AUE brown 1	d [Å]	2.6765	2.6048	2.5444	2.5198	2.4712	2.4562	2.4405	2.4052	2.3752	2.3525	2.3271	2.3022	2.2854	2.2394	2.2050	2.1813	2.1474	2.1148	2.1033	2.0851	2.0657	2.0483	2.0365	2.0251	2.0151	1.9920	1.9760	1.9383

ILN S	NUE	_		_	Ċ	-						c
s Q ç		z (2)	CaSO (Anhydr	dite)	Ca ₂ Si (Larni 0.0251	e 6	CaO-MgO-AI	1203-SiO2	Ca(Mg,Al)(((Diops)	Si,AI) ₂ O ₆ ide) 70±	KalSi ₃ (Microc)	Os ine)
d [Å]	È	I/I	d [Å]	I/I	d [Å]	I/I ₀	d [Å]	I/I	d [Å] b	I/I ₀	d [Å]	I/I ₀
											1.928	6.1
					1.897	3.9						
			1.869	70								
			1.852	18	1.845	3.9					1.859	3.5
									1.832	8.5		
1.817		16*			1.821	3.9*						
			1.749	53					1.742	8.5		
			1.648	61								
					1.604	3.9			1.610	4.7		
			1.594	18					1.592	1.9		
					1.575	7.8			1.581	1.9		
			1.564	26					1.560	2.8		
					1.552	6.5*						
1.54]		14							1.5418	3.8		
									1.5291	2.8*		
			1.525	18	1.523	5.2*			1.5236	4.7		
			1.490	26*	1.485	5.2*			1.4911	0.9*		
			1.424	18					1.4192	9.5		
			1.398	18	1.397	3.9*			1.4006	1.9		
1.37	2	10							1.3741	1.9*		
			1.319	18					1.3256	3.8		
			1.296	6								
			1.277	26								
			1.216	18					1.2182	0.0		
		_		_		_	_	_	1.2055	0.0		

TABLE 16 CO	NTINUE												
The rest after 7 AUE 37-	0	SiO2 Juartz)	CaSC (Anhyd	J₄ rite)	Ca ₂ Si((Larnit	(e) (e)	CaO-MgO-	Al ₂ O ₃ -SiC	D ₂ Ca(Mg, (D)	AI)(Si,AI iopside)	20% K	(alSi ₃ O ₈ icrocline)	-
brown layer	Ş.	0490D	6-022	6D	9-0351	D	17-07	1360	41	-1370*	2	2-0675D	
d [Å] I/	l ₀ d [Å] I/I ₀	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I ₀	d [Å]	I/	I₀ d[Å	I [Y	$/I_0$
1.2012 1	0 1.199	7 4.7	1.1993	6									
1.1781	0 1.180	3.8	1.1781	4									
1.1655 4	0		1.1663	18									
1.1482 2	0		1.1483	6									
1.1052 4	0 0		1.1062	26									
	_	_	1.0100		_			_	_	_	_	-	
TABLE 17. Dif	fraction lines	(d) and rel	ative intensities	(I/I ₀) of t	he rest after T	G analys	is of the samp	le AUE 3	7-undamage	d plaster o	compared to 1	ines of the	e most
probable compo	ments from µ	PDSM com	puter database.	For each	compound its	mineral	name and the	number of	f PDF card a	re given.			
The rest after T	Ŋ	SiO ₂	Ca ₂ Al(Al,	Si) ₂ O ₇	Al2O	3	Ca ₅₄ MgAl ₂	Si ₁₆ O ₉₀	CaAl ₂ S	0,	Ca ₂ Si(0	
AUE 37-	S	Quartz)	(Gehler	nite)	(Corundi	(um)					(Larnit	(e)	
undamaged plas	ster 5-	0490D	25-012	3D	42-146	8*	13-027	2	31-024	I6	24-003	0L	
d [Å] I/	l ₀ d[Å] I/I ₀	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	
7.2648 1	0												
4.2605 4	0 4.26	70	4.24	8.0*					4.33	4.9	4.264	9	
3.8303 3.	0										3.827	2*	
3.7664 2	0		3.72	27									
3.5639 2	0												
3.4945 5	0		3.45	1.8*	3.48	41							
3.3475 10	0 3.34	3 201									3.378	9	
3.0841 3.	0		3.07	22									
3.0329 4	0						3.039	39			3.048	15	
2.9747 4	0						2.973	15	2.94	81			
2.8812 3	0		2.857	88					2.904	28	2.878	30	
2.7841 9	0						2.776	77			2.793	112	
2.7516 9	0		2.730	13*			2.748	31			2.748	124	
2.6961 9	0										2.717	123	

