
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 14 (2018) 345–357
https://doi.org/10.26493/1855-3974.1240.515

(Also available at http://amc-journal.eu)

Alphabet-almost-simple 2-neighbour-transitive
codes

Neil I. Gillespie
Heilbronn Institute for Mathematical Research, School of Mathematics, Howard House,

University of Bristol, BS8 1SN, United Kingdom

Daniel R. Hawtin ∗

Centre for the Mathematics of Symmetry and Computation,
University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received 28 November 2016, accepted 12 June 2017, published online 30 September 2017

Abstract

Let X be a subgroup of the full automorphism group of the Hamming graph H(m, q),
andC a subset of the vertices of the Hamming graph. We say thatC is an (X, 2)-neighbour-
transitive code if X is transitive on C, as well as C1 and C2, the sets of vertices which are
distance 1 and 2 from the code. It has been shown that, given an (X, 2)-neighbour-transitive
codeC, there exists a subgroup ofX with a 2-transitive action on the alphabet; this action is
thus almost-simple or affine. This paper completes the classification of (X, 2)-neighbour-
transitive codes, with minimum distance at least 5, where the subgroup of X stabilising
some entry has an almost-simple action on the alphabet in the stabilised entry. The main
result of this paper states that the class of (X, 2) neighbour-transitive codes with an almost-
simple action on the alphabet and minimum distance at least 3 consists of one infinite family
of well known codes.
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1 Introduction

Ever since Shannon’s 1948 paper [18, 19] there has been a great deal of interest around
families of error-correcting codes with a high degree of symmetry. The rationale behind
this interest is that codes with symmetry should have good error correcting properties. The
first families classified were perfect (see [21] or [22]) and nearly-perfect (defined in [12],
classified in [15]) codes over prime power alphabets. Note that the classification of nearly-
perfect codes follows from the earlier results of [17] on uniformly packed codes, since
nearly-perfect codes are uniformly packed codes with maximal packing density. These
classifications show that perfect and nearly-perfect codes are rare. In an effort to find
further classes of efficient codes, Delsarte [4] introduced completely regular codes, a more
general class of codes that posses a high degree of combinatorial symmetry. Much effort
has been put into classifying particular classes of completely regular codes (see for instance
[1, 2]), and new completely regular codes continue to be found [6]. However, completely
regular codes have proven to be hard to classify, and this remains an open problem.

Completely transitive codes (first defined in [20], with a generalisation studied in [10])
are a class of codes with a high degree of algebraic symmetry and are a subset of completely
regular codes. As such a classification of completely transitive codes would be interesting
from the point of view of classifying completely regular codes. This problem also remains
open.

Here, the conditions of complete transitivity are relaxed and the family of 2-neighbour-
transitive codes is studied, a class of codes with a moderate degree of algebraic symme-
try. Note that every completely transitive code (see Section 2) is 2-neighbour-transitive.
By studying this class of codes we hope to find new codes and gain a better understand-
ing of completely transitive codes. Indeed a classification of 2-neighbour-transitive codes
would have as a corollary a classification of completely transitive codes. We also note that
codes with 2-transitive actions on the entries of the Hamming graph (which 2-neighbour-
transitive codes indeed have), have been of interest lately, where this fact can be used to
prove that certain families of codes achieve capacity on erasure channels [14]. The analysis
of 2-neighbour-transitive codes is being attacked as three separate problems: entry-faithful
(see [7]), alphabet-almost-simple, and alphabet-affine. This paper concerns the alphabet-
almost-simple case. The results of this paper do not return any new examples.

However, the results here are of interest from the point of view of perfect codes over
an alphabet of non-prime-power size, since in this case a code cannot be alphabet-affine
(and also not entry-faithful, by [7]), but may be alphabet-almost-simple. The existence of
perfect codes over non-prime-power alphabets with covering radius 1 or 2, is still an open
question (see [13]). By Theorem 1.1, if such codes exist, then they cannot be 2-neighbour-
transitive (unless they are equivalent to the repetition code of length 3). Note that in the
prime power case, for each set of parameters for which a perfect code with covering radius
ρ ≥ 2 exists, a 2-neighbour-transitive code with those parameters exists. That is, the
repetition and Golay codes are 2-neighbour-transitive. In fact, the repetition, Hamming
and Golay codes are completely transitive (by [11, Example 3.1] for the repetition codes,
[20, Proposition 7.3] for the Hamming and binary Golay codes, and [10, Example 3.5.6]
for the ternary Golay codes).
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1.1 Statement of the main results

Let X be a subgroup of the full automorphism group Smq o Sm of the Hamming graph
Γ = H(m, q) and let C be a code, that is, a subset of the set of vertices V Γ . We say
that C is an (X, s)-neighbour-transitive code if X fixes C setwise and acts transitively on
C = C0, C1, . . . , Cs (where Ci are parts of the distance partition, see Section 2). In joint
work with Giudici and Praeger [7], the authors classified all (X, 2)-neighbour-transitive
codes for which the group X acts faithfully on the set of entries of the Hamming graph. In
this paper, we begin the study of (X, 2)-neighbour-transitive codes such that the action of
X on the entries has a non-trivial kernel.

