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Abstract

There are many results on graphs with the smallest eigenvalue at least —2. In or-
der to study graphs with the eigenvalues at least —1 — v/2, R. Woo and A. Neumaier
introduced Hoffman graphs and #-line graphs. They proved that a graph with the suf-
ficiently large minimum degree and the smallest eigenvalue at least —1 — /2 is a slim
{[b2], [B5], [b7], [ho] }-line graph. After that, T. Taniguchi researched on slim {[h2], [h5]}-
line graphs. As an analogue, we reveal the condition under which a strict {[h1], [h4], [H7]}-
cover of a slim {[h7]}-line graph is unique, and completely determine the minimal forbid-
den graphs for the slim {[h-]}-line graphs.
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1 Introduction

Throughout this paper, we will consider only undirected graphs without loops or multiple
edges, and denote by A, (I') and §(T") the minimum eigenvalue and the minimum degree
of a graph I, respectively.

P. J. Cameron, J. M. Goethals, J. J. Seidel and E. E. Shult have characterized generalized
line graphs as the graphs with the smallest eigenvalue at least —2 except for finitely many
graphs with at most 36 vertices in [3]. After that, A. Hoffman proved the following theorem
in [6].

Theorem 1.1. There exists an integer valued function f defined on the intersection of the
half-open interval (—1 — /2, —2] and the set of the smallest eigenvalues of graphs, such
that if T is a connected graph with §(T') > f(Amin(T')) then

(i) if =1 > Apin(T') > —2 then I is a complete graph and Apin (') = —1.
(ii) if =2 > Amin(T') > —1 — /2 then T is a generalized line graph and A pin (T') = —2.

In [12], R. Woo and A. Neumaier introduced Hoffman graphs and #-line graphs, where
‘H is a family of isomorphism classes of Hoffman graphs, to extend the result of A. Hoff-
man, and proved Theorem 1.2. Moreover, they raised the problem [12, Open problem 3] to
reveal the list of minimal forbidden graphs for the slim {[h2], [h5], [57], [ho] }-line graphs.
These Hoffman graphs and some ones that appear in this paper and [12] are listed in Fig-
ure 1 (here, the names by, s, ... depend on [12]).

b1 = b = bz =
hs = bs = be =
br = hs = by =

Figure 1: Hoffman graphs with slim (resp. fat) vertices depicted as small (resp. large) black
dots.

Theorem 1.2. Let oy (= —2.4812) be the smallest root of the polynomial z3 + 22 —
2x — 2. There exists an integer valued function f defined on the intersection of the half-
open interval (ay,—1 — ﬁ} and the set of the smallest eigenvalues of graphs, such that
if T is a graph with Apin(T') € (a4, —1 — /2] and 5(T') > f(Amin(T)), then T is an
{[b2], [bs], [b7], [ho]}-line graph.
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Since it is difficult to solve the open problem, T. Taniguchi considered a partial prob-
lem. In [11], he completely determined the 38 minimal forbidden graphs for the slim
{[b2], [b5]}-line graphs by using Theorem 1.3 [10].

Theorem 1.3. A slim {[h2], [h5]}-line graph with at least 8 vertices has a unique strict
{[b2], [b3]; [b5]}-cover up to equivalence.

As an analogue of his result, we reveal the minimal forbidden graphs for the slim
{[h7]}-line graph. In Section 2, we introduce a part of the basic theory of Hoffman graphs
summarized in detail in [7]. In Section 3, we introduce minimal forbidden graphs. In Sec-
tion 4, we aim to prove Theorem 4.11 which reveals the necessary and sufficient condition
that a strict {[b1], [h4], [H7] }-cover of a slim {[h7]}-line graph becomes unique up to equiv-
alence. Furthermore, when the condition is not satisfied, the theorem shows the shape of
the slim {[h7]}-line graph and indicates its strict {[h1], [h4], [h7]}-covers are exactly two
up to equivalence. This helps us to examine the minimal forbidden graphs for the slim
{[H7]}-line graphs. In order to prove our main result Theorem 5.1, in which we determine
the minimal forbidden graphs for the slim {[h7]}-line graphs, we computed the minimal
forbidden graphs with at most 9 vertices by the software MAMGA [2]. In Section 5, we
determine the minimal forbidden graphs apart from those with at most 9 vertices.

2 Hoffman graphs
We introduce definitions related to Hoffman graphs. Details are in [7].

Definition 2.1. A Hoffiman graph 4 is a pair (H, 1) of a graph H = (V, E') and a labelling
map p: V — {f, s}, satisfying the following conditions:

(i) every vertex with label f is adjacent to at least one vertex with label s;

(ii) vertices with label f are pairwise non-adjacent.

We call a vertex with label s a slim vertex, and one with label f a fat vertex. We denote by
Vs(h) (resp. V¢(h)) the set of slim (resp. fat) vertices of b.

For a vertex x of a Hoffman graph fj, we denote by N,{ (z) (resp. Ni(z)) the set of
neighbors labelled f (resp. s) of z, and set Ny(z) = N,f(a:) U Ny (z). For a set X of
vertices of b, we let N,{(X) = Usex Ng(a:) and N{(X) := U, cx N; (z). We regard an
ordinary graph H without labelling as a Hoffman graph (H, 1) without fat vertices, that is,
u(x) = s for any vertex x of H. Such a graph is called a slim graph.

Definition 2.2. A Hoffman graph b/ = (H', ') is called an induced Hoffman subgraph of
a Hoffman graph b = (H, p), if H' is an induced subgraph of H and y|y g+ = /. For a

subset S of V,(h), we denote by ({S))y the induced Hoffman subgraph of h by SU N,{(S).

We denote by (S)r the ordinary induced subgraph by S of a graph I for a subset .S of
V(T). For a Hoffman graph b, (V,(h))y is called the slim subgraph of h. The diameter of
a graph is the maximum distance between two distinct vertices. Let I' be a graph and C
be a subset of V(T"). Then, C is a clique in T if the induced subgraph (C)r is a complete
graph. The size of the largest clique in I' is called the cligue number. A partition m =
{C1,Cy,...,C} of V(T') is called a clique partition if all cells C; are cliques. Focusing
on cliques is useful for discovering the structure of line graphs. Also in this paper, we may
focus on clique numbers and clique partitions.
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Definition 2.3. Let h be a Hoffman graph, and let ' and h? be two induced Hoffman
subgraphs of h. The Hoffman graph b is said to be the sum of h' and h2, written as
h = ' @ b2, if the following conditions are satisfied:

(i) V(h) =V(h") UV (h?);
(i) Vi(h) = Vi(h') U Vi(b?) and Vi(h') N V(b%) = 0;
(ii) if z € Vy(h'), y € Vy(h) fori = L or2,and z ~ y, then y € Vy(h");

@(iv) if x € V4(h') and y € V;(h?), then = and y have at most one common fat neighbor,
and they have one if and only if they are adjacent.