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

	iO4	iite) 37D	I/I ₀	67	24	7*	16	33	4					22	46		79	4	24	20	5	26	7	5	29			36		7	9
	Ca ₂ S	(Larn 24-00	d [Å]	2.610	2.582	2.546	2.503	2.493	2.452					2.305	2.282		2.189	2.132	2.106	2.084	2.065	2.047	2.026	2.021	1.984			1.894		1.847	1.821
	io	161	I/I_0			33	24	41				3.3*			16		13*		16	16	9.8			15	28	9.8*					4.9
	CaAl ₂ S	31-024	d [Å]			2.535	2.509	2.478				2.340			2.274		2.188		2.106	2.090	2.075			2.005	1.991	1.948					1.808
	Si ₁₆ O ₉₀	72	I/I ₀		54								7.7				31								7.7	7.7					7.7
	Ca ₅₄ MgAl ₂	13-02	d [Å]		2.608								2.323				2.184								1.983	1.938					1.823
	3	um) 8*	I/I ₀			56					24									58											
	Al ₂ O	(Corund 42-146	d [Å]			2.551					2.379									2.085											
	Si) ₂ O ₇	iite) 3D	I/I ₀				13		27	27				18			2.7*					8.8					49		7.1	3.5	49
	Ca ₂ Al(Al,	(Gehler 25-012	d [Å]				2.535		2.441	2.406				2.299			2.199					2.048					1.930		1.872	1.860	1.819
		D Z	I/I_0						24						24	12		18							12						34
NUE	SiO ₂	(Quart 5-0490	d [Å]						2.458						2.282	2.237		2.128							1.980						1.817
CONTI	fter TG	37- 1 plaster	I/I ₀	80	80	50	20	10	20	60	40	30	30	20	50	10	80	30	40	50	10	30	30	20	30	30	20	20	10	10	20
TABLE 17	The rest a	AUE	d [Å]	2.6375	2.6085	2.5486	2.5185	2.4881	2.4498	2.4061	2.3782	2.3434	2.3302	2.2943	2.2820	2.2487	2.1892	2.1276	2.1040	2.0844	2.0672	2.0501	2.0221	2.0146	1.9834	1.9411	1.9238	1.9048	1.8688	1.8494	1.8210

TABLE 17	CONTI	NUE											
The rest af	fter TG	SiO ₂		Ca ₂ Al(Al,	5i) ₂ O ₇	Al ₂ O	3	Ca ₅₄ MgAl ₂	Si ₁₆ O ₉₀	CaAl ₂ Si	0°	Ca ₂ SiC	04
AUE 3	37-	(Quart	(z	(Gehlen	ite)	(Corund	(um)					(Larnite	(e
undamaged	l plaster	5-0490	Q	25-012	3D	42-146	8*	13-02	72	31-024	16	24-0037	Q
d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	d [Å]	I/I_0	q [ɣ]	I/I_0	d [Å]	I/I_0	d [Å]	I/I ₀
1.7636	20			1.7608	40			1.766	31			1.762	6
1.6979	10									1.703	13	1.697	12
1.6495	10	1.659	9									1.659	5
1.6003	20	1.608	2*			1.6014	48			1.596	16	1.597	4
1.5529	30												
1.5414	20	1.541	30			1.5459	1.2*	1.541	7.7	1.540	3.3		
1.5225	20												
1.5094	20					1.5109	4.1*			1.512	24		
1.4882	40							1.488	15	1.497	16		
1.4041	30					1.4045	17			1.399	15		
1.3825	30	1.382	14	1.3790	22					1.382	24		
1.3747	30	1.375	22			1.3738	26						
1.1997	20	1.1997	10							1.202	1.6		