Let M be the set of entries of the Hamming graph H(m, q) and Qi be the copy of the
alphabet Q in the corresponding entry i ∈M . Then the vertex set of H(m, q) is:

V Γ =
∏
i∈M

Qi.

If C is an (X, 2)-neighbour-transitive code with minimum distance δ ≥ 3, then the sub-
group Xi ≤ X stabilising the entry i ∈ M has a 2-transitive action on the alphabet
Qi in that entry (see [7, Proposition 2.7]). Any 2-transitive group G is of affine type
(G ≤ AGLd(p) for some integer d and prime p) or almost-simple type (S ≤ G ≤ Aut(S)
for some non-abelian simple group S) [5, Theorem 4.1B]. If the action of X on M (see
Section 2.1) is transitive with a non-trivial kernel and the action of Xi on the alphabet
Qi is almost-simple then we say C is X-alphabet-almost-simple. Our main aim here
is to prove the non-existence of codes which are X-alphabet-almost-simple and (X, 2)-
neighbour-transitive with minimum distance δ ≥ 4.

Theorem 1.1. Let C be an X-alphabet-almost-simple and (X, 2)-neighbour-transitive
code in H(m, q) with minimum distance δ ≥ 3. Then δ = 3 and C is equivalent to
the repetition code in H(3, q), where q ≥ 5.

In Section 2 we define the notation used in the paper. In Section 3 we give some
results on the structure of codes that are X-alphabet-almost-simple and (X, 2)-neighbour-
transitive, as well as pose some questions about codes for which the action of Xi on the
alphabet in the entry i ∈ M is affine. We present some examples of codes with properties
of interest in relation to our results in Section 4. Finally, in Section 5, we give a clas-
sification of diagonally (X, 2)-neighbour-transitive codes (see Definition 3.1) and prove
Theorem 1.1.

2 Preliminaries
Throughout this paper we letM = {1, . . . ,m} andQ = {1, . . . , q}, withm, q ≥ 2, though
if q = 2 we will at times use Q = {0, 1}. We refer to M as the set of entries and Q as the
alphabet. We use Qi to denote the disjoint copy of the alphabet Q in the entry i ∈M . The
vertex set V Γ of the Hamming graph Γ = H(m, q) consists of all m-tuples with entries
labeled by the set M , taken from the set Q. An edge exists between two vertices if they
differ asm-tuples in exactly one entry. For vertices α, β ofH(m, q) the Hamming distance
d(α, β) is the number of entries in which α and β differ, i.e. the usual graph distance in Γ .
For α ∈ V Γ , we refer to the element of Q appearing in the i-th entry of α as αi, so that
α = (α1, . . . , αm) throughout.
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A code C is a subset of the vertex set of the Hamming graph. The minimum distance
of C is δ = min{d(α, β) | α, β ∈ C,α 6= β}. For a vertex α ∈ H(m, q), define

Γr(α) = {β ∈ Γ | d(α, β) = r}, and d(α,C) = min{d(α, β) | β ∈ C}.

We then define the covering radius to be

ρ = max{d(α,C) | α ∈ Γ}.

For any r ≤ ρ, define Cr = {α ∈ Γ | d(α,C) = r}. Note that Ci is the disjoint union
∪α∈CΓi(α) for i ≤ b δ−12 c.

2.1 Automorphism groups

The automorphism group Aut(Γ ) of the Hamming graph is the semi-direct productBoL,
where B ∼= Smq and L ∼= Sm (see [3, Theorem 9.2.1]). We refer to B as the base group,
and L as the top group, of Aut(Γ ). Let g = (g1, . . . , gm) ∈ B, σ ∈ L and α be a vertex in
H(m, q). Then g and σ act on α as follows:

αg = (αg11 , . . . , α
gm
m ) and ασ = (α1σ−1 , . . . , αmσ−1).

We define the automorphism group of a code C inH(m, q) to be Aut(C) = Aut(Γ )C ,
the setwise stabiliser of C in Aut(Γ ). For a subgroup X ≤ Aut(C) we define two other
important actions of X which will be useful to us. First, consider the action of X on the set
of entries M , which we will write as XM . In particular XM = µ(X), that is, the image of
the homomorphism:

µ : X −→ Sm
(h1, . . . , hm)σ 7−→ σ

.

Note that σ here is not necessarily an automorphism of C, that is, σ is a permutation of M
but may not necessarily fix C setwise, though its pre-image (h1, . . . , hm)σ is an element
of Aut(C). We define K to be the kernel of the map µ and note that K = X ∩ B. In this
paper we are concerned with (X, 2)-neighbour-transitive codes where K 6= 1.