If b is the sum of some two nonempty Hoffman graphs, then it is said to be decomposable.
Otherwise, §j is said to be indecomposable.

Remark that the sum of Hoffman graphs satisfies commutative and associative laws.

Definition 2.4. Let fh and m be Hoffman graphs, and let ¢ be a graph morphism from the
underlying graph of b to that of m. Mapping ¢: ) — m is called a morphism if it preserves
the labelling, that is, ¢(V;(h)) C Vs(m) and ¢(V¢(h)) C V(m). If ¢ is a morphism and a
graph isomorphism, then it is called an isomorphism, and ) and m are said to be isomorphic,
written as h ~ m. Let [] denote the isomorphism class of b.

Definition 2.5. Let # be a family of isomorphism classes of Hoffman graphs. A Hoffman
graph m is called a H-line graph if it is an induced subgraph of some Hoffman graph
h =D, b’, where [h?] € H for every i. In this case, m is called a slim H-line graph if m
is a slim graph, and b is called a strict H-cover of a graph T" if V() = V(T"). Two strict
H-covers b and b’ of a graph I are said to be equivalent, if there exists an isomorphism
¢: b — b’ such that ¢|r is the identity automorphism of T'.

Lemma 2.6. Let H be a family of isomorphism classes of Hoffman graphs, and let H' be
the family of the isomorphism classes of indecomposable induced Hoffman subgraphs by a
nonempty set of slim vertices in a member of H. Then, every slim H-line graph has a strict
H'-cover.

Proof. Leth = @]_, h’, where [h’] € H for every i. Then, it holds that

n

(S = ED (SN Vi ))s

i=1

for a subset S of V(). Therefore ((S))y is a strict H'-cover of the induced subgraph by S
since every addend is the sum of some indecomposable induced Hoffman graphs of . [

3 Minimal forbidden graphs

In graph theory, various important families of graphs can be described by a set of graphs
that do not belong to that family. This is the concept of so-called minimal forbidden graphs.
First, we give the definition. Suppose that a family G of graphs is closed under the operation
to take induced subgraphs, that is, G satisfies the condition that for a graph G in G, any
induced subgraph of G is also in G. Then, we say that a graph F' is a minimal forbidden
graph for G if both of the following are satisfied:
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(i) FisnotinG;
(i) Every proper induced subgraph of F'isin G.

On the family of ordinary line graphs [1] and the family of slim {[h2], [h5]}-line gra-
phs [11], their minimal forbidden graphs are revealed. Besides this, characterizations of
forests, perfect graphs [4] and Threshold graphs [5] by minimal forbidden graphs are also
known. In addition, Sumner [9] claimed that if I" is a connected K 3-free graph of even
order, then I has a 1-factor. As such, there are also known results that properties of a family
of graphs in the case that “forbidden graphs” are specified in advance. As we can see from
these results, revealing the minimal forbidden graphs is one way to understand families of
graphs. Unfortunately not being finite, but we are able to reveal the minimal forbidden
graphs for the slim {[h7]}-line graphs.

4 The condition that an {[h,], [h4], [h7]}-strict cover of a slim {[h,]}-
line graph is unique up to equivalence

In this section, set H = {[h1], [h4], [h7]}. Note that every slim {[h7]}-line graph has a strict
‘H-cover by Lemma 2.6. For exmaple, the graph I" in Figure 2 is a slim {[h7]}-line graph.
Indeed, considering the sum h = h7 & b @ b4 of Hoffman graphs in Figure 9, we see that

hb=brDh1 Dby =

Figure 2: A slim {[h7]}-line graph and its strict {[h1], [h4], [h7]}-cover.

the slim subgraph of h is the graph I'. (In Figure 2, the dotted lines are used for convenience
to show what kind of small Hoffman graphs the graph I' is decomposed by. In addition, for
two vertices « and y which belong to distinct addends, we omit the edge between x and y
if they have a common fat neighbor since the existence of edge between = and y depends
only on that of their common fat neighbor by Definition 2.3 (iv).) In addition, h; and b4 are
induced subgraphs of b7, so the graph I is certainly a slim {[h7]}-line graph. On the other
hand, since V() = V(T') holds, the Hoffman graph b is a strict {[b1], [h4], [h7]}-cover
of I

Leth = @, h? where [h°] € H for every i. Then, we can regard N,{ as a mapping
from V;(h) to V(h) since every slim vertex is adjacent to exactly one fat vertex. For a slim
vertex x of b, let h(x) denote the addend h* containing x, and let Cy(z) = Ng(N,{(x))
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and
covh = {Ng(u) [ u € Vi(h)} = {Cy(z) [z € Vis(H)}.

Let x be a slim vertex of h. We show that Cjy () is a clique. First, we take u € V() such
that N[{(;v) = {u}. We arbitrarily take two slim vertices y and z in Ni (u) (= Cy(2)). It
suffices to show that y and z are adjacent. If y and z are contained in the same indecom-
posable addend of f, then they are adjacent. Otherwise, so are they by Definition 2.3 (iv).
Hence, the desired result follows. Note that cov b is a clique partition of V(h). Moreover,
it holds clearly that Nhf |a = N{(A));, for any subset A C V().

Lemma 4.1. Let b = @@, b, where [bh'] € H for every i, and let C be a clique of the
slim subgraph of Y. Then, the following hold:

(i) two distinct slim vertices x and y are adjacent if and only if H(z) = b(y) or N,{(x) =
N ();
(ii) C C Cy(x) forany x € C, or C C V5(h(y)) forany y € C;
(iii) If C C Cy(z) N V5(h(y)) for some x,y € C, then |C| < 2.

Proof. Statements (i) and (iii) hold clearly. Assume that C' ¢ Cp(x) for some z € C.
There exists y € C' such that Nbf(x) # N,{(y) Thus, h(x) = h(y) holds by (i). Statement

(ii) follows since Nr{(x) + Néc(z) or Nr{(x) + N,{(z) foreach z € C. O
We introduce some definitions to determine the strict #-covers of a graph.

