
Non-commutative structures 2018

This special issue of The Art of Discrete and Applied Mathematics is dedicated to the
proceedings of Non-commutative structures 2018: A workshop in honor of Jonathan Leech,
which took place at the University of Primorska, in the period 23 – 27 May 2018. It is
therefore devoted to original research in the field of noncommutative structures.

The study of noncommutative lattices began in 1949 with Ernst Pascual Jordan’s paper
Über nichtkommutative Verbände [1]. Jordan was a theoretical and mathematical physi-
cist, a co-worker of Werner Karl Heisenberg, and he made a significant contribution to the
development of quantum mechanics and, in particular, quantum field theory. Jordan intro-
duced noncommutative lattices as an algebraic structure potentially suitable to encompass
the logic of the quantum world.

The modern theory of noncommutative lattices began 40 years later, with Jonathan
Leech’s 1989 paper Skew lattices in rings [2]. Recently, noncommutative generalizations
of lattices and related structures have seen an upsurge in interest, with new ideas and ap-
plications emerging, from quasilattices to skew Heyting algebras. Much of this activity
derives in some way from the initiation, thirty years ago, by Jonathan Leech, of a research
program into structures based on Pascual Jordan’s notion of a noncommutative lattice. The
present volume contains nine papers on noncommutative lattices, beginning with Leech’s
tutorial which provides the essential definitions and main structural results of the theory,
thus enabling a potentially uninitiated reader to follow the papers of this volume. It ends
with a list of open problems that were posed during the NCS 2018 conference. As such, this
volume aims to present the breadth of contemporary research in the area, with contributions
from international and Slovenian mathematicians. Many of the papers connect noncommu-
tative lattices to other mathematical structures, like (dual) discriminator varieties, graphs,
partitions and groupoids.
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Abstract

This paper describes the motivations leading to a renewed interest in the study of non-
commutative lattices, and especially skew lattices, beginning with the initial work of the
author. Not only are primary concepts and results recalled, but recognition is given to the
individuals involved and their particular contributions. It is the written version of a talk
given at the NCS2018 workshop in May, 2018 in Portorož, Slovenia.
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I started thinking about skew lattices in 1983, while visiting Case Western Reserve Uni-
versity as a guest of Charles Wells. My connection with Charles was a common interest
in the cohomology of monoids. I had published a paper that presented a new type of co-
homology for monoids in the Memoirs of the American Mathematical Society in 1975 and
Charles had published a follow-up paper in the Semigroup Forum in 1978 that connected
my work to a general approach to cohomology theories due to Jonathan Beck. In my office
at Case-Western I was studying the Wells-Beck approach for specific classes of monoids.
In the case where the underlying monoid was a semilattice, I was led to consider bands
whose maximal semilattice image was the given semilattice. Now, every band that arose
within the Wells-Beck confines was regular in that it satisfied the identity, xyxzx = xyzx.
This led me to look at the occurrence of regular bands in other mathematical contexts, and
in particular, to their occurrence and behavior as multiplicative subsemigroups of a ring.
This in turn led me straight to skew lattices.

Suppose first that we are given a multiplicative semilattice of idempotents L in a ringR.
(L is thus closed and commutative under multiplication.) It is well known that L will
generate a lattice L′ of idempotents with the meet and join given by

x ∧ y = xy and x ∨ y = x+ y − xy (the quadratic join).
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Indeed if we include 0 in L and throw in the relative complement x \ y = x − xy, L
generates a generalized Boolean algebra of idempotents. It will be fully Boolean if a top
element is generated from L, and in particular if R has an identity 1 that is thus generated.

The obvious question: what occurs for a multiplicative band S of idempotents in a ring
R, be S regular or otherwise? Well the following occur:

(1) In general, these two operations need not generate a larger class of idempotents that
is closed under both operations . . . even if S is known to be regular.

(2) But, if S is known to be left regular (xyx = xy) or right regular (xyx = yx), then
S generates a set of idempotents S′ that is closed under both operations above.

(3) The resulting algebra (S′,∧,∨) is a skew lattice in that ∧ and ∨ are associative,
idempotent binary operations that together satisfy the absorption identities:

x ∧ (x ∨ y) = x = (y ∨ x) ∧ x and x ∨ (x ∧ y) = x = (y ∧ x) ∨ x.

Given that ∧ and ∨ are associative and idempotent, these identities are equivalent to
the basic dualities:

u ∧ v = u iff u ∨ v = v and u ∧ v = v iff u ∨ v = u.

(4) If S is left regular, then so is (S′,∧) with (S′,∨) being right regular. Dual remarks
hold when S is right regular.

(5) Conversely, given any skew lattice (S,∧,∨) both reducts (S,∧) and (S,∨) are regu-
lar with one operation being left regular iff the other is right regular.

Skew lattices in general had a number of other discernable properties:

(1) A natural partial order: x ≤ y ⇔ x ∧ y = x = y ∧ x⇔ x ∨ y = y = y ∨ x.
(2) A natural quasiorder: x � y ⇔ x ∧ y ∧ x = x⇔ y ∨ x ∨ y = y.

(3) A natural congruence D:

xD y iff x ∧ y ∧ x = x & y ∧ x ∧ y = y

iff x ∨ y ∨ x = x & y ∨ x ∨ y = y.

(4) Clifford-McLean Theorem: given a skew lattice (S,∧,∨), (S/D,∧,∨) is its max-
imal lattice image and the D-classes are its maximal anti-commutative subalgebras
in that:

x ∧ y = y ∧ x⇔ x = y ⇔ x ∨ y = y ∨ x

holds.

Also x ∧ y = y ∨ x holds in every D-class. Thus there are two basic subvarieties of
skew lattices:

• Lattices (everybody commutes).
• Anti-lattices, also called rectangular skew lattices (no nontrivial commutation).

The Clifford-McLean Theorem thus states that every skew lattice is a lattice of anti-
lattices. See Figure 1 below.
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Figure 1: A lattice of anti-lattices.

Here are two more basic subvarieties:

• Left-handed skew lattices: x ∧ y ∧ x = x ∧ y & x ∨ y ∨ x = y ∨ x. (S,∧) is
left regular and thus (S,∨) is right regular.

• Right-handed skew lattices: x ∧ y ∧ x = y ∧ x & x ∨ y ∨ x = x ∨ y. (S,∧) is
right regular and thus (S,∨) is left regular. Their intersection is, of course, the
variety of lattices.

(5) Kimura’s Theorem: If SL and SR are the maximal left- and right-handed images
of a skew lattice S, the induced commuting diagram of epimorphisms is a pullback.

S //

��

SL

��
SR

// S/D

Thus S is isomorphic to the fibered product: SR ×S/D SL.

Since both subvarieties are term equivalent, to the extent that one understands one, one
understands the other, and thus to a large extent skew lattices in general. Both theorems
above are so-named after two similar theorems about bands and regular bands respectively.

Here are possible properties that do occur in any skew lattice of idempotents in a ring:

(1) Symmetry: x ∧ y = y ∧ x iff x ∨ y = y ∨ x. (A very nice condition.)

(2) Distributivity:

x ∧ (y ∨ z) ∧ x = (x ∧ y ∧ x) ∨ (x ∧ z ∧ x), and
x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x).

(3) Cancellation:

x ∧ y = x ∧ z and x ∨ y = x ∨ z =⇒ y = z, and
x ∧ z = y ∧ z and x ∨ z = y ∨ z =⇒ x = y.
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Some general facts:

• Neither distributivity as defined nor cancellation implies the other.

• Cancellation does imply that a skew lattice is symmetric.

• Neither distributive identity implies the other.

• But for symmetric skew lattices, the two distributive identities are equivalent.

• In the symmetric case, every pairwise commuting subset generates a sublattice.

• A non-symmetric example exists with 3 commuting generators, that is not a lattice.

• Clearly, maximal left (right) regular bands of idempotents in a ring form skew lattices
that have all three properties.

Another possible property: A band is normal if it is mid-commutative: xyzw = xzyw.
Normal bands are easily seen to be regular. A skew lattice (S,∧,∨) is normal if its
∧-reduct (S,∧) is normal. (The ∨−∧ dual is conormal.) Clearly distributive skew lattices
and normal skew lattices form subvarieties of skew lattices. So do symmetric skew lattices.

Some theorems:

• A normal skew lattice S is distributive iff S/D is a distributive lattice.

• Normal, distributive skew lattices are characterized by the identity:

x ∧ (y ∨ z) ∧ w = (x ∧ y ∧ w) ∨ (x ∧ z ∧ w).

• Normal, symmetric and distributive (NSD) skew lattices are characterized by:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (y ∨ z) ∧ w = (y ∧ w) ∨ (z ∧ w).

• A normal band of idempotents in a ring generates an NSD skew lattice. (Normal
skew lattices in rings need no longer be left or right-handed. An associative cubic
join is given by x∇y = x+ y + yx− xyx− yxy. In left- or right-handed contexts
x∇y reduces to the previous quadratic join x+ y − xy.)

• Maximal normal bands in a ring form skew Boolean algebras (defined below).

• If the idempotents of a ring are closed under multiplication, then they are normal as
a band and thus form a skew Boolean algebra.

A skew Boolean algebra (SBA) is an algebra (S,∧,∨, \, 0) for which (S,∧,∨) is an
NSD skew lattice, \ is a binary operation and 0 is a constant such that for all x, y:

(i) 0 ∧ x = 0 = x ∧ 0 and hence 0 ∨ x = x = x ∨ 0;

(ii) (x ∧ y ∧ x) ∨ (x \ y) = x = (x \ y) ∨ (x ∧ y ∧ x) and
(x ∧ y ∧ x) ∧ (x \ y) = 0 = (x \ y) ∧ (x ∧ y ∧ x).

This brings us to a second class of motivating examples: partial function algebras.
If we are given sets A and B, let P(A,B) denote the set of all partial functions f from

A toB. Special case: B is {1}. Here P(A, {1}) may be identified with the power set P(A)
of A under the map f → dom(f). P(A) forms, of course, a typical example of a Boolean
algebra.
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Likewise P(A,B) forms a typical example of a skew Boolean algebra. One can do
this in two ways: a left-handed way and a right-handed way. For both ways, P(A) forms
the maximal Boolean algebra image. We consider the right-handed case, the left-handed
version being dual. Given f, g in P(A,B) with respective domains F and G, set

f ∧ g = g|F∩G; f ∨ g = f ∪ g|G−F ; f \ g = f |F−G; and 0 = ∅.

Basic theorems:

(1) Every left-handed skew Boolean algebra can be embedded in a left-handed partial
function algebra.

(2) Every right-handed skew Boolean algebra can be embedded in a right-handed par-
tial function algebra.

(3) Every skew Boolean algebra is the fibered product of a left-handed SBA and right-
handed SBA over their common maximal generalized Boolean algebra image.

(4) A skew lattice can be embedded in a skew Boolean algebra iff it is normal, distribu-
tive and symmetric.

Skew lattices in rings and partial function algebras formed the concrete bases of my
first three full-length publications on skew lattices:

• “Skew lattices in rings” appeared in Algebra Universalis in 1989 [44];

• “Skew Boolean algebras” appeared in Algebra Universalis in 1990 [45];

• “Normal skew lattices” appeared in Semigroup Forum in 1992 [46].

The communicating editor for all three, Boris Schein, had once published a paper on a class
of noncommutative lattices in a Russian journal that was later translated into English by the
AMS.

What all was I doing between 1983 and the first publication in 1989?

(1) I gave a number of talks to various groups: seminars; AMS-MAA metings.

(2) I kept polishing up things: examples; proofs, etc.

(3) I was also preoccupied with writing papers on other topics.

A third class of examples attracted my attention in my early research: primitive skew
lattices, which consisted of exactly twoD-classes, an upper class and a lower class: A > B.
As it turned out, a complete characterization of these primitive algebras is easily given.

Given A > B, A is partitioned by B-cosets in A and B is partitioned by A-cosets in
B. Here, for each a in A, its B-coset is B ∨ a ∨ B = {b ∨ a ∨ b | b ∈ B} ⊆ A; likewise,
for each b in B, it’s A-coset is A ∧ b ∧ A = {a ∧ b ∧ a | a ∈ A} ⊆ B. Thus given a, a′

in A, either B ∨ a ∨B = B ∨ a′ ∨B or both cosets are disjoint. Similar remarks hold for
A-cosets in B. What is more, all cosets in A or B are mutually isomorphic. In particular,
given any B-coset Ai in A and any A-coset Bj in B, an isomorphism ϕij : Ai

∼= Bj is
given by ϕij(a) = b for a ∈ A and b ∈ B iff a > b. This gives us a picture something like
the one in Figure 2.

Thus, all cosets are mutually isomorphic with the coset isomorphisms determining ∧
and ∨ between cosets in A and B. That is, for all a in Ai and all b in Bj :

a ∧ b = ϕij(a) ∧ b & b ∧ a = b ∧ ϕij(a) and

a ∨ b = a ∨ ϕ−1ij (b) & b ∨ a = ϕ−1ij (b) ∨ a.
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Figure 2: A coset decomposition showing isomorphic cosets.

Conversely, this characterization provided a general recipe for constructing primitive alge-
bras.

In this situation, the coset weight γ(A,B) is the common size of all cosets in A ∪ B.
The index [A : B] of B in A is the number of B-cosets in A; dually the index [B : A] of A
in B is the number of A-cosets in B.

In the finite case, as with finite groups one thus has a Lagrange-type theorem:

Theorem 0.1. If A and B in the primitive skew lattice A > B are both finite, then:

|A| = [A : B]γ(A,B) and |B| = [B : A]γ(A,B).

Corollary 0.2. Given A > B, if |A| & |B| are finite and coprime, then γ(A,B) = 1 and

∀a ∈ A,∀b ∈ B : (a ∧ b = b ∧ a = b & a ∨ b = b ∨ a = a).

These algebras form the basis for an analysis of skew lattice structure – or one might
say, of the architecture of skew lattices. For instance, consider a skew diamond of D-
classes in a skew lattice S. Here J and M are the join and meet D-classes of D-classes A
and B.

J

A B

M

If both |A|, |B| < ∞, then also both |J |, |M | < ∞. Indeed, both |J | and |M | divide
|A||B|.

If S is cancellative, then |A||B| = |J ||M | (João Pita da Costa 2012 Dissertation [54]).
As consequences we have:

(1) The union of all singleton D-classes forms a sublattice ZS of S.

(2) ZS is the center of S:

ZS = {x ∈ S | x ∧ y = y ∧ x for all y ∈ S}
= {x ∈ S | x ∨ y = y ∨ x for all y ∈ S}.

(3) The union of all finite D-classes is a subalgebra.
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(4) Given prime p, the union of all D-classes of p-power size is a subalgebra.

With the exception of Pita da Costa’s result, the above formed part of the content the fourth
paper:

• “The geometric structure of skew lattices” appeared in Transactions of the American
Mathematical Society in 1993 [47].

First Contact! Some time after the publication of my paper on skew Boolean alge-
bras, I received a letter from Robert J. Bignall of Monash University in Australia. In it I
discovered that a paper entitled “Boolean skew algebras” had been published in 1980 by
his dissertation advisor, William Cornish [15]. (Some may be aware that Bill Cornish was
one of the first to publish work in response to the extension of Stone duality to bounded
distributive lattice by Hillary Priestly at Oxford.) Bob Bignall’s 1976 dissertation written in
South Australia was entitled Quasiprimal Varieties and Components of Universal Algebra
[5]. It began with a chapter entitled “Quasi-Boolean skew lattices”. While not term equiv-
alent to the skew Boolean algebras I had studied, both types of algebras were quite similar
in spirit. Some will find it interesting that in his dissertation Bob studied sheaf theoretic
representations of these algebras. His interest in noncommutative Boolean algebras also
manifested itself in his 1991 paper, “A non-commutative multiple-valued logic”, that ap-
peared in the Proceedings of the 21st International Symposium on Multiple-Valued Logic,
sponsored by the IEEE Computer Society [6]. Indeed he continued to author further papers
in this area.

I also received a copy of a paper he had submitted to Algebra Universalis. It was
about a class of algebras very much like my skew Boolean algebras except that his relative
complement was different, and of course, there was a slightly different axiom system. Also,
his algebras had close connections to what are called discriminator algebras which Stanley
Burris had called “the most successful generalization of Boolean algebras to date” in his
1981 text on universal algebra [11].

Later on Bob visited me for a few days in Santa Barbara. One morning, after breakfast
at a seaside restaurant, I shared some thoughts on how our two types of algebras could be
merged. The means to do this was the concept of any two elements having a meet relative
to the natural partial order – their intersection – as opposed to their skew meet (i.e. “meet”
in a general noncommutative context). Bignall’s difference essentially involved subtracting
the intersection from one of the two given elements while mine involved subtracting their
skew meet. This led us to the variety of skew Boolean algebras with intersections. As
it turned out its subvariety of right-handed [or left-handed] algebras is term-equivalent to
the variety of pointed discriminator algebras. Both types of algebras were the subject of
our joint revision of Bob’s earlier paper entitled “Skew Boolean algebras and discriminator
varieties” that appeared in Algebra Universalis in 1995 [7]. The communicating editor was
Stanley Burris.

It was during this time that Alfred Clifford passed away. A symposium in his honor
was held at Tulane University where he had taught for many years. There I gave survey
talk on recent developments in skew lattice theory. This talk was published as a survey
article in the Semigroup Forum in 1996 [48]. This brought to six the number of articles I
had published on skew lattices since 1989. I would not publish another until 2002.

In the meantime, much of my focus was on inverse monoids and especially the categor-
ical foundations of symmetric inverse monoids and their duals. In particular, I coauthored a
paper on dual symmetric inverse monoids with a colleague from Tasmania, Des FitzGerald,
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who happily was at this workshop. Our paper, “Dual symmetric inverse monoids and rep-
resentation theory,” appeared in 1998 in the Journal of the Australian Mathematical Society
[31]. A main feature of inverse monoids is the fact that their elements have a natural partial
order which in many cases has natural meets (or intersections, in our terminology). Natural
meets received a good bit of attention in the papers I published during this period. My per-
spective on inverse monoids at this time was, no doubt, influenced by the paper coauthored
with Bob Bignall. Connections between inverse monoids or inverse semigroups in gen-
eral, and Boolean structures (often with intersections) has been a subject of study in recent
years. For an extended exposition of these and related matters see Friedrich Wehrung’s
2017 Springer monograph [60].

During this period, however, I started hearing from graduate students in Europe and
Australia. One of the first was Gratiela Laslo, who was writing a dissertation on noncom-
mutative lattices at Babes-Bolyai University in Cluj-Napoca, Romania. Her research, plus
several insights from me, led to a seventh paper, co-authored with Gratiela and entitled
“Green’s equivalences on noncommutative lattices” that appeared in 2002 in the Szeged
journal, Acta Scientiarum Mathematicarum [41]. Here, all involved algebras are general-
izations of skew lattices with many results applying to skew lattices. The paper attempted
to provide a coherent scheme consisting of four varieties into which nearly all of the previ-
ously studied types of noncommutative lattices could fit.

As it turns out, I wasn’t Gratiela’s only human connection to noncommutative lattices.
She was also in contact with Professor Gheorghe Farcas of Petru Maior University in Targu
Mures, Romania. Professor Farcas had published a number of papers on noncommutative
lattices. But by the time I visited Gratiela in Targu Mures in 2005, he had been retired for
some years and in ill health. Thus, regrettably, I never met him.

In the late 1990s I also started hearing from a protégé of Bob Bignall, Mathew Spinks.
In an earlier paper, I had asked whether the dual pair of distributive identities that character-
ize distributive skew lattices are equivalent for skew lattices as they are for lattices. Spinks
determined that they were not, publishing a set of four 9-element counter-examples in the
Semigroup Forum in 2000 [58]. But there was more. Having had earlier access to his ex-
amples, I had noticed that they were non-symmetric. I asked Matthew if the two identities
might be equivalent in the case of symmetric skew lattices. He initially found a computer-
generated affirmative proof consisting of 757 steps. He was then able to reduce it to a
368-step proof that he published in a Monash University report: Automated Deduction in
Non-Commutative Lattice Theory [57]. Several further reductions ensued. Finally a more
standard “human” proof was obtained by Karin Cvetko-Vah and published in a short paper
in the Semigroup Forum in 2006 [16]. Over the years Matthew and I have co-authored four
papers:

• “Skew Boolean algebras derived from generalized Boolean algebras”, in Algebra
Universalis [49];

• “Cancellation in skew lattices” (with K. Cvetko-Vah and M. Kinyon), in Order [22];

• “Skew lattices and binary operations on functions” (with K. Cvetko-Vah), in Journal
of Applied Logic [26];

• “Varieties of skew Boolean algebras with intersections”, in Journal of the Australian
Mathematical Society [50].

The last paper characterizes the lattice of subvarieties of this class of algebras. Spinks has
also published very good papers with other individuals, including, of course, Bob Bignall.
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Not all of these are about skew lattices. One of things that I appreciate about Matthew
is his impressive knowledge of past and ongoing developments in universal algebra and
logic. His ability to inject scholarly insights of relevance to a paper, or results of others
that are critical to obtaining a proof or even a smoother proof, can make a decent paper
good, and a good paper really good. It is interesting that both Matthew and Gratiela had
initial connections to individuals who had engaged in serious research on noncommutative
lattices.

This third graduate student was Karin Cvetko-Vah. I became aware of her in the early
years of the new millennium, when she wrote and published several papers on multiplica-
tive bands and skew lattices in rings. I recall reading her papers and discovering ideas and
results that I had not considered. We first met at a Linear Algebra conference at Lake Bled
in 2005. Since then Karin has written further papers about skew lattices in rings, three
co-authored with me:

• “Associativity of the∇-operation on bands in rings”, in Semigroup Forum [23];

• “On maximal idempotent-closed subrings of Mn(F)”, in International Journal of
Algebra and Computation [24];

• “Rings whose idempotents form a multiplicative set”, in Communications in Alge-
bra [25].

The last two were on rings whose idempotents are closed under multiplication, and thus
form, with additional operations, a skew Boolean algebra.

One of the things that has helped Karin and I work well together – besides the fact
that she is very bright and hard-working – is her background in operator theory and in
particular, matrix theory. Her dissertation advisor, Matjaž Omladič, was connected to a
research group that included Peter Fillmore, Gordon MacDonald and Heydar Radjavi who
among other things, studied multiplicative bands of idempotents in matrix rings. One result:
Every multiplicative band of idempotents in a matrix ring is simultaneously triangulariz-
able. Consequently every skew lattice of idempotents in a matrix ring is simultaneously
triangularizable. Nice to know when you’re looking for examples! In any case, with this
background it’s not that surprising that Karin and I might meet up.

Karin has authored and co-authored a number of important papers on the general struc-
ture of skew lattices. Besides her connection to Spinks’ distributivity result, there is, e.g.,
her 2011 paper “On strongly symmetric skew lattices” that appeared in Algebra Univer-
salis [17]. Another important contribution was also her involvement in research on duality
theory extending the work of M. H. Stone and Hillary Priestly to skew Boolean algebras
and strongly distributive skew lattices. Early in 2010, I mentioned to Karin that extending
Stone duality for (generalized) Boolean algebras to a duality theory for skew Boolean al-
gebras would be a worthy project. She brought this to the attention of two colleagues in
Ljubljana, Andrej Bauer and Ganna Kudryavtseva. This led to a series of publications on
duality that include:

• G. Kudryavtseva, “A refinement of Stone duality to skew Boolean algebras”, in Al-
gebra Universalis [36];

• A. Bauer and K. Cvetko-Vah, “Stone duality for skew Boolean algebras with inter-
sections”, in Houston Journal of Mathematics [2];

• A. Bauer, K. Cvetko-Vah, M. Gerkhe, G. Kudryavtseva and S. J. van Gool, “A non-
commutative Priestly duality”, in Topology and Applications [3].
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Karin had met Mai Gehrke at a math conference in Switzerland and Sam van Gool was
Mai’s student. Further studies in duality are listed below. Karin has also explored con-
nections to Church algebras (with Antonino Salibra) [29], skew Heyting algebras [18] and
noncommutative toposes (with Jens Hemelaer and Lieven Le Bruyn) [21]. Again, see the
references near the end.

Clearly a major contribution has been Karin’s ability to engage the interest of others
in some aspect of skew lattices. Indeed many are here because of an encounter with her.
Besides those already mentioned, there is her wonderful student, João Pita da Costa, who
we will mention from time to time.

As for engaging the interest of others in skew lattices, Matthew has also not been idle.
In the summer of 2007 he attended a conference on automated deduction at the University
of New Mexico. There he met Michael Kinyon, a broadly published mathematician work-
ing in various areas of algebra and even beyond. The two began discussing skew lattices.
By 2008 Michael and I started having e-conversations, initially about cancellative skew
lattices. Before long Matthew and Karin joined in. Long story short, this led to a sequence
of three papers that extended significantly earlier research on skew lattice architecture and
other aspects of skew lattice theory. They were all co-authored by Michael and me, at least.

• The previously mentioned, “Cancellation in skew lattices” (with K. Cvetko-Vah and
M. Spinks) [22];

• “Categorical skew lattices”, in Order [32];

• “Distributivity in skew lattices” (with J. Pita da Costa), in Semigroup Forum [33].

The first paper was a thorough study of cancellative skew lattices. To begin, they also form
a subvariety. A characterization by Michael of these algebras via a finite list of forbidden
algebras was also given, along with other nice results. One was Karin’s “Parallelogram
Laws” for cancellative skew lattices taken from her dissertation: given D-classes A and B
and their join and meet D-classes J and M , one has [J : B] = [A : M ] and [B : J ] =
[M : A]. Likewise, [J : A] = [B :M ] and [A : J ] = [M : B].

A skew lattice is categorical when the nonempty composition of successive coset iso-
morphisms is also a coset isomorphism. Distributive skew lattices are categorical and in
particular, skew lattices of idempotents in rings are categorical. Categorical skew lattices
were studied in the second paper. Special attention was given to strictly categorical skew
lattices where the composition of successive coset bijections arising in any chain of D-
classes A > B > C is always nonempty. They include normal skew lattices and their
conormal duals, as well as all primitive skew lattices. Categorical skew lattices form a
proper subvariety of skew lattices with the strictly categorical ones forming a properly
smaller subvariety. Here are some as yet unanswered queries:

• Do the normal and conormal subvarieties jointly generate the strictly categorical va-
riety?

• What subvariety does the class of primitive skew lattices generate?

Here is a nice result: a strictly categorical skew lattice S is distributive iff its maximal lattice
image S/D is distributive. A nice counting theorem quoted in this paper came from João’s
2012 Algebra Universalis publication “Coset laws for categorical skew lattices” [53]: given
a strictly categorical chain A > B > C of D-classes, if A and C are finite, then B is also
finite; moreover, [C : A] = [C : B]× [B : A] and dually [A : C] = [A : B]× [B : C].
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Our third paper on distributive skew lattices was coauthored with João and appeared in
the Semigroup Forum in 2015. If S is distributive then

(1) S/D is distributive and

(2) each D-class chain A > B > C is distributive.

Condition (2), called linear distributivity, turns out to be a mild generalization of being
strictly categorical. Now, what about the converse? Do (1) and (2) imply S is distributive?
The answer is NO in general: Spinks’ examples suffice. But it is YES, if S is also sym-
metric. (Here is another really crisp result about distributivity occurring in the presence of
symmetry.) This and other aspects of distributivity are studied.

While on the topic of skew lattice architecture, further research in this area has been
carried out by Karin and/or João. The relevant published papers, all appearing since 2010,
are often recognized by such phrases as “coset structure” or “coset laws” appearing in the
title. Again, nice counting theorems have arisen, as we have seen.

While working on my paper with Matthew on the lattice of varieties of skew Boolean
algebras with intersections, the question arose as to whether free skew Boolean algebras in
general have intersections. The answer is trivially yes in the finite case, but what about the
infinite case? Oddly enough, free skew Boolean algebras had never been formally studied,
probably due to the fact that so much else was going on. So I emailed several individuals,
asking what do free SBAs look like and do they have intersections. Someone got right on
the case, Ganna (Anya) Kudryavtseva, who had been very involved in the study of duality.
This led to two papers:

• “Free skew Boolean algebras”, in International Journal of Algebra and Computa-
tion [40];

• “Free skew Boolean intersection algebras and set partitions”, in Order [38].

The first was co-authored by Anya and me, but the second was her work. And yes, free
skew Boolean algebras do have intersections. To give a glimpse of what occurs in the finite
case, the free left-handed skew Boolean algebra on n generators is, to within isomorphism:

LSBAn
∼= 1(

n
0) × 2(

n
1) × 3

(n2)
L × · · · × (n+ 1)

(nn)
L .

Here (k+ 1)L is the primitive left-handed skew Boolean algebra on {0, 1, . . . , k} with 0
being the bottom element and {1, . . . , k} forming the upper D-class. Similar decomposi-
tions in the finite case for algebras with intersection are given in Anya’s paper. But instead
of binomial coefficients

(
n

k−1
)
, the respective powers are given by Stirling numbers of the

2nd kind,
{
n+1
k

}
. (See [38, Theorem 28].)

