
The ADAM graph and its configuration1

It is well-known that exactly seven of the generalised Petersen graphs are symmetric (= arc-
transitive), namely the following:

• G(4, 1) – the cube graph,
• G(5, 2) – the Petersen graph,
• G(8, 3) – the Möbius-Kantor graph,
• G(10, 2) – the dodecahedron graph,
• G(10, 3) – the Desargues graph,
• G(12, 5) – the Nauru graph, and
• G(24, 5) – the graph that we hereby name the ADAM graph.

Both G(8, 3) and G(10, 3) are associated with point-line configurations: G(8, 3) is the
Levi graph (= incidence graph) of the Möbius-Kantor (83) configuration, while G(10, 3) is
the Levi graph if the Desargues (103) configuration. A point-circle configuration is called
an isometric configuration if all circles have the same radius, and a graph drawn in the
plane is called unit-distance graph if all straight edges have the same length.

The above figures depict an isometric point-circle configuration (243) on the left, whose
Levi graph is the generalised Petersen graph G(24, 5) drawn as the unit-distance graph on
the right. The central detail has been adopted as the logo of our new journal, The Art of
Discrete and Applied Mathematics, and because its abbreviation is ADAM, we propose
that the generalised Petersen graph G(24, 5) and the corresponding (243) configuration be
called respectively the ADAM graph and the ADAM configuration.

Dragan Marušič and Tomaž Pisanski
Editors In Chief

1We would like to thank Nino Bašić and Arjana Žitnik for drawing both figures.
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Abstract

The concept of k-independent number is a natural generalization of classical inde-
pendence number. A k-independent set is a set of vertices whose induced subgraph has
maximum degree at most k. The k-independence number of G, denoted by ↵k(G), is de-
fined as the maximum cardinality of a k-independent set of G. In this paper, we study the
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1 Introduction
Graphs considered in this paper are undirected, finite and simple. We refer to [1] for un-
defined notations and terminology. In particular, we use �(G) and �(G) to denote the
maximum degree and minimum degree of a graph G, respectively. If X ✓ V (G) or
X ✓ E(G), then G[X] is the subgraph of G induced by X . For two subsets X and Y

of V (G) we denote by EG[X,Y ] the set of edges of G with one end in X and the other
end in Y .

Independence number is one of the most basic concepts in graph theory. A subset
S ✓ V (G) is said to be independent if E(G[S]) = ;. The independence number of G
denoted by ↵(G) is the size of a maximum independent set in G. In [6, 7], Fink and
Jacobson generalized the concept of independent set. In this paper, k will be an integer. We
say that a subset S of V is k-independent if �(G[S])  k, that is, the maximum degree
of the subgraph induced by the vertices of S is less or equal to k. The k-independence
number, denoted ↵k(G), as the maximum cardinality of a k-independent set. Thus for
k = 0, the 0-independent is the classical independent set. Every k-independent set is
(k + 1)-independent; so ↵k+1(G) � ↵k(G) for a graph G. Moreover, the vertex set V is
the only maximal �-independent but is not a (� � 1)-independent set. Thus every graph
G satisfies

↵(G) = ↵0(G)  ↵1(G)  ↵2(G)  · · ·  ↵��1(G) < ↵�(G) = n.

For k-independent set and k-independence number, Chellali, Favaron, Hansberg, and Volk-
mann published a survey paper on this subject; see [3]. We must mention that the k-
independence number of G is defined as the size of a largest k-colorable subgraph of G in
[17].

In graph theory, Cartesian product, strong product, lexicographical product, and direct
product are four of main products, each with its own set of applications and theoretical
interpretations. Product networks were proposed based upon the idea of using the cross
product as a tool for “combining” two known graphs with established properties to obtain
a new one that inherits properties from both [5]. For more details on graph products, we
refer to the book [10].

• The Cartesian product of two graphs G and H , written as G⇤H , is the graph with
vertex set V (G)⇥V (H), in which two vertices (u, v) and (u0

, v
0) are adjacent if and

only if u = u
0 and (v, v0) 2 E(H), or v = v

0 and (u, u0) 2 E(G).
• The lexicographic product G �H of graphs G and H has the vertex set V (G �H) =

V (G)⇥V (H). Two vertices (u, v), (u0
, v

0) are adjacent if uu0 2 E(G), or if u = u
0

and vv
0 2 E(H).

• The strong product G ⇥ H of graphs G and H has the vertex set V (G) ⇥ V (H).
Two vertices (u, v) and (u0

, v
0) are adjacent whenever uu0 2 E(G) and v = v

0, or
u = u

0 and vv
0 2 E(H), or uu0 2 E(G) and vv

0 2 E(H).
• The direct product G ⇥ H of graphs G and H has the vertex set V (G) ⇥ V (H).

Two vertices (u, v) and (u0
, v

0) are adjacent if the projections on both coordinates
are adjacent, i.e., uu0 2 E(G) and vv

0 2 E(H).

Note that unlike the other three products, the lexicographic product is a non-commuta-
tive product since G �H is usually not isomorphic to H �G.

For the independence number of Cartesian product graphs, Vizing [16] observed:
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Theorem 1.1 ([10, 16]). For any graphs G and H ,

(i) ↵(G⇤H)  min{↵(G)|V (H)|,↵(H)|V (G)|};

(ii) ↵(G⇤H) � ↵(G)↵(H) + min{|V (G)|� ↵(G), |V (H)|� ↵(H)}.

Geller and Stahl [9] obtained the following result for the independence number of lexi-
cographical product graphs.

Theorem 1.2 ([9]). For any graphs G and H , ↵(G �H) = ↵(G)↵(H).

The following result is immediate, since G⇥H is a subgraph of G �H .

Corollary 1.3 ([10]). For any graphs G and H , ↵(G⇥H) � ↵(G)↵(H).

In 2011, S̆pacapan [17] proved the following theorem.

Theorem 1.4 ([17]). For any graph G and H ,

(i) ↵(G⇥H) � max{↵(G)|V (H)|,↵(H)|V (G)|};

(ii) ↵(G⇥H)  ↵(H)|V (G)|+ ↵(G)|V (H)|� ↵(H)↵(G).

For the independence number of four graph products, Jha and Slutzki obtained the
following relation in 1994.

Theorem 1.5 ([12]). For any graphs G and H ,

↵(G �H)  ↵(G⇥H)  ↵(G⇤H)  ↵(G⇥H).

In this paper, we consider four standard products: the lexicographic, the strong, the
Cartesian and the direct with respect to the k-independence number. Every of these four
products will be treated in one of the forthcoming subsections in Section 2. Our results can
be seen as extensions of Theorems 1.1, 1.2, 1.4, 1.5 and Corollary 1.3.

2 Main results
In this section, let G and H be two connected graphs with V (G) = {u1, u2, . . . , un} and
V (H) = {v1, v2, . . . , vm}, respectively. Then V (G⇤H) = {(ui, vj) | 1  i  n, 1  j 
m}, where ⇤ denotes lexicographic product operation, strong product operation, Cartesian
product operation or direct product operation. For v 2 V (H), we use G(v) to denote
the subgraph of G ⇤ H induced by the vertex set {(ui, v) | 1  i  n}. Similarly, for
u 2 V (G), we use H(u) to denote the subgraph of G ⇤ H induced by the vertex set
{(u, vj) | 1  j  m}.

2.1 The lexicographic product

In this subsection, we give upper and lower bounds of ↵k(G �H).

Theorem 2.1. (i) Let k � 0 be an integer. For graphs G and H ,

↵k(G �H)  ↵k(H)|V (G)|.
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(ii) Let k, r � 0 be two integers. Let H be a graph of order m. For graphs G and H ,

↵k(G �H) � ↵r(G)↵k�rm(H)

where ↵k�rm(H) = 0 if k  rm.
Moreover, the bounds are sharp.

Proof. (i) Let I be a maximum k-independent set of G�H . We claim that |I\V (H(ui))| 
↵k(H(ui)) for each ui 2 V (G). To see this, we observe that H(ui)[I \ V (H(ui))] is a
subgraph of G �H[I].

(ii) Let I be a maximum r-independent set of G, and J be a maximum (k� rm)-inde-
pendent set of H . Set

I = {ui | 1  i  s} and J = {vj | 1  j  t}.

For any (ui, vj) 2 I ⇥ J , we show that the degree of (ui, vj) in G �H[I ⇥ J ] is at most
k. Since I is a maximum r-independent set of G, it follows that dG[I](ui)  r, where
ui 2 V (G[I]). Similarly, since J is a maximum (k�mr)-independent set of H , it follows
that dH[J](vj)  k �mr, where vj 2 V (H[J ]). Then

dG�H[I⇥J](ui, vj)  dH[J](vj) +mdG[I](ui)  k �mr +mr = k,

and hence I ⇥ J is a k-independent set of G �H . So ↵k(G �H) � ↵r(G)↵k�rm(H).
See Remarks 2.4 and 2.5 for the sharpness.

2.2 The strong product

In this subsection, we derive upper and lower bounds of ↵k(G⇥H).

Theorem 2.2. (i) Let k � 0 be an integer. For graphs G and H ,

↵k(G⇥H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|}.

(ii) Let k, r � 0 be two integers. For graphs G and H ,

↵k(G⇥H) � ↵r(G)↵b k

2r+1 c
(H)

and
↵k(G⇥H) � ↵r(H)↵b k

2r+1 c
(G).

Moreover, the bounds are sharp.

Proof. (i) Let I be a maximum k-independent set of G ⇥ H . If |G(vj) \ I| > ↵k(G)
for some j  m, then I is not a k-independent set in G ⇥ H . It follows ↵k(G ⇥ H) 
↵k(G)|V (H)|. From the symmetry, we have

↵k(G⇥H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|}.

(ii) Let I be a maximum r-independent set of G, and J be a maximum ( k

2r+1 )-inde-
pendent set of H . Set

I = {ui | 1  i  s} and J = {vj | 1  j  t}.
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For any (ui, vj) 2 I ⇥ J , we show that the degree of (ui, vj) in G �H[I ⇥ J ] is at most
k. Since I is a maximum r-independent set of G, it follows that dG[I](ui)  r, where
ui 2 V (G[I]). Similarly, since J is a maximum ( k

2r+1 )-independent set of H , it follows
that dH[J](vj)  k

2r+1 , where vj 2 V (H[J ]). Then

dG⇥H[I⇥J](ui, vj)  dH[J](vj) +
2k

2r + 1
dG[I](ui) 

k

2r + 1
+

2rk

2r + 1
= k,

and hence I ⇥ J is a k-independent set of G⇥H . So ↵k(G⇥H) � ↵r(G)↵b k

2r+1c(H).
See Remarks 2.4 and 2.5 for the sharpness.

2.3 The Cartesian product

Upper and lower bounds of ↵k(G⇤H) are derived in this subsection.

Theorem 2.3. Let k, r � 0 be two integers. For graphs G and H ,

(i) ↵k(G⇤H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|};
(ii) ↵k(G⇤H) � ↵r(G)↵k�r(H)

+

8
>>>>>>>><

>>>>>>>>:

st, if k � s+ t� 2;

t(k � t+ 2), if s � bk+3
2 c, t < bk+3

2 c,
and k  s+ t� 3;

s(k � s+ 2), if t � bk+3
2 c, s < bk+3

2 c,
and k  s+ t� 3;

min{p, q}
�⌃

k

2

⌥
+ 1

� �⌅
k

2

⇧
+ 1

�
, if s � bk+3

2 c and t � bk+3
2 c,

where 0  r  k, s = |V (G)|�↵r(G), t = |V (H)|�↵k�r(H), s = (
⌃
k

2

⌥
+1)p+s

0,
t = (

⌅
k

2

⇧
+ 1)q + t

0, 0  s
0
<

⌃
k

2

⌥
+ 1 and 0  t

0
<

⌅
k

2

⇧
+ 1.

Moreover, the bounds are sharp.

Proof. (i) The proof is similar to the proof of (i) of Theorem 2.1.
(ii) Suppose I is a r-independent set in G and J is a (k � r)-independent set in H ,

respectively. We will prove that I ⇥ J is a k-independent set of G⇤H . By commutativity,
we may assume |V (G)|�↵r(G)  |V (H)|�↵k�r(H). Say V (H)\J = {y1, y2, · · · , yt},
and take a subset {x1, x2, · · · , xs} ✓ V (G) \ I . Then s  t. Set

K = {(xi, yj) | 1  i  s, 1  j  t}.

Let F = G⇤H . Since F [K] is a spanning subgraph of Ks ⇤Kt, it follows that ↵k(F [K])
� ↵k(Ks ⇤Kt), and hence there is a ↵k(Ks ⇤Kt)-independent set of F [K], say K

0.
Claim 1: (I ⇥ J) [K

0 is a k-independent set of G⇤H .

Proof of Claim 1. For any (ui, vj) 2 I ⇥ J where ui 2 V (G) and vj 2 V (H), we have

dG⇤H[I⇥J](ui, vj) = dG[I](ui) + dH[J](vj)  r + (k � r) = k.

Therefore, I ⇥ J is a k-independent set of G⇤H . From the structure of Cartesian product
graphs, we have EG⇤H [I ⇥ J,K

0] = ;. Then (I ⇥ J) [ K
0 is a k-independent set of

G⇤H .
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From Claim 1, we have ↵k(G⇤H) � |(I⇥J)[K 0| = ↵r(G)↵k�r(H)+↵k(Ks ⇤Kt)
for graphs G and H .

If k � s+ t�2, then (V (G)� I)⇥ (V (H)�J) = Ks ⇥ Kt is a k-independent set of
Ks ⇤Kt, and hence ↵k(Ks ⇤Kt) � st. If s � bk+3

2 c, t < bk+3
2 c, and k  s+ t�3, then

↵k(Ks ⇤Kt) � ↵k(Kk�t+2 ⇤Kt) � t(k � t + 2). Similarly, if t � bk+3
2 c, s < bk+3

2 c,
and k  s+ t�3, then ↵k(Ks ⇤Kt) � ↵k(Ks ⇤Kk�s+2) � s(k�s+2). If s � bk+3

2 c,
t � bk+3

2 c, then

↵k(Ks ⇤Kt) � ↵d k

2 e
(Ks)↵b k

2 c
(Kt) + ↵k(Ks�d k

2 e�1 ⇤K
t�b k

2 c�1)

�
✓⇠

k

2

⇡
+ 1

◆✓�
k

2

⌫
+ 1

◆
+ ↵k(Ks�d k

2 e�1 ⇤K
t�b k

2 c�1)

�
✓⇠

k

2

⇡
+ 1

◆✓�
k

2

⌫
+ 1

◆
+ ↵d k

2 e
(K

s�d k

2 e�1)↵b k

2 c
(K

t�b k

2 c�1)

+ ↵k(Ks�2d k

2 e�2 ⇤K
t�2b k

2 c�2)

= 2

✓⇠
k

2

⇡
+ 1

◆✓�
k

2

⌫
+ 1

◆
+ ↵k(Ks�2d k

2 e�2 ⇤K
t�2b k

2 c�2)

= · · ·

= min{p, q}
✓⇠

k

2

⇡
+ 1

◆✓�
k

2

⌫
+ 1

◆

+ ↵k(Ks�min{p,q}(d k

2 e+1) ⇤K
t�min{p,q}(b k

2 c+1))

� min{p, q}
✓⇠

k

2

⇡
+ 1

◆✓�
k

2

⌫
+ 1

◆
,

where s = (
⌃
k

2

⌥
+1)p+ s

0, t = (
⌅
k

2

⇧
+1)q+ t

0, 0  s
0
<

⌃
k

2

⌥
+1 and 0  t

0
<

⌅
k

2

⇧
+1.

So the result follows.
See Remarks 2.4 and 2.5 for the sharpness.

Remark 2.4. From Theorems 2.1, 2.2 and 2.3, we have the following upper bounds for
k-independent number.

• ↵k(G �H)  ↵k(H)|V (G)|;
• ↵k(G⇥H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|};

• ↵k(G⇤H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|}.

To show the sharpness of these upper bounds, we consider the following example. Let
G = nK1 and |V (H)| = m. Then G ⇤ H consists of n copies of H , where ⇤ denotes
the lexicographical or Cartesian or strong product operation. It is clear that ↵k(G ⇤H) =
↵k(H)n = ↵k(H)|V (G)|. So all these upper bounds are sharp.

Remark 2.5. From Theorems 2.1, 2.2 and 2.3, we have the following lower bounds for
k-independent number.

• ↵k(G �H) � ↵r(G)↵k�rm(H), where m = |V (H)|;
• ↵k(G⇥H) � ↵r(G)↵b k

2r+1 c
(H);
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• ↵k(G⇤H) � ↵r(G)↵k�r(H) + X , where s = |V (G)| � ↵r(G), t = |V (H)| �
↵k�r(H), and

X =

8
>>>>>>>><

>>>>>>>>:

st, if k � s+ t� 2;

t(k � t+ 1), if s � bk+3
2 c, t < bk+3

2 c,
and k  s+ t� 3;

s(k � s+ 1), if t � bk+3
2 c, s < bk+3

2 c,
and k  s+ t� 3;

min{p, q}
�⌃

k

2

⌥
+ 1

� �⌅
k

2

⇧
+ 1

�
, if s � bk+3

2 c and t � bk+3
2 c.

To show the sharpness of these lower bounds, we first consider the following example. Let
G = K2 and H = K2. Then G �H = G ⇥H = K4, and ↵k(G �H) = ↵k(G ⇥H) =
↵k(K4). For k = 0, ↵k(G �H) = ↵k(G⇥H) = ↵0(K4) = 1; for k = 1, ↵k(G �H) =
↵k(G⇥H) = ↵1(K4) = 2. From Theorems 2.1 and 2.2, ↵k(G �H) � ↵r(G)↵k�rm(H)
and ↵k(G⇥H) � ↵r(G)↵b k

2r+1 c
(H). Set r = 0. Then ↵k(G �H) � ↵0(K2)↵k(K2) =

↵k(K2) and ↵k(G ⇥ H) � ↵0(K2)↵k(K2) = ↵k(K2). For k = 0, ↵0(K2) = 1; for
k = 1, ↵1(K2) = 2. For k = 0, ↵k(G �H) = ↵k(G⇥H) = ↵0(G)↵k(H). This implies
that the first two lower bounds are sharp.

Next, we consider the examples for Cartesian product. Let G = K2 and H = K2.
Clearly, G⇤H = C4, and ↵k(G⇤H) = ↵k(C4). If k = 0, then r = 0, s = t =
p = q = 1, and ↵k(G⇤H) = ↵0(C4) = 2 = ↵0(K2)↵0(K2) + st = ↵0(K2)↵0(K2) +
min{p, q}

�⌃
0
2

⌥
+ 1

� �⌅
0
2

⇧
+ 1

�
. So the bound for the case k � s+t�2 or s � bk+3

2 c, t �
bk+3

2 c is sharp. For the case s � bk+3
2 c, t < bk+3

2 c, and k  s + t � 3, we let G = K7

and H = K4. If k = 3, r = 2, s = 4, and t = 2, then ↵3(G⇤H) � ↵2(K7)↵1(K4) +
t(k � t + 2) = 12. It suffices to show that ↵3(G⇤H)  12. Assume, to the contrary,
that ↵3(G⇤H) � 13. Let V (G) = V (K7) = {ui | 1  i  7} and V (H) = V (K4) =
{vi | 1  i  4}. Then

S4
i=1 V (G(vi)) = V (G⇤H). Let I be a maximum 3-independent

set in G⇤H . Then |I| � 13. Since k = 3, it follows that |I \ V (G(vi))|  4 for each
i (1  i  4). Then there exists some G(vi) such that |I \ V (G(vi))| = 4. Without loss
of generality, let I \ V (G(v1)) = {(uj , v1) | 1  j  4}. Since k = 3 and |I| � 13,
it follows that |I \ V (G(vi))| = 3 for each i (2  i  4). Since k = 3, it follows that
I \ V (G(vi)) = {(uj , vi) | 5  j  7} for each i (2  i  4). Then the degree of the
subgraph induced by I is at least 4, a contradiction. So ↵3(G⇤H) = 12, and hence the
lower bound is also sharp.

2.4 The direct product

We give upper and lower bounds for ↵k(G⇥H) in this section.

Theorem 2.6. Let k � 0 be an integers. For graphs G and H ,

(i) ↵k(G⇥H) � max
n
↵b k

�(H) c
(G)|V (H)|,↵b k

�(G) c
(H)|V (G)|

o
;

(ii) ↵k(G⇥H)

 min
n
↵b k

�(G) c
(H)|V (G)|+ ↵b k

�(H) c
(G)|V (H)|� ↵b k

�(G) c
(H)↵b k

�(H) c
(G),

↵b k

�(G) c
(G)|V (H)|+ ↵b k

�(H) c
(H)|V (G)|� ↵b k

�(H) c
(G)↵b k

�(G) c
(H)

o
.
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Moreover, the bounds are sharp.

Proof. (i) If I is a b k

�(H)c-independent set of G, then I ⇥ V (H) is a k-independent set of
G ⇥ H . Therefore, ↵k(G ⇥ H) � ↵b k

�(H) c
(G)|V (H)|. By symmetry of direct product

graphs, we have

↵k(G⇥H) � max
n
↵b k

�(H) c
(G)|V (H)|,↵b k

�(G) c
(H)|V (G)|

o
.

(ii) Let I be a k-independent set of G ⇥ H . Partition I into two vertex subsets J,K

such that

J =

⇢
(u, v) 2 I | (u, vj) 2 I, vj 2 S(u,v), and |S(u,v)| 

�
k

�(G)

⌫�

and K = I \ J , where S(u,v) = {vj 2 NH(v) | (u, vj) 2 I}.
Set

J
ui = J \H(ui) and K

vj = K \G(vj).

Let IH be a maximum b k

�(G)c-independent set of H . Set

Y = (V (G)⇥ IH) \K

and
Y

ui = Y \H(ui)

Note that Jui \ Y
ui = ?. From the definition of J , Jui [ Y

ui is a b k

�(G)c-independent
set of H , and hence

↵b k

�(G) c
(H) � |Jui |+ |Y ui |. (2.1)

Claim 1: For vj 2 V (H), ↵b k

�(H) c
(G) � |Kvj |.

Proof of Claim 1. For (u, vj) 2 K
vj where u 2 V (G), from the definition of Kvj , we

have dH(vj) > b k

�(G)c. Since dG(u) · dH(vj)  k, it follows that

dG(u) 
k

dH(vj)
 k

�(H)
.

Note that Kvj is a b k

�(H)c-independent set of G(vj). Therefore, ↵ k

�(H)
(G) � |Kvj |.

Since
P

ui2V (G) |Y ui | =
P

vj2I(H) |Kvj |, it follows from (2.1) and Claim 1 that
X

ui2V (G)

(↵b k

�(G) c
(H)� |Jui |) +

X

vj2V (H)

(↵b k

�(H) c
(G)� |Kvj |)

�
X

ui2V (G)

|Y ui |+
X

vj2V (H)

(↵b k

�(H) c
(G)� |Kvj |)

�
X

vj2I(H)

|Kvj |+
X

vj2I(H)

(↵b k

�(H) c
(G)� |Kvj |)

�
X

vj2I(H)

↵b k

�(H) c
(G)
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and hence
X

ui2V (G)

↵b k

�(G) c
(H) +

X

vj2V (H)

↵b k

�(H) c
(G)�

X

vj2I(H)

↵b k

�(H) c
(G)

�
X

ui2V (G)

|Jui |+
X

vj2V (H)

|Kvj |.

Then

↵b k

�(G) c
(H)|V (G)|+ ↵b k

�(H) c
(G)|V (H)|� ↵b k

�(G) c
(H)↵b k

�(H) c
(G) � |I|.

From the symmetry of direct product, we have

↵k(G⇥H)

 min
n
↵b k

�(G) c
(H)|V (G)|+ ↵b k

�(H) c
(G)|V (H)|� ↵b k

�(G) c
(H)↵b k

�(H) c
(G),

↵b k

�(G) c
(G)|V (H)|+ ↵b k

�(H) c
(H)|V (G)|� ↵b k

�(H) c
(G)↵b k

�(G) c
(H)

o
.

The proof is now complete. See Remark 2.7 for the sharpness.

Remark 2.7. To show the sharpness of the lower and upper bounds in Theorem 2.6, we let
G = K2 and H = K2. Then

• ↵k(G⇥H) � max{↵k(K2)|V (K2)|,↵k(K2)|V (K2)|} = 2↵k(K2);
• ↵k(G⇥H)  min{↵k(H)|V (G)|+ ↵k(G)|V (H)|� ↵k(H)↵k(G),

↵k(G)|V (H)|+ ↵k(H)|V (G)|� ↵k(G)↵k(H)}
= ↵k(K2)|V (K2)|+ ↵k(K2)|V (K2)|� ↵k(K2)↵k(K2)

= (4� ↵k(K2))↵k(K2).

For k � 1, we have ↵k(G ⇥ H) = 2, which implies that the upper and lower bounds in
Theorem 2.6 are sharp.

2.5 Relation of four graph products

For the k-independence number of four graph products, we have the following relation.

Proposition 2.8. For any graphs G and H ,

↵k(G �H)  ↵k(G⇥H)  ↵k(G⇤H)  min{↵k�(H)(G⇥H),↵k�(G)(G⇥H)}.

Proof. Since G ⇥ H is a subgraph of G � H , it follows that ↵k(G � H)  ↵k(G ⇥ H).
Similarly, since G⇤H is a subgraph of G⇥H , it follows that ↵k(G⇥H)  ↵k(G⇤H).
From Theorem 2.3, ↵k(G⇤H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|}. From Theorem
2.6, we have

↵k�(H)(G⇥H) � max{↵k(G)|V (H)|,↵ k�(H)
�(G)

(H)|V (G)|}

� min{↵k(G)|V (H)|,↵k(H)|V (G)|}
� ↵k(G⇤H).

Similarly, we have ↵k�(G)(G⇥H) � ↵k(G⇤H), and hence

↵k(G⇤H)  min{↵k�(H)(G⇥H),↵k�(G)(G⇥H)}.

The proof is now complete.
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3 Applications
In this section, we demonstrate the usefulness of the proposed constructions by applying
them to some instances of Cartesian and lexicographical product networks.

The following results are immediate.

Proposition 3.1. Let k � 0, n � 2 be two integers and {n

3 } be the integer such that
n ⌘ {n

3 }(mod 3).

(i) For a complete graph Kn,

↵k(Kn) =

(
k + 1, if 0  k  n� 1;

n, if k � n.

(ii) For a path Pn,

↵k(Pn) =

8
><

>:

dn

2 e, if k = 0;

2bn

3 c+ {n

3 }, if k = 1;

n, if k � 2.

(iii) For a cycle Cn,

↵k(Cn) =

8
>>><

>>>:

bn

2 c, if k = 0;

2bn

3 c, if k = 1 and n ⌘ 0, 1 (mod 3);

2bn

3 c+ 1, if k = 1 and n ⌘ 2 (mod 3);

n, if k � 2.

3.1 n-dimensional generalized hypercube

Let Km be a clique of m vertices, m � 2. An n-dimensional generalized hypercube [5, 8]
is the product of n cliques.

We first focus our attention on 2-dimensional generalized hypercube.

Proposition 3.2. For network Km1⇤Km2 ,

min{m1, dk/2e+ 1}min{m2, bk/2c+ 1}
 ↵k(Km1⇤Km2)



8
>>><

>>>:

min{m2,m1}(k + 1), if k  mi � 1 (i = 1, 2);

(k + 1)m1, if k  m2 � 1, k � m1;

(k + 1)m2, if k  m1 � 1, k � m2;

m1m2, if k � m1, k � m2.

Proof. We first investigate the upper bound of ↵k(Km1⇤Km2). If k � mi (i = 1, 2), then
↵k(Kmi

) = mi and ↵k(Km1⇤Km2)  min{↵k(Km1)|V (Km2)|,↵k(Km2)|V (Km1)|}
= m1m2 by Theorem 2.3. If k  m2 � 1 and k � m1, then ↵k(Km1) = m1 and
↵k(Km2)=k+1 and ↵k(Km1⇤Km2)  min{↵k(Km1)|V (Km2)|,↵k(Km2)|V (Km1)|}
= min{m1m2, (k + 1)m1} = (k + 1)m1. Similarly, if k  m1 � 1 and k � m2, then
↵k(Km1⇤Km2)  (k + 1)m2. If k  mi � 1 (i = 1, 2), then ↵k(Kmi

) = k + 1, and
hence ↵k(Km1⇤Km2)  min{(k + 1)m2, (k + 1)m1} = min{m2,m1}(k + 1).
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Next, we consider the lower bound of ↵k(Km1⇤Km2). From Theorem 2.3, we have
↵k(Km1⇤Km2) � ↵r(Km1)↵k�r(Km2), where 0  r  k. If r = dk/2e, then k �
r = bk/2c, ↵r(Km1) = min{m1, dk/2e + 1}, and ↵k�r(Km2) = min{m2, bk/2c + 1}.
Furthermore, we have ↵k(Km1⇤Km2) � ↵r(Km1)↵k�r(Km2) = min{m1, dk/2e +
1}min{m2, bk/2c+ 1}, as desired.

Next, we consider n-dimensional generalized hypercube.

Proposition 3.3. For network Km1⇤Km2⇤ · · ·⇤Kmn
, we have the following.

(i) If mi  k (1  i  n), then

m1  ↵k(Km1⇤Km2⇤ · · ·⇤Kmn
) 

nY

i=1

mi.

(ii) If k  mj � 1 (1  j  n), then

k + 1  ↵k(Km1⇤Km2⇤ · · ·⇤Kmn
)  (k + 1)

nY

i=2

mi.

Proof. (i) Since mi  k (1  i  n), it follows that ↵k(Kmi
) = mi, where 1  i 

n. From Theorem 2.3, we have ↵k(G⇤H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|} 
↵k(G)|V (H)| for any two graphs G and H , and hence

↵k(Km1⇤Km2⇤ · · ·⇤Kmn
) = ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�1)⇤Kmn

)

 ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�1)mn

 ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�2)mn�1mn

 . . .

 ↵k(Km1)m2 · · ·mn�1mn

=
nY

i=1

mi.

From Theorem 2.3, we have ↵k(G⇤H) � ↵r(G)↵k�r(H) for any two graphs G and H .
Set r = k. Then ↵k(G⇤H) � ↵k(G)↵0(H) for any two graphs G and H , and hence

↵k(Km1⇤Km2⇤ · · ·⇤Kmn
) = ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�1)⇤Kmn

)

� ↵k(Km1⇤Km2⇤ · · ·⇤Kmn�1)↵0(Kmn
)

� ↵k(Km1⇤Km2⇤ · · ·⇤Kmn�1)

� ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�2)

� . . .

� ↵k(Km1)

= m1.

(ii) Since k  mj � 1 (1  j  n), it follows that ↵k(Kmj
) = k + 1, where 1 

j  n. From Theorem 2.3, we have ↵k(G⇤H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|} 
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↵k(G)|V (H)| for any two graphs G and H , and hence

↵k(Km1⇤Km2⇤ · · ·⇤Kmn
) = ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�1)⇤Kmn

)

 ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�1)mn

 ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�2)mn�1mn

 . . .

 ↵k((Km1)m2 · · ·mn�1mn

= (k + 1)
nY

i=2

mi.

From Theorem 2.3, we have ↵k(G⇤H) � ↵r(G)↵k�r(H) for any two graphs G and H .
Set r = k. Then ↵k(G⇤H) � ↵k(G)↵0(H) for any two graphs G and H , and hence

↵k(Km1⇤Km2⇤ · · ·⇤Kmn
) = ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�1)⇤Kmn

)

� ↵k(Km1⇤Km2⇤ · · ·⇤Kmn�1)↵0(Kmn
)

� ↵k(Km1⇤Km2⇤ · · ·⇤Kmn�1)

� ↵k((Km1⇤Km2⇤ · · ·⇤Kmn�2)

� . . .

� ↵k(Km1) = k + 1,

as desired.

Proposition 3.4. For network Km1 �Km2 � · · · �Kmn
,

↵k(Km1 �Km2 � · · · �Kmn
) =

(
k + 1, if 0  k 

Q
n

i=1 mi � 1;
Q

n

i=1 mi, if k �
P

n

i=1 mi.

Proof. From the definition of lexicographical product, Km1�Km2�· · ·�Kmn
is a complete

graph. From Proposition 3.1, if 0  k 
Q

n

i=1 mi�1, then ↵k(Km1 �Km2 � · · ·�Kmn
) =

k + 1; if k + 1k �
P

n

i=1 mi, then ↵k(Km1 �Km2 � · · · �Kmn
) =

Q
n

i=1 mi.

3.2 Two-dimensional grid graph

A two-dimensional grid graph is the Cartesian product Pn ⇤Pm of path graphs on m and
n vertices. For more details on grid graph, we refer to [2, 11]. The network Pn � Pm is the
lexicographical product Pn � Pm of path graphs on m and n vertices; see [15]. Let {m/3}
be the integer such that m ⌘ {m/3}(mod 3).

Proposition 3.5. For network Pn ⇤Pm (n � 3,m � 3), we have the following.

(i) If k � 4, then ↵k(Pn ⇤Pm) = mn.

(ii) If k = 2, 3, then min{mdn/2e, ndm/2e}  ↵k(Pn ⇤Pm)  mn.

(iii) If k = 1, then

dn/2e(2bm/3c+ {m/3})  ↵k(Pn ⇤Pm)

 min{(2bn/3c+ {n/3})m, (2bm/3c+ {m/3})n}.
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(iv) If k = 0, then dn/2edm/2e  ↵k(Pn⇤Pm)  min{dn/2em, dm/2en}.

Proof. (i) Choose all vertices in Pn ⇤Pm. Since the degree of each vertex in the induced
subgraph induced by these vertices is at most 4, it follows that ↵k(Pn ⇤Pm) = mn.

(ii) From Theorem 2.3, ↵2(Pn ⇤Pm)  min{↵2(Pn)|V (Pm)|, ↵2(Pm)|V (Pn)|} =
min{nm,mn} = mn and ↵2(Pn ⇤Pm) � ↵r(Pn)↵2�r(Pm). If r = 0, then we
have ↵2(Pn ⇤Pm) � ↵0(Pn)↵2(Pm) = dn/2em. If r = 2, then ↵2(Pn ⇤Pm) �
↵2(Pn)↵0(Pm) = dm/2en. So, we have ↵2(Pn ⇤Pm) � min{mdn/2e, ndm/2e}. Sim-
ilarly, if k = 3, then min{mdn/2e, ndm/2e}  ↵3(Pn ⇤Pm)  mn.

(iii) From Theorem 2.3, ↵1(Pn ⇤Pm)  min{↵1(Pn)|V (Pm)|,↵1(Pm)|V (Pn)|} =
min{(2bn/3c + {n/3})m, (2bm/3c + {m/3})n}. From Theorem 2.3, ↵1(Pn ⇤Pm) �
↵r(Pn)↵1�r(Pm). If r = 0, then ↵1(Pn ⇤Pm) � ↵0(Pn)↵1(Pm) = dn/2e(2bm/3c +
{m/3}).

(iv) From Theorem 2.3, ↵0(Pn ⇤Pm)  min{↵0(Pn)|V (Pm)|,↵0(Pm)|V (Pn)|} =
min{dn/2em, dm/2en}, and ↵0(Pn ⇤Pm) � ↵0(Pn)↵0(Pm) = dn/2edm/2e.

Proposition 3.6. For network Pn � Pm (n � 4,m � 3), we have the following.

(i) If k � 2m+ 2, then ↵k(Pn � Pm) = mn.

(ii) If 2  k < 2m+ 2, then dn/2em  ↵k(Pn � Pm)  mn.

(iii) If k = 1, then

dn/2e(2bm/3c+ {m/3})  ↵1(Pn � Pm)  n(2bm/3c+ {m/3}).

(iv) If k = 0, then
dn/2edm/2e  ↵k(Pn � Pm)  ndm/2e.

Proof. From Theorem 2.1, we have ↵k(Pn � Pm)  ↵k(Pm)|V (Pn)| = n↵k(Pm) and
↵k(Pn � Pm) � ↵r(Pn)↵k�rm(Pm). Let r = 0. Then ↵k(Pn � Pm) � ↵0(Pn)↵k(Pm),
and hence

dn/2e↵k(Pm)  ↵k(Pn � Pm)  n↵k(Pm). (3.1)

(i) For k � 2m+ 2, we choose all vertices in Pn � Pm. Since the degree of each vertex in
the induced subgraph induced by these vertices is at most 2m+ 2, it follows that ↵k(Pn �
Pm) = mn.

(ii) Since 2  k < 2m + 2, it follows that ↵k(Pm) = m. From (3.1), dn/2em 
↵k(Pn � Pm)  mn.

(iii) For k = 1, ↵k(Pm) = 2bm/3c+{m/3}. From (3.1), dn/2e(2bm/3c+{m/3}) 
↵1(Pn � Pm)  n(2bm/3c+ {m/3}).

(iv) For k = 0, ↵k(Pm) = bm/2c. From (3.1), we have dn/2edm/2e  ↵k(Pn �
Pm)  ndm/2e.

3.3 n-dimensional mesh

An n-dimensional mesh is the Cartesian product of n paths. By this definition, two-
dimensional grid graph is a 2-dimensional mesh. An n-dimensional hypercube is a special
case of an n-dimensional mesh, in which the n linear arrays are all of size 2; see [13].
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Proposition 3.7. For n-dimensional mesh Pm1⇤Pm2⇤ · · ·⇤Pmn
,

↵k(Pm1⇤Pm2⇤ · · ·⇤Pmn
) 

8
><

>:

dm1
2 e

Q
n

i=2 mi, if k = 0;

(2bm1
3 c+ {m1

3 })
Q

n

i=2 mi, if k = 1;
Q

n

i=1 mi, if k � 2,

and

↵k(Pm1⇤Pm2⇤ · · ·⇤Pmn
) �

8
><

>:

dm1
2 e

Q
n

i=2dmi/2e, if k = 0;

(2bm1
3 c+ {m1

3 })
Q

n

i=2dmi/2e, if k = 1;

m1
Q

n

i=2dmi/2e, if k � 2.

Proof. From Theorem 2.3, we have ↵k(G⇤H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|} 
↵k(G)|V (H)| for any two graphs G and H , and hence

↵k(Pm1⇤Pm2⇤ · · ·⇤Pmn
) = ↵k((Pm1⇤Pm2⇤ · · ·⇤Pmn�1)⇤Pmn

)

 ↵k((Pm1⇤Pm2⇤ · · ·⇤Pmn�1)mn

 ↵k((Pm1⇤Pm2⇤ · · ·⇤Pmn�2)mn�1mn

 . . .

 ↵k(Pm1)m2 · · ·mn�1mn.

So, the result follows.
From Theorem 2.3, we have ↵k(G⇤H) � ↵r(G)↵k�r(H) for any two graphs G and

H . Set r = k. Then ↵k(G⇤H) � ↵k(G)↵0(H) for any two graphs G and H , and hence

↵k(Pm1⇤Pm2⇤ · · ·⇤Pmn
) = ↵k((Pm1⇤Pm2⇤ · · ·⇤Pmn�1)⇤Pmn

)

� ↵k(Pm1⇤Pm2⇤ · · ·⇤Pmn�1)↵0(Pmn
)

� ↵k(Pm1⇤Pm2⇤ · · ·⇤Pmn�1)dmn/2e
� ↵k((Pm1⇤Pm2⇤ · · ·⇤Pmn�2)dmn�1/2edmn/2e
� . . .

� ↵k(Pm1)
nY

i=2

dmi/2e,

and hence the result holds.

Similarly to the proof of Proposition 3.7, we can obtain the following result.

Proposition 3.8. For n-dimensional mesh Pm1 � Pm2 � · · · � Pmn
,

8
><

>:

dm1
2 e  ↵k(Pm1 � · · · � Pmn

)  dm1
2 e

Q
n

i=2 mi, if k = 0;

2bm1
3 c+ {m1

3 }  ↵k(Pm1 � · · · � Pmn
)  (2bm1

3 c+ {m1
3 })

Q
n

i=2 mi, if k = 1;

m1  ↵k(Pm1 � · · · � Pmn
) 

Q
n

i=1 mi, if k � 2.
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3.4 n-dimensional torus

An n-dimensional torus is the Cartesian product of n cycles Cm1 , Cm2 , · · · , Cmn
of size at

least three. The cycles Cmi
are not necessary to have the same size. Ku et al. [14] showed

that there are n edge-disjoint spanning trees in an n-dimensional torus. The network Cm1 �
Cm2 � · · · � Cmn

is investigated in [15]. Here, we consider the networks constructed by
Cm1⇤Cm2⇤ · · ·⇤Cmn

and Cm1 � Cm2 � · · · � Cmn
, respectively.

Proposition 3.9. For network Cn⇤Cm (n � 3,m � 3), we have the following.

(i) If k � 4, then ↵k(Cn⇤Cm) = mn.

(ii) If k = 3 or k = 2, then min{mbn/2c, nbm/2c}  ↵k(Cn⇤Cm)  mn.

(iii) If k = 1, then 2bn/2cbm

3 c  ↵k(Cn⇤Cm)  min{m(2bn

3 c+ 1), n(2bm

3 c+ 1)}.
(iv) If k = 0, then bn/2cbm/2c  ↵k(Cn⇤Cm)  min{bn/2cm, bm/2cn}.

Proof. (i) Choose all vertices in Cn⇤Cm. Since the degree of each vertex in the induced
subgraph induced by these vertices is at most 4, it follows that ↵k(Cn⇤Cm) = mn.