We also consider the action of the stabiliser Xi ≤ X of the entry i ∈ M , on the
alphabet Qi in that entry. We denote this action by XQi

i = ϕi(Xi), and it is the image of
the homomorphism:

ϕi : Xi −→ Sq
(h1, . . . , hm)σ 7−→ hi

.

Let C be a code in H(m, q) and let X be a subgroup of Aut(Γ ). Recall that C is
(X, s)-neighbour-transitive if each Ci is anX-orbit for i = 0, . . . , s. Note that this implies
X ≤ Aut(C) and C is also (X, r)-neighbour-transitive, for r < s. If s = 1 then C is
simply X-neighbour-transitive and if s = ρ, the covering radius, then C is X-completely
transitive.

An almost-simple group is a group G where S ≤ G ≤ Aut(S) for some non-abelian
simple group S. The socle of a group G, denoted soc(G), is the product of its minimal
normal subgroups. The socle of an almost-simple group G is the non-abelian simple group
S such that S ≤ G ≤ Aut(S). Recall, if C is a code and X ≤ Aut(C) such that K 6= 1,
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XM is transitive onM and theXQi

i is almost-simple, then we sayC isX-alphabet-almost-
simple. We may sometimes omit the group X from any of the above terms, if the meaning
is clear from the context.

We say that two codes,C andC ′, inH(m, q), are equivalent if there exists x ∈ Aut(Γ )
such that Cx = C ′. Since elements of Aut(Γ ) preserve distance, equivalence preserves
minimum distance.

2.2 Projections

For a subset J = {j1, . . . , jk} ⊆ M we define the projection of α with respect to J as
πJ(α) = (αj1 , . . . , αjk). For a code C we then define the projection of C with respect to
J as πJ(C) = {πJ(α) | α ∈ C}. So πJ maps a vertex or code from H(m, q) into the
smaller Hamming graph H(k, q).

Let XJ be the setwise stabiliser of a subset J = {j1, . . . , jk} ⊆ M . For x =
(h1, . . . , hm)σ ∈ XJ , we define the projection of x with respect to J as χJ(x) where

πJ(α)χJ (x) = πJ(αx).

To be well defined, this requires x ∈ XJ and it follows that

χJ(x) = (hj1 , . . . , hjk)σ̂ ∈ Aut(H(k, q)),

where σ̂ is the element of Sym(J) induced by σ. Moreover, we define χJ(X) = {χJ(x) |
x ∈ XJ}.

3 Structural results
Some results from [8], in which X-alphabet-almost-simple and X-neighbour-transitive
codes with δ ≥ 3 are characterised, are stated below. This is our starting point when look-
ing at codes that areX-alphabet-almost-simple and (X, 2)-neighbour-transitive with δ ≥ 3,
since we then have that C is indeed X-neighbour-transitive. The following definitions are
needed first. For a subgroup T ≤ Sq define Diagm(T ) = {(h, . . . , h) ∈ B | h ∈ T}.

Definition 3.1. A code C in H(m, q) is diagonally (X, s)-neighbour-transitive if C is
(X, s)-neighbour-transitive and X ≤ Diagm(Sq) o L.

Each part of Proposition 3.2 is proved in the relevant citation of [8]. Recall the defini-
tions of: πJ(C) and χJ(X) (see Section 2.2), the socle soc(G) and the kernel K = X ∩B
for the action of X on M , where B ∼= Sm is the base group of Aut(Γ ) (see Section 2.1).
Note also that G is a sub-direct subgroup of a direct product

∏n
i=1 Ti of isomorphic groups

Ti ∼= T , where i ∈ {1, . . . , n}, if the projection of G in each coordinate is isomorphic to
T .

Proposition 3.2. Suppose C is an X-neighbour-transitive code in H(m, q) with δ ≥ 3.
Then the following hold:

i) Let J be an X-invariant partition of M and J ∈ J such that πJ(C) is not the
complete code. Then πJ(C) is χJ(X)-neighbour-transitive [8, Proposition 3.4].
(Note that the assumption that πJ(C) is not the complete code does not appear in
[8], but is necessary since the proof assumes that πJ(C)1 is non-empty.)
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ii) Let J be an X-invariant partition of M and J ∈ J such that πJ(C) is not the
complete code. Then πJ(C) has minimum distance at least 2 [8, Corollary 3.7].

iii) If C is also X-alphabet-almost-simple, then soc(K) is a sub-direct subgroup of∏
i∈M soc

(
XQi

i

)
[8, Proposition 5.2].

While the next result is not explicitly stated in [8], it is the basis of the characterisation
contained within it.

Proposition 3.3. Let C be anX-alphabet-almost-simple andX-neighbour-transitive code
with δ ≥ 3. Then there exists an X-invariant partition J of M such that for all J ∈ J
the code πJ(C) is equivalent to a diagonally χJ(X)-neighbour-transitive with minimum
distance δ(πJ(C)) ≥ 2.