Research on skew lattices and related subjects continues. We mention next a number
of papers that have appeared (but not all!), loosely arranging them by topic. It is intended
to give a sense of the current state of play. References are given at the end of the paper.

Further work on duality

• G. Kudryavtseva, “A dualizing object approach to noncommutative Stone duality”,
Journal of the Australian Mathematical Society [37];

• G. Kudryavtseva and M. V. Lawson, “Boolean sets, skew Boolean algebras and a
non-commutative Stone duality”, Algebra Universalis [39].
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Partial function algebras

• J. Berendsen, D. N. Jansen, J. Schmaltz and F. W. Vaandrager, “The axiomatization
of override and update”, Journal of Applied Logic [4]. (This is related to the above
mentioned paper by Cvetko-Vah, Leech and Spinks appearing in the same journal.)

Connections with logic, discriminator varieties and other systems

• R. J. Bignall and M. Spinks, “Propositional skew Boolean logic”, in: Proceedings
26th IEEE International Symposium on Multiple-Valued Logic, IEEE Computer So-
ciety Press [8];

• R. J. Bignall and M. Spinks, “Implicative BCS-algebra subreducts of skew Boolean
algebras”, Scientiae Mathematicae Japonicae [9];

• J. Cirulis, “Nearlattices with an overriding operation”, Order [14];

• K. Cvetko-Vah and A. Salibra, “The connection of skew Boolean algebras and dis-
criminator varieties to Church algebras”, Algebra Universalis [29];

• D. Saveliev, “Ultrafilter extensions of linearly ordered sets”, Order [56];

• M. Spinks and R. Veroff, “Axiomatizing the skew Boolean propositional calculus”,
Journal of Automated Reasoning [59].

Cosets and skew lattice architecture

• K. Cvetko-Vah and J. Pita da Costa, “On coset laws for skew lattices in rings”, Novi
Sad Journal of Mathematics [27];

• K. Cvetko-Vah and J. Pita da Costa, “On coset laws for skew lattices”, Semigroup
Forum [20];

• J. Pita da Costa, “On the coset structure of a skew lattice”, Demonstratio Mathemat-
ica [52];

• J. Pita da Costa, “Coset laws for categorical skew lattices”, Algebra Universalis [53];

• J. Pita da Costa, “On the coset category of a skew lattice”, Demonstratio Mathemat-
ica [55].

And beyond

• B. A. Alaba, M. Alamneh and Y. M. Gubena, “Skew semi-Heyting algebras”, Inter-
national Journal of Computing Science and Applied Mathematics [1];

• D. Carfi and K. Cvetko-Vah, “Skew lattices on the financial events plane”, Applied
Sciences [12];

• K. Cvetko-Vah, “On skew Heyting algebras”, Ars Mathematica Contemporanea [18];

• K. Cvetko-Vah, “Noncommutative frames”, Journal of Algebra and Its Applica-
tions [19];

• K. Cvetko-Vah, J. Hemelaer and L. Le Bruyn, “What is a noncommutative topos?”,
Journal of Algebra and Its Applications [21];

• K. Cvetko-Vah, M. Sadrzadeh, D. Kartsaklis, and B. Blundell, “Non-commutative
logic for compositional distributional semantics”, Proceedings of the 24th Workshop
on Logic, Languages, Information and Computation [28];
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• R. Koohnavard and A. Borumand Saeid, “(Skew) filters in residuated skew lattices”,
Scientific Annals of Computer Science [34];

• R. Koohnavard and A. Borumand Saeid, “(Skew) filters in residuated skew lattices
II”, Honam Mathematical Journal [35];

• L. Le Bruyn, “Covers of the arithmetic site” [43];

• Y. Zhi, X. Zhou and Q. Li, “Rough sets induced by ideals in skew lattices”, Journal
of Intelligent and Fuzzy Systems [61];

• Y. Zhi, X. Zhou and Q. Li, “Residuated skew lattices”, Information Science [62].

(Again, these papers, and all mentioned in this article, are not intended to collectively give
a comprehensive list of all publications related to skew lattices.)

Returning now to regular bands, as already indicated, regular bands and skew lattices
are closely connected. I like to think that skew lattices are what regular bands can be when
they grow up – just as semilattices can “grow” into lattices or even Boolean algebras. ,
(This, of course, requires a nourishing environment, such as the multiplicative semigroup of
some ring.) In any case, interest in regular bands is not limited to those studying semigroups
or skew lattices. In their introductory remarks to Cell Complexes, Poset Topology and
the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete
Geometry (to appear in the Memoirs of the American Mathematical Society) [51], Stuart
Margolis, Franco Saliola and Benjamin Steinberg describe the relevance of left regular
bands to various areas of mathematics, and mention many of the individuals involved along
with selected relevant publications. For instance here are a few:

• K. S. Brown, “Semigroups, rings and Markov chains”, Journal of Theoretical Prob-
ability [10];

• F. Chung and R. Graham, “Edge flipping in graphs”, Advances in Applied Mathe-
matics [13];

• P. Diaconis, “From shuffling cards to walking around the building: an introduction to
modern Markov chain theory”, Proceedings of the International Congress of Mathe-
maticians [30];

• F. W. Lawvere, “Qualitative distinctions between some toposes of generalized gra-
phs”, Categories in Computer Science and Logic, Proceedings of the AMS-IMS-
SIAM Joint Summer Research Conference [42]. (Lawvere used the term “graphic
monoid” for left regular band.)

The authors then further develop many of these connections in their monograph. In addi-
tion, the semigroup algebra K(B) of a finite left regular band B where K is a commutative
ring with identity is studied along with homological aspects of its left module category.
One of the things they discovered is that if the band B is finite and left regular, then K(B)
has a right identity, that is, an element β such that xβ = x for all x ∈ K(B) [51, Theo-
rem 4.2(2)]. Moreover, if this right identity is unique, then it is the multiplicative identity
for K(B). Let’s see why, using skew lattice theory.

First, suppose the elements ofB are b1, b2, . . . , bn. Upon identifying each bi with 1bi in
K(B), set β = b1∨b2∨· · ·∨bn, where x∨y = x+y−xy. Then β lies in the topD-class of
the left-handed skew lattice S generated from B in K(B). Thus for all bj ∈ B, bj ∨ β = β
since (S,∨) is right regular. Thus by duality, bj ∧ β = bj , that is, bjβ = bj in K(B). But
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if this holds for the generators (over K) of K(B), then xβ = x for all x ∈ K(B). Thus
β is a right identity for K(B). It is important to note that bn < β in the natural ordering
of the idempotents in K(B). Thus β behaves like a 2-sided identity for at least bn. Thus
also K(B) has an identity, namely β, if all outcomes obtained by permuting the factors of
b1 ∨ b2 ∨ · · · ∨ bn agree, since β then behaves like a 2-sided identity for all the bi which
collectively generate K(B). Conversely and trivially, if K(B) has a multiplicative identity,
then it can only be β, no matter in what order it is assembled. Several comments:

(1) The above β expands to the noncommutative inclusion-exclusion expression:∑
bj −

∑
i<j

bibj +
∑

i<j<k

bibjbk − · · ·+ (−1)n+1b1b2b3 · · · bn.

(2) If {g1, g2, . . . , gm} is a set of generators for B, then γ = g1 ∨ g2 ∨ · · · ∨ gm must
be a right identity for K(B). γ will be a 2-sided identity if all outcomes obtained by
permuting the factors of g1 ∨ g2 ∨ · · · ∨ gm agree.

(3) A further refinement: if we choose the set {m1,m2, . . . ,mk} of all elements in B
that are maximal relative to the natural partial ordering ofB (e ≥ f iff ef = f = fe)
and repeat the process to get µ = m1 ∨ m2 ∨ · · · ∨ mk, then µ is also a right-
identity that is a 2-sided identity if all outcomes obtained by permuting the factors
of m1 ∨m2 ∨ · · · ∨mk agree. (This set of mis is a subset of any set of generators
of B.)

(4) Returning to the main argument, one need only assume that B is a left regular band
for which B/D is finite with say n D-classes. In this case b1, b2, . . . , bn is a cross-
section of elements, one chosen from each D-class. The D-class of β = b1 ∨ b2 ∨
· · · ∨ bn must be the maximal D-class in the generated skew lattice S, due to the
Clifford-McLean Theorem. Since S is left-handed, again β is a right identity for all
elements in B and thus all elements in K(B).

In their monograph the authors characterize those left regular bands B for which an
identity exists in all cases of K(B), i.e., for any commutative ring K with identity. Clearly,
if identities always exist, this is true for Z(B) where Z is the ring of integers. But, as
authors note, the converse is easily see to hold: if Z(B) has an identity, so must K(B) for
any commutative ring K with identity. This is in their Theorem 4.15, where the authors
also give a graph theoretic characterization of those B for which all K(B) have an identity.
Applying it requires some insight into the behavior of B, as indeed do the methods of (2)
and (3).

Assuming K is nontrivial, the map b 7→ 1b gives an easy isomorphic embedding of B
into the multiplicative semigroup of K(B), at which location a skew lattice can be gen-
erated from the copy of B in K(B), if B is left or right regular, but not necessarily for
all regular bands. But this simple method can be modified in the general case as follows.
Given any regular band B with its respective maximal left and right regular images, BL

andBR, the Kimura Theorem for regular bands initiates a chain of isomorphic embeddings
from B into the multiplicative semigroup of a ring that is a product of semigroup rings:

B → BL ×BR → K(BL)×K(BR).

In this ring, the image of B will generate a skew lattice S under the standard operations
x ∧ y = xy and x ∨ y = x+ y − xy. Thus, every regular band B can be embedded in the
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reduct (S,∧) of a skew lattice (S,∧,∨). In this caseB is embedded in a well-behaved skew
lattice. When B/D is finite, while the relevant ring need not have a right or left identity
(unless B is left or right regular), it will have a middle identity m such that xmy = xy
for all x, y in K(BL) × K(BR). In particular xmx = x for all x in the generated skew
lattice S. Such anm is given by any of the idempotents in the maximalD-class of S (in the
usual ordering of D-classes). Thus the existence of a right, left or middle identity in the
ring depends on the existence and behavior of a maximal D-class in S. An identity occurs
precisely when this class reduces to a single point.

The reader will have noticed various bits of mathematical genealogy relative to the his-
tory of noncommutative lattices. Let me say a few words about my genealogy, although in
doing mine we’ll “stray” into a larger arena. What follows are two genealogy sequences
with the dates being when the individual received their PhD (see Figure 3). Both begin in

Jonathan Leech (1969)

Alfred Hales (1962)

Robert Dilworth (1939)

Morgan Ward (1928)

Eric T. Bell (1912)

Alfred Clifford (1933)

Figure 3: An advisor-student tree.

Pasadena, California with Eric Temple Bell directing dissertations at Caltech (California
Institute of Technology) in the early 20th century. Indeed all you see occurs there until
my advisor, Alfred Hales, received his PhD at Caltech and accepted a position at UCLA.
While Bell’s main interests were in number theory and related areas in algebra and anal-
ysis, with Dilworth we have arrived at a major figure in the developing theory of lattices.
And while Hales may be more known for his work in combinatorics, especially Ramsey
Theory (thus a co-winner of the Polya Prize), he made significant contributions to lattice
theory. One surprising result, proved independently by Haim Gaifman, states that there
exist countably generated complete Boolean algebras of arbitrarily high cardinality. The
outside reader of my dissertation was another student of Bell, Alfred H. Clifford. By this
time, he had moved to Tulane University, where he had already directed the dissertation of
Naoki Kimura. But initially, after receiving his PhD he joined the Institute for Advanced
Study, where he became an assistant to Hermann Weyl. Clifford was a master expositor,
and in my early papers I benefitted greatly from his suggestions. (Two side-notes, courtesy
of Professor Hales: Al and Alice Clifford were avid Bridge players as were the parents of
Al Hales. Thus when both couples lived in Pasadena they knew each other. Also, both Al-
freds attended Polytechnic School, a preparatory school in Pasadena, and though 31 years
apart, in the middle grades both studied math under the nationally acclaimed teacher, Mary
Ardis Schnebly.) Although they played different roles in my early career, to both Alfreds I
owe a real debt of gratitude. Given another venue I would say more. But for now, to both
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gentlemen let me just say: Thank you! (And, of course, thank you, Mary Ardis Schnebly.)
As for E. T. Bell, he is known for a number of reasons. These include his study of Bell

numbers that are named after him, although such a study was preceded in the notebooks of
Ramanujan. (The nth Bell number Bn is the number of distinct partitions of an n-element
set.) Interestingly, Bell numbers appear in Anya Kudryavtseva’s paper [38] where they are
used to count the number of atomicD-classes as well as the total number of atoms in a free
left [right]-handed skew Boolean intersection algebra. Given n generators, these counts are
respectively Bn+1 − 1 and Bn+2 − 2Bn+1. (Again, see [38, Theorem 28].)

In conclusion, in describing my journey into noncommutative lattice theory and in par-
ticular, skew lattices, I have focused not only on primary concepts and results, but also
on the individuals involved in developing the current state of the subject, many of whom
attended this workshop. Thankfully, I have not made this journey alone. To all of those
who have been involved at its various stages, whether directly with me or not, I am grate-
ful for your wonderful contributions. I must also thank Professors Tomaž Pisanski, Karin
Cvetko-Vah and all others involved in the planning and running of the NCS2018 Workshop
in Portorož and Piran – such a beautiful venue! In particular, thank you for making it possi-
ble for nearly all of my past coauthors to attend too. Your successful efforts are very much
appreciated. And especially to Karin, thank you for your help in preparing the slides as
well as the layout of this article. Again, it is much appreciated.
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Abstract

The lattice operations of join and meet were defined for set partitions in the nineteenth
century, but no new logical operations on partitions were defined and studied during the
twentieth century. Yet there is a simple and natural graph-theoretic method presented
here to define any n-ary Boolean operation on partitions. An equivalent closure-theoretic
method is also defined. In closing, the question is addressed of why it took so long for all
Boolean operations to be defined for partitions.
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1 Introduction
The lattice operations of join and meet were defined on set partitions during the late nine-
teenth century, and the lattice of partitions on a set was used as an example of a non-
distributive lattice. But during the entire twentieth century, no new logical operations were
defined on partitions.

Equivalence relations are so ubiquitous in everyday life that we often for-
get about their proactive existence. Much is still unknown about equivalence
relations. Were this situation remedied, the theory of equivalence relations
could initiate a chain reaction generating new insights and discoveries in many
fields dependent upon it.

This paper springs from a simple acknowledgement: the only operations
on the family of equivalence relations fully studied, understood and deployed
are the binary join ∨ and meet ∧ operations. [3, p. 445]
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Papers on the “logic” of equivalence relations [7] or partitions only involved the join and
meet, and not the crucial logical operation of implication.

Yet, there is a general graph-theoretic method1 by which any n-ary Boolean (or truth-
functional) operation f : {T, F}n → {T, F} can be used to define the corresponding n-ary
operation f :

∏
(U)

n →
∏

(U) where
∏

(U) is the set of partitions on a set U .
A partition π = {B,B′, . . .} on a set U = {u, u′, . . .} is a set of disjoint non-empty

subsets B,B′, . . . of U , called blocks, whose union is U . The corresponding equivalence
relation, denoted indit (π), is the set of ordered pairs of elements of U that are in the same
block of π, and are called the indistinctions or indits of π, i.e.,

indit (π) = {(u, u′) ∈ U × U : ∃B ∈ π, u, u′ ∈ B}.

The complement dit (π) = U × U − indit (π) is the set of distinctions or dits of π, i.e.,
ordered pairs of elements in different blocks. As binary relations, the sets of distinctions
or ditsets dit (π) of some partition π on U are called partition (or apartness) relations.
Given partitions π = {B,B′, . . .} and σ = {C,C ′, . . .} on U , the refinement relation is
the partial order defined by:

σ � π if ∀B ∈ π,∃C ∈ σ,B ⊆ C.

At the top of the refinement partial order is the discrete partition 1 = {{u} : u ∈ U}
of all singletons and at the bottom is the indiscrete partition 0 = {U} with only one
block consisting of U . In terms of binary relations, the refinement partial order is just the
inclusion partial order on ditsets, i.e., σ � π iff dit (σ) ⊆ dit (π). It should be noted
that most of the previous literature on partitions (e.g., [1]) uses the opposite partial order
of ‘unrefinement’ corresponding to the inclusion relation on equivalence relations—which
reverses the definitions of the join and meet of partitions.

2 The join operation on partitions
The join π ∨ σ of partitions π and σ (least upper bound using the refinement partial order)
is the partition whose blocks are the non-empty intersections B ∩ C of the blocks of π
and σ (under the unrefinement ordering, it is the meet). In terms of ditsets, dit (π ∨ σ) =
dit (π)∪ dit (σ). The general method for defining Boolean operations on partitions will be
first illustrated with the join operation whose corresponding Boolean operation is disjunc-
tion with the truth table in Table 1.

Table 1: Truth table for disjunction.

P Q P ∨Q
T T T
T F T
F T T
F F F

Let K (U) be the complete undirected graph on U . The links u − u′ corresponding
to dits, i.e., (u, u′) ∈ dit (π), of a partition are labelled with the ‘truth value’ Tπ and

1The method is, strictly speaking, an algorithm only when U is finite.
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corresponding to indits (u, u′) ∈ indit (π) are labelled with the ‘truth value’ Fπ . Given
the two partitions π and σ, each link in the complete graph K (U) is labelled with a pair
of truth values. The graph G (π ∨ σ) of the join is obtained by putting a link u− u′ where
the truth function applied to the pair of truth values on the link in K (U) gives an F . Thus
in the case at hand, the only links in G (π ∨ σ) are for the u− u′ labelled with Fπ and Fσ
in K (U). Then the partition π ∨ σ is obtained as the connected components of its graph
G (π ∨ σ). Thus u and u′ are in the same block (connected component ofG (π ∨ σ)) if and
only if the link u − u′ was labelled Fπ and Fσ , i.e., u and u′ were in the same block of π
and in the same block of σ. Thus the graph-theoretic definition of the join reproduces the
set-of-blocks definition of the join defined as having its blocks the non-empty intersections
of the blocks of π and σ.

3 The meet operation on partitions
On the combined set of blocks π ∪ σ of π and σ, define the overlap relation B G C
on two blocks if they have a non-empty intersection or overlap (see [8]). The reflexive-
symmetric-transitive closure of this relation is an equivalence relation, and the union of the
blocks in each equivalence class gives the blocks of the meet π ∧ σ. The corresponding
truth-functional operation is conjunction with the truth table in Table 2.

Table 2: Truth table for conjunction.

P Q P ∧Q
T T T
T F F
F T F
F F F

The same method is applied except that the links of the graph G (π ∧ σ) are the ones
for which the conjunction truth table gives an F when applied to the truth values on each
link u−u′. ThusG (π ∧ σ) contains a link u−u′ if (u, u′) ∈ indit (π), (u, u′) ∈ indit (σ),
or both. Then the blocks of the partition π ∧ σ are the connected components of the graph
G (π ∧ σ).

The proof that the graph-theoretic definition of the meet gives the usual set-of-blocks
definition of the meet boils down to showing that: B ∈ π and C ∈ σ are contained in the
same block of the usual meet π∧σ (i.e., there is a chain of overlaps B G C ′ G · · · G B′ G C
connecting B and C) if and only for any u ∈ B and u′ ∈ C, u and u′ are in the same
connected component ofG (π ∧ σ). If any two blocksB′ G C ′ overlap in the overlap chain,
then there is an element u′′ ∈ B′ ∩C ′ such any u ∈ B′ had a link u−u′′ in G (π ∧ σ) and
similarly any u′ ∈ C ′ has a link u′′ − u′ in G (π ∧ σ). Hence the existence of an overlap
chain connecting B and C implies that any u ∈ B and u′ ∈ C are in the same connected
component of G (π ∧ σ). Conversely, if u ∈ B and u′ ∈ C are in the same connected
component ofG (π ∧ σ), then there is some chain of links u = u0−u1−· · ·−un−1−un =
u′ where each link ui − ui+1 for i = 0, . . . , n − 1 has either (ui, ui+1) ∈ indit (π),
(ui, ui+1) ∈ indit (σ), or both. Every link ui − ui+1 that is in one indit set but not
the other, say, (ui, ui+1) ∈ indit (π) and (ui, ui+1) /∈ indit (σ), establishes an overlap
between the block of π containing ui, ui+1 and the block of σ containing ui as well as the
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different block of σ containing ui+1. Thus the chain of links connecting u ∈ B and u′ ∈ C
establishes a chain of overlapping blocks connecting B and C.

4 The implication operation on partitions
The real beginning of the logic of partitions, as opposed to the lattice theory of partitions,
was the discovery of the set-of-blocks definition of the implication operation σ ⇒ π for
partitions ([5, 6]). The intuitive idea is that σ ⇒ π functions like an indicator or charac-
teristic function to indicate which blocks B of π are contained in a block of σ. View the
discretized version of B ∈ π, i.e., B replaced by the set of singletons of the elements of B,
as the local version 1B of the discrete partition 1, and view the block B remaining whole
as the local version 0B of the indiscrete partition 0. Then the partition implication as the
inclusion indicator function is: the blocks of σ ⇒ π are for any B ∈ π:{

1B if ∃C ∈ σ,B ⊆ C
0B = B otherwise.

In the case of the Boolean logic of subsets, for any subsets S, T ⊆ U , the conditional
S ⊃ T = Sc ∪ T has the property: S ⊃ T = U iff S ⊆ T , i.e., the conditional S ⊃ T
equals the top of the lattice of subsets ofU iff the inclusion relation S ⊆ T holds. Similarly,
it is immediate that the corresponding relation holds in the partition case:

σ ⇒ π = 1 iff σ � π.

This set-of-blocks definition of the partition implication operation accounts for the impor-
tant new non-lattice-theoretic properties revealed in the algebra of partitions

∏
(U) on U

(defined with the join, meet, and implication as partition operations).
A logical formula in the language of join, meet, and implication is a subset tautology if

for any non-empty universe U and any subsets of U substituted for the variables, the whole
formula evaluates by the set-theoretic operations of join, meet, and implication (condi-
tional) to the top U . Similarly, a formula in the same language is a partition tautology if
for any universe U with |U | > 1 and for any partitions on U substituted for the variables,
the whole formula evaluates by the partition operations of join, meet, and implication to
the top 1 (the discrete partition). All partition tautologies are subset tautologies but not
vice-versa. Modus ponens (σ ∧ (σ ⇒ π))⇒ π is both a subset and partition tautology but
Peirce’s law, ((σ ⇒ π)⇒ σ) ⇒ σ, accumulation, σ ⇒ (π ⇒ (σ ∧ π)), and distributiv-
ity, ((π ∨ σ) ∧ (π ∨ τ)) ⇒ (π ∨ (σ ∧ τ)), are examples of subset tautologies that are not
partition tautologies. The importance of the implication for partition logic is emphasized
by the fact that the only partition tautologies using only the lattice operations, e.g., π ∨ 1,
correspond to general lattice-theoretic identities, i.e., π ∨ 1 = 1 (see [9]).

The graph-theoretic method automatically gives a partition operation corresponding to
the Boolean conditional or implication with the truth table in Table 3 and it is not trivial
that the two definitions are the same. It may be helpful to restate the truth table in terms of
the partitions; see Table 4.

For the graph-theoretic definition of σ ⇒ π, we again label the links u − u′ in the
complete graph K (U) with Tπ if (u, u′) ∈ dit (π) and Fπ otherwise, and similarly for σ.
Then we construct the graph G (σ ⇒ π) by putting in a link u−u′ only in the case the link
is labeled Tσ and Fπ , i.e., Fσ⇒π . Then the partition σ ⇒ π is the partition of connected
components in the graph G (σ ⇒ π).
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Table 3: Truth table for conditional.

P Q P ⊃ Q
T T T
T F F
F T T
F F T

Table 4: Implication truth table for partition ‘truth values’.

σ π σ ⇒ π

Tσ Tπ Tσ⇒π
Tσ Fπ Fσ⇒π
Fσ Tπ Tσ⇒π
Fσ Fπ Tσ⇒π

To prove the graph-theoretic and set-of-blocks definitions equivalent, we might first
note that if (u, u′) ∈ dit (π), then Tπ is assigned to that link in K (U) so there is no link
u− u′ in G (σ ⇒ π). And if (u, u′) ∈ indit (π) but also (u, u′) ∈ indit (σ), then Tσ⇒π is
assigned to the link in K (U) so again there is no link u− u′ in G (σ ⇒ π). There is a link
u − u′ in G (σ ⇒ π) in and only in the following situation where (u, u′) ∈ indit (π) and
(u, u′) ∈ dit (σ)—which is exactly the situation when B is not contained in any block C
of σ:

C C ′

B

u u′

Figure 1: Links u− u′ in G (σ ⇒ π).

Then for any other element u′′ ∈ B so that (u, u′′) and (u′, u′′) ∈ indit (π), we must
have either (u, u′′) ∈ dit (σ) or (u′, u′′) ∈ dit (σ) so u′′ is linked in G (σ ⇒ π) to either
u or to u′. Thus all the elements of B are in the same connected component of the graph
G (σ ⇒ π) whenever B is not contained in any block of σ. If, on the other hand, B is
contained in some block C of σ, then any u ∈ B cannot be linked to any other u′. In
order to that Fπ assigned to the link u − u′, the two elements have to both belong to B
and thus since B ⊆ C, they both belong to C so Fσ and thus Tσ⇒π is also assigned to that
link. Thus when B is contained in a block C ∈ σ, then any point u ∈ B is a disconnected
component to itself in G (σ ⇒ π) so B is discretized in the graph-theoretic construction of
σ ⇒ π. Thus the graph-theoretic and set-of-blocks definitions of the partition implication
are equivalent.

Example 4.1. Let U = {a, b, c, d} so that K(U) = K4 is the complete graph on four
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a b

d c

Tσ, Fπ

Fσ, Fπ

Tσ, Tπ Fσ, Tπ

Fσ, Tπ

Tσ, Tπ

σ = {{a} , {b, c, d}}
π = {{a, b} , {c, d}}

σ ⇒ π = {{a, b} , {c} , {d}}

Figure 2: Example of graph for partition implication.

points. Let σ = {{a} , {b, c, d}} and π = {{a, b} , {c, d}} so we see immediately from
the set-of-blocks definition, that the π-block of {c, d} will be discretized while the π-block
of {a, b} will remain whole so the partition implication is σ ⇒ π = {{a, b} , {c} , {d}}.
After labelling the links in K (U), we see that only the a − b link has the Fσ⇒π ‘truth
value’ so the graph G (σ ⇒ π) has only that a − b link (thickened in Figure 2). Then
the connected components of G (σ ⇒ π) give the same partition implication σ ⇒ π =
{{a, b} , {c} , {d}}.

The partition implication is quite rich in defining new structures in the algebra of par-
titions (i.e., the lattice of partitions extended with other partition operations such as the
implication). For instance, for a fixed partition π on U , all the partitions of the form σ ⇒ π
(for any partitions σ on U ) form a Boolean algebra under the partition operations of impli-
cation, join, and meet, e.g., (σ ⇒ π) ⇒ π is the negation of σ ⇒ π, called the Boolean
core of the upper segment [π,1] in the partition algebra

∏
(U).

A relation is a subset of a product, and, dually, a corelation is a partition on a coproduct.
Any partition π on U can be canonically represented as a relation: dit (π) ⊆ U×U . Dually
any subset S ⊆ U can be canonically represented as a corelation, namely the partition π (S)
on the coproduct (disjoint union) U ] U where the only nonsingleton blocks in π (S) are
the pairs {u, u∗} of u and its copy u∗ for u /∈ S. Using this corelation construction, any
powerset Boolean algebra ℘ (U) can be canonically represented as the Boolean core of the
upper segment [π,1] in the partition algebra

∏
(U ] U) where π = π (∅) is the partition

on the disjoint union U ]U whose blocks are all the pairs {u, u∗} for each element u ∈ U
and its copy u∗. Each partition of the form σ ⇒ π on U ]U is π (S) for some S ⊆ U since
σ ⇒ π is essentially the characteristic function of some subset S of U with 1⇒ π = π (∅)
playing the role of the empty set ∅ and π ⇒ π = 1U]U playing the role of U .

5 The general graph-theoretic method
Let f : {T, F}n → {T, F} be an n-ary Boolean function and let π1, . . . , πn be n partitions
on U . In order to define the corresponding n-ary partition operation f (π1, . . . , πn), we
again consider the complete graph K (U) and then use each partition πi to label each link
u − u′ with Tπi

if (u, u′) ∈ dit (πi) and Fπi
if (u, u′) ∈ indit (πi). Then on each link

we may apply f to the n ‘truth values’ on the link and retain the link in G (f (π1, . . . , πn))
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if the result was Ff(π1,...,πn). The partition f (π1, . . . , πn) is obtained as the connected
components of the graph G (f (π1, . . . , πn)).

