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A B S T R A C T	   A R T I C L E   I N F O	

The	paper	gives	an	account	of	the	machined	surface	roughness	investigation	
based	on	the	features	of	a	digital	image	taken	subsequent	to	the	technological	
operation	of	milling	of	aluminium	alloy	Al6060.	The	data	used	for	 investiga‐
tion	were	obtained	by	mixed‐level	factorial	design	with	two	replicates.	Input	
variables	 (factors)	 are	 represented	 by	 the	 face	milling	 basic	 machining	 pa‐
rameters:	 spindle	 speed	 (at	 five	 levels:	 2000;	 3500;	 5000;	 6500;	 8000	
rev/min,	 respectively),	 feed	 per	 tooth	 (at	 six	 levels:	 0.025;	 0.1;	 0.175;	 0.25;	
0.325;	0.4	mm/tooth,	respectively)	and	depth	of	cut	(at	two	levels:	1;	2	mm,	
respectively).	Output	variable	or	response	is	the	most	frequently	used	surface	
roughness	parameter	–	arithmetic	average	of	the	roughness	profile,	Ra.	Digital	
image	 of	 the	machined	 surface	 is	 provided	 for	 every	 test	 sample.	 Based	 on	
experimental	design	and	obtained	results	of	roughness	measuring,	a	base	has	
been	 created	 of	 input	 data	 (features)	 extracted	 from	 digital	 images	 of	 the	
samples'	machined	surfaces.	This	base	was	later	used	for	generating	the	fuzzy	
inference	 system	 for	prediction	of	 the	 surface	 roughness	using	 the	 adaptive	
neuro‐fuzzy	inference	system	(ANFIS).	Assessing	error,	i.e.	comparison	of	the	
assessed	value	Ra	 provided	by	 the	 system	with	 real	Ra	 values,	 is	 expressed	
with	 the	 normalized	 root	 mean	 square	 error	 (NRMSE)	 and	 it	 is	 0.0698	
(6.98	%).	
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1. Introduction  

Surface	roughness	is	an	important	technological	parameter	and	indicator	of	the	machined	sur‐
face	quality.	Requirements	for	lower	values	of	surface	roughness	simultaneously	affect	the	pro‐
longation	of	machining	time	and	increase	of	production	costs.	Surface	roughness	is	conditioned	
by	a	larger	number	of	controlled	and	uncontrolled	process	parameters	(including	cutting	speed,	
depth	of	cut	and	feed	rate,	raw	material	properties,	cutting	conditions,	tool	properties,	tool	ma‐
chine	vibrations,	 tool	wear	etc.).	By	regular	monitoring	the	results	of	a	machining	process	and	
expanding	the	knowledge	base	about	the	monitored	parameters	of	observed	processes,	it	is	pos‐
sible	to	continuously	improve	a	product	characteristic	and	production	results.	

There	is	a	great	number	of	scientific	investigations	aimed	at	prediction	and	control	of	surface	
roughness	[1‐4].	The	models	defined	in	these	investigations	can	be	divided	into	regression	(sta‐
tistic),	analytic	(mathematic)	and	those	based	on	the	application	of	artificial	intelligence	(AI)	[5‐8].	

It	 is	often	the	case	that	the	digital	 image	features	of	the	machined	surfaces	are	used	in	con‐
trolling	or	assessing	the	machined	surface	roughness.	The	image	features	are	used	as	input	vari‐
ables	for	the	assessing	model	[9‐13],	and	they	are	mostly	represented	by	statistic	values	such	as	
arithmetic	mean	and	standard	deviation	[14],	different	kinds	of	standards	such	as	the	Euclidean	
and	the	Hamming	norm	[15],	wave	transformations	such	as	the	Haar	wavelet	transform	[16]	and	
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the	 two‐dimensional	 Fourier	 transform	 [17]	 etc.	 Adaptive	 neuro‐fuzzy	 inference	 system	 (AN‐
FIS),	 artificial	 neural	 networks	 (ANN),	 regression	 analysis	 and	others	 are	 the	methods	mostly	
used	for	assessing.	

Lee	et	al.	[14]	propose	a	method	using	an	adaptive	neuro‐fuzzy	inference	system	(ANFIS)	to	
establish	the	relationship	between	actual	surface	roughness	and	texture	features	of	the	surface	
image.	The	 input	parameters	of	a	 training	model	are	spatial	 frequency,	arithmetic	mean	value,	
and	 standard	deviation	 of	 grey	 levels	 from	 the	 surface	 image.	 In	paper	 [18]	 the	ANFIS	 is	 also	
used	in	assessing	the	surface	roughness	using	cutting	parameters	(cutting	speed,	feed	rate,	and	
depth	of	cut)	and	grey	level	of	the	surface	image.	The	assessing	model	error	is	less	than	4.6	%.	In	
papers	[19]	and	[20]	machine	vision	system	is	also	used	integrated	with	ANFIS.	Paper	[19]	as‐
sesses	Ra,	tool	wear	ratio	and	metal	removal	rate	in	micro‐turning	process.	The	assessing	error	
is	less	than	3.5	%.	Investigation	in	paper	[20]	is	directed	to	assessment	of	surface	roughness	of	
end	milled	parts.	Using	a	two	dimensional	Fourier	transform	(2D	FT)	features	of	image	texture	
are	 extracted,	 such	as	peak	 frequency,	principal	 component	magnitude	 squared	value	and	 the	
average	grey	level.	The	ANFIS	and	the	neural	networks	methods	used	in	assessing	roughness	are	
compared	and	the	assessing	errors	are	very	close	and	less	than	2.5	%.	