Proof. Let T be the non-abelian simple socle of the almost-simple 2-transitive group XQi

i .

By Proposition 3.2-(iii), the group soc(K) is a sub-direct subgroup of
∏
i∈M soc

(
XQi

i

)
.

Following the discussion after [8, Proposition 5.2], Scott’s Lemma [16, p. 328] can be
applied to give a partition J of M such that soc(K) =

∏
J∈J DJ , where each DJ

∼=
Diagk(T ) acts on πJ(V Γ ), for all J ∈ J , where k = |J |. Moreover, by [8, Remark 5.5],
J is X-invariant. By examining soc(K), it can be shown [8, Section 5] that, up to equiv-
alence, two possibilities occur. Either χJ(X) ≤ Diagk(Sq) o Sk, where k = |J |, for all
J ∈ J , or J can be replaced by a more refined X-invariant partition Ĵ of M such that
χĴ(X) ≤ Diagk̂(Sq) o Sk̂, where k̂ = |Ĵ |, for all Ĵ ∈ Ĵ .

In either case, it follows from Proposition 3.2-(i) and (ii) that, for all J ∈ J or Ĵ
respectively, χJ(X) acts transitively on πJ(C) and either πJ(C) is the complete code
or it is χJ(X)-neighbour-transitive with minimum distance at least 2. Since χJ(X) is
a diagonal subgroup, we deduce that πJ(C) is as in the second case, since no diagonal
subgroup acts transitively on the complete code.

Proposition 3.4. Let C be an (X, 2)-neighbour-transitive code with δ ≥ 3 in H(m, q),
and suppose J is an X-invariant partition of M . Then for all J ∈ J , either;

i) πJ(C) is the complete code, δ(πJ(C)) = 1, and χJ(X) is transitive on πJ(C);

ii) πJ(C) has covering radius 1, δ(πJ(C)) = 2 or 3, and is (χJ(X), 1)-neighbour-
transitive; or,

iii) πJ(C) is (χJ(X), 2)-neighbour-transitive.

Proof. Let C̄ = πJ(C). The fact that χJ(X) is transitive on C̄ and C̄1, if C̄1 is non-empty,
follows from Proposition 3.2-(i). From this we deduce (i) and (ii). In particular, suppose the
covering radius of C̄ is at most 1. If the covering radius is 0 then C̄ is the complete code,
and if the covering radius is 1 then C̄ is not the complete code and the minimum distance
is at most 3 so, by Proposition 3.2-(ii), the minimum distance is at least 2. Therefore, we
need only show that when C̄2 is non-empty χJ(X) is transitive on C̄2.

Suppose C̄ has covering radius at least 2. Let µ, ν ∈ C̄2. Then there exists α, β ∈ C
such that d(µ, πJ(α)) = d(ν, πJ(β)) = 2. Let ν̂ ∈ H(m, q) with ν̂u = νu for u in J and
ν̂v = αv otherwise. Similarly, let µ̂ ∈ H(m, q) with µ̂u = µu for u in J and µ̂v = βv
otherwise. We claim that ν̂, µ̂ ∈ C2. We show this for ν̂ and note that an identical argument
holds for µ̂. First, note that d(α, ν̂) = 2 and δ ≥ 3, so ν̂ /∈ C. Suppose ν̂ ∈ C1. Then
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there exists α′ ∈ C such that d(ν̂, α′) = 1. We then have d(ν, πJ(α′)) ≤ 1. However, this
contradicts ν ∈ C̄2. Hence µ̂, ν̂ ∈ C2.

As C is (X, 2)-neighbour-transitive, there exists an x = hσ ∈ X mapping ν̂ to µ̂. We
claim x ∈ XJ . Suppose x /∈ XJ . Then, since J is a system of imprimitivity for the action
of X on M , there exists J ′ ∈ J such that J 6= J ′ and J ′σ = J . Since πJ′(ν̂) = πJ′(α),
this implies that πJ(ν̂x) = πJ(αx) ∈ C̄ and hence πJ(ν̂x) 6= µ, which contradicts the fact
that ν̂x = µ̂. Thus x ∈ XJ and

νχJ (x) = πJ(ν̂)χJ (x) = πJ(ν̂x) = πJ(µ̂) = µ.

Proposition 3.5. Let C be an (X, 2)-neighbour-transitive code in H(m, q) with δ ≥ 3,
and J be an X-invariant partition of M . Then, for all J ∈ J and i ∈ J ,

1. χJ(X)Qi

i is 2-transitive on Q; and,

2. for α ∈ C, χJ(X)πJ (α) is transitive on J .

Proof. As C is X-neighbour-transitive with δ ≥ 3, we have that XQi

i is 2-transitive, by
[7, Proposition 2.7], and XM is transitive, by [7, Proposition 2.5]. One then deduces that
XQi

i is 2-transitive for all i. Now, because J is an X-invariant partition, it follows that
Xi = (XJ)i for all i ∈ J . This in turn implies that χJ(X)i = χJ(Xi). It is now straight
forward to show that χJ(Xi)

Qi = XQi

i .
Now, since Xα is transitive on M and J is an X-invariant partition of M , it follows

that (Xα)J is transitive on J . Thus χJ(Xα) ≤ χJ(X)π(α) is transitive on J .