(ii) From Theorem 2.3, ↵3(Cn⇤Cm)  min{↵3(Cn)|V (Cm)|,↵3(Cm)|V (Cn)|} =
min{nm,mn} = mn, and ↵3(Pn⇤Pm) � ↵r(Cn)↵3�r(Cm). If r = 0, then we
have ↵3(Cn⇤Cm) � ↵0(Cn)↵3(Cm) = bn/2cm. If r = 3, then ↵3(Cn⇤Cm) �
↵3(Cn)↵0(Cm) = bm/2cn = bm/2cn. So, ↵3(Cn⇤Cm) � min{mbn/2c, nbm/2c}.
The case k = 2 can be similarly proved.

(iii) From Theorem 2.3, ↵1(Cn⇤Cm) � ↵r(Cn)↵1�r(Cm). If r = 0, then we have
↵1(Cn⇤Cm) � ↵0(Cn)↵1(Cm) = bn/2c(2bm

3 c), and ↵1(Cn⇤Cm)  min{↵1(Cn)
|V (Cm)|,↵1(Cm)|V (Cn)|} = min{m(2bn

3 c+ 1), n(2bm

3 c+ 1)}.
(iv) From Theorem 2.3, ↵0(Cn⇤Cm)  min{bn/2cm, bm/2cn}, and ↵0(Cn⇤Cm)�

↵0(Cn)↵0(Cm) = bn/2cbm/2c.

For network Cn � Cm, we have the following result.

Proposition 3.10. For network Cn � Cm (n � 4,m � 3), we have the following.

(i) If k � 2m+ 2, then ↵k(Cn � Cm) = mn.

(ii) If 2  k < 2m+ 2, then bn/2cm  ↵k(Cn � Cm)  mn.

(iii) If k = 1 and n ⌘ 0, 1 (mod 3), then 2bn/2cbn/3c  ↵k(Cn � Cm)  2nbn/3c.
(iv) If k = 1 and n ⌘ 2 (mod 3), then

bn/2c(2bn/3c+ 1)  ↵k(Cn � Cm)  n(2bn/3c+ 1).

(v) If k = 0, then bm/2cbn/2c  ↵0(Cn � Cm)  nbm/2c.

Proof. From Theorem 2.1, we have ↵k(Cn � Cm)  ↵k(Cm)|V (Cn)| = n↵k(Cm) and
↵k(Cn � Cm) � ↵r(Cn)↵k�rm(Cm). Let r = 0. Then ↵k(Cn � Cm) � ↵0(Cn)↵k(Cm),
and hence

bn/2c↵k(Cm)  ↵k(Cn � Cm)  n↵k(Cm). (3.2)

(i) For k � 2m + 2, we choose all vertices in Cn � Cm. Since the degree of each
vertex in the induced subgraph induced by these vertices is at most 2m+ 2, it follows that
↵k(Cn � Cm) = mn.
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(ii) Since 2  k < 2m + 2, it follows that ↵k(Cm) = m, and hence bn/2cm 
↵k(Cn � Cm)  mn by (3.2).

(iii) Since k = 1 and n ⌘ 0, 1 (mod 3), we have ↵k(Cm) = 2bn

3 c. From (3.2),
2bn/2cbn/3c  ↵k(Cn � Cm)  2nbn/3c.

(iv) For k = 1 and n ⌘ 2 (mod 3), ↵k(Cm) = 2bn

3 c+1. From (3.2), bn/2c(2bn/3c+
1)  ↵k(Cn � Cm)  n(2bn/3c+ 1).

(v) For k = 0, ↵k(Cm) = bm/2c. From (3.2), bm/2cbn/2c  ↵k(Cn � Cm) 
nbm/2c.

For general case, we have the following two results.

Proposition 3.11. For network Cm1⇤Cm2⇤ · · ·⇤Cmn
,

↵k(Cm1⇤Cm2⇤ · · ·⇤Cmn
)

8
>>><

>>>:

bm1
2 c

Q
n

i=2 mi, if k = 0;

2bm1
3 c

Q
n

i=2 mi, if k = 1,m1 ⌘ 0, 1 (mod 3);

(2bm1
3 c+ 1)

Q
n

i=2 mi, if k = 1,m1 ⌘ 2 (mod 3);
Q

n

i=1 mi, if k � 2,

and

↵k(Cm1⇤ · · ·⇤Cmn
) �

8
>>><

>>>:

bm1
2 c

Q
n

i=2bmi/2c, if k = 0;

2bm1
3 c

Q
n

i=2bmi/2c, if k = 1,m1 ⌘ 0, 1 (mod 3);

(2bm1
3 c+ 1)

Q
n

i=2bmi/2c, if k = 1,m1 ⌘ 2 (mod 3);

m1
Q

n

i=2bmi/2c, if k � 2,

where mi is the order of Cmi
and 1  i  n.

Proof. From Theorem 2.3, we have ↵k(G⇤H)  min{↵k(G)|V (H)|,↵k(H)|V (G)|} 
↵k(G)|V (H)| for any two graphs G and H , and hence

↵k(Cm1⇤Cm2⇤ · · ·⇤Cmn
) = ↵k((Cm1⇤Cm2⇤ · · ·⇤Cmn�1)⇤Cmn

)

 ↵k((Cm1⇤Cm2⇤ · · ·⇤Cmn�1)mn

 ↵k((Cm1⇤Cm2⇤ · · ·⇤Cmn�2)mn�1mn

 . . .

 ↵k(Cm1)m2 · · ·mn�1mn.

From (iii) of Proposition 3.1, the result follows.
From Theorem 2.3, we have ↵k(G⇤H) � ↵r(G)↵k�r(H) for any two graphs G and

H . Set r = k. Then ↵k(G⇤H) � ↵k(G)↵0(H) for any two graphs G and H , and hence

↵k(Cm1⇤Cm2⇤ · · ·⇤Cmn
) = ↵k((Cm1⇤Cm2⇤ · · ·⇤Cmn�1)⇤Cmn

)

� ↵k(Cm1⇤Cm2⇤ · · ·⇤Cmn�1)↵0(Cmn
)

� ↵k(Cm1⇤Cm2⇤ · · ·⇤Cmn�1)bmn/2c
� ↵k((Cm1⇤Cm2⇤ · · ·⇤Cmn�2)bmn�1/2cbmn/2c
� . . .

� ↵k(Cm1)
nY

i=2

bmi/2c.

From (3.2) of Proposition 3.1, the result holds.
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Similarly to the proof of Proposition 3.11, we can prove the following result.

Proposition 3.12. For network Cm1 � Cm2 � · · · � Cmn
,

8
>>>>>>>><

>>>>>>>>:

bm1
2 c  ↵k(Cm1 � · · · � Cmn

)  bm1
2 c

Qn
i=2 mi, if k = 0;

2bm1
3 c  ↵k(Cm1 � · · · � Cmn

)  2bm1
3 c

Qn
i=2 mi, if k = 1

and m1 ⌘ 0, 1 (mod 3);

2bm1
3 c+ 1  ↵k(Cm1 � · · · � Cmn

)  (2bm1
3 c+ 1)

Qn
i=2 mi, if k = 1

and m1 ⌘ 2 (mod 3);

m1  ↵k(Cm1 � · · · � Cmn
) 

Qn
i=1 mi, if k � 2,

where mi is the order of Cmi
and 1  i  n.

3.5 n-dimensional hyper Petersen network

An n-dimensional hyper Petersen network HPn is the product of the well-known Petersen
graph and Qn�3 [4], where n � 3 and Qn�3 denotes an (n � 3)-dimensional hypercube.
Note that HP3 is just the Petersen graph.

The network HLn is the lexicographical product of the Petersen graph and Qn�3,
where n � 3 and Qn�3 denotes an (n�3)-dimensional hypercube; see [15]. Note that HL3

is just the Petersen graph, and HL4 is a graph obtained from two copies of the Petersen
graph by adding the edges between all the vertices from different copies of the Petersen
graph.

Proposition 3.13. (i) For network HP3 and HL3,

↵k(HP3) = ↵k(HL3) =

8
>>><

>>>:

4, if k = 0;

5, if k = 1;

5, if k = 2;

10, if k � 3.

(ii) For network HP4, 8
>>>>>><

>>>>>>:

5  ↵k(HP4)  8, if k = 0;

6  ↵k(HP4)  10, if k = 1;

6  ↵k(HP4)  10, if k = 2;

11  ↵k(HP4)  20, if k = 3;

↵k(HP4) = 30, if k � 4.

(iii) For network HL4, (
4  ↵k(HP4)  15, if k = 0;

8  ↵k(HP4)  30, if k � 1.

Proof. (i) Note that HL3 or HP3 is just the Petersen graph, and its maximum degree is 3.
Since |V (HP3)| = 10, it follows that ↵k(HP3) = 10 for k � 3. One can also check that

↵k(HP3) = ↵k(HL3) =

8
><

>:

4, if k = 0;

5, if k = 1;

5, if k = 2.
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(ii) For network HP4, HP4 = HP3⇤K2. From Theorem 2.3, we have ↵k(HP4) =
↵k(HP3⇤K2)  min{2↵k(HP3), 10↵k(K2)}. Note that ↵k(K2) = 1 for k = 0;
↵k(K2) = 2 for k � 1. Combining this with (i) of this proposition, we have

↵k(HP4) 

8
>>><

>>>:

8, if k = 0;

10, if k = 1;

10, if k = 2;

20, if k � 3.

From Theorem 2.3, ↵k(HP4) � ↵r(HP3)↵k�r(K2)+↵k(Ks⇤Kt), where s= |V (HP3)|
�↵r(HP3) and t = |V (K2)| � ↵k�r(K2). Set r = k. Then t = 1 and ↵k(HP4) �
↵k(HP3)↵0(K2) + ↵k(Ks⇤K1) � ↵k(HP3) + 1, and hence

↵k(HP4) �

8
>>><

>>>:

5, if k = 0;

6, if k = 1;

6, if k = 2;

11, if k � 3.

(iii) For network HL4, HL4 = K2 �HL3. From Theorem 2.3, we have ↵k(HL4) =
↵k(K2 � HL3)  |V (HL3)|↵k(K2) = 10↵k(K2). Note that ↵k(K2) = 1 for k = 0;
↵k(K2) = 2 for k � 1. Combining this with (i) of this proposition, we have

↵k(HL4) 
(
15, if k = 0;

20, if k � 1.

From Theorem 2.3, ↵k(HL4) � ↵r(HL3)↵k�2r(K2). Set r = 0. Then ↵k(HL4) �
↵0(HL3)↵k(K2) = 4↵k(K2), and hence

↵k(HL4) �
(
4, if k = 0;

8, if k � 1.
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A Hurwitz surface, named after Adolf Hurwitz, is a compact Riemann surface with
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1 Introduction
In Riemann surface theory and hyperbolic geometry, a Hurwitz surface, named after Adolf
Hurwitz, is a compact Riemann surface with precisely 84(g � 1) automorphisms, where
g is the genus of the surface. The Hurwitz surface of least genus is the Klein quartic of
genus 3. The next possible genus is 7 with automorphism group PSL(2, 8), which is the
simple group of order 84⇥ (7�1) = 504; if one includes orientation-reversing isometries,
the group is of order 1 008. Our paper is devoted to this genus 7 surface of Adolf Hurwitz
from 1893, compare [12], which provides us in modern terminology with a regular map
of type (3, 7)18. We have a closed triangular 2-manifold in which each vertex is incident
with seven triangles. The Petrie polygon length is 18 and the automorphism group is flag
transitive. In general a regular map is a decomposition of a two dimensional manifold into
topological discs, such that every flag can be transformed into any other flag by a symmetry
of the decomposition. When we describe a topological disc d via a circular sequence of
its vertices d = (v1, v2, . . . , vk), a flag will be in this context a tripel (vi, (vi, vi+1), d)
consisting of a vertex vi, an edge (vi, vi+1), and the disc d itself. For the Hurwitz surface
of genus 7, the name Macbeath surface is used as well, although the corresponding article
of Macbeath is from 1965, [13].

We find under Wikipedia for regular map: “regular maps are typically defined and

studied in three ways: topologically, group-theoretically, and graph-theoretically”. How-
ever, there are also results in which polyhedral realizations of regular maps have been
studied, see e.g. the corresponding articles of Jörg M. Wills and of his co-authors or other
colleagues in [2, 3, 4, 5, 6, 7, 8, 16, 17], and [18]. This article is devoted to such a question
that was studied by Jörg M. Wills for some time. When only some abstract combinatorial
data of a geometric object is given and when we are looking for a corresponding geometric
realization or try to prove that no such realization exists, we are facing in general a hard
problem that has been called a problem of computational synthetic geometry in [4].

Our main result of this article provides a polyhedral realization of Hurwitz’s regular
map (3, 7)18 of genus seven. We also show a topological representation for which we have
a corresponding 3D-model. We refer the reader for additional aspects with respect to this
paper to the homepage of the second author: http://www.iazd.uni-hannover.
de/cuntz.html.

1.1 Previous polyhedral realizations of regular maps

Regular maps generalize on a combinatorial level Platonic solids with their geometric flag
transitive automorphism groups. Mani’s result [14] asserts that for each combinatorial
automorphism of the boundary structure of a convex polyhedron, there does exist a convex
polyhedron with a corresponding geometric symmetry. A corresponding result for general
regular maps does not hold, the notion hidden symmetries has been used.

The polyhedral realization of Hurwitz’s surface of least genus, i.e., a polyhedral real-
ization of Klein’s quartic of genus 3, with 24 vertices has been published by E. Schulte and
J. M. Wills in [16]. In Figure 1 we have depicted two truncated tetrahedra the vertices of
which are the vertices of this symmetric realization.

A first polyhedral realization of a regular map of Walther Dyck (3, 8)6 with 12 vertices
was provided in Antibes in 1987 by Bokowski, see [1] and [2], thus disproving a conjecture
of Schulte and Wills that it did not exist. A symmetrical version of this map was found later
by Ulrich Brehm, [6]. U. Brehm and U. Leopold have found another polyhedral realization

http://www.iazd.uni-hannover.de/cuntz.html
http://www.iazd.uni-hannover.de/cuntz.html
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Figure 1: The points of a realization of Hurwitz’s regular map of genus 3 by E. Schulte and
J. M. Wills are the vertices of two truncated tetrahedra, [16].

Figure 2: First realization of Dyck’s regular map of genus 3 presented by Bokowski (in
the middle) in Antibes 1987, [1]. The other two men in the photo are R. Connelly, Cornell
University (on the left) and J. M. Wills, University Siegen (on the right).
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of a regular map (3, 10) of genus 6 of W. Dyck with 15 vertices, [7]. See also a survey
article of U. Brehm and E. Schulte in [8] and the papers cited there.

Figure 3: Symmetric realization of Dyck’s regular map of genus 3 by U. Brehm [6].

2 Combinatorial description
For general descriptions of combinatorial regular maps we refer the reader to [9, 11], and
[23]. Hurwitz’s regular map of genus 7 consists of the following 168 triangles in Table 1.
It has 252 edges and 72 vertices labeled 1, . . . , 72.

Compared with previous polyhedral realizations of regular maps we are faced with
additional complexity. From the automorphism group of this manifold of order 1 008, we
have used a dihedral subgroup of order 14 for sorting the triangles. The cyclic subgroup
has the following generator.

(1) (72) (2, . . . , 8) (9, . . . , 15) (16, . . . , 22) (23, . . . , 29) (30, . . . , 36)

(37, . . . , 43) (44, . . . , 50) (51, . . . , 57) (58, . . . , 64) (65, . . . , 71)

When we assume the vertices from 2 to 71 to form ten regular seven-gons in horizontal
equidistant planes with heights sorted according to labels belonging to the same orbit of
the cyclic group, we have an additional up-side-down symmetry that maps vertex 1 to
vertex 72 which is an automorphism of the map.

The combinatorial description of a complete list of small regular maps has been given
in [10], an even more extended list is available from the first author of the same article.

3 Topological visualization
The study of topological visualizations of regular maps has recently been done by
J. J. van Wijk, [21, 22], by C. H. Séquin, [20], and by Razafindrazaka and Polthier, [15].
From J. J. van Wijk we have a nice topological visualization as a computer film of our Hur-
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Table 1: Triangles of Hurwitz’s surface of genus seven.

(01, 02, 03), (01, 03, 04), (01, 04, 05), (01, 05, 06), (01, 06, 07), (01, 07, 08),
(01, 08, 02), (02, 08, 09), (02, 10, 03), (03, 11, 04), (12, 05, 04), (13, 06, 05),
(14, 07, 06), (08, 07, 15), (02, 09, 23), (03, 10, 24), (11, 25, 04), (12, 26, 05),
(13, 27, 06), (14, 28, 07), (08, 15, 29), (02, 16, 10), (03, 17, 11), (12, 04, 18),
(13, 05, 19), (20, 14, 06), (21, 15, 07), (22, 09, 08), (02, 23, 16), (03, 24, 17),
(04, 25, 18), (19, 05, 26), (20, 06, 27), (21, 07, 28], (22, 08, 29), (22, 51, 09),
(16, 52, 10), (11, 17, 53), (12, 18, 54), (55, 13, 19), (56, 14, 20), (21, 57, 15),
(46, 23, 09), (47, 24, 10), (48, 25, 11), (49, 26, 12), (50, 27, 13), (44, 28, 14),
(45, 29, 15), (46, 09, 32), (47, 10, 33), (48, 11, 34), (49, 12, 35), (50, 13, 36),
(44, 14, 30), (45, 15, 31), (32, 09, 51), (10, 52, 33), (11, 53, 34), (12, 54, 35),
(55, 36, 13), (30, 14, 56), (31, 15, 57), (36, 16, 23), (30, 17, 24), (31, 18, 25),
(32, 19, 26), (20, 27, 33), (21, 28, 34), (22, 29, 35), (36, 42, 16), (30, 43, 17),
(31, 37, 18), (38, 19, 32), (39, 20, 33), (21, 34, 40), (22, 35, 41), (58, 16, 42),
(59, 17, 43), (37, 60, 18), (38, 61, 19), (39, 62, 20), (21, 40, 63), (64, 22, 41),
(58, 52, 16), (59, 53, 17), (54, 18, 60), (55, 19, 61), (56, 20, 62), (21, 63, 57),
(64, 51, 22), (36, 23, 37), (30, 24, 38), (39, 31, 25), (40, 32, 26), (41, 33, 27),
(34, 28, 42), (35, 29, 43), (37, 23, 60), (38, 24, 61), (39, 25, 62), (40, 26, 63),
(64, 41, 27), (58, 42, 28), (59, 43, 29), (46, 60, 23), (47, 61, 24), (48, 62, 25),
(49, 63, 26), (50, 64, 27), (44, 58, 28), (45, 59, 29), (44, 30, 38), (45, 31, 39),
(46, 32, 40), (47, 33, 41), (48, 34, 42), (49, 35, 43), (50, 36, 37), (30, 56, 43),
(31, 57, 37), (38, 32, 51), (39, 33, 52), (40, 34, 53), (54, 41, 35), (55, 42 ,36),
(50, 37, 57), (44, 38, 51), (45, 39, 52), (46, 40, 53), (47, 41, 54), (48, 42, 55),
(49, 43, 56), (44, 51, 65), (45, 52, 66), (46, 53, 67), (47, 54, 68), (48, 55, 69),
(49, 56, 70), (50, 57, 71), (44, 65, 58), (45, 66, 59), (46, 67, 60), (47, 68, 61),
(48, 69, 62), (49, 70, 63), (50, 71, 64), (64, 65, 51), (58, 66, 52), (67, 53, 59),
(68, 54, 60), (55, 61, 69), (56, 62, 70), (63, 71, 57), (58, 65, 66), (67, 59, 66),
(67, 68, 60), (68, 69, 61), (69, 70, 62), (63, 70, 71), (64, 71, 65), (66, 65, 72),
(67, 66, 72), (67, 72, 68), (68, 72, 69), (69, 72, 70), (71, 70, 72), (65, 71, 72).
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witz surface of genus 7 in [22]. We show corresponding pictures with a dihedral symmetry
D7 of order 14 in Figure 4 and Figure 5.

Figure 4: Topological visualization of Hurwitz’s regular map (3, 7) of genus 7 of
J. J. van Wijk, [21].

Figure 5: Topological visualization of Hurwitz’s regular map (3, 7) of genus 7 of
C. H. Séquin, [20], see also [19].

Unfortunately, the method of Razafindrazaka and Polthier did not work in the case of
Hurwitz’s surface of genus 7 to provide an additional topological visualization. However,
we have an additional different topological visualization as a 3D-Model that was helpful
during our investigation for finding a polyhedral realization, see Figure 6.
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This model of Figure 6 shows seven six-gons (marked by white connections inside the
outer torus) around the axis that is fixed under the dihedral symmetry.

Figure 6: Topological visualization of Hurwitz’s regular map (3, 7) of genus 7 as a 3D-
model. (This model was presented at the Jörgshop at the Technical University Berlin in
June 2017.)

When we cut the model along those six-gons, we see that we can split the surface in
two parts having 84 triangles each. On the one hand we obtain a topological torus with
these seven six-gons as holes and on the other hand we have a topological 2-sphere with
these seven holes.

Figure 7: Triangles of the torus with seven holes each bounded by a polygon of length 6.

In Figure 7 we have depicted the combinatorial torus structure and in Figure 8 we see
the corresponding 84 triangles of the sphere. Whereas both of these parts of the Hur-
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witz surface of genus 7 can easily be represented with planar triangles and without self-
intersections, we see that the cyclic sequences of the holes in both cases do not coincide.
However, they have to match. This is a clear indication that we probably cannot hope for a
corresponding symmetric realization of order 7.

Figure 8: Triangles of the sphere with seven holes each bounded by a polygon of length 6.

4 Polyhedral realization
4.1 An algorithm

We use the following simple algorithm to obtain realizations within a few minutes (depend-
ing on the choice of distances and parameters):

1. Choose randomly a set of 72 distinct points P = {P1, . . . , P72} ✓ Q3 with rational
coordinates.

2. Count the number w0 of pairs of labels of a triangle and labels of an edge of a
triangle in Table 1 for which the corresponding points in P produce an intersection
of a triangle and an edge.

3. Remember the points involved in these w0 intersections in a set I .
4. While w0 > 0, do:

(a) Move a randomly chosen point of I into a random direction in such a way that
it does not go too far away and not too close to the other points.

(b) As above, count the number w of intersections and remember the points in-
volved in intersections in a new set I .

(c) If w > w0 then move the point back to its place, else: w0  w.

5. Output the solution.
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An implementation in C produces for example the solution displayed in Table 2. To be
completely sure that this output is correct one may check it using the code in Figure 9 or
Figure 10.

Table 2: Coordinates of a polyhedral realization without self-intersections of Hurwitz’s
surface of genus seven.

no. x y z no. x y z no. x y z
1 430 -270 -1000 2 959 -237 -213 3 434 -984 -70
4 -418 -861 -677 5 -988 98 -665 6 -272 -139 -814
7 299 577 -988 8 999 399 -854 9 981 727 -246

10 475 -498 408 11 361 -806 840 12 -509 115 609
13 -541, -105 26 14 -299 434 -801 15 456 -230 -780
16 819 353 803 17 841 -663 868 18 -941 982 856
19 -928 694 -73 20 21 -294 158 21 -132 450 -319
22 526 305 -430 23 782 -550 996 24 172 -288 93
25 -859 -989 528 26 -679 983 697 27 -95 -239 -217
28 764 665 653 29 563 490 169 30 -872 507 -510
31 -413 -817 -561 32 136 921 30 33 432 -176 -157
34 522 778 359 35 489 -85 120 36 -470 84 709
37 -520 -823 679 38 -383 876 -325 39 365 -758 -25
40 114 900 838 41 240 176 -191 42 234 26 700
43 4 -150 345 44 261 843 -15 45 850 19 -196
46 902 679 797 47 17 36 114 48 -331 -763 720
49 -523 632 368 50 -254 -694 -243 51 367 659 -796
52 791 -11 367 53 194 442 411 54 34 376 304
55 -132 -413 773 56 103 -743 654 57 -240 -160 -832
58 940 632 175 59 567 -43 515 60 224 233 981
61 -254 268 182 62 -271 -721 265 63 -60 540 192
64 280 -119 -630 65 644 565 -266 66 516 538 265
67 -117 524 443 68 210 227 -110 69 -275 -204 444
70 -157 44 359 71 199 402 -282 72 90 510 140

4.2 Explanations

It is already very difficult to describe the geometric shape of any of the two parts of the
Hurwitz surface of genus 7 that we have described in the last section. The Blender soft-
ware is a powerful tool for 3D objects. In Figure 11, Figure 12, Figure 13, and Figure 14
you see some pictures of our realization. The reader can get a better understanding by
using our corresponding Blender files for rotating the objects. Please write an e-mail to
the authors. Glueing properly both parts along their boundaries leads to our polyhedral
realization without self-intersections.

How did we check that the polyhedron has no self-intersections? We first confirmed
that all vertices are in general position. This is equivalent to the fact that all determinants
of any 4 points (by using homogeneous coordinates) are non-zero. Afterwards we have
checked all pairs (edge, triangle) for intersections. Edges that have a vertex in common
with a triangle cause no problem, because the points are in general position.

The other cases (edge, triangle) depend on the signs of the five determinants obtained
from the five 4-element subsets of the set formed by the vertices of the edge and the trian-
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gle (again using homogeneous coordinates). When the two vertices of an edge lie on the
same side of the plane determined by the triangle, we have no intersection. Otherwise we
pick a vertex of the edge as the apex of a cone generated by the triangle. Precisely, when
all three planes determined by the faces of this cone have the other vertex of the edge on
the same side as the remaining vertex of the triangle, we have an intersection. In other
words the other vertex of the edge lies within the convex cone, however beyond the triangle
seen from the apex. We have double checked this result with two different programming
methods, Haskell and Magma. When using exploded views, corresponding films, a sym-
metric realization, or even a geometric model, the reader might gain additional insight.
Our attempts to find a symmetric realization were not successful. For a cyclic symmetry of
order 7 we have even seen an argument that tells us how unlikely the existence of such a
realization might be.

coordinates:= . . .
triangles:= . . .
edges:=[Sort(SetToSequence(k)) :

k in &join [{{a[1],a[2]},{a[1],a[3]},{a[2],a[3]}} : a in triangles]];

for e in edges, t in triangles do
if #(SequenceToSet(e) meet SequenceToSet(t)) eq 0 then
x:=t[1]; y:=t[2]; z:=t[3]; a:=e[1]; b:=e[2];

Y:=<[x,y,z,a],[x,y,z,b],[a,x,y,b],[a,x,y,z],[a,y,z,b],[a,y,z,x],[a,x,z,b],[a,x,z,y]>;

D:=[Determinant(Matrix(4,&cat [coordinates[i] : i in u])) : u in Y];
D:=[d eq 0 select 0 else (d gt 0 select 1 else -1) : d in D];

if D[1] ne D[2] and D[3] eq D[4] and D[5] eq D[6] and D[7] eq D[8] then
printf "edge %o and triangle %o: ",e,t;
error "intersection!";

end if;

if 0 in D then
error "zero determinant!";

end if;
end if;

end for;

Figure 9: Magma code.
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module Hurwitz where
import Data.List
type MA =[[Integer]] -- matrix
type OB =(Tu,Or) -- oriented base
type Tu = [Int] -- tuple of elements
type Or = Int -- orientation

-- ch=[([a,b,c,x],s),([a,b,c,y],s),([a,b,x,y],s),([a,c,x,y],s),([b,c,x,y],s)]
check::[Int]->[Int]->[[Integer]]->Bool
check triangle edge matrix | (length (nub(triangle++edge)) < 5) = True

| snd(ch!!0) == snd(ch!!1) = True
| snd(ch!!0) == snd(ch!!2) = True
| snd(ch!!0) /= snd(ch!!3) = True
| snd(ch!!0) == snd(ch!!4) = True
| otherwise = False

where ma = subMA (triangle++edge) matrix
ch = m2Chi ma

edges::[[Int]]
edges = nub( [[el!!0]++[el!!1]|el<-triangles]++[[el!!1]++[el!!2]|el<-triangles]

++[[el!!2]++[el!!0]|el<-triangles])

tuples::Int->Int->[[Int]] -- r -> n -> all r-tuples of [1..n]
tuples 0 n = [[]]
tuples r n = tuplesL r [1..n]

tuplesL::Int->[Int]->[[Int]]-- r -> list -> all r-tuples of list
tuplesL r list@(x:xs)
| length list < r = []
| length list == r = [list]
| r == 1 = [[el]|el<-list]
| otherwise = [[x]++el| el<-tuplesL (r-1) xs]++tuplesL r xs

det::MA -> Integer -- matrix -> determinant of matrix
det m |n == 1 = head (head m)

|otherwise=sum(map (\i->((-1)^(i+1))⇤(head(m!!i))
⇤(det [(map tail m)!!l|l<-[0..n-1],l/=i]))[0..n-1])

where n = length m

dets::[[Int]]->MA-> [Integer]-- rsets -> matrix -> (r x r)-sub-determinants
dets sets matrix = [det[matrix!!(i-1)|i<-set]|set<-sets]

m2Chi::MA->[OB] -- matrix -> chirotope of matrix
m2Chi m =zip trn (map fromInteger (map signum(dets trn m)))

where n = length m
r = length(head m)
trn= tuples r n

subMA::[Int]->MA->MA -- indices -> matrix -> submatrix
subMA t m = map(\i->m!!(i-1))t

coord::MA
coord = list of homogeneous coordinates
triangles::[[Int]]
triangles= list of triangles

Figure 10: Haskell code with some explanations.
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Figure 11: Polyhedral realization of the sphere with seven holes each bounded by a polygon
of length 6.
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Figure 12: Polyhedral realization of the torus with seven holes each bounded by a polygon
of length 6. Three orthogonal projections and a perspective view. Even half of the complete
polyhedral realization is difficult to understand.
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Figure 13: Polyhedral realization Hurwitz’s surface of genus 7.
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Figure 14: Polyhedral realization Hurwitz’s surface of genus 7, complete wireframe.
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Abstract
The construction of a cycle in a graph can be realized by iteratively adding cycles of a

cycle basis. The construction of each elementary cycle is only possible if this cycle basis
is robust. In the last years, different classes of robust cycle bases have been established.
We compare these classes and show that they are completely unrelated. More precisely,
we draw a Venn diagram which displays the obvious containedness relations and show that
each of its regions is not empty. In addition, we continue the comparison with fundamental
cycle bases.

Keywords: Minimum cycle basis, robust cycle basis, quasi-robust cycle basis, fundamental cycle

basis.
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1 Introduction
Cycle bases of graphs have numerous applications, e.g. in the fields of periodic timetable
optimization [9], coordination of traffic signals [15], or chemistry [4]. The first reference
[9] additionally provides a useful classification of several types of cycle bases utilized for
computations in the mentioned areas. The author considered the seven classes of directed,
undirected, integral, totally unimodular, planar, as well as weakly and strictly fundamental
cycle bases and compared them to each other.

Another line of research has been initiated by Kainen [6] who investigated robust cycle
bases. Strengthening and weakening the concept of robust cycle bases led to four different
types of robust cycle bases, which were further studied in [8] and [12], and recently in [7].
The latter paper provides an application of robust cycle bases to the analysis of commutative
diagrams in groupoids.

E-mail address: alexanderreich@arcor.de (Alexander Reich)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



2 Art Discrete Appl. Math. 1 (2018) #P1.03

Similarly to the work of Liebchen [9], we show in our paper that no two of these four
classes coincide and give a separating example for each pair of the classes. All of our
examples provide a graph with its uniquely minimum cycle basis. This indicates that each
class of robust cycle bases admits its own minimization problem.

A further focus in this paper is the relationship of robust and fundamental cycle bases,
The investigation on this topic has been initiated in [8]. We continue this research by
providing more examples of cycle bases which are even minimum in almost all cases. We
are able to eliminate one of two question marks in a map given there, where the authors
conjectured the existence of examples.

The results in this paper appeared also in the thesis [13].

2 Preliminaries
Throughout the paper, we consider only simple undirected weighted graphs G = (V,E)
with finite node set V (G) = V, finite edge set E(G) = E, and weight function w : E !
R>0. The degree of a node v 2 V is denoted by deg(v). A path P of length ` in a
graph is a sequence P = (v0, v1, . . . , v`) of pairwise disjoint nodes with vi�1vi 2 E for
1  i  `. The length of a shortest path between two nodes u and v in G is called the
distance distG(u, v). A path from node u to node v is referred to as u-v-path.

A circuit C in G is a non-empty connected subgraph of G with deg(v) = 2 for all
v 2 V (C). We define |C| :=

P
e2E(C) w(e) as the length of a circuit C. A cycle Z in G

is a subgraph of G where deg(v) is even for all v 2 V (Z).
For a spanning tree T = (V,E(T )) of G and an edge e 2 E \ E(T ) define the funda-

mental circuit CT (e) as the unique circuit in (V,E(T )[ {e}). The non-tree edges are also
called chords of the spanning tree T . We usually identify circuits, cycles, and trees with
their edge sets.

The cycle space C(G) of a graph G = (V,E) is the vector subspace of GF(2)E that is
generated by the incidence vectors of the circuits in G. The sum of two cycles Z1 and Z2

in this vector space is their symmetric difference (Z1 [ Z2) \ (Z1 \ Z2). A cycle basis B
of G is a set of ⌫ = m � n + 1 circuits whose incidence vectors form a basis of C(G).
The size �(B) of a cycle basis B is defined as �(B) :=

P
C2B |C|. A cycle basis B of

G = (V,E) is designated strictly fundamental iff there is a spanning tree T = (V,E(T ))
with B = {CT (e) | e 2 E \ E(T )}.

A cycle basis B = {Z1, . . . , Z⌫} is weakly fundamental if there exists a permutation
⇡ 2 S⌫ such that

Z⇡(i) \
i�1[

j=1

Z⇡(j) 6= ; for all i = 2, . . . , ⌫. (2.1)

Weakly fundamental cycle were also the matter of [5] where the authors characterized
graphs for which every cycle basis is weakly fundamental.

If B is a cycle basis then every cycle Z has a unique representation Z =
P

C2B �CC
with �C 2 {0, 1}. The subset {C 2 B | �C = 1 and Z =

P
C2B �CC} is called the

support supp(Z).
The following simple lemma is needed to justify the minimality of some of our cycle

bases.

Lemma 2.1. For a given strictly fundamental cycle basis B of an undirected graph G =
(V,E) one can always find a weight function w such that B is the unique minimum cycle
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basis of G.

Proof. Let T be a fundamental spanning tree which induces B. For every edge e 2 T set
w(e) = 1. Define d := max{distT (u, v) | uv 2 E\T} and assign w(e) = 2d�distT (u, v)
for the remaining edges e = uv. Observe that the minimum of w restricted to the chords
is d. Now, every circuit in B has a weight of 2d while all other cycles of G have a greater
weight since they contain at least two chords and at least one tree edge or at least three
chords.

For Example 5.5, the following enhancement of Lemma 2.1 is necessary.

Lemma 2.2. For a given strictly fundamental cycle basis B of an undirected graph G =
(V,E) one can always find a weight function w such that B is the unique minimum cycle

basis of G and such that there is a chord e = uv with w(e) < distT (u, v).

Proof. The proof has essentially the same structure as the proof of Lemma 2.1. Thus, set
w(e) = 1 for all tree edges of a given fundamental spanning tree T which induces B. And
again, let d := max{distT (u, v) | uv 2 E \ T}. For the edges e = uv in E \ T , we now
assign the weight w(e) = 2d � distT (u, v) � ", for an " > 0 whose value is determined
later. The minimum of w restricted to the chords is d � ", and each circuit C 2 B has the
weight w(C) = 2d� ".

Now, look at a circuit which is not in B. It consists of c � 2 chords and t � 0 tree
edges. Furthermore, c = 2 implies t � 1. The length of the circuit is at least c(d� ") + t.
For all " 2 (0, (c�2)d+t

c�1 ), this value is greater than 2d� ", i.e. greater than the weight of a
basic circuit. Because c � 2, the denominator of the upper endpoint of the interval is not
zero, and since c+ t � 3, also the numerator is not zero. Hence, this interval is not empty
and we can take any " from this interval.

Finally, for a chord e = uv with distT (u, v) = d, the weight w(e) has the value
d� " < distT (u, v).

3 Classes of robust cycle bases
In order to define the four different types of robust cycle bases, we essentially follow the
exposition in [12]. Similarly as there, we need at first the concept of (strictly) well-arranged
sequences of circuits. Afterwards, we deduce several simple inclusions and present a map
of the relationship between the different classes of robust cycle bases.

Definition 3.1 ((Strictly) well-arranged sequence). A sequence S = (C1, . . . , Ck) of cir-
cuits in an undirected graph is called well-arranged if for all j = 1, . . . , k the GF(2)-sumPj

i=1 Ci is also a circuit. A well-arranged sequence of circuits is strictly well-arranged if
for all j = 2, . . . , k the intersection Cj \

Pj�1
i=1 Ci is a single path.

The path in Definition 3.1 contains at least one edge. Otherwise, the sum Cj+
Pj�1

i=1 Ci

was not a circuit and thus, the sequence was not even well-arranged, at all. It is clear that
every strictly well-arranged sequence is also well-arranged. Furthermore, it is known that
there are well-arranged sequences that are not strictly well-arranged. The authors of [8]
provide such an example in which the sum of two basic circuits is again a circuit, but they
intersect in three paths. Note that it is not forbidden that a circuit appears more than once
in a (strictly) well-arranged sequence.
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With this in mind, we are now able to define the four different types of robust cycle
bases which were developed in [12].

Definition 3.2 (Cyclically/strictly robust and (strictly) quasi-robust cycle basis). A cycle
basis B of a graph G is (strictly) quasi-robust if for each circuit C in G there is a (strictly)
well-arranged sequence SC = (C1, . . . , Ck�1, Ck) such that C =

Pk
i=1 Ci and Ci 2 B

for i = 1, . . . , k. A strictly quasi-robust cycle basis is strictly robust if the circuits in the
strictly well-arranged sequence are pairwise disjoint. Analogously, a quasi-robust cycle
basis is cyclically robust if the according well-arranged sequence does not contain a circuit
twice. If we do not want to specify the particular type of robustness, we simply speak about
a robust cycle basis.

It can be concluded that for strictly and for cyclically robust cycle bases the well-
arranged sequence of a circuit C must not contain basic circuits which are not in the support
of C. Also, directly from these definitions, we can immediately derive the following facts:

• every strictly quasi-robust cycle basis is quasi-robust,

• every strictly robust cycle basis is strictly quasi-robust,

• every strictly robust cycle basis is cyclically robust, and

• every cyclically robust cycle basis is quasi-robust.

These inclusions hold since in each case, we require additional properties for the more
specific class. The inclusions give rise to the diagram in Figure 1.

cyclically

robust

robust

strictly

strictly

quasi-robust

quasi-robust

not quasi-robust

Ex. 4.1

Ex. 4.2

Ex. 4.3

Ex. 4.4

Ex. 4.5Ex. 4.6

Figure 1: Map of robust cycle bases.

Not much is known about which graph classes can have which type of robust cycle
bases. Furthermore, it is unknown whether each graph admits a robust cycle basis of any of
the four types. Table 1 summarizes the related results. To the best of our knowledge, these
are the only known ones.
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Table 1: Summary of known graph classes for which the stated type of cycle bases is
guaranteed.

Graph class Robustness Reference

planar graphs strictly robust [2]
complete graphs strictly robust [6]
complete bipartite graphs Km,n with m  4 and n  5 strictly robust [12]
general complete bipartite graphs quasi-robust [12]
wheels cyclically robust [8]

4 Examples of robust cycle bases
In this section, we show that the inclusions derived in the last section are valid only in the
given direction. Thus, no two of the classes are equivalent. To point this out, we give an
example of a graph and a cycle basis for each region in the map in Figure 1 and thus show
that it is not empty.

Except in Example 4.2, all cycle bases are strictly fundamental. According to Lem-
ma 2.1, we can choose a weight function such that this cycle basis is the unique minimum
cycle basis on this graph. However, the given cycle basis in Example 4.2 is also the unique
minimum one. The existence of a graph with a minimum cycle basis in each region of the
map indicates that each class—actually even each non-empty difference of two classes—of
robust cycle bases admits its own minimization problem.

Remember that we do not know an efficient algorithm for the computation or for the
recognition of any type of robust cycle bases on general graphs. Thus, to prove a cycle
basis of a graph G as (strictly) quasi-robust, we have to indicate a (strictly) well-arranged
sequence of basic circuits for every circuit in G. Analogous sequences have to be found for
(strictly) robust cycle bases. In the latter case, a basic circuit is allowed to occur at most
one time in each of these sequences.

On the other hand, a cycle basis B of a graph G is not quasi-robust if there exists a
circuit C 0 in G such that for each C 2 B the sum C 0 + C is not a circuit. To show that the
cycle basis is not strictly quasi-robust, one has to verify that the cut C 0 \ C does not form
a path for one circuit C 0 in the graph and for all C 2 B. Finally, to show that a cycle basis
is not a cyclically robust or a strictly robust cycle basis it suffices to check only the circuits
of the support of such a circuit C 0.

We now start with the description of the examples.

Example 4.1 (Strictly robust cycle basis). The first example is the simple graph C3 that
consists of exactly one circuit of length 3. Clearly, its unique cycle basis is strictly robust—
and strictly fundamental and minimum, as well.

Example 4.2 (Cyclically robust and strictly quasi-robust cycle basis—not strictly robust).
Our second example is the complete bipartite graph K3,3, see Figure 2 (a). The cycle basis
B = {C1, C2, C3, C4} is highlighted in Figure 2 (b). It is not strictly fundamental, thus,
we suggest the indicated weights to make the cycle basis minimum. All other circuits have
a greater weight. The weights of all circuits are denoted below the graph in Figures 2 (b),
(c) and (d). We show that B is cyclically robust and strictly quasi-robust, but not strictly
robust. For 2  k  ⌫ we denote Ci1,...,ik :=

Pk
j=1 Cij .
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K3,3 C1 C2 C3 C4

C1,2 C1,3 C1,4 C2,3 C2,4 C3,4
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C1,2,3 ∩ C1 C1,2,3 ∩ C2 C1,2,3 ∩ C3

7777

88
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10

11

121212

15

(a) (b)

(c)

(d)

(e)

Figure 2: The K3,3 with weights on the edges (a). The four basic circuits and their weights
below (b). All other circuits and their weights (c) and (d). The intersections (dashed edges)
of C1,2,3 with the circuits of its support (e).