In	paper	[21]	the	Euclidean	and	Hamming	distances	of	the	surface	images	are	used	for	sur‐
face	recognition.	Machined	surface	images	with	different	values	of	surface	roughness	were	col‐
lected.	The	base	is	formed	of	referent	images	with	known	values	of	surface	roughness.	The	Eu‐
clidean	and	Hamming	distances	between	the	tested	surface	and	the	referent	surface	image	were	
used	in	the	base	to	predict	the	surface	roughness	of	the	unknown	surface.	Excellent	concluding	
results	were	obtained	and	the	system	is	suitable	for	online	surface	characterization	of	machined	
surfaces.	The	paper	[16]	presents	methodology	based	on	the	extraction	of	texture	features	from	
part	surface	 images	 in	 the	 frequency	domain	using	wavelet	 transform.	One‐level	Haar	wavelet	
transform	 is	 applied	 to	 the	 original	 surface	 images.	 Surface	 evaluation	 was	 accomplished	 by	
means	of	 the	analysis	of	grey	 levels	 in	 the	vertical	detail	 sub‐image	of	 surface	 images.	Experi‐
mental	results	show	that	the	proposed	approach	achieves	error	rates	between	2.59	%	and	4.17	%.	
Paper	[22]	is	also	based	on	the	application	of	the	wavelet	transform.	Authors	apply	vision	sys‐
tem	for	acquiring	digital	 images	of	machined	surfaces,	analyse	the	 image	parameters	and	con‐
nect	them	with	the	roughness	of	the	surface	machined	by	turning.	The	machined	surface	digital	
images	are	described	using	the	one‐dimensional	digital	wavelet	transform.	The	neural	networks	
based	system	is	used	 for	assessing	roughness.	The	testing	phase	error	 is	a	bit	more	than	5	%.	
Papers	 [23,	 24]	 also	 apply	Machine	Vision	and	ANN.	 In	paper	 [23]	 they	are	used	 to	 assess	Ra	
values	using	the	input	obtained	from	the	digital	images	of	inclined	surfaces	which	include	optical	
roughness	parameters	(major	peak	frequency,	principal	component	magnitude	squared,	average	
power	spectrum,	central	power	spectrum	percentage,	ratio	of	major	axis	to	minor	axis).	To	im‐
prove	the	quality	of	 the	 images	shadow	removal	algorithm	is	used.	The	high	value	of	 the	ANN	
model	correlation	coefficient	(87	%)	confirms	its	applicability.	Through	computer	vision	system	
authors	 in	 paper	 [24]	 collect	 features	 of	 image	 texture	 of	machined	 surface	 (major	 peak	 fre‐
quency,	principal	component	magnitude	squared	value	and	the	standard	deviation	of	grey	level	
and	by	the	application	of	abductive	networks	they	assess	surface	roughness	of	turned	parts.	The	
assessment	error	 is	around	15	%.	Authors	 in	papers	[25‐27]	analyse	 interconnection	between	
the	machined	 surface	 texture	 and	 the	machining	 time,	 in	 other	words	 condition	 and	wear	 of	
tools.	Authors	[25]	have	investigated	the	relationship	between	texture	features	of	the	grey‐level	
co‐occurrence	 matrix	 and	 the	 machining	 time	 in	 turning	 operations.	 Results	 of	 investigation	
have	shown	that	the	error	between	the	actual	and	the	calculated	machining	time	ranges	from	‐
4.65	%	to	7.79	%.	Authors	in	paper	[26]	used	machine	vision	technique	to	detect	the	condition	of	
tools	on	the	basis	of	turned	surface	images	using	an	accurate	grey	level	co‐occurrence	matrix.	In	
paper	 [27]	 authors	 investigated	 cutting	 tool	 nose	wear	 area	 and	 surface	 roughness	 of	 turned	
parts	using	machine	vision	system.	They	developed	an	algorithm	that	uses	Wiener	filtering	and	
simple	thresholding	on	backlit	images	in	order	to	reduce	the	impact	of	ambient	factors	(ambient	
lighting)	and	vibrations.	The	developed	system	roughness	assessing	error	was	10	%.	 In	paper	
[28]	authors	 investigated	connection	between	surface	roughness	of	AA	6061	alloy	end	milling	
and	image	texture	features	of	milled	surface.	They	used	grey	 level	co‐occurrence	matrix	to	ex‐
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tract	the	image	texture	features	(contrast,	homogeneity,	correlation	and	energy).	For	establish‐
ing	the	relation	between	surface	roughness	and	image	texture	the	regression	analysis	is	applied.	
The	paper	 [29]	demonstrates	 that	 some	 roughness	parameters	 (Ra,	Rq,	Rv,	Rt	and	Rz)	 can	be	
estimated	using	only	image‐extracted	features	and	models,	without	the	knowledge	of	machining	
parameters.	Authors	observe	three	image	texture	features	of	turned	surface:	gradient	factor	of	
surface,	average	cycle	of	texture	and	average	grey	level.	There	is	a	very	high	correlation	between	
surface	roughness	and	the	given	features	of	digital	image.	Authors	in	[9]	investigated	surface	lay	
in	the	surface	roughness	evaluation	using	machine	vision.	Numerous	parameters	of	digital	image	
are	considered	such	as	grey	level	average,	grey	level	co‐occurrence	matrix	based	image	quantifi‐
cation	parameters	(contrast,	correlation,	energy	or	uniformity,	maximum	probability	and	differ‐
ential	 box	 courting	 based	 fractal	 dimension)	 of	machined	 surface	while	 changing	 the	 angle	 of	
taking	images.	Therefore,	it	can	be	concluded	that	investigations	were	directed	towards	building	
a	 system	 (machine	 vision	 system)	 for	 a	 quicker	 and	 cheaper	 control,	 i.e.	 assessment	 of	 the	
roughness	of	machined	surfaces	 in	real	 time.	The	actual	paper	 investigations	are	an	additional	
contribution	for	assessing	roughness	of	machined	surface	based	on	the	features	of	digital	image	
using	the	adaptive	neuro‐fuzzy	inference	system	(ANFIS).	

2. Experimental and methodology 

2.1 Experimental 

Investigation	is	conducted	on	the	material	of	samples	Al6060	T66	(in	accordance	with	the	Euro‐
pean	norms	EN	AW‐6060	T66	[AlMgSi]).	Chemical	composition	of	the	alloy	Al6060	or	EN	AW‐
6060	according	to	EN	573‐3	is	given	in	Table	1.		