Definition 4.2. Let I" be a graph, and let {C; },;< s be a partition of the vertex set of I". Then,
define n(z) = Nr(z) — C; for z € C;. In addition, define n°(x) = {z} and

@)=l @wu | )

yenh—1(a)

for a positive integer k. A vertex x of T is said to be good for the given partition {C; }icr
if x satisfies one of the following conditions:

0;

{y} for some y, and n(y) = {z};

1) n(z

o~

(iii) n(x y, z} for some y and z, n(y) = {z}, n(z) = {z}, and y ~ z;

()
(i) n(z)
(x)
(iv) n(z) = {y} for some y, n(y) = {z, 2} for some z, n(z) = {y}, and z ~ =.

Furthermore, a set of vertices is said to be good if every element is good. Let Or be the set
of clique partitions for which every vertex is good.

We can regard cov as a mapping from the set of equivalent classes of strict H-covers of
I" to Or, and Proposition 4.3 holds. It is clear that if n(u) has a good vertex then u is good,
and if u is good then n(u) is good.

Proposition 4.3. The mapping cov for a graph is bijective.
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Proof. We construct the inverse mapping of cov. Let {C; };c;r € Or. A Hoffman graph m
is defined as Vs (m) := V(I'), Vy(m) := {C; };cr and

E(m):=ET)U{{z,C} |2 e V(T), and C € {C;}icr and z € C}.
For x € V(T"), define the induced Hoffman graph m, := ((n?(z)))m. It holds that

m= @{mm |z e V(I)}, and

[m,] = [b1], [4] or [h7] for each vertex x.
Hence, m is a strict H-cover of I". The mapping
¢: Or 3 {C;}icr — m € the set of strict H-covers of T’
is the inverse mapping of the mapping cov. O

We have the following lemma:

Lemma 4.4. Let T be a graph with a partition {C;};cr of the vertex set. Then, a vertex x
is good for {C; }ic1 if and only if x is good for {n>(u) N C;}ies in (n3(u))r.

Let I' be a connected graph, and let K be a nonempty set of vertices. Then, let

Ok r(z) =0k(x) = 0(x) := mind(z, k)

keK

for x € V(I'), where d(z, y) is the distance between x and y. Define

amax = 0 )
ygl‘il(}l(“) r.r(9)

and let U (K) denote the family
{{y € {33} U N(.’L‘) | 8K,F(y) > 8[{){‘(.%‘)} | S V(F) and 8K,p(x) € 2N + 1} U {K}

of sets of vertices. If K € cov b then U (K) = cov b for every strict H-cover h) of I". This
means that we can restore the clique partition if we find a member of a partition in Or. We
have the following lemmas:

Lemma 4.5. Let T be a graph with a clique K. If V1 (K) is a partition of V(T') and T has
no induced subgraph isomorphic to K 3, then Yr(K) is a clique partition.

Lemma 4.6. Let I be a connected slim {[b7]}-line graph with a clique C of size c. Let
be a strict H-cover of . If the following (i) or (ii) holds, then Cy(x) is the maximal clique
containing C for any x € C, and a strict H-cover of I is unique up to equivalence.

(i) c >4,
(ii) ¢ =3, and |Nn{(C)\ = 1 for any strict H-cover m of T.

Proof. In the case of (i), for each clique D which contains C' and any z € C, D C Cy(z)
holds by Lemma 4.1 (ii) and | D| > 4. Hence, Cjy () is a unique maximal clique containing
C for any x € C. In the case of (ii), we can prove as well by Lemma 4.1 (ii) and (iii).
Next, we show the uniqueness of a strict H-cover of I'. The maximal clique D con-
taining C is defined independently of a choice of a strict 7{-cover. Hence, ¥ (D) is also
defined independently of one. By Proposition 4.3, a strict -cover of I" is unique. O
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We define

51 = and SQ =

Lemma 4.7. Let § be a strict H-cover of a graph I'. If T" has an induced subgraph iso-
morphic to S1 or Sa, then the vertices of the triangle of the induced subgraph are adjacent
to the same fat vertex in b.

Proof. Let A be the triangle in the induced subgraph S ~ S; or Se. Let m be a strict
H-cover of I'. We suppose that | N7 (A)| > 2 to prove | N (A)| = 1 by contradiction.
Then, we have A is not contained in Cy, () for every z € V(I") since every slim vertex in
Cin () are adjacent to the same fat vertex. This together with Lemma 4.1 (ii) implies that

A C Vi(m(y)) forany y € A.

We take a vertex y € V(A). Then, A C V,(m(y)), and hence [m(y)] = [h7]. Moreover,
({(V(S)))m is a strict H-cover of S. Hence, we have

<<V(S)>>m = <<A>>m(y) D <<V(S) \ A>>m’
~ b7 & ((V(S)\ A))w,
where m’ denotes the Hoffman graph so that m = m(y) @ m’. It is easy to verify that the

slim subgraph of b7 @ ((V(S)))m’ is distinct from S; and Se. This is a contradiction to
S ~ S; or Ss. Therefore the desired result follows. O

The Lemma 4.6 gives conditions that a strict H-cover is unique, and Lemma 4.7 gives
a concrete situation satisfying one of the conditions.

Lemma 4.8. If the slim subgraph of a Hoffinan graph ) = @fil bt with [b] € H for
every 1 is connected, then that of @Z].V:Li £k h? is connected for some k.

Proof. Note that an {[h7]}-line graph is connected if and only if the slim subgraph is con-
nected. Let I' be the graph with the vertices {1,..., N} whose two distinct vertices x and
y are adjacent if and only if V (h*) NV (h7) # 0. Since I is connected, there exists integer k

such that I — £ is also connected. Hence, @Z]\il itk h? is connected, and the slim subgraph
is connected. O

Let ¢t = (t;)7, be a finite sequence of positive integers. Then, define the graphs P; and
Ct by

V(P) =V(Cy) :={(,j) [1<i<n1<j< U}
E(Pt) = {{(Za.])a (ilvj/)} | i—i = 1, ori= i’ andj #j/}v
E(Cy) = {{(i,7),(@",5)}|i—i =1 (modn), ori=1"and j # j'},

respectively (see Example 4.10). Let

[al,...,ak} = {(al‘,j)GV(F) ‘ 1§i§k,1§j§tui}
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for {a1,...,ar} C{1,...,n}, where I' = P, or C;. In addition, let
TP = {(t)"y € {1,2}" | n € Zog, ti +tip1 <3(1<Vi<n—1)} and (4.1)
TC = {(tl)zlzl S {1,2}" | n e (22)24,ti + t(i+1 mod n) <3 (1 <Vi < n)} “4.2)

Furthermore, a vertex u of a graph is said to be end if the graph is isomorphic to P; for
some t € TP with the length n, and u € [1] or [n]. In the following lemma, we see that P;
and C, are slim {[h7]}-line graphs, and reveal their strict 7-covers.