6 An equivalent closure-theoretic method
Given any subset S ⊆ U × U , the reflexive-symmetric-transitive (RST) closure S is the
intersection of all equivalence relations on U containing S. The ‘topological’ terminology
of calling a subset closed if S = S is used even though the RST closure operator is not
a topological closure operator since the union of two closed sets is not necessarily closed.
The closed sets in U ×U are the equivalence relations (or indit sets of partitions), and their
complements, the open sets, are the partition relations (or ditsets of partitions). As usual,
the interior operator int (S) =

(
Sc
)c

is the complement of the closure of the complement,
and the open sets are the ones equalling their interiors.

The closure-theoretic method of defining Boolean operations on partitions will be il-
lustrated using the symmetric difference or inequivalence operation π ⊕ σ. Every n-ary
Boolean operation can be defined by a truth table such as the one for symmetric difference
in Table 5.

Table 5: Truth table for symmetric difference.

P Q P ⊕Q
T T F
T F T
F T T
F F F

The disjunctive normal form (DNF) for the formula P ⊕Q is given by the rows where
the formula evaluates as T , i.e., P ⊕ Q = (P ∧ ¬Q) ∨ (¬P ∧Q), while the DNF for the
negation of the formula is given by the other rows where the formula evaluates as F , i.e.,
¬ (P ⊕Q) = (P ∧Q) ∨ (¬P ∧ ¬Q). Given two partitions π and σ on U , the closure-
theoretic method of obtaining the partition π ⊕ σ is to start with the DNF for the negated
Boolean formula and replace each unnegated variable by the corresponding ditset and each
negated variable by the corresponding indit set—as well as replacing the disjunctions and
conjunctions by the corresponding subset operations of union and intersection. Applied to
¬ (P ⊕Q) = (P ∧Q) ∨ (¬P ∧ ¬Q), this procedure would yield

(dit (π) ∩ dit (σ)) ∪ (indit (π) ∩ indit (σ)) ⊆ U × U.

Then the indit set of π ⊕ σ is obtained as the RST closure:

indit (π ⊕ σ) = (dit (π) ∩ dit (σ)) ∪ (indit (π) ∩ indit (σ))

and the partition π ⊕ σ is the set of equivalence classes of this equivalence relation.
The graph-theoretic method of obtaining the partition π⊕σ would label each link u−u′

inK (U) by the two ‘truth values’ given by π and σ, and then retain in the graphG (π ⊕ σ)
the links where the truth values evaluated to Fπ⊕σ , namely the ones labelled with Tπ, Tσ
and Fπ, Fσ . Then the partition π⊕σ is obtained as the connected components of the graph
G (π ⊕ σ).
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To see the equivalence between the two methods, note first that the links retained in
G (π ⊕ σ) are precisely the pairs (u, u′) in

(dit (π) ∩ dit (σ)) ∪ (indit (π) ∩ indit (σ)) .

The equivalence proof is completed by showing that taking connected components in the
graph G (π ⊕ σ) is equivalent to taking the RST closure of

(dit (π) ∩ dit (σ)) ∪ (indit (π) ∩ indit (σ)) .

The elements u and u′ are in the same connected component of G (π ⊕ σ) iff there is a
chain of links u = u0 − u1 − . . . − un−1 − un = u′ in the graph G (π ⊕ σ) so each link
has to be originally labelled Tπ, Tσ or Fπ, Fσ in the graph on K (U). But the condition for
(u, u′) to be included in the RST closure

(dit (π) ∩ dit (σ)) ∪ (indit (π) ∩ indit (σ))

is that there is a chain of pairs (u, u1) , (u1, u2) , . . . , (un−1, u′) such that each pair is either
in dit (π)∩dit (σ) or in indit (π)∩ indit (σ). Hence the two methods give the same result.

The example suffices to illustrate the general closure-theoretic method and its equiva-
lence to the graph-theoretic method of defining Boolean operations on partitions.

7 Relationships between Boolean operations on partitions
For two subset variables, there are 24 = 16 binary Boolean operations on subsets—
corresponding to the sixteen ways to fill in the truth table for a binary Boolean opera-
tion. Any compound Boolean function of two variables will be truth-table equivalent to
one of the sixteen binary Boolean operations. For instance, the Pierce’s Law formula
((Q⇒ P )⇒ Q) ⇒ Q defines a compound binary operation that is equivalent to the
constant function T since it is a subset tautology. Certain subsets of the sixteen binary
operations suffice to define all the binary operations, e.g., ¬ and ∨.

Matters are rather different for the Boolean operations on partitions. Using the graph-
theoretic or the closure-theoretic method, partition versions of sixteen binary Boolean op-
erations are easily defined. And certain combinations of the sixteen operations suffice
to define all sixteen, e.g., ∨, ∧, ⇒, and ⊕ [5, 309–310 and f.n. 18]. But when the six-
teen operations are compounded, still keeping to two variables, then the resulting binary
partition operations does not necessarily reduce to one of the sixteen—due to the com-
plicated compounding of the closure operations. For instance, the Pierce’s Law formula
((σ ⇒ π)⇒ σ) ⇒ σ for partitions is not equivalent to the constant function 1 since it
is not a partition tautology. The topic of the total number of binary operations on parti-
tions obtained by compounding the sixteen basic binary Boolean operations is one of many
topics in partition logic that awaits future research.

8 Concluding Remarks
In conclusion, perhaps some remarks are in order as to why it took so long to extend the
Boolean operations to partitions. The Boolean operations are normally associated with
subsets of a set or, more specifically, with propositions. Boole originally defined his logic
as the logic of subsets [2] of a universe set. It is then a theorem that the same set of
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subset tautologies is obtained as the truth-table tautologies. Perhaps because “logic” has
been historically associated with propositions, the texts in mathematical logic throughout
the twentieth century (to the author’s knowledge) ignored the Boolean logic of subsets
and started with the special case of the logic of propositions and then took the truth-table
characterization as the definition of a tautology.

By the middle of the twentieth century, category theory was defined [4] and the category-
theoretic duality was established between subobjects and quotient objects, e.g., between
subsets of U and quotient sets (or equivalently equivalence relations or partitions) of U .
The conceptual cost of restricting subset logic to the special case of propositional logic is
that subsets have the category-theoretic dual concept of partitions while propositions have
no such dual concept. Hence the focus on “propositional logic” did not lead to the search
for the dual logic of partitions ([5, 6]) or to the simple and natural application of Boolean
operations to partitions as well as subsets—which has been our topic here.
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Abstract

Motivated by some alternatives to the classical logical model of boolean algebra, this
paper deals with algebraic structures which extend skew lattices by locally invertible ele-
ments. Following the meme of the Ehresmann-Schein-Nambooripad theorem, we consider
a groupoid (small category of isomorphisms) in which the set of objects carries the struc-
ture of a skew lattice. The objects act on the morphisms by left and right restriction and
extension mappings of the morphisms, imitating those of an inductive groupoid. Condi-
tions are placed on the actions, from which pseudoproducts may be defined. This gives
an algebra of signature (2, 2, 1), in which each binary operation has the structure of an
orthodox semigroup. In the reverse direction, a groupoid of the kind described may be
reconstructed from the algebra.

Keywords: Inductive groupoids, skew lattices, orthodox semigroups.
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1 Non-commutative and non-idempotent lattice analogues
As non-classical logics have been developed for various knowledge domains, so various
algebras have been proposed as extensions or alternatives to the classical model of boolean
algebra. A significant one for this paper is the theory of skew lattices; for a contemporary
account, see Leech’s surveys [10, 11]. We provide the details of our notation in Section 3.
Another proposal is that of MV-algebras, and their coördinatisation via inverse semigroups
as described by Lawson and Scott [9]. Thus one theme is to allow sequential operations
and hence non-commutative logical connectives, and another introduces non-idempotent
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connectives. This note will consider a combination of these themes, by seeking reasonable
structures which extend skew lattices by locally invertible elements.

The principal tool in this construction is based on the ideas behind the Ehresmann-
Schein-Nambooripad (ESN) theorem, of which a full account is given in Chapter 4 of
Lawson’s book [8]: we consider a small category of isomorphisms in which the set of
objects carries the structure of a skew lattice. We postulate that the objects act (partially)
on the morphisms by left and right restriction and extension mappings of the morphisms,
imitating those of an inductive groupoid. Certain reasonable conditions are postulated, and
from these a suitable pseudoproduct is defined, much as in the inverse semigroup case, for
each skew lattice operation (a non-commutative “meet” and “join”). This results in a total
algebra involving two orthodox semigroups with a common set of idempotents isomorphic
to the given skew lattice.

Because of the complexity involved in having two operations, we begin by considering
a groupoid over a set of objects with a single band operation. A much more general situation
has been studied, under the name of weakly B-orthodox semigroups, by Gould and Wang
in [2], but because the present author has been unable to find this special case treated in the
literature, a detailed account will be given here. Later sections deal with the pair of linked
band operations, construct the total algebra described above, and show how the original
groupoid may be recovered from the algebra. Aspects of the constructions which need
further elaboration are noted in the final section.

2 Groupoids on a band of objects
Let us recall from [8] that an inverse semigroup is equivalent to an inductive groupoid, i.e.,

• a (small) category of isomorphisms with

• a meet operation on objects and

• a notion of restriction of a morphism to any of its subdomains.

We attempt something similar here, but changing the conditions on the set of objects.
Let G be a groupoid with composition ◦ and B its set of objects, endowed with an associa-
tive and idempotent operation ∧. Then (B,∧) is known as a lower band, and possesses a
pair of natural preorders: we write

• a ≤L b if and only if a = a ∧ b, and a ≤R b if and only if a = b ∧ a.

As usual, we may identify each object b with its identity ib, and write dg and rg for the
domain and range maps in G , thus: dg = g ◦ g−1, rg = g−1 ◦ g. Suppose too that for each
a ∈ B there are left and right restriction (partial) operations a|, |a : G → G such that:

• a|g is defined whenever a ≤L dg, with a|g : a→ r(a|g) ≤L rg;

and (lateral-) dually,

• g|a is defined whenever a ≤R rg, with g|a : d(g|a)→ a, d(g|a) ≤L dg.

Figure 1 shows the left and right restrictions. (There are analogous (in fact, vertically
dual) requirements for extension operators, which will be dealt with more explicitly in
Section 3.) Certain sensible axioms must be satisfied:
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c d
g

a r(a|g)
a|g

a ≤L c

c d
g

d(g|a) a
g|a

a ≤R d

Figure 1: Left and right restriction operators.

(i) (identities) d(g)|g = g;

(ii) (preorders) if a ≤L b, then a|ib = ia;

(iii) (transitivity) if a ≤L b ≤L dg, then a|g = a∧b|g = a|(b|g);

(iv) (composition) if f ◦ g is defined (so that rf = dg), then

a|(f ◦ g) = (a|f) ◦ (r(a|f)|g),

the right-hand composite being defined because r(a|f) ≤L rf = dg; see Figure 2.

c d
g

r(a|f) r(a|f ◦ g)
r(a|f)|g

≤L

b

a

≤L

f

a|f

a|(f ◦ g)

Figure 2: Restriction of a composite morphism.

2.1 Actions and conjugacy

Let us write, without prejudice, ag as an alternative for r(a|g), and ga for d(g|a). This
lightens the notation, and emphasises the similarity to actions and conjugates. Caution:
However, it should not be taken to mean that anything like af = (f−1|a) ◦ (a|f), or
af = f−1

a, or a|f = f |af necessarily hold: in general, f |af = f |rf∧af .
What we do have, following from a|(f ◦ g) = (a|f) ◦ (r(a|f)|g), is that

a|ib = ia = (a|f) ◦ (af |f−1),
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so
(a|f)−1 = af |f−1, aib = a, and af = (af |f−1) ◦ (a|f);

moreover, af◦g = (af )g .
We want to link right and left “actions” by (a|f)|b = a|(f |b), but there is a little problem

here, since one of the two sides of that equation may fail to be defined while the other is
defined. We therefore seek to extend the conditionally-defined restrictions to total maps
by the following device, based on the pseudoproduct construction familiar from the ESN
theorem:

For g ∈ G and any a ∈ B, define a|g := a∧dg|g, the right hand side being meaning-
ful since a ∧ dg ≤L dg. (Note that if a ≤ dg already, the notations agree.) The next
figure shows the situation (where, also by extension, we write ag for the already-defined
(a ∧ dg)g).

b c

a ∧ b (a ∧ b)g = ag

a|g

g

≤L

a

Figure 3: Generalised restriction of g to object a and action of g on a.

Then if g = ib, we have a ∧ ib = a∧b|ib = ia∧b = ia ∧ ib = ia ∧ b = ia|a∧b, and we
may write a ∧ g for a|g without conflict. A little re-writing of definitions shows that

(a ∧ b) ∧ g = a∧b|g = a|(b|g) = a ∧ (b ∧ g) (2.1)

and
a ∧ dg = d(a ∧ g) = (a ∧ g) ◦ (a ∧ g)−1. (2.2)

We complete our list of postulates with the previously-mentioned (a|f)|b = a|(f |b), which
we now write as

• (a ∧ f) ∧ b = a ∧ (f ∧ b), for all a, b ∈ B and f ∈ G .

(More fully, this is (a∧df |f)|af∧b = a∧f b|(f |b∧rf ).)
Next, we may extend the composition further, to a pseudoproduct ⊗: when f : z → a

and g : b→ c, we define

f ⊗ g := (f |a∧b) ◦ (a∧b|g) = (f ∧ (a ∧ b)) ◦ ((a ∧ b) ∧ g).

The pseudoproduct is defined for all pairs f, g.
Then a ∧ f is actually just ia ⊗ f . This is indeed an extension of meaning: when f ◦ g

is defined, f ⊗ g = f ◦ g, and when f = ia and g = ib,

f ⊗ g = ia ⊗ ib = ia∧b = ia ∧ ib;

so we may as well use just the one symbol ∧ for ⊗, as it extends ◦ and the restrictions, as
well as the original ∧ on B. Let us check remaining non-trivial cases for associativity.
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b c

a ∧ b (a ∧ b)g
a∧b|g

g

≤L

az

f (a ∧ b)

f

≤R

f |a∧b

Figure 4: Diagram illustrating the pseudoproduct.

Lemma 2.1. For all f, g ∈ G and e ∈ B, with f : df → a and g : b→ rg,

(i) (f ∧ e) ∧ g = f ∧ (e ∧ g),

(ii) ef∧g = (ef )g , and

(iii) e|(f ∧ g) = (e|f) ∧ g.

Proof. (i): By definition,

(f ∧ e) ∧ g = (f |e) ∧ g = (f |a∧e)|b ◦ a∧e|g = (f |a∧e∧b) ◦ (a∧e∧b|g),

while f ∧ (e ∧ g) = f |e∧b ∧ e∧b|g = f ∧ (e ∧ g).

(ii): We already have ef∧g = e(f |b)◦(a|g) = (ef |b)(a|g).
Observe that e ∧ d(f |b) ≤R e ∧ df , since ≤R is left compatible (Figure 5 may assist

the reader). So e ∧ f = e ∧ f |b and ef |b = ef . Likewise ef ∧ b ≤L a ∧ b and (ef )g =
(ef )(a|g) = ef∧g .

(iii): Using ef |b = ef from (ii), we have

e|(f ∧ g) = e|(f |b ◦ a|g) = (e|(f |b)) ◦ (ef|b |(a|g))
= ((e|f)|b) ◦ (ef|b∧a|g) = ((e|f)|b) ◦ (ef |g)
= (e|f) ∧ g.

It remains to prove associativity in full generality:

Lemma 2.2. For all f, g, h ∈ G , f ∧ (g ∧ h) = (f ∧ g) ∧ h.

Proof. First we establish that when f ◦ g is defined, (f ◦ g)∧ h = f ∧ (g ∧ h). Let r = rg
and d = dh; we have

(f ◦ g) ∧ h = (f ◦ g)|d ◦ r|h = (f |gd ◦ g|d) ◦ r|h
= f |gd ◦ (g|d ◦ r|h) = f |gd ◦ (g ∧ h);

and since gd = d(g|d) = d(g ∧ h), the latter is indeed f ∧ (g ∧ h). Now observe that, in
the general case,

(f ∧ g) ∧ h = (f |dg ◦ rf |g) ∧ h = f |dg ∧ (rf |g ∧ h)
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b rg

a ∧ b ag

adf

fb

ef

e

e ∧fb (ef )g

f

a|g

g

≤L≤R

f |b

f ∧ g

≤R

≤L

e|(f ∧ g)

Figure 5: Diagram illustrating ef∧g = (ef )g .

by the foregoing; and then, by Lemma 2.1(iii), we have

f |dg ∧ (rf |g ∧ h) = f |dg ∧ rf |(g ∧ h) = f ∧ (g ∧ h),

completing the proof.

Theorem 2.3. S = (G ,∧) is an orthodox semigroup.

Proof. Lemma 2.2 shows that S is a semigroup. S is regular, since g ∧ g−1 ∧ g = g for
any g ∈ G . If f ∧ f = f , then f = (f |b∧a) ◦ (b∧a|f)—see Figure 6—and in particular,

a b

b ∧ a (b ∧ a)f = b
b∧a|f

f

≤L

ba

a = f (b ∧ a)

f

≤R

f |b∧a

f ∧ f = f

Figure 6: Diagram for an idempotent.

a = f (b∧a) and b = (b∧a)f . Thus (b∧a|f)◦f−1 is defined and equal (by the composition
axiom) to (b∧a|f)◦ (b|f−1) = b∧a|(f ◦f−1) = b∧a|ia = ib∧a. So we have ia = f ◦f−1 =
(f |b∧a) ◦ ib∧a = f |b∧a, giving f = ia. Thus E(S) = B and S is orthodox.

It also follows that every idempotent is of the form f ∧ f−1. With s ∈ S, put s+ =
s ∧ s−1 and s− = s−1 ∧ s. Clearly (s−1)+ = s− and (s−1)− = s+, while s+ R s L s−
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(R and L being the usual Green’s relations in S) and s−1 is the unique inverse of s such
that s+ L s−1 R s−.

Theorem 2.4. For all s, t ∈ S, there hold:

(i) s+ ∧ s+ = s+ = (s+)+ = (s+)− and s− ∧ s− = s− = (s−)− = (s−)+;

(ii) s+ ∧ s = s = s ∧ s−;

(iii) s ∧ s = s implies s = s+ = s−;

(iv) (s ∧ t)+ = (s ∧ t+)+ and (s ∧ t)− = (s− ∧ t)−;

(v) (s+ ∧ t)+ = s+ ∧ t+ and (s ∧ t−)− = s− ∧ t−.

Proof. Parts (i) – (iii) follow by easy computation from the definitions and Theorem 2.3.
The definition of the extended ∧ in the new notation (see Figure 7) reads s∧ t = (s∧ t+) ◦
(s−∧ t), and (iv) follows immediately. Part (v) is a consequence of (iv) with, respectively,
s+ for s and t− for t.

t+ t+

s−∧ t+ (s−∧ t)−s−∧ t

t

≤L

s−s+

(s ∧ t+)+

s

≤R

s ∧ t+

s ∧ t

Figure 7: The pseudoproduct in +/− notation.

Remarks 2.5. Theorem 2.4 sets out the object part of a functor imitating that of the ESN
theorem. There may be another occasion to describe the morphism part, which should also
involve examining the properties in the Theorem, since they include some of those forming
the definitions of restriction and Ehresmann semigroups. In fact, (s ∧ t)+ ∧ s = s ∧ t+
and t ∧ (s ∧ t)− = s− ∧ t hold in a restriction semigroup as defined by Kudryavtseva [6],
but fail here unless B is a semilattice (in which case S is inverse). The restriction and
Ehresmann classes are surveyed in [1], and one may see the directions in which the ideas
have been taken more recently in [5] and [6]. This strand of research emphasises commut-
ing idempotents, which distinguishes them from the present paper, where an element may
have multiple left and right identities. This may appear a little strange, but is the price to
be paid for dealing with all idempotents, not just a special subset. More general contexts
have already been considered, as in [2, 12, 13], but the approach in hand is a natural and
minimal extension of the inductive groupoid case, and returns to the spirit of groupoids as
dealt with in another landmark paper—Lawson’s [7].



8 Art Discrete Appl. Math. 2 (2019) #P2.03

Above all, our ultimate intent is to have B as a skew lattice. We deal with this in the
next section, using the results above: beginning with a skew lattice B = (B,∧,∨), we
dualise the whole process of Section 2 to extend the join operation ∨ to G , resulting in an
algebra S = (G ,∨,∧).

3 Skew lattices of objects
Let G be a groupoid with composition ◦ and B its set of objects, endowed with associative
operations ∨ and ∧ satisfying the absorptive axioms

a ∨ (a ∧ b) = a = a ∧ (a ∨ b), (a ∧ b) ∨ b = b = (a ∨ b) ∧ b

for a skew lattice [10, 11]. Then both (B,∨) and (B,∧) are bands. Moreover each has
a pair of natural preorders: in the lower band (B,∧) we write (continuing on from the
preceding Section 2)

• a ≤L b if and only if a = a ∧ b, and a ≤R b if and only if a = b ∧ a,

and additionally in the upper band (B,∨) we write

• a ≥L b if and only if a = a ∨ b, and a ≥R b if and only if a = b ∨ a.

We do not at this stage admit the usual convention that≤ and≥ are converse relations! The
skew lattice absorptive axioms imply that a = a ∨ b ⇐⇒ a ∧ b = b and a ∨ b = b ⇐⇒
a = a∧ b, so that a ≤L b if and only if a = a∧ b if and only if b ≥R a; which is to say that
≤L and ≥R are converse relations, as also ≤R and ≥L. We write the relations in the form
most suitable to the occasion. As a vertical dual to the set-up in Section 2, we postulate left
and right extension operations denoted a|, |a : G → G such that

• a|g is defined whenever a ≥L dg, and a|g : a→ r(a|g) ≥L rg;

and again (lateral-) dually,

• g|a is defined whenever a ≥R rg, with g|a : d(g|a)→ a, d(g|a) ≥L dg.

a

c

r(a|g)
a|g

c dg

a ≥L c

d(a|g) a
g|a

c dg

a ≥R d

Figure 8: Left and right extension operators.

The relevant diagrams appear in Figure 8. Again we are able to write a ∨ g for a|g and
by extension for a∨dg|g, and ag for r(a|g); similarly, ga = d(a|g).

The postulates vertically dual to those of the preceding Section 2 are to hold also, and
we list them here, using the abbreviated notation developed in Section 2 and without further
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explanation; moreover we only give one-sided forms, assuming the lateral duals hold by
implication. Thus each postulate stands for a quartet (although some are self-dual or may
have vertical and lateral duals equivalent).

(i) (identities) dg ∨ g = g;

(ii) (preorders) if a ≥R b, then a ∨ ib = ia∨b;

(iii) (transitivity) if a ≥R b ≥R dg, then a ∨ g = (a ∨ b) ∨ g = a ∨ (b ∨ g);

(iv) (composition) if f ◦ g is defined (so that rf = dg), then

a ∨ (f ◦ g) = (a ∨ f) ◦ (af ∨ g);

(v) (dual of Theorem 2.3) (a ∨ f) ∨ b = a ∨ (f ∨ b), for all a, b ∈ B and f ∈ G .

The vertical dual of the development in Section 2 extends the join operation ∨ to all of
G and of course the dual results hold. In particular, we note that

a ∨ f ∨ f−1 = a ∨ f ∨ (a ∨ f)−1.

Moreover, extra postulates are required to establish compatibility conditions between the
restriction and extension operators which reflect the skew lattice character of B.

Observe that when f ◦ g is defined,

f ∨ g = f ∧ g = f ◦ g;

in particular, f ∨ f−1 = f ∧ f−1 = df , etc. From this point on, we write (to conform to
precedent) f∗ in place of f−1, and may as well write ff∗ for f ◦ f∗ = f ∧ f∗ = f ∨ f∗,
etc. The identification of ia with a also identifies a∗ with i−1a = ia and so (a ∧ f)∗ with
af ∧ f∗, and similarly (a ∨ f)∗ = af ∨ f∗.

The restriction and extension operators should also be linked through the skew lattice
orders. Consider any object a ∈ B and morphism f ; write df = d = ff∗ and rf =
r = f∗f , and set b = r ∨ a ≥R r. Then a|f : a → af exists, and af ≤L r, which is to
say r ≥R af , and so there is (a|f)|r : d′ → r. When f = id, we see that d′ = d so it is
reasonable that this hold in general. See Figure 9.

d

a

r

af

f

a ≤L d

a|f

r ≥R af
(a|f)|r

Figure 9: Restriction and extension operators linked.

Indeed we shall require, as a linking condition, that (a|f)|r = f and so we add to the
previous list the axiom
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(vi) f = (a ∧ f) ∨ f∗f , or equivalently ff∗ = (a ∧ f) ∨ f∗.

We also assume the lateral and order duals, which are interpreted similarly. Note that when
f ∈ B, f = f∗ = ff∗, and this equation reduces to the absorptive identity

f = (a ∧ f) ∨ f

of skew lattices.
We shall (tentatively) refer to a groupoid satisfying these conditions as a skew inductive

groupoid. Theorem 2.3 applies and assures the existence of an algebra (S,∨,∧, ∗) arising
from a skew inductive groupoid. We now seek to characterise such an algebra axiomati-
cally.

4 Algebraic characterisation
Let (S,∨,∧, ∗) be an algebra of signature (2, 2, 1), with ∨,∧ : S × S → S and ∗ : S → S,
that satisfy, for all s, t ∈ S:

(i) (S,∨) and (S,∧) are associative (thus, semigroups);

(ii) (s∗)∗ = s;

(iii) s ∨ s∗ = s ∧ s∗ = (s ∧ s∗)∗;

(iv) s ∨ s∗ ∨ s = s = s ∧ s∗ ∧ s;

(v) s ∨ s = s or s ∧ s = s implies s = s∗;

(vi) s ∨ s∗ ∨ (s ∧ t∗ ∧ t) = s = s ∧ s∗ ∧ (s ∨ t∗ ∨ t) and lateral duals;

(vii) s ∨ s∗ ∨ t ∨ t∗ = s ∨ s∗ ∨ t ∨ (s ∨ s∗ ∨ t)∗ and duals;

(viii) s∗ ∨ s = t ∨ t∗ implies

s ∨ t ∨ (s ∨ t)∗ = s ∨ s∗ and (s ∨ t)∗ ∨ s ∨ t = t∗ ∨ t and
s ∧ t ∧ (s ∧ t)∗ = s ∧ s∗ and (s ∧ t)∗ ∧ s ∧ t = t∗ ∧ t.

The properties in Section 3, particularly Lemmas 2.1, 2.2 and Theorem 2.3, show that
we were able to construct such an object from a skew inductive groupoid. Conversely, we
have

Theorem 4.1. Let (S,∨,∧, ∗) satisfy axioms (i) – (viii), and form a small category C as
follows.

• Ob(C ) = {s ∨ s∗ : s ∈ S},

• Mor(C ) = {ŝ = (s ∨ s∗, s, s∗ ∨ s) : s ∈ S},

• when s∗ ∨ s = r(ŝ) = d(t̂) = t ∨ t∗, ŝ ◦ t̂ is defined and

ŝ ◦ t̂ = (s ∨ s∗, st, t∗ ∨ t).



D. G. FitzGerald: Groupoids on a skew lattice of objects 11

Then C is a skew inductive groupoid whose pseudoproduct gives an orthodox semigroup
isomorphic with S.

Proof. From (vi) we have that Ob(C ) is a skew lattice. Clearly composition when defined
for triples is associative, and each (s ∨ s∗, s ∨ s∗, s∗ ∨ s) is the identity at object s ∨ s∗.
Morphism ŝ = (s∨s∗, s, s∗∨s) has inverse ŝ−1 = (s∗∨s, s∗, s∨s∗). The restriction and
extension operators must be defined: for a morphism ŝ = (s ∨ s∗, s, s∗ ∨ s) and an object
a such that a ≥L s ∨ s∗ (i.e. a = a ∨ s ∨ s∗), we set

a|ŝ = (a, a ∨ s, (a ∨ s)∗ ∨ a ∨ s).

The r.h.s. is indeed in Mor(C ): by equation (2.2), (a ∨ s) ∨ (a ∨ s)∗ = (a ∨ s) ∨ s∗ = a
by hypothesis. Moreover,

r(a|ŝ) ∨ s ∨ s∗ = ((a ∨ s)∗ ∨ a ∨ s) ∨ s ∨ s∗ = r(a|ŝ),

so r(a|ŝ) ≥L r(s), as required for an extension operator.
Next, the postulates of Section 3 have to be verified. It is useful to observe that the

right [left] component of a left- [right-]extended morphism depends solely on the middle
component, and so may safely be left unspecified (written ∼) in certain calculations.

(i) (“identity”) follows from regularity (axiom (iv)).

