Some classical motions of three quarks tethered to the Torricelli string*

V. Dmitrašinović^a, M. Šuvakov^b, and K. Nagata^c

^a Vinča Institute for Nuclear Sciences, Belgrade University, Physics lab 010, P.O.Box 522, 11001 Beograd, Serbia; Permanent address after October 1st 2010: Institute of Physics, Belgrade University, Pregrevica 118, Zemun, P.O.Box 57, 11080 Beograd, Serbia

^b Institute of Physics, Belgrade University, Pregrevica 118, Zemun, P.O.Box 57, 11080 Beograd, Serbia

^c Research Institute for Information Science and Education, Hiroshima University, Higashi-Hiroshima 739-8521, Japan

In this talk we report some soon to be published results [1] of our studies of figure-eight orbits of three-bodies in three potentials: 1) the Newtonian gravity, i.e., the pairwise sum of -1/r two-body potentials; 2) the pairwise sum of linearly rising r two-body potentials (a.k.a. the Δ string potential); 3) the Y-junction string potential [2] that contains both a genuine three-body part, as well as two-body contributions (this is the first time that the figure-eight has been found in these string potentials, to our knowledge). These three potentials share two common features, *viz.* they are attractive and symmetric under permutations of any two, or three particles. We were led to do this study after recognizing the existence of a dynamical symmetry underlying the remarkable regularity in the Y- and Δ string energy spectra [3].

We have found that a set of variables that consists of the "hyper-radius" $R = \sqrt{\rho^2 + \lambda^2}$, the "rescaled area of the triangle" $\frac{\sqrt{3}}{2R^2}|\rho \times \lambda|$) and the ("braiding") hyper-angle $\phi = \arctan\left(\frac{2\rho\cdot\lambda}{\lambda^2-\rho^2}\right)$ makes this permutation symmetry manifest; we use them to plot the motion of the numerically calculated figure-eight orbit. According to Ref. [4], H. Hopf was the first one to introduce these variables, Ref. [5]. As there are three independent three-body variables, and there are two independent permutation-symmetric three-body variables, R and the area the third variable cannot be permutation-symmetric. Moreover, it must be a continuous variable and not be restricted only to a discrete set of points, as is natural for permutations. We identify here the third independent variable as $\phi = \arctan\left(\frac{2\rho\cdot\lambda}{\lambda^2-\rho^2}\right)$ and show that it grows/descends (almost) linearly with the time t spent on the figure-eight trajectory and reaches $\pm 2\pi$ after one period T. Thus, on the figure-eight orbit ϕ is, for most practical purposes, interchangeable with the time variable t. The hyper-angle ϕ is the continuous braiding variable that interpolates smoothly be-

^{*} Talk delivered by V. Dmitrašinović

tween permutations and thus plays a fundamental role in the braiding symmetry of the figure-eight orbits [6,8].

Then we constructed the hyper-angular momentum $G_3 = \frac{1}{2} (\mathbf{p}_{\rho} \cdot \lambda - \mathbf{p}_{\lambda} \cdot \boldsymbol{\rho})$ conjugate to ϕ , the two forming an (approximate) pair of action-angle variables for this periodic motion. Here we calculate numerically and plot the temporal variation of ϕ , as well as the hyper-angular momentum $G_3(t)$, the hyper-radius R and r. We show that the hyper-radius R(t) oscillates about its average value \overline{R} with the same angular frequency 3ϕ and phase, as the new ("reduced area") variable r(t). Thus, we show that $\phi(t)$ is, for most practical purposes, interchangeable with the time variable t, in agreement with the tacit assumption(s) made in Refs. [7], [4], though the degree of linearity of this relationship depends on the precise functional form of the three-body potential.

As stated above, ϕ is not exactly proportional to time t, but contains some non-linearities that depend on the specifics of the three-body potential; consequently the hyper-angular momentum G₃ is not an exact constant of this motion, but oscillates about the average value \overline{G}_3 , with the same basic frequency 3ϕ . Thus, the time-averaged hyper-angular momentum \overline{G}_3 is the action variable conjugate to the linearized hyper-angle ϕ' .

We used these variables to characterize two new planar periodic, but nonchoreographic three-body motions with vanishing total angular momentum. One of these orbits corresponds to a modification of the figure-eight orbit with $\phi(t)$ that also grows more or less linearly in time, but has a more complicated periodicity pattern defined by the zeros of the area of the triangle formed by the three particles (also known as "eclipses", "conjunctions" or "syzygies"). Another new orbit has $\phi(t)$ that grows in time up to a point, then stops and "swings back". We show that this motion, and the other two, can be understood in view of the analogy between the three-body hyper-angular ("shape space") Hamiltonian on one hand and a variable-length pendulum in an azimuthally periodic in-homogeneous gravitational field, on the other.

References

- M. Šuvakov, V. Dmitrašinović, "Approximate action-angle variables for the figureeight and new periodic three-body orbits", submitted to Phys. Rev. E, (2010).
- 2. V. Dmitrašinović, T. Sato and M. Šuvakov, Eur. Phys. J. C 62, 383 (2009)
- 3. V. Dmitrašinović, T. Sato and M. Šuvakov, Phys. Rev. D 80, 054501 (2009).
- 4. A. Chenciner, R. Montgomery, Ann. Math. 152, 881 (2000).
- 5. H. Hopf, Math. Annalen 104, 637 (1931).
- 6. C. Moore, Phys. Rev. Lett. 70, 3675 (1993).
- 7. T. Fujiwara, H. Fukuda and H. Ozaki, J. Phys. A 36, 2791 (2003).
- G.C. Rota, Mathematical Snapshots, Killian Faculty Achievement Award Lecture (1997).