Cyclically robust. The K3,3 is cubic, hence it contains no cycle with vertices of degree
4 or more. Furthermore, it has only six vertices, but it is triangle free. Thus, there is no
cycle consisting of two triangles. This means that every cycle is a circuit and therefore,
each cycle basis of K3,3 is cyclically robust.

Not strictly robust. The given basis is not strictly robust, since there is no strictly well-
arranged sequence for C1,2,3, in which every basic circuit occurs only once. Observe this
by looking at Figure 2 (e). It is indicated that C1,2,3 has an intersection consisting of two
path (dashed edges) with each circuit from its support.

Strictly quasi-robust. For the circuits which have exactly two basic circuits in their
supports, these two circuits intersect in a single path, illustrated by the dashed edges in
Figure 2 (c). For the circuits depicted in Figure 2 (d) we provide the sequences SC1,2,3 =
(C1, C3, C4, C2, C4), SC1,2,4 = (C1, C4, C2), SC1,3,4 = (C1, C3, C4), SC2,3,4 = (C2, C4,
C3), and SC1,2,3,4 = (C1, C3, C4, C2), which are all strictly well-arranged. Hence, the
cycle basis is strictly quasi-robust.

Example 4.3 (Quasi-robust cycle basis—neither cyclically robust nor strictly quasi-ro-

bust). This example is borrowed from [6]. We consider the complete bipartite graph K5,5,
the strictly fundamental cycle basis B induced by the spanning tree T shown in Figure 3 (a),
and the circuit C aside in Figure 3 (b). The sixteen basic circuits themselves are also de-
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picted in Figure 4 as black edges. Assigning weights according to Lemma 2.1, B becomes
the unique minimum cycle basis.

T C

(a) (b)

Figure 3: Spanning tree T of K5,5 (a). The circuit C considered in the text (b).

(a)

C1 C2 C3

C4 C5 C6

16

(b)

C7 C8 C9

C10 C11 C12

16

(c)

C13 C14 C15 C16

Figure 4: The sixteen basic circuits of B (black edges) and the circuit C (grey edges). For
the sake of clearness we dropped the edges which are neither in the basic circuit nor in C.

Quasi-robust. The described basis had been shown to be quasi-robust in [12] in an
elaborate manner.

Not cyclically robust. The circuit C can be written as C =
P6

i=1 Ci and all the sums
C + Ci for i = 1, . . . , 6 are cycles with node degrees greater than 2 (marked by a circle),
see Figure 4 (a). Hence, this cycle basis is not cyclically robust.

Not strictly quasi-robust. Looking at the remaining basic circuits, we observe that also
C7 to C12 yield cycles with node degrees of 4, Figure 4 (b), again marked by a circle.
The intersection of C13 to C16 with C is not a single path in each case, as can be seen in
Figure 4 (c). In addition, C+C13 and C+C14 are disconnected. All in all, the cycle basis
is not strictly quasi-robust.

Example 4.4 (Cycle basis, not even quasi-robust). The example of a cycle basis which is
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not even quasi-robust presented here had been inspired by a talk of Ostermeier [11].1
The cycle basis is strictly fundamental and it is induced by the fat drawn tree in Fig-

ure 5 (a).

(a) (b) (c)

e1

e2

C

Figure 5: Graph with an inducing fundamental spanning tree (fat edges) and dashed chords
e1 and e2 (a), a circuit C (b), and sums of C with two basic circuits generated by the chords
e1 and e2 (c).

Not quasi-robust. Due to symmetry, we have to consider only the basic circuits induced
by the dashed edges e1 and e2. In both cases, they add up with C to a cycle that is not a
circuit, see Figure 5 (c).

Example 4.5 (Cyclically robust cycle basis—not strictly quasi-robust). This example is a
cycle basis on Wagner’s graph V8 which is cyclically robust, but not strictly quasi-robust.
The strictly fundamental basis is indicated by the spanning tree which is highlighted in
Figure 6 (a). The basic circuits are denoted at the chords. We use the notation from Exam-
ple 4.2, i.e. Ci1,...,ik :=

Pk
j=1 Cij .

(a) (b) (c)

(d)

C

C1

C2

C3 C4

C5

C3,4 C1,2,5

C ∩ C1 C ∩ C2 C ∩ C3 C ∩ C4 C ∩ C5

Figure 6: Wagner’s graph V8 with a fundamental spanning tree (a). The only two non-
circuits in V8 (b). The circuit C (c). The intersections of C (grey) with the five basic
circuits do not form a single path (d), edges which are not in a basic circuit or in C are
dropped.

Cyclically robust. Wagner’s graph V8 is cubic which implies that every cycle is 2-
regular. The only critical cycles in V8 are thus the two non-circuit pictured in Figure 6 (b).
We provide the well-arranged sequences SC3,4+C1 = SC1,3,4 = (C1, C3, C4), SC3,4+C2 =
SC2,3,4 = (C2, C3, C4), and SC3,4+C5 = SC3,4,5 = (C4, C5, C3) for the circuits which
arise by adding a remaining basic circuit to C3,4. For the cycle C1,2,5 we give the sequences

1A similar example already appeared in [14].



A. Reich: Classification of robust cycle bases and relations to fundamental cycle bases 9

SC1,2,5+C3 = SC1,2,3,5 = (C1, C2, C3, C5) and SC1,2,5+C4 = SC1,2,4,5 = (C1, C2, C4, C5).
In each of these sequences, every basic circuit appears at most once. This shows that the
basis B is cyclically robust.

Not strictly quasi-robust. To see that the basis is not strictly quasi-robust, consider the
circuit C in Figure 6 (c). Its intersection with each basic circuit does not form a single path.
This is illustrated in Figure 6 (d).

Example 4.6 (Strictly quasi-robust cycle basis—not cyclically robust). The last example
provides a graph with a cycle basis B = {C1, . . . , C6} which is strictly quasi-robust but
not cyclically robust. As in Example 4.2 denote Ci1,...,ik :=

Pk
j=1 Cij for 2  k  ⌫.

C1

C2 C3

C4

C5 C6

Figure 7: Graph with a fundamental spanning tree which induces a cycle basis that is
strictly quasi-robust but not cyclically robust.

Strictly quasi-robust. Since ⌫ = 6 we have to investigate 26 � 6 � 1 = 57 cycles; the
six basic circuits and the zero vector are not interesting. The 22 cycles listed below are not
circuits.

C1,4, C2,3, C1,5,6, C4,5,6, C1,4,5,6, C2,3,5,6, C1,2,3,4,5, C1,2,4,5,6,
C1,5, C1,4,5, C2,4,6, C1,2,4,6, C2,3,4,5, C2,4,5,6, C1,2,3,4,6, C1,3,4,5,6,
C1,6, C1,4,6, C3,4,5, C1,3,4,5, C2,3,4,6, C3,4,5,6

For the remaining eleven circuits Ci,j with | supp(Ci,j)| = 2 we may ignore the order of
the basic circuits. The intersection of the two basic circuits is a path in each case, and thus,
the sequences are strictly well-arranged. For the 24 circuits with at least three elements in
their supports, we provide the following strictly well-arranged sequences.

(C1, C2, C3), (C1, C3, C6), (C4, C6, C3), (C1, C2, C5, C6),
(C1, C2, C4), (C3, C4, C2), (C5, C6, C3), (C4, C6, C3, C1),
(C1, C2, C5), (C3, C5, C2), (C1, C2, C3, C4), (C5, C6, C3, C1),
(C1, C2, C6), (C3, C6, C2), (C1, C2, C3, C5), (C1, C2, C3, C5, C6),
(C1, C3, C4), (C4, C5, C2), (C1, C2, C3, C6), (C1, C2, C3, C6, C5, C4, C1),
(C1, C3, C5), (C2, C5, C6), (C4, C5, C2, C1), (C1, C2, C3, C5, C6, C4).

Not cyclically robust. Figure 8 illustrates that the treated cycle basis is not cycli-
cally robust. More precisely, look at the circuit C2,3,4,5,6. For i = 2, . . . , 6, the cycles
C2,3,4,5,6+Ci have nodes with degree greater than 2, marked by circles in Figure 8. Hence,
this circuit does not admit a well-arranged sequence in which the circuits are pairwise dis-
joint.

5 Relationship with fundamental bases
One approach for a better understanding of strictly robust and cyclically robust cycle bases
had been presented in [8]. Therein, the authors investigated the relationship between strictly
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C2 C3 C4

C5 C6

Figure 8: The circuit C2,3,4,5,6 (grey) and the five basic circuits of its support (black edges).

robust, cyclically robust, and non-robust cycle bases on one hand, and strictly fundamental,
weakly fundamental, and non-fundamental cycle bases on the other hand. Their motivation
was the detailed exploration of strictly and weakly fundamental cycle bases which had been
done in the years before. They concluded that robustness and fundamentality of cycle bases
“are essentially unrelated concepts”.

In more detail, they considered the combination (robustness,fundamentality),
where robustness 2 {“strictly robust”, “robust”, “non-robust”} and fundamentali-
ty 2 {“strictly fundamental”, “weakly fundamental”, “non-fundamental”}. This immedi-
ately led to nine possibilities, and an example of a graph with an according cycle basis was
presented in seven of these cases.

In this section, we follow up this line of research and provide for eight cases a graph
with an appropriate cycle basis which is additionally minimum. For the ninth case, we are
able to retire to a strictly quasi-robust cycle basis instead of a strictly robust one. However,
this basis is not the minimum basis of the presented graph.

At the end of this section, we summarize our results in Table 2.
We start with three examples of strictly fundamental bases, that is the first column in

Table 2. Two of them are taken from [8], the third one correlates to the basis in Example 4.5.
Due to Lemma 2.1, all bases can be made minimum.

Example 5.1 (Strictly fundamental—strictly robust). This example is directly taken from
[8]. To be more accurate, we deal with the complete graph Kn and the cycle basis Bn

which is induced by the complete bipartite graph K1,n�1 as fundamental spanning tree. It
is strictly robust as shown in [6]. With a weighting assigned according to Lemma 2.1 it is
also the unique minimum cycle basis.

We decided to present this example here because it constitutes a whole class of graphs
and cycle bases with the required properties. On the other hand, also the triangle graph in
Example 4.1 could have served as an example at this place.

Example 5.2 (Strictly fundamental—not strictly robust—cyclically robust). Wagner’s graph
V8 and the cycle basis which had already been presented in Example 4.5 provide the nec-
essary properties for this example. We remark that this example eliminates one of the two
question marks in [8] where the authors conjectured the existence of such an example.

Example 5.3 (Strictly fundamental—not cyclically robust). Again, we borrow the example
given in [8] which is called there “Ostrowski’s basis”. It is simply the K5 with a path
consisting of four edges as fundamental spanning tree. This spanning tree induces a basis
consisting of three triangles, two quadrangles, and one pentagon. To verify that the basis is
non-robust, take a look at the circuit C which is the sum of the three triangles and the two
quadrangles. The sum of C with each of these basic circuits constitutes a non-circuit.
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Similarly to Example 5.2, we could have borrowed the graph with a non-robust cy-
cle basis from Example 4.4. Anyway, we used Ostrowski’s basis at this place because
there is an easy way to construct an infinite class of graphs and cycle bases with the re-
quired properties. More precisely, we speak about the family of complete graphs with an
odd number of vertices. For such a graph Gk = (Vk, Ek) with Vk = {v0, v1, . . . , v2k}
we choose the path (v0, v1, . . . , v2k) as inducing spanning tree for the strictly fundamen-
tal cycle basis. As a certificate for the non-robustness, we provide the circuit Ck =S2k

i=0{vivi+2} =
P2k

i=0{vivi+1, vi+1vi+2, vi+2vi}, where the indices are taken modulo
2k + 1. Adding one basic circuit Ci

k = {vivi+1, vi+1vi+2, vi+2vi} to Ck results in a cycle
C 0

k with degC0
k
(vi+1) = 4. In Figure 9, the graph G3 is given as an example.

v0

v1

v2

v3

v4

v5

v6

Figure 9: The graph G3, the inducing spanning tree (fat edges), and the circuit Ck (dashed
edges).

We continue with three examples which are weakly fundamental but not strictly fun-
damental. In Table 2, these examples appear in the second column. One example is taken
from [9]. For the other two, we destroy the strictly fundamentality of the according exam-
ples above by gluing suitable graphs together. In doing so, we keep in mind that we want
the bases to stay minimum.

Example 5.4 (Not strictly fundamental—weakly fundamental—strictly robust). The addi-
tional demand for a minimum cycle basis prevents us from simply copying the according
example in [8]. Instead, we copy Example 11.2 from [9], which deals with the sunflower
graph SF(3), depicted in Figure 10. Therein, it served as an example for a 2-basis which is
not strictly fundamental, where for a 2-basis, each edge is contained in at most two basic
cycles.

Figure 10: The sunflower graph SF(3).

The cycle basis B consisting of the only four triangles is the unique minimum cycle basis.
Each edge of the middle triangle is contained in another circuit of B, thus, B is not strictly
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fundamental. But since the basis is a 2-basis, it is weakly fundamental, see e.g. [9], and
strictly robust due to [2].

Example 5.5 (Not strictly fundamental—weakly fundamental—not strictly robust—cycli-

cally robust). The idea in this example is to adapt Wagner’s graph and its cycle basis
presented in Examples 4.5 resp. 5.2 such that it is not strictly fundamental anymore. To do
this, we append a further path (v1, v2, v3) at the two adjacent vertices v1 and v3 at the right
hand side of the graph, see Figure 11.

1

1

6 − ε6 − ε

9 − ε

9 − ε

9 − ε

v1

v2

v3

Figure 11: The modified Wagner’s graph with a partial spanning tree (fat edges) and a
circuit without private edge (dashed).

The weights of the graph are assigned according to Lemma 2.2. The second statement
of this lemma does hold for v1v3, i.e. w(v1v3) < distT (v1, v3). For the new edges set
w(v1v2) = w(v2v3) = 1. To yield the cycle basis, inherit the basic circuits from the
original example and append the circuit C6 = (v1v2, v2v3, v3v1). Remark that the weights
of the old edges were chosen according to Lemma 2.2 and that C6 is the shortest circuit
which contains the new vertex v2. Hence, the obtained cycle basis is minimum.

The basis is not strictly robust for the same reasons as in Example 4.5. On the other
hand, assume that a circuit C in this graph contains the vertex v2. A well-arranged sequence
for C can be achieved by concatenating C6 with the well-arranged sequence of C + C6,
hence, the basis is cyclically robust. Finally, the cycle basis is not strictly fundamental,
since the dashed basic circuit does not have a private edge. But it is weakly fundamental

because Inequality (2.1) holds for each permutation ⇡ with C⇡(6) = C6.

Example 5.6 (Not strictly fundamental—weakly fundamental—not cyclically robust). Sim-
ilarly to the example above, we destroy the strictly fundamentality of Ostrowski’s basis of
the K5. We also could have used Lemma 2.2 and could have constructed a graph by simply
appending a path of length 2 as in Example 5.5. Anyway, we decided to provide a larger
example in favor of an integer weight function.

Remember that the basis of this graph was induced by a path of four edges as funda-
mental spanning tree. There is one edge between the end nodes of the path, denote it eP .
Now take three copies of K5 and assemble them in a way such that the three copies of eP
constitute a triangle, add a vertex and connect it to the three corners of the triangle. See
Figure 12 for the construction. The edge weights in the three copies of K5 are assigned
according to Lemma 2.1, the three new edges get the weight 2. Again, the fat edges get
weight 1.

To get a cycle basis for the merged graph, combine the cycle bases of the three copies
and append the three new triangles with weight 8, i.e. the triangles constituted by two new
edges and one copy of eP . The ⌫ = 21 shortest circuits have weight 8, hence, the combined
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Figure 12: Three merged copies of K5 with Ostrowski’s bases.

cycle basis is minimum. It is not robust because Ostrowski’s basis is not. It is not strictly

fundamental since the circuits induced by eP in each K5 do not have private edges, as well
as the three new triangles. In the end, it is weakly fundamental. Permute the basis such that
the three new triangles appear at first, followed by the three circuits induced by the copies
of eP .

The last three examples present non-fundamental cycle bases, listed in the third column
of Table 2. Two of them are again borrowed from [9].

Example 5.7 (Not weakly fundamental—strictly quasi-robust). Unfortunately, we were not
able to give an example of a minimum non-fundamental cycle basis which is strictly robust.
But we provide a strictly quasi-robust one, at least. Therefore, look at the graph depicted
in Figure 13 and the indicated cycle basis.

(a)

(b)

C1 C2 C3

C4 C5 C6

Figure 13: A graph (a) and a non-fundamental cycle basis which is strictly quasi-robust,
but not strictly robust (b).

The basis is non-fundamental since each edge is contained in at least two basic circuits.
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To see that it is strictly quasi-robust, we take a look at 26 � 6� 1 = 57 cycles, analogous
to Example 4.6. Among these cycles, there are 38 which do not constitute circuits. For the
other 19 circuits, we provide the strictly well-arranged sequences below.

(C1, C3), (C2, C3, C5), (C1, C3, C4, C6, C2),
(C2, C3), (C6, C5, C2), (C3, C1, C4, C6, C5, C2, C3),
(C4, C6), (C6, C5, C4), (C6, C5, C2, C3, C1),
(C5, C6), (C1, C3, C4, C6), (C1, C3, C4, C6, C5),
(C3, C2, C1), (C2, C3, C5, C6), (C2, C3, C5, C6, C4),
(C1, C3, C4), (C6, C4, C1, C3, C2, C5, C6), (C6, C4, C1, C3, C2, C5)
(C6, C4, C1),

For the circuits which belong to the bold written sequences, there are no strictly well-
arranged sequences in which all circuits are pairwise disjoint. Thus, the cycle basis is
strictly quasi-robust, but not strictly robust.

Example 5.8 (Not weakly fundamental—not strictly robust—cyclically robust). The cycle
basis in this example is borrowed from [9] where it serves as an example of a minimum
cycle basis which is not integral2. It is a basis of the generalized Petersen graph P11,4, see
Figure 14.

i0

i1

i2

i3

i4

i5

i6

i7

i8 i9

i10

o0

o1

o2

o3

o4

o5

o6

o7

o8 o9

o10

Figure 14: Generalized Petersen graph P11,4 with the basic circuit C1 (dashed) and the
circuit C1,4,12 = C1 + C4 + C12 (grey).

The discussed basis B contains the circuits Cj+1 = (ojij , ijij+4, ij+4ij+8, ij+8ij+1,
ij+1oj+1, oj+1oj) for j = 0, . . . , 10 where the indices are taken modulo 11, and the circuit
C12 = {o0o1, . . . , o9o10, o10o0}. In the figure above we emphasized the circuit C1 with
dashed edges. With the weights w(ojoj+1) = 4, w(ijij+4) = 5, and w(ojij) = 12,
again for j = 0, . . . , 10 and again modulo 11, this basis becomes the unique minimum one,
see [9].

2For the definition of integral cycle bases we refer to [9].
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Each edge ijij+4 is contained in three basic circuits, all other edges in exactly two basic
circuits. This shows the non-fundamentality of the basis. To see that it is not strictly robust,
consider for example the circuit C1,4,12 = C1 + C4 + C12 whose cuts with C1, C4, and
C12 do not form a single path in each case.

It remains to show that the basis is cyclically robust. This was done by a small program
implemented in C++ using LEDA ([10]). The program tested for each of the 212 linear
combinations if it constitutes a circuit C, and if so, if there is a circuit Cj 2 supp(C) such
that C + Cj is a circuit. This applied to each circuit and thus, the cycle basis is cyclically

robust.

Example 5.9 (Not weakly fundamental—not cyclically robust). To construct cycle bases of
a biconnected graph which are neither robust nor fundamental, the authors in [8] suggest
the following operation. Given a 2-connected graph G0 with a non-robust cycle basis B0

and a 2-connected graph G00 with a non-fundamental cycle basis B00, construct a graph G
by identifying two arbitrary edges of G0 and G00. The basis B = B0 [ B00 is a basis of G.
However, even if B0 and B00 are the minimum cycle bases of G0 and G00, respectively, it
is not guaranteed that B is a minimum cycle basis of G. In contrast to this construction,
we propose Champetier’s graph with its minimum cycle basis as a representative for a
minimum non-robust and non-fundamental cycle basis.

Also this graph and the cycle basis are taken from [9]. In his Example 11.7, Liebchen
considered Champetier’s graph whose unique minimum cycle basis is integral but neither
weakly fundamental nor totally unimodular. In Champetier’s original paper [1], it served as
a counter-example of a conjecture expressed in [3]: “If G is null-homotopic (i.e., if every
cycle of G is the modulo 2 edge sum of triangles), there is an edge e of G such that G \ e
is still null-homotopic.” Champetier’s graph is visualized in Figure 15.

AA

B

BC C

D

D
C1

C2

C3

C4

C5

C6

C7

Figure 15: Champetier’s graph and a certificate for the non-robustness of the minimum
cycle basis.

Champetier’s graph arises from the embedding by identifying the vertices A, B, C and
D with their copies. The cycle basis we deal with is formed by the 36 triangles in the
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embedded version. This basis is minimum since there is neither a further triangle which is
not the boundary of a face in the embedding in Figure 15 nor a path of length 3 between
two copies of one of the vertices A to D. After the vertex identifications, such a path would
also compose to a triangle. Hence, the basic circuits are the only triangles.

Since each edge is contained in two triangles at least, the basis is non-fundamental. As
a proof for the non-robustness, we take the same certificate as in Example 11.7 in [9], i.e.
the circuit C =

P7
i=1 Ci, indicated in Figure 15 by two paths. In fact, C + Ci does not

form a circuit for i = 1, . . . , 7. This shows that the basis is non-robust.

Table 2 summarizes the results of this section. It has been inspired by the Venn dia-
gram in [8] which also illustrates the relationship between fundamental and robust cycle
bases. In the table, we contrast our results with the results listed there. New examples and
improvements are emphasized in italic.

Table 2: Overview of the results in this section.

strictly fundamental weakly fundamental non-fundamental

st
ri

ct
ly

ro
bu

st

Kn with K1,n�1 Fig. 2 in [8] ? [8]
as fund. sp. tree
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
minimum basis basis not minimum

as above sunflower graph SF (3) Ex. 5.7, basis only this
paperstrictly quasi-robust

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
minimum basis minimum basis basis not minimum

cy
cl

ic
al

ly
ro

bu
st ? Kainen’s basis of K4 non-fundamental [8]

basis of the 4-wheel
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
basis not minimum basis not minimum

Wagner’s graph with Wagner’s graph joined Petersen graph P11,4 this
papera P7 as fund. sp. tree up with a triangle

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
minimum basis minimum basis minimum basis

no
n-

ro
bu

st

K5 with P4 Vogt’s example merging non-rob. basis [8]
as fund. sp. tree with non-fund. basis
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
basis not minimum basis not minimum basis not minimum

as above three merged K5 Champetier’s graph this
paper

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
basis minimum with minimum basis minimum basis

a suitable weighting

6 Concluding remarks
In this paper, we considered robust cycle bases and isolated strictly and cyclically robust
cycle bases, as well as the newer concepts of quasi-robust and strictly quasi-robust cycle
bases from each other. We did this by giving suitable examples. Since each of our cycle
bases is the uniquely minimum one of its graph, and hence each type of robust cycle basis
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comes along with its own minimization problem, we can view the classification of robust
cycle bases as completed.

A second focus was the continuation of the comparison between robust and funda-
mental types of cycle bases. We were able to further fill the Venn diagram of robust and
fundamental cycle bases given in [8], where we demanded in addition that the provided cy-
cle basis is minimum. Our results were summarized in a table which has only one missing
item. We could not present a minimum cycle basis which is non-fundamental and strictly
robust, but could provide an example of a cycle basis which is strictly quasi-robust, at least.

Despite all, there is still plenty of work to do in the field of robust cycle bases. For
example, it is still unknown whether each graph provides a strictly robust cycle basis, or a
cycle basis of any other robust type, at least. Furthermore, there is nothing known about
the complexity of recognition and construction of robust cycle bases.
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Abstract

We show that if G is a finite group whose commutator subgroup [G,G] has order 2p,
where p is an odd prime, then every connected Cayley graph on G has a hamiltonian cycle.
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1 Introduction

Let G be a finite group. It is easy to show that if G is abelian (and |G| > 2), then every
connected Cayley graph on G has a hamiltonian cycle. (See Definition 2.1 for the definition
of the term Cayley graph.) To generalize this observation, one can try to prove the same
conclusion for groups that are close to being abelian. Since a group is abelian precisely
when its commutator subgroup is trivial, it is therefore natural to try to find a hamiltonian
cycle when the commutator subgroup of G is close to being trivial. The following theorem,
which was proved in a series of papers, is a well-known result along these lines.

Theorem 1.1 (Marušič [13], Durnberger [4, 5], 1983–1985). If the commutator subgroup

[G,G] of G has prime order, then every connected Cayley graph on G has a hamiltonian

cycle.

D. Marušič (personal communication) suggested more than thirty years ago that it should
be possible to replace the prime with a product pq of two distinct primes:

Problem 1.2 (D. Marušič, personal communication, 1985). Show that if the commutator
subgroup of G has order pq, where p and q are two distinct primes, then every connected
Cayley graph on G has a hamiltonian cycle.
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E-mail address: Dave.Morris@uleth.ca (Dave Witte Morris)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/
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This has recently been accomplished when G is either nilpotent [8] or of odd order [16].
As another step toward the solution of this problem, we establish the special case where
q = 2:

Theorem 1.3. If the commutator subgroup of G has order 2p, where p is an odd prime,

then every connected Cayley graph on G has a hamiltonian cycle.

See the bibliography of [12] for references to other results on hamiltonian cycles in
Cayley graphs.

The proof of Theorem 1.3 is a lengthy case-by-case analysis, based on the choice of
certain elements a and b of the Cayley graph’s connection set (see Notation 3.3). Here is
an outline of the paper:

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Some known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Assumptions, group theory, and connected sums . . . . . . . . . . . . . . . . 6
4 Case with s = t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Cases with |a| > 2 and b /2 hai . . . . . . . . . . . . . . . . . . . . . . . . 12
6 Cases with b 2 hai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Cases with |a| = 2 and #S = 2 . . . . . . . . . . . . . . . . . . . . . . . 18
8 Cases with |a| = 2 and #S = 3 . . . . . . . . . . . . . . . . . . . . . . . 19
9 Cases with |a| = 2 and #S � 4 . . . . . . . . . . . . . . . . . . . . . . . 23

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Some known results

We recall a few results that provide hamiltonian cycles in various Cayley graphs.

Definition 2.1 (cf. [9, p. 34]). For any subset S of a finite group G, Cay(G;S) is the graph
whose vertex set is G, with an edge joining g to gs, for each g 2 G and s 2 S. This is
called the Cayley graph of the connection set S on the group G.

Remark 2.2. Unlike most authors (including [9]), we do not require the connection set S to
be symmetric in the definition of a Cayley graph; that is, we do not assume S is closed under
inverses. This does not change the set of graphs that are considered to be Cayley graphs,
because, in our notation, Cay(G;S) = Cay(G;S [ S

�1), where S
�1 = {s�1 | s 2 S}.

Theorem 2.3 ([3, 6, 7, 12]). Every connected Cayley graph on G has a hamiltonian cycle

if |G| = kp for some prime p and some k 2 N with 1  k < 32 and k 6= 24.

Notation 2.4.

• The symbol G always represents a finite group.
• For g 2 G and s1, . . . , sn 2 S [ S

�1, we use [g](s1, . . . , sn) to denote the walk in
Cay(G;S) that visits (in order), the vertices

g, gs1, gs1s2, gs1s2s3, . . . , gs1s2 · · · sn.

We may write (s1, . . . , sn) for [e](s1, . . . , sn).
• We use (s1, . . . , sn)k to denote the concatenation of k copies of the sequence (si)ni=1.
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• Appending # to a sequence deletes the last term; that is, (si)ni=1# = (si)
n�1
i=1 .

• If W = [g](s1, . . . , sn) is a walk in Cay(G;S), and h 2 G, we use hW to denote
the translate [hg](s1, . . . , sn).

• When C is an oriented cycle, we use �C to denote the same cycle as C, but with the
opposite orientation.

• For g, h 2 G:

[g, h] = g
�1

h
�1

gh, g
h = h

�1
gh, and h

g = hgh
�1 (= g

h�1

).

• We use G
0 to denote the commutator subgroup [G,G] of G.

• For convenience, we let G = G/G
0.

• For g 2 G, we let g = gG
0 be the image of g in G.

• We use Z(G) to denote the center of G.

Definition 2.5 (cf. [10, §2.1.3, p. 61]). Suppose

• N is an abelian, normal subgroup of G, and

• C = [Nv](si)ni=1 is an (oriented) cycle in Cay(G/N ;S).

The voltage of C is v(
Qn

i=1 si). This is an element of N , and it may be denoted ⇧C.

We have the following straightforward observations:

Lemma 2.6. Assume the notation of Definition 2.5. Then:

1. ⇧C is determined by the oriented cycle C: it is independent of the choice of the

vertex Nv of C, and of the choice of the representative v of Nv.

2. ⇧ gC = g(⇧C) for all g 2 G.

3. ⇧(�C) = (⇧C)�1
.

Definition 2.7. A subset S of G is an irredundant generating set of G if S generates G,
but no proper subset of S generates G.

Lemma 2.8 (“Factor Group Lemma” [15, §2.2]). Suppose

• N is a cyclic, normal subgroup of G,

• (si)mi=1 is a hamiltonian cycle in Cay(G/N ;S), and

• the voltage ⇧(si)mi=1 generates N .

Then (s1, s2, . . . , sm)|N |
is a hamiltonian cycle in Cay(G;S).

Corollary 2.9 ([12, Cor. 2.11]). Suppose

• N is a normal subgroup of G, such that |N | is prime,

• the image of S in G/N is an irredundant generating set of G/N ,

• there is a hamiltonian cycle in Cay(G/N ;S), and

• s ⌘ t (mod N) for some s, t 2 S [ S
�1

with s 6= t.
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Then there is a hamiltonian cycle in Cay(G;S).

Lemma 2.10 ([2, Lem. 1 on p. 24]). Let Pk ⇤ P` be the Cartesian product of a path of

length k with a path of length `. If k` is even, and k, ` � 2, then Pk⇤P` has a hamiltonian

path from any corner vertex v to any vertex that is at odd distance from v.

Corollary 2.11. Suppose N is a subgroup of an abelian group H , and {x, y} [ S0 is a

subset of H that generates H/N . Let k = |hx,Ni : N | and ` = |hx, y,Ni : hx,Ni|. If

k` is even, k, ` � 2, 0  p < k, 0  q < `, and p+ q is odd, then Cay(H/N ; {x, y}[S0)
has a hamiltonian path (si)ri=1, such that s1s2 · · · sr = x

p
y
q
.

Proof. If we identify the vertices of Pk ⇤ P` with {(i, j) | 0  i < k, 0  j < `} in the
natural way, then the map (i, j) 7! x

i
y
j is an isomorphism from Pk ⇤ P` to a subgraph X

of Cay
�
hx, yi;x, y

�
. So Lemma 2.10 provides a hamiltonian path (ti)

k`�1
i=1 in X from e to

x
p
y
q . So t1t2 · · · tk`�1 = x

p
y
q .

Let L = (uj)nj=1 be a hamiltonian path in Cay
�
H/hx, y,Ni

�
, and let

(si)
r
i=1 = (L, t2i�1, L

�1
, t2i)

k`/2
i=1 #.

From the definition of k and `, we see that the natural map from X to the Cayley graph
Cay

�
hx, y,Ni/N ;x, y

�
is an isomorphism onto a spanning subgraph. Therefore, (si)ri=1 is

a hamiltonian path in Cay(H/N ;S). Since H is abelian, it is easy to see that s1s2 · · · sr =
x
p
y
q .

Given a hamiltonian cycle C0 in Cay(G;S), the following result often provides a sec-
ond hamiltonian cycle C1, such that the voltage of at least one of these two cycles gener-
ates G0. (Then the Factor Group Lemma (2.8) provides a hamiltonian cycle in Cay(G;S).)

Lemma 2.12 (cf. Marušič [13] and Durnberger [4], or see [16, Lem. 3.1]). Assume:

• N is an abelian normal subgroup of G, such that G/N is abelian,

• C0 is an oriented hamiltonian cycle in Cay(G/N ;S),

• s, t, u 2 S
±1

and h 2 G,

• C0 contains:

� the oriented path [hs�1u�1](s, t, s�1), and

� either the oriented edge [h](t) or the oriented edge [ht](t�1).

Then there is a hamiltonian cycle C1 in Cay(G/N ;S), such that

⇣�
⇧C0

��1�
⇧C1

�⌘h
=

(
[u, t�1] [s, t�1]u if C0 contains [h](t),

[t�1
, u] [s, t�1]u if C0 contains [ht](t�1).

Furthermore, C0 and C1 have exactly the same oriented edges, except for some of the edges

in the subgraph induced by {h, hu�1, hs�1u�1, ht, htu�1, hts�1u�1}.

Lemma 2.13 ([4, Lem. 2.8]). Assume

• S is an irredundant generating set of G,

• s, t 2 S, with s 6= t,
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• s commutes with t,

• hS r {s}i /G, and

• there is a hamiltonian cycle in Cay
�
hS r {s}i;S r {s}

�
.

Then there is a hamiltonian cycle in Cay(G;S).

We do not need the general theory of nilpotent groups, but we will make use of the
following two facts. (The first is essentially the definition of a nilpotent group, which can
be found in any graduate-level textbook on group theory.)

Lemma 2.14 ([14, (iii) on p. 175 and Prop. VI.1.h on page 176]).

1. Every abelian group is nilpotent.

2. If G/Z(G) is nilpotent, then G is nilpotent.

Therefore, if G
0 ✓ Z(G) (in other words, if G/Z(G) is abelian), then G is nilpotent.

Theorem 2.15 ([8]). If G is a nontrivial, nilpotent, finite group, and the commutator sub-

group of G is cyclic, then every connected Cayley graph on G has a hamiltonian cycle.

The following observation is well known (and easy to prove).

Lemma 2.16 ([12, Lem. 2.27]). Let S generate a finite group G and let s 2 S, such that

hsi /G. If

• Cay
�
G/hsi;S

�
has a hamiltonian cycle, and

• either

1. s 2 Z(G), or

2. Z(G) \ hsi = {e}, or

3. |s| is prime,

then Cay(G;S) has a hamiltonian cycle.

Corollary 2.17. Suppose

• G
0

is cyclic of order pq, where p and q are distinct primes,

• S is an irredundant generating set of G, and

• some nontrivial element s of S is in G
0
.

Then Cay(G;S) has a hamiltonian cycle.

Proof. We may assume G0 = Zp⇥Zq . Since every subgroup of a cyclic, normal subgroup
is also normal, we know that hsi /G. Also, there are hamiltonian cycles in Cay(G/Zp;S),
Cay(G/Zq;S), and Cay(G/G

0;S) (by Theorem 1.1 and the elementary fact that Cayley
graphs on abelian groups have hamiltonian cycles). Hence, we may assume hsi = G

0 and
G

0 \Z(G) = Zq (perhaps after interchanging p and q), for otherwise Lemma 2.16 applies.
Let bG = G/Zp. We may assume | bG| 6= 27, for otherwise |G| = 27p so Theorem 2.3

applies. Then, since bG is nilpotent (see Lemma 2.14) and its commutator subgroup is Zq ,
the proof in [11, §4] implies there is a hamiltonian cycle (ti)ni=1 in Cay

� bG/ bG0;S0) whose
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voltage generates bG0. Then, since Zp \ Z(G) = {e}, the proof of Lemma 2.16(2) in [12,
Lem. 2.27(2)] tells us that (ti, sp�1)ni=1 is a hamiltonian cycle in Cay

�
G/Zq;S

�
.

Note that, since bG is a nilpotent group whose commutator subgroup is in the center and
has prime order q, the order of | bG/ bG0| must be a multiple of q; that is, n is a multiple of q
(cf. Lemma 3.6 below). Calculating modulo Zp, we have

⇧(ti, s
p�1)ni=1 ⌘ s

(p�1)n ⇧(ti)
n
i=1 (bs 2 bG0 = cZq ✓ Z( bG))

⌘ ⇧(ti)
n
i=1 (n is a multiple of q)

6⌘ e (⇧(ti)
n
i=1 generates bG0).

Therefore ⇧(ti, sp�1)ni=1 generates Zq . So the Factor Group Lemma (2.8) tells us that�
(ti, sp�1)ni=1

�
q is a hamiltonian cycle in Cay(G;S).

3 Assumptions, group theory, and connected sums

Assumptions 3.1. The remainder of this paper provides a proof of Theorem 1.3, so

• p is an odd prime,

• G is a finite group whose commutator subgroup has order 2p, and

• S is an irredundant generating set of G.

We wish to show that the Cayley graph Cay(G;S) has a hamiltonian cycle.

3A Basic group theory

Assumption 3.2. Because of Corollary 2.17, we may assume S \G
0 = ;.

Notation 3.3. The assumption that the commutator subgroup has order 2p implies that G0

is cyclic (cf. [16, §2E, proof of Cor. 1.4]), so we may write

G
0 = Z2 ⇥ Zp.

From Theorem 2.15, we may assume that G is not nilpotent, so G
0 * Z(G) (see Lem-

ma 2.14). This implies Zp \ Z(G) = {e}. Hence there exists a 2 S, such that

a does not centralize Zp. (3.3A)

Then there exists b 2 S, such that

Zp ✓ h[a, b]i. (3.3B)

The assumptions (3.3A) and (3.3B) are the basis of most of the arguments in the later
sections of the paper.

For ease of reference, we now collect a few well-known facts from group theory (spe-
cialized to our setting).

Lemma 3.4. If S0 ✓ G, such that hS0,Z2i = G, then hS0i = G.
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Proof. Since Z2 ✓ Z(G), we have

hS0i0 =
⌦
S0, Z(G)

↵0 ◆ hS0,Z2i0 = G
0
.

Therefore

hS0i =
⌦
S0, hS0i0

↵
= hS0, G

0i ◆ hS0,Z2i = G.

Corollary 3.5. Suppose S0 is a proper subset of S, such that Zp ✓ hS0i. (In particular,

this will be the case if {a, b} ✓ S0.) Then hS0i 6= G.

Proof. Suppose hS0i = G. This means hS0, G
0i = G. Since G0 = Z2⇥Zp and Zp ✓ hS0i,

this implies hS0,Z2i = G. So Lemma 3.4 tells us that hS0i = G. This contradicts the fact
that the generating set S is irredundant.

Lemma 3.6. Let H be a group. If x, y, z 2 H , and y centralizes H
0
, then [xy, z] =

[x, z] [y, z]. Therefore [yk, z] = [y, z]k for all k 2 Z.

Corollary 3.7. If x, y 2 G, such that y centralizes G
0
, and Zp ✓ h[x, y]i, then |y| is

divisible by p.

Corollary 3.8. Let S0 ✓ G, such that Z2 * hS0i0. If g 2 G, such that Z2 ✓ hg, S0i0, then

|hg, S0i : hS0i| is even.

In particular, if Z2 ✓ h[g, h]i, then, by taking S0 = {h}, we see that |hg, hi : hhi| is
even, so |g| is even (and, similarly, |h| must also be even).

Corollary 3.9. |G| is divisible by 4.

3B Connected sums

Definition 3.10 ([8, Defn. 5.1]). Assume C1 and C2 are two vertex-disjoint oriented cycles
in Cay(G;S), and let g 2 G, and s, t 2 S [ S

�1. If

• C1 contains the oriented edge [g](t), and

• C2 contains the oriented edge [gst](t�1),

then we use C1 #s
t C2 to denote the oriented cycle obtained from C1 [ C2 by

• removing the oriented edges [g](t) and [gst](t�1), and

• inserting the oriented edges [g](s) and [gst](s�1).

This is called the connected sum of C1 and C2.

If [g](t) is any oriented edge of an oriented cycle C, and s 2 S, such that sC is vertex
disjoint from C, then we can form the connected sum C#s

t �sC. This construction can be
iterated:

Definition 3.11. Suppose

• [g1](t1), . . . , [gk](tk) are oriented edges of an oriented cycle C in Cay(G;S), such
that gi 6= gi+1 for all i, and
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• s1, s2, . . . , sk 2 S [ S
�1, such that the cycles C, s1C, s2s1C, . . . , sksk�1 · · · s1C

are pairwise vertex-disjoint.

Then we can form the connected sum

C #s1
t1 �s1C #s2

t2 s2s1C #s3
t3 · · · #sk

tk ±sksk�1 · · · s1C.

We call this a connected sum of signed translates of C.

Lemma 3.12 (cf. [8, Lem. 5.2]). If C1, C2, g, s, and t are as in Definition 3.10, then

⇧(C1 #
s
t C2) = ⇧C1 · g[s�1

, t
�1] ·⇧C2.

Proof. We may assume g = t
�1 (or, in other words, gt = e), after translating the cycles

by (gt)�1 (cf. Lemma 2.6(2)). Write C1 = (si)mi=1 and C2 = [st�1](tj)nj=1, so

(C1 #
s
t C2) =

�
(si)

m�1
i=1 , s, (tj)

n�1
j=1 , s

�1
�
.