(ii) (“preorder”) Assume a = b ∨ a. By definition,

a|ib = (a,a,a)|(b, b, b) = (a ∨ b, a ∨ b, (a ∨ b)∗ ∨ a ∨ b) = ia∨b.

(iii) (“transitivity”) First, b|ŝ = (b,b,b)|(s ∨ s∗, s, s∗ ∨ s) = (b ∨ s ∨ s∗, b ∨ s,∼), so

a|(b|ŝ) = a|(b ∨ s ∨ s∗, b ∨ s,∼) = (a ∨ b ∨ s ∨ s∗, a ∨ b ∨ s,∼) = (a∨b)|ŝ,

by associativity of S.

(iv) (“composition”)

(a|ŝ)|b = (a ∨ s ∨ s∗, a ∨ s, (a ∨ s)∗ ∨ a ∨ s)|b

= ((a ∨ s ∨ b)(a ∨ s ∨ b)∗, a ∨ s ∨ b, (a ∨ s)∗ ∨ a ∨ s ∨ b),

while

a|(ŝ |b) = a|((s ∨ b)(s ∨ b)∗, s ∨ b, (s ∨ s)∗ ∨ b)
= (a ∨ (s ∨ b)(s ∨ b)∗, a ∨ s ∨ b, (a ∨ s ∨ b)∗ ∨ a ∨ s ∨ b),

and by (the lateral dual of) axiom (vii), these are equal.

(v) (“dual of Theorem 2.3”) This follows from associativity in S.

In this manner we have constructed a groupoid Ŝ over a skew lattice of objects. Now
suppose that S arises from the original groupoid G . The mapping G → Ŝ given by g 7→
(dg, g, rg) is routinely an isomorphism, simply representing different ways of describing
G ; the fact that it factors through S completes the proof.
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5 Models
Do such objects even exist? One special case occurs with G a true inductive groupoid and
B a lattice. Such a combination gives rise to two inverse semigroups (monoids in fact),
and an easy way to realise such an object is by taking the direct product of a group with a
lattice. This could be the inspiration for a less trivial example, as follows.

Let a groupG act by automorphisms on a bandB. Then we may consider the semidirect
product S = GnB with base set G×B and multiplication, for u, v ∈ G and a, b ∈ B,

(u, a)(v, b) = (uv, av · b).

This situation was studied some time ago by Miklós Hartmann and Mária Szendrei [3,
4] and maybe others I have not yet found; and it seems to have been generalised in [2]. All
we need to note here is that

• idempotents are exactly the elements (1, a), and E(S) ∼= B,

• S is regular with an involution (u, a)∗ = (u−1, au
−1

), such that

• (u, a)(u, a)∗ = (u, a)(u−1, au
−1

) = (1, au
−1

), (u, a)∗(u, a) = (1, a)

• (u, a)(u, a)∗(u, a) = (u, a)

• so S is orthodox but not inverse

• and ∗ is not an anti-automorphism.

On this last point, let us observe that [(u, a)(v, b)]∗ = (v−1u−1, au
−1 ∧ bv−1u−1

), so

[(u, a)(v, b)]∗[(u, a)(v, b)] = (1, (a ∧ bv
−1

)u
−1

),

which reduces to (1, au
−1

) precisely when a = bv
−1

, i.e., when

(u, a)∗(u, a) = (v, b)(v, b)∗.

In structural terms, these are both equivalent to (u, a) R (u, a)(v, b) L (v, b). (This may
also be relevant to criteria for composibility in the double-orthodox semigroup set-up.)

We may conventionally write a “normal form” ua for (u, a). Then (u, a) = (u,>)(1, a)
when B has a top element >, and so S = GB and we have the factorisable case. Other-
wise, S∪G is factorisable and S almost factorisable. See also Rida-e Zenab’s recent article
[14], and its references, for Zappa-Szép products of which this is also an example.

The map φ : S → G, ua 7→ u partitions S into blocks Su = uφ−1, and Su is iso-
morphic with B when given the sandwich multiplication (for ua, ub ∈ Su), ua ? ub =
ua(u−1)ub = uab; so S is a “group of (isomorphic) sandwich bands”. Conversely, given
such a {Bu : u ∈ G} with connecting isomorphisms

{λu,v, ρu,v : Bu → Bv}

satisfying the right axioms, one may reconstruct S =
⋃
Bu with multiplication (for s ∈

Bu, t ∈ Bv) given by
s · t = sρu,uv ? tλv,uv
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with ? the multiplication in Buv . (There is nothing special about this, it’s just another
description of a semidirect product.)

Then we can see what happens when we do it twice over, replacing · by ∧ and ∨ . (We
will end up with an algebra of signature (2, 2, 1).) Note that (u, a) = u ∧ a = u ∨ a in the
normal form, and

ua ∧ (ua)∗ = ua ∧ u−1au
−1

= 1 ∧ au
−1

,

(ua)∗ ∧ ua = u−1au
−1

∧ ua = 1 ∧ a;

and exactly the same with the ∨ operation. Thus s ∨ s∗ = s ∧ s∗ = ss∗, etc. (using
juxtaposition where either main operation may be applied). So the absorptive identity
a ∨ (a ∧ b) = a is equivalent to

s∗s ∨ (s∗s ∧ t∗t) = s∗s and so to s ∨ (s∗s ∧ t∗t) = s;

and likewise for the lateral and order duals.
The theory of inverse semigroups suggests that we investigate an idempotent-separating

∗-congruence ∼ of such a G n B. If ua ∼ vb then a ∼ b = a; so we are led to consider
the subgroups Ka := {u ∈ G : ua = a}. Now

Ka ⊆ Ka∨b ⊆ K(a∨b)∧b = Kb

for all a, b ∈ B; thus Ka = K �G, say; and we may as well have started with G/K.
The groupoid version of G n B may be presented as follows. Given a skew lattice B

and a group G acting by automorphisms on B, make a category with objects from B and
morphisms (b, g, bg). The composition (b, g, bg)◦(c, h, ch) is defined exactly when bg = c,
and is given by (b, g, bg) ◦ (c, h, ch) = (b, gh, bgh). If one works it through, one has the
pseudoproduct

(b, g, bg)⊗∧ (c, h, ch) = (b ∧ cg−1, gh, bgh ∧ ch),

which we may abbreviate (g, bg) · (h, ch) = (gh, bgh ∧ ch), the semidirect product.

6 Further comments
The restriction idea may provide another useful way of thinking about skew lattices. It
remains to describe categories of orthodox semigroups with involutory inversion ∗ and of
skew inductive groupoids, and functors establishing an equivalence between them. Refine-
ment of the axioms may also be possible, and the relationships with the approach of actions
(of objects on morphisms and morphisms on objects) should be explored. The connexions
with restriction and Ehresmann semigroups need to be teased out. More “natural” or con-
crete examples would be desirable—for example, can they be found in rings or override
algebras?
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1 Introduction
Weak congruences on algebras, as compatible, symmetric, transitive and weakly reflex-
ive relations [4, 5, 14], have a distinguished role in structural investigations of algebras.
Namely, a collection of all weak congruences of an algebra forms an algebraic lattice under
inclusion and this lattice contains the lattice of all congruence relations as a filter gener-
ated by the identity (diagonal) relation, the lattice of all subalgebras (under isomorphism)
as an ideal generated by the identity relation and also lattices of all congruences on all
subalgebras.

Weak congruences are connected to Ω-valued algebraic structures (Ω is a complete lat-
tice), Ω-valued here means that elements from the algebra carrier set are valued by elements
of the lattice (i.e. the carrier set of the algebra is mapped to Ω). The denotation Ω is used
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Scott [6]. They used Ω-sets to model intuitionistic logic. The main connection between
weak congruences is here the notion of Ω-valued equality, which is a symmetric and transi-
tive function from A2 to Ω, and this is a kind of weak equivalence (if considering algebraic
structure it is a lattice valued weak congruence). In Fourman and Scott’s research, Ω was a
complete Heyting algebra, and here Ω is just a complete lattice.

Ω-sets are connected to non-classical predicate logics, and they are used in theoreti-
cal foundations of fuzzy set theory [7, 8]. Namely, a similar concept of algebras with an
L-valued equality is introduced by Bělohlávek and Vychodil [3], where a complete resid-
uated lattice L is used as a truth-values structure. By adding operations to this structure,
so-called L-algebras are obtained. Notions and basics results, analogous to those in univer-
sal algebra are obtained in this framework, including a Birkhoff-like variety theorem.

Just to highlight that an L-valued equality is reflexive [3], which is not the case in
our investigations, since we use a weak reflexivity. The weak reflexivity instead of the
reflexivity enables a connection with weak congruences, which are here obtained as cut
sets of an Ω-valued equality. Cut sets, as the inverse images (via valuating functions) of
the filters in Ω are a useful tool in this setting. By cut-sets, main algebraic and set-theoretic
notions and their properties are generalized from the classical notions to the lattice-valued
framework.

In lattice-valued structures with a fuzzy equality [3], also identities were introduced (to-
gether with other universal-algebraic notions), in the sense of having a graded satisfiability.
Our approach is that an identity holds if the corresponding lattice-theoretic formula is ful-
filled (i.e. either identity holds or it does not hold). This notion was firstly introduced in
[16], and then developed in [1]. Basic properties of Ω-algebras and representation theorems
for Ω-algebras in general are proved in [12].

Since an identity can hold in a lattice-valued algebra, while the underlying classical
algebra need not satisfy the same identity, this concept is used in the present paper to intro-
duce Ω-lattices from skew lattices, constructing Ω-lattices using weak congruence lattices
of skew lattices.

2 Preliminaries
We use basic notions and notations from universal algebra [2]. An algebra is denoted by
A = (A,F ), where A is a nonempty underlying set and F is a set of (fundamental) oper-
ations on A. Notions of subalgebras, subuniverses and congruences are also well known.
In addition to congruences, we use weak congruences on A as symmetric, transitive and
compatible relations on the algebra A. Compatibility here implies also weak reflexivity:
the property that all nullary operations - constants are in the relation to itself. A weak con-
gruence on A is obviously a congruence on the subalgebra determined by its domain. The
collection Conw(A) of all weak congruences on an algebra A is an algebraic lattice under
inclusion [4, 5, 14].

We also deal with terms, term-operations, and identities in the given language as for-
mulas t1 ≈ t2, where t1, t2 are terms in the same language.

Recall that a closure system on a nonempty set X is a collection of subsets of X closed
under set intersections (including

⋂
∅ which is X). It is a complete lattice under inclusion.

We also use notions and properties of Ω-valued sets and relations. All notions necessary
for comprehending this text will be introduced in the sequel, other details can be found in
papers dealing with lattice-valued structures (see e.g. [1, 8, 12, 15]).
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Let (Ω,∧,∨,6) be a complete lattice with the top and the bottom elements denoted by
1 and 0, respectively.

If A is a nonempty set, then an Ω-valued function (Ω-valued set) µ on A is a map
µ : A→ Ω. For x ∈ A, µ(x) is a degree of membership of x to µ.

For p ∈ L, a cut set or a p-cut of an Ω-valued function µ : A → Ω is a subset µp of A
which is the inverse image of the principal filter ↑p in Ω:

µp = µ−1(↑p) = {x ∈ X | µ(x) > p}.

An Ω-valued (binary) relation R on A is an Ω-valued function on A2, i.e., it is a map-
ping R : A2 → Ω. As above, for p ∈ Ω, a cut Rp of R is the binary relation on A, which is
the inverse image of ↑p: Rp = R−1(↑p).

R is symmetric if R(x, y) = R(y, x) for all x, y ∈ A, and transitive if R(x, z) ∧
R(z, y) 6 R(x, y) for all x, y, z ∈ A.

A symmetric and transitive Ω-valued relation on A fulfills the strictness property:

R(x, y) 6 R(x, x) ∧R(y, y). (2.1)

The strictness is a kind of a weak reflexivity of R. Therefore, a symmetric and transitive
Ω-valued relation on A is a weak Ω-valued equivalence on A.

Lemma 2.1 ([15]). An Ω-valued binary relation R on A is a weak Ω-valued equivalence
on A if and only if all cuts of R are weak equivalences (symmetric and transitive) relations
on A.

A weak Ω-valued equivalence R on A is a weak Ω-valued equality, if it satisfies the
separation property:

R(x, y) = R(x, x) implies x = y. (2.2)

Remark 2.2. The separation property is introduced in [6] by a weaker condition:

R(x, y) = R(x, x) = R(y, y) implies x = y.

If A = (A,F ) is an algebra and µ : A→ Ω an Ω-valued function on A, then µ is com-
patible with the operations in F , if for every n-ary operation f ∈ F , for all a1, . . . , an ∈ A,
and for every constant (nullary operation) c ∈ F

n∧
i=1

µ(ai) 6 µ(f(a1, . . . , an)), and µ(c) = 1. (2.3)

An Ω-valued function on A, compatible with the operations in F is also called a fuzzy
algebra, or a lattice valued algebra [9, 13].

Further, an Ω-valued relation R : A2 → Ω on A is compatible with the operations in
F if for every n-ary operation f ∈ F , for all a1, . . . , an, b1, . . . , bn ∈ A, and for every
constant c ∈ F

n∧
i=1

R(ai, bi) 6 R(f(a1, . . . , an), f(b1, . . . , bn)), and R(c, c) = 1. (2.4)

A weak Ω-valued equivalence on A which is compatible with the operations in F is
called a weak Ω-valued congruence on A.
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Algebraic topics related to lattice-valued structures are here presented mostly from [1,
4, 5, 6, 8, 12, 14].

An Ω-set (originating from [6]) is a pair (A,E), where A is a nonempty set, and E is a
symmetric and transitive Ω-valued relation on A, fulfilling the separation property (2.2).

We say that E is an Ω-valued equality in (A,E).
We also endow the Ω-set with an Ω-valued function µ : A→ Ω defined by:

µ(x) := E(x, x).

Throughout the text, we also say that (A,E) is a lattice-valued set, without particularly
fixing the co-domain lattice.

Lemma 2.3 ([1]). Every cut Ep, p ∈ Ω, of the Ω-valued equality in an Ω-set (A,E) is an
equivalence relation on the corresponding cut µp of µ.

IfA = (A,F ) is an algebra, (A,E) is an Ω-set andE is compatible with the operations
in F then a pair A = (A, E) is an Ω-algebra. A is called the underlying, basic algebra
of A.

Function µ defined above is then a lattice valued algebra in the sense of [9, 13] and for
every p ∈ Ω, the cut µp of µ is a subalgebra of A [1].

Proposition 2.4 ([1]). Let (A, E) be an Ω-algebra. Then every cut of E is a weak congru-
ence on A, namely for p ∈ Ω, Ep is a congruence on the subalgebra µp.

Identities on Ω-algebras are introduced in [16] in a particular way:
Let (A, E) be an Ω-algebra and u(x1, . . . , xn) ≈ v(x1, . . . , xn), briefly u ≈ v, be an

identity in the type of A. Then, (A, E) satisfies the identity u ≈ v (i.e., this identity holds
on (A, E)) if

n∧
i=1

µ(ai) 6 E(u(a1, . . . , an), v(a1, . . . , an)), (2.5)

for all a1, . . . , an ∈ A and the term-operations on A corresponding to the terms u and v
respectively.

If the Ω-algebra (A, E) satisfies an identity, this identity need not hold on A, but the
converse obviously holds [1].

As an example of an Ω-algebra, we introduce here a notion of an Ω-lattice. This notion
will be used in the sequel.

Let Ω be a complete lattice, letA = (A,∧,∨) be an algebra with two binary operations
(without any additional conditions) and let E : A2 → Ω be an Ω-valued equality on A (i.e.,
(A,E) is an Ω-set). Let E be compatible with operations ∧ and ∨: for all x, y, z, t ∈ A,

E(x, y) ∧ E(z, t) 6 E(x ∧ z, y ∧ t) and
E(x, y) ∧ E(z, t) 6 E(x ∨ z, y ∨ t).

An Ω-algebra (A, E) is an Ω-lattice, if it satisfies lattice identities:

`1: x ∧ y ≈ y ∧ x (commutativity)
`2: x ∨ y ≈ y ∨ x
`3: x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z (associativity)
`4: x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z
`5: (x ∧ y) ∨ x ≈ x (absorption)
`6: (x ∨ y) ∧ x ≈ x
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In other words, for all x, y, z ∈ A, the following formulas are satisfied with the mapping
µ : M → Ω defined by µ(x) = E(x, x):

L1: µ(x) ∧ µ(y) 6 E(x ∧ y, y ∧ x) (commutative laws)
L2: µ(x) ∧ µ(y) 6 E(x ∨ y, y ∨ x)
L3: µ(x) ∧ µ(y) ∧ µ(z) 6 E((x ∧ y) ∧ z, x ∧ (y ∧ z)) (associative laws)
L4: µ(x) ∧ µ(y) ∧ µ(z) 6 E((x ∨ y) ∨ z, x ∨ (y ∨ z))
L5: µ(x) ∧ µ(y) 6 E((x ∧ y) ∨ x, x) (absorption laws)
L6: µ(x) ∧ µ(y) 6 E((x ∨ y) ∧ x, x)

Remark 2.5. The operations on the lattice Ω and on the basic structure for an Ω-lattice
(A,∧,∨) are denoted with the same symbols ∨ and ∧. However, the confusion can not
arise since one structure is the domain and the other is the co-domain of the function µ and
from the contest we can distinguish them.

The following propositions are true.

Theorem 2.6 ([1]). Let (A, E) be an Ω-algebra, and F a set of identities in the language
of A. Then, (A, E) satisfies all identities in F if and only if for every p ∈ Ω the quotient
algebra µp/Ep satisfies the same identities.

Corollary 2.7. Let (A, E) be an Ω-algebra with two binary operations. Then, (A, E) is
an Ω-lattice if and only if for all p ∈ Ω the quotient algebras µp/Ep are lattices.

Corollary 2.8. If a diagonal relation ∆A = {(a, a) | a ∈ A} is a cut of E, then each
identity fulfilled by an Ω-algebra A = (A, E) also holds on the underlying algebra A.

By Corollary 2.8, we are interested in Ω-algebras which do not contain a copy of the
underlying algebra among quotient substructures. An Ω-algebra A = (A, E) is said to be
proper if ∆A is not a cut of E.

Theorem 2.9 ([12]). A = (A, E) is a proper Ω-algebra if and only if

there are a, b ∈ A, a 6= b, such that E(a, b) >
∧
{E(x, x) | x ∈ A}. (2.6)

2.1 Representation

This part is mostly from [12] and it will be used in the sequel in Ω-skew lattices.

Proposition 2.10 ([12]). The collection of the cuts of E in an Ω-algebra A = (A, E) is a
closure system on A2, a subposet of the weak congruence lattice Conw(A) of A.

Theorem 2.11 ([12]). Let A be an algebra andR a closure system in Conw(A) such that
for all a, b ∈ A, a 6= b,

(a, b) /∈
⋂
{R ∈ R | (a, a) ∈ R}. (2.7)

Then there is a complete lattice Ω and an Ω-algebra (A, E) with the underlying algebra
A, such thatR consists of cuts of E.

As proved in [12], the lattice Ω in Theorem 2.11 is the starting collection R of weak
congruences ordered by the dual of inclusion, ⊇. The required Ω-algebra is (A, E), where
the Ω-valued equality E : A2 → Ω is defined by:

E(a, b) :=
⋂
{R ∈ R | (a, b) ∈ R} for all a, b ∈ A. (2.8)
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The lattice Ω and the corresponding Ω-algebra defined by means of (2.8), are said to be
obtained by the canonical construction over the algebra A; in this context, we say that an
Ω-algebra (A, E), obtained by the canonical construction is a canonical Ω-algebra.

For a symmetric and transitive relation R ⊆ A2, domR := {x ∈ A | (x, x) ∈ R}. By
the construction in the proof of Theorem 2.11 [12], we get:

Corollary 2.12. LetA be an algebra andR a closure system in Conw(A) fulfilling condi-
tion (2.7). Let also F be a set of identities in the language of A and suppose that for every
R ∈ R, the algebra domR/R fulfills these identities. Then there is a complete lattice Ω
and an Ω-algebra (A, E), such thatR consists of cuts of E and (A, E) satisfies F .

Let (A, E1) and (A, E2) be an Ω1-valued algebra and an Ω2-valued algebra respec-
tively. We say that the structures (A, E1) and (A, E2) are cut-equivalent if their collec-
tions of quotient algebras over cuts of E1 and E2 coincide, i.e., if for every p ∈ Ω1 there
is q ∈ Ω2 such that µ1p/E1p = µ2q/E2q and vice versa.

Theorem 2.13 ([12]). Let A = (A, E) be an Ω-algebra where Ω is an arbitrary complete
lattice. Then there is a lattice and a lattice-valued algebra cut-equivalent withA, obtained
by the canonical construction over A.

Shortly, the Ω-algebra (A, E) with the collection {Ep | p ∈ Ω} of cuts of E is fixed.
Then a new lattice Ω1 is given by Ω1 = ({Ep | p ∈ Ω},⊇) and E1: A2 → Ω1 is defined
as E1(x, y) :=

⋂
{R ∈ Ω1 | (x, y) ∈ R}. Then (A, E) and (A, E1) are cut-equivalent.

2.2 Skew lattices

For basic notions related to skew lattices given in the sequel, see [10, 11].
An idempotent semigroup (associative groupoid) (S, ·) is a band, i.e., it fulfills identi-

ties x ·(y ·z) = (x ·y) ·z and x ·x = x. A commutative band is a semilattice. A rectangular
band is a band that satisfies x · y · x = x.

A skew lattice is an algebra (S,∨,∧) with two binary associative operations, satisfying
the absorption laws:

x ∧ (x ∨ y) = x = (y ∨ x) ∧ x,
x ∨ (x ∧ y) = x = (y ∧ x) ∨ x.

Duality principle clearly holds, as for lattices. Due to absorption laws, both operations are
idempotent: x ∨ x = x and x ∧ x = x. Hence, the reduct algebras (S,∨) and (S,∧) of a
skew lattice are bands. In addition, in a skew lattice

x ∧ y = x if and only if x ∨ y = y and
x ∧ y = y if and only if x ∨ y = x.

Therefore, the natural partial order in a skew lattice S is defined as follows:

x 6 y if and only if x ∧ y = x = y ∧ x or dually
x 6 y if and only if x ∨ y = y = y ∨ x.

Clearly, lattices are skew lattices. A rectangular skew lattice is a skew lattice in which both
band-reducts (S,∧) and (S,∨) are rectangular bands and x ∧ y = y ∨ x for all x, y ∈ S.
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Proposition 2.14 ([11]). Let (S,∨,∧) be a skew lattice and θ a relation on S given by

x θ y if x ∧ y ∧ x = x and y ∧ x ∧ y = y. (2.9)

Then θ is a congruence relation on (S,∨,∧) and S/θ is the maximal lattice image of S. In
addition, all congruence classes of θ are maximal rectangular skew lattices - subalgebras
of S.

If (S,∨,∧) is a rectangular skew lattice, then clearly θ is A2 and the factor lattice has a
single class.

3 Ω-lattices from skew lattices
In this part we investigate Ω-lattices with the underlying algebras being skew lattices.

Following Theorem 2.13, we assume that all the Ω-algebras (A, E) are canonical, i.e.,
that the lattice Ω is a closure system in the weak congruence lattice Conw(A) ordered du-
ally to inclusion. Therefore, for all p ∈ Ω, we have thatEp = p, and by the definition (2.8),

E(x, y) =
⋂
{R ∈ Ω | (x, y) ∈ R} for all x, y ∈ A.

We start with a definition related to canonical Ω-algebras in general. Let A be an
algebra and J a set of identities in the language of A. We say that A is Ω-simple with
respect to J if the only weak congruences in Conw(A) such that all the identities in J hold
in the quotient structures over these congruences are squares. Consequently, we say that A
is Ω-regular with respect to J if it is not Ω-simple with respect to J . A straightforward
consequence of this definition is:

Proposition 3.1. If A is an Ω-simple algebra with respect to the set J of identities, then
there is an Ω-algebra (A, E) fulfilling all the identities in J .

By Proposition 2.14, a skew lattice possesses a congruence with respect to which
the corresponding factor algebra is the greatest factor lattice and all the cosets are non-
commutative. In case of rectangular skew lattices, this congruence is the square of the
skew lattice and the corresponding factor lattice has one element. We use these facts in the
sequel.

Proposition 3.2. A rectangular skew lattice is an Ω-simple algebra with respect to com-
mutative identities for both operations.

Corollary 3.3. LetA = (A,∧,∨) be a rectangular skew lattice, let Ω be the closure system
on the weak congruence lattice Conw(A). Then, for the Ω-equality relation E : A2 → Ω,
(A, E) is an Ω-lattice if and only if Ω consists of squares of algebras.

Proof. Since A is a rectangular skew lattice, also all the subalgebras are rectangular skew
lattices. Hence, by the fact explained above, all the weak-congruences in the closure system
that form Ω are squares of algebras. The proof now follows by Proposition 3.2.

Corollary 3.4. For every complete and atomic Boolean algebra Ω, there is a rectangular
skew lattice A = (A,∧,∨), such that (A, E) is a canonical Ω-lattice.
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Proof. Let Ω be a complete and atomic Boolean algebra isomorphic to 2A, where A is
a set and let a rectangular skew lattice A = (A,∧,∨) be defined by x ∧ y = x and
x ∨ y = y. Then, all the weak equivalence relations are weak congruences and all the
subsets are subuniverse lattices. Let Conw(A) be such a weak congruence lattice. Any
closure system in this lattice in which all factor algebras (related to weak congruences)
are commutative makes an Ω-lattice. The subset of all squares of subalgebras (which are
also weak congruences) is closed under intersections. Indeed, ∅ is also a weak congruence,
since there is no nullary operations in the similarity type of skew lattices. In case the family
of subalgebras {Bi | i ∈ I} has a nonempty intersection, then

⋂
i∈I B

2
i = (

⋂
i∈I Bi)

2. By
Proposition 3.2, if Ω consists of all squares, then it is an Ω-lattice. The lattice of squares
of subuniverses is a sublattice of the weak congruence lattice and it is isomorphic to the
subuniverse lattice which is isomorphic to the Boolean algebra Ω.

LetA = (A,∧,∨) be a skew lattice. As mentioned above, there is a special congruence
θ onA, called natural equivalence, such that the following holds: the quotient algebraA/θ
is the maximal lattice image of A, and all congruence classes of θ are maximal rectangular
subalgebras of A. This congruence is defined by x θ y iff both x ∨ y ∨ x = x and
y ∨ x ∨ y = y, or, dually, x θ y iff x ∧ y ∧ x = x and y ∧ x ∧ y = y (see [11]).

Now, if B is a subalgebra ofA, let us denote the restriction of θ onB by θB, that is θB =
θ ∩ B2. Then θB is a congruence on B, and moreover, it is exactly the natural equivalence
on B (since ∀x, y ∈ B : (x, y) ∈ θB iff (x, y) ∈ θ iff x ∨ y ∨ x = x, y ∨ x ∨ y = y). This
means that B/θB is the maximal lattice image of B, and all congruence classes of θB are
maximal rectangular subalgebras of B.

It is easy to see that the set R = {θB | B ∈ Sub(A)} ∪ {A2} is a closure system in
Conw(A), therefore a complete lattice with respect to ⊆ and its dual, ⊇.

Indeed, let {θBi
| i ∈ I} be a nonempty family in SubA. Then,⋂
i∈I

θBi
=
⋂
i∈I

(θ ∩ Bi2) = θ ∩
⋂
i∈I
Bi2 = θB′ ,

where
B′ =

⋂
i∈I
Bi ∈ Sub(A).

Intersection of empty family is by the definitionA2, and it belongs to theR by construction.
ThereforeR is a closure system in the weak congruence lattice.

Theorem 3.5. Let A = (A,∧,∨) be a skew lattice and Ω = (R,⊇) be the closure system
R defined above, ordered by the dual of inclusion, ⊇. Then, the Ω-skew lattice A obtained
by the canonical construction over A, is an Ω-lattice.

Proof. Let us notice that for each a ∈ A, ({a},∧,∨) is a subalgebra, due to the fact that
operations are idempotent. So,⋂

{R ∈ Ω | (a, a) ∈ R} = {(a, a)},

which means that the closure system satisfies condition (2.7) from Theorem 2.11. If we
define E : A2 −→ Ω by E(a, b) =

⋂
{R ∈ Ω | (a, b) ∈ R} for all a, b ∈ A, then the cuts

of E are exactly the elements of Ω, that is, for each R ∈ Ω, ER = R. By construction,
R = {θB | B ∈ Sub(A)} ∪ {A2}, so EθB = θB, for each B ∈ Sub(A). Also, by
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Theorem 2.11, Ω-valued relation E is an Ω-valued equality compatible with fundamental
operations of A, which means that A = (A, E) is an Ω-skew lattice.

Furthermore, EθB is a congruence on subalgebra µθB of A, by Proposition 2.4, and
also a congruence on subalgebra B, by the construction (for all θB ∈ Ω, that is for all
B ∈ SubA). This means B = µθB = {x ∈ A | (x, x) ∈ EθB}, for all B ∈ SubA.