FIGURE 3. The Mössbauer spectrum of ⁵⁷Fe in sample DDD 36-undamaged plaster underneath the brown layer at room temperature $I - Fe^{3+}_{(1)}$ - tetrahedral sites, $II - Fe^{3+}_{(2)}$ - octahedral sites

FIGURE 4. The Mössbauer spectrum of ⁵⁷Fe in sample DDD 36-brown layer at room temperature $I - Fe^{3+}_{(1)}$ - tetrahedral sites, III - $Fe^{3+}_{(3)}$ - octahedral sites

TABLE 18. Hyperfine parameters of Mössbauer spectrum of the sample DDD 36 at room temperaturea.) undamaged plaster

b.) brown layer

	oxidation	surface	isomer	quadrupole	line width	relative
	state	area	shift δ [mm/s]	splitting $\Delta E_Q[mm/s]$	Γ [mm/s]	intensity [%]
a.)	Fe ³⁺ (1)	789 ± 226	0.29 ± 0.07	1.39 ± 0.18	0.94 ± 0.32	90
	Fe ³⁺ (2)	85 ± 96	0.35 ± 0.07	0.40 ± 0.11	0.26 ± 0.18	10
b.)	Fe ³⁺ (1)	722 ± 217	0.28 ± 0.04	1.62 ± 0.11	0.50 ± 0.16	51
	Fe ³⁺ (3)	611 ± 154	0.33 ± 0.04	0.59 ± 0.07	0.48 ± 0.08	49

FIGURE 5. The Mössbauer spectrum of ⁵⁷Fe in the sample ZMV 7 – brown layer at room temperature $I - Fe^{3+}_{(1)}$ - tetrahedral sites, $II - Fe^{3+}_{(3)}$ - octahedral sites, $IV - Fe^{2+}$

TABLE 19. Hyperfine parameters of Mössbauer spectrum of the sample ZMV 7 at room temperaturea.) undamaged plaster

c.)	brown laver	
<i>c.,</i>	biowii iuyoi	

	oxidation	surface	isomer	quadrupole	line width	relative
	state	area	shift δ [mm/s]	splitting $\Delta E_Q[mm/s]$	Γ [mm/s]	intensity [%]
a.)	Fe ³⁺ (1)	4595 ± 1036	0.28 ± 0.05	1.44 ± 0.15	0.70 ± 0.18	68
	Fe ³⁺ (2)	2152 ± 803	0.34 ± 0.05	0.43 ± 0.08	0.42 ± 0.10	32
b.)	Fe ³⁺ (1)	2762 ± 1037	0.40 ± 0.04	1.61 ± 0.12	0.40 ± 0.16	31
	Fe ³⁺ (3)	4625 ± 961	0.36 ± 0.03	0.69 ± 0.07	0.50 ± 0.08	53
	Fe ²⁺	1420 ± 588	0.85 ± 0.06	3.18 ± 0.12	0.36 ± 0.16	16

From the room temperature Mössbauer spectra it was not possible to distinguish between goethite (α -FeOOH) and ferrihydrite (Fe₅HO₈·4H₂O). It is only obvious that there is a difference in chemical environment of ferric ions in brown layers and in the corresponding undamaged plaster underneath the brown layers. Therefore a low temperature spectrum (Figure 6) at 73 K was recorded for brown layer of sample DDD 36. The spectrum shows a sextet pattern as well as two overlapping doublet patterns. A hyperfine magnetic field appears because some of the particles have reached magnetic order. The linewidths are quite large. The results are shown in Table 20.