Lemma 4.9. Fort € TP of length n, we have Op, is the set of
{[1], 12, 3], [4,5],[6,7],...} and {[1,2],[3,4], 5, 6], ...} 4.3)
Fort € CP of length n, we have Oc, is the set of
{[1,2],[3,4],...,[n—1,n]} and {n,1],[2,3],...,[n—2,n=1]}. (4.4

Namely, fort € TP (resp. TC), the graph P; (resp. Ct) has precisely two strict H-covers
up to equivalence.

Proof. Recall that U (C') = 7 holds for every C' € 7 where T is a slim {[h7]}-line graph
and 7 € Or. In order to reveal O, it suffices to verify whether W (K) is in Or for every
clique K of I.

We fix a sequence t € TP of length n, and determine Op,. Since if n = 2 then desired
result holds, we may assume that n > 3. On the other hand, every clique of P; is contained
in [¢,7 + 1] for an integer ¢ € {1,...,n — 1}. The clique partitions in (4.3) are obtained
from cliques [1], [n] and [i,i + 1] for ¢ € {1,...,n — 1}. Moreover we can verify that
U (K) is notin Op, for one clique K of the other following cliques:

(i) non-empty subsets of [i] fori € {2,...,n —1};
(i) {(i,1), (i +1,1)} and {(i,2), (i + 1,1)} fori € {1,...,n — 1} with t; = 2;
(i) {(i,1), (i +1,1)} and {(i, 1), (i + 1,2)} fori € {1,...,n — 1} with t;4; = 2.

Similarly, we can determine O, for every ¢ € T'C. Finally, by Proposition 4.3, which
claims that cov is a bijection from the set of strict H-cover of a slim {[h7]}-line graph I to
Or, P; and C} have precisely two strict #-covers up to equivalence. O

Example 4.10. We give examples of strict 7{-covers of P, and C;. In the case of t =
(1,1,2,1,2), the graph P; is

and Op, is the set consisting of the partitions corresponding to
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By Proposition 4.3, these clique partitions give strict H-covers. They are

respectively. The similar consideration is applied to C; for ¢ € TC. For example, we
consider ¢t = (1,1,2,1,2,1). Then the graph C is

and O, is the set consisting of the partitions corresponding to

By Proposition 4.3, we have the following two strict H-covers:

Theorem 4.11. If a connected slim {[h7]}-line graph T with the clique number c satisfies
one of the following conditions:
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(a) c=1lorc>4;

(b) T has an induced subgraph isomorphic to S1 = <I: or Sy = <Ij,

then it has a unique strict {[h1], [b4], [b7]}-cover up to equivalence. Otherwise, T is iso-
morphic to Py for some t € TP or Cy for some t € TC, and it has precisely two strict

{[b1], [D4]; [b7]}-covers up to equivalence.

Proof. 1f (a) or (b) holds then a strict H-cover is unique by Lemma 4.6 and Lemma 4.7 (see
Example 4.12). Otherwise, it is proved that I" is isomorphic to either P; for some ¢t € TP
or C, for some ¢t € T'C by induction on the number of addends of a strict H-covers of I'.
Fix a strict H-cover h = @Zl\il b, where [h’] € H forevery i. If N = 1 then T ~ Py 13

or P(y 7). Otherwise, we can take an integer & such that the subgraph I"” induced by the

slim vertices of ' = @;N:L#k h? is connected by Lemma 4.8. Each of S; and S, is not

isomorphic to any induced subgraph in I'"'. Note that the clique number ¢’ of T is at most
3. Suppose ¢’ = 2 or 3 since the result follows if ¢ = 1.

h=bh @b =m;ebh* =

The slim subgraph of h =

Figure 3: An example of the case that the slim subgraph of §’ is isomorphic to C; for
te TC.

If IY ~ Cy for some t' € TC, then h = b’ @ h* must have an induced subgraph
isomorphic to either S; or So (see Figure 3). Otherwise, IV ~ P,/ for some t' € TP. Let

my = cov '({[1],[2,3],[4,5],[6,7],...}),
my := cov 1 ({[1,2],[3,4],[5,6],...}),

and let n denote the length of ¢. By the induction hypothesis, we can take j € {1,2} so
that i’ and m; are equivalent. Then, we show that the following two conditions hold:

(A) [Ny, ()] + [N (w)] < 3 holds for every u € Vi (m;) NV (h*);
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(B) Ny, (u) =[1],[1,2],[n] or [n — 1, n] holds for every u € Vy(m;) N V().

First, if [V, ()| 4 [Ng, ()| > 4 holds for u € Vy(m;) NV} (h*), then Ny (u) U Ny (u)
is a clique of size greater than 4 in I', a contradiction to the assumption that I' does not
satisfy the condition (a). Second, we suppose that the condition (B) does not hold. Then
we can take a fat vertex u € Vy(m;) N V;(h*) so that

Ny, (u) = [i,i + 1]

fori € {2,...,n — 2}. Thus, I" has an induced subgraph isomorphic to S; (see Figure 4),
a contradiction to the assumption that I" does not satisfy the condition (b). Therefore the
two conditions (A) and (B) are proved.

Figure 4: An example of the case that I ~ P, and the condition (B) does not hold.

In the case of [h*] = [h;], by the condition (B), the fat vertex u in h* equals
Nnij([l])v N£_j([172])7 anlj([n]) or Nﬁf"lj([n_17n])

forsome j = lor2. If u = N“Jij ([1]) or Nn’ij ([n]) then I is isomorphic to P, for some
y € TP. Otherwise, without loss of generality we can assume that

u= Ntﬁj([l,2]).

Then t; = t5 = 1 by the condition (A). Hence, I is isomorphic to P, for some y € TP.
We consider the case of [h*] = [h4] or [h7]. If n = 2 then the desired result holds.
Thus, we may assume that n > 3. Then

u # Nn{j([i,i+ 1]) for every fat vertex u € Vy(h*)and 1 <i <n —1 4.5)

since if (4.5) does not hold then h has an induced subgraph isomorphic to either Sy or So
(see Figure 5), a contradiction. Let v and v are distinct fat vertices of hk. Then one of the
following holds:

() u= Ngij([l]) and v & Vy(h'), oru = N&i]([n]) and v & Vy(b');
(ii) u = Nay, ([1]), v = N, ([n])

by exchanging u and v if necessary. Hence, h = b’ @ b* is isomorphic to either P, for
some y € TP or Cy for some y € T'C. O
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U H

[1,2] [3,4] [5]

Figure 5: An example of the case that IV = P, h* ~ b, and u = Nn{j ([1,2).