So, quotient algebras µθB/EθB are, in fact B/θB. As mentioned earlier, for each B,
θB is a natural equivalence on B, so the quotient B/θB is the maximal lattice image of B,
therefore a lattice. By the Theorem 2.6, the Ω-skew latticeA = (A, E) is an Ω-lattice.

Remark 3.6. If A is a rectangular skew lattice, then the congruence θ is full, and so are
all θB. The quotients are therefore trivial, and the obtained Ω-algebra is an Ω-lattice (as
already proven). Let us notice that the Ω-lattice in this case satisfies every lattice-identity,
since all the quotients do.

Remark 3.7. A skew lattice is called primitive if its congruence θ has exactly two blocks.
IfA is a primitive skew lattice, then its subalgebras are either rectangular or primitive. The
reason for this is the following: the blocks themselves are rectangular subalgebras, and so
are all subalgebras contained in either of the blocks. If a subalgebra is not contained in a
block, the corresponding restriction of θ also has two blocks.

This means that the quotient algebras from the construction explained above are ei-
ther trivial or two-element lattices ({0, 1},∧,∨). The Ω-lattice, therefore, satisfies every
identity satisfied by the two element lattice.

Example 3.8. We start from a three element skew lattice A = (A,∧,∨), where A =
{a, b, 0}, and the operations are defined by: 0 ∧ x = 0 = x ∧ 0, 0 ∨ x = x = x ∨ 0,
a∧ b = b, b∧a = a, a∨ b = a, b∨a = b. Now, we define an Ω-lattice, where Ω is a lattice
anti-isomorphic to the closure system on the weak congruence lattice of skew lattice A.
The lattice Ω is given in Figure 1. The canonical Ω-algebra (A, E) is defined as follows:

E(x, y) :=
⋂
{R ∈ Ω | (x, y) ∈ R} for all x, y ∈ A.
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Figure 1: The lattice Ω.

This mapping is well defined since Ω is closed under intersection, and since Ω is canon-
ical, for every p ∈ Ω, Ep = p.
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Table 1: The equality E and the related function µ.

(a)

E 0 a b

0 0 a0 b0
a a0 a ab
b b0 ab b

(b)

µ =

(
0 a b
0 a b

)

The equality E is given in Table 1, together with its diagonal, compatible function µ.
The cuts of µ are all subsets except {a, b}. The cuts of E are all diagonal relations on

all cuts of µ , all squares of all subalgebras and Eab,0 has two classes. Hence, the factor
algebras µp/Ep are either one-element lattices or two element lattices. Hence, (A, E) is
an Ω-lattice.

Example 3.9. Now we start from a rectangular skew lattice with four elements: A = L×R,
where L = {a, b}, R = {c, d}. The operation tables are given in Table 2(a) and 2(b).
Here and in Figure 2 and Table 3 below, ordered couples are denoted ac, ad, bc, bd just for
simplicity.

Table 2: The operation tables of the rectangular skew lattice.

(a)

∨ ac ad bc bd

ac ac ac bc bc
ad ad ad bd bd
bc ac ac bc bc
bd ad ad bd bd

(b)

∧ ac ad bc bd

ac ac ad ac ad
ad ac ad ac ad
bc bc bd bc bd
bd bc bd bc bd

Let Ω be the lattice given by the diagram in Figure 2. Ω is a lattice anti-isomorphic
to the closure system on the weak congruence lattice of the skew lattice A. Some of the
subalgebras of A (appearing in Conw(A)) are denoted by: H = {bd, ad}, D = {ac, bc},
C = {bc, bd}, B = {ac, ad}.

Let the Ω-equality and the related function µ be given in Table 3.

Table 3: The Ω-equality and the related function µ.

(a)

E ac ad bc bd

ac ac B2 D2 A2

ad B2 ad A2 H2

bc D2 A2 bc C2

bd A2 H2 C2 bd

(b)

µ =

(
ac ad bc bd
ac ad bc bd

)
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u
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\
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bd bc
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H2 D2 C2
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Figure 2: The lattice Ω.

Now we see that all the structures µz/Ez , z ∈ Ω are one-element, hence lattices.
Hence, (R×L, E) is an Ω-lattice.
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Abstract

In the latest developments in the theory of skew lattices, the study of distributivity has
been one of the main topics. The largest classes of examples of skew lattices thus far en-
countered are distributive. In this paper, we will discuss several aspects of distributivity in
the absence of commutativity, and review recent related results in the context of the coset
structure of skew lattices. We show that the coset perspective is essential to fully under-
stand the nature of skew lattices and distributivity in particular. We will also discuss the
combinatorial implications of these results and their impact in the study of skew lattices.

Keywords: Skew lattices, distributive structures, noncommutative structures, ordered structures, bands
of semigroups.
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1 Introduction
The study of skew lattices provides two perspectives that complement each other: in one
perspective skew lattices are seen to be noncommutative variants of lattices; in the other
they are viewed as double bands, two band structures occupying the same set, but are in
some way dual to each other. Due to this, many of its basic concepts originate in either lat-
tice theory or semigroup theory. Thus, e.g., skew lattices have a natural partial order similar
to that occurring in lattice theory, but also the Green’s equivalences that are fundamental
in the study of bands. In recent developments in skew lattice theory, distributivity has been
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one of the main topics [16]. When commutativity is no longer assumed, the concept of
distributivity, inherited from lattice theory, has broken into various types of distributivity.
Following Leech’s early papers, and then in more recent publications, a group of mathe-
maticians (K. Cvetko-Vah, M. Kinyon, J. Leech, M. Spinks and J. Pita Costa) have studied
this topic. Much of this more recent study involves coset analysis which underlies the study
of skew lattice architecture that was initiated by Leech in [15], and extended more recently
by the researchers above, especially in [2, 6] and [10]. It is our aim to give a clear and
concise overview of this work, while adding a few new results on the topic.

2 Preliminaries
A skew lattice is a set S with binary operations ∧ and ∨ that are both idempotent and
associative, and satisfy the absorption laws x ∧ (x ∨ y) = x = (y ∨ x) ∧ x and their
∨-∧ duals. Given that ∧ and ∨ are idempotent and associative, these laws are equivalent
to the absorption dualities: x ∧ y = x iff x ∨ y = y and its ∨-∧ dual. A band is a
semigroup consisting of just idempotents, and a semilattice is a commutative band. When
S is a commutative semigroup, the set E(S) of all idempotents in S is a semilattice under
the semigroup multiplication. When S is not commutative, E(S) need not be closed under
multiplication [8]. Recall that a band is regular if it satisfies the identity xyxzx = xyzx.
Skew lattices can be seen as double regular bands since both band reducts (S,∧) and (S,∨)
are regular. Green’s relations are basic equivalence relations on semigroups, introduced in
[7]. For bands they are defined by: x D y iff xyx = x and yxy = y; x L y iff xy = x and
yx = y; and x R y iff xy = y and yx = x. Due to the absorption dualities, the Green’s
relations were defined for skew lattices in [12] by R = R∧ = L∨, L = L∧ = R∨ and
D = D∧ = D∨. In the literature, D is often called the natural equivalence. Right-handed
skew lattices are the skew lattices for which D = R while left-handed skew lattices satisfy
D = L [16]. Influenced by the natural quasiorders defined on bands [8], we define for skew
lattices the following distinct concepts:

(i) the natural partial order defined by x ≥ y if x ∧ y = y = y ∧ x or, dually, x ∨ y =
x = y ∨ x;

(ii) the natural preorder defined by x � y if y ∧ x ∧ y = y or, dually, x ∨ y ∨ x = x.

Observe that xD y iff x � y and y � x.
A band S is rectangular if xyx = x holds. A skew lattice is rectangular if both band

reducts (S,∧) and (S,∨) are rectangular. This is equivalent to x ∧ y = y ∨ x holding. For
every skew lattice S, D is a congruence, S/D is the maximal lattice image of S and all
congruence classes ofD are maximal rectangular skew lattices in S. Recall that a chain (or
totally ordered set) is an ordered set where every pair of elements are (order) related, and
an antichain is an ordered set where no two elements are (order) related. We call S a skew
chain whenever S/D is a chain. All D-classes are antichains.

A primitive skew lattice is a skew lattice S composed of two comparable D-classes A
and B that are comparable in that A ≥ B in S/D, a � b for all a ∈ A and b ∈ B. A
skew diamond is a skew lattice composed by two incomparable D-classes, A and B, a join
D-class J = A ∨B and a meet D-class M = A ∧B. In particular, we express a primitive
skew lattice as {A > B } and the skew diamond X as { J > A,B > M }. Note that if A
and B are incomparable D-classes in a skew lattice S, with A ∧ B = M and A ∨ B = J ,
then the D-relation on the skew diamond X = { J > A,B > M } is the restriction of the
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D-relation on S, and the D-classes in the sub skew lattice X are exactly A,B,M and J .
In this case { J > A }, { J > B }, {A > M } and {B > M } are primitive skew lattices.

Proposition 2.1 ([12]). Let A and B be comparable D-classes in a skew lattice S such
that A ≥ B. Then, for each a ∈ A, there exists b ∈ B such that a ≥ b, and dually, for each
b ∈ B, there exists a ∈ A such that a ≥ b.

Proposition 2.2 ([12]). Let { J > A,B > M } be a skew diamond. Then, for every a ∈ A
there exists b ∈ B such that a ∨ b = b ∨ a in J and a ∧ b = b ∧ a in M . Moreover,

J = {a ∨ b | a ∈ A, b ∈ B and a ∨ b = b ∨ a} and

M = {a ∧ b | a ∈ A, b ∈ B and a ∧ b = b ∧ a}.

The variety of distributive skew lattices was first introduced in [12] by the defining
identities:

(d1) x ∧ (y ∨ z) ∧ x = (x ∧ y ∧ x) ∨ (x ∧ z ∧ x),

(d2) x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x).

Skew lattices satisfying (d1) are called ∧-distributive while skew lattices satisfying (d2)
are called ∨-distributive. Clearly, the lattice S/D is distributive in either case, because the
distributivity of ∧ will imply the distributivity of ∨ in the presence of commutativity. Since
x ∨ y = y ∧ x in any D-class, it is easily seen that in any skew lattice both (d1) and (d2)
must hold when y and z are D-related. We thus also have the following pair of “balanced”
identities that are equivalent to (d1) and (d2) respectively.

Proposition 2.3 ([19]). Let S be a skew lattice. Then S is distributive if and only if for all
a, b, c ∈ S,

(i) a ∧ (c ∨ b ∨ c) ∧ a = (a ∧ c ∧ a) ∨ (a ∧ b ∧ a) ∨ (a ∧ c ∧ a) and, dually,

(ii) a ∨ (c ∧ b ∧ c) ∨ a = (a ∨ c ∨ a) ∧ (a ∨ b ∨ a) ∧ (a ∨ c ∨ a).

In order to explore further the different concepts of distributivity occurring in the liter-
ature, consider the following axioms:

(d3) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

(d4) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),

(d5) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

(d6) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

Skew lattices satisfying (d3) and (d4) are called strongly distributive while skew lattices
satisfying (d5) and (d6) are called co-strongly distributive. Examples exist of skew lattices
satisfying any combination of these four distributive identities (cf. [11]). A skew lattice
satisfies all four distributive laws (d3) to (d6) if and only if it is the direct product of a
rectangular skew lattice with a distributive lattice (cf. [11]). This is also equivalent to a
skew lattice satisfying the following pair of identities:

(d7) x ∧ (y ∨ z) ∧ w = (x ∧ y ∧ w) ∨ (x ∧ z ∧ w),
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(d8) x ∨ (y ∧ z) ∨ w = (x ∨ y ∨ w) ∧ (x ∨ z ∨ w).

Skew lattices satisfying (d7) are called ∧-bidistributive skew lattices while skew lattices
satisfying (d8) are called ∨-bidistributive skew lattices. Clearly a number of implications
are immediate:

((d3) and (d4))⇒ (d7)⇒ (d1), while ((d5) and (d6))⇒ (d8)⇒ (d2).

It turns out that (d7) implies both (d1) and (d2) as does (d8), and thus also (d3) and (d4)
together, as well as (d5) and (d6) together [14]. For lattices, all of these identities reduce
to either (d3) or (d5), which in turn are equivalent. A skew lattice S is quasi-distributive
if its maximal lattice image S/D is distributive. Clearly this is the case for the types of
distributive skew lattices above. In general, a skew lattice is quasi-distributive precisely
when no copy of either 5-element non-distributive lattice M5 or N5 is a subalgebra [4].
Finally, a skew lattice S is cancellative if for all x, y, z ∈ S,

z ∨ x = z ∨ y and z ∧ x = z ∧ z imply x = y, and
x ∨ z = y ∨ z and x ∧ z = y ∧ z imply x = y.

For lattices, being cancellative is equivalent to being distributive. In general, cancellative
skew lattices are quasi-distributive, but need not be distributive. Skew lattices of idempo-
tents in rings are always cancellative.

To understand further the connections between these variations on a distributive theme,
we need several further concepts. A skew lattice is symmetric if commutativity is unam-
biguous in that for all x, y ∈ S,

x ∧ y = y ∧ x iff x ∨ y = y ∨ x.

Our interest in symmetric skew lattices is due in part to the fact that skew lattices of idem-
potents in rings are always distributive and symmetric.

A skew lattice S is normal if it satisfies

x ∧ y ∧ z ∧ w = x ∧ z ∧ y ∧ w;

dually, if it satisfies
x ∨ y ∨ z ∨ w = x ∨ z ∨ y ∨ w

it is conormal. While (d1) and (d2) are not equivalent for skew lattices in general, for
symmetric skew lattices we have:

Theorem 2.4 ([20, 3]). Given a symmetric skew lattice, (d1) holds if and only if (d2) holds.

Theorem 2.5 ([16]). A skew lattice is strongly distributive in that it satisfies (d3) and (d4)
if and only if it is distributive, symmetric and normal. It is co-strongly distributive in that
it satisfies (d5) and (d6) if and only if it is distributive, symmetric and conormal. It is
∧-distributive in that it satisfies (d7) if and only if it is distributive and normal. It is ∨-
distributive in that it satisfies (d8) if and only if it is distributive and conormal. Finally, it is
both ∧-distributive and ∨-distributive if and only if it is the product of a distributive lattice
and a rectangular skew lattice.
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A skew Boolean algebra is an algebra S = (S;∨,∧, \, 0) such that (S;∨,∧, 0) is a
distributive, normal and symmetric skew lattice with a constant 0, called zero, satisfying
x ∧ 0 = 0 = 0 ∧ x, and a binary operation \ on S, called relative complement, satisfying
(x ∧ y ∧ x) ∨ (x \ y) = x and (x ∧ y ∧ x) ∧ (x \ y) = 0. Skew lattice reducts of skew
Boolean algebras are strongly distributive. In general, a skew lattice can be embedded in
the skew lattice reduct of a skew Boolean algebra if and only if it is strongly distributive
[13]. Given a ring R whose set E(R) of idempotents are closed under multiplication, then
E(R) forms a skew Boolean algebra under the operations:

e ∧ f = ef,

e ∨ f = e+ f + fe− efe− fef,
e \ f = e− efe.

It should be mentioned that strongly distributive skew lattices, and in particular skew
Boolean algebras, are always cancellative.

Consider a skew lattice S consisting of exactly two D-classes A > B. Given b ∈ B,
the subset A ∧ b ∧ A = {a ∧ b ∧ a | a ∈ A} of B is said to be a coset of A in B
(or an A-coset in B). Similarly, a coset of B in A (or a B-coset in A) is any subset
B ∨ a∨B = {b∨ a∨ b | b ∈ B} of A, for a fixed a ∈ A. On the other hand, given a ∈ A,
the image set of a in B is the set a ∧ B ∧ a = {a ∧ b ∧ a | b ∈ B} = {b ∈ B | b < a}.
Dually, given b ∈ B the set b ∨ A ∨ b = {a ∈ A | b < a} is the image set of b in A
(cf. [15, 17, 19]).

Theorem 2.6 ([15]). Let S be a skew lattice with comparable D-classes A > B. Then, B
is partitioned by the cosets of A in B and the image set in B of any element a ∈ A in B
is a transversal of the cosets of A in B; dual remarks hold for any b ∈ B and the cosets
of B in A that determine a partition of A. Moreover, any coset B ∨ a ∨ B of B in A is
isomorphic to any coset A∧ b∧A of A in B under a natural bijection ϕ defined implicitly
for any a ∈ A and b ∈ B by: x ∈ B ∨ a ∨ B corresponds to y ∈ A ∧ b ∧ A if and only if
x ≥ y. Thus, all cosets in A or B are mutually isomorphic.

Furthermore, the operations ∧ and ∨ on A ∪ B are determined jointly by the coset
bijections and the rectangular structure of each D-class. Even if A and B are unrelated so
that one has a proper skew diamond, {A ∨B > A,B > A ∧B }, coset bijections play an
important role in calculating both a∨ b in A∨B and a∧ b in A∧B. (See [15, Lemma 1.3
and Theorem 3.3].) Thus, even if the natural partial order does not completely determine
the operations ∧ and ∨ as it does for lattices, it still has a very significant role.

All cosets and all image sets are rectangular sub-skew lattices (cf. [17]). E.g., (A ∧
b ∧ A) ∧ (A ∧ b′ ∧ A) quickly reduces to A ∧ b ∧ b′ ∧ A which in turn must also be
(A ∧ b′ ∧A) ∨ (A ∧ b ∧A). Moreover, coset equality is given by the following result:

Proposition 2.7 ([6]). Let S be a skew lattice with comparable D-classes A > B and let
y, y′ ∈ B. Then the following are equivalent:

(i) A ∧ y ∧A = A ∧ y′ ∧A;

(ii) for all x ∈ A, x ∧ y ∧ x = x ∧ y′ ∧ x;

(iii) there exists x ∈ A such that x ∧ y ∧ x = x ∧ y′ ∧ x.
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Dual results hold for B-cosets in A, having similar statements.

The following propositions characterize important properties of skew lattices through
coset structure flavored aspects of these algebras. They motivate the results in the context
of coset laws characterization discussed later in this paper.

Proposition 2.8 ([15]). A skew lattice S is symmetric if and only if given any skew diamond
{ J > A,B > M } in S and any m,m′ ∈M , j, j′ ∈ J the following equivalences hold:

(a) J ∧m∧J = J ∧m′∧J iff A∧m∧A = A∧m′∧A and B∧m∧B = B∧m′∧B;

(b) M ∨ j ∨M =M ∨ j′ ∨M iff A∨ j ∨A = A∨ j′ ∨A and B ∨ j ∨B = B ∨ j′ ∨B.

Proposition 2.9 ([18]). A skew lattice S is normal iff for each comparable pair of D-
classes A > B in S and all x, x′ ∈ B, A ∧ x ∧A = A ∧ x′ ∧A. Dually, S is conormal iff
for all comparable pairs ofD-classesA > B in S and all x, x′ ∈ A,B∨x∨B = B∨x′∨B.

Proposition 2.9 above essentially states that S is a normal skew lattice if and only if,
for each comparable pair of D-classes A > B in S and for each x ∈ A, a unique y ∈ B
exists such that y ≤ x. A dual result holds for conormal skew lattices.

3 Coset bijections and categorical skew lattices
A skew lattice is categorical if nonempty composites of coset bijections are coset bijec-
tions. That is, givenD-classesA > B > C and coset bijections φ : B∨a∨B → A∧b∧A
and ψ : C ∨ b′ ∨ S → B ∧ c ∧B with

(A ∧ b ∧A) ∩ (C ∨ b′ ∨ S) 6= ∅,

then the resulting nonempty composite ψφ is a bijection between cosets in A and C. Rect-
angular and primitive skew lattices are trivially categorical. Skew lattices in rings and skew
Boolean algebras provide nontrivial examples (cf. [15] and [1]). Clearly a skew lattice is
categorical iff every skew chain of D-classes A > B > C in S is categorical. Indeed,
this property is primarily about the skew chains of D-classes in a skew lattice and about
their coset bijections being well-behaved under composition. Upon adding empty partial
bijections one indeed obtains a category of partial bijections whose objects are D-classes
and whose morphisms are given by coset bijections and the empty partial bijections.

Example 3.1. A minimal example of a non-categorical skew lattice is given by the 8-
element left-handed skew chain given in Figure 1. In this example, considering the skew
chain { 0, 4 } > { 3, 6, 1, 7 } > { 2, 5 }, the coset bijections are the following:

ϕ1 : { 0, 4 } → { 3, 1 } , ϕ2 : { 0, 4 } → { 6, 7 }
ψ1 : { 3, 7 } → { 2, 5 } , ψ2 : { 6, 1 } → { 2, 5 }
χ : { 0, 4 } → { 2, 5 }

Observe that 0 has no image under ψ2 ◦ϕ1 and that χ(0) ∈ {2, 5} so that ψ2 ◦ϕ1 6= χ.
The reader can find a detailed study of such examples in [9] where this skew lattice is called
X2 and its right-handed version is called Y2.
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63 1 7

40

2 5

∧ 0 1 2 3 4 5 6 7

0 0 3 2 3 0 2 6 6
1 1 1 5 1 1 5 1 1
2 2 2 2 2 2 2 2 2
3 3 3 2 3 3 2 3 3
4 4 1 5 1 4 5 7 7
5 5 5 5 5 5 5 5 5
6 6 6 2 6 6 2 6 6
7 7 7 5 7 7 5 7 7

∨ 0 1 2 3 4 5 6 7

0 0 4 0 0 4 4 0 4
1 0 1 6 3 4 1 6 7
2 0 1 2 3 4 5 6 7
3 0 1 3 3 4 7 6 7
4 0 4 0 0 4 4 0 4
5 0 1 2 3 4 5 6 7
6 0 1 6 3 4 1 6 7
7 0 1 3 3 4 7 6 7

Figure 1: The admissible Hasse diagram of a left-handed non-categorical skew lattice.

A categorical skew lattice is strictly categorical if the compositions of coset bijections
between comparable D-classes A > B > C are never empty. Rectangular and primi-
tive skew lattices, as well as skew Boolean algebras are strictly categorical skew lattices
(cf. [1]). Normal and conormal skew lattices are strictly categorical (cf. [9]). As strictly
categorical skew lattices form a variety [9], sub skew lattices of strictly categorical skew
lattices are also strictly categorical. Clearly a skew lattice is strictly categorical if and only
if every skew chain of D-classes A > B > C in S is strictly categorical. In the strictly
categorical case, the above category of coset bijections can be defined without the need of
empty partial bijections.

Example 3.2. A minimal example of a categorical skew lattice that is not strictly categor-
ical is given by the right-handed manifestation of the skew chain with three D-classes in
Figure 2. In fact, the composition of the coset bijections ψ : {1} → {a} andϕ′ : {b} → {0}
is empty. Observe that χ : {1} → {0} can be decomposed either by the composition of ψ
and ϕ : {a} → {0}, or by the composition of ψ′ : {1} → {b} and ϕ′ (cf. [9]).

Categorical skew lattices and strictly categorical skew lattices are subvarieties of the
variety of skew lattices (cf. [16]) as are the many classes of skew lattices considered in the
previous section. What follows is a practical characterization of strictly categorical skew
chains, followed by an immediate application.

Proposition 3.3 ([9]). A skew chain A > B > C is strictly categorical if and only if given
a ∈ A, b, b′ ∈ B and c ∈ C such that a > b > c and a > b′ > c, it follows that b = b′.

Theorem 3.4. A strictly categorical skew lattice S is distributive if and only if it is quasi-
distributive, i.e., S/D is distributive. In particular, a (co-)normal skew lattice is distributive
if and only if it is quasi-distributive.

Proof. We need only verify⇐. Suppose S is quasi-distributive. Then for all x, y, z ∈ S,

x ∧ (y ∧ z) ∧ x D (x ∧ y ∧ x) ∨ (x ∧ z ∧ x).
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a b

1

0

∧ 0 a b 1

0 0 0 0 0
a 0 a b a
b 0 a b b
1 0 a b 1

∨ 0 a b 1

0 0 a b 1
a a a a 1
b b b b 1
1 1 1 1 1

Figure 2: The Cayley tables and the admissible Hasse diagram of a non-strictly categorical
right-handed skew lattice.

Clearly x > x ∧ (y ∨ z) ∧ x and x > (x ∧ y ∧ x) ∨ (x ∧ z ∧ x). On the other hand both of
these polynomial terms are easily seen to be > x ∧ z ∧ y ∧ x. Thus by the above midpoint
criterion, x∧ (y ∨ z)∧ x = (x∧ y ∧ x)∨ (x∧ z ∧ x). We illustrate the details for showing
both terms being bigger than x ∧ z ∧ y ∧ x by the following calculations:

x ∧ (y ∨ z) ∧ x ∧ x ∧ z ∧ y ∧ x = x ∧ (y ∨ z) ∧ x ∧ z ∧ y ∧ x
= x ∧ (y ∨ z) ∧ z ∧ y ∧ x = x ∧ z ∧ y ∧ x,

[(x ∧ y ∧ x) ∨ (x ∧ z ∧ x)] ∧ x ∧ z ∧ y ∧ x
= [(x ∧ y ∧ x) ∨ (x ∧ z ∧ x)] ∧ x ∧ z ∧ x ∧ y ∧ x
= x ∧ z ∧ x ∧ y ∧ x = x ∧ z ∧ y ∧ x.

The dual identities are similarly verified.

Theorem 3.5 ([2]). A skew chain S consisting of D-classes A > B > C is categorical if
and only if for all elements a ∈ A, b ∈ B and c ∈ C satisfying a > b > c, one (and hence
both) of the following equivalent statements hold:

(i) (A ∧ b ∧A) ∩ (C ∨ b ∨ C) = (C ∨ a ∨ C) ∧ b ∧ (C ∨ a ∨ C);

(ii) (A ∧ b ∧A) ∩ (C ∨ b ∨ C) = (A ∧ c ∧A) ∨ b ∨ (A ∧ c ∧A).

Moreover, S is strictly categorical iff in addition to (i) and (ii),

(A ∧ b ∧A) ∩ (C ∨ b′ ∨ C) 6= ∅,

for all b, b′ ∈ B.

In conformity with [10], a nonempty intersection (A∧b∧A)∩(C∨b′∨C) ofA-cosets
and C-cosets in middle class B is called an A-C coset in B. Any such intersection equals
(A ∧ y ∧A) ∩ (C ∨ y ∨ C) for all y in this intersection.

Let A ≥ B be comparable D classes in a normal skew lattice S and let a ∈ A. Due to
the normality of S, Proposition 2.9 implies that, for all a ∈ A there exists a unique b ∈ B
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such that a ≥ b. Since a ∧ b ∧ a ≤ a for all b ∈ B, b ≤ a in B if and only if b = a ∧ b ∧ a.
Hence, given b, b′ ∈ B such that b, b′ ≤ a in B, we have

b = a ∧ b ∧ a = a ∧ b ∧ b′ ∧ b ∧ a = a ∧ b ∧ b′ ∧ b′ ∧ b ∧ a
= a ∧ b′ ∧ b ∧ b ∧ b′ ∧ a = a ∧ b′ ∧ a = b′.

Thus, normal skew lattices are strictly categorical. Indeed, the lower D-class in any
maximal primitive sub skew lattice of a normal skew lattice has exactly one coset. Thus,
adjacent coset bijections are closed under composition and in particular have nonempty
compositions. Dual remarks hold for conormal skew lattices. Strictly categorical skew
lattices, however, need not be either normal or conormal. What follows is an example of a
conormal, but not normal, skew lattice.

a b

1

∧ a b 1

a a b a
b a b b
1 a b 1

∨ a b 1

a a a 1
b b b 1
1 1 1 1

Figure 3: The Cayley tables and the admissible Hasse diagram of a non-normal but strictly
categorical right-handed skew lattice.

Example 3.6. Strictly categorical skew lattices need not be normal: the admissible Hasse
diagram in Figure 3 represents a right-handed skew chain defined by the respective Cayley
tables. It is strictly categorical but normality fails as the upper D-class determines more
then one coset in the lower D-class.

Proposition 3.7 ([18]). Let S be a skew lattice. The following statements are equivalent:

(i) S is categorical;

(ii) for all distinct D-classes A > B > C with elements b ∈ B and c ∈ C that satisfy
b > c, the coset bijection φb,c : C∨b∨C → B∧c∧B restricted to the corresponding
AC-coset (A∧ b∧A)∩ (C ∨ b∨C) in B is a bijection of the later onto the A-coset
A ∧ c ∧A in C;

(ii ′) for all distinct D-classes A > B > C with elements a ∈ A and b ∈ B that satisfy
a > b, the coset bijection φb,a : A∧b∧A→ B∨a∨B restricted to the corresponding
AC-coset (A∧ b∧A)∩ (C ∨ b∨C) in B is a bijection of the latter onto the C-coset
C ∨ a ∨ C in A.