By assumption, C1 contains the edge t�1 ! e and C2 contains the edge s ! st�1, so
sm = t and tn = t

�1. Therefore

⇧(C1 #
s
t C2) =

m�1Y

i=1

(si) · s ·
n�1Y

j=1

(tj) · s�1

=
mY

i=1

(si) · t�1
s ·

nY

j=1

(tj) · ts�1

= ⇧C1 · t�1
s · (⇧C2)

st�1

· ts�1

= ⇧C1 · t�1
sts

�1 ·⇧C2

= ⇧C1 · t
�1

[s�1
, t

�1] ·⇧C2

= ⇧C1 · g[s�1
, t

�1] ·⇧C2.

Corollary 3.13. Assume that C1, C2, g, s, and t are as in Definition 3.10. If C0 is another

oriented cycle that is vertex-disjoint from C2 and contains the oriented edge g(t), then

�
⇧(C0 #

s
t C2)

��
⇧(C1 #

s
t C2)

��1
= (⇧C0)(⇧C1)

�1
.

Corollary 3.14 ([8, Lem. 5.2]). If C1, C2, g, s, and t are as in Definition 3.10, then

⇧(C1 #
s
t C2) ⌘ ⇧C1 ·⇧C2 · [s, t] (mod Zp).

The following result describes a fairly common situation in which the connected sum
provides hamiltonian cycles in Cay(G;S):

Lemma 3.15. Let S0 be a nonempty subset of S, g 2 G, c 2 S r S0, and s, t 2 S r {c}.

Assume C0 and C1 are oriented hamiltonian cycles in Cay
�
hS0i;S0

�
, such that

• (⇧C0)�1(⇧C1) is a nontrivial element of Zp,

• C0 and C1 both contain the oriented edge [g](s),
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• for every x 2 S0, C0 contains at least two edges that are labelled either x or x
�1

,

• Z2 ✓ h[c, t]i, and

• either |G : hS0i| > 2 or s = t.

If either

1. there exists u 2 S r {c}, such that Z2 * h[u, c]i, or

2. |G : hS0, ti| is even,

then there is a hamiltonian cycle C in Cay(G;S), such that h⇧Ci = G
0
, so the Factor

Group Lemma (2.8) yields a hamiltonian cycle in Cay(G;S).

Proof. Let r = |G : hS0i|. We have Zp ✓ h(⇧C0)�1(⇧C1)i ✓ hS0i, so Corollary 3.5
implies r 6= 1.

Suppose r = 2. By assumption, this implies s = t, which means that C0 and C1 both
contain the oriented edge [g](t). Then the translate cC0 contains the oriented edge [gc](t).
The connected sums C = C0 #c

t �cC0 and C
0 = C1 #c

t �cC0 are hamiltonian cycles in
Cay(G;S). From Corollary 3.14, we have

⇧C ⌘ ⇧C0 ·⇧C0 · [c, t] ⌘ [c, t] 6⌘ 0 (mod Zp),

so ⇧C projects nontrivially to Z2. Corollary 3.13 says (⇧C)(⇧C
0)�1 = (⇧C0)(⇧C1)�1,

which generates Zp (because it is conjugate to the inverse of (⇧C0)�1(⇧C1), which is
assumed to be a nontrivial element of Zp). Therefore, we see that either ⇧C or ⇧C

0

generates G0, as desired. So we may assume henceforth that r > 2.
We now show that we may assume t 2 S0. To this end, suppose it is not the case that

t 2 S0. Let n = |hS0, ti : hS0i|. Then, by choosing a sequence {[gi](si)}n�1
i=1 of oriented

edges of C0, we can form a connected sum C
0
0 of signed translates of C0:

C
0
0 = C0 #

t
s1 �tC0 #

t
s2 · · ·#

t
sn�1

±t
n�1

C0.

This is a hamiltonian cycle in Cay
�
hS0, ti;S0 [ {t}

�
. We may assume s1 = s. Then

another hamiltonian cycle C 0
1 can be constructed by replacing the leftmost occurrence of C0

with C1, and Lemma 3.12 tells us that (⇧C
0
0)(⇧C

0
1)

�1 = (⇧C0)(⇧C1)�1, which is a
nontrivial element of Zp (and (⇧C0)�1(⇧C1) is conjugate to the inverse of this). From
the definition of connected sum, it is obvious that C 0

0 contains at least two edges labelled
t
±1. So the hamiltonian cycles C 0

0 and C
0
1 satisfy the hypotheses of the lemma with S0[{t}

in the role of S0 and with t in the role of s.

Case 1. Assume there exists u 2 S r {c}, such that Z2 * h[u, c]i.

Subcase 1.1. Assume u 2 S0. Fix a hamiltonian path (si)ni=1 in Cay(G/hS0i;SrS0) with
s1 = c, and let ⇡i =

Qi
j=1 sj . Any connected sum C0#

s1
t1 (�⇡1C0)#

s2
t2 · · ·#

sn
tn (±⇡nC0)

is a hamiltonian cycle C in Cay(G;S).
Since [t, c] and [u, c] do not have the same projection to Z2, the voltages of C0 #c

t

�⇡1C0 and C0 #c
u �⇡1C0 do not have the same projection to Z2. Therefore, by choosing

t1 to be the appropriate element of {t, u}, we may assume the projection of ⇧C to Z2 is
nontrivial (see Corollary 3.14). Note also that if |G : hS0i| = 2, then we must have t1 = t.
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We may assume that tn = s, and that the connected sum (�1)n�1
⇡n�1C0#sn

s

(�1)n⇡nC0 is relative to the oriented edge [⇡ng](s) of ⇡nC0 that is also in ⇡nC1. There-
fore, another hamiltonian cycle C 0 can be constructed by replacing ⇡nC0 with ⇡nC1 in the
connected sum. Then Lemma 3.12 (together with Lemma 2.6(2)) implies that
(⇧C)�1(⇧C

0) is conjugate to (⇧C0)�1(⇧C1), which is a generator of Zp. Therefore,
either ⇧C or ⇧C

0 generates G0, as desired.

Subcase 1.2. Assume u /2 S0. Let Su = {u}[S0, let n = |hSui : hS0i|� 1, let (si)mi=1 be
a hamiltonian path in Cay

�
G/hSui;S r Su

�
with s1 = c, and let ⇡i =

Qi
j=1 sj . (Since

S r S0 is an irredundant generating set for G/hS0i, we have m,n � 1.) Any connected
sum

Cu = C0 #
u
t1 �uC0 #

u
t2 · · ·#

u
tn ±u

n
C0

is a hamiltonian cycle in Cay
�
hSui;Su

�
, so any connected sum

C = Cu #s1
t01

�⇡1Cu #s2
t02

· · ·#sm
t0m

±⇡mCu

is a hamiltonian cycle in Cay(G;S).
Since t 2 S0, we know that C0 contains more than one edge labeled t

±1, so �uC0 has
an edge labeled t

±1 that was not removed in the construction of the connected sum C0 #u
t1

�⇡1C0. Furthermore, the definition of the connected sum implies that C0 #u
t1 �⇡1C0 also

contains an edge labeled u. Therefore, we may form connected sums

Cu #c
t±1 �⇡1Cu and Cu #c

u �⇡1Cu

without removing any of the edges of Cu. Since [c, t] and [c, u] do not have the same
projection to Z2, the voltages of these two connected sums do not have the same projection
to Z2 (see Corollary 3.14). Therefore, by choosing t

0
1 to be the appropriate element of

{t±1
, u}, we may assume the projection of ⇧C to Z2 is nontrivial.

We have

C = Cu #s1
t01

�⇡1Cu #s2
t02

· · ·#sm�1

t0m�1
±⇡m�1Cu#

sm
t0m�

±⇡mC0 #
u
t1 ±⇡muC0 #

u
t2 · · ·#

u
tn ±⇡mu

n
C0

�
,

so the proof can be completed almost exactly as in the final paragraph of Subcase 1.1 (by
constructing another connected sum in which ⇡mu

n
C0 is replaced with ⇡mu

n
C1).

Case 2. Assume [u, c] projects nontrivially to Z2, for every u 2 S r {c}. In particular,
[d, c] projects nontrivially to Z2, for every d 2 S r

�
S0 [ {c}

�
. Since we may assume that

Case 1 does not apply with d in the place of c, we conclude that we may assume

[u, d] projects nontrivially to Z2, for all d 2 S r S0 and u 2 S r {d}. (3.15A)

Choose a hamiltonian path (si)ni=1 in Cay(G/hS0i;S r S0). Any connected sum

C = C0 #
s1
t1 �⇡1C0 #

s2
t2 · · ·#sn

tn ±⇡nC0
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is a hamiltonian cycle in Cay(G;S). Calculating modulo Zp, and letting z be the nontrivial
element of Z2, we have

⇧C ⌘ ⇧C0 · [s1, t1] ·⇧(�⇡1C0) · · · [sn, tn] ·⇧(±⇡nC0) (Corollary 3.14)
⌘ ⇧C0 · z ·⇧C0 · · · z ·⇧C0 (Lemma 2.6(2) & (3.15A))

= (⇧C0)
n+1 · zn

⌘ z (n is odd).

The proof is now completed exactly as in the final paragraph of Subcase 1.1.

Corollary 3.16. Let S0 ✓ S, g 2 G, and s 2 S0. Assume C0 and C1 are oriented

hamiltonian cycles in Cay
�
hS0i;S0

�
, such that

• (⇧C0)�1(⇧C1) is a nontrivial element of Zp,

• C0 and C1 both contain the oriented edge [g](s),

• for every x 2 S0, C0 contains at least two edges that are labelled either x or x
�1

,

and

• Z2 * hS0i0.

Then there is a hamiltonian cycle C in Cay(G;S), such that h⇧Ci = G
0
, so the Factor

Group Lemma (2.8) yields a hamiltonian cycle in Cay(G;S).

Proof. We may assume [c, t] 2 Zp, for all c 2 S and t 2 S0. (Otherwise, we see from
Corollary 3.8 that Lemma 3.15(2) applies.) Choose c, d 2 S, such that [c, d] /2 Zp, let
S
+
0 = S0 [ {d}, and let r = |hS+

0 i : hS0i|. Any connected sum of the following form is a
hamiltonian cycle in Cay

�
hS+

0 i;S+
0

�
:

C = C0 #
d
s1 �dC0 #

d
s2 · · ·#

d
sr�1

±d
r�1

C0.

We may assume s1 = s, and that the connected sum C0 #d
s1 �dC0 is formed by using

the oriented edge [g](s) that is also in C1. Therefore, a second hamiltonian cycle C
0 can

be constructed by replacing the leftmost occurrence of C0 with C1. Then Corollary 3.8
implies that Lemma 3.15(2) applies (with S

+
0 , d, d, C, and C

0 in the roles of S0, s, t, C0,
and C1, respectively).

4 Case with s = t

Case 4.1. Assume there exist s, t 2 S [ S
�1

with s = t and s 6= t.

Proof. Write t = s� with � 2 G
0. We may assume h�i = G

0, for otherwise |�| is prime, so
Corollary 2.9 applies with N = h�i. Note that the irredundance of S implies hSr{s}i and
hS r {t}i do not contain Zp. This implies that every element of S r {s, t} centralizes Zp.
So s and t do not centralize Zp.

Let m = |t| and n = |G|/m.

Subcase 4.1.1. Assume |t| > 2. Since G is abelian, it is easy to find a hamiltonian cycle
C = (ti)mn

i=1 in Cay
�
G;S r {s}

�
, such that t1 = t2 = · · · = tm�1 = t. Since h⇧Ci ✓

hS r {s}i, and Zp * hS r {s}i, we must have ⇧C 2 Z2.
For each subset I of {1, . . . ,m � 1}, we define CI to be the hamiltonian cycle con-

structed from C by changing ti to s for all i 2 I . The proof is completed by noting that I
may be chosen such that ⇧CI generates G0, so the Factor Group Lemma (2.8) applies:
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• If ⇧C = e, let I = {1}.

• If ⇧C is the nontrivial element of Z2, and t does not invert Zp, then we may let
I = {1, 2}.

• If ⇧C is the nontrivial element of Z2, and t inverts Zp, then |t| is even, so we must
have |t| � 4. We may let I = {1, 3}.

Subcase 4.1.2. Assume |t| = 2. (Since t does not centralize Zp, this implies that t in-
verts Zp.) Choose a hamiltonian cycle (si)ni=1 in Cay

�
G/hti;S r {s, t}

�
, and let

C0 = (t, si)
n
i=1 = (tj)

2n
j=1.

Since n = |G|/2 is even (see Corollary 3.9) and S r {s} is an irredundant generating set
of G, it is easy to see that C0 is a hamiltonian cycle in Cay

�
G;S r {s}

�
. Note that ti = t

whenever i is odd, and that ⇧C0 2 Z2 (because Zp * hS r {s}i).
We may assume n � 6 (for otherwise |G| = 4np  20p, so Theorem 2.3 applies). We

construct a hamiltonian cycle C1 from C0:

• If ⇧C0 = e, construct C1 by changing t1 to s.

• If ⇧C0 6= e, construct C1 by changing both t1 and t5 to s.

In each case, ⇧C1 generates G0. (To see this in the second case, note that t2t3t4t5 = s1ts2t

centralizes G
0, because t inverts G

0, and each si centralizes G
0.) Therefore, the Factor

Group Lemma (2.8) applies.

5 Cases with |a| > 2 and b /2 hai
Recall that the elements a and b of S satisfy (3.3A) and (3.3B).

Case 5.1. Assume |a| > 2, b /2 hai, and there exists c 2 S, such that Z2 ✓ h[a, c]i. (It may

be the case that b = c.)

Proof. Let m = |a| and n = |G : hai|. Since b, c /2 hai (and G/hai is abelian), it is
easy to find a hamiltonian cycle (si)ni=1 in Cay

�
G/hai;S r {a}

�
, such that sn 2 {c±1},

and sk = b for some k < n. Since Z2 ✓ h[a, c]i, we know m and n are both even (see
Corollary 3.8). Since n is even, we have the following (well-known) hamiltonian cycle C0

in Cay(G;S):

C0 =
�
a, (am�2

, s2i�1, a
�(m�2)

, s2i)
n/2
i=1#, a

�1
, (s�1

n�j)
n�1
j=1

�
. (5.1A)

Letting bG = G/Zp, we have bG0 = Z2, so bam�2 2 Z( bG ) (because m is even). There-
fore

a
m�2

s2i�1a
�(m�2) ⌘ s2i�1 (mod Zp),

so, calculating modulo Zp, we have

⇧C0 ⌘ a ·
 

n�1Y

i=1

sj

!
· a�1 ·

 
n�1Y

i=1

sj

!�1

⌘ a · s�1
n · a�1 · sn = [a�1

, sn] = [a�1
, c

±1],

which is nontrivial (mod Zp).
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Recall that sk = b. Let g =
Qk�1

i=1 si and � = (�1)k+1. Then C0 contains both
the oriented edge [gb](b�1) and the oriented path [ga�2�](a�, b, a��). So Lemma 2.12
(with s = a

� , t = b, u = a
� and h = g) provides a hamiltonian cycle C1, such that

(⇧C0)�1(⇧C1) is conjugate to [b�1
, a

�][a�, b�1]a
�

. Since a centralizes Z2, but not Zp,
this voltage is a generator of Zp.

Thus, either ⇧C0 or ⇧C1 generates Z2 ⇥ Zp = G
0, so the Factor Group Lemma (2.8)

provides a hamiltonian cycle in Cay(G;S).

Case 5.2. Assume |a| > 2, b /2 hai, and there does not exist c 2 S, such that Z2 ✓ h[a, c]i.

Proof. Choose c, d 2 S with Z2 ✓ h[c, d]i. Let

m = |a|, n = |hS r {d}i|/m, and r = |G|/(mn).

By assumption, we know a /2 {c, d}. Also, we may assume d 6= b (after interchanging
c and d if necessary). Then Corollary 3.5 tells us r > 1. Furthermore, we see from
Corollary 3.8 that the image of c in G/hai has even order, so n is even.

Subcase 5.2.1. Assume n > 2. It is not difficult to construct a hamiltonian cycle (si)ni=1

in Cay
�
hS r {d}i/hai;S r {a, d}

�
, such that s1 = b and sk = c

±1 for some k /2 {1, n}.
Then, since n is even, we may define C0 as in (5.1A), so C0 is a hamiltonian cycle in
Cay

�
hS r {d}i;S r {d}

�
.

Let g = s1s2 · · · sk, and note that C0 contains the oriented edges [e](a) and [g](c⌥1).
Since Z2 ✓ h[c, d]i, but Z2 * h[a, d]i, we see from Lemma 3.12 that there is a connected
sum

C = C0 #
d
t1 �dC0 #

d
t2 · · ·#

d
tr�1

±d
r�1

C0,

with t1 2 {a, c±1}, such that Z2 ✓ h⇧Ci. Note that C is a hamiltonian cycle in
Cay(G;S).

The cycle C0 contains both [b](b�1) and [a�2](a, b, a�1), and neither of these paths
contains either the edge [e](a) or the edge [g](c⌥1). Therefore, C also contains both of
these paths, so Lemma 2.12 (with s = a, t = b, u = a, and h = e) provides a hamilto-
nian cycle C

0 in Cay(G;S), such that
�
⇧C

��1�
⇧C

0� is a conjugate of [b�1
, a] [a, b�1]a,

which is a generator of Zp (since a centralizes Z2, but not Zp). Then either ⇧C or ⇧C
0

generates G0, so the Factor Group Lemma (2.8) applies.

Subcase 5.2.2. Assume n = 2 and r > 2. Since n = 2 (and b /2 hai), we have ha, b, di =
G, so Corollary 3.5 implies S = {a, b, d}. (Therefore b = c, which means Z2 ✓ h[b, d]i.)
We have the following hamiltonian cycle in Cay

�
ha, bi; a, b

�
:

C0 = [e](am�1
, b, a

�(m�1)
, b

�1).

Using the oriented edge [e](a), we can form the connected sum C0 #d
a �dC0. Then, since

dC0 contains both [db](b�1) and [dab](a�1), we can extend this to a connected sum

C = C0 #
d
a �dC0 #

d
t2 · · ·#

d
tr�1

±d
r�1

C0,

with t2 2 {a, b}, such that Z2 ✓ h⇧Ci (see Corollary 3.14). Since C contains both
[b](b�1) and [a�2](a, b, a�1), we may argue as in the last paragraph of Subcase 5.2.1.
Namely, Lemma 2.12 (with s = a, t = b, u = a, and h = e) provides a hamiltonian cy-
cle C 0 in Cay(G;S), such that

�
⇧C

��1�
⇧C

0� is a conjugate of [b�1
, a] [a, b�1]a, which is
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a generator of Zp. Then either ⇧C or ⇧C
0 generates G0, so the Factor Group Lemma (2.8)

applies.

Subcase 5.2.3. Assume n = r = 2. As in Subcase 5.2.2, we must have S = {a, b, d} and
b = c (so Z2 ✓ h[b, d]i).
Subsubcase 5.2.3.1. Assume m 6= 3. Since m = |a| > 2 (by an assumption of this case),
we have m � 4. We have the following hamiltonian cycle in Cay(G;S):

C0 =
�
d, b, a, b

�1
, d

�1
, a

m�2
, d, a

�(m�3)
, b, a

m�3
, d

�1
, a

�(m�1)
, b

�1).

Since a is central in G/Zp (by an assumption of this case), we know that

⇧C0 ⌘ dbb
�1

d
�1

dbd
�1

b
�1 = dbd

�1
b
�1 = [d�1

, b
�1] ⌘ [d, b] = [d, c] (mod Zp),

so Z2 ✓ h⇧C0i.
Note that C0 contains both [dab](b�1) and [da3](a�1

, b, a) (because m � 4), so apply-
ing Lemma 2.12 (with s = a

�1, t = b, u = a
�1 and h = da) yields a hamiltonian cycle

C1 in Cay(G;S), such that
�
⇧C0

��1�
⇧C1

�
is a conjugate of [b�1

, a
�1] [a�1

, b
�1]a

�1

,
which is a generator of Zp. Then either ⇧C or ⇧C

0 generates G
0, so the Factor Group

Lemma (2.8) applies.

Subsubcase 5.2.3.2. Assume m = 3 and d does not centralize G
0
. Since the walk

(a�2
, b

�1
, a

2) is a hamiltonian path in Cay
�
ha, bi; a, b

�
, we have the following hamiltonian

cycle in Cay(G;S):
C = (a�2

, b
�1

, a
2
, d

�1
, a

�2
, b, a

2
, d).

Note that

⇧C = (a�2
b
�1

a
2) d�1(a�2

ba
2) d = (ba

2

)�1
d
�1(ba

2

) d = [ba
2

, d].

Since a
2 does not invert G0, we know that ba

2 6⌘ b
a�2

(mod Z2). Therefore, since d does
not centralize G0, we may assume [ba

2

, d] 6⌘ e (mod Z2) (by replacing a with its inverse if
necessary). Also, since G

0 is central modulo Zp, we have [ba
2

, d] ⌘ [b, d] 6⌘ e (mod Zp).
Therefore, ⇧C generates G0, so the Factor Group Lemma (2.8) applies.

Subsubcase 5.2.3.3. Assume m = 3 and d centralizes G
0
. Suppose [b, d] 2 Z2. Let

bG = G/Z2 and bH = hba,bbi. From Theorem 1.1, we know there is a hamiltonian cycle in
Cay( bH; a, b

�
. Deleting an edge labeled b

±1 (and passing to the reverse and/or a translate
if necessary) yields a hamiltonian path L = (ti)2mp�1

i=1 in Cay( bH; a, b
�

from be to bb. Let

C = (L�1
, d

�1
, L, d).

Then
⇧C =

⇥Y2mp�1

i=1
ti, d] 2 [bZ2, d] = {[b, d]},

because Z2 is in the center of G. Since [b, d] 2 Z2, this calculation implies that C is a
closed walk in G/Z2 = bG. So C is a hamiltonian cycle in Cay( bG;S). The calculation also
implies that the Factor Group Lemma (2.8) applies, because h[b, d]i = Z2.

We may now assume [b, d] /2 Z2. Therefore, since d centralizes G0, and p
2 - 12 = |G|,

we see from Lemma 3.6 that b does not centralize G
0. Also, we may assume [a, d] 6= e, for

otherwise Lemma 2.13 applies with s = d and t = a. However, we know Z2 * h[a, d]i (by
an assumption of this case). Therefore h[a, d]i = Zp. So Subsubcase 5.2.3.2 applies after
interchanging b and d.
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6 Cases with b 2 hai
Case 6.1. Assume b 2 hai and a does not invert G

0
.

Proof. Let m = |a|. We may assume (perhaps after replacing b with its inverse) that we
may write b = a

k
� with 1  k  m/2 and � 2 G

0. Assume k � 2, for otherwise Case 4.1
applies. This implies m� 1 � k + 1 (since m = |a| � 2k � k + 2).

Subcase 6.1.1. Assume there exists c 2 S, such that Z2 ✓ h[a, c]i. Let n = |G : hai|. Note
that Corollary 3.8 implies m and n are even, and c /2 hai (so c 6= b).

Choose a hamiltonian cycle (si)ni=1 in Cay
�
G/hai;S r {a, b}

�
, such that sn = c, and

define C0 as in (5.1A). Then h⇧C0i contains Z2 by the same calculation as in Case 5.1.
Since m � 1 � k + 1, we may construct a hamiltonian cycle C1 in Cay(G;S) by

replacing the path (ak+1) at the start of C0 with (b, a�(k�1)
, b). Then

�
⇧C1

��
⇧C0

��1
= ba

�(k�1)
ba

�(k+1) = (ak�)a�(k�1)(ak�)a�(k+1) =

a
k+1

�
a
�a

�(k+1)
.

This is a generator of Zp, since a inverts Z2, but not Zp. Hence, either ⇧C0 or ⇧C1

generates G0, so the Factor Group Lemma (2.8) provides a hamiltonian cycle in Cay(G;S).

Subcase 6.1.2. Assume there does not exist c 2 S, such that Z2 ✓ h[a, c]i. Choose
c, d 2 S, such that Z2 ✓ h[c, d]i. (It is possible that b 2 {c, d}, but we know, by the
assumption of this subcase, that a /2 {c, d}.) Let n = |ha, di : hai| and r = |G|/(mn).
From Corollary 3.8 (and the assumption of this subcase), we know n and r are even.

We have the following hamiltonian cycle in Cay
�
ha, di; a, d

�
:

C0 =
�
(a, (am�2

, d, a
�(m�2)

, d)n/2#, a
�1

, d
�(n�1)

�
.

As in the final paragraph of Subcase 6.1.1, another hamiltonian cycle C1 can be constructed
by replacing the path (ak+1) at the start of C0 with (b, a�(k�1)

, b), and the calculation in
Subcase 6.1.1 shows that (⇧C1)(⇧C0)�1 generates Zp. Therefore, since [c, d] /2 Zp, but
[c, a] 2 Zp, we see that Lemma 3.15(1) applies (with S0 = {a, b, d}, g = a

�1, s = t = d,
and u = a).

Case 6.2. Assume b 2 hai and a inverts G
0
.

Proof. As in Case 6.1, we let m = |a| and write b = a
k
� with 2  k  m/2 and � 2 G

0.
We now consider the same five subcases as in [4, pp. 60–62].

Subcase 6.2.1. Assume 2 < k < m/2 and k is even. Let C1 = (am). The proof in the last
paragraph of [4, p. 60] provides a hamiltonian cycle

C0 =
�
b, a

�(k�4)
, b, a

m�2k�2
, b, a

�1
, b, a

2
, b

�2
, a

k�3
�

in Cay
�
hai; a, b

�
, such that (⇧C0)�1(⇧C1) is a generator of Zp. Therefore, Corol-

lary 3.16 applies (with S0 = {a, b}), because C0 and C1 both contain the oriented edge
[a�1](a).

Subcase 6.2.2. Assume 2 < k < m/2 and k is odd. Let

C0 =
�
(b, a, b�1

, a)(k�1)/2
, b, a

m�2k+1
�
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and

C1 =
�
(b, a�1

, b
�1

, a
�1)(k�1)/2

, b
2
, a

m�2k�1
, b
�
.

Calculations in [4, p. 61] show that (⇧C0)�1(⇧C1) is a generator of Zp. Therefore,
Corollary 3.16 applies (with S0 = {a, b}), because C0 and C1 both contain the oriented
edge [e](b).

Subcase 6.2.3. Assume k = m/2 and k is even. We follow the argument of [11, Subcase iii,
p. 97]. Since k is even, we know a

k centralizes G0, so

b
2 = (ak�)2 = a

2k
�
2 = a

m
�
2 2 Z2 · �2 63 e.

Therefore Corollary 2.9 applies (with s = b and t = b
�1).

Subcase 6.2.4. Assume k = m/2 and k is odd. Choose c 2 S so that Z2 ✓ h[a, c]i, if such
c exists. Otherwise, choose c so that there exists d 2 S, such that Z2 ✓ h[c, d]i. In either
case, Corollary 3.8 implies c 2 S r {a, b}, and |ha, ci : hai| is even.

We may assume b
2 = e, for otherwise Corollary 2.9 applies (with s = b and t = b

�1).
Therefore, noting that ak inverts G0 (since k is odd), we have

e = b
2 = (ak�)(ak�) = a

2k · ��1
� = a

m
.

Subsubcase 6.2.4.1. Assume |G : hai| > 2. It suffices to find a hamiltonian cycle
C⇤ in Cay(G;S), such that ⇧C⇤ projects nontrivially to Z2, and C⇤ contains the paths
[ak�3](a, b, a�1) and [ak�1b](b�1). For then Lemma 2.12 (with s = a, t = b, u = a, and
h = a

k�1) provides a hamiltonian cycle C
0
⇤, such that h(⇧C⇤)�1(⇧C

0
⇤)i = Zp. There-

fore, either ⇧C⇤ or ⇧C
0
⇤ generates G0, so the Factor Group Lemma (2.8) applies.

Note that

C = (ak�2
, b, a

�(k�2)
, c, a

k�1
, c

�1
, b

�1
, c, a

�(k�1)
, c

�1)

is a cycle through the vertices of Cay(G; {a, b, c}) in hai [ chai. A connected sum of
translates of C yields a hamiltonian cycle C0 in Cay(G;S).

If Z2 * h[a, c]i, then the connected sum defining C0 can be chosen so that Z2 ✓ h⇧C0i
(see the proof of Lemma 3.15). So we may let C⇤ = C0.

We may now assume Z2 ✓ h[a, c]i. Construct a hamiltonian cycle C1 in Cay(G;S) by
replacing the rightmost translate of C in the connected sum with

C
0 = (ak�1

, b, a
�(k�1)

, c, a
k�1

, b
�1

, a
�(k�1)

, c
�1).

A straightforward calculation shows that (⇧C)�1(⇧C
0) /2 Zp, so we have Z2 ✓ h⇧Cii

for some i 2 {0, 1}. Let C⇤ = Ci.

Assumptions 6.2.4.2. We may now assume |G : hai| = 2, so the irredundance of S

implies S = {a, b, c}. Since b 2 hai, the irredundance of S also implies h[a, c]i = Z2.
Furthermore, we may also assume that c either centralizes G0 or inverts G0. (Otherwise, a
preceding case applies after interchanging a with c.)

Subsubcase 6.2.4.3. Assume c inverts G
0
. Let

L =

(
(a, b)k# if p | k
(b, a)k# if p - k

and C = (L�1
, c

�1
, L, c).
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Then L is a hamiltonian path in Cay
�
hai; a, b

�
, so C is a hamiltonian cycle in Cay(G;S).

Since (ab)k = �
k, we have

⇧L =

(
�
k
b
�1 = �

k�1
a
�k if p | k,

�
�k

a
�1 if p - k.

Thus, in either case, we have ⇧L = �
y
a
z , where p - y and z is odd, so

⇧C = (⇧L)�1
c
�1(⇧L)c = [⇧L, c] = [�y

a
z
, c]

= [�y
, c]a

z

· [az, c] = (��2y)a
z

· [a, c]z = �
2y · [a, c].

This generates G0, so the Factor Group Lemma (2.8) applies.

Subsubcase 6.2.4.4. Assume c centralizes G
0

and k � 5. Let

C0 = (L, c, L�1
, c

�1),

where L = (b, a)k#. Since C0 contains both [e](b, a, b) and [abc](a�1), and also contains
both [a2](b, a, b) and [a3bc](a�1) we can apply Lemma 2.12 twice (first with s = b, t = a,
u = c, and h = bc, and then with s = b, t = a, u = c, and h = a

2
bc), to obtain a

hamiltonian cycle C2, such that

(⇧C0)
�1(⇧C2) = [a�1

, b]2,

which generates Zp. Then, since

⇧C0 =
�
(ba)ka�1

�
c
�
(ba)ka�1

��1
c
�1 = [a, c]

is a generator of Z2, we conclude that ⇧C2 generates G0, so the Factor Group Lemma (2.8)
applies.

Subsubcase 6.2.4.5. Assume c centralizes G
0

and k = 3. Assume, for the moment, that
� /2 Zp. Let

C = (c, b, c�1
, a, b

�1
, c, b, a, b

�1
, c

�1
, b, a).

Then C is a hamiltonian cycle in Cay(G;S), and a straightforward calculation shows that
⇧C = ba

3 = �
�1 generates G0, so the Factor Group Lemma (2.8) applies.

Now, suppose that p � 5, and, because of the preceding paragraph, that � 2 Zp. Let

C = (b, a, b�1
, a, b, c, a

�5
, c

�1).

Then C is a hamiltonian cycle in Cay(G;S) and

⇧C = bab
�1

abcac
�1 = bab

�1
aba[a, c�1] = �

�3[a, c].

Therefore h⇧Ci = G
0 (since p 6= 3 and � projects trivially to Z2), so the Factor Group

Lemma (2.8) applies.
We may now assume p = 3 (so |G| = 72), and that � 2 Zp. Let bG = G/Zp. We have

the following hamiltonian cycle in Cay( bG;S):

C = (a2, c, a5, c�1
, a

�2
, b, a

2
, c, a

�5
, c

�1
, a

�2
, b).
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Calculating modulo Z2 (so c is in the center), we have

⇧C = a
2
ca

5
c
�1

a
�2

ba
2
ca

�5
c
�1

a
�2

b ⌘ a
2
a
5
a
�2

ba
2
a
�5

a
�2

b = a
�1

bab = [a, b] = �
2
.

This is nontrivial (mod Z2), so ⇧C must be nontrivial. Therefore ⇧C generates Zp, so the
Factor Group Lemma (2.8) applies.

Subcase 6.2.5. Assume k = 2 < m/2.

Subsubcase 6.2.5.1. Assume |G : hai| > 2. Note that

C =
�
b, a, b

�1
, c, b, a

�1
, b, c

�1
, (a, c, a, c�1)(m�4)/2

�

is a cycle through the vertices of Cay(G; {a, b, c}) in hai [ chai. A connected sum of
translates of C yields a hamiltonian cycle C0 in Cay(G;S). Since k is even, we know that
Z2 * h[b, c]i, so it is easy to choose the connected sum in such a way that Z2 ✓ h⇧C0i
(see the proof of Lemma 3.15).

The cycle C contains the paths [e](b, a, b�1) and [b
2
](a). By taking just a bit of care

in the creation of C0 (namely, not using any of these edges for the first connected sum),
we may assume that C0 also contains these paths. Then Lemma 2.12 (with s = b, t = a,
u = b, and h = b

2) provides a hamiltonian cycle C1, such that (⇧C0)�1(⇧C1) = [a, b]2

(because b centralizes G0). This is a generator of Zp, so either ⇧C0 or ⇧C1 generates G0.
Therefore, the Factor Group Lemma (2.8) applies.

Subsubcase 6.2.5.2. Assume |G : hai| = 2. The irredundance of S implies that S =
{a, b, c} (see Corollary 3.5). We have the following hamiltonian cycle in Cay(G;S):

C = (b2, am�5
, c, a

�(m�4)
, c

�1
, b

�1
, c, a, b

�1
, c

�1).

Since b 2 hai, the irredundance of S implies h[a, c]i = Z2. So m is even (see Corol-
lary 3.8). However, Z2 * h[b, c]i, because k = 2 is even. So

⇧C = b
2(am�5

ca
�(m�4)

c
�1)(b�1

cab
�1

c
�1)

⌘ b
2(a�1)(b�2

a[a, c]) ⌘ [a, c] (mod Zp),

which generates Z2. We may also assume that c either centralizes G
0 or inverts G

0 (for
otherwise a preceding case applies after interchanging a with c). Therefore

⇧C = b
2(am�5

ca
�(m�4)

c
�1)(b�1

cab
�1

c
�1) ⌘ a

4
�
2(a�1)(��1

a
�2

ca�
�1

a
�2

c
�1)

= �
3 · (��1)c = �

3 · �±1 2 {�2
, �

4} (mod Z2),

which generates Zp. We now know that ⇧C projects nontrivially to both Z2 and Zp, so it
generates G0. Therefore, the Factor Group Lemma (2.8) applies.

7 Cases with |a| = 2 and #S = 2

Assumption 7.1. In this section, we assume

• |a| = 2, for all a 2 S, such that a does not centralize G
0, and

• #S = 2.
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We may assume |a| = 2, for otherwise Case 4.1 applies with s = a and t = a
�1.

We may also assume that b centralizes G
0, for otherwise we must have |b| = 2, so

|G| = 8p, so Theorem 2.3 applies. Since a does not centralize G0, this implies a /2 hbi. Let

n = |G : hai| = |G|/2 = |b|.

Case 7.2. Assume n 6⌘ 1 (mod p).

Proof. Let C = (a�1
, b

�(n�1)
, a, b

n�1), so C is a hamiltonian cycle in Cay(G;S) with
⇧C = [a, bn�1] = [a, b]n�1, since b centralizes G0. Note that n is even (see Corollary 3.8),
and, by assumption, n 6⌘ 1 (mod p). Therefore, n � 1 is relatively prime to 2p, so ⇧C

generates G0, so the Factor Group Lemma (2.8) applies.

Case 7.3. Assume n ⌘ 1 (mod p).

Proof. We claim that Zp ✓ hbi. Suppose not. Then |hb,Z2i| = 2n. Since gcd(2n, p) = 1,
the abelian group hb,G0i has a unique subgroup of order 2n, so we conclude that hb,Z2i is
normal in G. This implies that

haihb,Z2i = ha, b,Z2i ◆ ha, bi = G,

so
|G|  |a| · |hb,Z2i| = 2 · 2n = 4n.

This contradicts the fact that |G| = 4np.

Subcase 7.3.1. Assume Z2 ✓ hbi. Combining this assumption with the above claim, we
see that G0 ✓ hbi. This implies hbi / G, so G = hai n hbi. Since |a| = 2, this implies
that Cay(G; a, b) is a generalized Petersen graph. Then the main result of [1] tells us that
Cay(G; a, b) has a hamiltonian cycle.

Subcase 7.3.2. Assume Z2 * hbi. Since hb,G0i is abelian, gcd(n, p) = 1, and Z2 * hbi,
we may write

hb,G0i = Z2 ⇥ Zp ⇥ Zn.

Then G = hain (Z2 ⇥ Zp ⇥ Zn), and we may assume b = (0, 1, 1) and [a, b] = (1, 2, 0).
For G = G/hb2i = G/(Zp ⇥ 2Zn), it is straightforward to check that

�
(a, b)4#, b

�1
�

is
a hamiltonian cycle in Cay(G; a, b) whose voltage is (0,�2, 2). (This hamiltonian cycle
is taken from the final paragraph of Case 1 of the proof of [3, Prop. 6.1].) This voltage
generates Zp ⇥ 2Zn (since gcd(p, n) = 1), so the Factor Group Lemma (2.8) applies.

8 Cases with |a| = 2 and #S = 3

Assumption 8.1. In this section, we assume

S = {a, b, c},

and
|s| = 2, for all s 2 S, such that s does not centralize G

0.

We also assume Case 4.1 does not apply. (So |s| = 2.) In particular, we have |a| = 2.
Note that a /2 hbi. (If a 2 hbi, then b, like a, does not centralize G

0, so our assumption
implies |b| = 2. Then a = b, contradicting the fact that Case 4.1 does not apply.)



20 Art Discrete Appl. Math. 1 (2018) #P1.04

Notation 8.2. Let

n = |b| = |ha, bi : hai| � 2 and ` = |G : ha, bi| = |G|/(2n) � 2.

The last inequality is because the irredundance of S implies c /2 ha, bi (see Corollary 3.5).

Case 8.3. Assume |b| = 3.

Proof. Since |b| 6= 2, Assumption 8.1 implies that b centralizes G0. Also, since |b| is odd,
Corollary 3.8 implies that [a, b] and [b, c] project trivially to Z2, so [a, c] must project non-
trivially (and ` must be even). We have the following hamiltonian path in Cay

�
G/hai;S

�
:

L = (c`�1
, b, c

�(`�1)
, b, c

`�1).

Then C = (L, a, L�1
, a) is a hamiltonian cycle in Cay(G;S). Since `�1 is odd, it is easy

to see that Z2 ✓ h⇧Ci.
Since C contains both [c`�2](c, b, c�1) and [c`�1

ab](b�1), Lemma 2.12 (with s = c,
t = b, u = a, and h = c

`�1
a) provides a hamiltonian cycle C 0, such that (⇧C)�1(⇧C

0) is
conjugate to [t�1

, u] [s, t�1]u = [b�1
, a] [c, b�1]a = [a, b] [c, b]. This is an element of Zp.

If it generates Zp, then either ⇧C or ⇧C
0 generates G0, so the Factor Group Lemma (2.8)

applies.
Thus, we may assume [a, b] [c, b] is trivial. Since Zp ✓ h[a, b]i (see (3.3B)), this implies

that [c, b] is nontrivial. So we may assume that c does not centralize Zp (for otherwise
replacing c with c

�1 would replace [c, b] with [c, b]�1, which would not cancel [a, b]).
Now, Assumption 8.1 implies |c| = 2, so we have the hamiltonian cycle

C0 = (b2, a, b2, c, a, b, a, b, a, c),

in Cay(G;S). This contains both the path [bac](a, b, a) and the edge [b](b), so applying
Lemma 2.12 (with s = a, t = b, u = c, and h = b) provides a hamiltonian cycle C1, such
that

�
⇧C0

��1�
⇧C1

�
is conjugate to [u, t�1] [s, t�1]u = [c, b�1] [a, b�1]c. This is not

equal to [a, b] [c, b] (which is trivial), because [a, b�1]c = [a, b], but [c, b�1] = [c, b]�1 6=
[c, b]. So

�
⇧C0

��1�
⇧C1

�
is nontrivial, and therefore generates Zp. Since a straightfor-

ward calculation shows that Z2 is contained in h⇧C0i, this implies that either ⇧C0 or ⇧C1

generates G0, so the Factor Group Lemma (2.8) applies.

Case 8.4. Assume ` = 2.

Proof. We may assume |b| � 4, for otherwise either |b| = 2, so Theorem 2.3 applies
(because |G| = 16p), or |b| = 3, so Case 8.3 applies. Let

L = (a, b, a, bn�2
, a, b

�(n�3)) and C = (L, c, L�1
, c

�1),

so L is a hamiltonian path in Cay
�
ha, bi; a, b

�
and C is a hamiltonian cycle in Cay(G;S).

Subcase 8.4.1. Assume [a, c] and [a, b][b, c] are not both in Zp. A straightforward calcula-
tion (using Lemma 3.6) shows that ⇧C ⌘ [a, c] (mod Zp). If this is in Zp, then, by as-
sumption, [a, b][b, c] /2 Zp, so applying Lemma 2.12 to the paths [e](a, b, a) and [abc](b�1)
in C (so s = a, t = b, u = c, and h = ac) yields a hamiltonian cycle C

0, such that ⇧C
0

projects nontrivially to Z2. Therefore, we have a hamiltonian cycle (either C or C 0) whose
voltage is not in Zp.
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Now, since |b| � 4, we see that C (and also C
0) contains the path [b�2ac](b, a, b�1)

and [ac](a). Furthermore, we know that [b, a][b, a]b is a nontrivial element of Zp (because
b does not invert [a, b]). Therefore, Lemma 2.12 (with s = b, t = a, u = b, and h = ac)
yields a hamiltonian cycle C1 (or C 0

1) whose voltage generates G
0, so the Factor Group

Lemma (2.8) applies.

