
Informatica 36 (2012) 441–449 441

NLP Web Services for Slovene and English: Morphosyntactic
Tagging, Lemmatisation and Definition Extraction

Senja Pollak, Nejc Trdin, Anže Vavpetič and Tomaž Erjavec
Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
E-mail: {senja.pollak, nejc.trdin, anze.vavpetic, tomaz.erjavec}@ijs.si

Keywords: web services, workflows, morphosyntactic tagging, lemmatisation, definition extraction

Received: November 30, 2012

This paper presents a web service for automatic linguistic annotation of Slovene and English texts. The
web service enables text up-loading in a number of different input formats, and then converts, tokenises,
tags and lemmatises the text, and returns the annotated text. The paper presents the ToTrTaLe
annotation tool, and the implementation of the annotation workflow in two workflow construction
environments, Orange4WS and ClowdFlows. It also proposes several improvements to the annotation
tool based on the identification of various types of errors of the existing ToTrTaLe tool, and implements
these improvements as a post-processing step in the workflow. The workflows enable the users to
incorporate the annotation service as an elementary constituent for other natural language processing
workflows, as demonstrated by the definition extraction use case.

Povzetek: Prispevek predstavi spletni servis ToTrTaLe za jezikoslovno označevanje slovenskega in
angleškega jezika, njegovo implementacijo v okoljih za gradnjo delotokov Orange4WS in ClowdFlows
ter njegovo uporabo v delotoku za luščenje definicij.

1 Introduction
In natural language processing (NLP), the first steps to
be performed on the input text are tokenisation, part-of-
speech tagging and lemmatisation. The output of these
three steps is a string of text tokens, where each word
token is annotated with its context disambiguated part-of-
speech tag and the base form of the word, i.e. lemma,
thus abstracting away from the variability of word-forms.
For example, the Slovene sentence “Hotel je dober hotel”
(“[He] wanted a good hotel”) can be lemmatised and
tagged as “hoteti/Verb biti/Verb dober/Adjective
hotel/Noun”; as can be seen, the first and last word
tokens are the same, yet their part of speech and lemma
differ.

Such annotation is very useful for further processing,
such as syntactic parsing, information extraction,
machine translation or text-to-speech, to mention just a
few. However, all three processing steps (tokenisation,
part-of-speech tagging and lemmatisation) are language
dependent, and software to perform them is—especially
for smaller languages—often not available or difficult to
install and use.

Recently, there has been an upsurge of interest in
workflow construction environments, the best known
being Taverna (Hull et al., 2006) developed for workflow
composition and execution in the area of bioinformatics.
In such workflow environments it is not necessary to
locally install a tool used as a workflow ingredient, but
rather use web services available elsewhere, and link
them together into workflows. This frees the users from
installing the needed tools (which might not be available
for downloading in any case) and, indeed, from needing
high-end computers to perform computationally

demanding processing over large amounts of data. While
online workflow construction tools are already widely
used in some domains, this approach has only recently
started being used also in the field of NLP (Pollak et al.,
2012a).

This paper, extending our previous work on this
topic (Pollak et al., 2012b), focuses on a particular tool
for automatic morphosyntactic tagging and
lemmatisation, named ToTrTaLe (Erjavec, 2011),
currently covering two languages, Slovene and English.
Its description is presented in Section 2. As one of the
main contributions of this work is the implementation of
ToTrTaLe as a web service which can be used as an
ingredient of complex NLP workflows, we first motivate
this work in Section 3 by a short introduction to web
services and workflows and by presenting two specific
workflow construction environments, Orange4WS
(Podpečan et al., 2012) and ClowdFlows (Kranjc et al.,
2012). The main contributions of this research are
presented in Sections 4 and 5. Section 4 presents the
implementation of the ToTrTaLe analyser as a web
service in the two workflow construction environments,
while Section 5 presents some improvements of the
ToTrTaLe tool based on the identification of several
types of errors of the existing implementation. The utility
of the ToTrTaLe web service as a pre-processing step for
other NLP tasks is illustrated by a definition extraction
use case in Section 6. Finally, Section 7 gives
conclusions and directions for further work.

442 Informatica 36 (2012) 441–449 S. Pollak et al.

2 ToTrTaLe Annotation Tool
ToTaLe (Erjavec et al., 2005) is short for Tokenisation,
Tagging and Lemmatisation and is the name of a script
implementing a pipeline architecture comprising these
three processing steps. While the tool makes some
language specific assumption, they are rather broad, such
as that text tokens are (typically) separated by space;
otherwise, the tool itself is largely language independent
and relies on external modules to perform the specific
language processing tasks. The tool is written in Perl and
is reasonably fast. The greatest speed bottleneck is the
tool start-up, mostly the result of the lemmatisation
module, which for Slovene contains thousands of rules
and exceptions.

In the context of the JOS project (Erjavec et al.,
2010) the tool was re-trained for Slovene and made
available as a web application1. It allows pasting the
input text into the form or uploading it as a plain-text
UTF-8 file, while the annotated output text can be either
displayed or downloaded as a ZIP file.