Example 4.12. In Theorem 4.11, there are the two conditions that a slim {[f7]}-line graph
has a unique strict H-cover up to equivalence. For each condition, we give an example.

We let G and b denote the slim {[h7]}-line graph and its strict #-cover in Figure 6,
respectively. Then, the clique number c of G is equal to 4, and the set K of small circles
of G is a maximal clique. Namely, G satisfies the condition (a) in Theorem 4.11. Take a
vertex x in K. As shown in Lemma 4.6, K = Cj(x) holds. Since K = Cy(z) € covh,
we have

VUe(K) =Va(Ch(z)) = covh.

As with the proof of Proposition 4.3, we derive the Hoffman graph h by adding fat vertices
according to ¥ (K).

Figure 6: A slim {[h7]}-line graph whose clique number ¢ is 4 and its strict H-cover corre-
sponding to ¥ (K).

Next, we let H and m denote the slim {[h7]|}-line graph and its strict H-cover in Fig-
ure 7, respectively. Let H' be the subgraph induced by the small circles in H. Then, the
clique number ¢ of H is equal to 3, and H' is isomorphic to S;. Namely, H satisfies
the condition (b) in Theorem 4.11. Let K be the triangle of H’. Take a vertex x in K.
As shown in Lemma 4.7, the vertices in K are adjacent to the same fat vertex of m. In
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particular, K = Cp () holds. Since K = C(x) € covm, we have
Uy(K)=Yg(Cn(x)) =covm.
As with the proof of Proposition 4.3, we derive the Hoffman graph h by adding fat vertices

according to ¥ i (K). Similarly, for a slim {[h7]}-line graph in Figure 8, we can construct
its strict H-cover.

Figure 7: A slim {[h7]}-line graph containing .S; induced by the small circles and its strict
H-cover corresponding to ¥ (K).

Figure 8: A {[h7]}-line graph containing S5 induced by the small circles and its strict
‘H-cover corresponding to W g (K).

Remark 4.13. Let I' be a connected slim {[h7]}-line graph with the clique number at
least 2. Let K be a maximal clique of I'. We suppose that || > 4 when I satisfies the
condition (a) in Theorem 4.11, and that K contains the triangle of S; or that of S; when I"
satisfies the condition (b). Then, as shown in Lemma 4.6, the strict {[h1], [h4], [b7] }-cover
is cov (U (K)).
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5 The minimal forbidden graphs for the slim {[h-]}-line graphs
The following theorem is the main result in this paper.

Theorem 5.1. A graph is a minimal forbidden graph for the slim {[b7]}-line graphs if and
only if it is one of the following graphs:

(i) M;(i=1,2,3,4,6,7,11,12,19) in Figure 9;
(ii) odd cycles with at least 5 vertices;
(iii) graphs in Figures 11 and 13.

We explain the reason that the graphs in Figure 9 are minimal forbidden graphs for
the slim {7 }-line graphs. They are obtained by enumeration by MAGMA. The following
briefly describes the program.

The MAGMA program is available at [8]. It is also available at https://doi.org/
10.26493/1855-3974.1581.b47.

Hoffman graphs can construct large new graphs little by little from small graphs by
using the concept of sum. With this method, all possible {[h7]}-line graphs with a small
number of slim vertices can be obtained by considering all cases where fat vertices can be
stuck together. Therefore, we can obtain all slim {[h-]}-line graphs with a small number
of vertices. On the other hand, the graphs up to 10 vertices have databases in MAGMA [2].
Using this, the list F of graphs with at most 10 vertices that are not slim {[h7]}-line graphs
is completely revealed. After that, the set of minimal elements of F can be calculated.

We will prove Theorem 5.1 separately.

(C1) T has an induced subgraph isomorphic to S7, So or the complete graph Ky;

(C2) For any maximal clique K containing the largest clique of some induced subgraph
isomorphic to Sy, Sy or Ky, Ur(K) is a partition of V' (T').

Proposition 5.2. Let T be a minimal forbidden graph for the slim {[h7]}-line graphs with
at least 10 vertices. Then, ' does not satisfy the condition (C1) if and only if I is an odd
cycle.

Proof. Itis easy to verify that every odd cycle with at least 5 vertices is a minimal forbidden
graph. Thus, the necessity is proved. Next, we prove the sufficiency. Pick two vertices x
and y to determine the diameter of I'. Then, I' — x and I' — y are connected and slim
{[b7]}-line graphs. By Theorem 4.11, I — z is isomorphic to either P; for some ¢t € TP or
Cy for some t € TC'. We have

[Nr(z)| < 4 (.1

since I' — y is also isomorphic to either P; for some ¢t € TP or Cy for some t € TC. By
(4.1) and (4.2), which are the definition of TP and T'C', we have the length [ of ¢ is at least

6 since
l

d ti=[r[-1>9.

i=1
In the rest of this proof, we will consider the decision on whether the vertex is end or
non-endin ' — z.
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Figure 9: The minimal forbidden graphs for the slim {[h7]}-line graphs, with at most 9
vertices.
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Step 1: Show that Np(x) N Npr_,(z) is non-empty if z is a non-end vertex in Np(x).
Suppose that Np(z) N Np_,(z) is empty. Then, there exists two distinct vertices v and v
of I' — x such that u ~ z ~ v and u ¢ v. It is a contradiction that M7 ~ ({z, z,u, v})r.

Step 2: Show that | Np(2) N Np—_,(2)| < 1for z € Np(x). Suppose |[Np(x) N Np_(2)| >
2, and let z; and z5 be two distinct vertices in Np(z) N Nr—_,(z). We have z; # z5 since
Ky ~ ({x,2,21,22})r if 21 ~ 22. Thus, z is non-end. Let ¢ be the integer such that z € [i].
Then, the following hold:

@) if (tifhtivtiJrl) = (1, 1,2), then M3 ~ <{$’} @] [Z — 1,42+ 1]>F;
>ii) if (ti—17ti7ti+1) = (1, 2, 1), then My ~ <{JI} @] [Z —1,4,2+ 1]>1";

@i1) if (ti—1,ts, tiv1) = (2,1,2), then M3 is isomorphic to an induced subgraph in {z} U
[t —1,2,7+ 1].

Then, I is isomorphic to either M5 or M3 by the minimality of I'. This is a contradiction to
|[V(T')] > 10. Consider the case of (¢;—1,t;,t;+1) = (1,1,1). If [Np(z)| = 3then T ~ P,
or Oy where t' = (t1,...,t;—1,2,ti41,...,t;). Otherwise, |Np(z)| = 4 holds by (5.1),
and hence we let {2z, 21, 22, 23} = Nr(z). Then, the following hold:

(i) if z5 € [i — 2,7+ 2] then M3 ~ ({z} U Np(z))r;
(i) if z5 & [i — 2,4+ 2] then My ~ ({z, z1, 22, 23 })T

(see Figure 10). These are contradictions to |V (I")| > 10.