FIGURE 6. The Mössbauer spectrum of ⁵⁷Fe in the sample DDD 36-brown layer at temperature 73 K $I - Fe^{3+}_{(1)}$ - tetrahedral sites, III - Fe³⁺₍₃₎ - octahedral sites

TABLE 20. Hyperfine parameters of Mössbauer spectrum of the sample DDD 36-brown layer recorded at

- 73 K .
- a.) doublet
- **b.)** sextet

						hyperfine
	oxidation	surface	isomer	quadrupole	line width	magnetic
	state	area	shift δ [mm/s]	splitting ΔE_Q [mm/s]	Γ [mm/s]	field H [T]
a.)	Fe ³⁺ (1)	3402 ± 1280	0.39 ± 0.11	1.30 ± 0.61	1.18 ± 0.38	/
	Fe ³⁺ (3)	958 ± 1392	0.46 ± 0.06	0.72 ± 0.16	0.44 ± 0.26	/
b.)	Fe ³⁺ (3)	2653 ± 1035	0.33	- 0.63	1.12	48.6

Discussion

Samples of brown layers and samples of corresponding undamaged plaster underneath consist of elements: Ca, Si, Al, Mg, K, S, Fe, Ti, O, C, H.

The DTA endothermic effect at 100 °C (Figure 1) can be ascribed to the desorption of surface bound water. A slow, continuous mass loss in the temperature range of 100-500 °C is a characteristic of OH group polycondensation. A significant mass loss in the temperature range of 600-900 °C belongs to the degradation of carbonates.⁷ In samples DDD 36-undamaged plaster (Figure 2) and ZMV 7-undamaged plaster are present both CaCO₃ and CaMg(CO₃)₂. On account of that the degradation of carbonates occurs in two steps. CaMg(CO₃)₂ decomposes in the temperature range of 400-700 °C.⁷

The IR spectra confirm conclusions from the TG analysis. A broad band (sample DDD 36-brown layer) in the range of 3700-3000 cm⁻¹ can be assigned to vibrations of water.⁸ Since the band is broad it can be assumed that molecules of water are differently bound to metals present in the sample. In the residual after TG analysis broad band in this area disappears and the sharp band at 3640 cm⁻¹ can be ascribed to stretching mode of O-H group.⁸ It appears due to partial hydration of metal oxides on air after TG analysis. Strong, broad band in the range of 1500-1400 cm⁻¹ and two sharp peaks at 873 cm⁻¹ and 713 cm⁻¹ belong to $-CO_3$ modes.⁸ The first one is significant for v₃(C–O) stretching modes, the second one can be ascribed to π modes of the whole carbonate group and the last one to v₄(O–C–O) bending modes. These bands are missing in the spectrum taken on the rest after TG analysis. The broad band in the range of 1200 – 800 cm⁻¹ appears in both spectra and can be ascribed to M – O modes⁸ of various metal oxides present in samples. Because IR spectra didn't give the information which metal oxides are present, we didn't record spectra of all samples.

Components which show the best matching of lines in X-ray powder patterns are CaCO₃, SiO₂, Ca₂SiO₄, CaMg(CO₃)₂, silicate minerals containing Ca, Al, Mg, K, Fe, metal hydroxides and sulphates. It was possible to determine more components in

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

residuals after TG analysis. In addition to better crystallised phases, e.g. SiO₂, a number of new phases appeared in residuals due to chemical reactions.

From the above analyses it could not be concluded that iron is involved in chemical changes of external layers of building facades. Mössbauer analysis turned out to be a convenient method for investigation of iron in poorly crystalline material.

Two overlapping doublet patterns (Figure 3) in the room temperature spectra of undamaged plaster of the sample DDD 36 can be ascribed to ferric ions on tetrahedral $(Fe^{3+}_{(1)})$ and octahedral $(Fe^{3+}_{(2)})$ sites in ferrites of brownmillerite-like structure². In brown layers coordination remains tetrahedral and octahedral $(Fe^{3+}_{(3)})$, but there are more ferric ions at octahedral sites what can be concluded by comparing relative intensities (Table 18 and 19). The change in quadrupole splitting parameter of about 0.2 mm/s indicates a change in chemical environment of the octahedrally coordinated ferric ions ($Fe^{3+}_{(3)}$). Parameters of $Fe^{3+}_{(3)}$ agree well with parameters of microcrystalline goethite $(\alpha$ -FeOOH)⁹ and ferrihydrite $(Fe_5HO_8 \cdot 4H_2O)$.^{3,9} To determine which one of these two minerals is present in brown layers the low temperature spectrum at 73 K was recorded (Figure 6). Parameters of this spectrum (Table 20) match with parameters of microcrystalline goethite.⁹ The hyperfine magnetic field is 1 T lower than that found in literature, which can be explained by aluminium substitution, sample crystallinity and particle size effects.^{10,11} The difference between brown layers and undamaged plaster underneath the brown layers is in formation of goethite (α -FeOOH). It is microcrystalline and some of the Fe³⁺ ions are substituted by a non magnetic ion, probably Al³⁺.