The tool (although not the web application) has been
recently extended with another module, Transcription,
and the new edition is called ToTrTaLe (Erjavec, 2011).
The transcription step is used for modernising historical
language (or, in fact, any non-standard language), and the
tool was used as the first step in the annotation of a
reference corpus of historical Slovene (Erjavec, 2012a).
An additional extension of ToTrTaLe is the ability to
process heavily annotated XML document conformant to
the Text Encoding Initiative Guidelines (TEI, 2007).

The rest of this section presents the main modules of
ToTrTaLe and their models for Slovene and English,
leaving out the description of the historical language
models which are out of the main scope of this paper.

2.1 Tokenisation
The multilingual tokenisation module mlToken2 is
written in Perl and in addition to splitting the input string
into tokens also assigns to each token its type, e.g., XML
tag, sentence final punctuation, digit, abbreviation, URL,
etc. and preserves (subject to a flag) white-space, so that
the input can be reconstituted from the output.
Furthermore, the tokeniser also segments the input text
into sentences.

The tokeniser can be fine-tuned by putting
punctuation into various classes (e.g., word-breaking vs.
non-breaking) and also uses several language-dependent
resource files: a list of abbreviations (“words” ending in
period, which is a part of the token and does not
necessarily end a sentence); a list of multi-word units
(tokens consisting of several space-separated “words”);
and a list of (right or left) clitics, i.e. cases where one
“word” should be treated as several tokens. Such
resource files allow for various options to be expressed,
although not all, as will be discussed in Section 5.

1 The application is available at http://nl.ijs.si/jos/analyse/
2 mlToken was written in 2005 by Camelia Ignat, then

working at the EU Joint Research Centre in Ispra, Italy.

The tokenisation resources for Slovene and English
were developed by hand for both languages.

2.2 Tagging
Part-of-speech tagging is the process of assigning a
word-level grammatical tag to each word in running text,
where the tagging is typically performed in two steps: the
lexicon gives the possible tags for each word, while the
disambiguation module assigns the correct tag based on
the context of the word.

Most contemporary taggers are trained on manually
annotated corpora, and the tagger we use, TnT (Brants,
2000), is no exception. TnT is a fast and robust tri-gram
tagger, which is also able, by the use of heuristics over
the words in the training set, to tag unknown words with
reasonable accuracy.

For languages with rich inflection, such as Slovene,
it is better to speak of morphosyntactic descriptions
(MSDs) rather than part-of-speech tags, as MSDs contain
much more information than just the part-of-speech. For
example, the tagsets for English have typically 20–50
different tags, while Slovene has over 1,000 MSDs.

For Slovene, the tagger has been trained on jos1M,
the 1 million word JOS corpus of contemporary Slovene
(Erjavec et al., 2010), and is also given a large
background lexicon extracted from the 600 million word
FidaPLUS reference corpus of contemporary Slovene
(Arhar Holdt and Gorjanc, 2007).

The English model was trained on the MULTEXT-
East corpus (Erjavec, 2012b), namely the novel “1984”.
This is of course a very small corpus, so the resulting
model is not very good. However, it does have the
advantage of using the MULTEXT-East tagset, which is
compatible with the JOS one.

2.3 Lemmatisation
For lemmatisation we use CLOG (Erjavec and Džeroski,
2004), which implements a machine learning approach to
the automatic lemmatisation of (unknown) words. CLOG
learns on the basis of input examples (pairs word-
form/lemma, where each morphosyntactic tag is learnt
separately) a first-order decision list, essentially a
sequence of if-then-else clauses, where the defined
operation is string concatenation. The learnt structures
are Prolog programs but in order to minimise interface
issues we made a converter from the Prolog program into
one in Perl.

The Slovene lemmatiser was trained on a lexicon
extracted from the jos1M corpus. The lemmatisation of
language is reasonably accurate, with 92% on unknown
words. However the learnt model, given that there are
2,000 separate classes, is quite large: the Perl rules have
about 2MB, which makes loading the lemmatiser slow.

The English model was trained on the English
MULTEXT-East corpus, which has about 15,000
lemmas and produces a reasonably good model,
especially as English is fairly simple to lemmatise.

NLP WEB SERVICES FOR SLOVENE AND… Informatica 36 (2012) 441–449 443

3 Web Services and Workflows
A web service is a method of communication between
two electronic devices over the web. The W3C defines a
web service as “a software system designed to support
interoperable machine-to-machine interaction over a
network”. Web service functionalities are described in a
machine-processable format, i.e. the Web Services
Description Language, known by the acronym WSDL.
Other systems interact with the web service in a manner
prescribed by its description using SOAP XML
messages, typically conveyed using HTTP in conjunction
with other web-related standards. The W3C also states
that we can identify two major classes of web services,
REST-compliant web services, in which the primary
purpose of the service is to manipulate XML
representations of web resources using a uniform set of
"stateless" operations, and arbitrary web services in
which the service may expose an arbitrary set of
operations.

Main data mining environments that allow for
workflow composition and execution, implementing the
visual programming paradigm, include Weka (Witten et
al., 2011), Orange (Demšar et al., 2004), KNIME
(Berthold et al., 2007) and RapidMiner (Mierswa et al.,
2006). The most important common feature is the
implementation of a workflow canvas where workflows
can be constructed using simple drag, drop and connect
operations on the available components, implemented as
graphical units named widgets. This feature makes the
platforms suitable for use also by non-experts due to the
representation of complex procedures as relatively
simple sequences of elementary processing steps
(workflow components implemented as widgets).