Mass	fraction	of	other	elements	can	be	to	the	maximum	of	0.15	%,	and	individually	0.05	%.	
Mechanical	and	physical	properties	(at	20	°C)	of	alloy	Al6060	or	EN	AW‐6060	according	to	EN	
755‐2	are	given	in	Table	2.		

Dimensions	of	samples	are	100	×	60	×	10	mm.	Samples	(Fig.	1)	are	machined	from	flat	bars	of	
transverse	section	60	×	10	mm.	

For	face	milling	of	100	×	60	mm	surface	vertical	CNC	milling	machine	was	used	produced	by	
HASS	type	VF‐2	and	face	milling	cutter	of	diameter	40	mm	produced	by	Walter	with	four	cutting	
inserts	(holder	mark:	F	4042.B.040.Z04.15	and	inserts	mark:	ADMT160608R‐F56	WKP35S).	The	
machining	was	carried	out	based	on	CNC	programme	that	repeated	 the	same	path	of	 the	 tool.	
The	 following	machining	 parameters	were	 being	 changed:	 spindle	 speed,	 feed	 per	 tooth,	 and	
depth	 of	 cut	 in	 an	 order	 defined	by	 the	 selected	mixed‐level	 factorial	 design.	 For	 clamping	 of	
samples	a	hydraulic	machine	vice	Alfa	NCO‐A	was	used.	

As	 the	applied	 fuzzy	 inference	system	will	have	 three	 inputs,	 the	suggested	 factorial	design	
has	 three	 factors.	 By	 a	 detailed	 analysis,	 considering	 the	 total	 number	 if	 input/output	 experi‐
mental	 data	 for	 the	 training	 phase	 and	 the	 checking	 phase	 of	 inference	 system,	 a	mixed‐level	
factorial	design	was	selected.	Five	spindle	speeds	(2000;	3500;	5000;	6500;	8000	rev/min,	re‐
spectively),	six	feeds	per	tooth	(0.025;	0.1;	0.175;	0.25;	0.325;	0.4	mm/tooth,	respectively)	and	
two	depths	of	cut	(1;	2	mm,	respectively)	are	used,	and	two	replicates	of	a	mixed‐level	factorial	
design	are	run.	

	

Table	1	Chemical	composition	of	Al6060	according	to	EN	573‐3	(wt%)	

Si	 Fe	 Cu	 Mn Mg Cr Zn	 Ti	
0.3‐0.6	 0.1‐0.3	 max	0.1	 max	0.1 0.35‐0.6 max	0.1 max	0.1	 max	0.1

	
	

Table	2	Mechanical	and	physical	properties	(at	20	°C)	of	material	Al6060	according	to	EN	755‐2		

Yield	tensile	strength,	MPa 150 Density,	kg/m3 2700
Ultimate	tensile	strength,	MPa		 195 Melting	point,	°C 585‐650
Elongation	at	break,	%	 8 Electrical	conductivity,	mS/m 28‐34
Hardness,	HB	 65 Thermal	conductivity,	W/mK 200‐220
Modulus	of	elasticity,	GPa 70 Coefficient	of	thermal	expansion,	10‐6/K	 23.4
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	Fig.	1	Preparation	of	samples	
	

All	other	features	specific	for	end	milling:	tool	stepover	between	neighbour	paths,	number	of	
passes,	total	length	of	paths,	are	held‐constant	factors,	the	same	as	the	Maxol	cooling/lubricating	
fluid	produced	by	Forol	d.d.,	tool	(milling	cutter)	and	material	of	the	sample.	

2.2 Methodology 

Adaptive	neuro‐fuzzy	 inference	system	(ANFIS)	method	 for	generating	 fuzzy	 inference	system	
requires	 a	 set	 of	 input/output	 experimental	 data.	 The	 fuzzy	 inference	 system	 (FIS)	 has	 three	
input	variables.	In	generating	FIS	the	ANFIS	method	with	three	membership	functions	per	each	
input	was	used.	Therefore,	27	different	fuzzy	rules	are	used	to	form	the	base	of	fuzzy	rules.	

For	the	FIS	first	row	the	base	of	fuzzy	rules	can	be	written	as:	
	
	 Rule	1:	If	ݔ	is	ܣଵ	and	ݕ	is	ܤଵ	and	ݓ	is	ܥଵ	then	ݖ	is	 ଵ݂ሺݔ, ,ݕ 	ሻݓ
	 Rule	2:	If	ݔ	ݏ݅	ܣଶ	and	ݕ	ݏ݅	ܤଶ	and	ݓ	ݏ݅	ܥଶ	then	ݖ	is	 ଶ݂ሺݔ, ,ݕ 	ሻݓ

…	
	 Rule	27:	If	ݔ	is	ܣଷ	and	ݕ	ݏ݅	ܤଷ	and	ݓ	is	ܥଷ	then	ݖ	is	 ଶ݂଻ሺݔ, ,ݕ 	ሻݓ
	
where	ݔ, ,௝ܣ	,inputs	ANFIS	present	ݓ	and	ݕ 	and	sets,	fuzzy		௝ܥ	and	௝ܤ ௜݂ሺݔ, ,ݕ 	polynomial	the	is	ሻݓ
first	 row	 and	 represents	 the	 output	 of	 the	 first	 row	 of	 Sugeno	 FIS.	 The	 system	 has	 adaptive	
nodes	(the	sets'	parameters	that	are	changeable‐adaptive)	and	fixed	nodes	(the	sets'	parameters	
that	 are	 fixed‐unchangeable).	 By	 arrangement,	 the	 nodes	 outputs	 are	marked	 as	 ܳ௟,௜	 where	 ݈	
represents	the	layer	and	݅	the	number	of	nodes.	