The following results, based on research of Kinyon and Leech on distributive skew
lattices (cf. [9] and [10]), reveal the relationship between distributivity and (strict) cate-
goricity, and allow us to extend the ideas in Proposition 3.7 to coset laws in the categorical
case and in particular in the distributive case.
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Given a skew chain A > B > C, two elements b, b′ ∈ B are AC-connected if a finite
sequence b = b0, b1, . . . , bn = b′ exists in B such that A ∧ bi ∧ A = A ∧ bi+1 ∧ A or
C ∨ bi ∨ C = C ∨ bi+1 ∨ C for all 0 ≤ i ≤ n − 1. Clearly all elements in an A-coset
[C-coset] in B are AC-connected.

Corollary 3.8. Given a categorical skew chain A > B > C, all AC-cosets in B have
the same size as all A-cosets in C and all C-cosets in A. Conversely, given a skew chain
A > B > C having this property, if the common cardinal size is also finite, then the skew
chain is categorical.

Given a skew chain A > B > C, an AC-component in B is a maximal AC-connected
subset of B. B is AC-connected if all b, b′ in it are AC-connected.

ba c

1

0

∧ 0 a b c 1

0 0 0 0 0 0
a 0 a b 0 a
b 0 a b 0 b
c 0 0 0 c c
1 0 a b c 1

∨ 0 a b c 1

0 0 a b c 1
a a a a 1 1
b b b b 1 1
c c 1 1 c 1
1 1 1 1 1 1

Figure 4: The Cayley tables and admissible Hasse diagram of the right-handed skew lat-
tice NCR

5 .

Example 3.9. For instance, in Figure 1 the set {3, 6, 1, 7} is an AC-component of the rep-
resented skew lattice for whichA = {0, 4} andC = {2, 5}. On the other hand, considering
the skew lattice in Figure 4 with A = {1} and C = {0}, the AC-components in this case
are {a}, {b} and {c}.

Proposition 3.10. LetA > B > C be a categorical skew chain. Then,B is a disjoint union
of its AC-components. Every AC-component B′ of B is the disjoint union of all A-cosets
in B that are contained in B′ and the disjoint union of all C-cosets in B that are contained
in B′, as well as the disjoint union of all the AC-cosets in B′. For each AC-component
B′, the union A ∪B′ ∪ C forms a skew chain A > B′ > C. In particular, A > B > C is
categorical if and only if A > B′ > C is categorical for each AC-component B′.

The converse of this result doesn’t hold as it was shown in [10] where the authors
present a categorical skew chain A > B > C with one unique AC-coset in B that is not
distributive (and, therefore, not strictly categorical).

4 Strictly categorical skew lattices and orthogonality
Given skew lattice S with three equivalence classes A, B and C such that B is comparable
to both A and C, we say that x ∈ A is covered by a coset of C in B if the image set of x
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in B is a subset of this coset of C. The dual definition is similar. A and C are orthogonal
in B if and only if each x ∈ A is covered by a coset of C in B and, dually, each y ∈ C is
covered by a coset of A in B.

Proposition 4.1 ([15]). Let S be a skew lattice with three equivalence classes A, B and C
such that B is comparable to both A and C. If A and C are orthogonal in B, then each
coset of A in B has nonempty intersection with each coset of C in B. Moreover, all such
coset intersections have common cardinality.

D-class BAC-coset

. . .

. . .

. . .

. . .
...

...
...

A-coset

C-coset

b•

?

?

•• •

?

?

Figure 5: The partition diagram of the D-class B by A-cosets and C-cosets, when A and
C orthogonal in B.

Due to Proposition 4.1, we can visualize the aboveD-classB in the orthogonal situation
by the double partition diagram of Figure 5. We call a diagram representing intersection of
partitions, like the one in Figure 5, a partition diagram. In this case, since D-classes and
cosets are rectangular skew lattices due to the rectangularity of cosets, we represent them
by rectangles in this diagram. B is a doubly partitioned rectangle arising from a horizontal
partition by one class of congruent rectangles, the A-cosets, and a vertical partition by a
second class of congruent rectangles, the C-cosets. Their nonempty intersections are again
called AC-cosets in B in conformity with [10]. It follows that if X and Y are respective A
and C-cosets in B, then

|B| = |X| · |Y |
|X ∩ Y |

.

This makes sense in the infinite case if |Y |/|X ∩ Y | is understood to be the size of the
class of all cosets of the form X ∩ Y in Y . Since |X| and |Y | are respective divisors of
|A| and |C|, it follows that if both |A| and |C| are finite, then |B| divides |A| · |C| and that
|B| ≤ |A| · |C| in general. The classical case of orthogonal behavior appeared in 1993
in [15].

Proposition 4.2 ([15]). If S is a skew lattice with two non-comparable D-classes A and
B, then A and B are orthogonal in both their meet class M and in their join class J . The
resulting AB-coset partitions of both J and M are refined by the coset partitions that J
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and M induce on each other. S is symmetric precisely when both the AB-coset partition
of M is the J-coset partition of M and, dually, the AB-coset partition of J is the M -coset
partition of J . In this context, individual joins a∨ b and meets a∧ b of elements a ∈ A and
b ∈ B are determined by the orthogonality relationship.

Lemma 4.3. LetA′ > B′ be a primitive subalgebra of a primitive skew latticeA > B with
A′ ⊆ A and B′ ⊆ B. Then the B′-cosets in A′ are precisely the nonempty intersections
A′ ∩ C of A′ with some B-coset C in A. Likewise, the A′-cosets in B′ are the nonempty
intersections B′ ∩D of B′ with some A-coset D in B.

Proof. Given a′ ∈ A′, B′ ∨ a′ ∨B′ ⊆ A′ ∩ (B ∨ a′ ∨B), the intersection being nonempty.
Conversely, let A′ ∩ (B ∨ a∨B) be nonempty with a ∈ A. Then B ∨ a∨B = B ∨ a′ ∨B
for any a′ in this intersection and hence inA′. Suppose y = b∨a′∨b inA′ for some b ∈ B.
Then y > b′ for some b′ inB′ and b∨a′∨b is in the sameB-coset as b′∨a′∨b′. Since both
are strictly bigger than b′, they must be equal. That is, A′ ∩ (B ∨ a′ ∨ B) ⊆ B′ ∨ a′ ∨ B′
and the first assertion follows. The second is similar.

Corollary 4.4. Let skew chain A′ > B′ > C ′ be a subalgebra of a skew chain A > B >
C. If the A-cosets and the C-cosets in B are orthogonal, then likewise the A′-cosets and
the C ′-cosets in B′ are orthogonal.

Proof. Given c′ ∈ C ′, by assumption all images of c′ in B lie in some A-coset A ∧ b ∧ A
in B. Thus all images of c′ ∈ B′ must lie in A ∧ b ∧ A ∩ B′ which is an A′-coset in B′,
due to Lemma 4.3. Likewise, given a′ ∈ A′, its images in B′ must lie in some common
C ′-coset in B′.

Clearly we now have:

Theorem 4.5. IfA > B > C is a skew chain for which theA-cosets and the C-cosets inB
are orthogonal, then A > B > C is a strictly categorical skew chain, which is necessarily
strictly categorical. In general, a skew lattice is strictly categorical if and only if all its
skew chains have this orthogonal property.

Proof. None of the Xn or the Yn skew chains for n > 1 have the orthogonal property
(see [9] for the construction of Xn and Yn). Hence by the Corollary 4.4 they cannot be
subalgebras of this skew chain. It follows that A > B > C is categorical.

Proposition 4.6 ([10]). Let A > B > C be a strictly categorical skew chain, let a ∈ A,
c ∈ C such that a > c, and let b ∈ B be the unique element such that a > b > c. Then,
b lies jointly in the C-coset in B containing all images of a in B and in the A-coset in B
containing all images of c in B.

Theorem 4.7 ([9]). Let A > B > C be a strictly categorical skew chain.

(i) For any a ∈ A, there exists b ∈ B such that a ∧B ∧ a ⊆ C ∨ b ∨ C;

(ii) Likewise, for any c ∈ C, there exists b′ ∈ B such that c ∨B ∨ c ⊆ A ∧ b′ ∧A;

(iii) Given a > c, then the unique b in B such that a > b > c lies jointly in the C-coset
in B containing all images of a in B, and in the A-coset in B containing all images
of c in B.
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This is illustrated in Figure 5 where b ∈ B lies in the intersection of the A-coset in B
containing all images • of c ∈ B and the C-coset in B containing all images ? of a ∈ B.

Corollary 4.8 ([9]). Given any categorical skew chain A > B > C of D-classes in S, the
following statements are equivalent:

(i) A > B > C is strictly categorical;

(ii) Given a ∈ A, c ∈ C and a coset bijection χ : C ∨ a ∨C → A ∧ c ∧A, unique coset
bijections ϕ : B ∨ a ∨ B → A ∧ b ∧ A and ψ : C ∨ b ∨ C → B ∧ c ∧ B exist such
that χ = ψ ◦ ϕ.

We now turn our attention to the relationship between orthogonality and strict cate-
goricity, and the consequences of this relationship in the study of the coset structure of
skew chains.

Theorem 4.9. Given a skew chainA > B > C in a skew lattice S,A andC are orthogonal
in B if and only if A > B > C is strictly categorical.

Proof. Due to Proposition 4.1, the orthogonality ofA andC inB implies that each coset of
A in B has nonempty intersection with each coset of C in B. Proposition 3.5 then implies
that the skew chain A > B > C is strictly categorical.

Conversely, let A > B > C be a strictly categorical skew chain and X be a order
component of A in B. Then, it follows that the orthogonality of A and C in B is equivalent
to the conditions (i) and (ii) of Theorem 4.7. Clearly, if A and C are orthogonal in B
then both (i) and (ii) hold. Conversely, assume that (i) and (ii) hold and let K be a order
component of A in B. Let x ∈ A. By the assumptions, x ∧B ∧ x lies in a unique C-coset
in B, say C ∨ b ∨ C for some b ∈ B. Let y ∈ K. Then, there exists a sequence of image
sets xi ∧B ∧ xi with x = x1, x2, . . . , xn such that y ∈ xn ∧B ∧ xn,

(xi ∧B ∧ xi) ∩ (xj ∧B ∧ xj) 6= ∅

for every 1 ≤ i, j ≤ n and K =
⋃

1≤i≤n(xi ∧B ∧ xi). Thus⋂
i∈I

(
(xi ∧B ∧ xi) ∩ (C ∨ b ∨ C)

)
6= ∅

so that K =
⋃

1≤i≤n(xi ∧ B ∧ xi) ⊆ (C ∨ b ∨ C), by Theorem 2.6. Hence, A and C are
orthogonal in B.

Corollary 4.10. Let S be a skew Boolean algebra. Then, A and C are orthogonal in B for
all skew chains A > B > C in S.

Proof. All skew Boolean algebras are normal skew lattices by definition. Thus, they are
strictly categorical skew lattices due to normality. The conclusion now follows from Theo-
rem 4.9.

Remark 4.11. In [10], the orthogonal property for skew chains A > B > C (A-cosets
in B and C-cosets in B are orthogonal) is something that is added onto the categorical
property. Thus, a skew lattice is strictly categorical iff it is categorical and its skew chains
have the orthogonal property as in Theorem 4.5. But the orthogonal property for skew
chains by itself implies that the skew lattice is categorical as in Theorem 4.9.
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We conclude this section with a weakened version of orthogonal behavior. Given a
categorical skew chain A > B > C, the A-cosets in B are amenable to the C-cosets in
B if in any AC-component B′ of B each A-coset meets each C-coset. Amenability is of
coset nature as it is shown in the next result.

Proposition 4.12. Let A > B > C be a categorical skew chain. The A-cosets in B are
amenable to the C-cosets in B if and only if, in any AC-component B′ of B, the following
equivalence holds for all x, y ∈ B′:

A ∧ x ∧A = A ∧ u ∧A and C ∨ y ∨ C = C ∨ u ∨ C for some u ∈ B′

iff
A ∧ y ∧A = A ∧ v ∧A and C ∨ x ∨ C = C ∨ v ∨ C for some v ∈ B′.

Proof. Let B′ be a AC component of B and x, y ∈ B′. Then, x and y are AC-connected.
Assume that A ∧ x ∧ A = A ∧ u ∧ A and C ∨ y ∨ C = C ∨ u ∨ C for some u ∈ B′.
Thus, the amenability of the A-cosets in B to the C-cosets in B implies the existence of
v ∈ (A ∧ y ∧A) ∩ (C ∨ x ∨ C) and, therefore,

A ∧ y ∧A = A ∧ v ∧A and C ∨ x ∨ C = C ∨ v ∨ C.

Conversely, let x, y ∈ B such that x, y are AC-connected. Suppose, without loss of
generality that u ∈ B exists such that A∧x∧A = A∧u∧A and C ∨ y∨C = C ∨u∨C.
Thus, A ∧ y ∧ A = A ∧ v ∧ A and C ∨ x ∨ C = C ∨ v ∨ C for some v ∈ B. As x and y
are arbitrary elements in B, each A-coset meets each C-coset in the AC-component of B
where x and y belong.

This is illustrated by the coset diagram in Figure 5 where the rows denote parts of
A-cosets and the columns parts of C-cosets.

Proposition 4.13 ([10]). Given a categorical skew chain A > B > C, the A-cosets and
C-cosets inB are amenable if only only if for eachAC-componentB′ ofB, the skew chain
A > B′ > C is strictly categorical. Furthermore, for all a ∈ A and c ∈ C such that a > c,
the unique element b ∈ B′ such that a > b > c lies jointly in the C-coset in B′ containing
all images of a in B′ and in the A-coset in B′ containing all images of c in B′.

According to the Proposition 4.13 above, whenever A-cosets and C-cosets in B are
amenable in a categorical skew chain A > B > C, A and C are “orthogonal” in each
AC-component B′ of B, in the sense of Remark 4.11. Amenability, unlike orthogonality,
does not by itself insure that a skew chain is categorical (cf. [10]).

Proposition 4.14 ([18]). A skew lattice is categorical if and only if all its skew chains
are categorical. Furthermore, given a skew chain A > B > C in a skew lattice S, the
following statements are equivalent:

(i) {A > B > C } is categorical,

(ii) For all distinct c, c′ ∈ C,

A ∧ c ∧A = A ∧ c′ ∧A if and only if B ∧ c ∧B = B ∧ c′ ∧B

and, for any b, b′ in some C-coset in B such that b > c and b′ > c′,

A ∧ b ∧A = A ∧ b′ ∧A

[where b′ = c′ ∨ b ∨ c′].
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(iii) For all distinct a, a′ ∈ A,

C ∨ a ∨ C = C ∨ a′ ∨ C if and only if B ∨ a ∨B = B ∨ a′ ∨B

and, for any b, b′ in some A-coset in B such that a > b and a′ > b′,

C ∨ b ∨ C = C ∨ b′ ∨ C

[where b′ = a′ ∧ b ∧ a′].

5 Coset laws for distributive skew lattices
The following results deriving from Proposition 3.7 make use of identities involving cosets
to characterize categorical and strictly categorical skew lattices by the description of their
coset structure. These will lead us to the recent achievements by Leech and Kinyon in [10]
that can be revisited in this coset structure context permitting us a similar characterization
for distributive skew lattices.

Remark 5.1. Given A > B > C, let a > c with a ∈ A and c ∈ C and let b ∈ B.
We can use b to produce some y ∈ B such that a > y > c in two ways: either set
y = a ∧ (c ∨ b ∨ c) ∧ a or else set y = c ∨ (a ∧ b ∧ a) ∨ c. In general they need not give
the same outcome.

Lemma 5.2 ([10]). A skew chain A > B > C is distributive if and only if for all a ∈ A,
b ∈ B and c ∈ C such that a > c,

a ∧ (c ∨ b ∨ c) ∧ a = c ∨ (a ∧ b ∧ a) ∨ c. (5.1)

When this condition holds, the common outcome is the same for all b in a common AC-
component of B and is the unique element y in that component such that a > y > c.

Theorem 5.3. Given an skew chain A > B > C the following are equivalent:

(i) A > B > C is distributive;

(ii) For all AC-components B′ in B, A > B′ > C is strictly categorical.

(iii) A > B > C is categorical and theA-cosets inB are amenable to the C-cosets inB.

In particular we have the following immediate consequence of Theorem 3.4:

Corollary 5.4. All strictly categorical skew chains are distributive.

Though, the converse statement to Corollary 5.4 does not hold: the skew lattice repre-
sented in Figure 2 is an example of a distributive skew lattice that is not strictly categorical
having singular AC-components.

In the remainder of this section we turn our attention to the image set of an element in a
coset and its role of a transversal of cosets permitting us to count those cosets. Transversals
allows us to define the index of B in A, first presented in [4] and denoted by [A : B], as the
cardinality of the image set b ∨ A ∨ b, for any b ∈ B. Dually, we define the index of A in
B, denoted by [B : A], as the cardinality of the image set a ∧ B ∧ a, for any a ∈ A. The
index [A : B] equals the cardinality of the set of all B-cosets in A, and [B : A] equals the
cardinality of the set of all A-cosets in B. As all A-cosets in B and all B-cosets in A have
a common size due to coset decomposition, we name this number the order of the A-coset
in B (or the order of the B-coset in A), denoting it by ω[A,B] or, equivalently, by ω[B,A]
(denoted by c[A,B] in [12]).



16 Art Discrete Appl. Math. 2 (2019) #P2.05

Example 5.5. The situation inA > B is illustrated in the following figure where the upper
eggboxes represent the B-cosets in A and the lower eggboxes represent the A-cosets in B.
In this case, |A| = 18 and |B| = 12 with [A,B] = 3, [B,A] = 2 and ω[A,B] = 6.

Lemma 5.6 ([6]). Given a skew lattice S with comparable D-classes X > Y consider the
set of all Y -cosets in X , {Xi | i ≤ [X : Y ]} and the set of X-cosets in Y , {Yj | j ≤
[Y : X]}. Then, X is finite if and only if [X : Y ] and ω[X,Y ] are finite and, in that case,

|X| = [X : Y ] · ω[X,Y ].

Similar remarks hold regarding the finitude of Y and, likewise, |Y | = [Y : X] · ω[X,Y ]
whenever Y is finite.

The nature of the coset structure of a skew lattice permits such instances of combinato-
rial implications that are arise frequently in the literature. These combinatorial properties
enabled us to derive coset laws to characterize varieties of symmetric skew lattices and
cancellative skew lattices, in [15] and [4] respectively, or in the first author’s research in
[5, 6, 18], and his PhD thesis in [19]. Similar characterizations are also available for normal
(and conormal) skew lattices, as a direct consequence of Proposition 2.9.

Proposition 5.7 ([18]). Let S be a skew lattice. Then S is normal if and only if [B : A] = 1
and thus ω[A,B] = |B| for all comparable D-classes A > B in S. Dually, S is conormal
if and only if [A : B] = 1 and thus ω[A,B] = |A| for all comparable D-classes A > B
in S.

We turn to examine the more general case of strictly categorical skew lattices. From
Theorem 5.3 we are able to achieve counting results regarding distributive skew lattices.

Proposition 5.8 ([18]). Given a skew chain A > B > C in a skew lattice S with both A
and C finite, then

|B| ≥ ω[A,B] · ω[B,C]
ω[A,C]

.

Furthermore, A > B > C is strictly categorical if and only if

|B| = ω[A,B] · ω[B,C]
ω[A,C]

(5.2)

so that in particular B is also finite. With B finite, A > B > C is strictly categorical if
and only if

|B| = ω[A,C] · [B : A] · [B : C]. (5.3)

Proposition 5.9. Let A > B > C be a skew chain where A and C are finite. Then,
A > B > C is distributive if and only if

|Bi| =
ω[A,B] · ω[B,C]

ω[A,C]

for each AC-component Bi of B.

Corollary 5.10. Let A > B > C be a skew chain where A and C are finite. If B has
n <∞ AC-components, then A > B > C is distributive if and only if

|B| = n
ω[A,B] · ω[B,C]

ω[A,C]
.
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cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



2 Art Discrete Appl. Math. 2 (2019) #P2.06

1 Introduction
In the study of noncommutative lattices, lattices still play an important role. They are
the commutative cases of the algebras being considered and indeed play an important role
in the general theory of that larger class of algebras. (As with rings, “noncommutative”
is understood inclusively to mean not necessarily commutative). But also, typically, a
second subclass of algebras exists that plays counterpoint to the subclass of lattices. It has
become common to refer to their members as “antilattices.” Typically they resist any kind
of nontrivial commutative behavior. That is, an instance of xy = yx for a relevant binary
operation can occur only when x = y. Antilattices, however, are not without their special
charm. Indeed, they have been studied in connection with magic squares and finite planes.
(See [8].)

In this paper we study the class of regular antilattices for which the Green’s equiva-
lences are congruences. Precise definitions occur in Section 2 where basic concepts such
as bands, quasilattices and the condition of regularity are described, along with some rele-
vant preliminary results.

Regular antilattices themselves are the focus of Section 3. The main results are a very
precise decomposition given in Theorem 3.3 and its several consequences. A closer look at
the lattice of subvarieties (see Figure 1) occurs in the final fourth section.

The reader seeking further information on bands is referred to the presentations given
in Clifford and Preston [4], in Grillet [5] and in Howie [6]. For further background on
skew lattices and quasilattices, see [7] and [9]. The basic facts of universal algebras, and in
particular varieties, may be found in the second chapter of [2].

2 Preliminary concepts and results
A band is a semigroup (S; ·) for which all elements are idempotent, that is, xx = x holds.
A band is rectangular if it satisfies the identity xyz = xz, or equivalently, xyx = x. (As
often occurs, if just a single binary operation is involved, its appearance is suppressed in
equations.) A semilattice is a commutative band (xy = yx). Clearly, rectangular semilat-
tices form the class of trivial 1-point bands. Indeed both classes are structural opposites
that play important roles in the general structure of bands. To see how and to set the stage
for further preliminaries requires the use of Green’s relations, defined first for bands.

D : xD y iff both xyx = x and yxy = y;
L : xL y iff both xy = x and yx = y;
R : xR y iff both xy = y and yx = x.

For bands, L and R commute under the usual composition of relations, with the common
outcome being D, i.e., L ◦ R = R ◦ L = R ∨ L = D. Here R ∨ L denotes the join
of the two relations. Moreover, we have the following fundamental result of Clifford and
McLean [3, 10]:

Theorem 2.1. Given a band (S; ·), the relation D is a congruence for which S/D is the
maximal semilattice image and each D-class of S is a maximal rectangular subalgebra of
S. In brief, every band is a semilattice of rectangular bands.

So what do rectangular bands look like? First there are two basic cases. A left-zero
band is a band (L; ·) with the trivial composition: xy = x. A right-zero band is a band
(R; ·) with the trivial composition: xy = y. In other words, we either have just a single
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L-class or just a single R-class. Finally, there are products of both types, L × R, and up
to isomorphism, that is it. Thus a rectangular band may be pictured as a rectangular grid
consisting of rows that areR-classes and columns that are L-classes.

• • • • • •
• • • • • •
• • • • • •
• • • • • •

The product xy of elements x and y is the unique element in the row of x and the
column of y. Given a rectangular band (S; ·) and x in S, if L denotes the L-class of x and
R denotes the R-class of S, and ϕ : L × R → S is defined by ϕ(u, v) = uv ∈ S, then ϕ
is an isomorphism of rectangular bands. Rectangular bands are precisely the bands that are
anti-commutative in that xy = yx iff x = y.

While bands have a very simple local structure – their rectangular D-classes – it is
not immediately clear how elements from different D-classes combine under the binary
operation.

A band is regular if the relations L and R are both congruences. Semilattices and
rectangular bands are both regular. In the semilattice case L and R reduce to the identity
relation, so that regularity is trivial. One might expect all bands to be regular, but that is not
so. In the rectangular case there is more: L and R commute under composition, not only
with each other, but with every congruence θ:

L ◦ θ = θ ◦ L = θ ∨ L and R ◦ θ = θ ◦ R = θ ∨R.

A double band is an algebra (S;∨,∧) for which both reducts (S;∨) and (S;∧) are
bands. A lattice is thus a double band where both (S;∨) and (S;∧) are semilattices that
jointly satisfy the standard absorption identities for a lattice: x∧(x∨y) = x = x∨(x∧y).
A very general class of noncommutative lattices is as follows. A quasilattice is a double
band that satisfies the following (modified) absorption identities:

x ∧ (y ∨ x ∨ y) ∧ x = x = x ∨ (y ∧ x ∧ y) ∨ x.

Note that if commutativity is assumed, both identities reduce to the absorption identities
for a lattice.

A skew lattice is a noncommutative lattice that satisfies the dual absorption identities:

x ∧ (x ∨ y) = x = (x ∨ y) ∧ x,
x ∨ (x ∧ y) = x = (x ∧ y) ∨ x.

A skew lattice is a quasilattice, but not conversely. In a quasilattice, both operations
share common D-classes that also form subalgebras, although on these classes both opera-
tions need not agree! Clearly, for a quasilattice (S;∨,∧), D is a congruence. Indeed, S/D
is the maximal lattice image of S. This leads us to:

Definition 2.2. An antilattice is a double band (S;∨,∧) for which both reducts, (S;∨) and
(S;∧), are rectangular bands, i.e., satisfy the identity xyz = xz or equivalently xyx = x.

An antilattice is trivially a quasilattice. Conversely, each D-class of a quasilattice is a
subalgebra that is an antilattice.
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If the antilattice is a skew lattice, it is also called a rectangular skew lattice. As an
antilattice, it is characterized by x ∧ y = y ∨ x. D-classes of skew lattices are always
rectangular skew lattices.

Similar to bands, a version of the Clifford-McLean Theorem holds:

Theorem 2.3. Given a quasilattice (S;∨,∧), the relation D is the same for both, (S;∨)
and (S;∧). For this common congruence, the quotient algebra S/D is the maximal lattice
image and each D-class of S is a maximal sub-antilattice of S. In brief, every quasilattice
is a lattice of antilattices. (Compare Corollary 3 of [7]; see also [9].)

Antilattices have been studied, not only due to their connection to quasilattices, but also
in connection with magic squares and finite planes. (See [8].)

Like quasilattices and semigroups, by definition antilattices do not have prescribed con-
stants, thus making the empty set a viable subalgebra. In so doing, this allows for the
existence of a complete lattice of subalgebras for any given antilattice.

3 Regular antilattices
Given an antilattice (S;∨,∧), both reducts (S;∨) and (S;∧) are regular in that L(∨) and
R(∨) are congruences on (S;∨), and likewise L(∧) and R(∧) are congruences on (S;∧).
The antilattice is regular if all four equivalences are congruences for the whole algebra. In
general, a quasilattice (S;∨,∧) is regular if L(∨), R(∨), L(∧) and R(∧) are congruences
of (S;∨,∧). Skew lattices are regular, but in general, quasilattices need not be regular.

Theorem 3.1. Regular antilattices form a subvariety of the variety of antilattices.

Proof. We show that antilattices for which L(∨) is a congruence form a subvariety. To
begin, in an antilattice S, xL(∨) u ∨ x holds for all u, x ∈ S, and conversely, if xL(∨) x

′,
then trivially, x′ = x′ ∨ x. Since L(∨) is already a congruence on the reduct (S;∨), for
L(∨) to be a congruence on (S;∧), precisely the following identities need to hold:

(y ∧ x) ∨ [y ∧ (u ∨ x)] = y ∧ x & [y ∧ (u ∨ x)] ∨ (y ∧ x) = y ∧ (u ∨ x)

and

(x ∧ y) ∨ [(u ∨ x) ∧ y] = x ∧ y & [(u ∨ x) ∧ y] ∨ (y ∧ x) = (u ∨ x) ∧ y.

Thus this class of antilattices indeed forms a subvariety. Similar remarks verify the same
claim forR(∨), L(∧) andR(∧). The theorem now follows.

SinceL andR commute under composition with all congruences on a rectangular band,
L(∨) ◦ L(∧) = L(∧) ◦ L(∨); L(∨) ◦ R(∧) = R(∧) ◦ L(∨); R(∨) ◦ L(∧) = L(∧) ◦ R(∨);
and R(∨) ◦ R(∧) = R(∧) ◦ R(∨) hold for regular antilattices. All four outcomes are thus
congruences on the antilattice, and indeed form the join congruences of the respective pairs
of congruences.

An antilattice (S;∨,∧) is flat if the reduct (S;∨) is either a left-0 semigroup (x ∨ y =
x) or a right-0 semigroup (x ∨ y = y), and likewise the reduct (S;∧) is either a left-0
semigroup (x ∧ y = x) or a right-0 semigroup (x ∧ y = y). That is, for each operation,
either D = L or D = R. Clearly there are 4 distinct classes of flat antilattices:

• the class ALL of all antilattices where x ∨ y = x = x ∧ y.
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• the class ALR of all antilattices where x ∨ y = x but x ∧ y = y.

• the class ARL of all antilattices where x ∨ y = y but x ∧ y = x.