Subcase 8.4.2. Assume [a, c] and [a, b][b, c] are both in Zp. Since [a, c], [a, b], and [b, c]
generate G0, they cannot all be in Zp, so this assumption implies that neither [a, b] nor [b, c]
is in Zp. Also, we may assume h[a, c]i = Zp, for otherwise [a, c] = e, so we could apply
Lemma 2.13 with s = c.

We have the following hamiltonian cycle in Cay(G;S):

C0 = (bn�1
, c, b

�(n�2)
, a, b

n�2
, c

�1
, b

�(n�1)
, c, a, c

�1).

Then

⇧C0 = b
n�1

c
�
b
�(n�2)

ab
n�2
�
c
�1

b
�(n�1)

cac
�1

= b
n�1

c
�
a[a, b]n�2

�
c
�1

b
�(n�1)

cac
�1

= ([a, b]�(n�2))c · bn�1(cac�1)b�(n�1)(cac�1)

= ([a, b]�(n�2))c · [b, cac�1]�(n�1)

= ([a, b]�(n�2))c · [b, a]�(n�1) (cac�1 2 aG
0 and G

0 ✓ CG(b))

= ([a, b]�(n�2))c · [a, b]n�1
.

If c centralizes Zp, then ⇧C0 = [a, b] generates G
0, so the Factor Group Lemma (2.8)

applies.
We may now assume c does not centralize Zp. Then Assumption 8.1 tells us that c in-

verts Zp, so ⇧C0 = [a, b]2n�3 (and |c| = 2). Hence, we may assume 2n ⌘ 3 (mod p), for
otherwise ⇧C0 generates G0, so the Factor Group Lemma (2.8) applies. We now consider
the following hamiltonian cycle in Cay(G;S):

C⇤ = (bn�3
, c, b

�(n�4)
, a, b

n�4
, c

�1
, b

�(n�3)
, c, (b�1

, c)2, a, (c, b)2, c�1).

We have

⇧C⇤ = b
n�3

c
�
b
�(n�4)

ab
n�4
�
c
�1

b
�(n�3)

c
�
(b�1

c)2a(cb)2
�
c
�1

.

Since cb inverts G0, we know that (b�1
c)2a(cb)2 = a, so ⇧C⇤ is exactly the same as the

voltage of C0, but with n replaced by n� 2; that is,

⇧C⇤ = [a, b]2(n�2)�3 = [a, b]2n�7
.

Since 2n ⌘ 3 (mod p), we have

2n� 7 ⌘ 3� 7 = �4 6⌘ 0 (mod p),

so ⇧C⇤ generates G0, so the Factor Group Lemma (2.8) applies.

Case 8.5. Assume |b| 6= 3 and ` 6= 2.
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Proof. Since ` 6= 2, we know |c| > 2, so c must centralize G
0 (by Assumption 8.1). Also,

Corollary 3.8 implies that |b| and ` cannot both be odd.

• If |b| is odd (so ` is even), let

L =
�
c
`�1

, b, c
�1

, b, c, b, (bn�4
, c

�1
, b

�(n�4)
, c

�1)`/2#, b
�1

, c
`�3

, b
�1

, c
�(`�3)

�
.

• If |b| is even, let

L =
�
c
`�1

, b
n�1

, c
�1

, (c�(`�2)
, b

�1
, c

`�2
, b

�1)(n�2)/2
, c

�(`�2)
�
.

In either case, L is a hamiltonian path in Cay
�
G/hai; {b, c}

�
from e to b. Now, let

C = (L, a, L�1
, a) and (g, ✏) =

(
(c`�1

,�1) if |b| = 2 or |b| is odd,
(ab2, 1) if |b| > 2 and |b| is even,

so C is a hamiltonian cycle in Cay(G;S) that contains the paths

[bc](c�1
, a, c), [ca](c�1

, a, c), [g](b), and [gbac✏](c�✏
, b

�1
, c

✏).

Note that [bc](c�1
, a, c) contains [b](a) and that [ca](c�1

, a, c) contains [a](a). Also note
that all of these paths are vertex-disjoint (except for the vertices ac and {abc} when |b| = 2
and ` = 3). We introduce some terminology:

• Applying Lemma 2.12 to the oriented paths [ca](c�1
, a, c) and [b](a) (so s = c

�1,
t = a, u = b, and h = ab) will be called the “a-transform.” This multiplies the
voltage by �a, where �a = [a, b�1][c, a].

• Applying Lemma 2.12 to the oriented paths [g](b) and [gbac✏](c�✏
, b

�1
, c

✏) (so s =
c
�✏, t = b

�1, u = a, and h = gb) will be called the “b-transform.” This multiplies
the voltage by a conjugate of �b, where �b = [b, a][b, c�✏].

Subcase 8.5.1. Assume precisely one of �a and �b is in Zp. Write {a, b} = {x, y}, such
that �x 2 Zp and �y /2 Zp. We may assume h�xi = Zp (by replacing c with its inverse,
if necessary). Choose C

0 to be either C or the y-transform of C, such that ⇧C
0 projects

nontrivially to Z2. Then choose C
00 to be either C 0 or the x-transform of C 0, such that

⇧C
00 generates G0, so the Factor Group Lemma (2.8) applies.

Subcase 8.5.2. Assume �a and �b are both in Zp. Since [a, b], [a, c], and [b, c] cannot all be
in Zp, this assumption implies that none of them are in Zp. Therefore, since the path L has
odd length, we see that ⇧C has nontrivial projection to Z2.

We may assume (by replacing c with its inverse, if necessary), that �a has nontrivial
projection to Zp, so h�ai = Zp. Therefore, by choosing C

0 to be either C or the a-transform
of C, such that ⇧C

0 generates G0, we may apply the Factor Group Lemma (2.8).

Subcase 8.5.3. Assume neither �a nor �b is in Zp, and b centralizes G
0
. Note that the

sum of the exponents of the occurrences of b in L is 1, and the sum of the exponents of
the occurrences of c is 0. Therefore, since b and c centralize G

0, Lemma 3.6 implies that
⇧C = [a, b]. Hence, we may assume [a, b] 2 Zp (for otherwise h⇧Ci = G

0, so the Factor
Group Lemma (2.8) applies). Then, by the assumption of this subcase, we conclude that
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[a, c] /2 Zp. So we may assume h[a, c]i = Z2, for otherwise b and c could be interchanged,
resulting in a situation in which [a, b] /2 Zp, and which has therefore already been covered.
Also, since [a, b] 2 Zp and [a, c] /2 Zp, Corollary 3.8 tells us that ` is even (and recall that
` 6= 2).

Since [a, b] is a nontrivial element of Zp, and b centralizes G0, we see from Corollary 3.7
that |b| is divisible by p. Therefore, |b| 6= 2, so we may assume |b| > 2 (for otherwise
Case 4.1 applies with s = b and t = b

�1). Since |b| 6= 3 (by the assumption of this case),
this implies n = |b| � 4, so we may let

L0 =
�
c
`�1

, b, c
�(`�1)

, b
2
, (bn�4

, c, b
�(n�4)

, c)`/2#, b
�1

, c
�(`�2)

�
,

so L0 is a hamiltonian path from e to b2c in Cay
�
G/hai; {b, c}

�
. Note that the sum of the

exponents of the occurrences of b in L is 2, and the sum of the exponents of the occurrences
of c is 1. Therefore, since b and c centralize G

0, Lemma 3.6 implies ⇧(L0, a, L
�1
0 , a) =

[a, b]2[a, c]. This generates G0, so the Factor Group Lemma (2.8) applies.

Subcase 8.5.4. Assume neither �a nor �b is in Zp, and b does not centralize Zp. From
Assumption 8.1, we know b = 2 (so b must invert G0).

We may assume [a, c] 2 Z2, for otherwise Case 8.4 could be applied by interchanging
b and c. Then we may assume [a, c] is the nontrivial element of Z2, for otherwise the
assumption that �a /2 Zp implies h[a, b]i = G

0, so ha, bi /G, and then Lemma 2.13 applies
with s = c.

By applying the same argument, with a and b interchanged, we may assume [b, c] is
also the nontrivial element of Z2. This implies [a, b] 2 Zp, since �b /2 Zp.

Note that, since a and b both have order 2 (and invert G0), the image of ha, bi in G/Z2

is the dihedral group of order 2p. Also, the preceding two paragraphs imply that c is in the
center of G/Z2. Therefore, we have the following hamiltonian cycle in Cay

�
G/Z2;S

�
:

C =
�
c, (c`�2

, a, c
�(`�2)

, b)p#, c
�1

, (a�1
, b

�1)p#
�
.

Since [a, b] projects trivially to Z2, Corollary 3.8 implies that ` is even, so, calculating
modulo Zp, we have

⇧C = c(c`�2
ac

�(`�2)
b)pb�1

c
�1(a�1

b
�1)pb

⌘ c(ab)pb�1
c
�1(a�1

b
�1)pb

✓
`� 2 is even, so c

`�2

is central modulo Zp

◆

⌘ z
2p�1(ab)pb�1(a�1

b
�1)pb

✓
letting z = [a, c] = [b, c] be
the nontrivial element of Z2

◆

⌘ z (z2 = e and [a, b] 2 Zp).

Since this generates Z2, the Factor Group Lemma (2.8) applies.

9 Cases with |a| = 2 and #S � 4

Assumption 9.1. In this section, we assume

• #S � 4, and

• |s| = 2, for all s 2 S, such that s does not centralize G
0.
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We also assume Case 4.1 does not apply. (So |s| = 2.)
Furthermore, we assume b /2 hai (otherwise, Case 4.1 applies). Then it is easy to see

that we also have a /2 hbi.

Outline. This final section of the proof is longer than the others, so here is an outline of
the cases and subcases that it considers.

9.4: Assume no element of S centralizes G
0
.

9.4.1: Assume #S � 5.

9.4.2: Assume #S = 4.

9.5: Assume there exists s 2 S, such that [a, s] /2 Zp, and, in addition, either s = b, or

b centralizes G
0
, or Zp ✓ hS r {a}i0.

9.5.1: Assume Zp * hS r {a}i0.
9.5.2: Assume Zp ✓ hS r {a}i0.

9.6: Assume b centralizes G
0
.

9.6.1: Assume there exists c 2 S, such that [c, b] /2 Zp.

9.6.2: Assume [c, b] 2 Zp for all c 2 S.

9.7: Assume that none of the preceding cases apply.

Since Case 9.4 does not apply, some element c of S centralizes G0.

9.7.1: Assume h[s, c]i 6= Z2, for some s 2 S r {c}.

9.7.2: Assume h[s, c]i = Z2, for all s 2 S r {c}.

Notation 9.2. Let n = |b| and ` = |G : ha, bi| = |G|/(2n).

Note 9.3. The irredundance of S implies S r {a, b} is an irredundant generating set for
G/ha, bi (see Corollary 3.5), so ` � 4.

Case 9.4. Assume no element of S centralizes G
0
.

Proof. From Assumption 9.1, we see that every element of S inverts G0 (and has order 2).
We may assume no two elements of S commute, for otherwise it is not difficult to see that
Lemma 2.13 applies.

Let c, d 2 S r {a, b}, and let � = [a, b] [a, c]. We claim that we may assume � /2 Z2,
by permuting b, c, d. To this end, first note that if � 2 Z2, then Zp ✓ h[a, c]i, so there
is no harm in putting c into the role of b. Now, let us suppose [a, b][a, c], [a, c][a, d], and
[a, d][a, b] are all in Z2. Then

[a, b] ⌘ [a, c]�1 ⌘ [a, d] ⌘ [a, b]�1 (mod Z2),

which contradicts the fact that [a, b] /2 Z2 (and p is odd).
Let

C =
�
(c, a, c, b)2#, d

�2
,

so C is a hamiltonian cycle in Cay
�
ha, b, c, di; {a, b, c, d}

�
that contains the vertex-disjoint

paths [e](c, a, c), [abc](a), [bd](c, a, c), and [acd](a). Applying Lemma 2.12 to the paths
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[e](c, a, c) and [abc](a) (so s = c, t = a, u = b, and h = bc) will multiply the voltage
by �. Applying Lemma 2.12 to the other two paths [bd](c, a, c) and [acd](a) (so s = c,
t = a, u = b, and h = cd) will also multiply the voltage by � (because bc and cd both
centralize G0). Therefore, applying Lemma 2.12 twice yields a hamiltonian cycle C 00, such
that (⇧C)�1(⇧C

00) = �
2, which is a generator of Zp.

Subcase 9.4.1. Assume #S � 5. If there exist s, t 2 S, such that s /2 {a, b, c}, and
[s, t] /2 Zp, then the preceding paragraph implies that Lemma 3.15(2) applies.

Thus, we may assume that the preceding condition does not apply (for any legitimate
choice of a, b, and c). Fix two elements x, y 2 Sr{a, b, c}. The failure of the condition im-
plies [x, S] ✓ Zp. In particular, [x, y] must be a generator of Zp (because no two elements
of S commute), so we may let {x, y} play the role of {a, b}. So we may let {x, y, b, c}
play the role of {a, b, c, d}. Then, since a /2 {x, y, b, c}, the failure of the condition implies
[a, S] ✓ Zp. Similarly, [b, S] and [c, S] are also in Zp. So [s, t] ✓ Zp for all s, t 2 S. This
contradicts the fact that h[S, S]i = G

0 * Zp.

Subcase 9.4.2. Assume #S = 4. For convenience, in this subcase (and only in this
subcase), we drop our standing assumption that h[a, b]i contains Zp. Instead, choose b, d 2
S, such that [b, d] projects nontrivially to Z2. A straightforward calculation (using the fact
that a, b, c, and d all invert G0) shows that

⇧C = [c, d]4[d, a]2[d, b].

Since [d, b] projects nontrivially to Z2, but [c, d]4 and [d, a]2 have even exponents, so they
obviously do not, we see that Z2 ✓ h⇧Ci. Therefore, we may assume ⇧C 2 Z2, for
otherwise the Factor Group Lemma (2.8) applies.

We may assume � 2 Z2, for otherwise applying Lemma 2.12 twice (as in the paragraph
immediately before Subcase 9.4.1) yields a hamiltonian cycle whose voltage generates G0,
so the Factor Group Lemma (2.8) applies. By the definition of �, this means [a, b][a, c] 2
Z2. And we may assume the same is true when b and d are interchanged, which means
[a, d][a, c] 2 Z2. So

[a, b] ⌘ [a, c]�1 ⌘ [a, d] (mod Z2).

By interchanging a and c, we conclude that we may also assume

[c, b] ⌘ [c, a]�1 ⌘ [c, d] (mod Z2).

So
[c, d] ⌘ [c, a]�1 = [a, c] ⌘ [a, d]�1 = [d, a] (mod Z2).

Therefore

[d, a]6[d, b] = [d, a]4[d, a]2[d, b] ⌘ [c, d]4[d, a]2[d, b] = ⇧C ⌘ 0 (mod Z2).

If p 6= 3, then, since we may assume the same is true when we interchange a and c,
we conclude that [d, c] ⌘ [d, a] (mod Z2). Since we also have [c, d] ⌘ [d, a] (mod Z2),
we conclude that [c, d] and [a, d] are in Z2. This implies [b, d] /2 Z2 (since d does not
centralize Zp, and is therefore not in the center of G/Z2), so

⇧C = [c, d]4[d, a]2[d, b] ⌘ e
4
e
2[d, b] = [d, b] 6⌘ 0 (mod Z2).

This contradicts the fact that ⇧C 2 Z2.
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We now assume p = 3. Then the equation [d, a]6[d, b] ⌘ 0 (mod Z2) implies [d, b] 2
Z2. This conclusion came from assuming only that [d, b] /2 Zp. Therefore, for all s, t 2 S,
the commutator [s, t] must be in either Z2 or Zp. However,

[a, b] ⌘ [c, a] ⌘ [a, d] ⌘ [b, c] ⌘ [d, c] (mod Z2),

and [a, b] /2 Z2. Therefore, we conclude all five of these other commutators are in Zp.
(Therefore, the stated congruences between these commutators are actually equalities.)

Now, interchanging a $ b and c $ d in C yields a hamiltonian cycle C
⇤, such that

⇧C
⇤ = [d, c]4[c, b]2[c, a] = [d, c][b, c][c, a] = [c, a]3 = e

(because p = 3). Let � ⇤ = [b, a] [b, d], so �
⇤ is obtained from � = [a, b][a, c] by inter-

changing a $ b and c $ d. Then, since applying Lemma 2.12 to C can multiply the
voltage by � = [a, b] [a, c], we know that applying Lemma 2.12 to C

⇤ can multiply the
voltage by �

⇤, which generates G0. So the Factor Group Lemma (2.8) applies.

Case 9.5. Assume there exists s 2 S, such that [a, s] /2 Zp, and:

either s = b, or b centralizes G
0
, or Zp ✓ hS r {a}i0.

Proof. Let S0 = S r {a}. Note that the irredundance of S implies a /2 hS0iZ2 (see
Lemma 3.4).

Subcase 9.5.1. Assume Zp * hS0i0. If [a, b] /2 Zp, we assume that s = b. Let

g =

(
s if [s, a] /2 Z2,

sb
2 if [s, a] 2 Z2.

Note that h[g, a]i = G
0.

Let H⇤ = hS0iZ2/Z2. From the assumption of this subcase, we know that H⇤ is
abelian. Therefore, Corollary 2.11 provides a hamiltonian path L = (si)ri=1 in
Cay(H⇤;S0), such that s1s2 · · · sr 2 gZ2. Then (L�1

, a, L, a) is a hamiltonian cycle
in Cay(G;S), and

⇧C = [s1s2 · · · sr, a] 2 [gZ2, a] = {[g, a]}

(since Z2 is in the center of G). This voltage generates G0, so the Factor Group Lemma (2.8)
applies.

Subcase 9.5.2. Assume Zp ✓ hS0i0. Suppose w, x, y 2 S
±1 r {a}, such that

hwi ( hw, xi ( hw, x, yi. (9.5A)

It is easy to construct a hamiltonian cycle C0 in Cay(hS0i;S0), such that C0 contains the
oriented paths [hw�1y�1](w, x,w�1) and [hx](x�1), for some h 2 G. Furthermore, if

either x /2 {s±1} or |G| > 16, (9.5B)

then, for some ✏ 2 {±1}, it is not difficult to arrange that the hamiltonian cycle C0 contains
the oriented edge [s✏](s�✏), and that this edge is not in either of the above-mentioned paths.
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Applying Lemma 2.12 to the first two paths (so s = w, t = x, and u = y) yields a
hamiltonian cycle C1, such that (⇧C0)�1(⇧C1) is conjugate to [x�1

, y] [w, x�1]y . Re-
moving the edge [s✏](s�✏) yields hamiltonian paths C0# and C1# from e to s

✏.
From Lemma 3.4 and the assumption of this subcase, we see that hS0i 6= G. So

C
+
0 =

�
C0#, a, (C0#)�1

, a
�

and C
+
1 =

�
C1#, a, (C1#)�1

, a
�

are hamiltonian cycles in Cay(G;S). For k = 0, 1, we have

⇧C
+
k =

⇥�
(⇧Ck)s

✏
��1

, a
⇤
.

Since ⇧Ck 2 G
0, and G

0 is central modulo Zp (and from the choice of s), we have

⇧C
+
k ⌘ [s✏, a] 6⌘ e (mod Zp).

Furthermore, if [x�1
, y] [w, x�1]y projects nontrivially to Zp, then (⇧C

+
0 )�1(⇧C

+
1 )

does not centralize a modulo Z2, so ⇧C
+
0 and ⇧C

+
1 are not both in Z2. This implies that

⇧C
+
k generates G0 for some k, so the Factor Group Lemma (2.8) applies. Therefore (after

replacing x
�1 with x for simplicity), we may assume

[w, x]y [x, y] 2 Z2 for all w, x, y 2 S
±1 r {a} that satisfy (9.5A) and (9.5B). (9.5C)

We will show that this leads to a contradiction.
Assume, for the moment, that b centralizes G

0. Then n = |b| > 2 (because Corol-
lary 3.7 implies that |b| 6= 2), so |G| = 2n` > 2 · 2 · 4 = 16. Therefore (9.5B) is
automatically satisfied. Let x, y 2 S0 r {b}, such that x 6= y. We see from Note 9.3 that
(9.5A) is satisfied for w = b

±1, so (9.5C) tells us

[b, x]y [x, y] and [b�1
, x]y [x, y] are both in Z2.

However, we also know that [b�1
, x] = [b, x]�1 (because we are assuming in this paragraph

that b centralizes G0). Therefore

[b, x]y ⌘ [x, y]�1 ⌘ [b�1
, x]y =

�
[b, x]�1

�y
(mod Z2),

so [b, x] 2 Z2 (for all x 2 S0). Then, since [b, x]y [x, y] 2 Z2, we conclude that [x, y] 2 Z2,
for all x, y 2 S0. This contradicts the assumption of this subcase.

Now assume b does not centralize G
0. We may assume Case 9.4 does not apply, so G

0

is centralized by some t 2 S (and t 6= b). Let w, x 2 S0 r {t} with w 6= x. Combining
the irredundance of S with the fact that t 6= b implies that (9.5A) is satisfied for y = t

±1

(unless w = x, when Case 4.1 applies). We may assume x 6= s (by interchanging w and x,
if necessary), so (9.5B) is satisfied. Then (9.5C) tells us

[w, x]t [x, t] and [w, x]t
�1

[x, t�1] are both in Z2.

Since t centralizes G
0, this implies [x, t] ⌘ [x, t�1] = [x, t]�1 (mod Z2), so [x, t] 2 Z2

(for all x 2 S0). Since [w, x]t [x, t] 2 Z2, this implies [w, x] 2 Z2 (for all w, x 2 S0). This
contradicts the assumption of this subcase.

Case 9.6. Assume b centralizes G
0
.
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Proof. We consider two subcases.

Subcase 9.6.1. Assume there exists c 2 S, such that [c, b] /2 Zp. We use some of the
arguments of Case 8.5. We may assume [a, s] 2 Zp for all s 2 S. (Otherwise, Case 9.5
applies, because b centralizes G0.) Therefore c 6= a. Let L = (si)ri=1 be a hamiltonian path
from e to b in Cay

�
G/hai;S r {a}

�
, such that s1 = c = s

�1
r , and L contains a path of

the form [gc✏](c�✏
, b

�
, c

✏) (for some �, ✏ 2 {±1}) that is vertex-disjoint from {e, c, b, bc}.
Now let C = (L, a, L�1

, a). Then C contains vertex-disjoint paths of the form

[b](a), [ca](c�1
, a, c), [gc✏](c�✏

, b
�
, c

✏), and [gab�](b��).

• Applying Lemma 2.12 to [b](a) and [ca](c�1
, a, c) (so s = c

�1, t = a, u = b, and
h = ab) will be called the “a-transform.” It multiplies the voltage by

�a = [b, a][a, c�1].

• Applying Lemma 2.12 to [gc✏](c�✏
, b

�
, c

✏) and [gab�](b��) (so s = c
�✏, t = b

� ,
u = a, and h = ga) will be called the “b-transform.” It multiplies the voltage by a
conjugate of

�b = [a, b][c�✏
, b].

Since [a, b], [a, c] 2 Zp and [b, c] /2 Zp we know �a 2 Zp and �b /2 Zp. Also, we may
also assume �a is nontrivial (by replacing b with b

�1 if necessary). Therefore, the argument
of Subcase 8.5.1 applies. Namely, choose C

0 to be either C or the b-transform of C, such
that ⇧C

0 projects nontrivially to Z2. Then choose C
00 to be either C 0 or the a-transform

of C 0, such that ⇧C
00 generates G0, so the Factor Group Lemma (2.8) applies.

Subcase 9.6.2. Assume [c, b] 2 Zp for all c 2 S. Choose c, d 2 S, such that [c, d] /2 Zp.
Assuming that Case 9.5 and Subcase 9.6.1 do not apply, we have

[s, t] 2 Zp for all s 2 {a, b} and t 2 S.

Therefore, c, d /2 {a, b}, and the element � = [a, b][d�1
, a] is in Zp, and we may assume

(by replacing b with its inverse, if necessary) that � generates Zp.
Let S0 = {a, b, d}, and choose a hamiltonian cycle C0 in Cay

�
hS0i;S0

�
that con-

tains the oriented paths [d](d�1
, a, d) and [ab](a), and has at least two edges labelled x

±1,
for every x 2 S0. Lemma 2.12 (with s = d

�1, t = a, u = b, and h = b) provides a
hamiltonian cycle C1, such that (⇧C0)�1(⇧C1) is conjugate to �, and therefore gener-
ates Zp. Furthermore, C1 contains all of the oriented edges of C0 that are not in these two
above-mentioned paths, so Lemma 3.15(2) applies (with g = b and t = d).

Case 9.7. Assume that none of the preceding cases apply.

Proof. This implies that:

#1. [a, b] 2 Zp. (Otherwise, Case 9.5 applies.)

#2. If s 2 S, and there exists t 2 S, such that t inverts G
0

and Zp ✓ h[s, t]i, then

s inverts G
0
. (If s does not invert G0, then we see from Assumption 9.1 that s cen-

tralizes G0, so Case 9.6 applies with s and t in the roles of b and a, respectively.)
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#3. There exists c 2 S, such that c centralizes G
0
. (Otherwise, Case 9.4 applies.) From

(#2), we know [a, c] 2 Z2.

Subcase 9.7.1. Assume h[s, c]i 6= Z2, for some s 2 S r {c}. Suppose, for the moment,
that s centralizes G0. Then Lemma 3.6 implies

⇥
a, [s, c]

⇤
=
⇥
[a, s], [a, c]

⇤
= e (because G

0

is abelian), so [s, c] projects trivially to Zp. Since h[s, c]i 6= Z2, we conclude from this that
[s, c] = e, so Lemma 2.16 applies.

We may now assume s does not centralize G0, so there is no harm in assuming that s =
a. Since (#2) implies that [a, c] 2 Z2, we see that [a, c] must be trivial. Let H = hSr{c}i.
We may assume Z2 * H , for otherwise H / G, so Lemma 2.13 applies with s = c and
t = a. Therefore, [x, y] 2 Zp for all x, y 2 S r {c}, but there is some d 2 S r {c}, such
that [c, d] projects nontrivially to Z2.

Similarly, we may assume Zp * hS r {a}i, for otherwise we have hS r {a}i / G, so
Lemma 2.13 applies with s = a and t = c. This means [x, y] 2 Z2 for all x, y 2 S r {a}.
In particular, since b and d are in both Sr{a} and Sr{c}, we must have [b, d] 2 Z2\Zp =
{e}.

Choose a hamiltonian cycle C0 in Cay
�
H;S r {c}

�
that contains the oriented paths

[d](d�1
, b, d) and [ab](b). If we apply Lemma 2.12 to these paths (so s = d

�1, t = b,
u = a, and h = a), then the voltage is multiplied by a conjugate of [b, a] [b, d�1], which is
a generator of Zp (since [a, b] generates Zp and [b, d] is trivial). Therefore, Lemma 3.15(1)
applies with s = t = d and u = a.

Subcase 9.7.2. Assume h[s, c]i = Z2, for all s 2 S r {c}. For convenience, let bG = G/Z2

and bH = hbSr{bc}i. Then | bH 0| = p is prime, so Theorem 1.1 provides a hamiltonian path L

in Cay
� bH;S r {c}

�
. Since bc is central in bG, there is a spanning subgraph of Cay( bG;S)

that is isomorphic to the Cartesian product L ⇤ (bc`�1), where ` = |G : hS r {c}i|. Since
| bG| is even, it is easy to find a hamiltonian cycle C in L ⇤ (bc`�1) (see Lemma 2.10), and
this yields a hamiltonian cycle bC in Cay( bG;S).

To complete the proof, we carry out a straightforward (and well-known) calculation to
verify that ⇧ bC is nontrivial, so the Factor Group Lemma (2.8) applies.

If we view the Cartesian product L⇤ (bc`�1) as a grid of squares, then the interior of the
hamiltonian cycle C is a union of squares of the grid. Graph theoretically, this means C is
the connected sum of some number N of digons of the form [g](t, t�1) (where t 2 S

±1).
Note that if C is an r-cycle (with r � 2), then C #s

t (t, t
�1) is an (r + 2)-cycle. Therefore,

since the length of C is | bG|, we have 2N = | bG| ⌘ 0 (mod 4), so N is even.
Now, each 4-cycle in L⇤ (bc`�1) is of the form [bg](s�1

, t
�1

, s, t), where one of s and t

is in {c±1}, and the other is in S
±1 r {c±1}. This means that in any connected sum

C #s
t [g](t, t�1), one of s and t is in {c±1}, and the other is in S

±1 r {c±1}. By the
assumption of this subcase, we conclude that [s, t] = z, where z is the generator of Z2.
Therefore

⇧C = ⇧
⇣
[ bg1](t1, t�1

1 ) #s2
t2 [ bg2](t2, t�1

2 ) #s3
t3 · · · #sN

tN [cgN ](tN , t
�1
N )
⌘

⌘
YN

i=2
[si, ti] (Corollary 3.14 and ⇧(t, t�1) = e)

= z
N�1

6⌘ e (mod Zp) (N � 1 is odd).
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Abstract

For any finite group G, a natural question to ask is the order of the smallest possible
automorphism group for a Cayley graph on G. A particular Cayley graph whose auto-
morphism group has this order is referred to as an MRR (Most Rigid Representation), and
its Cayley index is a numerical indicator of this value. Study of GRRs showed that with
the exception of two infinite families and thirteen individual groups, every group admits a
Cayley graph whose MRR is a GRR, so that the Cayley index is 1. The full answer to the
question of finding the smallest possible Cayley index for a Cayley graph on a fixed group
was almost completed in previous work, but the precise answers for some finite groups and
one infinite family of groups were left open. We fill in the remaining gaps to completely
answer this question.

Keywords: Cayley graph, Cayley index, GRR, MRR, automorphisms.

Math. Subj. Class.: 05C25

1 Introduction

All groups and graphs in this paper are finite. All of our graphs are simple, undirected, and
have no loops.

A Cayley graph � = Cay(G,S) where S ✓ G with S = S
�1 and 1 /2 S, is the

graph whose vertices are the elements of G, with (g, gs) 2 E(�) if and only if g 2 G and
s 2 S. We refer to S as the connection set for �. Let A = Aut(�). Observe that LG, the
left-regular representation of G, lies in A, so |G| divides |A|.
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Definition 1.1. The Cayley index c(�) of the Cayley graph � = Cay(G,S), is |A : LG|.
The Cayley index c(G) of the group G is minS✓G,S=S�1 c(Cay(G,S)); that is, the lowest
Cayley index of any Cayley graph on the group G.

Definition 1.2. A Cayley graph � = Cay(G,S) is a GRR (Graphical Regular Representa-
tion) for G if c(�) = 1.

Thus, groups that admit GRRs are precisely the groups whose Cayley index is 1. In
order to completely characterise these groups, we require another definition.

Definition 1.3. Let A be an abelian group of even order, and y an involution in A. Then the
generalised dicyclic group Dic(A, y) is hA, xi where x /2 A, x2 = y, and x

�1
ax = a

�1

for every a 2 A.

Notice that under this definition, the generalised dicyclic group Dic(A, y) will be abelian
if and only if A is an elementary abelian 2-group.

The study of GRRs involved many researchers and papers. Some of the most influential
work along the way appeared in [6, 7, 9]. Watkins [16] observed that there are two infinite
families of graphs that cannot admit GRRs: generalised dicyclic groups, and abelian groups
that are not elementary abelian 2-groups. Imrich [7] resolved the problem for abelian
groups by classifying the elementary abelian 2-groups, finding exactly three that admit
no GRR. Watkins in a series of papers, some with coauthor Nowitz [11, 12, 16, 17, 18],
discovered ten nonabelian groups that admit no GRRs. Hetzel [5] proved that aside from
the two infinite families noted by Watkins, and the thirteen small solvable groups (of order
at most 32) found by Imrich, Nowitz, and Watkins, every solvable group admits a GRR.
Godsil [3] showed that every non-solvable group admits a GRR.

In the case where a group fails to admit a GRR, a natural question to ask is: what is the
Cayley index of the group, and what is a Cayley graph on the group that has that Cayley
index? The following terminology was coined in [10].

Definition 1.4. Let G be a group with c(G) > 1, and let � = Cay(G,S) be a Cayley
graph on G with c(�) = c(G). Then we say that � is an MRR (Most Rigid Representation)
for G.

The bulk of this paper is divided into 4 sections. In Section 2, we describe the groups
that do not admit a GRR but do not lie in either of the infinite families of groups that
do not admit a GRR. For each of these groups, we find its Cayley index and an MRR. In
Section 3, we find the Cayley index of every abelian group, and find MRRs for those groups
whose Cayley index is greater than 2. In Section 4, we consider a subfamily of generalised
dicyclic groups (specifically, the hamiltonian 2-groups), and show that the smallest two
of these have Cayley index 16, while the rest have Cayley index 8. Finally, in Section 5,
we find the Cayley index for every generalised dicyclic group that was not included in
Section 4.

Much of the work that we summarise in this paper was done in [10], but the authors
of [10] left some gaps. Our paper fills all of these gaps, thus completing their work. Specifi-
cally, we fill the following gaps. We examine the Cayley indices of the groups that do not lie
in either of the infinite families; we give the Cayley indices for the four abelian groups for
which they did not specify it (although they stated that these had been found by computer);
we find the precise Cayley index for generalised dicyclic groups of order at most 96 (they
bounded almost all of these by 4, but most in fact have Cayley index 2); and we find the
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Cayley indices for all hamiltonian 2-groups (they bounded these by 16, but almost all have
Cayley index 8). Table 1 summarises this work, providing the Cayley index for every finite
group.

For a number of the small individual groups, we found MRRs using Sage [15] and its
GAP package [14]. The Cayley index of any of the graphs we present can be easily checked
via computer, using this or other appropriate software.

Throughout this paper,

Q8 = {±1,±i,±j,±k : ij = k = �ji, i
2 = j

2 = k
2 = �1}

is the usual representation of the quaternion group of order 8. We use D2n for n � 3 to rep-
resent the dihedral group of order 2n. Four of the exceptional groups listed in Theorem 2.1
we denote by Hi for i 2 {1, 2, 3, 4}; a precise representation of each of these groups is
given in Theorem 2.1.

To represent some of our MRRs, we use cartesian products. For two graphs �1 and �2,
the cartesian product of �1 with �2 is denoted by �1 ⇤�2. It is the graph whose vertices
are the elements of V (�1)⇥ V (�2), with (u1, v1) adjacent to (u2, v2) if and only if either
u1 = u2 and v1 is adjacent to v2 in �2, or v1 = v2 and u1 is adjacent to u2 in �1. We
say that a graph � on more than one vertex is prime with respect to the cartesian product
if � ⇠= �1 ⇤�2 implies that for some i 2 {1, 2}, �i

⇠= � and �2�i has just one vertex. It
is well-known that every graph has a unique prime factorisation as the cartesian product
of prime graphs. We say that two graphs are relatively prime with respect to the cartesian
product if they have no common factors in their prime factorisations. We sometimes simply
refer to the graphs as prime or relatively prime.

2 Exceptional groups

We begin by listing the 13 groups that do not admit a GRR but do not lie in either of the
infinite families that do not admit GRRs.

The following theorem is the end result of considerable work by a number of research-
ers. Imrich [7] completed the abelian case (correcting an earlier error by Sabidussi [13]
and Chao [2], who showed that no graph has a transitive abelian automorphism group, but
overlooked the case of elementary abelian 2-groups). The construction given in [7] also has
an error in the case of the elementary abelian 2-group of order 32; it is mentioned in [10]
that this was pointed out and corrected by Alspach, Hell, Hetzel, and Lim, and a GRR for
that group (due to Hetzel) appears in [10]. Watkins, alone and in joint work with Nowitz
[11, 12, 16, 17, 18] found the other ten exceptional groups and proved in [12] that any
nonabelian group whose order is coprime to 6 admits a GRR. Imrich [8] then showed that
every nonabelian group whose order is odd and at least 37 · 54 admits a GRR. Hetzel [5,
Satz 14.38] showed that the exceptions we have mentioned are the only solvable groups that
fail to have GRRs, and Godsil [3] completed the result by showing that every nonsolvable
group has a GRR. We therefore cite Godsil’s work for the final result, but attribute it to all
of the researchers who made major contributions.

Theorem 2.1 (Godsil, Hetzel, Imrich, Nowitz, and Watkins; see [3]). The following are

the only groups that are neither generalised dicyclic nor abelian of exponent greater than

2, yet admit no GRR:

• Z2
2, Z3

2, Z4
2;
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• D6, D8, D10 where these represent the dihedral groups of orders 6, 8, and 10 (re-

spectively);

• A4, the alternating group of degree 4;

• H1 := ha, b, c : a2 = b
2 = c

2 = 1, abc = bca = cabi;
• H2 := ha, b : a8 = b

2 = 1, bab = a
5i;

• H3 := ha, b, c : a3 = b
3 = c

2 = 1, ab = ba, (ac)2 = (bc)2 = 1i;
• H4 := ha, b, c : a3 = c

3 = 1, ac = ca, bc = cb, b
�1

ab = aci;
• Q8 ⇥ Z3, Q8 ⇥ Z4, where Q8 is the quaternion group of order 8.

The groups listed in the first bullet are abelian, and their Cayley indices are given in
Section 3.

All of the remaining groups have Cayley index 2. Their Cayley index must be at least 2
by Theorem 2.1, since they admit no GRR. This was shown explicitly in [16, Theorem 2]

Table 1: Cayley indices for all finite groups.

Group Cayley index See
Abelian groups

Z2,Zn
2 , n � 5 1 [7], 1.2 of [10]

Z3
2,Z4 ⇥ Z2 6 Lemma 2.7 of [10]

Z4
2 8 Table 3

Z2
4 4 Table 3

Z4 ⇥ Z2
2 8 Table 3

Z2
3 8 Lemma 2.4 of [10]

Z3
3 12 Table 3

all other abelian groups 2 Theorem 1 of [10]
Hamiltonian 2-groups

Q8 16 Lemma 2.6 of [10]
Q8 ⇥ Z2 16 Section 4

Q8 ⇥ Zn
2 , n � 2 8 Proposition 4.8

Other generalised dicyclic groups
Dic(Z6, 3) 4 Table 4
Dic(Z8, 4) 4 Table 4
Dic(Z10, 5) 4 Table 4

Dic(Z4 ⇥ Z2, (0, 1)) 4 Table 4
all other generalised dicyclic groups 2 Section 5, and Theorem 2 of [10]

Exceptional groups
D6, D8, D10 2 Section 2 of [10], or Table 2

A4 2 Table 2
Q8 ⇥ Z3, Q8 ⇥ Z4 2 Table 2
H1 of order 16 2 Table 2
H2 of order 16 2 Table 2
H3 of order 18 2 Table 2
H4 of order 27 2 Table 2

Every group not listed above 1 [3]
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for the dihedral groups in the second bullet. It was shown in [18, Proposition 3.7] for
A4. For the groups H1 and H3, it was shown in [18, Proposition 5.3 and Theorem 2]. The
group H2 was dealt with in [11, Theorem 2 or Proposition 3.1], and H4 in [12, Theorem 3].
Finally, Q8 ⇥ Z3 and Q8 ⇥ Z4 were addressed in [17, Theorem].

To show that the Cayley index of each is precisely 2, we present Table 2. For each
group, we give the connection set for a Cayley graph on that group that has Cayley index
2. The Cayley indices of these graphs can be verified by hand or by computer.

Table 2: MRRs for exceptional groups.

Group G S such that c(Cay(G,S)) = 2

D2n = ha, b : a2 = b
n = 1, aba = b

�1i, {a, ab}
n 2 {3, 4, 5}

A4 {(1 2 3)±1
, (1 2)(3 4)}

H1 = ha, b, c : a2 = b
2 = c

2 = 1, {a, b, c, (ab)±1}
abc = bca = cabi

H2 = ha, b : a8 = b
2 = 1, bab = a

5i {a±1
, a

±2
, b}

H3 = ha, b, c : a3 = b
3 = c

2 = 1, ab = ba, {a±1
, c, ac, bc}

(ac)2 = (bc)2 = ei
H4 = ha, b, c : a3 = c

3 = 1, ac = ca, bc = cb, {a±1
, b

±1
, (a�1

b)±1
, (bab�1)±1}

b
�1

ab = aci
Q8 ⇥ Z3 = hi, j, z : z3 = 1, iz = zi, jz = zji {±i, (iz)±1

, (jz)±1}
Q8 ⇥ Z4 = hi, j, z : z4 = 1, iz = zi, jz = zji {z±1

,±i,±j, (iz)±1
, (�kz)±1}

The MRRs listed in the first line of this table were also mentioned in [10].

3 Abelian groups

The Cayley index of every abelian group was determined in [10]. However, for a small
number of these they stated only that the Cayley index had been found by Hetzel on com-
puter, and cite a private communication. The known results on abelian groups are as fol-
lows.

Theorem 3.1 ([10, Theorem 1, Lemma 2.4, Lemma 2.7]). The only finite abelian groups

with a Cayley index greater than 2 are:

• Z3
2 and Z4 ⇥ Z2, for which the Cayley index is 6, with MRR K2 ⇤K2 ⇤K2 (the

cube);

• Z2
3, for which the Cayley index is 8, with MRR K3 ⇤K3;

• Z4
2, Z4 ⇥ Z2

2, and Z2
4; and

• Z3
3.