Five	layers	are	usually	used	to	explain	the	ANFIS	architecture.	
Layer	1	contains	adaptive	nodes.	Layer	1	node	functions	are	described	as:		

	

ܳଵ,௜ ൌ ሻݔ஺ೕሺߤ ቐ
݆ ൌ 1 ݎ݋݂ ݅ ൌ 1, . . . ,9
݆ ൌ 2 ݎ݋݂ ݅ ൌ 10, . . . ,18
݆ ൌ ݅	ݎ݋݂	3 ൌ 19, . . . ,27

	

ܳଵ,௜ ൌ ሻݕ஻ೕሺߤ ቐ
݆ ൌ ݅	ݎ݋݂	1 ൌ 1,2,3,10,11,12,19,20,21
݆ ൌ ݅	ݎ݋݂	2 ൌ 4,5,6,13,14,15,22,23,24
݆ ൌ ݅	ݎ݋݂	3 ൌ 7,8,9,16,17,18,25,26,27

	 	

ܳଵ,௜ ൌ ሻݓ஼ೕሺߤ ቐ
݆ ൌ ݅	ݎ݋݂	1 ൌ 1,4,7, . . . ,25
݆ ൌ ݅	ݎ݋݂	2 ൌ 2,5,8, . . . ,26
݆ ൌ 3 ݎ݋݂ ݅ ൌ 3,6,9, . . . ,27

	

	

(1)
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where	ݔ, 	node	present	ݓ	and	ݕ inputs,	ܣ௝, 	linguistic	௝ܥ	and	௝ܤ labels	and	ߤ஺ೕ, ‐mem	஼ೕߤ	and	஻ೕߤ
bership	functions.	Membership	functions	determine	the	degree	in	which	some	variable	satisfies	
a	 specific	 rule	 premise.	 There	 are	 various	 membership	 functions.	 In	 this	 paper	 a	 bell‐shape	
membership	function	is	applied	whose	general	form	can	be	written	as:		
	

ሻݔሺߤ ൌ
1

1 ൅ ቀݔ െ ܿ௜
ܽ௜

ቁ
௕೔

ሻݕሺߤ	; ൌ
1

1 ൅ ቀ
ݕ െ ܿ௜
ܽ௜

ቁ
௕೔

; ሻݓሺߤ ൌ
1

1 ൅ ቀݓ െ ܿ௜
ܽ௜

ቁ
௕೔ 	 (2)

where	ܽ௜, ܾ௜	and	ܿ௜		are	parameters	of	fuzzy	sets.	
Layer	2	contains	fixed	nodes	ߎ.	This	layer	fixed	nodes	represent	multiplication	of	input	sig‐

nals	whose	product	is	the	output	for	each	node.	
	

ܳଶ,௜	 ൌ ߱௜ ൌ ஺ೕߤ ⋅ ஻ೕߤ ⋅ ,஼ೕߤ ݎ݋݂ ݅ ൌ 1,… ,27	 (3)

Output	߱௜	is	called	the	firing	strength	of	a	fuzzy	rule.		
Layer	3	contains	fixed	nodes	ܰ.	This	layer	node	functions	calculate	the	ratio	of	the	݅‐th	firing	

strength	of	a	rule	and	the	firing	strength	of	all	rules.		
	

ܳଷ,௜	 ൌ ഥ߱௜=	
ఠ೔

∑ఠ೔
, ݎ݋݂ ݅ ൌ 1,… ,27	 (4)

Output	 ഥ߱௜	is	called	normalized	firing	strength	of	a	fuzzy	rule.	
Layer	4	contains	adaptive	nodes.	This	layer	node	functions	are	expressed	as:	
	

ܳସ,௜	 ൌ ഥ߱௜ ⋅ ௜݂ , ݎ݋݂ ݅ ൌ 1, … ,27	 (5)

where	 ௜݂	represents	conclusions	of	fuzzy	rules	for	which	is	valid:	
	

௜݂ ൌ ݔ௜݌ ൅ ݕ௜ݍ ൅ ݓ௜ݎ ൅ ௜ݏ , ݎ݋݂ ݅ ൌ 1,… ,27	 (6)

where	݅݌, ,݅ݍ 	.parameters	consequent	called	are	݅ݏ	and	݅ݎ
Layer	5	contains	only	one	fixed	node.	Function	of	this	node	is	to	calculate	the	overall	output	

using:		
	

ܳହ	 ൌ ௢݂௨௧ ൌ෍ ഥ߱௜ 	 ⋅ ௜݂ ൌ ሺ ഥ߱௜ݔሻ݌௜ ൅ ሺ ഥ߱௜ݕሻݍ௜ ൅ ሺ ഥ߱௜ݓሻݎ௜ ൅

ଶ଻

௜ୀଵ

ሺ ഥ߱௜ሻݏ௜	 (7)

	

The	arithmetic	average	of	the	roughness	profile	Ra	can	be	expressed	as:		
	

ܴܽ ൌ෍ ഥ߱௜ 	 ⋅ ௜݂ ൌ

௡

௜ୀଵ

෍ ഥ߱௜൫݇௜଴ ൅ ݇௜ଵ ⋅ ݊ ൅ ݇௜ଶ ⋅ ௭݂ ൅ ݇௜ଷ ⋅ ܽ௣൯

௡

௜ୀଵ

	 (8)

	

where	 ݇ ൌ ሾ݇ଵ଴, ݇ଵଵ, ݇ଵଶ, ݇ଵଷ, ݇ଶ଴, ݇ଶଵ, ݇ଶଶ, ݇ଶଷ, … , ݇௡଴, ݇௡ଵ, ݇௡ଶ, ݇௡ଷሿ	 represents	 the	 consequent	
parameters	 vector,	 ݊	 spindle	 speed,	 fz	 feed	 per	 tooth,	 ap	 depth	 of	 cut,	 ഥ߱௜	 normalized	 firing	
strength	and	as	output	the	arithmetic	average	of	the	roughness	profile	Ra.	