In this work, we use two recently developed service-
oriented environments for data mining workflow
construction and execution: Orange4WS and
ClowdFlows, the latter being a web environment, which
is not the case for the first one.

3.1 The Orange4WS platform
The first platform, Orange4WS (Podpečan et al., 2012),
is a data mining platform distinguished by its capacity of
including web services into data mining workflows,
allowing for distributed processing. Such a service-
oriented architecture has already been employed in
Taverna (Hull et al., 2006), a popular platform for
biological workflow composition and execution. Using
processing components implemented as web services
enables remote execution, parallelisation, and high
availability by default. A service-oriented architecture
supports not only distributed processing but also
distributed development.

Orange4WS is built on top of two open source
projects: (a) the Orange data mining framework (Demšar
et al., 2004), which provides the Orange canvas for
constructing workflows as well as core data structures
and machine learning algorithms, and (b) the Python
Web Services project3 (more specifically, the Zolera

3 http://pywebsvcs.sourceforge.net/

SOAP infrastructure), which provides the libraries for
developing web services in the Python programming
language.

Furthermore, in contrast with other workflow
environments Orange4WS offers a rather unique
combination of features, mainly:
 A large collection of data mining and machine

learning algorithms,
 A collection of powerful yet easy to use

visualization widgets and
 Easy extendibility either in Python or C++ due to

layered architecture of the Orange environment.

Unlike ClowdFlows (as will be explained in the next
section) the user is required to install Orange4WS on her
own machine in order to create and execute workflows.
Furthermore, local widgets (widgets that are not
implemented as web services) are executed on the
client’s computer, thus using its computational resources,
which can quickly become a problem when solving more
complex tasks.

3.2 The ClowdFlows platform
The second platform ClowdFlows (Kranjc et al., 2012) is
distinguished from other main data mining platforms
especially by the fact that it requires no installation from
the user and can be run on any device with an internet
connection, using any modern web browser.
Furthermore, ClowdFlows also natively supports
workflow sharing between users.

Sharing of workflows has previously been
implemented through the myExperiment website of
Taverna (Hull et al., 2006). This website allows the users
to publicly upload their workflows so that they are made
available to a wider audience. Furthermore, publishing a
link to a certain workflow in a research paper allows for
simpler dissemination of scientific results. However, the
users who wish to view or execute these workflows are
still required to install the specific software in which the
workflows were designed and implemented.

ClowdFlows is implemented as a cloud-based
application that takes the processing load from the
client's machine and moves it to remote servers where
experiments can be run with or without user supervision.
ClowdFlows consists of the browser-based workflow
editor and the server-side application which handles the
execution of workflows and hosts a number of publicly
available workflows.

The workflow editor consists of a workflow canvas
and a widget repository, where widgets represent
embedded chunks of software code. The widgets are
separated into categories for easier browsing and
selection and the repository includes a wide range of
readily available widgets. Our NLP processing modules
have also been implemented as such widgets.

By using ClowdFlows we were able to make our
NLP workflow public, so that anyone can use and
execute it. The workflow is exposed by a unique URL,
which can be accessed from any modern web browser.
Whenever the user opens a public workflow, a copy of

444 Informatica 36 (2012) 441–449 S. Pollak et al.

this workflow appears in her private workflow
repository. The user can execute the workflow and view
its results or expand it by adding or removing widgets.

4 Implementation of the ToTrTaLe
Web Service and Workflows

In this section we present two web services that we
implemented and also some details regarding the
implementations. The services were implemented in the
Python programming language, using Orange4WS API
and additional freeware software packages used for
enabling different input types. Services are currently
adapted to run on Unix-like operation systems, but are
easily transferable to other operation systems. In
addition, the workflows constructed using these web
services are also presented.

4.1 Implemented web service
The implemented web service constitutes the main
implementation part of this work. The web service has
two functionalities: the first converts different input files
to plain text format, while the second uses the ToTrTaLe
tool to annotate input texts. The two functionalities
correspond to two operations described in one WSDL
file. In this section we give the descriptions of both
functionalities, together with some implementation
details.

4.1.1 Converting input files to plain text
The first operation of the web service parses the input
files and converts them into plain text. The input corpus
file can be uploaded in various formats, either as a single
file or as several files compressed in a single ZIP file.
The supported formats are PDF, DOC, DOCX, TXT and
HTML, the latter being passed to the service in the form
of an URL as a document. Before being transferred, the
actual files are encoded in the Base64 representation,
since some files might be binary files. So the first step is
to decode the Base64 representation of the document.

Based on the file extension, the program chooses the
correct converter:
 If the file extension is HTML, we assume that an

URL address is passed and that it is written in the
document variable. It is also assumed that the
document contains only plain text. The web service
then downloads the document via the given URL in
plain text.

 DOCX Microsoft Word documents are essentially
compressed ZIP files containing the parts of the
document in XML. The content of the file is first
unzipped, and then all the plain text is extracted.

 DOC Microsoft Word files are converted using an
external tool, wvText (Lachowicz and McNamara,
2006), which transforms the file into plain text. The
tool is needed because the whole file is a compiled
binary file and it is hard to manually extract the
contents without appropriate tools.

 PDF files are converted with the Python pdfminer
library (Shinyama, 2010). The library is a very good
implementation for reading PDF files, with which
one can extract the text, images, tables, etc., from a
PDF file.