T 23 T
<3
<1 < 22 21 z 22
(@)

(i)

Figure 10: Examples of the case that (¢;—1,%;,t;+1) = (1,1,1) and |Np(z)| = 4 in Step 2.

Step 3: Show that the vertices in Ny (z) are end. Suppose that a vertex z is non-end in
Nr(x). By Step 1 and 2, | Np(z) N Nr—_.(z)| = 1 holds. Thus, we can take a vertex z; so
that

{z1} = Nr(z) N Nr_,(2).

There are ¢ and j such that z € [{] and 21 € [j]. Let I = [¢,5,4 £ 1,5 &+ 1]. It follows
that Ny (x) NI = {z, 21} by Step 2. If z; is non-end, then some induced subgraph of T" is
isomorphic to M; if i = j, S7 otherwise, a contradiction. Otherwise, we may assume that
1 = 2 and 7 = 1 without loss of generality. Then, the following hold:

(i) if (t1,t2) = (2, 1), then M; is isomorphic to some induced subgraph of T';

(ii) if (t1,t2) = (1,2), then M3 is isomorphic to some induced subgraph of T';
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(i) if (t1,t2) = (1,1) and |Np(z)| > 3, then I has an induced subgraph isomorphic to
S1 or Ssy;

@v) if (t1,t2) = (1,1) and |[Np(x)| = 2,then ' >~ Py, 114,...1)-
The result follows. Moreover, I' — x is isomorphic to P;.

Step 4: For i = 1 or [, if Np(z) N [i] # 0 then Np(x) N [i] = [¢] since Ny (z) N [i] # [i]
implies that I" has an induced subgraph isomorphic to S7 by Step 3.

Step 5: If Np(x) = [1] then I'" ~ Py, . ) is an {[h7]}-line graph, a contradiction.
Hence,I' ~ C(y 4, 1,)- If lisodd then C(y 4, . 4, is an {[h7]}-line graph, a contradiction.
Thus, I' is an odd cycle. O

Proposition 5.3. Let I" be a minimal forbidden graph for the slim {[b7]}-line graphs, with
at least 10 vertices and the condition (Cl). Then, I is isomorphic to one of the graphs in
Figure 11 if and only if T does not satisfy the condition (C2).

X0 X1 T21—1 Z2i

@ ®----0 ®
o ®----

® o----

Figure 11: Minimal forbidden graphs for the slim {[h;]}-line graphs, with at least 10 ver-
tices and the condition (C1), without (C2).

Proof. Tt is easy to verify that W (K) is not a partition, where I is one of the graphs of
Figure 11, and K is the rightmost clique of size at least 3.

Next, we prove the necessity. By the condition (C1), I' has an induced subgraph iso-
morphic to 57, S2 or K4. Hence, we can take a maximal clique K containing the largest
clique of some induced subgraph S isomorphic to S7, S or K. Since the condition (C2)
is not satisfied, we may suppose that U (K) is not a partition of V(T'). If | K| > 3 then
we replace S by (K')r, where K’ is a set of 4 vertices in K. Let ] = | (Omax — 1)/2] and
Vi={ze V)| ox(z) <2}

Step 1: There is a vertex g not in V(S) U K with Ok (g) = Omax. Then, {C' € Up(K) |
Ok (c) < 2lforany c € C} = {C € ¥r_4(K) | Ox(c) < 2l forany c € C} is a clique
partition of V"’ since I' — ¢ is a slim {[h7]}-line graph satisfying the condition (a) or (b) in



S. Kubota et al.: On graphs with the smallest eigenvalue at least —1 — \/2, part III 573

Theorem 4.11. Therefore, U(K) is not a partition if and only if there exists vertices x, y,
p and g such that Ok () = Ok (y) = 20 + 1,

g € (N(z) U{z}) N (N(y) U{y}) -V,

and

p € ((N(@)U{z}) — (N(y) U{y}) - V"
If z € V(I') — ({z,y,p,q} US) with Ox (2) > 20 + 1, then I — z is an {[h7]}-line graph
and p ~ y by Remark 4.13. This is a contradiction to p ¢ y. It follows that

{ue V() |dx(u) >20+1} = V(S) ={z,y,p,q}. (5.2)

Step 2: Assume that [ = 0. In the case of |K| > 4 (i.e., S ~ Ky),

{K - {k}v{xvyap»Q}} - \Iijk(K - {k})

is a clique partition for some k¥ € K by Remark 4.13 and (5.2), i.e., | K| > 6. This is a
contradiction to p ¢ y. In the case of |K| = 3 (i.e., S =~ 51 or S3), we obtain [V(I')| < 9
and a contradiction. Hence, [ is a positive integer.

Step 3: Show that © ~ y. In addition, it holds that z # p and = ¢. Suppose that x
and y are not adjacent. Then, p = x and ¢ ¢ {x,y} by Remark 4.13. If z and y are
adjacent to a vertex r with Ok (r) = 2I, then I" has an induced subgraph isomorphic to
K 3, a contradiction. When 9k (q) = 21 + 1, there is a neighbor ¢’ of ¢ with 9k (¢') = 2!
such that ¢’ ¢ N(x) N N(y). Without loss of generality we assume that ¢’ and y are not
adjacent. Then, the induced subgraph IV obtained by deleting the neighbors of y expect ¢
has a clique partition U (K') which contains a set {x,y, ¢}. This is a contradiction, and
Ok (q) = 21+ 2 follows. Then, I" has an induced subgraph isomorphic to an odd cycle with
at least 5 vertices. This is a contradiction since Wr_,(K) is a clique partition in Op_,.

Step 4: Let P denote a path (xq, ..., 2Z21) such that zp € K and © = x9;41. If S ~ Ky,
then replace S by (K')r, where K’ is a set of 4 vertices in K containing x¢ and a vertex
not adjacent to x;. The graph I" by deleting vertices other than V (P) U V(S) U {z, y, p}
is a slim {[h7]}-line graph with a clique partition ¥/ (K'). Thus, it holds that V(I") =
V(PYUV(S)U{z,y,p} and y ~ zo.

Step 5: If Ok (p) = 21 + 1, then p ~ x9;. Thus, ({y,p, z2, x2—1})r ~ Kj 3 holds, a
contradiction. Thus, Jk (p) = 21 + 2.