• the class ARR of all antilattices where x ∨ y = y = x ∧ y.

Clearly each class is a subvariety of regular antilattices. What is more:

Lemma 3.2. Flat antilattices S and T of the same class are isomorphic if and only if they
have the same cardinality. When the latter is the case, an isomorphism is given by any
bijection between S and T .

Theorem 3.3 (Decomposition Theorem). Every nonempty regular antilattice (S;∨,∧) fac-
tors into the direct product SLL×SLR×SRL×SRR of its four maximal flat images, one
from each class above, with the respective factors being unique up to isomorphism.

Proof. The factorization is obtained by first factoring with respect to say ∨:

S ∼= S/R(∨) × S/L(∨)

to get two factors for which the ∨-operation is flat. Then similarly factor both factors
further with respect to the relevantR(∧) and L(∧) congruences to get four flat factors:

S ∼= SLL × SLR × SRL × SRR

where: SLL = S/(R(∨) ∨R(∧)); SLR = S/(R(∨) ∨L(∧)); SRL = S/(L(∨) ∨R(∧)) and
SRR = S/(L(∨) ∨ L(∧)).

Further factorization can take place. But first, given a positive integer n, let nLL, nLR,
nRL and nRR denote the relevant flat antilattices on the set {1, 2, 3, . . . , n}. This leads us
to the following finite version of the Decomposition Theorem:

Theorem 3.4. Let (S;∨,∧) be a nonempty finite regular antilattice with the above factor-
ization SLL × SLR × SRL × SRR. If nLL = |SLL|, nLR = |SLR|, etc., then

S ∼= nLL × nLR × nRL × nRR.

Clearly these four parameters characterize (S;∨,∧). It is also clear that factorization
can continue on each of the four factors. For instance say |SLL| = 180 = 4× 5× 9. Then
we have SLL ∼= (2LL)2 × (3LL)2 × 5LL. Up to isomorphism, the only 1-point algebra is
the trivial algebra 1 = {0}.

Corollary 3.5. A regular antilattice (S;∨,∧) is directly irreducible iff |S| is either 1 or
a prime. Every finite regular antilattice of order > 1 thus factors into a direct product of
finitely many flat antilattices of prime order.

Corollary 3.6. A regular antilattice (S;∨,∧) is subdirectly irreducible iff either |S| = 1
or |S| = 2. Every (finite) regular antilattice of order > 1 is thus isomorphic to a subdirect
product of (finitely) many flat antilattices of order 2.

A sub-(pseudo)variety of regular antilattices is positive, if it is not the sub-variety {∅}.

Corollary 3.7. The lattice of all positive subvarieties of regular antilattices is a Boolean
algebra with 16 elements and 4 atoms: ALL, ALR, ARL and ARR (see Figure 1).
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Corollary 3.8. The lattice of all positive sub-pseudovarieties of finite regular antilattices is
a Boolean algebra with 16 elements and the four atoms as above, but with their respective
classes now restricted to finite algebras: fALL, fALR, fARL and fARR.

We will take a closer look at the positive subvarieties involved in the fourth section.
What can one say about the congruence lattice of a regular antilattice? To begin ob-

serve that the four classes of flat antilattces are mutually term equivalent with each other
and with the class of all left-zero semigroups and also the class of all right-zero semi-
groups. In all these special cases the congruence lattice is precisely the full lattice Π(S) of
all equivalences of the underlying set S. Following the situation for rectangular bands in
general, we have:

Theorem 3.9. Let a nonempty regular antilattice (S;∨,∧) be factored into the direct prod-
uct of its four maximal flat images: SLL×SLR×SRL×SRR. Then the congruence lattice
of S is given by Π(SLL) × Π(SLR) × Π(SRL) × Π(SRR). That is, if the elements if S
are expressed as 4-tuples (x, y, z, w) given by the factorization, then each congruence θ on
S can be represented as a 4-tuple (θLL, θLR, θRL, θRR) of congruences on each factor in
that:

(x, y, z, w) θ (x′, y′, z′, w′) iff x θLL x
′, y θLR y

′, z θRL z
′&w θRR w

′.

Conversely, in this manner every such 4-tuple of congruences defines a congruence on the
full antilattice S.

In similar fashion:

Theorem 3.10. Given a nonempty regular antilattice S with factorization SLL × SLR ×
SRL × SRR, if a = |SLL|, b = |SLR|, c = |SRL| and d = |SRR|, then the number of
subalgebras of S is:

1 + (2a − 1)(2b − 1)(2c − 1)(2d − 1).

One can ask: given a positive integer n ≥ 1, up to isomorphism, how many nonisomor-
phic regular antilattices are there of size n? By Theorem 3.4 it is the number ρ(n) of 4-fold
positive factorizations abcd of n, where the order of the factors a, b, c, d is important. Here
a is the size of the LL-factor, b is the size of the LR-factor, etc.

To begin, thanks to Corollary 3.5, given the prime power factorization n = 2e23e3

5e5 · · · pepkk :
ρ(n) = ρ(2e2)ρ(3e3)ρ(5e5) · · · ρ(p

epk
k ).

Thus things can be reduced to calculating ρ(pe) for any prime power pe .
From a combinatorial perspective, this is equivalent to asking in how many distinct

ways can e identical balls be distributed into 4 labeled boxes. This question has a simple
answer:

ρ(pe) =

(
e+ 3

3

)
.

By putting all these together we obtain the following closed formula for ρ(n):

Theorem 3.11. Let n have the following prime power factorization n = 2e23e35e5 · · · pepkk :
Then

ρ(n) =

(
e2 + 3

3

)(
e3 + 3

3

)(
e5 + 3

3

)
· · ·

(
epk

+ 3

3

)
.
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See also Table 1.
One can ask a more general question: In how many distinct ways can e identical balls

be distributed into k labeled boxes? This question has analogous answer, namely
(
e+k−1
k−1

)
;

see, for instance [1]. We will use some of these in the next section. Note that such an
ordered partition of an integer n into k possibly empty parts is sometimes called a compo-
sition; see [1].

4 Semi-flat antilattices and other subvarieties
An antilattice (S;∨,∧) is semi-flat if either (S;∨) or (S;∧) is flat. Flat antilattices are
trivially semi-flat. The class of all semi-flat antilattices consists of four distinct subclasses
that are not necessarily disjoint:

• AL#, the class of all antilattices (S;∨,∧) s.t. (S;∨) is a left-0 band;

• AR#, the class of all antilattices (S;∨,∧) s.t. (S;∨) is a right-0 band;

• A#L, the class of all antilattices (S;∨,∧) s.t. (S;∧) is a left-0 band;

• A#R, the class of all antilattices (S;∨,∧) s.t. (S;∧) is a right-0 band.

Theorem 4.1. These four classes are subvarieties of the variety of regular antilattices.

Proof. First observe that each is at least a subvariety in the variety of all antilattices. We
show this for AL#, the other cases being similar. The identity characterizing AL# in the
variety of antilattices is clearly x∨ y = x. Thus AL# is indeed a subvariety of antilattices.
To see that all semi-flat antilattices are regular, again we need only consider, say, AL#. So
let (S;∨,∧) be an antilattice for which (S;∨) is a left zero-band. ThusL(∨) is the universal
equivalence ∇ on S, and thus trivially a congruence on (S;∧) while R(∨) is the identity
equivalence and thus again trivially a congruence on (S;∧). Next consider L(∧) andR(∧).
Being congruences on (S;∧), they are at least equivalences on S. But all equivalences on
S are congruences on the left zero-band (S;∨), and thus L(∧) and R(∧) are congruences
on (S;∨,∧).

Consider next the following diagram.

ALL ALR

ARL ARR

AL#

AR#

A#L A#R

The four flat varieties occupy the middle rectangle. If two distinct flat varieties are
adjacent on this rectangle, their join variety is the semi-flat variety labeling the line between
them. But if they are diagonal opposites, we have the following:

• ALL ∨ARR = the subvariety of antilattices for which x ∨ y = x ∧ y.

• ALR ∨ARL = the subvariety of antilattices for which x ∨ y = y ∧ x.
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These are the antilattice subvarieties that are, respectively, skew∗ lattices or skew lattices.
Next are the four double joins. Consider ALL ∨ ALR ∨ ARL. It consists of regular

antilattices for which the ARR-factor is trivial. Since ∨ and ∧ are idempotent, this reduces
to no nontrivial ARR-subalgebra occurring in the given antilattice. More briefly, no copy
of 2RR occurs as a subalgebra. This is guaranteed by the identity x ∨ (x ∧ y) = x (that
is equivalent to the implication: uR(∧) v ⇒ uL(∨) v) along with its ∨ − ∧ dual. This
subvariety is, of course, the Boolean complement AC

RR of ARR. The three other double
joins are treated similarly to obtain:

ALL ∨ALR ∨ARR = AC
RL,

ALL ∨ARL ∨ARR = AC
LR,

ALR ∨ARL ∨ARR = AC
LL.

Finally, above these four lies the full variety of all regular antilattices and just below
the four flat cases lies the variety of trivial 1-point algebras. The resulting lattice of all
subvarieties of regular antilattices is, of course, isomorphic to the lattice of all subsets of
any 4-element set, which brings us back to Corollary 3.7.

RA

AC
RR AC

RL AC
LR AC

LL

SA

AL# A#R A#L AR#

S∗A

ALL ALR ARL ARR

1

Figure 1: The Hasse diagram of the Boolean lattice of all positive subvarieties of antilat-
tices.

The Hasse diagram of this Boolean lattice is explained in Table 1.
Equipped with all necessary tools we may now perform enumeration of the pseudo-

variety of finite regular antilattices and their sub-pseudo-varieties; see Table 2. These se-
quences can be found in OEIS [11].
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Table 1: The 16 positive subvarieties of regular antilattices.

Symbol Subvariety ρ(pe)

RA regular antilattices
(
e+3
3

)
AC
RR complement of ARR

(
e+2
2

)
AC
RL complement of ARL

(
e+2
2

)
AC
LR complement of ALR

(
e+2
2

)
AC
LL complement of ALL

(
e+2
2

)
SA skew antilattices

(
e+1
1

)
= e+ 1

AL# L∗ semi-flat
(
e+1
1

)
= e+ 1

A#R
∗R semi-flat

(
e+1
1

)
= e+ 1

A#L
∗L semi-flat

(
e+1
1

)
= e+ 1

AR# R∗ semi-flat
(
e+1
1

)
= e+ 1

S∗A skew∗ antilattices
(
e+1
1

)
= e+ 1

ALL LL-flat
(
e+0
0

)
= 1

ALR LR-flat
(
e+0
0

)
= 1

ARL RL-flat
(
e+0
0

)
= 1

ARR RR-flat
(
e+0
0

)
= 1

1 trivial antilattice 1 if e = 0

Table 2: Enumeration of small regular antilattices and their subvarieties.

AC
RR,A

C
RL, SA,AL#,A#R, ALL,ALR,

n RA AC
LR,A

C
LL A#L,AR#,S

∗A ARL,ARR 1

OEIS A007426 A007425 A000005 A000012
1 1 1 1 1 1

2 4 3 2 1 0

3 4 3 2 1 0

4 10 6 3 1 0

5 4 3 2 1 0

6 16 9 4 1 0

7 4 3 2 1 0

8 20 10 4 1 0

9 10 6 3 1 0

10 16 9 4 1 0

11 4 3 2 1 0

12 40 18 6 1 0

13 4 3 2 1 0

14 16 9 4 1 0

15 16 9 4 1 0

16 35 15 5 1 0
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Abstract

Skew Boolean algebras (SBA) and Boolean-like algebras (nBA) are one-pointed and
n-pointed noncommutative generalisation of Boolean algebras, respectively. We show that
any nBA is a cluster of n isomorphic right-handed SBAs, axiomatised here as the variety
of skew star algebras. The variety of skew star algebras is shown to be term equivalent to
the variety of nBAs. We use SBAs in order to develop a general theory of multideals for
nBAs. We also provide a representation theorem for right-handed SBAs in terms of nBAs
of n-partitions.

Keywords: Skew Boolean algebras, Boolean-like algebras, Church algebras, multideals.
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1 Introduction
Boolean algebras are the main example of a well-behaved double-pointed variety – mean-
ing a variety V whose type includes two distinct constants 0, 1 in every nontrivial A ∈ V .
Since there are other double-pointed varieties of algebras that have Boolean-like features,
in [15, 23] the notion of Boolean-like algebra (of dimension 2) was introduced as a gen-
eralisation of Boolean algebras to a double-pointed but otherwise arbitrary similarity type.
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The idea behind this approach was that a Boolean-like algebra of dimension 2 is an algebra
A such that every a ∈ A is 2-central in the sense of Vaggione [27], meaning that θ(a, 0)
and θ(a, 1) are complementary factor congruences of A. Central elements can be given
an equational characterisation through the ternary operator q satisfying the fundamental
properties of the if-then-else connective of computer science. Algebraic analogues of the
if-then-else construction have been studied extensively in the literature; the best known of
these realisations is the ternary discriminator function t : A3 → A of general algebra [28],
defined for all a, b, c ∈ A by t(a, b, c) = c if a = b and a otherwise. Varieties generated
by a class of algebras with a common discriminator term are called discriminator varieties
and are the most successful generalisation of Boolean algebras to date ([7, Section IV.9]).

It turns out that some important properties of Boolean algebras are shared by n-pointed
algebras whose elements satisfy all the equational conditions of n-central elements through
an operator q of arity n + 1 satisfying the fundamental properties of a generalised if-then-
else connective. These algebras, and the varieties they form, were termed Boolean-like
algebras of dimension n (nBA, for short) in [6]. Varieties of nBAs have many remarkable
properties in common with the variety of Boolean algebras. In particular, any variety of
nBAs with compatible operations is generated by the nBAs of finite cardinality n. In the
pure case (i.e., when the type includes just the generalised if-then-else q and the n constants
e1, . . . , en), there is (up to isomorphism) a unique nBA n of cardinality n, so that any pure
nBA is isomorphic to a subalgebra of nI , for a suitable set I . Another remarkable property
of the 2-element Boolean algebra is the definability of all finite Boolean functions in terms
of the connectives AND, OR, NOT. This property is inherited by the algebra n: all finite
functions on the universe of n are term-definable, so that the variety of pure nBAs is primal.
More generally, a variety of an arbitrary type with one generator is primal if and only if it
is a variety of nBAs.

Lattices and boolean algebras have been generalised in other directions: in the last
decades weakenings of lattices where the meet and join operations may fail to be commu-
tative have attracted the attention of various researchers. A non-commutative generalisation
of lattices, probably the most interesting and successful, is the concept of skew lattice [16]
along with the related notion of skew Boolean algebra (SBA) (the interested reader is re-
ferred to [3, 17, 18] or [26] for a comprehensive account). Here, a SBA is a symmetric
skew lattice with zero in the sense of Leech [16], structurally enriched with an implicative
BCS-difference [4] operation. Roughly speaking, a SBA is a non-commutative analogue
of a generalised Boolean algebra. The significance of SBAs is revealed by a result of
Leech [17], stating that any right-handed SBA can be embedded into some SBA of partial
functions. This result has been revisited and further explored in [1] and [14], showing that
any SBA is dual to a sheaf over a locally-compact Boolean space.

SBAs are also closely related to discriminator varieties (see [3, 9] for the one-pointed
case and [23] for the double-pointed one). Seminal results of Bignall and Leech [3] show
that every algebra in a one-pointed discriminator variety can be presented, up to term equiv-
alence, as a skew Boolean intersection algebra (SBIA) with compatible operations. SBIAs
are closely related to the SBAs of Leech [17]. Every SBIA has a SBA term reduct, but not
conversely.

The present paper explores the connection between skew Boolean algebras and Boolean-
like algebras of dimension n. We prove that any nBA A contains a symmetric ∩-skew
cluster of right-handed SBIAs S∩1 (A), . . . , S∩n (A), called its ∩-skew reducts. Interestingly,
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every permutation σ of the symmetric group Sn determines a bunch of isomorphisms

S∩1 (A) ∼= S∩σ1(A), . . . ,S∩n(A) ∼= S∩σn(A)

which shows the inner symmetry of the nBAs. Every nBA has also a skew cluster
S1(A), . . . , Sn(A) of isomorphic right-handed SBAs, called its skew reducts, which are
the skew Boolean algebra reducts of members of the ∩-skew cluster of A. The skew
reducts of a nBA are so deeply correlated that they allow us to recover the full structure of
the nBA. We introduce a new variety of algebras, called skew star algebras, equationally
axiomatising a bunch of skew Boolean algebras and their relationships, and we prove that
it is term equivalent to the variety of nBAs. We also provide a representation theorem for
right-handed skew Boolean algebras in terms of nBAs of n-partitions. This result follows
on combining Leech’s example [17] showing that every right-handed skew Boolean algebra
can be embedded in an algebra of partial functions with codomain {1, 2} with the result
given in [6] that every nBA is isomorphic to a nBA of n-partitions.

The notion of ideal plays an important role in order theory and universal algebra. Ide-
als, filters and congruences are interdefinable in Boolean algebras. In the case of nBAs, the
couple ideal-filter is replaced by multideals, which are tuples (I1, . . . , In) of disjoint skew
Boolean ideals satisfying some compatibility conditions that extend in a conservative way
those of the Boolean case. We show that there exists a bijective correspondence between
multideals and congruences on nBAs, rephrasing the well known correspondence of the
Boolean case. The proof of this result makes an essential use of the notion of a coordi-
nate, originally defined in [6] and rephrased here in terms of the operations of the skew
reducts. Any element a of a nBA A univocally determines a n-tuple of elements of the
canonical inner Boolean algebra B of A, its coordinates, codifying a as a “linear combina-
tion”. In the Boolean case, there is a bijective correspondence between maximal ideals and
homomorphisms onto 2. In the last section of the paper we show that every multideal can
be extended to an ultramultideal, and that there exists a bijective correspondence between
ultramultideals and homomorphisms onto n. Moreover, ultramultideals are proved to be
exactly the prime multideals.

2 Preliminaries
The notation and terminology in this paper are pretty standard. For concepts, notations
and results not covered hereafter, the reader is referred to [7, 21] for universal algebra, to
[17, 18, 26] for skew Boolean algebras and to [6, 15, 23] for nBAs.

2.1 Algebras

If τ is an algebraic type, an algebra A of type τ is called a τ -algebra, or simply an algebra
when τ is clear from the context. An algebra is trivial if its carrier set is a singleton set.

Superscripts that mark the difference between operations and operation symbols will
be dropped whenever the context is sufficient for a disambiguation.

Con(A) is the lattice of all congruences on A, whose bottom and top elements are,
respectively, ∆ = {(a, a) : a ∈ A} and ∇ = A× A. Given a, b ∈ A, we write θ(a, b) for
the smallest congruence θ such that (a, b) ∈ θ.

We say that an algebra A is:

(i) subdirectly irreducible if the lattice Con(A) has a unique atom;
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(ii) simple if Con(A) = {∆,∇};

(iii) directly indecomposable if A is not isomorphic to a direct product of two nontrivial
algebras.

A class V of τ -algebras is a variety (equational class) if it is closed under subalgebras,
direct products and homomorphic images. If K is a class of τ -algebras, the variety V(K)
generated by K is the smallest variety including K. If K = {A} we write V(A) for
V({A}).

Following Blok and Pigozzi [5], two elements a, b of an algebra A are said to be resid-
ually distinct if they have distinct images in every non-trivial homomorphic image of A.

We say that a variety V is n-pointed iff it has at least n nullary operators that are
residually distinct in any nontrivial member of V . Boolean algebras are the main example
of a double-pointed variety.

A one-pointed variety V is 0-regular if the congruences of algebras in V are uniquely
determined by their 0-classes. Fichtner [10] has shown that a one-pointed variety is 0-
regular if and only if there exist binary terms d1(x, y), . . . , dn(x, y) satisfying the following
two conditions:

• di(x, x) = 0 for every i = 1, . . . , n;

• d1(x, y) = d2(x, y) = · · · = dn(x, y) = 0 ⇒ x = y.

2.1.1 Notations

If A is a set and X ⊆ A, then X denotes the set A \X .
Let n̂ = {1, . . . , n} and q be an operator of arity n+ 1. If d1, . . . , dk is a partition of n̂

and a, b1 . . . , bk ∈ A, then
q(a, b1/d1, . . . , bk/dk) (2.1)

denotes q(a, c1, . . . , cn), where for all 1 ≤ i ≤ n, ci = bj iff i ∈ dj . Notice that
q(a, b1/d1, . . . , bk/dk) is well-defined as d1, . . . , dk partition n̂. If dj is a singleton {i},
then we write b/i for b/dj . If di = n̂\dr is the complement of dr, then we may write b/d̄r
for b/di. The notation (2.1) will be used extensively throughout the paper, mainly to define
derived term operations in the context of nBAs.

2.2 Factor congruences and decomposition

Directly indecomposable algebras play an important role in the characterisation of the
structure of a variety of algebras. For example, if the class of indecomposable algebras
in a Church variety (see Section 3.1 and [23]) is universal, then any algebra in the variety
is a weak Boolean product of directly indecomposable algebras. In this section we summa-
rize the basic ingredients of factorisation: tuples of complementary factor congruences and
decomposition operators (see [21]).

Definition 2.1. A sequence (φ1, . . . , φn) of congruences on a τ -algebra A is a n-tuple of
complementary factor congruences exactly when:

(1)
⋂

1≤i≤n φi = ∆;

(2) ∀(a1, . . . , an) ∈ An, there is u ∈ A such that ai φi u, for all 1 ≤ i ≤ n.
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Such an element u such that ai φi u for every i is unique by Definition 2.1(1).
If (φ1, . . . , φn) is a n-tuple of complementary factor congruences on A, then the func-

tion f : A →
∏n
i=1 A/φi, defined by f(a) = (a/φ1, . . . , a/φn), is an isomorphism.

Moreover, every factorisation of A in n factors univocally determines a n-tuple of comple-
mentary factor congruences.

A pair (φ1, φ2) of congruences is a pair of complementary factor congruences if and
only if φ1 ∩ φ2 = ∆ and φ1 ◦ φ2 = ∇. The pair (∆,∇) corresponds to the product
A ∼= A× 1, where 1 is a trivial algebra; obviously 1 ∼= A/∇ and A ∼= A/∆.

A factor congruence is any congruence which belongs to a pair of complementary
factor congruences. The set of factor congruences of A is not, in general, a sublattice
of Con(A).

Notice that, if (φ1, . . . , φn) is a n-tuple of complementary factor congruences, then φi
is a factor congruence for each 1 ≤ i ≤ n, because the pair (φi,

⋂
j 6=i φj) is a pair of

complementary factor congruences.
It is possible to characterise n-tuples of complementary factor congruences in terms of

certain algebra homomorphisms called decomposition operators (see [21, Definition 4.32]
for additional details).

Definition 2.2. An n-ary decomposition operator on a τ -algebra A is a function f : An →
A satisfying the following conditions:

(D1) f(x, x, . . . , x) = x;

(D2) f(f(x11, x12, . . . , x1n), . . . , f(xn1, xn2, . . . , xnn)) = f(x11, . . . , xnn);

(D3) f is an algebra homomorphism from An to A:

f(g(x11, x12, . . . , x1k), . . . , g(xn1, xn2, . . . , xnk))

= g(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk)),

for every g ∈ τ of arity k.

There is a bijective correspondence between n-tuples of complementary factor congru-
ences and n-ary decomposition operators, and thus, between n-ary decomposition opera-
tors and factorisations of an algebra in n factors.

Theorem 2.3. Any n-ary decomposition operator f : An → A on an algebra A induces
a n-tuple of complementary factor congruences φ1, . . . , φn, where each φi ⊆ A × A is
defined by:

a φi b iff f(a, . . . , a, b, a, . . . , a) = a (b at position i).

Conversely, any n-tuple φ1, . . . , φn of complementary factor congruences induces a de-
composition operator f on A: f(a1, . . . , an) = u iff ai φi u for all i.

We say that two functions f : Am → A and g : An → A commute (see [21, Defini-
tion 4.34]) if

f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn))

= g(f(x11, . . . , xm1), . . . , f(x1n, . . . , xmn)).

In this case, f is a homomorphism from (A, g)m into (A, g) and g is a homomorphism
from (A, f)n into (A, f).

The following proposition is [21, Exercise 4.38(15)].
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Proposition 2.4. Let f and g be an m-ary and an n-ary decomposition operator of an
algebra A. Then f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) is a decomposition operator
of A if and only if f and g commute.

The variables occurring in f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) may not all be
distinct, as explained in the following proposition.

Proposition 2.5. If f is a n-ary decomposition operator and d1, . . . , dk (k ≥ 2) is a
partition of n̂ = {1, . . . , n}, then the map h, defined by

h(y1, . . . , yk) = f(z1, . . . , zn), where for all 1 ≤ i ≤ n, zi = yj iff i ∈ dj ,

is a k-ary decomposition operator.

2.3 Factor elements

The notion of decomposition operator and of factorisation can sometimes be internalised:
some elements of the algebra, the so called factor elements, can embody all the information
codified by a decompostion operator.

Let A be a τ -algebra, where we distinguish a (n+ 1)-ary term operation q.

Definition 2.6. We say that an element e of A is a factor element with respect to q if the
n-ary operation fe : An → A, defined by

fe(a1, . . . , an) = qA(e, a1, . . . , an), for all ai ∈ A,

is a n-ary decomposition operator (that is, fe satisfies identities (D1) – (D3) of Defini-
tion 2.2).

An element e of A is a factor element if and only if the tuple of relations (φ1, . . . , φn),
defined by a φi b iff q(e, a, . . . , a, b, a, . . . , a) = a (b at position i), constitute a n-tuple of
complementary factor congruences of A.

By [9, Proposition 3.4] the set of factor elements is closed under the operation q: if
a, b1, . . . , bn ∈ A are factor elements, then q(a, b1, . . . , bn) is also a factor element.

We notice that

• different factor elements may define the same tuple of complementary factor congru-
ences;

• there may exist n-tuples of complementary factor congruences that do not correspond
to any factor element.

In Section 3 we describe a class of algebras, called Church algebras of dimension n, where
the (n+ 1)-ary operator q induces a bijective correspondence between a suitable subset of
factor elements, the so-called n-central elements, and the set of all n-ary decomposition
operators.

2.4 Skew Boolean algebras

We review here some basic definitions and results on skew lattices [16] and skew Boolean
algebras [17].
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Definition 2.7. A skew lattice is an algebra A = (A,∨,∧) of type (2, 2), where both
∨ and ∧ are associative, idempotent binary operations, connected by the absorption laws:
x ∨ (x ∧ y) = x = x ∧ (x ∨ y); and (y ∧ x) ∨ x = x = (y ∨ x) ∧ x.

The absorption conditions are equivalent to the following pair of biconditionals: a∨b =
b iff a ∧ b = a; and a ∨ b = a iff a ∧ b = b.

In any skew lattice we define the following relations:

1. a ≤ b iff a ∧ b = a = b ∧ a.

2. a �D b iff a ∧ b ∧ a = a.

3. a �L b iff a ∧ b = a.

4. a �R b iff b ∧ a = a.

The relation ≤ is a partial ordering, while the relations �D,�L,�R are preorders. The
equivalences D, L andR, respectively induced by �D, �L and �R, are congruences. For
more details see Schein [24].

A skew lattice is right-handed (left-handed) if R = D (L = D). The following condi-
tions are equivalent for a skew lattice A:

(a) A is right-handed (left-handed);

(b) for all a, b ∈ A, a ∧ b ∧ a = b ∧ a (a ∧ b ∧ a = a ∧ b).

Observe that

(i) The quotient A/D is the maximal lattice image of A. This is the skew-lattice the-
oretic analogue [16, Theorem 1.7] of the well-known Clifford-McLean theorem for
bands.

(ii) The algebras A/L and A/R are the maximal right-handed and left-handed images
of A respectively.

(iii) The skew lattice A is the fibered product of its maximal right-handed image A/L
with its maximal left-handed A/R over its maximal lattice image. This result is
the skew-lattice theoretic analogue [16, Theorem 1.15] of the Kimura factorisation
theorem for idempotent semigroups.

In a skew lattice elements commuting under ∨ need not commute under ∧ and vice-
versa. A skew lattice, satisfying x ∧ y = y ∧ x if and only if x ∨ y = y ∨ x for all x and y,
is called symmetric. Symmetric skew lattices form a variety characterised by the following
identities (see [25, Theorem SSL-6]):

x ∨ y ∨ (x ∧ y) = (y ∧ x) ∨ y ∨ x; x ∧ y ∧ (x ∨ y) = (y ∨ x) ∧ y ∧ x.

The two most significant classes of examples, skew lattices of idempotents in rings (see,
e.g., [16]) and skew Boolean algebras (see [17] and Definition 2.8 below), consist of sym-
metric skew lattices.