 If the file name ends with TXT, then the file is
assumed to be already in plain UTF-8 text format.
The file is only read and sent to the output.

 ZIP files are extracted into a flat directory and
converted appropriately—as above—based on the
file extension. Note that ZIP files inside ZIP files
are not permitted.

The resulting text representation is then sent through
several regular expression filters, in order to further
normalize the text. For instance, white space characters
are merged into one character.

The final step involves sending the data. But before
that, the files have their unique identifiers added to the
beginning of the single plain text file. The following
steps leave these identifiers untouched, so the analysis
can be traced through the whole workflow. At each step
of the web service process, errors are accumulated in the
error output variable.

4.1.2 Tokenisation, tagging and lemmatisation
The second operation of the web service exposes the
ToTrTaLe annotation tool. The mandatory parameters of
this operation are: the document in plain text format and
the language of the text (English, Slovene or historical
Slovene). Non-mandatory parameters are used to
determine whether the user wants post-processing
(default is no), and whether the output should be in the
XML format (default) or in the plain text format.

Both Orange4WS and ClowdFlows send the data and
the processing request to the main web service operation,
i.e. ToTrTaLe annotation, which is run on a remote
server. The output is written into the output variable, and
the possible errors are passed to the error variable.
Additionally, the input parameter for post-processing
defines if the post-processing scripts are run on the text.
The post-processing scripts are Perl implementations of
corrections for tagging mistakes described in Section 5.

Finally, the output string variable and the
accumulated errors are passed on to the output of the web
service, which is then sent back to the client.

4.1.3 Implemented widgets
Orange4WS and ClowdFlows can automatically
construct widgets for web services, where each operation
maps into one widget (thus, the web service described in
this paper maps into two widgets). They identify the
inputs and the outputs of the web service’s operations
from the WSDL description. In addition to implementing
the web service operations described above, additional
functionality was required to adequately support the user
in using this web service and some additional platform
specific widgets were implemented accordingly. These
widgets, not exposed as web services, are run locally; in
the case of Orange4WS they are executed on the user’s

NLP WEB SERVICES FOR SLOVENE AND…

machine, whereas in the case of ClowdFlows they are
executed on the server hosting the ClowdFlows
application.

Both in Orange4WS as well as in ClowdFlows, we
implemented a widget called “Load Corpus” that opens a
corpus in one of the formats supported by the web
service for parsing input data, and
service’s operation for converting input data
essentially read the user selected files, encode them in
Base64 and send the file to the web service. Widgets
return the output produced by the web service.

4.2 ToTrTaLe workflows
The widgets implementing the existing
components are incorporated into the workflows
presented in Figure 1 and Figure 2. The figures
the implementation of the web service is platform
independent. In both figures the same workflow is

Figure 1: A screenshot of the

Figure 2: A screenshot of the

NLP WEB SERVICES FOR SLOVENE AND… Informatica

machine, whereas in the case of ClowdFlows they are
ing the ClowdFlows

as well as in ClowdFlows, we
implemented a widget called “Load Corpus” that opens a

supported by the web
internally calls the

for converting input data. They
read the user selected files, encode them in

Base64 and send the file to the web service. Widgets
return the output produced by the web service.

The widgets implementing the existing software
components are incorporated into the workflows

The figures show that
service is platform-

the same workflow is

shown: Figure 1 shows the workflow in the
platform and Figure 2 the workflow in the
platform. On the left side of both figures, there is a
widget repository, and the right side
used for workflow construction
service widgets, the workflow
general-purpose widgets (e.g., file reading, file writing,
construction of strings).

The purpose of both workflows is essentially the
same: they accept a file and read the file. Then the file is
parsed from its original form into the p
representation of the file by the “Load corpus” widget
After the parsing of the file, the plain text representation
is input into the ToTrTaLe widget
the annotated file in plain text
according to one of the input parameters. The final file
can be viewed in the rightmost widget (String to file) of
the corresponding workflows.

A screenshot of the ToTrTaLe workflow in the Orange4WS workflow edit

A screenshot of the the ToTrTaLe workflow in the ClowdFlows workflow editor,
available online at http://clowdflows.org/workflow/228/

Informatica 36 (2012) 441–449 445

Figure 1 shows the workflow in the Orange4WS
the workflow in the ClowdFlows

. On the left side of both figures, there is a
widget repository, and the right side presents the canvas

workflow construction. Apart from our web
the workflows contain also some

purpose widgets (e.g., file reading, file writing,

The purpose of both workflows is essentially the
same: they accept a file and read the file. Then the file is
parsed from its original form into the plain text

by the “Load corpus” widget.
After the parsing of the file, the plain text representation

widget. The widget returns
plain text or XML representation

input parameters. The final file
can be viewed in the rightmost widget (String to file) of

workflow editor.

workflow editor,
http://clowdflows.org/workflow/228/.

446 Informatica 36 (2012) 441–449

There is also a minor difference in the workflows
presented in Figures 1 and 2: the Orange4WS workflow
has more widgets than the ClowdFlows workflow. This
is due to the fact that widgets for Orange4WS were
implemented to accept input data from other widgets
(String widget, Boolean widget, etc.), whereas the
widgets for ClowdFlows were implemented to accept
inputs directly as parameters (by double clicking on the
widget).