Output	of	every	 fuzzy	rule	 is	connected	with	 the	output	 function	defined	by	 three	different	
consequent	parameters.	It	can	be	concluded	from	the	foregoing	that	in	training	of	the	system	81	
parameters	 are	 being	 adapted	which	 then	 requires	minimally	 81	 sets	 of	 input/output	 experi‐
mental	data	for	the	training	of	the	FIS	for	assessing	surface	roughness.	In	addition	to	the	training	
phase,	 the	 input/output	 experimental	 data	 are	 necessary	 for	 the	 checking	 phase	 too.	 For	 the	
checking	phase	10	%	of	input/output	experimental	data	are	to	be	provided.	
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3. Results and discussion 

Fig.	2	shows	a	machined	sample.	The	arithmetic	average	of	the	roughness	profile	Ra	is	measured	
according	to	the	standard	ISO	4288	by	means	of	a	portable	surface	roughness	tester	produced	
by	Taylor	&	Hobson	model	Surtronic	S128.	

The	arithmetic	average	of	the	roughness	profile	Ra	is	measured	on	mid	part	of	samples	(be‐
tween	two	white	horizontal	lines)	as	shown	in	Fig.	2	for	each	run	separately.	The	upper	and	low‐
er	lines	are	40	mm	apart	from	the	ends	of	the	samples	so	that	the	central	part	width	is	20	mm.	
The	arithmetic	average	of	the	roughness	profile	Ra	is	measured	vertically	to	the	tangents	of	tool	
traces	on	the	line	where	the	tool	traces	are	most	apart,	this	line	being	at	10	mm	distance	from	
the	left	and	the	right	edge	of	the	sample	and	is	parallel	with	them.	For	the	measuring	data	pro‐
cessing	the	Talyprofile	software	produced	by	Taylor	&	Hobson	 is	applied,	designed	to	be	used	
with	the	Surtronic	series	S‐100	instruments.	

After	the	experiment	the	acquisition	of	machined	surfaces	digital	 images	of	all	samples	was	
carried	out	using	table	scanner	Scanjet	3100.	The	scanner	optical	resolution	of	1200	points	per	
inch	was	used	to	obtain	greyscale	image,	i.e.	image	of	the	grey	colour	shades.	For	the	greyscale	
image	8	bits	per	pixel	were	used	while	the	grey	colour	shades	values	were	represented	in	256	
levels.	
After	the	acquisition	all	digital	images	are	registered	in	matrix	form	from	which	input	variables	
are	 quantified:	 greyscale	mean	 value	 of	 all	 digital	 image	matrix	members,	 greyscale	 standard	
deviation	 of	 all	 digital	 image	matrix	members	 and	 the	 digital	 image	matrix	 greyscale	 entropy	
that	 are,	 along	with	 the	measured	 arithmetic	 average	 of	 the	 roughness	 profile	Ra,	used	 as	 an	
input/output	data	base	in	creating	the	FIS	for	surface	roughness	assessing.		

The	greyscale	mean	value	of	digital	image	matrix	is:	
	

݊ܽ݁ܯ ൌ
1

ܰ ൈ ܰ
෍෍݂ሺݔ, ሻݕ

ே

௬ୀଵ

ே

௫ୀଵ

	 (9)

where	N	presents	 the	number	of	 columns	and	number	of	 rows	of	digital	 image,	and	 f(x,y)	 is	a	
greyscale	intensity	value	of	the	digital	image	matrix	member	defined	by	x	and	y.	
	

	

	

Fig.	2	Machined	sample	and	roughness	measuring	points		
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The	greyscale	standard	deviation	of	all	digital	 image	matrix	members	(N	=	250)	can	be	de‐
scribed	as:			

݀ݐܵ ൌ
1
ܰ
ඩ෍෍൫݂ሺݔ, ሻݕ െ ݂൯̅

ଶ
ே

௬ୀଵ

ே

௫ୀଵ

	 (10)

where	N	presents	the	number	of	columns	and	number	of	rows	of	the	digital	image	matrix,	f(x,	y)	
is	a	greyscale	intensity	value	of	the	digital	image	matrix	defined	by	x	and	y	while	݂	is	the	digital	
image	matrix	mean	greyscale	value.	

Entropy	is	a	statistical	measure	of	randomness	that	can	be	used	to	characterize	the	texture	of	
the	input	image.	The	digital	image	matrix	greyscale	entropy	is	described	as:		
	

ܧ ൌ෍ሺ݌௜ ൈ logଶ ௜ሻ݌
ଶହ଺

௜ୀଵ

	 (11)

where	E	is	a	scalar	value	representing	the	entropy	of	greyscale	image	I,	and	p	is	a	vector	which	
contains	the	histogram	counts.	

Resolution	of	all	digital	images	used	in	this	investigation	was	250	×	250	pixels.	The	used	reso‐
lution	represents	the	size	of	the	machined	surface	digital	 images	denoting	the	place	where	the	
arithmetic	average	of	 the	roughness	profile	Ra	was	measured	along	with	the	surrounding	sur‐
face.	The	surface	shown	in	the	used	digital	 images	is	between	the	white	horizontal	 lines	of	the	
samples	displayed	in	Fig.	2	for	each	run	separately.	To	serve	the	needs	of	the	current	paper	the	
digital	 images	are	used	of	 those	 runs	 in	which	a	higher	value	of	 the	arithmetic	average	of	 the	
roughness	profile	Ra	was	measured.	The	digital	image	matrix	consists	of	250	rows	and	250	col‐
umns.	

Table	3	displays	the	extracted	values	of	roughness	(higher	values	Ramax	are	displayed	of	two	
repeated	measurements),	and	the	earlier	described	input	variables	for	creating	the	fuzzy	infer‐
ence	system	(mean	greyscale	value	of	all	digital	image	matrix	members,	greyscale	standard	de‐
viation	of	all	digital	image	matrix	members	and	the	digital	image	greyscale	matrix	entropy).		
The	given	data	were	used	for	generating	FIS	for	assessing	surface	roughness	using	ANFIS.	This	
system	 assesses	 the	Ra	values	 on	 the	 basis	 of	 the	machined	 surfaces	 digital	 images	 and	 their	
features.	The	error	of	assessing	i.e.	of	comparisons	provided	by	the	system	with	real	values	Ra,	is	
expressed	by	the	average	normalized	root	mean	square	error	(NRMSE).	The	assessing	error	of	
the	fuzzy	inference	system	created	in	this	investigation	is	0.0698	or	6.98	%.	