The previous two propositions suggest a study of codes that are (X, 2)-neighbour-
transitive, have minimum distance δ ≥ 2, and where X acts primitively on M . An answer
to the following questions would provide us with the building blocks for (X, 2)-neighbour-
transitive codes with δ ≥ 3.

Question 3.6. Can we classify all (X, 2)-neighbour-transitive codes with δ ≥ 2 such that
XM is primitive and XQi

i is 2-transitive?

Question 3.7. Can we classify all (X, 1)-neighbour-transitive codes with δ = 2 or 3 and
ρ = 1 such that XM is primitive and XQi

i is 2-transitive?

Let C be a code and X ≤ Aut(C). If X acts faithfully on M , that is K = X ∩B = 1,
we say C is X-entry-faithful. If K 6= 1, XM is transitive on M and XQi

i is affine (XQi

i ≤
AGLd(p) for some integer d and prime p) we say C is X-alphabet-affine. Questions 3.6
and 3.7 can be further broken down into X-entry-faithful and non-trivial kernel cases, that
is, X-alphabet-affine and X-alphabet-almost-simple (see Section 2.1 for the definition of
X-alphabet-almost-simple). By the main result of this paper, the outstanding cases of
Question 3.6 are X-alphabet-almost-simple and (X, 2)-neighbour-transitive with δ = 2,
and X-alphabet-affine and (X, 2)-neighbour-transitive, where XM is primitive and XQi

i is
2-transitive.

Given Proposition 3.3, a third question is the following.

Question 3.8. Can we construct (X, 2)-neighbour-transitive codes with δ ≥ 3 by taking
copies of (X, 1)-neighbour-transitive codes with δ = 2 or 3 and ρ = 1.
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4 Examples
We begin this section by considering some examples of codes which have properties re-
lating to the results of the previous section. We first introduce the operators Prod and
Rep which allow the construction of new codes from old ones. For an arbitrary code C in
H(m, q) we define Prod(C, `) and Rep`(C) in H(m`, q) as

Prod(C, `) = {(α1, . . . ,α`) | αi ∈ C},

and
Rep`(C) = {(α, . . . ,α) | α ∈ C}.

The repetition code Rep(m, q) in H(m, q) is the set of all vertices (a, . . . , a) consisting of
a single element a ∈ Q repeated m times.

The next two examples present codes which are both X-alphabet-almost-simple and
X-completely transitive, though the second example has minimum distance δ = 2.

Example 4.1. Let C = Rep(3, q), where q ≥ 5, and X = Diag3(Sq) o S3, as in [11,
Example 3.1]. Now,

C1 = {(a, a, b), (a, b, a), (b, a, a) | a, b ∈ Q; a 6= b},

and
C2 = {(a, b, c) | a, b, c ∈ Q; a 6= b 6= c 6= a}.

Since Sq acts 3-transitively on Q and S3 acts transitively on M , it follows that X acts
transitively on C, C1 and C2. Thus C is (X, 2)-neighbour-transitive and X-completely
transitive, since C has covering radius ρ = 2. Also, XQi

i
∼= Sq is almost-simple, since

q ≥ 5, and XM ∼= S3 is transitive on M . Hence C is X-alphabet-almost-simple and
X-completely transitive.

Example 4.2. Let q ≥ 5, ` ≥ 2, C = Prod(Rep(2, q), `) and X = (Diag2(Sq))
` o U ,

where Diag2(Sq) is a subgroup of the base group of Aut(H(2, q)) and U = S2 o S` =
S`2 o S` is a subgroup of the top group of Aut(H(2`, q)). Let J = {J1, . . . , J`}, with
Ji = {2i − 1, 2i}, be the partition of M preserved by U . Note that δ = 2. Let R ⊆
{1, . . . , `} of size s, and ν ∈ H(m, q) be such that πJi(ν) = (a, b), where a 6= b for
all i ∈ R, and a = b for all i /∈ R. Any codeword β is at least distance s from ν,
since d(πJi(ν), πJi(β)) ≥ 1 for each i ∈ R. Also, there exists some codeword α with
πJi(α) = (a, a) whenever πJi(ν) = (a, b) for i ∈ {1, . . . , `}, and hence d(α, ν) = s.
So ν ∈ Cs. Any vertex ν of H(2`, q) can be expressed in this way, for some R, since
πJi(ν) = (a, b) has either a = b or a 6= b. Thus, for each s, Cs consists of all such vertices
ν where |R| = s. It also follows from this that ρ = `.