In the rest of this section, we list the Cayley index for each of the last four groups
together with an MRR for each group. The Cayley indices for these graphs and the fact
that these are the Cayley indices for these groups can be verified by computer.
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If A is an abelian group that we are presenting as being isomorphic to Zi1 ⇥ · · ·⇥Zik ,
then we let {z1, . . . , zk} be the canonical generating set for this group, so |zj | = ij . We
present the Cayley index and an MRR for each group in Table 3.

Table 3: MRRs for abelian groups not given in [10].

Group Cayley index Connection set for an MRR

Z4
2 8 {z1, z2, z3, z4, z1z2, z1z3, z2z4}

Z4 ⇥ Z2
2 8 {z±1

1 , z2, z3, (z1z2)±1
, (z1z3)±1}

Z2
4 4 {z±1

1 , z
±1
2 , z

2
1 , (z1z2)

±1}
Z3
3 12 {z±1

1 , z
±1
2 , z

±1
3 , (z1z2)±1

, (z1z3)±1
, (z2z3)±1}

It may seem odd that c(Z4
2) > c(Z3

2). However, Lemma 4.4 does not apply here,
because neither MRR for Z3

2 (K2 ⇤K2 ⇤K2 and its complement, K4 ⇤K2), is relatively
prime to K2, which is the unique connected MRR for Z2.

4 The groups Q8 ⇥ Zn
2

In this section we deal with a particular family of generalised dicyclic groups: groups of
the form Q8 ⇥ Zn

2 for some nonnegative integer n.

Definition 4.1. A hamiltonian group is a nonabelian group all of whose subgroups are
normal. A hamiltonian 2-group is a hamiltonian group whose order is a power of 2.

It is well-known (see, for example, [4, Theorem 12.5.4]) that the hamiltonian 2-groups
are precisely the groups of the form Q8 ⇥ Zn

2 for some nonnegative integer n that we are
considering in this section.

We begin with three important results from [10].

Lemma 4.2 ([10, Lemma 2.6]). The group Q8 has Cayley index 16, with C4 ⇤K2 as an

MRR.

Lemma 4.3 ([10, Proposition 2.9]). Every group other than Z2
2, Z3

2, Z4, Z4 ⇥ Z2, and Z2
3

admits a connected MRR that is prime with respect to the cartesian product.

Lemma 4.4 ([10, Lemma 2.8]). Let G1 and G2 be groups having connected MRRs that are

relatively prime with respect to the cartesian product. Then c(G1 ⇥G2)  c(G1)c(G2).
In fact, if �1 and �2 are connected MRRs for G1 and G2 (respectively) that are rel-

atively prime with respect to the cartesian product, then c(�1 ⇤�2) = c(G1)c(G2) and

�1 ⇤�2 is a Cayley graph on G1 ⇥G2.

The following observation is made in [10] and is implicit in their Theorem 2(b), which
states that c(Q8 ⇥ Zn

2 )  16 for every integer n � 0. It can be deduced from Lemmas 4.2,
4.3, and 4.4, using the fact that c(Z2) = 1.

Corollary 4.5. For every group G /2 {Z2
2,Z3

2,Z4,Z4 ⇥ Z2,Z2
3}, c(G⇥ Z2)  c(G).

The following result is key to providing a lower bound for the Cayley index of every
group Q8 ⇥ Zn

2 .



J. Morris and J. Tymburski: Most rigid representations and Cayley index 7

Proposition 4.6 ([1, Classification Theorem]). There are 8 permutations ' of the elements

of G = Q8 ⇥ Zn
2 that fix the identity, and have the property that for every g, h 2 G, '(gh)

is either '(g)h, or '(g)h�1
.

Corollary 4.7. The Cayley index of Q8 ⇥ Zn
2 is at least 8 for every integer n � 0.

Proof. Fix n, and let G = Q8 ⇥ Zn
2 . Let S be any inverse-closed subset of G \ {1G}, and

let � = Cay(G,S). Let ' be any of the 8 permutations given in Proposition 4.6. To prove
this result, it will be sufficient to show that ' is an automorphism of �.

We know that for any g 2 G, g is adjacent to gs if and only if s 2 S. We also know
that '(gs) is either '(g)s, or '(g)s�1. Since S is inverse-closed, each of these is adjacent
to '(g) if and only if s 2 S. Thus, ' is indeed an automorphism of �.

To complete this section, we note that C4 ⇤K2 ⇤K2 is an MRR for Q8 ⇥ Z2 with
Cayley index 16, verified by computer. However, for Q8 ⇥ Z2

2, the Cayley index is 8, with
MRR Cay(Q8⇥Z2

2, {±i,±j,±k,±iz1,±kz1z2, z1, z2}), where z1 and z2 are two distinct
central involutions that do not lie in Q8.

Thus, using Corollary 4.5 and Corollary 4.7 we are able to conclude the following.

Proposition 4.8. For every integer n � 2, the Cayley index of Q8 ⇥ Zn
2 is 8.

5 Other generalised dicyclic groups

Imrich and Watkins [10] showed that generalised dicyclic groups of order greater than 96
that are not of the form Q8 ⇥ Zn

2 have Cayley index 2. Many of the ideas from their proof
in fact apply to generalised dicyclic groups of smaller orders. We reproduce these key
ideas here, without their assumptions on order. We generally need to find two elements that
satisfy a number of conditions. We note that the condition a1 6= ya2 was not listed in [10]
but is required; for this reason we provide a full proof of Lemma 5.4.

Definition 5.1. Let Dic(A, y) be a generalised dicyclic group. We say that the 2-set
{a1, a2} for a1, a2 2 A is a suitable pair of elements of Dic(A, y) if for every {i, j} =
{1, 2} we have

(i) a1 6= a2, ya2;

(ii) a
2
i 6= 1, y;

(iii) ai 6= a
2
j , ya

2
j ; and

(iv) a1a2 6= 1, y.

Lemma 5.2. Let D = Dic(hzi, zn) (the dicyclic group of order 4n), where |z| = 2n > 10.

Then {z, z�2} is a suitable pair for D. If � = Cay(D, {z±1
, x

±1
, (xz)±1

, (xz�2)±1}),
where x

2 = z
n

, then hzi is invariant under Aut(�)1.

Proof. We have y = z
n. We verify the conditions for {z, z�2} to be a suitable pair. Since

n > 5, (i) and (ii) are satisfied; (iii) and (iv) are equally easy to check.
Let ' 2 Aut(�)1 be arbitrary. It is straightforward to verify that when n > 4, zn

is the unique vertex that has 6 common neighbours with 1, so '(zn) = z
n. In fact, this

shows that for any vertex v, vzn is uniquely determined as the vertex that has 6 common
neighbours with v. Since the neighbours of 1 can be partitioned into three pairs of this
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sort ({x, x�1 = xz
n}, {xz, xzn+1}, and {xz�2

, xz
n�2}) and two elements (z and z

�1)
whose match in this respect (zn+1, and z

n�1 respectively) is not a neighbour of 1, it must
be the case that {z, z�1} and {x, x�1

, xz, xz
n+1

, xz
�2

, xz
n�2} are fixed setwise by '.

Repeating this argument shows that '(zi) 2 hzi for every i. Thus, '(hzi) = hzi.

Lemma 5.3. Let A = hz1, z2i where |z1| = 2n � 6, |z2| = 2, and z1z2 = z2z1, so

A ⇠= Z2n ⇥ Z2. Then {z1, z�2
1 } is a suitable pair for D = Dic(A, x

2).
Also, if � = Cay(D, {z±1

1 , z2, x
±1

, (xz1)±1
, (xz�2

1 )±1) then A is invariant under

Aut(�)1.

Proof. Checking the conditions for {z1, z�2
1 } to be a suitable pair is straightforward.

Since z2 2 S is central in D and x
�1 = xz2, the following pairs of neighbours of 1 are

adjacent in �: {x, x�1}; {xz1, x�1
z1}; {xz�2

1 , x
�1

z
�2
1 }. However, z1, z�1

1 and z2 have
no neighbours in S. Thus, we can distinguish the neighbours of 1 that lie in A from the
neighbours of 1 that lie in xA. Repeating this argument shows that every element of A is
invariant under Aut(�)1.

Lemma 5.4. Let � = Cay(A,S) be an MRR of the abelian group A of Cayley index 2.

Let D = Dic(A, y) be a generalised dicyclic group with suitable pair {a1, a2}. Let

� = Cay(D,S [ {x, x�1
, xa1, x

�1
a1, xa2, x

�1
a2})

(where x is as in Definition 1.3) and suppose that for every ' 2 Aut(�)1, we have '(A) =
A. If ' is not the identity automorphism, then '(a) = a, and '(xa) = (xa)�1

for every

a 2 A.

Proof. Since '(A) = A and the induced subgraph on A is � which has Cayley index 2,
we know that we either have '(a) = a for every a 2 A, or '(a) = a

�1 for every a 2 A.
(This is always the case in a Cayley graph of Cayley index 2 on an abelian group.)

Similarly, since '(A) = A we have '(xA) = xA. Observe that the induced subgraph
on xA is isomorphic to �, which has Cayley index 2. This means that there are exactly two
graph automorphisms that fix xA and take x to any given vertex xa where a 2 A. Clearly
one of these automorphisms is given by left-multiplication by a

�1, and therefore maps each
vertex of the form xa

0 to the vertex a
�1

xa
0 = xaa

0. The other graph automorphism that
fixes x and xA (aside from the identity) is the automorphism that maps every vertex xa

0 to
the vertex x(a0)�1. This implies that the other automorphism that maps x to xa must take
each vertex of the form xa

0 to the vertex a
�1

x(a0)�1 = xa(a0)�1.
In the remainder of this proof, we use NX(v) to denote the set of neighbours of the

vertex v that lie in the subset X of the vertices of �. First we will show that '(x) 2
{x, x�1}.

We are assuming that '(A) = A, and need to show that '(x) 62 {xa1, x�1
a1, xa2,

x
�1

a2}. Suppose that '(x) /2 {x, x�1}. By symmetry, without loss of generality we may
assume that '(x) = xa1.

Since '(x) = xa1 and '(xA) = xA, as noted above we must have either '(xa) =
xaa1 for every a 2 A, or '(xa) = xa

�1
a1 for every a 2 A.

Suppose the first of these possibilities holds, so '(xa1) = xa
2
1, which must therefore

be a neighbour of 1 in xA, and hence an element of

NxA(1) = {x, x�1
, xa1, x

�1
a1, xa2, x

�1
a2}.
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Each of these possibilities contradicts one of the properties of being a suitable pair: any of
the first four would contradict (ii); either of the last two contradict (iii).

If on the other hand the second possibility holds, then '(xa2) = xa
�1
2 a1 2 NxA(1).

Again, each possible equality contradicts one of the properties of being a suitable pair:
either of the first two contradict (i); the third or fourth each contradicts (ii); and either of
the last two contradict (iii). We therefore conclude that '(x) 2 {x, x�1}, as claimed.

Next we show that '(a) = a for every a 2 A.
Observe that

NA(x
�1) = NA(x) = {1, y, a1, ya1, a2, ya2}.

Thus, since '(x) 2 {x, x�1}, we have '(NA(x)) = NA(x). If '(a) = a
�1 for every

a 2 A, then this implies that a�1
1 2 NA(x), leading to a contradiction to the definition of a

suitable pair, as above. (If a�1
1 is any of the first four elements, this contradicts (ii); if it is

either of the last two, this contradicts (iv).) Thus, we must have '(a) = a for every a 2 A.
Next we show that if '(x) = x then ' = 1.
Again as noted above, we must either have '(xa) = xa

�1 for every a 2 A, or '(xa) =
xa for every a 2 A. In the latter case, ' = 1 and we are done. In the former case, we
must have '(NA(xa

�1
1 )) = NA(xa1). Observe that a1 = xa

�1
1 x

�1 2 NA(xa
�1
1 ), so this

would imply that

a1 = '(a1) 2 NA(xa1) = {a�1
1 , ya

�1
1 , 1, y, a�1

1 a2, ya
�1
1 a2}.

Similar to the arguments above, each of these possibilities contradicts some property of
suitable pairs. If a1 were any of the first four elements of NA(xa1) this would contradict
(i); if it were either of the last two, this would contradict (iii).

Finally, we show that if '(x) = x
�1 then '(xa) = (xa)�1 for every a 2 A.

Again as noted above, we must either have '(xa) = x
�1

a = (xa)�1 for every a 2 A,
or '(xa) = x

�1
a
�1 for every a 2 A. In the former case we are done. In the latter case, we

must have '(NA(x�1
a
�1
1 )) = NA(xa1). Observe that a1 = x

�1
a
�1
1 x 2 NA(x�1

a
�1
1 ),

so this would imply that a1 = '(a1) 2 NA(xa1), yielding the same contradiction as in the
previous paragraph.

Proposition 5.5. Let A1 = hz1i be a cyclic group of order 2n � 6, and A2 = hz1, z2i
with |z2| = 2 and z1z2 = z2z1. Let S1 = {z1, z�1

1 } and S2 = {z1, z�1
1 , z2}, and let

D1 = Dic(A1, z
n
1 ), and D2 = Dic(A2, z2). Then

�i = Cay(Di, Si [ {x, x�1
, xz1, xz

n+1
1 , xz

�2
1 , xz

n�2
1 })

for i 2 {1, 2} is connected and has Cayley index 2 when n � 6, and �2 is connected and

has Cayley index 2 when n � 3.

Proof. It is easy to see that S1 is the connection set for a Cayley graph on A1 with Cayley
index 2. It is slightly less obvious that S2 is the connection set for a Cayley graph on A2

with Cayley index 2, but becomes clear upon noting that each z1-edge lies in a unique 4-
cycle, while each z2-edge lies in two 4-cycles. Fix i 2 {1, 2}, and if i = 1, ensure that
n � 5.

By Lemma 5.2 or Lemma 5.3, we know that {z1, z�2
1 } is a suitable pair for Di, and that

for any ' 2 Aut(�i)1, '(Ai) = Ai. By Lemma 5.4 with S = Si and this suitable pair, we
see that there are only two possibilities for ': ' = 1, or '(a) = a and '(xa) = (xa)�1

for every a 2 A. Thus, � has Cayley index 2.
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Proposition 5.6. Let A be an abelian group of even order that contains an involution y,

and let D = Dic(A, y). Suppose that D has a connected MRR with Cayley index 2. Let

A
0 = A⇥ Z2. Then D

0 = Dic(A0
, y) has Cayley index 2.

Proof. Observe that D0 ⇠= D ⇥ Z2. The result is now immediate from Corollary 4.5.

As an immediate consequence of Proposition 5.5 and Proposition 5.6, we obtain the
following.

Corollary 5.7. The following generalised dicyclic groups have Cayley index 2:

• Dic(A⇥ Zk
2 , z

n
1 ) where A = hz1i ⇠= Z2n, n � 6, and k � 0; and

• Dic(A ⇥ Zk
2 , z2) where A = hz1, z2i ⇠= Z2n ⇥ Z2, |z1| = 2n, |z2| = 2, n � 3, and

k � 0.

This leads us to the following theorem.

Theorem 5.8. Every generalised dicyclic group that is neither abelian nor a hamiltonian

2-group has Cayley index 2, with the following four exceptions, each of which has Cayley

index 4: Dic(Z6, 3), Dic(Z8, 4), Dic(Z10, 5), and Dic(Z4 ⇥ Z2, (0, 1)).

Proof. All generalised dicyclic groups of order greater than 96 have Cayley index of 2
(see [10]). To deal with the remaining cases, we begin by considering all abelian groups
of even order at most 48. For each group, we choose one representative for each automor-
phism class of elements of order 2 to be the distinguished element y = x

2.
By Corollary 5.7, the result holds for every dicyclic group of order at least 24; this

deals with every cyclic group of even order at least 12, all of which have a unique element
of order 2. Since Z2 produces an abelian dicyclic group and Z4 produces Q8 which is a
hamiltonian 2-group, we need only consider the dicyclic groups over the groups Z6, Z8,
and Z10.

We note that if n is odd, then Z2n⇥Z2 has only one automorphism class of elements of
order 2, so that Corollary 5.7 provides an MRR for the unique generalised dicyclic group
over any of these groups when n � 3, and in fact produces two MRRs when n > 6. Also,
if n is even, Z2n ⇥ Z2 has two automorphism classes of elements of order 2 (the element
(n, 1) lies in the same class as (0, 1)). Thus Corollary 5.7 produces an MRR for each of the
two possible generalised dicyclic groups over these abelian groups whenever n � 6, and
an MRR for one of them when n � 3. When n = 1 there is a unique generalised dicyclic
group which is actually abelian; and when n = 2, one of the two generalised dicyclic
groups is the hamiltonian 2-group Q8 ⇥ Z2. Thus we need only consider the two groups
Dic(Z4 ⇥ Z2, (0, 1)) and Dic(Z8 ⇥ Z2, (4, 0)).

The generalised dicyclic group over Z3
2 is abelian, and the groups

Dic(Z4 ⇥ Z2
2, (2, 0, 0)) ⇠= Q8 ⇥ Z2

2 and Dic(Z4 ⇥ Z3
2, (2, 0, 0, 0))

are hamiltonian 2-groups, so these need not be considered.
Finally, if a group has the form D ⇥ Z2 for some smaller generalised dicyclic group D

with c(D) = 2, then Corollary 4.5 gives c(D ⇥ Z2) = 2, so we do not have to consider
these groups either. This eliminates all generalised dicyclic groups over Z6⇥Z2

2, Z10⇥Z2
2,

and Z12 ⇥ Z2
2, as well as Dic(Z8 ⇥ Z2

2, (0, 1, 0)).
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With all of this in mind, there are 18 generalised dicyclic groups that remain to be
considered. We conclude this section and the paper with Table 4, showing the Cayley
index and the connection set for an MRR for each of these generalised dicyclic groups.
For four of these groups that have the form D ⇥ Z2 for some smaller generalised dicyclic
group D, we use Corollary 4.5, but only after showing that c(D) = 2 in a previous line of
the table. For these, instead of explicitly giving the connection set for an MRR, we present
the group as D ⇥ Z2. This table completes the proof, and its results are straightforward to
verify by computer.

Table 4: MRRs for generalised dicyclic groups.

Cayley
Group index Connection set for an MRR

Dic(Z6, 3) 4 {z±1
1 , x

±1}
Dic(Z8, 4) 4 {z±1

1 , x
±1}

Dic(Z10, 5) 4 {z±1
1 , x

±1}
Dic(Z4 ⇥ Z2, (0, 1)) 4 {z±1

1 , x
±1

, (z1x)±1}
Dic(Z8 ⇥ Z2, (4, 0)) 2 {z±1

1 , z2, x
±1

, (z1x)±1
, (z2x)±1}

Dic(Z4 ⇥ Z4, (2, 0)) 2 {z±1
1 , z

±1
2 , (z1z2)±1

, x
±1

, (z1x)±1}
Dic(Z4 ⇥ Z2

2, (0, 1, 0)) 2 {z±1
1 , z3, x

±1
, (z1x)±1

, (z3x)±1}
Dic(Z6 ⇥ Z3, (3, 0)) 2 {z±1

1 , z
±1
2 , x

±1
, (z2x)±1

, (z1z2x)±1}
Dic(Z8 ⇥ Z2

2, (4, 0, 0)) 2 D ⇠= Dic(Z8 ⇥ Z2, (4, 0))⇥ Z2

Dic(Z8 ⇥ Z4, (4, 0)) 2 {z±1
1 , z

±1
2 , x

±1
, (z61z

�1
2 x)±1

, (z51z2x)
±1}

Dic(Z8 ⇥ Z4, (0, 2)) 2 {z±1
1 , z

±1
2 , x

±1
, (z51x)

±1
, (z31z2x)

±1}
Dic(Z2

4 ⇥ Z2, (2, 0, 0)) 2 D ⇠= Dic(Z4 ⇥ Z4, (2, 0))⇥ Z2

Dic(Z2
4 ⇥ Z2, (0, 0, 1)) 2 {z±1

1 , z
±1
2 , x

±1
, (z32x)

±1
, (z31z

2
2x)

±1}
Dic(Z4 ⇥ Z3

2, (0, 1, 0, 0)) 2 D ⇠= Dic(Z4 ⇥ Z2
2, (0, 1, 0))⇥ Z2

Dic(Z12 ⇥ Z3, (6, 0)) 2 {z±1
1 , z

±1
2 , x

±1
, (z71z2x)

±1
, (z31z2x)

±1}
Dic(Z6 ⇥ Z6, (3, 0)) 2 D ⇠= Dic(Z6 ⇥ Z3, (3, 0))⇥ Z2

Dic(Z12 ⇥ Z4, (6, 0)) 2 {z±1
1 , z

±1
2 , x

±1
, (z41z2x)

±1
, (z91z

3
2x)

±1}
Dic(Z12 ⇥ Z4, (0, 2)) 2 {z±1

1 , (z31z2)
±1

, x
±1

, (z1x)±1
, (z1z2x)±1}
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[5] D. Hetzel, Über reguläre graphische Darstellung von auflösbaren Gruppen, Diploma thesis,
Technische Universität Berlin, Berlin, 1976.

[6] W. Imrich, Graphen mit transitiver Automorphismengruppe, Monatsh. Math. 73 (1969), 341–
347, doi:10.1007/bf01298984.

[7] W. Imrich, Graphs with transitive Abelian automorphism group, in: P. Erdős and A. Rényi
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1 Introduction

The interconnection network is one of the center pieces of a parallel architecture. The
underlying topology of such a parallel machine is a graph, usually referred to as an in-
terconnection network. Depending on the applications, the graph may be undirected or
directed. A Hamiltonian cycle in a graph is a cycle that visits every vertex of the graph
(exactly once). (If the underlying graph is directed, then a cycle means a directed cycle.)
A graph is Hamiltonian if it has a Hamiltonian cycle. A Hamiltonian path from u to v in a
graph is a path from u to v that visits every vertex of the graph. (Again, if the underlying
graph is directed, then a path means a directed path.) A graph is Hamiltonian connected
if there exists a Hamiltonian path from u to v for every distinct ordered pair of vertices u
and v. Hamiltonicity is an important issue in the study of interconnection networks and
there are many papers in this area. Paper [8] contains many references in this area and we
refer the readers to [8] for an extensive list of references on Hamiltonicity related problems
in interconnection networks. (A small partial list of such papers is [3, 4, 5, 7, 10, 13, 14].)
However, most research has been done in the undirected setting as the analysis is, in gen-
eral, more complicated in the directed case. A directed graph G is k-regular if the in-degree
and out-degree of every vertex is k. So a connected 1-regular directed graph is a directed
cycle. (We will simply refer to directed cycles as cycles if it is clear from the context.)

The Cartesian product of two directed graphs G1 and G2 is the directed graph
G1 ⇤G2 = (V,E) where V = V1 ⇥ V2 and ((u1, v1), (u2, v2)) is in E if either

(1) u1 = u2 and (v1, v2) 2 E2, or
(2) v1 = v2 and (u1, u2) 2 E1.

The Cartesian product of undirected graphs can be defined similarly. (One can check that
given three directed graphs G1, G2 and G3, (G1 ⇤G2)⇤G3 is isomorphic to
G1 ⇤ (G2 ⇤G3). Thus the Cartesian product of finitely many directed graphs can be nat-
urally defined.) Cartesian product is an important topic in the study of interconnection
networks. For example, the classical hypercube is K

n
2 , that is, a Cartesian product of

n complete graphs on two vertices. Although the Cartesian product of two Hamiltonian
graphs is always Hamiltonian, this is false for directed graphs. Trotter and Erdős [12] gave
a necessary and sufficient condition for the Cartesian product of two Hamiltonian directed
cycles to be Hamiltonian. To be precise, let gcd(m,n) denote the greatest common divisor
of two positive integers m and n. Then the Cartesian product of two directed cycles Cm

and Cn is Hamiltonian if and only if gcd(m,n) � 2 and there exists positive integers d1
and d2 such that gcd(m,n) = d1 + d2, gcd(m, d1) = 1, and gcd(n, d2) = 1. So C2 ⇤C3

is not Hamiltonian since gcd(2, 3) = 1 < 2.
Vertices in an interconnection network represent processors and edges represent links

between processors. Since processors and links may fail, it is meaningful to study such
faulty networks. A graph G = (V,E) is k-Hamiltonian if G� F is Hamiltonian for every
F ✓ V [ E and |F |  k. Similarly, a graph G = (V,E) is k-Hamiltonian-connected
if G � F is Hamiltonian-connected for every F ✓ V [ E and |F |  k. Here F is the
set of faults that represent failed processors (vertices) and failed links (edges). We note
that if G = (V,E) is k-Hamiltonian-connected, then G is k-Hamiltonian whenever |V | >
k + 2. For undirected graphs, many related results on k-Hamiltonicity and k-Hamiltonian
connectedness with respect to the Cartesian product are known. See, for example, [1, 6, 11].

We have already mentioned the interesting result given in [12]. It is even more inter-
esting if one considers the Cartesian product of three directed cycles. In particular, one can
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check by brute force that C2 ⇤C3 ⇤C4 is a 3-regular, 2-Hamiltonian and 1-Hamiltonian-
connected directed graph. In fact, C2 ⇤C3 ⇤C5, C2 ⇤C3 ⇤C6, C2 ⇤C4 ⇤C5 and
C2 ⇤C5 ⇤C5 are also 3-regular, 2-Hamiltonian and 1-Hamiltonian-connected directed
graphs. Results similar to the one given in [12] appeared in [2, 9]. This gives an indication
that Hamiltonicity problems for directed graphs are more difficult than the undirected ver-
sion. In addition, it is proved in [2] that every product of more than two directed cycles is
Hamiltonian.

The ultimate goal is to obtain a result on k-Hamiltonicity and k-Hamiltonian connect-
edness with respect to the Cartesian product of directed graphs. Given the above exam-
ple, we believe that this problem is difficult. Thus we study directed graphs of the form
G⇤Cn. We want to show that if G has “strong” Hamiltonicity property, then so does
G⇤Cn. In fact, we will generalize the concept of Cartesian product by considering the
following. Let G be a set of directed graphs, each with the same fixed number of ver-
tices. We say that G has a certain property if every directed graph in G has this prop-
erty. Now we take n graphs G0, G1, . . . , Gn�1 from G with repetitions allowed. Let
fi : V (Gi) ! V (Gi+1), for i = 0, 1, . . . , n � 1, be bijections where addition is taken
modulo n. We construct the directed graph H = (V,E) by letting V = [n�1

i=0 V (Gi)
and E =

�
[n�1
i=0 E(Gi)

�
[
�
[n�1
i=0 {(u, fi(u)) : u 2 V (Gi)}

�
. We call H an n-G-directed

graph. So G⇤Cn is an n-{G}-directed graph. For notational simplicity, we denote
ECi = {(u, fi(u)) : u 2 V (Gi)} and we let CGij be the subgraph of H induced by
[j
r=iV (Gr) (modulo n). Given (u, v) 2 ECi, we may refer to v as fi(u) and u = f

�1
i (v).

For the case G⇤Cn, we may simply refer to fi as f . Whenever we refer to a range [i, j],
it is considered modulo n.

In this paper, we consider deleting vertices and arcs. As mentioned before, these deleted
elements correspond to failed processors and links in an interconnection network, and we
refer them as faults. Let G be an r-regular directed graph. Clearly the best one can hope
for is for G to be (r� 1)-Hamiltonian and (r� 2)-Hamiltonian connected. As pointed out
earlier, there exist directed graphs that achieve such optimal properties when r = 3. In this
paper, we show that if G has such optimal properties, then so does G⇤Cn. In fact, our
result covers the more general n-G-directed graph. At first glance, one may wonder whether
this is consistent with the necessary and sufficient condition given by Trotter and Erdős for
Cn ⇤Cm to be Hamiltonian. After all, Cm is 1-regular and Hamiltonian but Cm ⇤Cn

may not be Hamiltonian. One may argue that in this case, the condition “�1”-Hamiltonian
connected is meaningless. As we shall see, our main result requires the regularity of G to
be at least 3.

2 The main result

In this section, we present our main result. We want to show that if G has good Hamiltonian
properties, then so does an n-G-directed graph. We start with the following lemma.

Lemma 2.1. Let k � 2 and N � k + 5. Let G be a class of (k + 1)-regular and (k � 1)-
Hamiltonian-connected graphs on N vertices. Let H be an n-G-directed graph obtained
from G0, G1, . . . , Gn�1 in G with the corresponding bijections f0, f1, . . . , fn�1. Let [i, j]
be a range. Let Fr ✓ V (Gr) [ E(Gr) for every r in the range [i, j]. Let Fr,r+1 ✓ ECr.
Let s and t be vertices in Gi � Fi and Gj � Fj , respectively. Suppose

1. |Fr|  k � 1 for every r in the range [i, j] and
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2. |Fr|+ |Fr+1|+ |Fr,r+1|  k + 2 for every r in the range [i, j � 1].

Then there is a Hamiltonian path from s to t in CGi,j � ([j
r=iFr)� ([j�1

r=iFr,r+1).

Proof. If i = j, then there is nothing to prove as Gi is (k�1)-Hamiltonian-connected. For
notational simplicity, we may assume that i = 1. We consider two cases.

Case 1: j = 2. We want to find an arc (u1, v2) 2 EC1 � F1,2 where u1 2 V (G1) �
(F1 [ {s}) and v2 2 V (G2) � (F2 [ {f1(s)}) and (u1, v2) 6= (f�1

1 (t), t). Such an arc
exists if

N > |F1|+ |F2|+ |F1,2|+ |{(s, f1(s))}|+ |{(f�1
1 (t), t)}|.

But |F1| + |F2| + |F1,2|  k + 2. Thus we are done as N > k + 2 + 2 = k + 4. We
now obtain a desired Hamiltonian path by using a Hamiltonian path from s to u1, the arc
(u1, v2) and a Hamiltonian path from v2 to t.

Case 2: j � 3. We first find an arc (u1, v2) 2 EC1 �F1,2 where u1 2 V (G1)� (F1 [
{s}) and v2 2 V (G2)� (F2 [ {f1(s)}). Such an arc exists if

N > |F1|+ |F2|+ |F1,2|+ |{(s, f1(s)}|.

But |F1|+ |F2|+ |F1,2|  k + 2. Thus we are done as N > k + 2 + 1 = k + 3.
Similarly, we can obtain an arc (u2, v3) 2 EC2 � F2,3 where u2 6= v2, and so on, via

an inductive argument, in obtaining (ui, vi+1)’s, until we obtain an arc

(uj�2, vj�1) 2 ECj�2 � Fj�2,j�1

where uj�2 2 V (Gj�2)� (Fj�2 [ {vj�2}). Now, we need to find an arc

(uj�1, vj) 2 ECj�1 � Fj�1,j

where uj�1 2 V (Gj�1) � (Fj�1 [ {vj�1}) and vj 2 V (Gj) � (Fj [ {t}) which can be
guaranteed since N > |Fj�1|+ |Fj |+ |Fj�1,j |+ 2 (as |Fj�1|+ |Fj |+ |Fj�1,j |  k + 2
and N � k+5). Now since Gr is (k� 1)-Hamiltonian-connected, we have a Hamiltonian
path from vr to ur in Gr for every r in [i, j] with v1 = s and uj = t. These paths together
with the arcs (ur, vr+1)’s give a desired Hamiltonian path.

We remark that if we replace (2) by |Fr|+ |Fr+1|+ |Fr,r+1|  k+1 for every r in the
range [i, j � 1] in Lemma 2.1, then the assumption that N � k + 5 can be replaced with
the weaker assumption that N � k + 4.

Theorem 2.2. Let k � 2 and n � 3. Let G be a class of (k + 1)-regular, k-Hamiltonian
and (k � 1)-Hamiltonian connected graphs on N vertices. Let H be an n-G-directed
graph. Then H is (k + 2)-regular. Moreover H is (k + 1)-Hamiltonian if N � k + 4 and
k-Hamiltonian connected if N � k + 5 and k � 3.

Proof. We first prove that H is (k + 1)-Hamiltonian. Let F be a set of faults with |F | 
k + 1. We let Fi be the set of faults in Gi. We consider two cases.

Case 1: |Fi| = k+1 for some i. Without loss of generality, we may assume that |F0| =
k+1. Let x 2 F0 and define F 0

0 = F0 � {x}. By assumption, there is a Hamiltonian cycle
C

0
0 in G0�F

0
0. Regardless of whether x is a vertex or an arc, C 0

0�{x} is a Hamiltonian path
P

0
0 from u to v for some u and v. Now let y = f0(v) and z = f

�1
n�1(u). By Lemma 2.1,

there is a Hamiltonian path from y to z in the CG1,n�1 � ([n�1
r=1Fr) = CG1,n�1. (Note
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that equality holds as Fr = ; for r 2 {1, 2, . . . , n � 1}.) This together with P
0
0 gives a

Hamiltonian cycle in H � F .
Case 2: |Fi|  k for every i. We first note that 2k > k + 1 as k � 2. Thus there is at

most one i with |Fi| = k. Therefore we may assume that |F0| is the largest and |Fi|  k�1
for i 6= 0. Now, by assumption, there is a Hamiltonian cycle C0 in G0 � F0. We want to
find an arc (v, u) in C0 such that

(v, f0(v)), (f
�1
n�1(u), u), f0(v), f

�1
n�1(u) 62 F.

Here |Fr|+ |Fr+1|+ |Fr,r+1|  k+ 1 for r 2 {0, 1, 2, . . . , n� 2} as |F |  k+ 1. So we
only require N � k + 4 from the remark after Lemma 2.1. Now C0 has at least N � |F0|
arcs. Since N � |F0| > |F |� |F0|, such (v, u) exists. Now the argument in Case 1 applies,
and we are done.

This completes the proof for H being (k + 1)-Hamiltonian. The case for H being k-
Hamiltonian connected is much more difficult. We assume N � k + 5. (We will see later
why k+5 is needed.) Let F be a set of faults with |F |  k and we define the Fi’s as before.
Let s and t be two fault-free vertices and our goal is to construct a Hamiltonian path from
s to t in H � F . We consider two main cases. (Unfortunately, subcases are needed here.)

Case 1: |Fi| = k for some i. Without loss of generality, we may assume that |F0| = k.
So all the faults are in F0. We have to consider subcases depending on the locations of s
and t.

Subcase 1.1: s and t are in G0 � F0. Let x 2 F0 and define F
0
0 = F0 � {x}. By

assumption, there is a Hamiltonian path P
0
0 from s to t in G0 � F

0
0. Regardless of whether

x is a vertex or an arc, P 0
0�{x} contains the following two disjoint paths that span G0�F0:

Q0 from s to u and Q
0
0 from v to t for some u and v. (It is possible that s = u or

v = t.) Moreover, Q0 and Q
0
0 cover all the vertices in G0 � F0. Now let y = f0(u)

and z = f
�1
n�1(v). By Lemma 2.1, there is a Hamiltonian path from y to z in CG1,n�1 �

([n�1
r=1Fr) = CG1,n�1. This, together with the edges (u, y) and (z, v), Q0 and Q

0
0, gives a

Hamiltonian path from s to t in H � F .
Subcase 1.2: s is in G0�F0 and t is in Gi�Fi = Gi where i 6= 0. If i = n�1, then it

is straightforward as G0 � F0 is a Hamiltonian. (Since G0 � F0 is Hamiltonian, there is a
Hamiltonian path Q0 from s to y in G0 � F0 for some y. Now apply Lemma 2.1 to obtain
a Hamiltonian path from f0(y) to t in CG1,n�1 � ([n�1

r=1Fr) = CG1,n�1. This, together
with the edge (y, f0(y)) and Q0, gives a Hamiltonian path from s to t in H �F .) Thus we
may assume that i 6= n � 1. By assumption, G0 � F0 has a Hamiltonian cycle C0. Since
N � k + 5, there exists a vertex u0 on C0 such that (u0, s) is not an arc in C0 and ui 6= t

where u1 = f0(u0), u2 = f1(u1), . . . , ui = fi�1(ui�1). (It is possible that u0 = s.) Now
C0 contains the following two disjoint paths that span G0 � F0: Q0 from s to u0 and Q

0
0

from v to x for some v and x as determined by C0 and Q0. (It is possible that v = x.) We
note that since (u0, s) is not an arc, Q0

0 is not empty. Now, apply Lemma 2.1 to obtain a
Hamiltonian path P1 from fi(ui) to f

�1
n�1(v) in CGi+1,n�1 � ([n�1

r=i+1Fr) = CGi+1,n�1.
We apply Lemma 2.1 again, this time to obtain a Hamiltonian path P2 from f0(x) to t

in CG1,i � ([i
r=1(Fr [ {ur})) = CG1,i � ([i

r=1{ur}). For the moment, assume that
f0(x) 6= t. Then

Q0, (u0, u1, . . . , ui, fi(ui)), P1, (f
�1
n�1(v), v), Q

0
0, (x, f0(x)), P2

is a desired Hamiltonian path from s to t in H � F . (See Figure 1.)
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i
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Figure 1: The Hamiltonian path of Subcase 1.2.
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The remaining possibility is f0(x) = t. Then i = 1. This case is actually simpler
as we can obtain a desired Hamiltonian path by using Q0, a Hamiltonian path from u1 to
f
�1
n�1(v) in CG1,n�1 � {t} (via Lemma 2.1), the edge (f�1

n�1(v), v), the path Q
0
0, and the

edge (x, t).
Subcase 1.3: t is in G0 � F0 and s is in Gi � Fi where i 6= 0. This is similar to Sub-

case 1.2 by observing instead of going from G0 to Gi via G1, G2, . . . , Gi�1 to obtain a di-
rected path from s to t, we can “trace backward” from to t to s via Gn�1, Gn�2, . . . , Gi+1.
To be precise, we let GR be the directed graph obtained from G � F by reversing the di-
rection on every arc. Then a directed path from s to t in G � F can be obtained from a
directed path from t to s in G

R, whose existence is proved in Subcase 1.2.
Subcase 1.4: s and t are in Gi�Fi where i 6= 0. We have to consider several scenarios.

We first assume that i = n � 1. By assumption, there is a Hamiltonian path P from s to
t in Gn�1 � Fn�1 = Gn�1. Choose any (u, v) on P such that fn�1(u) 62 F0 = F .
(Again such u exists as N � k + 5. Henceforth, we will not explicitly mention this when
choosing an appropriate vertex.) Now P contains the following two disjoint paths that span
Gn�1 � Fn�1 = Gn�1: Q from s to u and Q

0 from v to t. (It is possible that s = u or
v = t.) By assumption, there is a Hamiltonian cycle in G0�F0, which implies that there is
a Hamiltonian path P from fn�1(u) to w in G0�F0 for some w. Now apply Lemma 2.1 to
obtain a Hamiltonian path R from f0(w) to f

�1
n�2(v) in CG1,n�2�([n�2

r=1Fr) = CG1,n�2.
Now

Q, (u, fn�1(u)), P, (w, f0(w)), R, (f�1
n�2(v), v), Q

0

is a desired Hamiltonian path from s to t in H � F .
We now assume i = 1. By assumption, there is a Hamiltonian cycle in G0 �F0, which

implies that there is a Hamiltonian path P from u to v in G0 � F0 for some u and v. We
may choose v such that f0(v) 62 {s, t}. By assumption, there is a Hamiltonian path Q from
f0(v) to t in G1 � (F1 [ {s}) = G1 � {s}. Now by Lemma 2.1, there is a Hamiltonian
path R from f1(s) to f

�1
n�1(u) in CG2,n�1 � ([n�1

r=2Fr) = CG2,n�1. Now

(s, f1(s)), R, (f�1
n�1(u), u), P, (v, f0(v)), Q

is a desired Hamiltonian path from s to t in H � F .
We may now assume that 2  i  n� 2. By assumption, there is a Hamiltonian cycle

in G0 � F0, which implies that there is a Hamiltonian path P0 from u to v in G0 � F0 for
some u and v. By assumption, there is a Hamiltonian path Pi from s to t in Gi �Fi = Gi.
Pick any (y, z) on Pi such that fi(y) 6= f

�1
n�1(u) and f

�1
i�1(z) 6= f0(v). Now Pi contains

two disjoint paths that span Gi � Fi = Gi: Qi from s to y and Q
0
i from z to t. Apply

Lemma 2.1 to get a Hamiltonian path R from f0(v) to f
�1
i�1(z) in CG1,i�1 � ([i�1

r=1Fr) =

CG1,i�1. Apply Lemma 2.1 to get a Hamiltonian path R
0 from fi(y) to f

�1
n�1(u) in

CGi+1,n�1 � ([n�1
r=i+1Fr) = CGi+1,n�1. Now

Qi, (y, fi(y)), R
0
, (f�1

n�1(u), u), P0, (v, f0(v)), R, (f�1
i�1(z), z), Q

0
i

is a desired Hamiltonian path from s to t in H � F . (See Figure 2.)
Subcase 1.5: s is in Gi�Fi and t is in Gj �Fj where 1  i < j  n� 1. By assump-

tion, there is a Hamiltonian cycle in G0 � F0, which implies that there is a Hamiltonian
path P0 from u to v in G0 � F0 for some u and v. We first assume that i 6= 1. We may
assume that f0(v) 6= s. By Lemma 2.1, we obtain a Hamiltonian path P

0 from f0(v) to w



8 Art Discrete Appl. Math. 1 (2018) #P1.06

R
R‘

u

vf -1 (u)n-1
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Figure 2: The Hamiltonian path of Subcase 1.4.
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in CG1,i�1 for some w in Gi�1 � Fi�1 = Gi�1 to be determined. By assumption, there
is a Hamiltonian path Pi from s to y in Gi � Fi = Gi for some y such that y 6= s and
fi(y) 6= t. Let choose (x, z) on Pi such that

fj�1(· · · (fi+1(fi(x))) 6= t and f
�1
i�1(z) 6= f0(v).