The	 figures	 that	 follow	demonstrate	 the	arithmetic	average	of	 the	roughness	profile	Ra	de‐
pendence	 on	 greyscale	 standard	 deviation	 of	 all	 digital	 image	matrix	members	 and	 greyscale	
mean	value	of	all	digital	 image	matrix	members	(Fig.	3),	on	entropy	of	digital	 image	greyscale	
matrix	and	greyscale	standard	deviation	of	all	digital	image	matrix	members	(Fig.	4),	on	entropy	
of	 digital	 image	 greyscale	matrix	 and	 on	 the	 greyscale	mean	 value	 of	 all	 digital	 image	matrix	
members	(Fig.	5).	

The	 arithmetic	 average	of	 the	 roughness	profile	Ra	 ranging	 from	0.194	μm	 to	1.68	μm	has	
been	measured	 in	 the	 experimental	 investigations.	 The	measured	 outputs	 are	 ranged	 in	 four	
classes	of	surface	roughness:	N3	(from	0.1	μm	to	0.2	μm),	N4	(from	0.2	μm	to	0.4	μm),	N5	(from	
0.4	μm	to	0.8	μm),	N6	(from	0.8	μm	to	1.6	μm)	and	N7	(from	1.6	μm	to	3.2	μm).	The	applicable	
parts	of	response	surface	in	this	particular	case	are	given	separately	in	Fig.	6.	

It	can	be	seen	from	Fig.	6	that	slight	changes	in	input	variables	have	a	considerable	effect	on	
output	variable,	the	arithmetic	average	of	the	roughness	profile	Ra.		
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Table	3	Extracted	values	of	roughness	depending	on	technological	parameters	of	machining,	and	the	digital	image	
values	of	variables	for	creating	the	fuzzy	inference	system	

				STD	 RUN	
Feed	per	
tooth,	

mm/tooth

Bench	
feed,	

mm/min	

Spindle	
speed,	
rev/min	

Depth	
of	cut,	
mm	

Ramax,	
µm	

Greyscale	
mean		
value		

Greyscale	
standard		
deviation	

Greyscale	
matrix		
entropy	

1	 99	 0.175 2450	 3500 2 0.236 201.3327 12.9087	 5.7077
2	 32	 0.1	 800	 2000 2 0.194 215.8912 14.4114	 5.8688
3	 40	 0.25	 3500	 3500 2 0.340 216.4442 10.9891	 5.4273
4	 22	 0.25	 6500	 6500 1 0.325 211.9918 14.9249	 5.8883
5	 34	 0.25	 2000	 2000 2 0.291 211.6711 18.7212	 6.2131
6	 92	 0.1	 800	 2000 2 0.259 207.0648 11.9313	 5.6197
7	 91	 0.025 200	 2000 2 0.295 205.5052 14.2197	 5.8618
8	 119	 0.325 10400	 8000 2 0.284 202.4441 21.4677	 6.3535
9	 112	 0.25	 6500	 6500 2 0.892 172.1966 23.6160	 6.5007
10	 35	 0.325 2600	 2000 2 1.270 203.2657 26.0274	 6,6797
11	 6	 0.4	 3200	 2000 1 1.050 181.5731 33.5879	 7.0212
12	 55	 0.025 800	 8000 2 0.549 200.8293 9.9470	 5.3400
13	 3	 0.175 1400	 2000 1 0.510 138.9439 30.9279	 6.8194
14	 96	 0.4	 3200	 2000 2 1.300 192.3719 27.7303	 6.7241
15	 68	 0.1	 1400	 3500 1 0.405 138.9501 18.3823	 6.2209
16	 16	 0.25	 5000	 5000 1 0.845 146.9739 29.7534	 6.8952
17	 69	 0.175 2450	 3500 1 0.504 134.2705 27.7919	 6.7490
18	 115	 0.025 800	 8000 2 0.333 197.0068 8.3465	 5.0556
19	 11	 0.325 4550	 3500 1 0.755 124.9713 27.7997	 6.6697
20	 101	 0.325 4550	 3500 2 1.340 169.0206 24.9581	 6.6209
21	 54	 0.4	 10400	 6500 2 1.560 175.4106 26.5330	 6.5932
22	 105	 0.175 3500	 5000 2 0.631 141.6713 18.3205	 6.0764
23	 30	 0.4	 12800	 8000 1 1.030 149.9594 29.6730	 6.8415
24	 45	 0.175 3500	 5000 2 0.462 139.8943 19.5561	 6.1107
25	 77	 0.325 6500	 5000 1 0.684 142.7332 23.7919	 6.5355
26	 60	 0.4	 12800	 8000 2 1.680 171.5458 25.1323	 6.5677
27	 113	 0.325 8450	 6500 2 1.660 150.6172 23.1638	 6.5385
28	 74	 0.1	 2000	 5000 1 0.413 142.7963 19.5778	 6.2314
29	 78	 0.4	 8000	 5000 1 1.040 149.5937 21.4949	 6.4195
30	 72	 0.4	 5600	 3500 1 1.310 149.2047 21.1949	 6.4186
31	 62	 0.1	 800	 2000 1 0.408 146.4589 17.7637	 6.0372
32	 70	 0.25	 3500	 3500 1 0.742 159.4245 25.2728	 6.5954
33	 107	 0.325 6500	 5000 2 1.570 157.0338 26.5375	 6.7189
34	 51	 0.175 4550	 6500 2 0.359 142.6573 22.1164	 6.4169
35	 33	 0.175 1400	 2000 2 0.417 155.2297 20.8527	 6.3764
36	 7	 0.025 350	 3500 1 0.459 197.1356 8.5898	 5.0740
37	 86	 0.1	 3200	 8000 1 0.376 150.2156 20.6194	 6.3526
38	 103	 0.025 500	 5000 2 0.342 216.3073 10.3385	 5.3718
39	 38	 0.1	 1400	 3500 2 0.526 166.4716 21.4820	 6.4444
40	 100	 0.25	 3500	 3500 2 1.140 164.7204 33.5821	 7.0123
41	 58	 0.25	 8000	 8000 2 1.270 177.2273 29.6023	 6.8859
42	 76	 0.25	 5000	 5000 1 0.802 157.8756 26.7976	 6.6881
43	 81	 0.175 4550	 6500 1 0.521 134.4788 22.0851	 6.3085
44	 89	 0.325 10400	 8000 1 0.761 152.5526 20.9315	 6.3611
45	 42	 0.4	 5600	 3500 2 1.210 167.3245 21.3705	 6.4070
46	 28	 0.25	 8000	 8000 1 0.855 145.4409 25.8796	 6.5799
47	 17	 0.325 6500	 5000 1 0.812 147.7410 20.9663	 6.4149
48	 41	 0.325 4550	 3500 2 1.540 171.2488 20.8178	 6.3214
49	 120	 0.4	 12800	 8000 2 1.470 156.4950 21.1037	 6.4185
50	 47	 0.325 6500	 5000 2 1.090 176.9611 27.9537	 6.8013
51	 111	 0.175 4550	 6500 2 0.470 140.2953 20.8329	 6.3067
52	 98	 0.1	 1400	 3500 2 0.374 145.4403 24.1626	 6.4329
53	 80	 0.1	 2600	 6500 1 0.399 162.8991 21.2284	 6.3343
54	 14	 0.1	 2000	 5000 1 0.366 154.3155 19.6337	 6.2506
55	 46	 0.25	 5000	 5000 2 1.040 176.2519 32.7465	 6.9622
56	 56	 0.1	 3200	 8000 2 0.364 155.8688 17.3140	 6.0190
57	 63	 0.175 1400	 2000 1 0.597 153.3269 29.7856	 6.8004
58	 104	 0.1	 2000	 5000 2 0.386 159.6362 20.5342	 6.2324
59	 93	 0.175 1400	 2000 2 0.422 165.1706 23.2286	 6.4068
60	 117	 0.175 5600	 8000 2 0.508 149.4792 19.4560	 6.0821
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Table	3	Extracted	values	of	roughness	depending	on	technological	parameters	of	machining,	and	the	digital	image	
values	of	variables	for	creating	the	fuzzy	inference	system	(continuation)	