Step 6: In the case of |K| > 4 (i.e., S ~ K4), deg(x1) < 3 since I' — p is an {[h7]}-line
graph. Obtain the second and third graphs in Figure 11.

Step 7: In the case of |K| = 3 (i.e., S ~ Sy or S3),if 1 & S then |[N(x1) N K| = 1 since
M and M3 are minimal forbidden graphs for the slim {[h7]}-line graphs. Then, we can
replace S by the induced subgraph by K U {x1,w}, where w is a vertex of S not adjacent
to xg. Hence, x1 € S holds. We can draw I as Figure 12. The edge e exists if and only if
the edge e’ does in Figure 12. If the edges e and €’ exist, then T' — z is not an {[h]}-line
graph. Otherwise, we obtain the first graphs in Figure 11.

Let I" be a connected graph, and let K and D be nonempty subsets of V(I'). D is said
to be deletable for K if K — D # (), T' — D is connected, and ¥r_p(K — D) = {C — D |
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Figure 12: In the proof of Proposition 5.3.

C € Up(K)} —{0}. In addition, a vertex v is said to be deletable for K if {v} is deletable
for K.

Lemma 5.4. Let T be a connected graph, and let K and D be nonempty subsets of V (T').
If Ur(K) is a partition of V(T") and O r|r—p = Ok —p r—p, then D is deletable for K.

Proof. Write 0 = Ok r for short. Then, it holds that by Ok r|r—p = dx—p.r-p,
Wr_p(K - D)~ {K - D}
=y e {«}UN()) - D[d(y) = 0(x)} |z € V(I = D),0(x) € 2N+ 1},
and
{C—D|Ceur(K)} - {K - D}
={{ye {2z} UN(z)) - D[ 0d(y) = 0(x)} | v € V(I),0(x) € 2N+ 1},
Letz € D with odd 9(), and take C,, € W (K) containing x. Assuming that C;,—D # 0),
there exists z € C' such that 9(z) = 0(x) by the assumptions. It holds that
Co =D ={y e ({z}UN()) - D][dy) = d(x)}
={ye ({z}UN(2)) - D|0(y) = 0(2)} € ¥r_p(K - D). H
Lemma 5.5. Let I" be a minimal forbidden graph for the slim {[b7]}-line graphs, with the

condition (C1) and (C2). Let S be an induced subgraph isomorphic to S1, Sy or K4. Let
K be a maximal clique of T' contains the largest clique of S. Then, the following hold:

(i) Yr(K) is a clique partition;

(ii) if u is a non good vertex for Up(K), and v ¢ V(S) U K is a deletable vertex for
K, then v € n®(u) and v is non good for Vr(K ), where n*(-) is defined for Ur(K)
and a non negative integer k.

Proof. By the condition (C2), Ur(K) is a partition of V(I'). Moreover, it is a clique
partition of V(I") by Lemma 4.5 since I" has no induced subgraph isomorphic to M; =~
K 3. Next, suppose that the vertex v is not in n3(u). Then,

{Cnnd(u) | C e Vp(K)} ={Cnn3(u) - {v}|C e Vp(K)}
={Cnnd(u)|C € Ir_,(K)}
holds. Thus, the vertex w is good for ¥r_, (K) if and only if it is good for Ur_, (K) in
I' — v by Lemma 4.4. On other hand, v ¢ V(S) U K and I" — v is connected. Hence,
Up_,(K) € Op_,, that is, every vertex of I' — v is good for ¥ (K') by Remark 4.13 since

T is a minimal forbidden graph for the slim {[h7]}-line graphs. Therefore, u is good for
Upr_,(K) and ¥p(K). This is a contradiction that « is non good for U (K). O
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Proposition 5.6. Let I" be a minimal forbidden graph for the slim {[%7]}-line graphs, with
at least 10 vertices and the condition (CI). Then, T is one of the graphs in Figure 13 if and
only if T satisfies the condition (C2).

the number of vertices is f_@

1]
~X

Figure 13: The minimal forbidden graphs for the slim {[h;]}-line graphs, with at least 10
vertices and the conditions (C1) and (C2).

Proof. The sufficiency obviously holds. Prove the necessity. Fix an induced subgraph S
isomorphic to Sy, Sy or K4, and let K be a maximal clique containing the largest clique of
S. By Lemma 5.5 (i), ¥ (K) is a clique partition. Then, n*(-) is defined for ¥ (K') and
a non negative integer k.

If I" has an induced subgraph isomorphic to K4, then replace S by it. Let I = | (Omax —
1)/2]. By the definition of U (K), we can pick the subset

{{y € N(@) U{z} | 9k (y) = Ok (2)} | 2 € V(T), O () = 20 + 1}

of ¥r(K). We denote by {C;}?_, the subset. Note that C; are pairwise distinct. If [ = 0
then let D; = K and m = 1. Otherwise we pick the subset

{y € N(@) U {e} | 0k (y) = Ox(2)} |« € V(T), O () = 20 — 1}

of Up(K). We denote by {D;}?", the subset. Note that D; are pairwise distinct. Without
loss of generality, we can take an integer m such that D; — V(S) is empty if and only
if i > m.

In the case of Omax = 20 4 1, we show that I" is isomorphic to one of the graphs in
Figure 13.
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Step 1: Show that [ # 0. Suppose that [ = 0 to prove by contradiction. Set B =
V(') — (V(S) U K). Then, every vertex in B is deletable by Lemma 5.4. Moreover,
the deletable vertex is non good for ¥r(K) by applying Lemma 5.5 (ii) to a non good
vertex for Ur(K) and the deletable vertex. We obtain a contradiction by checking the
following:

() |B| < 3;

(i) if 7 < V() — K

,then5 < |[V(I') — K| -2 < |B

(iii) if 4 < [V(I') — K| < 6, then S ~ K, and 4 < |BJ;
@iv) if [V(T") — K| < 3, then I is an {[h7]}-line graph.

Assume that | B| > 4. If we find a vertex k& € K with |n(k)| > 3, then we can take a vertex
b € B such that |n(k) — {b}| > 3. This is a contradiction since the vertex b is deletable
and Ur_,(K) € Op_p, by Remark 4.13. Thus,

In(k)| < 2 (5.3)

holds for every k € K. Fix a vertex b € B. Then, |n(b)| > 3 holds by (5.3) and applying
Lemma 5.5 (ii) to the non good vertex b and each vertex in B — {b}. We obtain a contradic-
tion as well and | B| < 3. Next, In the case of |[V(I') — K| < 3, we have |B| <3, |K| > 7
and hence S ~ K,. If 2 < |B] < 3, then |n(b)| < 2 for every vertex b € B. Hence, we
can pick a vertex k in

K- U n(b).

beB

It is clear that k is deletable and Wr_j (K — {k}) € Or_y. Thus every vertex of I is good
for U (K), a contradiction to I' being a non {[h7]}-line graph.