The sample output produced by either of the two
workflows is shown in Figure 3. The figure
shows the function of each token, the sentence splitter
tags and also the morphosyntactic annotation of each
token. The final output is in the form of plain text, where
the input to the workflow was a Slovene PDF file.

Figure 3: A sample output from the ToTrTaLe
service, annotating sentences and to
and MSD tags on words.

5 Improving ToTrTaLe T
Post-processing based on the
Analysis of Annotation

In this section we present the observed ToTrTaLe
mistakes, focusing on Slovene, and propose some
corrections to be performed in the post
The corpus used for the analysis consists of the papers of
seven consecutive proceedings of Language Technology
conferences, held between 1998 and 2010. T
construction of the corpus is described in Smailović and
Pollak (2011).

5.1 Incorrect sentence segmentation
Errors in sentence segmentation originate mostly from
the processing of abbreviations. Since the analysed
examples were taken from academic
abbreviations leading to incorrect separat
are frequent.

In some examples the abbreviations contain the
period that is—if the abbreviation is not listed in the

is also a minor difference in the workflows
the Orange4WS workflow

has more widgets than the ClowdFlows workflow. This
is due to the fact that widgets for Orange4WS were
implemented to accept input data from other widgets

ring widget, Boolean widget, etc.), whereas the
widgets for ClowdFlows were implemented to accept
inputs directly as parameters (by double clicking on the

The sample output produced by either of the two
workflows is shown in Figure 3. The figure clearly
shows the function of each token, the sentence splitter

morphosyntactic annotation of each
token. The final output is in the form of plain text, where
the input to the workflow was a Slovene PDF file.

A sample output from the ToTrTaLe web
service, annotating sentences and tokens, with lemmas

Improving ToTrTaLe Through
processing based on the

nnotation Mistakes
In this section we present the observed ToTrTaLe

and propose some
corrections to be performed in the post-processing step.

consists of the papers of
roceedings of Language Technology
between 1998 and 2010. The

construction of the corpus is described in Smailović and

Incorrect sentence segmentation
Errors in sentence segmentation originate mostly from
the processing of abbreviations. Since the analysed
examples were taken from academic texts, specific

leading to incorrect separation of sentences

ples the abbreviations contain the
if the abbreviation is not listed in the

abbreviation repository—automatically interpreted as the
end of the sentence. For instance,
frequently used in referring to other authors in academic
writing therefore incorrectly
sentence, and the year of the publication is
treated by ToTrTaLe as the start of a
is now corrected in ToTrTaLe post

Note, however, that the period after the abbreviation
does not always mean that
continues. This is the case when
at the end of the sentence (“ip
in this position). Consequently, in some cases
sentences are mistakenly tagged
sentence. This mistake was also observed with the
abbreviations EU or measures KB, MB, GB if
at the last position of the sentence

5.2 Incorrect morphosyntactic annotations
The tagging also at times makes mistakes,
occur systematically. One example is in subject
complement structures. For instance
sentence “Kot podatkovne strukture so semantične mreže
usmerjeni grafi.” [As data structures semantic networks
are directed graphs.], the nominative plural feminine
“semantične mreže” [semantic networks] is wrongly
annotated as singular genitive feminine.

Another frequent type of mistake, easy to correct, is
unrecognized gender/number/case agreement between
adjective and noun in noun phrases. For example,
sentence “Na eni strani imamo semantične leksikone
[On the one hand we have
“semantične” [semantic] is assigned a feminine plural
nominative MSD, while “leksikone” [lexicons] is
attributed a masculine plural accusative tag.

Next, in several examples, “sta” (second person, dual
form of verb “to be”) is tagged as a noun. Even if “ST
can be used as an abbreviation (when written with capital
letters), it is much more frequent as the word
auxiliary verb.

5.3 Incorrect lemmatisation
Besides the most common error of wrong lemmatisation
of individual words (e.g.,
lemmatised as “hipernimi” [hypernyms] and not as
“hipernimija” [hypernymy]), there are systematic errors
when lemmatising Slovene adjectives in comparative and
superlative form, where the base form is not chosen as a
lemma. Last but not least, there a
in the original text and due to

5.4 ToTrTaLe post-processing
The majority of the described mistakes are currently
handled in an optional post-processing step, but should
be taken into consideration in future ve
ToTrTaLe, by improving tokenisation rules or changing
the tokeniser, re-training the tagger with larger and better
corpora and lexica, and improving the lemmatisation
models or learner.

S. Pollak et al.

automatically interpreted as the
For instance, abbreviation “et al.”,

frequently used in referring to other authors in academic
writing therefore incorrectly implies the end of the

year of the publication is mistakenly
treated by ToTrTaLe as the start of a new sentence. This
is now corrected in ToTrTaLe post-processing.

the period after the abbreviation
s mean that the sentence actually

continues. This is the case when an abbreviation occurs
“ipd.”, “itd.”, “etc.” are often

Consequently, in some cases two
sentences are mistakenly tagged by ToTrTaLe as a single
sentence. This mistake was also observed with the
abbreviations EU or measures KB, MB, GB if occurring

tion of the sentence just before the period.