			STD	 RUN	
Feed	per	
tooth,	

mm/tooth

Bench	
feed,	

mm/min	

Spindle	
speed,	
rev/min	

Depth	
of	cut,
mm	

Ramax,	
µm	

Greyscale	
mean		
value		

Greyscale	
standard		
deviation	

Greyscale	
matrix	
entropy	

61	 8	 0.1	 1400	 3500 1 0.402 156.5143 28.9983	 6.7787
62	 67	 0.025 350	 3500 1 0.463 224.1073 11.3163	 5.4469
63	 84	 0.4	 10400	 6500 1 0.977 151.3250 27.0345	 6.6960
64	 90	 0.4	 12800	 8000 1 0.945 155.1779 25.9010	 6.6127
65	 97	 0.025 350	 3500 2 0.202 218.8573 11.8558	 5.5605
66	 83	 0.325 8450	 6500 1 0.666 154.6065 27.3491	 6.7255
67	 59	 0.325 10400	 8000 2 1.300 152.1983 24.2644	 6.5952
68	 106	 0.25	 5000	 5000 2 1.150 157.4970 30.3303	 6.7487
69	 79	 0.025 650	 6500 1 0.336 174.5179 16.0944	 5.9967
70	 5	 0.325 2600	 2000 1 0.778 152.4728 23.3246	 6.5248
71	 48	 0.4	 8000	 5000 2 1.600 163.3946 25.3079	 6.6660
72	 108	 0.4	 8000	 5000 2 1.560 158.2985 19.6642	 6.2761
73	 53	 0.325 8450	 6500 2 1.460 176.6186 27.1825	 6.7422
74	 29	 0.325 10400	 8000 1 0.715 173.9498 23.3387	 6.5550
75	 21	 0.175 4550	 6500 1 0.513 157.2126 25.0313	 6.5654
76	 25	 0.025 800	 8000 1 0.257 194.3272 17.8550	 6.0991
77	 52	 0.25	 6500	 6500 2 1.500 176.9590 34.1330	 7.0064
78	 109	 0.025 650	 6500 2 0.510 215.7320 7.6283	 4.9336
79	 37	 0.025 350	 3500 2 0.264 184.7601 12.6105	 5.6820
80	 64	 0.25	 2000	 2000 1 0.932 164.4880 23.3275	 6.4361
81	 31	 0.025 200	 2000 2 0.326 196.8387 9.8417	 5.3327
82	 49	 0.025 650	 6500 2 0.277 196.4967 18.2400	 6.1901
83	 27	 0.175 5600	 8000 1 0.418 180.7377 30.4711	 6.7616
84	 110	 0.1	 2600	 6500 2 0.319 194.5997 16.2075	 6.0494
85	 61	 0.025 200	 2000 1 0.449 202.4482 12.0212	 5.6169
86	 88	 0.25	 8000	 8000 1 0.345 208.5057 18.1894	 6.2054
87	 50	 0.1	 2600	 6500 2 0.362 216.7653 12.7031	 5.6936
88	 87	 0.175 5600	 8000 1 0.315 203.7227 16.5828	 6.0807
89	 26	 0.1	 3200	 8000 1 0.377 204.2278 17.9229	 6.1923
90	 43	 0.025 500	 5000 2 0.322 225.7510 4.8023	 4.3056
91	 94	 0.25	 2000	 2000 2 0.391 185.6580 17.7899	 6.1080
92	 19	 0.025 650	 6500 1 0.412 226.0397 4.4847	 4.2012
93	 102	 0.4	 5600	 3500 2 0.657 193.8495 17.3608	 6.1385
94	 44	 0.1	 2000	 5000 2 0.302 205.5300 15.0375	 5.9108
95	 15	 0.175 3500	 5000 1 0.317 198.4703 17.8107	 6.1613
96	 73	 0.025 500	 5000 1 0.361 217.4270 5.6124	 4.5311
97	 1	 0.025 200	 2000 1 0.404 210.2537 11.3657	 5.5270
98	 36	 0.4	 3200	 2000 2 0.652 183.9130 18.6225	 6.1525
99	 116	 0.1	 3200	 8000 2 0.371 210.2263 13.8650	 5.8338
100	 82	 0.25	 6500	 6500 1 0.359 194.8133 13.8527	 5.8269
101	 71	 0.325 4550	 3500 1 0.454 179.7367 21.4364	 6.3853
102	 23	 0.325 8450	 6500 1 0.413 200.2917 16.8814	 6.0965
103	 65	 0.325 2600	 2000 1 0.550 183.4905 18.8896	 6.2459
104	 2	 0.1	 800	 2000 1 0.371 220.3295 13.6538	 5.8036
105	 114	 0.4	 10400	 6500 2 0.561 185.6083 18.8118	 6.2636
106	 4	 0.25	 2000	 2000 1 0.369 201.7676 15.8028	 6.0238
107	 18	 0.4	 8000	 5000 1 0.544 186.0058 22.0295	 6.4740
108	 85	 0.025 800	 8000 1 0.408 219.5023 5.5210	 4.4854
109	 75	 0.175 3500	 5000 1 0.347 187.1892 15.5448	 5.9636
110	 24	 0.4	 10400	 6500 1 0.529 205.4299 15.7066	 6.0073
111	 95	 0.325 2600	 2000 2 0.557 176.9512 21.9477	 6.4261
112	 39	 0.175 2450	 3500 2 0.336 190.3445 19.2155	 6.2940
113	 13	 0.025 500	 5000 1 0.415 225.9157 5.7998	 4.5690
114	 9	 0.175 2450	 3500 1 0.323 188.4408 17.3426	 6.1525
115	 66	 0.4	 3200	 2000 1 0.566 182.2851 19.7799	 6.3321
116	 20	 0.1	 2600	 6500 1 0.378 218.3453 12.7629	 5.6885
117	 57	 0.175 5600	 8000 2 0.332 186.9872 18.1653	 6.2152
118	 10	 0.25	 3500	 3500 1 0.356 189.2162 16.7248	 6.1067
119	 12	 0.4	 5600	 3500 1 0.495 184.4284 19.5615	 6.3077
120	 118	 0.25	 8000	 8000 2 0.321 192.7420 17.5391	 6.1643
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Fig.	3	Dependence	of	Ra	on	standard	deviation	and	mean	
value	of	digital	image	matrix	members	