(If n � 1 = j + 1, we further require that fj(fj�1(· · · (fi+1(fi(x)))) 6= f
�1
n�1(u).) Now

we choose w = f
�1
i�1(z). Now let A = (x, fi(x), . . . , fj�1(· · · (fi+1(fi(x)))). Let y0 =

fi(y) if j = i + 1 and y
0 be any vertex in Gj � {t, fj�1(· · · (fi+1(fi(x)))} otherwise.

(If j = i + 2, we further require fi(y) 6= f
�1
j�1(y

0).) For notational convenience, let
x
0 = fj�1(· · · (fi+1(fi(x))). Let A0 be (y, y0) if j = i + 1 and let A0 be a Hamiltonian

path from fi(y) to f
�1
j�1(y

0) in CGi+1,j�1 � ([j�1
r=i+1{fr�1(· · · (fi+1(fi(x)))}). Now

Pi contains two disjoint paths that span Gi � Fi = Gi: Qi from s to x and Q
0
i from

z = fi�1(w) to y.
Now let R be a Hamiltonian path from y

0 to t in Gj � {x0} and R
0 be a Hamiltonian

path from fj(x0) to f
�1
n�1(u) in CGj+1,n�1. Then

Qi, A, (x
0
, fj(x

0)), R0
, (f�1

n�1(u), u), P0, (v, f0(v)), P
0
, (w, z), Q0

i,

(y, fi(y)), A
0
, (f�1

j�1(y
0), y0), R

is a desired Hamiltonian path from s to t in H � F . (See Figure 3.) If i = 1, then a
small adjustment is needed for P 0. We note that there is freedom in choosing v, y and
z. However, once v is chosen, u is forced; similarly, once z is chosen, x is forced. Here
we reduce the degree of freedom by one and choose v such that z = f0(v) in addition to
the other restrictions. It is not difficult to see that such v can be chosen. So P

0 is the arc
(v, f0(v)).

Subcase 1.6: s is in Gj�Fj and t is in Gi�Fi where 1  i < j  n�1. We construct
a desired Hamiltonian path in several steps. (This is similar to Subcase 1.5 but it is slightly
more complicated.) By assumption, there is a Hamiltonian cycle C0 in G0 � F0. We want
to find two arcs (v, u) and (x, y) on C0 to delete so that C0 contains two disjoint paths that
span G0 �F0: Q0 from u to x and Q

0
0 from y to v. It is possible that u = x or y = v. (But

both cannot occur at the same time.) There are only a few restrictions on the candidacies
of (v, u) and (x, y). We call the path

(v, f0(v), f1(f0(v)), . . . , fi�1(· · · f1(f0(v))), fi(fi�1(· · · f1(f0(v)))),

R1; and the requirement is fi�1(· · · f1(f0(v))) 6= t. For convenience, let w = fi(fi�1(· · ·
f1(f0(v)))). (For the case i + 1 = j, then w is in Gj and we further require w 6= s.) We
will call the path

(f�1
j (· · · f�1

n�2(f
�1
n�1(u))), . . . , f

�1
n�2(f

�1
n�1(u)), f

�1
n�1(u), u),

R2; moreover, the requirement is f
�1
j (· · · f�1

n�2(f
�1
n�1(u))) 6= s. For convenience, let

w
0 = f

�1
j (· · · f�1

n�2(f
�1
n�1(u))). (For the case i + 1 = j, then w is in Gj and we further

require w0 6= w.) Now let R3 be a Hamiltonian path from w to w
0 in CGi+1,j�{s}. It turns

out that the case j = n � 1 and fn�1(s) 2 F requires modification of our construction.
So for now, we assume that this is not the case. (Note that j = n � 1 and fn�1(s) 2 F

implies (s, fn�1(s)) is fault-free as F = F0.) We have more freedom for (x, y) in most
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Figure 3: The Hamiltonian path of Subcase 1.5.
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instances. If i = 1, we require f0(x) 6= t. If j = n � 1 and fn�1(s) 62 F , then we
let y = fn�1(s). (Recall that the case j = n � 1 and fn�1(s) 2 F is deferred.) We
further note that if j = n � 1, there is only one choice for y and hence there is only
one choice of (x, y), so we should pick (x, y) first and then (v, u). If j 6= n � 1, let
A be the path consisting of (s, fj(s)), the Hamiltonian path from fj(s) to f

�1
n�1(y) in

CGj+1,n�1 � [n�1
r=j+1{fr�1(fr�2(· · · fj(w)))} and (f�1

n�1(y), y); otherwise (that is, j =
n � 1 and fn�1(s) 62 F ), let A = (s, y). (Note that if j 6= n � 1, then (s, fj(s)) is fault-
free as F = F0.) Let B be the path consisting of (x, f0(x)) and the Hamiltonian path from
f0(x) to t in CG1,i � [i

r=1{fr�1(fr�2(· · · f0(v)))}. Then

A,Q
0
0, R1, R3, R2, Q0, B

is a desired Hamiltonian path from s to t in H � F . (See Figure 4.) Now we con-
sider the case when j = n � 1 and fn�1(s) 2 F . Then we consider the k + 1 arcs
(s, s1), (s, s2), . . . , (s, sk+1) in Gj that start at s. Since |F | = k, we may assume, without
loss of generality, that fn�1(s1) 62 F . So we let y = fn�1(s1), and the path A will be
(s, s1, y). So we pick (x, y) first, then we pick (v, u) as before but we now need to include
the restriction that w0 6= s

1. We note that then R3 needs to be a Hamiltonian path from w

to w
0 in CGi+1,n�1 � {s, s1}. Since k � 3, such a path exists via the usual explanation.

We remark that one can actually adjust the proof to give a construction for k = 2.
Case 2: |Fi|  k� 1 for every i. We consider two subcases depending on the locations

of s and t.
Subcase 2.1: s and t belong to the same Gi � Fi. Without loss of generality, we

may assume that s and t belong to G0 � F0. By assumption, there is a Hamiltonian path
P0 from s to t in G0 � F0. Choose (u, v) on P0 such that f0(u), (u, f0(u)) 62 F and
f
�1
n�1(v), (f

�1
n�1(v), v) 62 F . Now apply Lemma 2.1 to obtain a Hamiltonian path from

f0(u) to f
�1
n�1(v) in CG1,n�1 � ([n�1

r=1Fr). Now, the usual argument gives a desired
Hamiltonian path.

Subcase 2.2: s and t belong to different Gi � Fi’s. We may assume that s belong to
G0 � F0 and t belong to Gj � Fj where j 6= 0. If j = n � 1, then this result follows
directly from Lemma 2.1. So we may assume that j  n� 2.

Subsubcase 2.2.1: |Fi|  k � 2 for every i. Find x in G0 � F0 such that f0(x) 6= t (if
j = 1). We remark that the argument in this subcase requires only |F1|, |F2|, . . . , |Fj | 
k � 2. By assumption, there is a Hamiltonian path P0 from s to x in G0 � F0. We want
to find (u, v) on P0 to delete so that P0 contains two disjoint paths that span G0 � F0:
Q0 from s to u and Q

0
0 from v to x. There are only a few restrictions on the candidacy of

(u, v). We want f�1
n�1(v), (f

�1
n�1(v), v) 62 F , the path

(u, f0(u), f1(f0(u)), . . . , y = fj�1(fj�2(· · · f1(f0(u)))), fj(y))

be a fault-free path, and y 6= t. (We note that there is a definition embedded in the path. The
penultimate vertex is fj�1(fj�2(· · · f1(f0(u)))) which we call y. Thus the last vertex is
fj(y).) It is easy to see that such an edge (u, v) exists. Let R1 be (f0(u), f1(f0(u)), . . . , y).
Let R2 be the Hamiltonian path from f0(x) to t in CG1,j � ([j

r=1Fr) � {f0(u),
f1(f0(u))), . . . , y}. (Such a path exists by Lemma 2.1 since |Fr|  k� 2 and we delete at
most one additional vertex from each Gr so |Fr|0 + |Fr+10 |+ |Fr,r+1|  k + 2 where F

0
r

is Fr. Here we need N � k + 5.) Let R3 be the Hamiltonian path from fj(y) to f
�1
n�1(v)
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Figure 4: The Hamiltonian path of Subcase 1.6.



C.-N. Hung et al.: Fault-Hamiltonicity of Cartesian products of directed cycles 13

in CGj+1,n�1 � ([n�1
r=j Fr). Then

Q0, (u, f0(u)), R1, (y, fj(y)), R3, (f
�1
n�1(v), v), Q

0
0, (x, f0(x)), R2

is a desired Hamiltonian path from s to t in H � F . (See Figure 5.)

y

t

s

uv

R2

R1

Q0

Q0

f -1 (v)n-1

f (y)j

f (x)0

f (u)0

‘

x

R3

Figure 5: The Hamiltonian path of Subsubcase 2.2.1.

Henceforth, |Fi| = k � 1 for some i. Since k � 3, such an i is unique.
Subsubcase 2.2.2: |F0| = k � 1 or |Fq| = k � 1 for some q = j + 1, j + 2, . . . , n� 1.

Then the argument of Subsubcase 2.2.1 applies by the remark given at the start of its argu-
ment.

Subsubcase 2.2.3: |Fj | = k � 1. We will adjust the construction given in Subsub-
case 2.2.1. We note that there is at most one fault not in Fj . We find a vertex y 6= t in
Gj � Fj such that (f�1

0 (· · · f�1
j�1(y)), . . . , f

�1
j�1(y), y) is fault-free. Now for this chosen

y, let Pj be a Hamiltonian path from y to t in Gj � Fj . We find an arc (w,w0) on Pj

such that (w, fj(w)) and (f�1
j�1(w

0), w0) are fault-free. (We allow y = w or w0 = t.) If
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j = 1, we further require f
�1
0 (w0) 6= s. Let P y

j and P
t
j be the subpaths of Pj from y to w

and from w
0 to t, respectively. Let u = f

�1
0 (· · · f�1

j�1(y)) and R1 be (u, . . . , f�1
j�1(y), y),

followed by P
y
j and (w, fj(w)). If j = 1, then let x = f

�1
0 (w0). Otherwise, we pick x in

G0 � (F0 [ {s, u}) such that (x, f0(x)) is fault-free. (If j = 2, then we further require
f0(x) 6= f

�1
1 (w0).) We can now construct R2 (similar to Subsubcase 2.2.1) by taking a

fault-free Hamiltonian path from f0(x) to f
�1
j�1(w

0) in

CG1,j�1 � ([j
r=1Fr)� {f0(u), f1(f0(u)), . . . , f�1

j�1(y)},

followed by P
t
j . Now consider G0 � F0. Recall that |F0|  1. If there is a z such that

(u, z) is an arc in G0 and {f�1
n�1(z), (f

�1
n�1(z), z)} \ F 6= ;, then set F 0

0 = F0 [ {(u, z)};
otherwise, F 0

0 = F0. Now we find a Hamiltonian path P0 from s to x in G0 � F
0
0. Let

(u, v) on P0. By construction, f�1
n�1(v), (f

�1
n�1(v), v) 62 F . We can now construct

R1, R3, Q0, Q
0
0

as in Subsubcase 2.2.1 with the following extra condition for choosing v when j = n� 2:
fn�2(w) 6= f

�1
n�1(v). We also note that R3 starts at fj(w) rather than fj(y). (See Figure 6.)

Subsubcase 2.2.4: |Fq| = k � 1 for some q = 1, 2, . . . , j � 1. One can adapt the
construction in Subsubcase 2.2.3 to cover this case. For completeness, we describe the
procedure. We note that there is at most one fault not in Fq . We pick two (distinct) vertices
a and b in Gq�Fq such that (f�1

0 (· · · f�1
q�1(a)), . . . , f

�1
j�1(a), a) is fault-free and (b, fq(b))

is fault-free. If q = j � 1, we further require that fq(b) 6= t. Let Pq be a Hamiltonian
path from a to b in Gq � Fq . We find an arc (w,w0) on Pq such that (w, fq(w)) and
(f�1

q�1(w
0), w0) are fault-free. (We allow a = w or w0 = b.) If j = 1, we further require

f
�1
0 (w0) 6= s. Let P y

q and P
t
q be the subpaths of Pj from a to w and from w

0 to b,
respectively. Let u = f

�1
0 (· · · f�1

q�1(a)) and R1 be (u, . . . , f�1
q�1(a), a), followed by P

a
q

and (w, fj(w)). If j = 1, then let x = f
�1
0 (w0). Otherwise, we pick x in G0 � (F0 [

{s}) such that (x, f0(x)) is fault-free. We can now construct R2 by taking a fault-free
Hamiltonian path from f0(x) to f

�1
j�1(w

0) in

CG1,q�1 � ([j
r=1Fr)� {f0(u), f1(f0(u))), . . . , f�1

j�1(a)},

followed by P
t
q . The rest is the same as Subsubcase 2.2.3.

We remark that the main reason that the argument given in Subsubcase 2.2.3 is not
valid for k = 2 is because two vertices may be removed from a Gi and hence R2 cannot be
constructed as Gi is only 1-Hamiltonian connected. The same problem occurs for the other
subcases. In fact, we did not notice this gap and gave this proof for k � 2 in an earlier
draft. Fortunately for us, the anonymous referee noticed the error. We do not see an easy
way to repair this gap. We note that for Subsubcase 2.2.3, the path R1 and R2 together
span several Gi’s, and in general, R1 only covers one vertex of such Gi’s. One idea is to
be less restrictive in using the two paths covering such Gi’s. (For example, the vertices in
Gj �Fj in Subsubcase 2.2.3 are spanned by two paths R2 and R3, with each path covering
possibly more than one vertex of Gi � Fi.) Due to the distribution of s and t and the two
vertices in F , there are 8 cases to consider with additional “boundary” subcases in each.
We feel that a full discussion adds minimal value. So we choose to present the result for
k � 3 only.
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3 Analyzing the conditions in Theorem 2.2

In Theorem 2.2, one of the conditions is the requirement that N � k + 4 for (k + 1)-
Hamiltonicity and N � k + 5 for k-Hamiltonian connectedness. We are unsure whether
this condition can be relaxed. However, we do know that the result for k-Hamiltonian
connectedness does not hold if N = k + 2. We choose G = Kk+2, the complete di-
rected graph on k + 2 vertices. Clearly it is (k + 1)-regular and one can check that it is
k-Hamiltonian and (k � 1)-Hamiltonian connected. Then consider H = G⇤C3. Let F
be k vertices in G0, s be a vertex in G0 � F and t = f(s). Then it is clear that there
is no Hamiltonian path from s to t. One may wonder whether there is a counterexample
N = k + 3? An obvious choice is to let G be the directed graph obtained from the com-
plete graph Kk+3, where k is even, by deleting a perfect matching (and treat the resulting
graph as a directed graph). So G is (k + 1)-regular. If G is k-Hamiltonian and (k � 1)-
Hamiltonian connected, then we have a counterexample. Unfortunately, this is not true as if
k = 2i � 1, then by deleting appropriate k � 1 vertices from G, we have a 4-cycle which
is not Hamiltonian connected.

We now consider the condition on k. As we pointed out earlier that k = 0 is not
applicable, that is, G needs to be at least 2-regular. We have the condition k � 2 (that is, G
is at least 3-regular) in the statement. In the proof, we did use this assumption; for example,
we used it in Case 2 in proving that H is (k + 1)-Hamiltonian. This is not to say that the
result is not true for k = 1. On the other hand, we know of no 2-regular, 1-Hamiltonian
and Hamiltonian-connected directed graphs. We have already commented on the condition
of k � 3 for the k-Hamiltonian connectedness portion of the theorem.

Finally, there is the condition on n. In an undirected graph, a cycle must have at least
three vertices. By the same convention, one usually requires a directed cycle in a directed
graph to have at least three vertices; thus the condition n � 3. However, some authors
do consider the two arcs (x, y) and (y, x) to form a directed cycle of length two. In any
case, one may consider two directed graphs G and H with the same number of vertices and
construct a new directed graph by two set of matchingss that match the vertices of G with
the vertices of H and orient the edges in the first set from G to H and vice versa for the
second set. One can ask if both G and H have “strong” Hamiltonian properties, does the
resulting graph have “strong” Hamiltonian properties. One can apply similar analysis as in
the proof of Theorem 2.2 for this problem.

We further remark that Theorem 2.2 seeks the strongest possible property, that is, for a
(k+1)-regular graph G to be k-Hamiltonian and (k�1)-Hamiltonian connected, and then
consider an n-G-directed graph. The proof of Theorem 2.2 mainly relies on G being k-
Hamiltonian and (k � 1)-Hamiltonian connected, and not G being k-regular. So our proof
is applicable to establish the following: Let k � 2 and n � 3. Let 1  r  k. Suppose the
class of directed graphs G is (k+1)-regular, r-Hamiltonian, (r�1)-Hamiltonian connected
and of order N . Let H be an n-G-directed graph. Then H is (k + 2)-regular, (r + 1)-
Hamiltonian if N � k + 4 and r-Hamiltonian connected if N � k + 5.
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Abstract

In this note we show that the token graphs of fan graphs are Hamiltonian. This result
provides another proof of the Hamiltonicity of Johnson graphs and also extends previous
results obtained by Mirajkar and Priyanka on the token graphs of wheel graphs.
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1 Introduction

Let G be a simple graph of order n and let k be an integer such that 1  k  n � 1.
The k-token graph, or symmetric kth power, of G is the graph G

(k) whose vertices are the
k-subsets of V (G) and two vertices are adjacent in G

(k) if their symmetric difference is an
edge of G. A classical example is the Johnson graph J(n, k), which is isomorphic to the
k-token graph of the complete graph Kn. This class of graphs is widely studied and has
connections with coding theory [7, 9, 11, 13, 15] (another connection of token graphs with
coding theory was showed in [18]).

The definition of k-token graphs (without a name) appeared in a work of Rudolph [17],
in connection with problems in quantum mechanics and with the graph isomorphism prob-
lem. Rudolph presented examples of cospectral graphs G and H such that their correspond-
ing 2-token graphs are not cospectral. Audenaert et al. [3], proved that the 2-token graphs
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of strongly regular graphs with the same parameters are cospectral, and suggested that for
a given positive integer k there exists infinitely many pairs of non-isomorphic graphs with
cospectral k-token graphs. This conjecture was proved by Barghi and Ponomarenko [16]
and, independently, by Alzaga et al. [2]. Later, Fabila-Monroy et al. [8] reintroduced the
k-token graphs as part of several models of swapping in the literature [19, 20], and studied
some properties of these graphs: connectivity, diameter, cliques, chromatic number, Hamil-
tonian paths and Cartesian product of token graphs. This line of research was continued by
Carballosa et al. [4] who studied regularity and planarity, de Alba et al. [6], who presented
some results about independence and matching numbers, and Mirajkar et al. [14], who stud-
ied some covering properties of token graphs. Finally, Leaños and Trujillo-Negrete [12]
proved a conjecture of Fabila-Monroy et al. [8] about the connectivity of token graphs and
de Alba et al. [5] classified the triangular graphs (in other words, the 2-token graphs of
complete graphs) that are Cohen-Macaulay.

A graph is Hamiltonian if it contains a Hamiltonian cycle. It is well known that J(n, k)
is Hamiltonian [10, 21], in fact, it is Hamiltonian connected [1]. As was noted in [8], the
existence of a Hamiltonian cycle in G does not imply that G(k) contains a Hamiltonian
cycle. For example, if k is even then K

(k)
m,m is not Hamiltonian.

We are interested in graphs G such that its token graphs are Hamiltonian. The fan graph
Fn is the join of graphs K1 and Pn�1. In this note we show that the token graphs of fan
graphs are Hamiltonian. Our result provides another proof that J(n, k) is Hamiltonian, and
also extends some of the results obtained by Mirajkar and Priyanka Y. B [14] about the
Hamiltonicity of the token graphs of wheel graphs.

2 Main result

First we present some definitions and notations. For vertices u, v in graph G we write
u ⇠ v to mean that u and v are adjacent vertices in G. We write G ' G

0 if G and G
0 are

isomorphic graphs. A spanning subgraph of G is a subgraph H such that V (H) = V (G).
The following proposition is obvious.

Proposition 2.1. If H is a spanning subgraph of G and H is Hamiltonian then G is Hamil-

tonian.

One of the main properties of token graphs is that G(1) and G are isomorphic. More-
over, G(k) ' G

(n�k) for any k 2 {1, . . . , n�1}. Another known property of token graphs
is the following.

Proposition 2.2. If H is a subgraph of G then H
(k)

is a subgraph of G
(k)

. Even more, if

H is a spanning subgraph of G then H
(k)

is a spanning subgraph of G
(k)

.

For a fan graph Fn we assume that the vertices of Pn�1 are {1, . . . , n � 1} and the
vertex in K1 is labeled as n. For vertex A = {a1, . . . , ak} of F (k)

n we use the convention
that a1 < · · · < ak.

The main result of this note is the following.

Theorem 2.3. Let n and k be positive integers with n � 3 and 1  k  n� 1. Then F
{k}
n

is Hamiltonian.

Proof. For k = 1, F (1)
n ' Fn which is Hamiltonian so in the rest of the proof we as-

sume that k � 2. We will show that F (k)
n has a Hamiltonian cycle such that the vertices
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{n � k, n � k + 1, . . . , n � 2, n} and {n � k, n � k + 1, . . . , n � 2, n � 1} are adjacent
in the cycle. The sequence of vertices {1, 3}{1, 2}{2, 3}{1, 3} is a Hamiltonian cycle in
F

(2)
3 . The proof for n � 4 is by induction on k. First we show the case k = 2 and n � 4.

The sequence of vertices

{1, n� 1}{1, n}{1, n� 2}{1, n� 3} . . . {1, 3}{1, 2}
{2, n}{2, n� 1}{2, n� 2}{2, n� 3} . . . {2, 4}{2, 3}

...
{n� 3, n}{n� 3, n� 1}{n� 3, n� 2}
{n� 2, n}{n� 2, n� 1}
{n� 1, n}
{1, n� 1}

is a Hamiltonian cycle in F
(2)
n , where vertices {n�2, n�1} and {n�2, n} are adjacent in

the cycle. We assume as induction hypothesis that F (k0)
n0 satisfies the conditions whenever

k
0
< k and n

0
> k

0.

Claim. Let Si be the subgraph of F (k)
n induced by the vertex set

Vi =
n
{a1, . . . , ak} 2 V (F (k)

n ) : a1 = i

o
,

with 1  i  n� k. Then Si ' F
(k�1)
n�i .

Proof of Claim. Suppose that V (Fn�i) = {i + 1, . . . , n} with V (Pn�i�1) = {i + 1, . . . ,
n � 1} and n the vertex of K1. Then the function A 7! A \ {i} is a graph isomorphism
between Si and F

(k�1)
n�i .

We identify Si with F
(k�1)
n�i using the isomorphism given in the proof of the claim.

By induction there exists a Hamiltonian cycle Ci in Si, where vertices Xi := {i, n �
k + 1, . . . , n � 2, n � 1} and Yi := {i, n � k + 1, . . . , n � 2, n} are adjacent in Ci, for
1  i  n� k. Let Pi be the Hamiltonian subpath of Ci from Xi to Yi, for 1  i  n� k.
Let Z denote the vertex {n� k + 1, n� k + 2, . . . , n� 1, n}. Therefore Vn�k+1 = {Z}.

Let Di = {n � k, n � k + 1, . . . , n � 1, n} \ {i}, with n � k + 1  i  n. Then the
vertex set Vn�k of Sn�k is {Dn, Dn�1, . . . , Dn�k+1}. Also, we have Xn�k = Dn and
Yn�k = Dn�1. Let

Q = Dn�2Dn�3 . . . Dn�k+2Dn�k+1,

which, in fact, is a path in Sn�k because Di4Di�1 = {i�1, i}, for n�k+2  i  n�2.
Now,

Xn�k4Dn�2 = {n� 2, n}
Yn�k4Dn�2 = {n� 2, n� 1}
Z4Dn�k+1 = {n� k, n� k + 1}
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and hence

Xn�k ⇠ Dn�2,

Yn�k ⇠ Dn�2,

Dn�k+1 ⇠ Z,

in F
(k)
n . Notice that Xi4Xi+1 = {i, i+1} and Yi4Yi+1 = {i, i+1}, for 1  i  n�k�1,

and X14Z = {1, n}. Therefore we can define a Hamiltonian cycle C in F
(k)
n as

X1
�!
P1 Y1Y2

�!
P2 X2 . . . X(n�k�1)

�!
Pn�k�1 Y(n�k�1)Y(n�k)X(n�k)Dn�2

�!
Q Dn�k+1ZX1,

if n� k is even, and

X1
�!
P1 Y1Y2

�!
P2 X2 . . . Y(n�k�1)

�!
Pn�k�1 X(n�k�1)X(n�k)Y(n�k)Dn�2

�!
Q Dn�k+1ZX1,

if n� k is odd. Furthermore

{n� k, n� k+ 1, ..., n� 2, n� 1} = Xn�k ⇠ Yn�k = {n� k, n� k+ 1, ..., n� 2, n},

in C, as desired.

The wheel graph Wn is the joint graph of K1 and Cn�1. It is known that Johnson
graphs [10, 21] and the k-token graphs of wheel graphs [14] are Hamiltonian, the following
corollary provides another proof of this facts.

Corollary 2.4. If Fn is a spanning subgraph of G then G
(k)

is Hamiltonian. In particular

the Johnson graphs and the k-token graphs of wheel graphs are Hamiltonian.

Proof. As Fn is a spanning subgraph of G then F
(k)
n is a spanning subgraph of G(k) by

Proposition 2.2. The k-token graph of Fn is Hamiltonian by Theorem 2.3 and hence G
(k)

is Hamiltonian by Proposition 2.1. In particular Fn is a spanning subgraph of Wn and Kn.
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Abstract

Fitch graphs have been introduced as a model of xenology relationships in phyloge-
nomics. Directed Fitch graphs G = (X,E) are di-graphs that are explained by {0, 1}-
edge-labeled rooted trees with leaf set X: there is an arc xy 2 E if and only if the unique
path in T that connects the least common ancestor lca(x, y) of x and y with y contains
at least one edge with label 1. In this contribution, we consider the undirected version of
Fitch’s xenology relation, in which x and y are xenologs if and only if the unique path be-
tween x and y in T contains an edge with label 1. We show that symmetric Fitch relations
coincide with class of complete multipartite graph and thus cannot convey any non-trivial
phylogenetic information.
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Fitch graphs [4] form a class of directed graphs that is derived from rooted, {0, 1}-edge-
labeled trees T in the following manner: The vertices of the Fitch graph are the leaves of
T . Two distinct leaves x and y of T are connected by an arc (x, y) from x to y if and only
if there is at least one edge with label 1 on the (unique) path in T that connects the least
common ancestor lca(x, y) of x and y with y. Fitch graphs model “xenology”, an important
binary relation among genes, was introduced by Walter M. Fitch [2]. Interpreting T as a
phylogenetic tree and 1-edges as horizontal gene transfer events, the arc (x, y) in the Fitch
graph encodes the fact that y is xenologous with respect to x. A complete characterization
of directed Fitch graphs is given in [4] in terms of the eight forbidden induced subgraphs
shown in Figure 1.

F1 F2 F3 F4

F5 F6 F8F7

Figure 1: Shown are the eight forbidden induced subgraphs F1, . . . , F8 of Fitch graphs.

Theorem 0.1 ([4]). A digraph G = (X,E) is a directed Fitch graph if and only if it does

not contain one the graphs F1, . . . , F8 in Figure 1 as an induced subgraph. It can be

decided in O(|X| + |E|) time whether G is a directed Fitch graph. In the positive case,

there is a unique least-resolved tree (T,�) explaining G, which also can be constructed in

linear time.

It is natural to consider also the symmetrized version of this relationship, i.e., to inter-
pret {x, y} as a xenologous pair whenever the evolutionary history separated x and y by at
least one horizontal transfer event. In mathematical terms, this idea is captured by:

Definition 0.2. Let T be a rooted tree with leaf set X and let � : E(T ) ! {0, 1}. Then the
undirected Fitch graph F explained by (T,�) has vertex set X and edges {x, y} 2 E(F )
if and only if the (unique) path from x to y in T contains at least one edge e with �(e) = 1.
A graph F is an undirected Fitch graph if and only if it is explained in this manner by some
edge-labeled rooted tree (T,�).

Undirected Fitch graphs are closely related to their directed counterparts. Since the
path } connecting two leaves x and y is unique and contains their least common ancestor
lca(x, y), there is a 1-edge along } if and only if there is a 1-edge on the path between x and
lca(x, y) or between lca(x, y) and y. The undirected Fitch graph is therefore the underlying
undirected graph of the directed Fitch graph, i.e., it is obtained from the directed version
by ignoring the direction of the arcs.

The undirected Fitch graphs form a heritable family, i.e., if F is an undirected Fitch
graph, so are all its induced subgraphs. This is an immediate consequence of the fact that

E-mail addresses: mhellmuth@mailbox.org (Marc Hellmuth), yjlong@sjtu.edu.cn (Yangjing Long),
manuela@bioinf.uni-leipzig.de (Manuela Geiß), studla@bioinf.uni-leipzig.de (Peter F. Stadler)
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directed Fitch graphs are a heritable family of digraphs [4]. The fact can also be obtained
directly by considering the restriction of T to a subset of leaves. This obviously does not
affect the paths or their labeling between the remaining vertices.

Clearly F does not depend on which of the non-leaf vertices in T is the root. Fur-
thermore, a vertex v with only two neighbors and its two incident edges e0 and e

00 can be
replaced by a single edge e. The new edge is labeled �(e) = 0 if both �(e0) = �(e00) = 0,
and �(e) = 1 otherwise. These operations do not affect the undirected Fitch graph. Hence,
we can replace the rooted tree T by an unrooted tree in Definition 0.2 and assume that all
non-leaf edges have at least degree 3. To avoid trivial cases we assume throughout that T
has at least two leaves and hence a Fitch graph has at least two vertices.

Lemma 0.3. If G is an undirected Fitch graph, then F does not contain K1 �K2 as an

induced subgraph. In particular every undirected Fitch graph is a complete multipartite

graph.

Proof. There is a single unrooted tree with three leaves, namely the star S3, which ad-
mits four non-isomorphic {0, 1}-edge labelings defined by the number N of 1-edges. The
undirected Fitch graphs FN are easily obtained. In the absence of 1-edges, F0 = K3 is
edge-less. For N = 2 and N = 3 there is a 1-edge along the path between any two
leaves, i.e., F2 = F3 = K3. For N = 1 one leaf is connected to the other two by a
path in S3 with an 1-edge; the path between the latter two leaves consists of two 0-edges,
hence F1 = P3, the path of length two. Hence, only three of the four possible undirected
graphs on three vertices can be realized, while K1 �K2 is not an undirected Fitch graph.
By heredity, K1 �K2 is therefore a forbidden induced subgraph for the class of undirected
Fitch graphs. Finally, it is well-known that the class of graphs that do not contain K1 �K2

as an induced subgraph are exactly the complete multipartite graphs, see e.g. [8].

We note in passing that the first part of Lemma 0.3 can also be obtained from the eight
forbidden graphs on three vertices, using the fact that an undirected Fitch graph is the
underlying (undirected) graph of a directed Fitch graph.

In order to show that forbidding K1 �K2 is also sufficient, we explicitly construct the
edge-labeled trees necessary to explain complete multipartite graphs. We start by recall-
ing that each complete multipartite graph Kn1,...,nk is determined by its independent sets
V1, . . . , Vk with |Vi| = ni for 1  i  k. By definition, {x, y} 2 E(Kn1,...,nk) if and
only if x 2 Vi and y 2 Vj with i 6= j. In particular, therefore, Kn1,...,nk with at least two
vertices is connected if and only if k � 2. The complete 1-partite graphs are the edge-less
graphs Kn.

Since K1 �K2 is an induced subgraph of the path on four vertices P4, any graph G

that does not contain K1 �K2 as an induced subgraph must be P4-free, i.e., a cograph [1].
Cographs are associated with vertex-labeled trees known as cotrees, which in turn are a
special case of modular decomposition trees [3]. The cotrees of connected multipartite
graphs have a particularly simple shape, illustrated without the vertex labels in Figure 2.
The cotree has a root labeled “1” and all inner vertices labeled “0”. Here we do not need
the connection between cographs and their cotrees, however. Therefore, we introduce these
trees together with an edge-labeling that is useful for our purposes in the following:

Definition 0.4. For k = 1, T [n] is the star graph Sn with n leaves. For k � 2, the
tree T [n1, . . . , nk] has a root r with k children ci, 1  i  k. The vertex ci is a leaf if
|Vi| = ni = 1 and has exactly ni children that are leaves if |Vi| = ni � 2. For k = 1 all
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edges e of T [n] are labeled �
⇤(e) = 0. For k � 2 we set �⇤({r, ci}) = 1 for 1  i  k

and �
⇤(e) = 0 for all edges not incident to the root.

1
2

3

1 2 3 4 5

6 7

4

5

7
6

1 1 1 1

0 0 0 0 0

Figure 2: The complete multipartite graph K3,2,1,1 is the Fitch graph explained by the tree
T [3, 2, 1, 1] with edge labeling �

⇤ shown with bold numbers 0 and 1.

Now we can prove our main result:

Theorem 0.5. A graph G is an undirected Fitch graph if and only if it is a complete

multipartite graph. In particular, Kn1,...,nk is explained by (T [n1, . . . , nk],�⇤).

Proof. Lemma 0.3 implies that an undirected Fitch graph is a complete multipartite graph.
To show the converse, we fix an arbitrary complete multipartite graph G = Kn1,...,nk and
find an edge-labeled rooted tree (T,�⇤) that explains G.

For k = 1 it is trivial that (T [n],�⇤) explains Kn.
For k � 2 consider the tree T [n1, . . . nk] with edge labeling �

⇤ and let F be the cor-
responding Fitch graph. The leaf set of T [n1, . . . nk] is partitioned into exactly k subsets
L1, . . . , Lk defined by (a) singletons adjacent to the root and (b) subsets comprising at
least two leaves adjacent to the same child ci of the root. Furthermore, we can order the
leaf sets so that |Li| = ni. By construction, all vertices within a leaf set Li are connected
by a path that does not run through the root and thus, contains only 0-edges, if |Li| > 1
and no edge, otherwise. The Li are independent sets in F . On the other hand any two
leaves x 2 Li and y 2 Lj with i 6= j are connected only by path through the root, which
contains two 1-edges. Thus x and y are connected by an edge in F . Hence F is a complete
multipartite graph of the form K|L1|,...,|Lk| = Kn1,...,nk . Since Kn1,...,nk is explained by
(T [n1, . . . , nk],�⇤) for all ni � 1 and all k � 2, and Kn is explained by (T [n],�⇤), we
conclude that every complete multipartite graph is a Fitch graph.

The converse of Lemma 0.3 does not follow in a straightforward manner from the
characterization of directed Fitch graphs in [4]. It is possible to make use of the connection
between Fitch graphs and di-cographs [5, 6] to obtain the trees of Definition 0.4. This line
of reasoning, however, is neither shorter nor simpler than the direct, elementary proof given
above.

Complete multipartite graphs G = (V,E) obviously can be recognized in O(|V |2) time
(e.g., by checking that its complement is a disjoint union of complete graphs), and even in
O(|V |+ |E|) time by explicitly constructing its modular decomposition tree [7]. Given the
tree T [n1, . . . , nk], the canonical edge labeling �

⇤ is then assigned in O(|V |) time.
A tree (T,�) that explains a Fitch graph F is minimum if it has the smallest number of

vertices among all trees that explain F . In this case, (T,�) is also least-resolved, i.e., the
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contraction of any edge in (T,�) results in a tree that does not explain F . Not surprisingly,
the tree T [n1, . . . , nk] is almost minimum in most, and minimum in some cases: Since the
vertices of the Fitch graph must correspond to leaves of the tree, T [n1, . . . , nk] is necessar-
ily minimum whenever it is a star, i.e., for T [n] and T [1, . . . , 1]. In all other cases, its only
potentially “superfluous” part is its root. Indeed, exactly one of the edges connecting the
root with a non-leaf neighbor can be contracted without changing the corresponding Fitch
graph. It is clear that this graph is minimal: The leaf sets Li must be leaves of an induced
subtree without an intervening 1-edge. Having all vertices of Li adjacent to the same vertex
is obviously the minimal choice. Since the Li must be separated from all other leaves by a
1-edge, at least one incident edge of ci must be a 1-edge. Removing all leaves incident to a
0-edge results in a tree with at least k vertices that must contain at least k�1 1-edges, since
every path between leaves in this tree must contain a 1-edge. The contraction of exactly
one of the k 1-edges incident to the root r in T [n1, . . . , nk] indeed already yields a minimal
tree. In general, the minimal trees are not unique, see Figure 3.

1 2

3

45

  

1

5

32

1

1

0
0

0

(T, *)

0 4 1

432

00

1 11

(T[2,2,1], *)
5

00
1

32

00

1
1

(T*[2,2,1], *)
4 5

00

32

00

1

(T', *)
1 54

1
00

Figure 3: The non-isomorphic trees (T,�⇤), (T 0
,�

⇤) (T [2, 2, 1],�⇤), and (T ⇤[2, 2, 1],�⇤)
all explain the same complete multipartite graph K2,2,1. Three of these trees have the
smallest possible number (7) of vertices and thus are minimal. These can be obtained from
the tree (T [2, 2, 1],�⇤) specified in Definition 0.2 by contraction of one of its inner 1-edges
and possibly re-rooting the resulting tree.

It may be worth noting that Kn1,...,nk can also be explained by binary trees. To see
this, we convert a tree (T [n1, . . . , nk],�⇤) into a binary tree in two simple steps. First,
each group of ni > 1 leaves with a common parent are replaced by an arbitrary binary tree
with the same leaf set and all edges labeled 0. Second, the star consisting of the root and
all its children C is replaced by an arbitrary rooted binary tree with leaf set C and all edges
labeled 1. It is obvious that neither of the operations affects the graph that is explained.

The practical implication of Theorem 0.5 in the context of phylogenetic combinatorics
is that the mutual xenology relation cannot convey any interesting phylogenetic informa-
tion: Since the undirected Fitch graphs are exactly the complete multipartite graphs, which
in turn are completely defined by their independent sets, the only insight we can gain by
considering mutual xenology is the identification of the maximal subsets of taxa that have
not experienced any horizontal transfer events among them.
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Faculty of Civil Engineering, Slovak University of Technology,
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Abstract

Let G be a graph. Denote by W (G) its Wiener index and denote by L
i(G) its i-

iterated line graph. Dobrynin and Mel’nikov proposed to estimate the extremal values for
the ratio Rk(G) = W (Lk(G))/W (G) for k � 1. Motivated by this we study the ratio for
higher k’s. We prove that among all trees on n vertices the path Pn has the smallest value
of this ratio for k � 3. We conjecture that this holds also for k = 2, and even more, for
the class of all connected graphs on n vertices. Moreover, we conjecture that the maximum
value of the ratio is obtained for the complete graph.

Keywords: Wiener index, line graph, tree, iterated line graph.
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1 Introduction

Let G be a graph. We denote its vertex set and edge set by V (G) and E(G), respectively.
For any two vertices u, v let d(u, v) be the distance from u to v. The Wiener index of G,
W (G), is defined as

W (G) =
X

u 6=v

d(u, v),
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where the sum is taken over all unordered pairs of vertices of G. Wiener index was intro-
duced by Wiener in [17]. Since it is related to several properties of molecules (see [7]),
it is widely studied by chemists. The interest of mathematicians was attracted in 1970’s,
when it was reintroduced as the transmission and the distance of a graph, see [16] and [5],
respectively. For surveys and some up-to-date papers related to the Wiener index of trees
and line graphs see [15, 18] and [2, 8, 13], respectively.

By definition, if G has a unique vertex, then W (G) = 0. In this case, we say that the
graph G is trivial.

The line graph of G, L(G), has vertex set identical with the set of edges of G and two
vertices of L(G) are adjacent if and only if the corresponding edges are incident in G.
Iterated line graphs are defined inductively as follows:

L
i(G) =

(
G if i = 0,

L(Li�1(G)) if i > 0.

Observe that W (Pn) = ((n�1) + · · ·+ 1)+((n�2) + · · ·+ 1)+ · · ·+1 =
�n+1

3

�
. In

the case when a tree contains a small number of branching vertices (i.e., vertices of degree
at least three), then it is suitable to use the theorem of Doyle and Graver [4] for computing
its Wiener index:

Theorem 1.1. Let T be a tree on n vertices. Then

W (T ) =

✓
n+ 1

3

◆
�

X

v2V (T )

X

1i<j<kp

n(Ti)n(Tj)n(Tk) ,

where T1, T2, . . . , Tp are the components of T � v.

Wiener index of the line graph of a tree T can easily be computed from W (T ) by using
the following result of Buckley [1]:

Theorem 1.2. Let T be a tree on n vertices. Then W (L(T )) = W (T )�
�n
2

�
.

In [6] (see also [3]) Gutman proposed a problem to find an n-vertex graph G whose
line graph L(G) has the maximum Wiener index.

Dobrynin and Mel’nikov [3] proposed to estimate the extremal values of the ratio

Rk(G) =
W (Lk(G))

W (G)
. (1.1)

Notice that

W (L(Sn))

W (Sn)
=

n� 2

2(n� 1)
,

W (L(Pn))

W (Pn)
=

n� 2

n+ 1
, and

W (L(Kn))

W (Kn)
=

✓
n� 1

2

◆
.

In [14], this problem was solved for the minimum in the case k = 1:

Theorem 1.3. Among all connected graphs on n vertices, the fraction R1(G) is minimum
for the star Sn.

The problem for the maximum remains open:
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Problem 1.4. Find n-vertex graph G with the maximum value of R1(G).