Incorrect morphosyntactic annotations
The tagging also at times makes mistakes, some of which
occur systematically. One example is in subject
complement structures. For instance, in the Slovene

“Kot podatkovne strukture so semantične mreže
usmerjeni grafi.” [As data structures semantic networks

the nominative plural feminine
“semantične mreže” [semantic networks] is wrongly
annotated as singular genitive feminine.

frequent type of mistake, easy to correct, is
unrecognized gender/number/case agreement between

and noun in noun phrases. For example, in the
“Na eni strani imamo semantične leksikone …”

[On the one hand we have semantic lexicons...],
semantične” [semantic] is assigned a feminine plural

nominative MSD, while “leksikone” [lexicons] is
attributed a masculine plural accusative tag.

Next, in several examples, “sta” (second person, dual
form of verb “to be”) is tagged as a noun. Even if “STA”
can be used as an abbreviation (when written with capital
letters), it is much more frequent as the word-form of the

Incorrect lemmatisation
Besides the most common error of wrong lemmatisation

e.g., “hipernimija” being
lemmatised as “hipernimi” [hypernyms] and not as
“hipernimija” [hypernymy]), there are systematic errors
when lemmatising Slovene adjectives in comparative and
superlative form, where the base form is not chosen as a
lemma. Last but not least, there are typographic mistakes

end-of-line split words.

rocessing
The majority of the described mistakes are currently

processing step, but should
be taken into consideration in future versions of
ToTrTaLe, by improving tokenisation rules or changing

training the tagger with larger and better
corpora and lexica, and improving the lemmatisation

NLP WEB SERVICES FOR SLOVENE AND… Informatica 36 (2012) 441–449 447

In the current post-processing implementation we
added a list of previously unrecognized abbreviations
(such as “et al.”, “in sod.”, “cca.”) to avoid incorrect
redundant splitting of the sentence.

We corrected the wrongly merged sentences by
splitting them into two different sentences if certain
abbreviations (such as “etc.”) are followed by an upper-
case letter in the word following the abbreviation.

Other post-processing corrections include the
correction of adjective-noun agreement, where we
assume that the noun has the correct tag and the
preceding adjective takes its properties.

Some other individual mistakes are treated in the
post-processing script, but not all the mistakes have been
addressed.

6 Use Case: Using ToTrTaLe in the
Definition Extraction Workflow

In this section we present the usefulness of the presented
annotation web service implementation for the task of
definition extraction.

The definition extraction workflow, presented in
detail in Pollak et al. (2012a), was implemented in the
ClowdFlows platform and includes several widgets. The
workflow starts with two widgets presented in the
previous sections:
 Load corpus widget, which allows the user to

conveniently upload her corpus in various formats,
and

 ToTrTaLe tokenization, morphosyntactic annotation
and lemmatization service for Slovene and English.

The workflow’s main components for definition
extraction are implemented in the following widgets:
 Pattern-based definition extractor, which seeks for

sentences corresponding to predefined lexico-
syntactic patterns (e.g., NP [nominative] is a NP
[nominative]),

 Term recognition-based definition extractor, which
extracts sentences containing at least two domain-
specific terms identified through automatic term
recognition,

 WordNet- and sloWNet-based definition extractor,
which identifies sentences containing a wordnet term
and its hypernym.

In addition, several other widgets have been
implemented (Pollak et al., 2012a):
 Term extractor widget implementing the LUIZ term

recognition tool (Vintar, 2010) that we can use
separately for extracting the terms from the corpus
as well as the necessary step for the second
definition extraction method,

 Term candidate viewer widget, which formats and
displays the terms (and their scores) returned by the
term extractor widget,

 Sentence merger widget, which allows the user to
join (through intersection or union) the results of
several definition extraction methods,

 Definition candidate viewer widget, which, similarly
to the term candidate viewer widget, formats and
displays the candidate definition sentences returned
by the corresponding methods.

The three definition extraction methods, implemented as
separate operations of one web service, are described in
some more detail below.
 The first approach, implemented in the pattern-

based definition extraction widget, is the traditional
pattern-based approach. We created more than ten
patterns for Slovene, using the lemmas, part-of-
speech information as well as more detailed
morphosyntactic descriptions, such as case
information for nouns, person and tense information
for verbs, etc. The basic pattern is for instance “NP-
nom Va-r3[psd]-n NP-nom” where “NP-nom”
denotes a noun phrase in the nominative case and the
“Va-r3[psd]-n” matches the auxiliary verb in the
present tense of the third person singular, dual or
plural and the form is not negative, in other words it
corresponds to “je/sta/so” [is/are] forms of the verb
“biti” [to be]. As there is no chunker available for
Slovene, the basic part-of-speech annotation
provided by ToTrTaLe was needed for determining
the possible noun phrase structures and the positions
of their head nouns.

 The second approach, implemented in the term
recognition-based definition extraction widget, is
primarily tailored to extract knowledge-rich contexts
as it focuses on sentences that contain at least n
domain-specific single or multi-word terminological
expressions (terms). The parameters of this module
are the number of terms, the number of terms in the
nominative case, if a verb should figure between two
terms, if the first term should be a multi-word term
and if the sentence should begin with a term. For
setting these parameters, the ToTrTaLe information
was needed.