	

Fig.	4	Dependence	of	Ra	on	entropy	and	standard	devia‐
tion	of	digital	image	matrix	members	

Fig.	5	Dependence	of	Ra	on	entropy	and	mean	value	of	
digital	image	matrix	members	

Fig.	6	Applicable	part	of	the	response	surface	
shown	in	Fig.	5	

	
It	can	be	seen	from	the	papers	that	deal	with	assessing	the	roughness	of	machined	surfaces	on	
the	basis	of	the	features	of	digital	 image	that	the	range	of	measured	roughness	has	a	great	im‐
pact	on	the	level	of	error	assessing.	The	wider	the	range	of	measured	roughness,	with	the	uni‐
form	distribution	by	the	roughness	classes,	the	lower	the	error	of	assessment.	The	error	of	as‐
sessment	 in	 this	 study	 (6.98	%)	was	 significantly	 influenced	by	outlier	 values.	 Specifically,	 al‐
most	97	%	of	the	measured	values	of	roughness	belong	to	the	roughness	classes	N4,	N5	and	N6.	
The	remaining	values	and	part	of	roughness	values	in	class	N6	are	outliers.	Without	outliers	the	
error	of	assessment	of	the	machined	surface	roughness	is	expected	to	be	significantly	lower.	

4. Conclusion 

The	conducted	 investigation	 is	part	of	a	project	whose	ultimate	objective	 is	 to	build	an	online	
system	for	machined	surface	roughness	monitoring	i.e.	roughness	monitoring	in	real	time.	The	
system	 should	 faster	 carry	 out	 the	 activities	 of	 required	 control	 of	machined	 surfaces,	 testing	
would	be	cheaper,	and	monitoring	during	machining	would	help	to	timely	react	to	possible	devi‐
ations	and	to	reduce	subsequent	costs.	The	investigations	in	this	paper	are	focused	on	assessing	
the	machined	surface	roughness	based	on	the	features	of	digital	image	with	the	use	of	adaptive	
neuro‐fuzzy	 inference	 system	 (ANFIS).	 A	 controlled	 parameter	 of	 surface	 roughness	 is	 the	
arithmetic	average	of	the	roughness	profile	Ra.	The	following	features	of	digital	image	are	stud‐
ied	in	the	paper:	mean	greyscale	values	of	all	digital	image	matrix	members,	standard	greyscale	
deviation	 of	 all	 digital	 image	matrix	members	 and	 entropy	 of	 digital	 image	 greyscale	matrix.	
Comparison	of	real	values	Ra	and	the	values	provided	by	the	built	system	is	shown	by	the	nor‐
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malized root mean square error (NRMSE), or assessing error. The conducted investigation en-
ters the area of high speed machining. Therefore the machined surfaces are of high quality and 
the measured roughness is very small. Thus the features of digital images become quite similar 
and a higher assessing error is expected. The fuzzy inference system obtained in the present 
investigation has an assessing error of 6.98 %. However, even with such an error, the technical 
requirements set on the workpiece as regards quality of machining, should not be diminished. 

The plan is to expand the research on existing material, but also conduct research on other 
materials. This would be a way to expand the base of digital photos and their features and to 
accumulate sufficient knowledge to influence the reduction of assessing errors.  
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