The line graph of Kn has the greatest number of edges and the smallest Wiener index,
and henceforth, it may attain the maximum value. For higher iterations k � 2, we expect
that the minimum should be at Pn, as it is the only graph whose line graph decreases in
size. Thus, we believe the following holds:

Conjecture 1.5. Let n be a large number and k � 2. Among all graphs G on n vertices,
W (Lk(G))/W (G) attains the maximum for Kn, and it attains the minimum for Pn.

In what follows we support this conjecture for the minimum. In a series of papers
[10, 9, 12, 11, 8] (see [11, Corollary 1.4]), where the equality W (Lk(T )) = W (T ) is
solved for trees and k � 3, the following result was obtained:

Theorem 1.6. Let T be a tree and k � 4. Then we have

W (Lk(T )) = W (T ) if T is trivial,
W (Lk(T )) < W (T ) if T is a nontrivial path or the claw K1,3,
W (Lk(T )) > W (T ) otherwise.

The above result gives an immediate support to Conjecture 1.5:

Corollary 1.7. Let k � 4. In the class of trees on n vertices, Rk attains the minimum value
for Pn.

In this paper we extend the above corollary to the case k = 3. Let H be a tree on six
vertices, two of which have degree 3 and the other four have degree 1. Recall that two
graphs G1 and G2 are homeomorphic if and only if there is a third graph F , such that both
G1 and G2 can be obtained from F by means of edge subdivision. In the proof we will use
the following result [9, Corollary 1.6]:

Theorem 1.8. Let T be a tree which is not homeomorphic to a path, claw K1,3 or H , and
let k � 3. Then W (Lk(T )) > W (T ).

By Theorem 1.8, to solve the case k = 3, it is sufficient to consider the ratios for paths
and trees homeomorphic to the claw K1,3 and H .

Note that L3(Pn) = Pn�3 if n � 4, and we have

R3(Pn) =

�n�2
3

�
�n+1

3

� =
(n� 2)(n� 3)(n� 4)

(n+ 1)n(n� 1)
.

In Section 2 we prove the following two results:

Theorem 1.9. Let T be a tree on n vertices homeomorphic to K1,3. Then

R3(T ) > R3(Pn).

Theorem 1.10. Let T be a tree on n vertices homeomorphic to H . Then

R3(T ) > R3(Pn).

These two results together with Theorem 1.8 and Corollary 1.7 give us the following:

Corollary 1.11. Let k � 3. Then the path Pn attains the minimum value of Rk in the class
of trees on n vertices.
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2 Proofs of Theorems 1.9 and 1.10

Proof of Theorem 1.9. Let Ca,b,c be a tree homeomorphic to the claw K1,3, such that the
paths connecting the vertices of degree 1 with the vertex of degree 3 have lengths a, b and
c, where a � b � c � 1. The tree Ca,b,c has exactly n = a+b+c+1 vertices, see Figure 1
for C4,3,2.

Figure 1: The graph C4,3,2.

Further, for i 2 {1, 2, 3} let Vi be the set of vertices of V (L(Ca,b,c)) of degree i. This
naturally splits the problem into four cases according to the size of V1.

Denote
� = W (L3(Ca,b,c))�W (Ca,b,c). (2.1)

In [8], the value of � for each of these four cases is evaluated. For the sake of simplicity,
let W0 = W (Ca,b,c) and W3 = W (L3(Ca,b,c)). Then � = W3 �W0 and

R3(Ca,b,c) =
W3

W0
=

W0 +�

W0
= 1 +

�

W0
.

By Theorem 1.1 we have

W0 = (a+ b+ c+ 2)(a+ b+ c+ 1)(a+ b+ c)/6� abc. (2.2)

We prove that when |V (Ca,b,c)| = |V (Pn)|, that is when n = a + b + c + 1, then
R3(Ca,b,c) > R3(Pn). This inequality is equivalent to

1 +
�

W0
>

(n� 2)(n� 3)(n� 4)

(n+ 1)n(n� 1)

and after multiplying by denominators also to

�(n+ 1)n(n� 1) +W0

�
(n+ 1)n(n� 1)� (n� 2)(n� 3)(n� 4)

�
> 0. (2.3)

Since 3 � |Vi| � 0, there are four cases to consider.

Case 1: a, b, c � 2. That is, |V1| = 3. In [8] we have

� = (a+b+c)2 � 5(ab+ac+bc) + (a+b+c) + 21. (2.4)

After substituing (2.4) and (2.2) into (2.3), we get that the left-hand side of (2.3) is equal to
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the following expression

1.5abc
�
(a� b)2 + (a� c)2 + (b� c)2

�
+ 44a+ 65a2 + 25.5a3 + 7a4 + 2.5a5 +

44b+ 130ab+ 66.5a2b+ 13a3b+ 7.5a4b+ 65b2 + 66.5ab2 + 12a2b2 + 10a3b2 +

25.5b3 + 13ab3 + 10a2b3 + 7b4 + 7.5ab4 + 2.5b5 + 44c+ 130ac+ 66.5a2c+

13a3c+ 7.5a4c+ 130bc+ 117abc+ 18a2bc+ 3a3bc+ 66.5b2c+ 18ab2c+

13b3c+ 3ab3c+ 7.5b4c+ 65c2 + 66.5ac2 + 12a2c2 + 10a3c2 + 66.5bc2 + 18abc2 +

12b2c2 + 10b3c2 + 25.5c3 + 13ac3 + 10a2c3 + 13bc3 + 3abc3 + 10b2c3 + 7c4 +

7.5ac4 + 7.5bc4 + 2.5c5.

Since a, b, c � 2, the expression 1.5abc
�
(a� b)2+(a� c)2+(b� c)2

�
and all the isolated

terms are nonnegative. Moreover some of the terms, such as 44a for example, are strictly
positive. Hence, (2.3) is satisfied, which means that R3(Ca,b,c) > R3(Pa+b+c+1).

Observe that the above long expression was obtained from the left-hand side of (2.3)
by subtracting 1.5abc

�
(a � b)2 + (a � c)2 + (b � c)2

�
, which is nonnegative, and then

by expanding the difference. Since all the parameters a, b, c are nonnegative, all the co-
efficients in the expanded expression are positive and at least one of the terms is strictly
positive, (2.3) is satisfied. We will use this way of reasoning especially in the proof of
Theorem 1.10, where the expanded expressions are extremely long.

Case 2: a, b � 2, c = 1. That is, |V1| = 2. In [8] we have

2� = (a+b)2 � 8ab� 5(a+b) + 30. (2.5)

After substituing (2.5) and (2.2) into (2.3) and expanding the expression, we get that the
left-hand side of (2.3) is equal to

96 + 170a+ 97a2 + 32a3 + 11a4 + 2a5 + 170b+ 164ab+ 43a2b+ 11a3b+ 6a4b+

97b2 + 43ab2 + 8a3b2 + 32b3 + 11ab3 + 8a2b3 + 11b4 + 6ab4 + 2b5.

Hence (2.3) is satisfied and so R3(Ca,b,1) > R3(Pa+b+2).

Case 3: a � 2, b = c = 1. That is, |V1| = 1. In [8] we have � = �6a + 6. After
substituing this value of � and (2.2) into (2.3) and expanding the expression, we get that
the left-hand side of (2.3) is equal to

1.5a5 + 12a4 + 26.5a3 + 60a2 + 300a+ 240.

Hence (2.3) is satisfied and so R3(Ca,1,1) > R3(Pa+3).

Case 4: a = b = c = 1. That is, |V1| = 0. In this case Ca,b,c = K1,3 has 4 vertices and
L
3(K1,3) is a cycle of length 3. Since W (L3(P4)) = 0, we have

R3(C1,1,1) > 0 = R3(P4),

which establishes this small case, and also the proof of the theorem.
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Proof of Theorem 1.10. Denote by Ha,b,c,d,e a tree homeomorphic to H defined as follows:
In Ha,b,c,d,e, the two vertices of degree 3 are joined by a path of length e + 1, e � 0.
Hence, this path has e vertices of degree 2. Further, at one vertex of degree 3 there start
two pendant paths of lengths a and b, where a, b � 1, and at the other vertex of degree 3
there start another two pendant paths of lengths c and d, where c, d � 1. Thus Ha,b,c,d,e

has n = a+ b+ c+ d+ e+2 vertices, out of which two have degree 3, four have degree 1
and the remaining vertices have degree 2, see Figure 2 for H3,3,4,2,2. By symmetry, we
may assume that a � b, c � d, and b � d. That is, we assume that the shortest pendant
path in Ha,b,c,d,e has length d.

Figure 2: The graph H3,3,4,2,2.

We proceed analogously as in the proof of Theorem 1.9. Denote

� = W (L3(Ha,b,c,d,e))�W (Ha,b,c,d,e). (2.6)

For the sake of simplicity, let W0 = W (Ha,b,c,d,e) and W3 = W (L3(Ha,b,c,d,e)). Then
� = W3 �W0 and again

R3(Ha,b,c,d,e) = 1 +
�

W0
.

By Theorem 1.1 we have

W0 =

✓
a+ b+ c+ d+ e+ 3

3

◆
� ab(c+ d+ e+ 1)� cd(a+ b+ e+ 1). (2.7)

If e = 0, then we have one vertex of degree 4 in L(Ha,b,c,d,e), while if e � 1, then the
greatest degree of a vertex in L(Ha,b,c,d,e) is 3. Analogously as in [8], by symmetry we
distinguish eleven cases. Five cases with at least one of a, b, c, d greater than or equal to 2
have e � 1, five cases with at least one of a, b, c, d greater than or equal to 2 have e = 0,
and the last case has all a, b, c, d equal to 1. First we consider the cases with � > 0.

Claim 1. If � > 0, then R3(Ha,b,c,d,e) > R3(Pa+b+c+d+e+2).

Proof. Observe that |V (Ha,b,c,d,e)| = |V (Pa+b+c+d+e+2)|. If � > 0, then
R3(Ha,b,c,d,e) = 1 + �

W0
> 1. However, R3(Pn) is always smaller than 1.

By [8], there are 8 cases (out of the 11) for which in [8] it was proved that � > 0 (we
remark that P is used instead of � in [8]). These are the cases:

1. (case 3 in [8]) a, c � 2, b = d = 1, e � 1;

2. (case 4 in [8]) a, b � 2, c = d = 1, e � 1;
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3. (case 5 in [8]) a � 2, b = c = d = 1, e � 1;

4. (case 7 in [8]) a, b, c � 2, d = 1, e = 0;

5. (case 8 in [8]) a, c � 2, b = d = 1, e = 0;

6. (case 9 in [8]) a, b � 2, c = d = 1, e = 0;

7. (case 10 in [8]) a � 2, b = c = d = 1, e = 0;

8. (case 11 in [8]) a = b = c = d = 1, e � 0.

By Claim 1 it suffices to consider the remaining three cases.
We proceed analogously as in the proof of Theorem 1.9. Hence, we prove that when

|V (Ha,b,c,d,e)| = |V (Pn)|, that is when n = a+ b+ c+ d+ e+ 2, then R3(Ha,b,c,d,e) >
R3(Pn). This inequality is equivalent to

1 +
�

W0
>

(n� 2)(n� 3)(n� 4)

(n+ 1)n(n� 1)

and after multiplying by denominators also to

�(n+ 1)n(n� 1) +W0

�
(n+ 1)n(n� 1)� (n� 2)(n� 3)(n� 4)

�
> 0. (2.8)

Now we consider the remaining three cases.

Case 1: a, b, c, d � 2, e � 1. In [8] we have

2� = 7(a+b+c+d+e)2 � 20(ab+ac+ad+bc+bd+cd)� 10(ae+be+ce+de)

+ 5(a+b+c+d) + 65e+ 234. (2.9)

Denote

D = 11
�
cd(a� b)2(a+ b) + bd(a� c)2(a+ c) + ad(b� c)2(b+ c)

+ bc(a� d)2(a+ d) + ac(b� d)2(b+ d) + ab(c� d)2(c+ d)
�
.

Observe that D � 0. Now substitute (2.9) and (2.7) into the left-hand side of (2.8) and
delete D. When we expand the resulting expression, all the coefficients will be posi-
tive. Since the constant term is 708, which is strictly positive, (2.8) is satisfied and so
R3(Ha,b,c,d,e) > R3(Pa+b+c+d+e+2).

Case 2: a, b, c � 2, d = 1, e � 1. From [8] we have

� = 3(a2+b
2+c

2+e
2)� 3(ab+ac+bc) + (ae+be) + 2ce� 2(a+ b)� c+ 28e+ 97.

In [8] it was shown that if e � 2 then � > 0. By Claim 1,

R3(Ha,b,c,1,e) > R3(Pa+b+c+e+3)

in this subcase, so it suffices to restrict ourselves to e = 1. For e = 1 we obtain

� = 3(a2+b
2+c

2)� 3(ab+ac+bc)� a� b+ c+ 128. (2.10)
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Now substitute (2.10) and (2.7) with e = 1 into the left-hand side of (2.8). When we expand
the resulting expression, all the coefficients will be positive. Since the constant term is
8280, which is strictly positive, (2.8) is satisfied and so R3(Ha,b,c,1,1) > R3(Pa+b+c+4).

Case 3: a, b, c, d � 2, e = 0. In [8] we have

� = 4(a+b+c+d)2 � 11(ab+ac+ad+bc+bd+cd) + 3(a+b+c+d) + 137. (2.11)

Denote

D = 10
�
cd(a� b)2(a+ b) + bd(a� c)2(a+ c) + ad(b� c)2(b+ c)

+ bc(a� d)2(a+ d) + ac(b� d)2(b+ d) + ab(c� d)2(c+ d)
�
.

Observe that D � 0. Now substitute (2.11) and (2.7) into the left-hand side of (2.8)
and delete D. When we expand the resulting expression, all the coefficients will be pos-
itive. Since the constant term is 828, which is strictly positive, (2.8) is satisfied and so
R3(Ha,b,c,d,0) > R3(Pa+b+c+d+2). This completes the proof.
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[12] M. Knor, P. Potočnik and R. Škrekovski, Wiener index of iterated line graphs of trees
homeomorphic to the claw K1,3, Ars Math. Contemp. 6 (2013), 211–219, https://
amc-journal.eu/index.php/amc/article/view/250.
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Abstract

For a connected graph G, the total number of independent vertex sets (including the
empty vertex set) is denoted by i(G). In this paper, we consider Nordhaus-Gaddum-type
inequalities for the number of independent sets of a connected graph with connected com-
plement. First we define a transformation on a graph that increases i(G) and i(G). Next,
we obtain the minimum and maximum value of i(G)+i(G), where graph G is a tree T with
connected complement and a unicyclic graph G with connected complement, respectively.
In each case, we characterize the extremal graphs. Finally, we establish an upper bound on
the i(G) in terms of the Wiener polarity index.

Keywords: Independent sets, connected complement, bounds, the Wiener polarity index, Nordhaus-
Gaddum-type inequality.

Math. Subj. Class.: 05C69, 05C30

1 Introduction
Let G = (V (G), E(G)) be a simple connected graph of order n with vertex set V (G) and
edge set E(G), denote by NG(u) the set of neighbors of a vertex u in G, and denote by
G[S] the graph which is induced by vertex set S ✓ V (G). A double star Sp,q is obtained
from Sp and Sq by connecting the center of Sp with that of Sq . A graph is unicyclic if and
only if it is connected and has size equal to its order.

Given a graph G, a k-independent set is a set of k vertices, no two of which are adjacent.
Denote by i(G; k) the number of k-independent sets of G, k � 1. It is both consistent and
convenient to define i(G; 0) = 1. The family of the independent sets in G which contains
the vertex sets U and S is denoted by IU,S(G), and let iU,S(G; k) be its cardinality. The
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total number of independent vertex sets (including the empty vertex set) of a molecular
graph G = (V,E), denoted by i(G), is defined as

i(G) =
X

k�0

i(G; k).

In chemical literature, the number of the independent sets of graphs i(G) is referred
to as the Merrifield-Simmons index. It is a valuable topological index introduced by the
American chemists Richard E. Merrifield and Howard E. Simmons [12] in 1989. It is one
of the topological indices whose mathematical characteristics has been extensively studied
in a monograph [11, 20]. Its applicability for QSPR and QSAR was also examined to a
much lesser extent. In [12] it has been shown that i(G) is correlated with boiling points.
And, for the path Pn, i(Pn) is equal to the Fibonacci number Fn+1 [15].

The problem of counting the number of independent sets in a graph is NP-complete [16].
However, for certain types of graphs the problem of determining their number of indepen-
dent subsets is polynomial. For instance, the number of independent sets in tree, uncyclic,
and tricyclic graphs are calculated in [15, 14, 21], respectively. It is of significant interest
to study the extremal graphs having maximal or minimal index. Zhu [20] characterized the
extremal unicyclic graphs with a perfect matching which have maximal, second maximal
Merrifield-Simmons index. In [17], S. Wagner and I. Gutman wrote a survey of results and
techniques on the Hosoya index and Merrifield-Simmons index. Other recent results on the
number of independent sets can be found in [2, 4, 3, 9].

The number of unordered vertices pairs that are at distance 3 in a graph G, denoted by
Wp(G), is

Wp(G) = |{(u, v) | dG(u, v) = 3, u, v 2 V (G)}|.

It is also referred as the Wiener polarity index ([5, 7, 8]). Motivated by the result of [7],
Hua et al. gave an upper bound on the Wiener polarity index in terms of the Hosoya index.
We can find that, in a graph G, every pair of vertices at distance 3 corresponds to some
2-independent sets. There are also some relationships between the number of independent
sets and the Wiener polarity index.

The Nordhaus-Gaddum-type results are bounds of the sum or the product of a parameter
for a graph and its complement. The name “Nordhaus-Gaddum-type” is given because
Nordhaus and Gaddum [13] first found this type of inequality for the chromatic number of
a graph and its complement in 1956. Since then, Nordhaus-Gaddum-type inequalities for
many other graph invariants have been studied in a number of papers [1, 7, 10, 19]. We
respectively research Nordhaus-Gaddum-type results for tree i(T ), unicyclic graph i(G)
and connected graph i(G).

In this paper, we consider Nordhaus-Gaddum-type inequalities for the number of inde-
pendent sets of a connected graph with a connected complement. Firstly, in Section 2 we
establish a transformation on graphs that increases i(G) and i(G). Secondly, in Section 3
and 4, we obtain the minimum and maximum value of i(G) + i(G), where graph G is a
tree T with connected complement and a unicyclic graph G with connected complement,
respectively. In each case, we characterize the extremal graphs. Finally, in Section 5 we es-
tablish a lower bound on i(G) in terms of the Wiener polarity index. And, for a connected
graph G with connected complement G, we obtain the minimum of i(G)+ i(G). Also, we
pose a conjecture about which graph obtains the maximum value of i(G) + i(G).

Other notation and terminology not defined here will conform to those in [18].
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2 Preliminary
Lemma 2.1 ([6]). Let G = (V,E) be a graph.

(1) If uv 2 E(G), then i(G) = i(G� uv)� i(G� (N [u] [N [v]));
(2) If u 2 V (G), then i(G) = i(G� u) + i(G�N [u]);
(3) If G1, G2, . . . , Gt are the components of the graph G, then i(G) =

Q
t

j=1 i(Gj).

Theorem 2.2. Let G be a simple graph and uv an edge of G such that NG(u)\NG(v) = ;

and d(u), d(v) > 1. Let Gu,v denote the graph obtained from G by identifying vertex u
and v (the new vertex is labeled as u) and attaching a pendent vertex v at u. Then

(1) i(Gu,v) � i(G) with equality if and only if G[NG�u(v) [ NG(u) \ {v}] is not an
empty graph;

(2) i(Gu,v) � i(G) with equality if and only if G[NG�u(v) [ NG(u) \ {v}] is not an
empty graph.

Proof. For convenience, let G0 = Gu,v . By Lemma 2.1(1), for all non-negative integers k,
we have i(G; k) = i(G� u; k) + i(G� u�NG(u); k � 1).

(1) By i(G; k) = i(G� u; k) + i(G� u�NG(u); k � 1), we have

i(G; k) = i(G� v; k) + i(G� v �N
G
(v); k � 1)

= i(G� v � u; k) + i(G� v � u�N
G�v

(u); k � 1) + i(G� v �N
G
(v); k � 1)

and

i(G0; k) = i(G0 � v � u; k) + i(G0 � v � u�N
G0�v

(u); k � 1)

+ i(G0 � v �N
G0(v); k � 1).

Obviously,

G� v � u = G0 � v � u,

N
G�v

(u) = N
G0�v

(u) [ (NG(v) \ {u}),

N
G0(v) = N

G
(v) [ (NG(v) \ {u}),

N
G
(v) = [N

G
(u) \ (NG(v) \ {u})] [ [NG(u) \ {v}],

G0 � v �N
G0(v) = G� v �N

G
(v)� (NG(v) \ {u}),

N
G
(v) \ (NG(v) \ {u}) = ;, and

N
G0�v

(u) \ (NG(v) \ {u}) = ;.

So,

i(G0; k)� i(G; k)

= i(G� v � u; k) + i(G� v �N
G
(v)� (NG(v) \ {u}); k � 1)

+ i(G� v � u� [N
G
(u) \ (NG(v) \ {u})]; k � 1)� i(G� v � u; k)

� i(G� v � u�N
G�v

(u); k � 1)� i(G� v �N
G
(v); k � 1)

= iNG(v)\{u}(G� v � u� [N
G�v

(u) \ (NG(v) \ {u})]; k � 1)

� iNG(v)\{u}(G� v �N
G
(v); k � 1)
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= iNG(v)\{u}(G� v � u� [N
G�v

(u) \ (NG(v) \ {u})]; k � 1)

� iNG(v)\{u}(G� v � u�N
G
(v); k � 1)

� iNG(v)\{u}(G� v � u�N
G
(v)�N

G�v�NG(v)(u); k � 2)

= iNG(v)\{u},NG(u)\{v}(G� v � u� [N
G�v

(u) \ (NG(v) \ {u})]; k � 1) � 0.

Obviously, if

iNG(v)\{u},NG(u)\{v}
�
G� v � u� [N

G�v
(u) \ (NG(v) \ {u})]; k � 1

�
= 0,

G[NG�u(v) [ NG(u) \ {v}] is not an empty graph. Conversely, if graph G[NG�u(v) [
NG(u) \ {v}] is not an empty graph,

iNG(v)\{u},NG(u)\{v}
�
G� v � u� [N

G�v
(u) \ (NG(v) \ {u})]; k � 1

�
= 0.

(2) By i(G; k) = i(G� u; k) + i(G� u�NG(u); k � 1), we can similarly get:

i(G; k) = i(G� u; k) + i(G� u�NG(u); k � 1)

= i(G� u� v; k) + i(G� u� v �NG�u(v); k � 1) + i(G� u�NG(u); k � 1)

and

i(G0; k) = i(G0
� u� v; k) + i(G0

� u� v �NG0�u(v); k � 1)

+ i(G0
� u�NG0(u); k � 1).

Obviously,

G� u� v = G0
� u� v,

NG0�u(v) = ;,

NG(u) \NG�u(v) = ;, and
G0

� u�NG0(u) = G� u�NG(u)�NG�u(v).

So,

i(G0; k)� i(G; k) = i(G� u� v; k) + i(G� u�NG(u)�NG�u(v); k � 1)

+ i(G� u� v; k � 1)� i(G� u� v �NG�u(v); k � 1)

� i(G� u� v; k)� i(G� u�NG(u); k � 1)

= iNG�u(v)(G� u� v; k � 1)� iNG�u(v)(G� u�NG(u); k � 1)

= iNG�u(v),NG(u)\{v}(G� u� v; k � 1) � 0.

Obviously, if
iNG�u(v),NG(u)\{v}(G� u� v; k � 1) = 0,

G[NG�u(v) [ NG(u) \ {v}] is not an empty graph. Conversely, if graph G[NG�u(v) [
NG(u) \ {v}] is not an empty graph,

iNG�u(v),NG(u)\{v}(G� u� v; k � 1) = 0.
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3 The Nordhaus-Gaddum-type inequality for trees
In this section, we consider a tree T with connected complement T , then we obtain the
minimum and maximum value of i(T ) + i(T ) and characterize the extremal graph.

Lemma 3.1 ([15]). The star Sn has the maximal Merrifield-Simmons index for all trees
with n vertices. And, the path Pn has the minimal Merrifield-Simmons index for all trees
with n vertices.

For the proof, we give an equality involving i(T ) + i(T ) as follows.

Lemma 3.2. Let T be a tree of order n with connected complement T . Then

i(T ) + i(T ) = 2n+ i(T ).

Proof. For connected complement T and all non-negative integers k � 3, it is easy to
verify i(T ; k) = 0 and i(T ; 2) = |E(T )| = n� 1. Therefore

i(T ) + i(T ) = i(T ) + 1 + n+ i(T ; 2) = 2n+ i(T ).

Now we give the Nordhaus-Gaddum-type inequality of a tree for i(T ).

Theorem 3.3. Let T be a tree of order n with connected complement T , then

i(T ) + i(T ) � 2n+ Fn+1

with equality if and only if T ⇠= Pn, where Fn+1 is the Fibonacci number.

Proof. By Lemma 3.1 and Lemma 3.2 graph which reaches the minimum value of i(T ) +
i(T ).

And, i(Pn) is equal to the Fibonacci number Fn+1, then i(T )+i(T ) � 2n+Fn+1.

Theorem 3.4. Let T be a tree of order n with connected complement T , then

i(T ) + i(T )  2 + 2n+ 2n�3 + 2n�2

with equality if and only if T ⇠= S2,n�2.

Proof. If T and T are connected graphs, then the star Sn is not the extremal graph which
reaches the maximum value of i(T ) + i(T ). So we assume D(T ) � 3.

Let P = v0v1 . . . vD(T ) be a diametrical path of tree T . By Theorem 2.2, we have

i(TD(T )�1,D(T )�2) + i(TD(T )�1,D(T )�2) > i(T ) + i(T ).

Obviously, graph TD(T )�1,D(T )�2 is a tree of order n.
Therefore, for the tree of order n with connected complement, by shortening the dia-

metrical path of a tree, we can get the extremal graph the double star Sp,q which reaches
the maximal value of i(T ) + i(T ). For the double star Sp,q of order n, we have

i(Sp,q) + i(Sp,q) = 2 + 2n+
n�2X

i=2

✓
n� 2

i

◆
+

p�1X

i=1

✓
p� 1

i

◆
+

q�1X

i=1

✓
q � 1

i

◆
+ p+ q � 1

= 2n+ 2n�2 + 2p�1 + 2q�1

 2 + 2n+ 2n�3 + 2n�2

with equality if and only if p = n�2 or q = n�2. So i(T )+i(T )  2+2n+2n�3+2n�2

with equality if and only if T ⇠= S2,n�2.
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4 The Nordhaus-Gaddum-type inequality for unicyclic graphs
In this section, we consider a unicyclic graph G of order n with connected complement
G, then we obtain the minimum and maximum value of i(G) + i(G) and characterize the
extremal graph. Obviously, if n < 5, any complement G is not connected. We need to
consider the case when n � 5.

Lemma 4.1 ([14]). If G is a unicyclic graph of order n, then

(1) i(G) � Fn�1+Fn+1 and equality occurs if and only if G ⇠= Cn or G ⇠= Ln,3, where
Ln,3 is the unicyclic graph of order n obtained from the two vertex disjoint graphs
C3 and Pn�3 by adding an edge joining a vertex of C3 to an endvertex of Pn�3.

(2) i(G)  3⇥ 2n�3 + 1 and equality holds if and only if G is a 4-cycle or G ⇠= Hn,3,
where Hn,3 is the unicyclic graph of order n constructed by attaching n � 3 leaves
to one vertex on a cycle of length 3.

For the proof, we give an equality about i(G) + i(G) as follows.

Lemma 4.2. Let G be a unicyclic graph of order n � 5 with connected complement G,
then

i(G) + i(G) = 1 + 2n+ i(G; 3) + i(G).

Proof. For connected complement G and all non-negative integers k � 4, it is easy to
verify i(G; k) = 0 and i(G; 2) = |E(G)| = n. Therefore

i(G) + i(G) = i(G) + 1 + n+ i(G; 2) + i(G; 3) = 1 + 2n+ i(G; 3) + i(G).

Now we give the Nordhaus-Gaddum-type inequality of a unicyclic graph for i(G).

Theorem 4.3. Let G be a unicyclic graph of order n � 5 with connected complement G,
then

i(G) + i(G) � 1 + 2n+ Fn�1 + Fn+1

with equality if and only if G ⇠= Cn, where Fn+1 is the Fibonacci number.

Proof. Obviously, i(Ln,3; 3) = 1 > i(Cn; 3) = 0, and the complement of graph Cn is a
connected graph. Then by Lemma 4.1(1) and Lemma 4.2, we have i(Ln,3) = i(Cn) and

i(G) + i(G) = 1 + 2n+ i(G; 3) + i(G)

� 1 + 2n+ i(Cn; 3) + i(Cn)

= 1 + 2n+ Fn�1 + Fn+1.

In order to formulate our results, some graphs need to be defined. Let Ox1,x2,x3 denote a
unicyclic graph on n vertices created from a cycle C3 = v1v2v3 by attaching xi (i = 1, 2, 3)
pendent vertices to vi such that x1 + x2 + x3 + 3 = n and x1 � x2 � x3, x2 � 1.

Let Uy1,y2 denote a unicyclic graph on n vertices created from a cycle C3 = v1v2v3 by
attaching y1 pendent vertices u1, u2, . . . , uy1 to v1 and attaching y2 pendent vertices to u1

such that y1 + y2 + 3 = n and y1 � 1, y2 � 2.

Theorem 4.4. Let G be a unicyclic graph of order n � 5 with connected complement G,
then

i(G) + i(G)  4 + 2n+ 2n�4 + 2n�2

with equality if and only if G ⇠= On�4,1,0.
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Proof. If the cycle in G is of length greater than three, then by applying the transformation
in Theorem 2.2 to the cycle, there is a unicyclic graph L1 with a triangle such that i(L1) +
i(L1) > i(G) + i(G).

Let H denote the set of all unicyclic graphs H with a triangle. Then for all H 2 H by
Lemma 4.2 we have i(H) + i(H) = 1 + 2n + i(H; 3) + i(H) = 2 + 2n + i(H). The
maximum value of i(H)+i(H) is equal to the maximum value of i(H). By Lemma 4.1(2),
we know that the graph Hn,3 is the extremal graph which obtains the maximum value i(H),
but the graph Hn,3 is not connected. So we calculate the second maximum value of i(H).

Case 1: There is a vertex in H with distance at least two to the 3-cycle.
By the transformation in Theorem 2.2, we get there is a graph L2 with i(L2) > i(H),

where L2
⇠= Ox1,x2,x3 or L2

⇠= Uy1,y2 .

i(Uy1,y2) = i(Uy1,y2 � v3) + i(Uy1,y2 �NUy1,y2
[v3])

= i(Sy1+1,y2+1) + i(Ky1�1 [ Sy2+1)

= 3⇥ 2n�4 + 2y2 + 3⇥ 2y1�1

 3⇥ 2n�4 + 2 + 3⇥ 2n�5

< 2 + 2n�4 + 2n�2 = i(On�4,1,0)

Case 2: G ⇠= Ox1,x2,x3

i(Ox1,x2,x3) = i(Ox1,x2,x3 � v3) + i(Ox1,x2,x3 �NOx1,x2,x3
[vv3 ])

= i(Sx1+1,x2+2 [Kx3) + i(Kx1+x2)

= 2n�3 + 2x1+x3 + 2x2+x3 + 2n�3�x3

 2n�3 + 2x1+x3 + 2x2 + 2n�3 = i(Ox1+x3,x2,0)

 2n�3 + 2n�4 + 2 + 2n�3 = i(On�4,1,0)

with equality if and only if x3 = 0 and x2 = 1. Obviously, the graph On�4,1,0 is connected.
So i(G) + i(G)  i(H) + i(H)  4 + 2n + 2n�4 + 2n�2 with equality if and only if
G ⇠= On�4,1,0.

5 The Nordhaus-Gaddum-type inequality for connected graphs
In this section, we obtain a lower bound on i(G) in terms of the Wiener polarity index.
And, for a connected graph G with connected complement G, we obtain a minimum value
of i(G) + i(G) and characterize the extremal graph. Also, we pose a conjecture about
which graph gets the maximum value of i(G) + i(G).

Lemma 5.1 ([7]). Let G be a connected graph with connected complement G, then

Wp(G) +Wp(G) � D(G) +D(G)� 4.

Moreover, equality holds if and only if G ⇠= Pn or G ⇠= G⇤⇤ or D(G) = D(G) = 2. The
graph G⇤⇤ of order n � 5 is obtained from a path P4 by joining each vertex of Hn�4 to
each internal vertex of the path P4 such that V (G⇤⇤)\V (P4) = V (Hn�4), where Hn�4 is
any graph of order n� 4.
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In order to get the lower bound on the i(G) + i(G), we give a lower bound on the i(G)
in terms of the Wiener polarity index.

Lemma 5.2. Let G be a connected graph of order n and D(G) � 2. Then

i(G) � 2 + n+ 2Wp(G)

with equality if and only if G ⇠= Gn or G ⇠= B2,n�2, where Gn = Kn � e, e 2 E(Kn),
B2,n�2 is a graph on n � 3 vertices obtained from P2 and Kn�2 by coinciding any vertex
of P2 with that of Kn�2.

Proof. If D(G) = 2, then Wp(G) = 0. Let P = uxy be a diametrical path, then {u, y} is
a 2-independent set of G. Therefore

i(G) � i(G; 0) + i(G; 1) + i(G; 2) � 1 + n+ 1 = 2 + n+ 2Wp(G)

follows readily. Suppose that equality is attained. Then G has only one 2-independent set
and no k-independent set, where k � 3. Also, D(G) = 2. Then, we have G ⇠= Gn.
Conversely, if G ⇠= Gn, then the equality is attained.

For the case D(G) � 3: Suppose that u and v are a pair of vertices in G such that
dG(u, v) = 3. Let uxyv be a path of length 3 connecting u and v in G. Then {u, y},
{u, v} and {x, v} are 2-independent sets of G. Therefore, every pair of vertices at distance
3 corresponds to three 2-independent sets in G. Moreover, for any two paths connecting
distinct pair vertices at distance 3, they correspond to two different 2-independent sets and
one same 2-independent set, otherwise they correspond to three different 2-independent
sets. From this it follows that

i(G; 2) � 2Wp(G) + 1.

Therefore, by the definition of Merrifield-Simmons index, i(G) � i(G; 0) + i(G; 1) +
i(G; 2) � 1 + n+ 2Wp(G) + 1 = 2 + n+Wp(G), (2) follows readily.

Now, we check the equality condition. If i(G; 2) = 2Wp(G) + 1, by analysis, then any
two paths of distinct pair vertices at distance 3 correspond to two different 2-independent
sets and one same 2-independent set. If i(G; 3) = 0, D(G) = 3. So G ⇠= B2,n�2.

Conversely, if G ⇠= B2,n�2, then we clearly have i(G; 2) = 2Wp(G)+1 and i(G; 3) =
0. So, the equality is attained if and only if G ⇠= B2,n�2.

Theorem 5.3. Let G be a connected graph with connected complement G, then

i(G) + i(G) � 2n+ 2D(G) + 2D(G)� 4

with equality if and only if G ⇠= P4.

Proof. By Lemma 5.1 and Lemma 5.2, the result is obvious.

Conjecture 5.4. Let G be a connected graph with connected complement G, then

i(G) + i(G)  2 + 2n+ 2n�3 + 2n�2

with equality if and only if G ⇠= S2,n�2.
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For a connected graph G with connected complement G, it is difficult to get the value of
max{i(G) + i(G)}. For n  5, by enumeration and calculation, we can find max{i(G) +
i(G)} = max{i(T ) + i(T )} = i(S2,n�2) + i(S2,n�2). If we do not consider the connec-
tivity of the graph, we can get:

Theorem 5.5. Let G be a simple graph of order n. If we do not consider the connectivity
of the graph, then

i(G) + i(G)  1 + n+ 2n

with equality if and only if G ⇠= Kn or G ⇠= Kn.

Proof. Let k,m 2 N. Without loss of generality, we assume that ↵(G) > ↵(G).
Every pair of vertices are not a 2-independent set of G, which compose of a 2-independent

set of G. Moreover, for any two vertices which do not compose of a 2-independent set of
G, they compose of a 2-independent set of G. Then, we have i(G; 2) + i(G; 2) = C2

n
.

Suppose i(G; 3) = k. Since every three vertices which are a 3-independent set of G are
not a 3-independent set of G, we have i(G; 3)  C3

n
� k. Therefore, we have

i(G) + i(G)  2 + 2n+ C2
n
+ C3

n
+ . . .+ C↵(G)

n
= 1 + n+ 2n �

nX

i=↵(G)+1

Ci

n
. (5.1)

Now, we check the equality condition in (1). If i(G;m) = Cm
n

� i(G;m), then for
any m vertices which are not an independent set of G, they are an m-independent set of G.
Then, G is the empty graph, and G ⇠= Kn. By the definition of G and G, we have

i(G) + i(G)  1 + n+ 2n.

Obviously, for connected graph G with a connected complement, 1+n+2n is an upper
bound on the maximum value of i(G)+i(G). And, the lower bound on the maximum value
of i(G) + i(G) is i(S2,n�2) + i(S2,n�2). The difference between the upper bound and the
lower bound is 5 · 2n�3

� n� 1.

6 Conclusions
In this paper, we firstly establish a transformation on a simple graph that increases i(G)
and i(G). Secondly, we prove the path Pn and the double star S2,n�2 are the extremal
graphs which respectively reach the minimum and maximum value of i(T ) + i(T ). Then,
for unicyclic graphs G, we get that the cycle Cn and the graph On�4,1,0 are the extremal
graphs which respectively reach the minimum and maximum value of i(G)+i(G). Finally,
for connected graphs G, we find i(G) � 2 + n + 2Wp(G) with equality if and only if
G ⇠= Gn or G ⇠= B2,n�2. Then we obtain i(G) + i(G) � 2n+ 2D(G) + 2D(G)� 4 with
equality if and only if G ⇠= P4. Also, we conjecture that the extremal graph which reaches
the maximum value of i(G) + i(G) is S2,n�2. Which graph gives the maximum value on
i(G) + i(G) remains an open problem.
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Norman W. Johnson (12 November 1930 to 13 July 2017)

Norman W. Johnson was born on November 12, 1930 in Chicago, where his father had a

bookstore and ran a local newspaper. He attended Carleton College, graduating in 1953. He

did alternative service as a conscientious objector then went on to earn a Master’s degree

from the University of Pittsburgh. He then went to the University of Toronto to work with

H. S. M. Coxeter in geometry. After receiving his PhD in 1966 he accepted a position in the

Mathematics Department of Wheaton College in Massachusetts and taught there until his

retirement in 1998. He is known for the “Johnson Solids,” the ninety-two non-uniform con-

vex solids with regular faces that he identified in a 1966 article [1] and speculated was the

complete set. He also published a number of other articles on various aspects of polytopes.

He died on July 13, 2017, but his completed book, Geometries and Transformations [2],

is forthcoming from Cambridge University Press. His nearly-completed work on uniform

polytopes, the subject of his dissertation, will be appearing.

Asia Ivić Weiss and Eva Marie Stehle
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Professor Wilfried Imrich awarded honorary doctorate at the
University of Maribor

On January 31, 2018, Prof. Emer. Dr. Wilfried Imrich from the Montanuniversität Leoben,
Austria, became a Honorary Doctor of the University of Maribor. The title was awarded to
him for his scientific achievements and contributions to the development of the University
of Maribor. The university awards this title since 1979, Wilfried Imrich is the first math-
ematician to receive this prestigious title. Moreover, he is the first foreign mathematician
with the honorary doctor title at a Slovenian university.

The collaboration between Wilfried Imrich and the Slovenian graph theory school
started when in the 1980s he established together with Tomo Pisanski the Leoben-Ljubljana
seminar, which is still going on. The rest is then history. As a coincidence, the 30th
Ljubljana-Leoben Graph Theory Seminar that happened in September 2017, took place for
the first time in Maribor. In the last two decades, Wilfried was a frequent participant of
the Seminar on discrete mathematics that is held at the Faculty of Natural Sciences and
Mathematics in Maribor. He has written three books and close to fifty papers with a dozen
co-authors from Maribor. The fact that at the present 16 academic descendants of Prof.
Imrich have positions at the University of Maribor indicates that the award was more than
deserved.

Boštjan Brešar and Sandi Klavžar



Special Issue of ADAM on Symmetries of Graphs and
Networks – Call for Papers

This is a call for submission of papers for a special issue of the journal The Art of
Discrete and Applied Mathematics (ADAM), on topics presented or related to talks given
at the TSIMF workshop on ‘Symmetries of Graphs and Networks’ held at Sanya (China)
in January 2018. The Sanya workshop added to the series of conferences and workshops
on symmetries of graphs and networks initiated at BIRS (Canada) in 2008 and progressed
in Slovenia every two years from 2010 to 2016.

The Art of Discrete and Applied Mathematics (ADAM) is a modern, dynamic, platinum
open access, electronic journal that publishes high-quality articles in contemporary discrete
and applied mathematics (including pure and applied graph theory and combinatorics), with
no costs to authors or readers. This special issue, however, will be also available in printed
form for purchase.

Papers should be submitted by 31 December 2018, via the ADAM website https:
//adam-journal.eu/index.php/ADAM. A template and style file for submissions
can be downloaded from that website, or obtained from one of the guest editors on request.
The ideal length of papers is 5 to 15 pages, but longer or shorter papers will certainly be
considered. Papers that are accepted will appear on-line soon after acceptance, and papers
that are not processed in time for the special issue may still be accepted and published in a
subsequent regular issue of ADAM.

Marston Conder and Yan-Quan Feng
Guest Editors
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