Iron in oxidation state 2+ is present only in the brown layer of sample ZMV 7 (Figure 5). One of the possible ways of its genesis is reduction of Fe^{3+} due to SO_2 present in the air.

P. Ropret, P. Bukovec, D. Hanžel: Characterization of brown layers on façades of archeological...

Acknowledgements

The authors wish to thank to the Ministry of Education, Science and Sport of the Republic of Slovenia for their financial support (Grant PO – 0508-0103).

References and Notes

- 1. I. Nemec, *Društveni dom Domžale barvna študija*, Konzervatorski nadzor: Zavod za varstvo naravne in kulturne dediščine, Kranj **1995**
- 2. D. Hanžel, G. Lahajnar, A Study of Two Yugoslav Cements by Mössbauer Spectroscopy of ⁵⁷Fe, Vestnik slovenskega kemijskega društva, Ljubljana, **1986**, 33, 147-150
- 3. A. J. Nord and T. Ericson, Chemical Analysis of Thin Black Layers on Building Stone, Studies in Conservation, **1993**, 38, 25-35
- 4. W. E. Steger and H. Mehner, *The Iron in Black Weathering Crusts on Saxonian Sandstones Investigated by Mössbauer Spectroscopy*, Studies in Conservation, **1998**, 43, 49-58
- 5. PDF, Sets 1-49 and 70-86, International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA **1999**
- 6. µPDSM, "Micro Powder Diffraction Search Match", Fein-Marquart Associates. Release 4.30
- 7. Atlas of Thermoanalytical Curves, ed. G. L. Pyay, Akadémiai Kiadó, Budapest 1977
- 8. K. Nakamoto, *Infrared and Raman Spectra*, Wiley & Sons, 4th Edition, **1986**
- E. Murad and J. H. Johnston, *Iron Oxides and Oxyhydroxydes*, Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, ed. G. J. Long, Plenum Press, New York 1987
- 10. S. Mørup, *Mössbauer Studies of Microcrystalline Materials*, Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, ed. G. J. Long, Plenum Press, New York **1987**
- 11. D. C. Golden, L. H. Bowen, S. B. Weed and J. M. Bingham, *Mössbauer Studies of Synthetic and Soil* occurring Aluminium Substituted Goethites, Soil Sci. Am. J., **1979**, 43, 802-808

Povzetek

Na nekaterih arheoloških stavbah je fasada tik pod površino rjavo obarvana. Ta rjava obarvanost je posledica kemijskih sprememb, ki lahko pozročijo tudi nadaljno destrukcijo fasade.

Rjavo plast in nepoškodovano plast fasade tik pod rjavo plastjo sestavljajo CaCO₃, SiO₂, Ca₂SiO₄, CaMg(CO₃)₂, silikati, ki vsebujejo Ca, Al, Mg, K, Fe, kovinski hidroksidi in sulfati. V obeh plasteh je tudi nekaj površinsko vezane vode. Fe³⁺ ioni so tetraedrično in oktaedrično koordinirani. V rjavi plasti je več Fe³⁺ ionov na oktaedričnih mestih in eksperimentalni podatki kažejo tudi na spremembo kemijskega okolja Fe³⁺ ionov. Razlika med rjavo plastjo in nepoškodovano plastjo fasade je v tem, da je v rjavi plasti nastal goethit (α - FeOOH), ki je mikrokristaliničen in delež Fe³⁺ ionov je substituiran z ne – magnetnim ionom, verjetno Al³⁺ ionom. Železo v oksidacijskem stanju 2+ je prisotno samo v rjavi plasti vzorca ZMV 7. Ena od možnih poti nastanka je z redukcijo Fe³⁺, zaradi prisotnosti SO₂ v zraku.