 The third approach, implemented in the WordNet-
based definition extraction widget, seeks for
sentences where a wordnet term occurs together with
its direct hypernym. For English we use the
Princeton WordNet (PWN) (Fellbaum, 1998),
whereas for Slovene we use sloWNet (Fišer and
Sagot, 2008), a Slovene counterpart of WordNet.

448 Informatica 36 (2012) 441–449

Figure 4: The definition extraction workflow

7 Conclusions and Further
In this paper we presented the ToTrTaLe
demonstrated how it can be used in workflows in two
service-oriented data mining platforms
ClowdFlows. Together with the ToTrTaLe web service,
we developed a series of widgets (workflow components)
for pre-processing the text, consisting of reading the text
corpus files in various formats, tokenising the text,
lemmatising and morphosyntactically annotating it, as
well as adding the sentence boundaries, followed by a
post-processing widget for error correction.

Before starting this work, initially p
Pollak et al. (2012b), the ToTrTaLe tool
existed as a web application for Slovene, where the user
was able to upload and add the text, but the novelty is
that a web service implementation now enables the user
to use ToTrTaLe as a part for various other NLP
applications. For illustration, this paper presents the use
case of ToTrTaLe in an elaborate workflow, which
implements definition extraction for Slovene and
English.

In further work we plan to develop other
for the processing of the natural language, especially for
Slovene, where the ToTrTaLe web service will be used
as the initial step.

Acknowledgement
We are grateful to Vid Podpečan and Janez Kranjc for
their support and for enabling us to include
widgets into Orange4WS and ClowdFlows, respectively.
The definition extraction methodology was done in
collaboration with Špela Vintar and Darja Fišer
work was partially supported by the Slovene Research
Agency and the FP7 European Commission projects
“Machine understanding for interactive storytelling”
(MUSE, grant agreement no: 296703) and “Large scale

The definition extraction workflow (http://clowdflows.org/workflow/76/

urther Work
In this paper we presented the ToTrTaLe web service and
demonstrated how it can be used in workflows in two

oriented data mining platforms: Orange4WS and
ClowdFlows. Together with the ToTrTaLe web service,
we developed a series of widgets (workflow components)

, consisting of reading the text
corpus files in various formats, tokenising the text,
lemmatising and morphosyntactically annotating it, as
well as adding the sentence boundaries, followed by a

processing widget for error correction.
, initially presented in

the ToTrTaLe tool has already
existed as a web application for Slovene, where the user
was able to upload and add the text, but the novelty is
that a web service implementation now enables the user
to use ToTrTaLe as a part for various other NLP

For illustration, this paper presents the use
case of ToTrTaLe in an elaborate workflow, which
implements definition extraction for Slovene and

ther work we plan to develop other workflows
for the processing of the natural language, especially for

service will be used

We are grateful to Vid Podpečan and Janez Kranjc for
their support and for enabling us to include the developed
widgets into Orange4WS and ClowdFlows, respectively.

tion methodology was done in
Špela Vintar and Darja Fišer. This

work was partially supported by the Slovene Research
Agency and the FP7 European Commission projects
“Machine understanding for interactive storytelling”
(MUSE, grant agreement no: 296703) and “Large scale

information extraction and integration i
supporting financial decision making” (FIRST, grant
agreement 257928).

References
[1] Špela Arhar Holdt and Vojko Gorjanc (2007).

Korpus FidaPLUS: nova generacija slovenskega
referenčnega korpusa. Jezik in slovstvo
110.

[2] Michael R. Berthold, Nicolas Cebron, Fabian Dill,
Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl,
Peter Ohl, Kilian Thiel and Bernd Wiswedel
(2007). KNIME: The Konstanz Information Miner.
In Preisach, C., Burkhardt, H., Schmidt
Decker, R., (eds.): GfKl.
Data Analysis, and Knowledge Organization
Springer, 319–326.

[3] Thorsten Brants (2000). TnT
Speech Tagger. In Proceedings of the 6
Natural Language Processing Conference
2000), Seattle, WA, 224–

[4] Janez Demšar, Blaž Zupan, Gregor Leban and
Tomaž Curk (2004). Orange: From experimental
machine learning to interactive data mining. In
Boulicaut, J.F., Esposito, F., Giannotti, F.,
Pedreschi, D. (eds.): Proceedings of ECML/PKDD
2004, Springer LNCS Volume 3202,

[5] Tomaž Erjavec (2011). Automatic linguistic
annotation of historical language: ToTrTaLe and
XIX century Slovene. In
ACL-HLT Workshop on Language Technology for
Cultural Heritage, Social Sciences, and
Humanities, ACL.

[6] Tomaž Erjavec (2012a). The goo300k corpus of
historical Slovene. In
International Conference on Language Resources
and Evaluation, LREC 2012, Istanbul, Turkey,
2257–2260.

S. Pollak et al.

http://clowdflows.org/workflow/76/).

information extraction and integration infrastructure for
supporting financial decision making” (FIRST, grant

Špela Arhar Holdt and Vojko Gorjanc (2007).
Korpus FidaPLUS: nova generacija slovenskega

Jezik in slovstvo 52(2): 95–

Berthold, Nicolas Cebron, Fabian Dill,
Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl,
Peter Ohl, Kilian Thiel and Bernd Wiswedel

KNIME: The Konstanz Information Miner.
In Preisach, C., Burkhardt, H., Schmidt-Thieme, L.,

GfKl. Studies in Classification,
Data Analysis, and Knowledge Organization,

Thorsten Brants (2000). TnT – A Statistical Part-of-
Proceedings of the 6th Applied

Natural Language Processing Conference (ANLP
–231.