Let ν ∈ Cs, with R as above. Let x = (hJ1 , . . . , hJ`)σ ∈ X where hJi ∈ Diag2(Sq)
such that πJi(ν)hJi = (1, 2), for i ∈ R, and πJi(ν)hJi = (1, 1), for all i /∈ R. More-
over, since S` is `-transitive, there exists σ ∈ S` ≤ S2 o S` mapping {Ji1 , . . . , Jis} to
{J1, . . . , Js} (where R = {i1, . . . , is}), whilst preserving order within each Ji. Then
νx = γ ∈ Cs, where πJi(γ) = (1, 2) for all i ∈ {1, . . . , s} and πJi(γ) = (1, 1) for all
i /∈ {s + 1, . . . , `}. Since we can map any such ν to γ, X is transitive on Cs for each
s ∈ {1, . . . , `}. Hence C is X-completely transitive, and in particular (X, 2)-neighbour-
transitive for ` ≥ 2. Since XQi

i
∼= Sq and XM ∼= S2 o S` is transitive on M , C is

X-alphabet-almost-simple.
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Lemma 4.3. Suppose C is an (X, 2)-neighbour-transitive code in H(m, q), with q ≥ 3,
and J is an X-invariant partition of M , such that πJ(C) = Rep(k, q), for all J ∈ J
where k = |J |. Then either δ = k = 2, or J is a trivial partition.

Proof. Let x = (h1, . . . , hm)σ ∈ X and J ∈ J . By the hypothesis it follows that for all
a ∈ Q, there exists α ∈ C such that πJ(α) = (a, . . . , a). Suppose Jσ = J ′ ∈ J . Then
πJ′(α

x) = (ahi1 , . . . , ahik )σ = (b, . . . , b) for some b ∈ Q, that is, ahis = ahit for all
is, it ∈ J . In particular χJ(xσ−1) = (h, . . . , h) for some h ∈ Sq , andX ≤ Diagk(Sq) oU ,
where U is the stabiliser of J in the top group.

Suppose that the partition J is non-trivial, so that k, ` ≥ 2. Since C is a subset of
Prod(Rep(k, q), `), which has minimum distance k, it follows that δ ≥ k ≥ 2.

Suppose δ ≥ 3. As C is a subset of Prod(Rep(k, q), `) we can replace C by an
equivalent code contained in Prod(Rep(k, q), `) containing α = (1, . . . , 1) and such that

J = {{1, . . . , k}, {k + 1, . . . , 2k}, · · · , {m− k + 1, . . . ,m}} .

Consider,

µ = (2, 3, 1, 1, . . . , 1, 1, 1, 1, . . . , 1, · · · , 1, . . . , 1) and
ν = (2, 1, 1, 1, . . . , 1︸ ︷︷ ︸

k entries

, 2, 1, 1, . . . , 1︸ ︷︷ ︸
k entries

, · · · , 1, . . . , 1︸ ︷︷ ︸
k entries

).

If k = 2, then we claim µ ∈ C2. Any vertex β ∈ Prod(Rep(2, q), `) ⊇ C with d(µ, β) = 1
is of the form γ = (a, a, 1, . . . , 1), where a = 2 or 3. However, no such γ is an element
of C, since each is distance 2 from α. If k ≥ 3 then µ ∈ C2 since d(α, µ) = 2 and there
is no closer codeword as πJ1(µ) ∈ πJ1(C)2. In both cases ν ∈ C2 since d(α, ν) = 2 and
no codeword is closer, as πJi(ν) ∈ πJi(C)1 for i = 1, 2. Let x = (h1, . . . , hm)σ ∈ X
such that µx = ν. We reach a contradiction here, since h1 = h2 = · · · = hk = h cannot,
assuming k ≥ 3, map the set {1, 2, 3} to either of the sets {1, 2} or {1}. In the case k = 2,
in at least one block we must map the set {1} to {1, 2}, which is not possible. Hence
2 ≥ δ ≥ k ≥ 2.

Suppose J is a system of imprimitivity for the action of X on M and C is an X-
neighbour-transitive code, with δ ≥ 3. The next example shows that it is possible that the
projection of C onto each block of J gives the complete code, though this is not the system
of imprimitivity of interest to us in Proposition 3.3.

Example 4.4. Let C̄ = Prod(C, `) be a code in Γ = H(m, q), where m = k` and C is
an X-neighbour-transitive code in H(k, q) where X ∩B is transitive on C and δ ≥ 3. Let
X̄ = 〈(X ∩B)`,Diag`(X), S`〉 preserve the partition

J = {{1, . . . , k}, . . . , {m− k + 1, . . . ,m}} = {J1, . . . , J`},

of M , where χJ((X ∩B)`) = X ∩B and χJ(Diag`(X)) = X for all J ∈ J , and S` acts
as pure permutations by permuting the blocks of J whilst preserving the order of entries
within a given block. It follows that we preserve two X̄-invariant partitions. These being
J and J ′, where J ′ is attained by taking the corresponding entries, by order, from each
copy of C to form each block:

J ′ = {{1, k + 1, . . . ,m− k + 1}, . . . , {`, k + `, . . . ,m}}.
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Given any α = (α1, . . . ,α`) ∈ C̄, αi ∈ C, and β = (β1, . . . ,β`) ∈ C̄, βi ∈ C there
exists an x ∈ (X∩B)` mapping α to β sinceX∩B is transitive onC. Hence X̄ is transitive
on C̄. Given any two neighbours µ, ν ∈ Γ1(α), where µ, ν differ from α in the respective
blocks Ji and Jj , we can map Jj to Ji via some element σ ∈ S`. Then, since Xαi

is
transitive on Γ1(αi), there exists an element x ∈ Diag`(X) such that πJi(ν

σx) = πJi(µ).
We can then map νσx to µ via some element h ∈ (X ∩B)`, where χJi(h) = 1, since each
πJt(ν

σx) and πJt(µ) are elements of C for t 6= i and X ∩B is transitive on C. Hence σxh
maps ν to µ and X̄ is transitive on C̄1.

When we consider the projection πJ(C̄) for any J ∈ J ′ we are left with the complete
code. To see this, consider that for (α1, . . . ,α`) ∈ C̄,αi ∈ C, we may choose an arbitrary
element of C asαi for each i. SinceXQi

i is 2-transitive onQi, each element appears in the
first entry for some codeword. Thus, as πJ((α1, . . . ,α`)) when J = {1, k + 1, . . . ,m −
k + 1} is the first entry of each αi, we have that πJ(C̄) is the complete code.

5 Alphabet-almost-simple (X, 2)-neighbour-transitive codes
Before we prove the final results we define the codes used in this section, which first re-
quires the following definition.

Definition 5.1. Define the composition of a vertex α ∈ H(m, q) to be the set

Q(α) = {(a1, p1), . . . , (aq, pq)},

where pi is the number of entries of α which take the value ai ∈ Q. For α ∈ H(m, q)
define the set

Num(α) = {(p1, s1), . . . , (pj , sj)},

where (pi, si) means that si distinct elements of Q appear precisely pi times in α.

Definition 5.2. We define the following codes:

1. Inj(m, q), where m < q, is the set of all vertices α ∈ H(m, q) such that Num(α) =
{(1,m)};

2. for m odd, W ([m/2], 2) is the set of vertices in α ∈ H(m, 2) such that Num(α) =
{(m+ 1)/2, 1), (m− 1)/2, 1)}; and,

3. All(pq, q), with pq = m, is the set of all vertices α ∈ H(m, q) such that Num(α) =
{(p, q)}.

More information on these codes is available in [9, Definition 2]. The following lemma
is [9, Lemma 4].

Lemma 5.3. Let α be a vertex inH(m, q). Then Num(α) is preserved by Diagm(Sq)oL.

The last result, in combination with the classification of diagonally neighbour-transitive
codes [9, Theorem 4.3], allows us to prove the next result.

Proposition 5.4. LetC be a diagonally (X, 2)-neighbour-transitive code inH(m, q). Then
one of the following holds:

1. q = 2 and C = {(a, . . . , a)};
2. m = 3 or q = 2, and C = Rep(m, q);
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3. C = Inj(3, q);

4. m is odd and C = W ([m/2], 2); or,

5. q = 2 or q = m = 3, and there exists some p such that m = pq and C is a subset of
All(pq, q).

Proof. From [9, Theorem 4.3], we have that a diagonally neighbour-transitive code C is
one of: {(a, . . . , a)} for some a ∈ Q, Rep(m, q), Inj(m, q) with m < q, W ([m/2], 2)
with m odd, or there exists a p such that m = pq and C is a subset of All(pq, q). Here
we consider m ≥ 2, since if m = 1 then C2 is empty, so C is not (X, 2)-neighbour-
transitive. Also to prove some C is (X, 2)-neighbour-transitive, we need only find some
X ≤ Aut(C) such that X ≤ Diagm(Sq)oL and X is transitive on C2, since C is already
X-neighbour-transitive, for some X , by [9, Theorem 4.3].

First, if C = Inj(2, q) then C2 is empty. Thus, C is not (X, 2)-neighbour-transitive.
Table 1 lists the remaining cases which are not 2-neighbour-transitive. The second and third
columns give a pair µ, ν ∈ C2 such that Num(µ) 6= Num(ν). Hence, by Lemma 5.3, X is
not transitive on C2. It can be deduced from Num(µ),Num(ν) that µ, ν ∈ C2, since this
makes it clear that we must change µ, ν in at least two entries to get a vertex in C. Note that
we let α = (1, 2, 3, . . . , q) ∈ H(q, q) and in the second last and last rows we assume α ∈ C
and (α, . . . , α) ∈ C, respectively, and observe for the last row µ̂ = (1, 1, 1, 4, 5, . . . , q),
ν̂ = (1, 1, 3, 4, 5, . . . , q) are in Γ2(α).