Step 2: Every vertex @ with Ok () = Omax is notin V(S) U K and deletable by [ > 1 and
Lemma 5.4. Moreover, such a vertex z is non good for U (K') by applying Lemma 5.5 (ii)
to a non good vertex for ¥ (K) and the deletable vertex x. Fix a vertex u with Ok (u) =
Omax- By applying Lemma 5.5 (ii) to u and each vertex  with O () = Omax, we have

{z € V(D) | Ok (x) = Omax} C n*(u)

since I" has no induced subgraph isomorphic to M; ~ K 3. For a vertex « with Ok (z) =
Omax — 1 = 21, it holds that x € n3(u) since if n(z) = () then z is deletable by Lemma 5.4
and = € n®(u) holds by applying Lemma 5.5 (ii) to the vertices u and x. Thus,

n3(u) = {z € V(T) | Ok (z) > 21}. (5.4)
Furthermore, D; contains a vertex v; with O (v;) = Omax — 1 for every 1 < ¢ < m, since
every deletable vertex not in V'(.5) U K is contained in n3(u) by Lemma 5.5 (ii).

Step 3: Show that n = m = 1. If n > 2 then I" has an induced subgraph isomorphic to
M by (5.4), a contradiction. Thus, n = 1. Suppose that m > 2 to prove by contradiction.
Without loss of generality, we can assume that v; ~ u ~ vy by (5.4). In the case of m > 3,
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the vertex vg is deletable clearly, and the vertex v is non good for ¥r_,,(K) in I' — vs.
This is a contradiction to Up_4, (K) € Or_g4, by Remark 4.13.

In the case of m = 2, we have C; = {u} since if we find an vertex v’ in C1, then
the vertex v’ is deletable by Lemma 5.4 and « is non good for ¥r_,/(K) in T — «/, a
contradiction to Wr_,/ (K) € Or_,. Fix a vertex v; € D; with O (v}) =2l —1fori =1
and 2, respectively. Then, the set

Dl U D2 — (V(S) U {Ulanav,hvé})

is deletable and u is good. Hence, the set is empty. If v; and v, are not adjacent in T,
then I' has an induced subgraph isomorphic to an odd cycle with at least 5 vertices since
u is deletable and ¥ (K) — {C1} = ¥r_,(K) € Or_,. This is a contradiction to the
minimality of I'. Hence, v; and vs are adjacent in I". First, consider the case of [ > 2. Let
d be the vertex adjacent to v}, with Ok (d) = 21 — 2. Note that d is not in S. Then, ' — d

Figure 14: The cases of n = 1,m = 2 and [ > 2 in the proof of Proposition 5.6.

is not an {[h7]}-line graph since ¥r_4(K) & Or_4 (cf. Figure 14). Second, consider
the case of I = 1. Suppose that S ~ K. Note that n’ = m = 2 holds. If |K| > 5,
then we can take a deletable vertex k in K. By Remark 4.13, Up_, (K — {k}) € Or_4
holds since K — {k} is a maximal clique with at least 4 vertices. However, u is non
good for Ur_(K — {k}), a contradiction to the minimality of I'. We have |V(T')| =
|K|+|D1|+|D2|+|C1] =4+42+2+1 =09, acontradiction to |V (T")| > 10. Thus, I" has
no induced subgraph isomorphic to K. Suppose that S >~ S; or S;. We define the vertices
w; of S as Figure 15. Note that the vertex v} is not in V' (.S) for ¢ = 1, 2 since |V (I")| > 10.
If both v{ and v} are adjacent only to wy, then I" has an induced subgraph isomorphic to
My, a contradiction. Hence, it is not so. Without loss of generality, we can assume that v/,
and wsy, are adjacent. Since I' has no induced subgraph isomorphic to K4, v} is not adjacent
to some vertex w € {wy, ws}. The vertices v4 and wy are adjacent since (v}, w, wa, ws)
is not isomorphic to M;. Furthermore, v is also adjacent to ws since U (K) is a clique
partition. Hence, v} is deletable for K, a contradiction to ¥. We have n = m = 1.

Step 4: Letp = |C1| and ¢ = [{z € V(I') | Ox(x) = 2l}|. The induced subgraph
(C1U Dy)r is an {[h7]}-line graph by the minimality of I. Hence, ¥ (c,up,). (D1) =
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Dy —V(S)

Figure 15: The cases of n = 1, m = 2 and [ = 1 in the proof of Proposition 5.6.

{C4, D1} holds by |Dy| > 4 and Remark 4.13. This is a contradiction since non good
vertices for W (K') in Cy U Dy are also non good for W o, up, ), (D1). Thus, ¢ < 2. When
¢ = 1, p = 3 holds and we obtain the second and third graph in Figure 13 in the same way
as the Step 4 in the proof of Proposition 5.3. Consider the case of ¢ = 2. If p = 1 then
T is an {[h7]}-line graph. When p = 2, we obtain the first and second graph in Figure 13
since I' has no induced subgraph isomorphic to Ms3. If p > 3 then we can assume that
n(u) = {x € V(') | Ox(x) = 21} by (5.4). Then, I" — w is not an {[h7]}-line graph for
some w € Cy — {v}, a contradiction.

Suppose that Opax = 21 + 2. We have [ > 0 and every vertex u with O (u) = 21 + 2 is
deletable for K. By Lemma 5.5 (ii), the vertex u is non good for ¥r(K'). Moreover, every
vertex v with 9k (v) < 2 + 1 is good for ¥ (K) since (n?(v))r is the induced subgraph
of I' — u, where Ok (u) = 21 + 2. Hence, a vertex w is good if and only if O (u) < 21 + 1.
We have n # 1 since a vertex v with Ok (v) = 2] + 2 is non good. Let v be a vertex with
Ok (v) = 21+ 1. If v is not a vertex of S, then we have a contradiction to Lemma 5.5 (ii)
that v is deletable for K. Hence, v is a vertex of S. Thus, S ~ S, = 0 and n = 2. Then,

|[V(T')] < 9since |K| =3, |C1| < 3and |Cs] < 3, a contradiction. O
Proof of Theorem 5.1. The minimal forbidden graphs with at most 9 vertices are revealed
in Figure 9. This theorem follows by Proposition 5.2, 5.3 and 5.6. O
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