Janez Demšar, Blaž Zupan, Gregor Leban and
Tomaž Curk (2004). Orange: From experimental
machine learning to interactive data mining. In
Boulicaut, J.F., Esposito, F., Giannotti, F.,

Proceedings of ECML/PKDD-
S Volume 3202, 537–539.

Tomaž Erjavec (2011). Automatic linguistic
annotation of historical language: ToTrTaLe and
XIX century Slovene. In Proceedings of the 5th

HLT Workshop on Language Technology for
Cultural Heritage, Social Sciences, and

Tomaž Erjavec (2012a). The goo300k corpus of
historical Slovene. In Proceedings of the 8th
International Conference on Language Resources

EC 2012, Istanbul, Turkey,

NLP WEB SERVICES FOR SLOVENE AND… Informatica 36 (2012) 441–449 449

[7] Tomaž Erjavec (2012b). MULTEXT-East:
morphosyntactic resources for Central and Eastern
European languages. Language resources and
evaluation 46(1): 131–142.

[8] Tomaž Erjavec and Sašo Džeroski (2004). Machine
Learning of Language Structure: Lemmatising
Unknown Slovene Words. Applied Artificial
Intelligence 18(1):17–41.

[9] Tomaž Erjavec, Darja Fišer, Simon Krek and Nina
Ledinek (2010). The JOS linguistically tagged
corpus of Slovene. In Proceedings of the 7th
International Conference on Language Resources
and Evaluations, LREC 2010, Valletta, Malta,
1806–1809.

[10] Tomaž Erjavec, Camelia Ignat, Bruno Pouliquen
and Ralf Steinberger (2005). Massive Multi-Lingual
Corpus Compilation: Acquis Communautaire and
ToTaLe. In Proceedings of the 2nd Language &
Technology Conference, April 21–23, 2005,
Poznan, Poland, 32–36.

[11] Christiane Fellbaum (1998). WordNet: An
Electronic Lexical Database. Cambridge, MA: MIT
Press. Online version: http://wordnet.princeton.edu.

[12] Darja Fišer and Benoît Sagot (2008). Combining
multiple resources to build reliable wordnets. Text,
Speech and Dialogue (LNCS 2546). Berlin;
Heidelberg: Springer, 61–68.

[13] Duncan Hull, Katy Wolstencroft, Robert Stevens,
Carole Goble, Matthew R. Pocock, Peter Li and
Thomas M. Oinn (2006). Taverna: A tool for
building and running workflows of services.
Nucleic Acids Research 34 (Web-Server-Issue):
729–732.

[14] Janez Kranjc, Vid Podpečan and Nada Lavrač
(2012). ClowdFlows: A cloud-based scientific
workflow platform. In Proceedings of
ECML/PKDD-2012. September 24–28, 2012,
Bristol, UK, Springer LNCS, 816–819.

[15] Dom Lachowicz and Caolán McNamara (2006).
wvWare, library for converting Word document.
http://wvware.sourceforge.net/, accessed in August
2012.

[16] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg,
Martin Scholz and Timm Euler (2006). YALE:
Rapid prototyping for complex data mining tasks.
In Eliassi-Rad, T., Ungar, L.H., Craven, M.,
Gunopulos, D. (eds.): Proceedings of KDD-2006,
ACM , 935–940.

[17] Vid Podpečan, Monika Žakova and Nada Lavrač
(2012). Orange4WS environment for service-
oriented data mining. The Computer Journal (2012)
55(1): 82–98.

[18] Senja Pollak, Anže Vavpetič, Janez Kranjc, Nada
Lavrač and Špela Vintar (2012a). In J. Jancsary
(ed.): Proceedings of the 11th Conference on
Natural Language Processing (KONVENS 2012),
September 19–21, 2012, Vienna, Austria, 53–60.

[19] Senja Pollak, Nejc Trdin, Anže Vavpetič and
Tomaž Erjavec (2012b). A Web Service
Implementation of Linguistic Annotation for
Slovene and English. In Proceedings of the 8th

Language Technologies Conference, Proceedings
of the 15th International Multiconference
Information Society (IS 2012), Volume C, 157–162.

[20] Yusuke Shinyama (2010). PDFMiner
http://www.unixuser.org/~euske/python/pdfminer/i
ndex.html, accessed in August 2012.

[21] Jasmina Smailović and Senja Pollak (2011). Semi-
automated construction of a topic ontology from
research papers in the domain of language
technologies. In Proceedings of the 5th Language
& Technology Conference, November 25–27, 2011,
Poznan, Poland, 121–125.

[22] TEI Consortium (2007). TEI P5: Guidelines for
Electronic Text Encoding and Interchange.
http://www.tei-c.org/Guidelines/P5/.

[23] Špela Vintar (2010). Bilingual term recognition
revisited: The bag-of-equivalents term alignment
approach and its evaluation. Terminology 16(2):
141–158.

[24] Ian H. Witten, Eibe Frank and Mark Hall (2011).
Data Mining: Practical Machine Learning Tools
and Techniques. 3rd Edition. Morgan Kaufmann.