C µ ∈ C2 ν ∈ C2

Conditions Num(µ) Num(ν)

{(a, . . . , a)} (b, b, a, . . . , a) (b, c, a, . . . , a)
q ≥ 3 {(m− 2, 1), (2, 1)} {(m− 2, 1), (1, 2)}

Rep(m, q) (2, 2, 1, . . . , 1) (2, 3, 1, . . . , 1)
m > q ≥ 3 {(m− 2, 1), (2, 1)} {(m− 2, 1), (1, 2)}

Inj(m, q) (1, 1, 1, 4, 5, . . . ,m) (1, 1, 3, 3, 5, 6, . . . ,m)
m ≥ 4 {(3, 1), (1,m− 3)} {(2, 2), (1,m− 4)}

⊆ All(q, q) (1, 1, 1, 4, 5, . . . , q) (1, 1, 3, 3, 5, 6, . . . , q)
q ≥ 4 {(3, 1), (1, q − 3)} {(2, 2), (1, q − 4)}

⊆ All(pq, q) (µ̂, α, . . . , α) (ν̂, ν̂, α, . . . , α)
q > p ≥ 2 {(p− 1, 2), (p, q − 3), (p+ 2, 1)} {(p− 2, 1), (p, q − 2), (p+ 2, 1)}

Table 1: Diagonally neighbour-transitive codes C which are not diagonally 2-neighbour-
transitive, and elements of C2 which illustrate this. Note: µ̂ = (1, 1, 1, 4, 5, . . . , q), ν̂ =
(1, 1, 3, 4, 5, . . . , q) and α = (1, 2, 3, . . . , q).

Now we prove the result for the cases which are 2-neighbour-transitive. Suppose C =
{(a, . . . , a)} for some a ∈ Q. Let q = 2 and Q = {0, 1}. Then L = Sm = Aut(C).
Without loss of generality, let a = 0 so that C2 is the set of weight two vertices. Since L is
transitive on the sets of weight 2 and weight 1 vertices, it follows C is diagonally (X, 2)-
neighbour-transitive. Let C = Rep(m, q). It follows from Example 4.1 that Rep(3, q) is
(Diag3(Sq) o S3, 2)-neighbour-transitive. If q = 2 then Aut(C) ∼= Diagm(S2) o Sm and
C is completely transitive [11, Example 3.1]. ConsiderC = Inj(m, q) with 3 = m < q and
q ≥ 4. If ν ∈ C2 then ν1 = ν2 = ν3, since otherwise ν ∈ C or C1. Since Diagm(Sq) ≤
Aut(C), we are transitive on C2. Suppose C = W ([m/2], 2) and m is odd. Then by [9,
Corollary 3.4] C is Diag(S2) o Sm-completely transitive. Finally, suppose C is a subset
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of All(pq, q) for some p such that m = pq. Let p ≥ 2, q = 2 and C = All(2p, 2). Then
C2 is the set of all weight p ± 2 vertices, which Diag2(S2) o Sm ≤ Aut(C) is transitive
on. Let p = 1, q = 3 and C = All(3, 3). Then C2 = Rep(3, q) and is Aut(C)-completely
transitive by Example 4.1.

With our classification of diagonally (X, 2)-neighbour-transitive codes from the pre-
vious result, Propositions 3.3 and 3.4 mean we are now in a position to prove the main
theorem.

Proof of Theorem 1.1. Suppose C is an X-alphabet-almost-simple and (X, 2)-neighbour-
transitive code with δ ≥ 3 such that X ∩ B 6= 1. By Proposition 3.3, there exists an
X-invariant partition J = {J1, . . . , J`}, for some `, for the action of X on M . Moreover,
πJi(C) has minimum distance at least 2 and is diagonally χJi(X)-neighbour-transitive. By
Proposition 3.4, either πJi(C) has covering radius ρ ≤ 1, or πJi(C) is also (χJi(X), 2)-
neighbour-transitive. Note ρ 6= 0, that is, πJi(C) is not the complete code, since πJi(C)
has minimum distance at least 2.

Suppose πJi(C) has covering radius ρ ≥ 2. SinceXQi

i is almost-simple, it follows that
q ≥ 5. By Proposition 5.4, the only diagonally 2-neighbour-transitive code with q ≥ 5 and
δ ≥ 2 is Rep(3, q) for q ≥ 5 (note that δ = 1 for Inj(3, q)). Then Lemma 4.3 implies J is a
trivial partition. Since |Ji| = k = 3 > 1, it follows that ` = 1, k = m, and C = Rep(3, q).

Suppose πJi(C) has covering radius ρ = 1. Now, by [9, Thm. 4 and Cor. 2], the only
diagonally neighbour-transitive code with δ ≥ 2 and ρ = 1 is Rep(2, q). If l = 1 then
we have δ = 2, a contradiction. Suppose l ≥ 2. Then Lemma 4.3 implies δ = 2, a
contradiction.
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