If we expand skew lattices by a subtraction operation and a constant 0, we get the
following non-commutative variant of Boolean algebras (see [17]).
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Definition 2.8. A skew Boolean algebra (SBA, for short) is an algebra A = (A,∨,∧, \, 0)
of type (2, 2, 2, 0) such that:

(S1) its reduct (A,∨,∧) is a skew lattice satisfying

• Normality: x ∧ y ∧ z ∧ x = x ∧ z ∧ y ∧ x;
• Symmetry: x ∧ y = y ∧ x iff x ∨ y = y ∨ x;
• Distributivity: x∧ (y∨ z)∧x = (x∧y∧x)∨ (x∧ z∧x) and x∨ (y∧ z)∨x =

(x ∨ y ∨ x) ∧ (x ∨ z ∨ x);

(S2) 0 is left and right absorbing w.r.t. skew lattice meet;

(S3) the operation \ satisfies the identities

(x ∧ y ∧ x) ∨ (x \ y) = x = (x \ y) ∨ (x ∧ y ∧ x);

x ∧ y ∧ x ∧ (x \ y) = 0 = (x \ y) ∧ x ∧ y ∧ x.

Every SBA is strongly distributive, i.e., it satisfies the identities x∧ (y∨ z) = (x∧y)∨
(x ∧ z) and (y ∨ z) ∧ x = (y ∧ x) ∨ (z ∧ x).

It can be seen that, for every a ∈ A, the natural partial order of the subalgebra a ∧A ∧
a = {a ∧ b ∧ a : b ∈ A} = {b : b ≤ a} of A is a Boolean lattice. Indeed, the algebra
(a ∧ A ∧ a,∨,∧, 0, a,¬), where ¬b = a \ b for every b ≤ a, is a Boolean algebra with
minimum 0 and maximum a.

Notice that

• The normal axiom implies the commutativity of ∧ and ∨ in the interval a ∧A ∧ a.

• Axiom (S2) expresses that 0 is the minimum of the natural partial order on A.

• Axiom (S3) implies that, for every b ∈ a∧A∧a, the element a\b is the complement
of b in the Boolean lattice a ∧A ∧ a. We point out here that a \ b is in fact a kind of
relative complement that acts ‘locally’ on subalgebras of the form a ∧A ∧ a.

An element m of a SBA A is maximal if a �D m for every a ∈ A (i.e., a∧m∧a = a,
for every a ∈ A). When they exist, maximal elements form an equivalence class (modulo
D) called the maximal class. If A is a SBA, then A/D, where D is the Clifford-McLean
congruence on A, is a Boolean algebra iff A has a maximal class. Skew Boolean algebras
with a maximal class thus constitute a very specialised class of skew Boolean algebras.
It is known that every skew Boolean algebra embeds into a skew Boolean algebra with a
maximal class.

A nonempty subset I of a SBA A closed under ∨ is an ideal of A (see [19, Section 4])
if it satisfies one of the following equivalent conditions:

• a ∈ A, b ∈ I and a �D b imply a ∈ I;

• a ∈ A and b ∈ I imply a ∧ b, b ∧ a ∈ I;

• a ∈ A and b ∈ I imply a ∧ b ∧ a ∈ I .

Given a congruence φ on a SBA, the equivalence class 0/φ is an ideal. However, congru-
ences on a SBA are not in general in 1-1 correspondence with ideals. In particular, the
congruence lattices of SBAs may satisfy no special lattice identities and they need not be
congruence n-permutable for any n ≥ 2.
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2.5 Skew Boolean algebras with intersections

Skew Boolean algebras such that every finite subset of their universe has an infimum w.r.t.
the underlying natural partial ordering of the algebra stand out for their significance. We
denote the infimum of a and b w.r.t. the natural partial order by a ∩ b and refer to the oper-
ation ∩ as intersection in order to distinguish it from the skew lattice meet ∧. It turns out
that SBAs augmented with the additional operation ∩ can be given an equational charac-
terisation provided we include the operation ∩ into the signature.

Definition 2.9. A skew Boolean ∩-algebra (SBIA, for short) is an algebra A = (A;∨,∧,
∩, \, 0) of type (2, 2, 2, 2, 0) such that:

(i) The reduct (A;∨,∧, \, 0) is a SBA and the reduct (A;∩) is a meet semilattice;

(ii) A satisfies the identities x ∩ (x ∧ y ∧ x) = x ∧ y ∧ x and x ∧ (x ∩ y) = x ∩ y =
(x ∩ y) ∧ x.

The next theorem by Bignall and Leech [3], which we present in its simplest form, pro-
vides a powerful bridge between the theories of SBAs and pointed discriminator varieties.

Theorem 2.10. The variety of type (3, 0) generated by the class of all one-pointed discrim-
inator algebras (A; t, 0), where t is the discriminator function on A and 0 is a constant, is
term equivalent to the variety of right handed SBIAs.

2.6 A term equivalence result for skew Boolean algebras

In [9] Cvetko-Vah and the second author have introduced the variety of semicentral right
Church algebras (SRCAs) and have shown that the variety of right-handed SBAs is term
equivalent to the variety of SRCAs. It is worth noticing that, in SRCAs, a single ternary
operator q replaces all the binary operators of SBAs.

An algebra A = (A, q, 0) of type (3, 0) is called a right Church algebra (RCA, for
short) if it satisfies the identity q(0, x, y) = y.

Definition 2.11. Let A = (A, q, 0) be a RCA. An element a ∈ A is called semicentral if
it is a factor element (w.r.t. q) satisfying q(a, a, 0) = a.

Lemma 2.12 ([9, Proposition 3.9]). Let A = (A, q, 0) be an RCA. Every semicentral
element e ∈ A determines a pair of complementary factor congruences:

φe = {(a, b) : q(e, a, b) = a} and φ̄e = {(a, b) : q(e, a, b) = b}

such that φe = θ(e, 0), the least congruence of A equating e and 0.

Definition 2.13. An algebra A = (A, q, 0) of type (3, 0) is called a semicentral RCA
(SRCA, for short) if every element of A is semicentral.

To help the reader in understanding the term equivalence of SRCAs and right-handed
SBAs, it is perhaps useful to provide an explicit axiomatisation of SRCAs. Such an ax-
iomatisation is not long:

1. q(0, x, y) = y;

2. q(w,w, 0) = w;
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3. q(w, y, y) = y;

4. q(w, q(w, x, y), z) = q(w, x, z);

5. q(w, x, q(w, y, z)) = q(w, x, z);

6. q(w, q(y1, y2, y3), q(z1, z2, z3)) = q(q(w, y1, z1), q(w, y2, z2), q(w, y3, z3)).

The last five identities equationally formalise that the element w is semicentral.

Theorem 2.14 ([9]). The variety of right-handed SBAs is term equivalent to the variety of
SRCAs.

The proof is based on the following correspondence between the algebraic similarity
types of SBAs and of SRCAs:

q(x, y, z) (x ∧ y) ∨ (z \ x)

x ∨ y  q(x, x, y)

x ∧ y  q(x, y, 0)

x \ y  q(y, 0, x).

The natural partial order and preorder of a SRCA are the partial order ≤ and the pre-
order �D = �R of its corresponding SBA.

Example 2.15 (see [8, 9]). Let F(X,Y ) be the set of all partial functions from X into Y .
The algebra F = (F(X,Y ), q, 0) is a SRCA, where

• 0 = ∅ is the empty function;

• For all functions f : F → Y , g : G→ Y and h : H → Y (F,G,H ⊆ X),

q(f, g, h) = g|G∩F ∪ h|H∩F .

By Theorem 2.14 F is term equivalent to the right-handed SBA with universe F(X,Y ),
whose operations are defined as follows:

f ∧ g = g|G∩F ; f ∨ g = f ∪ g|G∩F ; g \ f = g|G∩F .

3 Boolean-like algebras of finite dimension
Some important properties of Boolean algebras are shared by n-pointed algebras whose
elements satisfy all the equational conditions of n-central elements through an operator q
of arity n + 1 satisfying the fundamental properties of a generalised if-then-else connec-
tive. These algebras, and the varieties they form, were termed Boolean-like algebras of
dimension n in [6].

3.1 Church algebras of finite dimension

In this section we recall from [6] the notion of a Church algebra of dimension n. These
algebras have n nullary operations e1, . . . , en (n ≥ 2) and an operation q of arity n + 1
(a sort of “generalised if-then-else”) satisfying the identities q(ei, x1, . . . , xn) = xi. The
operator q induces, through the so-called n-central elements, a decomposition of the alge-
bra into n factors.
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Definition 3.1. Algebras of type τ , equipped with at least n nullary operations e1, . . . , en
(n ≥ 2) and a term operation q of arity n+ 1 satisfying q(ei, x1, . . . , xn) = xi, are called
Church algebras of dimension n (nCA, for short); nCAs admitting only the (n + 1)-ary q
operator and the n constants e1, . . . , en are called pure nCAs.

If A is an nCA, then A0 = (A, q, e1, . . . , en) is the pure reduct of A.
Church algebras of dimension 2 were introduced as Church algebras in [20] and stud-

ied in [23]. Examples of Church algebras of dimension 2 are Boolean algebras (with
q(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)) or rings with unit (with q(x, y, z) = xy + z − xz).
Next, we present some examples of Church algebra having dimension greater than 2.

Example 3.2 (Semimodules). Let R be a semiring and V be an R-semimodule generated
by a finite set E = {e1, . . . , en}. Then we define an operation q of arity n + 1 as follows
(for all v =

∑n
j=1 vjej and wi =

∑n
j=1 w

i
jej):

q(v,w1, . . . ,wn) =

n∑
i=1

viw
i.

Under this definition, V becomes a nCA. As a concrete example, if B is a Boolean al-
gebra, Bn is a semimodule (over the Boolean ring B) with the following operations:
(a1, . . . , an) + (b1, . . . , bn) = (a1 ∨ b1, . . . , an ∨ bn) and b(a1, . . . , an) = (b ∧ a1, . . . ,
b ∧ an). Bn is also called a Boolean vector space (see [11, 12]).

Example 3.3 (n-Sets). Let I be a set. A n-subset of I is a sequence (Y1, . . . , Yn) of subsets
Yi of I . We denote by Setn(I) the family of all n-subsets of I . Setn(I) becomes a pure
nCA if we define an (n + 1)-ary operator q and n constants e1, . . . , en as follows, for all
n-subsets yi = (Y i1 , . . . , Y

i
n):

q(y0,y1, . . . ,yn) = (

n⋃
i=1

Y 0
i ∩ Y i1 , . . . ,

n⋃
i=1

Y 0
i ∩ Y in);

e1 = (I, ∅, . . . , ∅), . . . , en = (∅, . . . , ∅, I).

In [27], Vaggione introduced the notion of central element to study algebras whose
complementary factor congruences can be replaced by certain elements of their universes.
Central elements coincide with central idempotents in rings with unit and with members of
the centre in ortholattices.

Theorem 3.4 ([6]). If A is a nCA of type τ and c ∈ A, then the following conditions are
equivalent:

1. c is a factor element (w.r.t. q) satisfying the identity q(c, e1, . . . , en) = c;

2. the sequence of congruences (θ(c, e1), . . . , θ(c, en)) is a n-tuple of complementary
factor congruences of A;

3. for all a1, . . . , an ∈ A, q(c, a1, . . . , an) is the unique element such that

ai θ(c, ei) q(c, a1, . . . , an),

for all 1 ≤ i ≤ n;
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4. The function fc, defined by fc(a1, . . . , an) = q(c, a1, . . . , an) for all a1, . . . , an ∈
A, is a n-ary decomposition operator on A such that fc(e1, . . . , en) = c.

Definition 3.5. If A is a nCA, then c ∈ A is called n-central if it satisfies one of the equiv-
alent conditions of Theorem 3.4. A n-central element c is nontrivial if c /∈ {e1, . . . , en}.

Every n-central element c ∈ A induces a decomposition of A as a direct product of the
algebras A/θ(c, ei), for i ≤ n.

The set of all n-central elements of a nCA A is a subalgebra of the pure reduct of A.
We denote by Cen(A) the algebra (Cen(A), q, e1, . . . , en) of all n-central elements of an
nCA A.

Factorisations of arbitrary algebras in n factors may be studied in terms of n-central
elements of suitable nCAs of functions, as explained in the following example.

Example 3.6. Let A be an arbitrary algebra of type τ and F be a set of functions from An

into A, which includes the projections eFi and all constant functions fb (b ∈ A):

(1) eFi (a1, . . . , an) = ai, for every a1, . . . , an ∈ A;

(2) fb(a1, . . . , an) = b, for every a1, . . . , an ∈ A;

and it is closed under the following operations (for all f, hi, gj ∈ F and all a1, . . . , an ∈
A):

(3) qF(f, g1 . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an) . . . , gn(a1, . . . , an)).

(4) σF(h1, . . . , hk)(a1, . . . , an) = σA(h1(a1, . . . , an), . . . , hk(a1, . . . , an)), for every
σ ∈ τ of arity k.

The algebra F = (F, σF, qF, eF1 , . . . , e
F
n )σ∈τ is a nCA. It is possible to prove that a func-

tion f ∈ F is a n-central element of F if and only if f is a n-ary decomposition operator
on the algebra A commuting (see Section 2.2) with every function g ∈ F . The reader may
consult [22] for the case n = 2.

3.2 Boolean-like algebras

Boolean algebras are Church algebras of dimension 2 all of whose elements are 2-central.
It turns out that, among the n-dimensional Church algebras, those algebras all of whose
elements are n-central inherit many of the remarkable properties that distinguish Boolean
algebras. We now recall from [6] the notion of Boolean-like algebras of dimension n, the
main subject of study of this paper.

In [6] nBAs are studied in the general case of an arbitrary similarity type. Here, we
restrict ourselves to consider the pure case, where q is the unique operator of the algebra.

Definition 3.7. A pure nCA A = (A, q, e1, . . . , en) is called a Boolean-like algebra of
dimension n (nBA, for short) if every element of A is n-central.

The class of all nBAs is a variety axiomatised by the following identities:

(B0) q(ei, x1, . . . , xn) = xi (i = 1, . . . , n).

(B1) q(y, x, . . . , x) = x.
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(B2) q(y, q(y, x11, x12, . . . , x1n), . . . , q(y, xn1, xn2, . . . , xnn)) = q(y, x11, . . . , xnn).

(B3) q(y, q(x10, . . . , x1n), . . . , q(xn0, . . . , xnn))
= q(q(y, x10, . . . , xn0), . . . , q(y, x1n, . . . , xnn)).

(B4) q(y, e1, . . . , en) = y.

In the following lemma we show that every nontrivial nBA has at least n elements.

Lemma 3.8. The constants ei (1 ≤ i ≤ n) are pairwise residually distinct in every non-
trivial nBA.

Proof. Let A be a nontrivial nBA such that ek = ej for some k 6= j. If a1, . . . , an ∈
A with ak 6= aj , then ak = q(ek, a1, . . . , an) = q(ej , a1, . . . , an) = aj , providing a
contradiction.

Boolean-like algebras of dimension 2 were introduced in [23] with the name “Boolean-
like algebras”. Inter alia, it was shown in that paper that the variety of Boolean-like alge-
bras of dimension 2 is term-equivalent to the variety of Boolean algebras.

Example 3.9. The algebra Cen(A) of all n-central elements of a nCA A of type τ is a
canonical example of nBA (see the remark after Definition 3.5).

Example 3.10. The algebra n = ({e1, . . . , en}, qn, en1 , . . . , enn), where qn(ei, x1, . . . ,
xn) = xi for every i ≤ n, is a nBA.

Example 3.11 (n-Partitions). Let I be a set. An n-partition of I is a n-subset (Y 1, . . . , Y n)
of I such that

⋃n
i=1 Y

i = I and Y i ∩ Y j = ∅ for all i 6= j. The set of n-partitions of I
is closed under the q-operator defined in Example 3.3 and constitutes the algebra of all
n-central elements of the pure nCA Setn(I) of all n-subsets of I . Notice that the algebra
of n-partitions of I , denoted by Parn(I), can be proved isomorphic to the nBA nI (the
Cartesian product of I copies of the algebra n).

The variety BA of Boolean algebras is semisimple as every A ∈ BA is subdirectly
embeddable into a power of the 2-element Boolean algebra, which is the only subdirectly
irreducible (in fact, simple) member of BA. This property finds an analogue in the structure
theory of nBAs.

Theorem 3.12 ([6]). The algebra n is the unique subdirectly irreducible (in fact, simple)
nBA and it generates the variety of nBAs.

The next corollary shows that, for any n ≥ 2, the nBA n plays a role analogous to the
Boolean algebra 2 of truth values.

Corollary 3.13. Every nBA A is isomorphic to a subdirect power of nI , for some set I .

A subalgebra of the nBA Parn(I) of the n-partitions on a set I , defined in Exam-
ple 3.11, is called a field of n-partitions on I . The Stone representation theorem for nBAs
follows.

Corollary 3.14. Any nBA is isomorphic to a field of n-partitions on a suitable set I .
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One of the most remarkable properties of the 2-element Boolean algebra, called primal-
ity in universal algebra [7, Section 7 in Chapter IV], is the definability of all finite Boolean
functions in terms of the connectives AND, OR, NOT. This property is inherited by nBAs.
An algebra of cardinality n is primal if and only if it admits the nBA n as a subreduct.

Definition 3.15. Let A be a nontrivial algebra. A is primal if it is of finite cardinality
and, for every function f : Ak → A (k ≥ 0), there is a k-ary term t such that for all
a1, . . . , ak ∈ A, f(a1, . . . , ak) = tA(a1, . . . , ak).

A variety V is primal if V = V(A) for a primal algebra A.

Theorem 3.16 ([6]).

(i) The variety nBA = V(n) is primal;

(ii) Let A be a finite algebra of cardinality n. Then A is primal if and only if it admits
the algebra n as a subreduct.

We would like to point out here that when an algebra A is primal, the choice of fun-
damental operations is a matter of taste and convenience (since any set of functionally
complete operations would serve), and hence is typically driven by applications.

4 Skew Boolean algebras and nBAs
In this section we prove that any nBA A contains a symmetric ∩-skew cluster of right-
handed SBIAs S∩1 (A), . . . , S∩n (A). The algebra S∩i (A), called the ∩-skew i-reduct of A,
has ei as a bottom element, and the other constants e1, . . . , ei−1, ei+1, . . . , en as maximal
elements. Rather interestingly, every permutation σ of the symmetric group Sn determines
a bunch of isomorphisms

S∩1 (A) ∼= S∩σ1(A), . . . ,S∩n(A) ∼= S∩σn(A)

which shows the inner symmetry of the nBAs. Every nBA has also a skew cluster S1(A),
. . . , Sn(A) of isomorphic right-handed SBAs, which are the skew Boolean algebra reducts
of members of the ∩-skew cluster of A. We conclude the section with a general represen-
tation theorem for right-handed SBAs in terms of nBAs of n-partitions.

4.1 The skew reducts of a nBA

In [9] it is shown that the variety of SBAs is term equivalent to the variety of SRCAs (see
Section 2.6), whose type contains only a ternary operator and a nullary operator. Here we
use the (n+1)-ary operator q of a nBA A to define ternary operators t1, . . . , tn such that the
reducts (A, ti, ei) are isomorphic SRCAs. Their term equivalent SBAs are all isomorphic
reducts of A, too. We also show that these isomorphic SBAs are in their turn reducts of
isomorphic SBIAs.

For every i ∈ n̂, we denote by ī the set n̂ \ {i}.
In the following definition we use the (n+1)-ary operator q of nBAs to introduce some

term operations needed to define the above-described reducts of nBAs.

Definition 4.1. Let A = (A, q, e1, . . . , en) be a nBA. Given 1 ≤ i ≤ n, we define the
following term operations:
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• ti(x, y, z) = q(x, y/̄i, z/i);

• x ∧i y = ti(x, y, ei);

• x ∨i y = ti(x, x, y);

• x \i y = ti(y, ei, x);

• di(x, y) = q(x, t1(y, x ∨i y, ei), t2(y, x ∨i y, ei), . . . , tn(y, x ∨i y, ei));

• x ∩i y = q(x, t1(y, ei, x), t2(y, ei, x), . . . , tn(y, ei, x)).

We now define three reducts of a nBA A, for each 1 ≤ i ≤ n.

Definition 4.2. Let A be a nBA. We define the following three reducts of A:

(i) The right Church i-reduct Ri(A) = (A, ti, ei).

(ii) The skew i-reduct Si(A) = (A,∧i,∨i, \i, ei).

(iii) The ∩-skew i-reduct S∩i (A) = (A,∧i,∨i, \i, ei,∩i).

In the remaining part of this subsection we will prove that Ri(A) is a SRCA, S∩i (A)
is a ei-regular (w.r.t. di) right-handed SBIA, and Si(A) is a right-handed SBA.

In the following lemmas we prove some properties of the term operations introduced in
Definition 4.1.

Lemma 4.3. The term operations of Definition 4.1 satisfy the following conditions when
they are interpreted in the generator n of the variety nBA:

ti(a, b, c) =

{
c if a = ei

b if a 6= ei
; a ∧i b =

{
ei if a = ei

b if a 6= ei
; a ∨i b =

{
b if a = ei

a if a 6= ei
;

a \i b =

{
a if b = ei

ei if b 6= ei
; di(a, b) =

{
ei if a = b

a ∨i b if a 6= b
; a ∩i b =

{
a if a = b

ei if a 6= b
.

Proof. The proof is trivial for ti,∧i,∨i, \i. We now prove the relation for di(a, b). We
distinguish three cases.

• (a = b):

di(a, a) = q(a, t1(a, a ∨i a, ei), . . . , tn(a, a ∨i a, ei))
=(B2) q(a, ei, . . . , ei) =(B1) ei.

• (a = ek and a 6= b):

di(ek, b) = q(ek, t1(b, ek ∨i b, ei), . . . , tn(b, ek ∨i b, ei))
= tk(b, ek ∨i b, ei) =(b 6=ek) ek ∨i b = a ∨i b.

By definition of ∩i it is trivial to prove a ∩i a = a. If a = ek 6= b, then we have:

a ∩i b = q(a, t1(b, ei, a), t2(b, ei, a), . . . , tn(b, ei, a))

=(a=ek) tk(b, ei, a) =(b6=ek) ei.
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Lemma 4.4. The following identities hold in every nBA:

(1) ti(ei, x, y) = y and ti(ej , x, y) = x, for every j 6= i;

(2)
q(x, y1, . . . , yn) = t1(x, t2(x, t3(x, . . . tn(x, z, yn) . . . , y3), y2), y1)

= t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1).

(3) ∧i and ∨i are idempotents;

(4) di(x, x) = ei and x ∩i x = x;

(5) ti(di(x, y), x, y) = x and ti(x ∩i y, y, x) = x;

(6) (A,∩i, ei) is a meet semilattice with bottom ei;

(7) x ∩i (x ∧i y ∧i x) = x ∧i y ∧i x and x ∧i (x ∩i y) = x ∩i y = (x ∩i y) ∧i x;

(8) di(x, y) = (x ∨i y) \i (x ∩i y);

(9) x ∩i y = (x ∧i y) \i di(x, y).

Proof. The identities are checked in the generator n of the variety nBA.
(2): First we have:

t1(ek, t2(ek, t3(ek, . . . tn(ek, c, bn) . . . , b3), b2), b1)

= t2(ek, t3(ek, . . . tn(ek, c, bn) . . . , b3), b2)

= · · · = tk(ek, . . . tn(ek, c, bn) . . . , bk) = bk = q(ek, b1, . . . , bn).

If k 6= n, a similar computation gives:

t1(ek, t2(ek, t3(ek, . . . tn−1(ek, bn, bn−1) . . . , b3), b2), b1) = bk.

If k = n, then we have:

t1(en, t2(en, t3(en, . . . tn−1(en, bn, bn−1) . . . , b3), b2), b1)

= · · · = tn−1(en, bn, bn−1) = bn.

(3) – (4): Trivial by Lemma 4.3.
(5): If a = b, then the conclusion ti(di(a, a), a, a) = a and ti(a∩ia, a, a) = a is trivial

by (4). Let now a 6= b.

• ti(a ∩i b, b, a) =(Lemma 4.3) ti(ei, b, a) = a.

• If a = ei then ti(di(ei, b), ei, b) =(Lemma 4.3) ti(b, ei, b) =(b 6=ei) ei = a.

• If a 6= ei, then ti(di(a, b), a, b) =(Lemma 4.3) ti(a, a, b) =(a6=ei) a.

(8):

(a ∨i b) \i (a ∩i b) = ti(a ∩i b, ei, a ∨i b)

=

{
ti(a, ei, a) = ei if a = b

ti(ei, ei, a ∨i b) = a ∨i b if a 6= b

= di(a, b).
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(9): First we have: (a ∧i a) \i di(a, a) = ti(ei, ei, a) = a = a ∩i a. If a 6= b, then

(a ∧i b) \i di(a, b) = ti(di(a, b), ei, a ∧i b)
= ti(a ∨i b, ei, a ∧i b) = ei = a ∩i b,

because by Lemma 4.3, a ∨i b 6= ei if a 6= b.
(6) and (7) can be similarly checked in the generator n of the variety nBA by using

Lemma 4.3.

Lemma 4.5. Let A be a nBA, and a, b ∈ A. Then we have:

(i) ti(a,−,−) is a 2-ary decomposition operator on A.

(ii) di(a, b) = ei ⇒ a = b.

Proof. (i): The binary operator ti(a,−,−) is a decomposition operator, because it is ob-
tained by the n-ary decomposition operator q(a,−, . . . ,−) equating some of its coordi-
nates (see [21] and Proposition 2.5).

(ii): Let di(a, b) = ei. Then a =(Lemma 4.4(5)) ti(di(a, b), a, b) = ti(ei, a, b) = b.

We now characterise the reducts Ri(A), Si(A) and S∩i (A) of a nBA A (see Defini-
tion 4.2).

Proposition 4.6. Let A be a nBA. Then the following conditions hold:

(i) The right Church i-reduct Ri(A) = (A, ti, ei) of A is a SRCA;

(ii) The skew i-reduct Si(A) = (A,∧i,∨i, \i, ei) of A is a right-handed SBA.

Proof. By Lemma 4.4(3) and Lemma 4.5(i) every element ofA is a factor element (w.r.t. ti)
that is ∧i-idempotent. Then every element of A is semicentral, so that Ri(A) is a SRCA.
By Theorem 2.14 the skew i-reduct Si(A) is a right-handed SBA.

Hereafter, we denote by �iD,�iL,�iR and ≤i the natural preorders and order of the
SBA Si(A) (see Section 2.4). Since Si(A) is right-handed �iD and �iR coincide.

Proposition 4.7. The elements e1, . . . , ei−1, ei+1, . . . , en are maximal elements of Si(A).

Proof. We show the maximality of the elements e1, . . . , ei−1, ei+1, . . . , en with respect to
the natural preorder �iD of the SBA Si(A), defined by a �iD b iff a ∧i b ∧i a = a. If
k 6= i and a ∈ A, then a ∧i ek ∧i a = a ∧i a = a, because ek ∧i a = ti(ek, a, ei) = a by
Lemma 4.4(1).

By Proposition 4.7 the skew i-reduct Si(A) has a maximal class M with e1, . . . , ei−1,
ei+1, . . . , en ∈ M . Then the algebra Si(A)/Di is a Boolean algebra, where Di is the
equivalence induced by �iD.

Proposition 4.8. The ∩-skew i-reduct S∩i (A) = (A,∧i,∨i, \i, ei,∩i) of A is a ei-regular
right-handed SBIA.

Proof. By Proposition 4.6 the skew i-reduct Si(A) = (A,∧i,∨i, \i, ei) is a right-handed
SBA. By Lemma 4.4(6),(7) and by Definition 2.9 the ∩-skew i-reduct S∩i (A) is a right-
handed SBIA. By Lemma 4.4(8) we have that di(x, y) = (x ∨i y) \i (x ∩i y) is a term
operation in the type of SBIAs. Then the ei-regularity w.r.t. di follows from Lemma 4.4(4)
and Lemma 4.5(ii) (see Section 2.1 for the definition of regularity).
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Remark 4.9. Skew Boolean algebras, whose underlying natural partial ordering is a meet
semilattice, cannot be equationally axiomatised in the type of SBAs. Therefore, skew
Boolean ∩-algebras of Definition 2.9 are equationally axiomatised in the type of SBAs
enriched with a binary operator ∩ of intersection. Rather interestingly, if A is a nBA
the term operation ∩i is definable in terms of ∧1,∨1, \1, e1, . . . ,∧n,∨n, \n, en. This fol-
lows from Definition 4.1, Lemma 4.4(2), and Theorem 2.14. Then the following ques-
tion is natural. Let A = (A,∧,∨, \, 0) be a SBA, whose underlying natural partial or-
dering is a meet semilattice (A,∩, 0) with bottom. Does there exist a bunch of SBAs
A1 = (A,∧1,∨1, \1, 01), . . . ,Ak = (A,∧k,∨k, \k, 0k) such that the meet operation ∩ is
definable in terms of the skew Boolean operations of A1, . . . ,Ak? A further analysis of
this question will be given in Section 5.

4.2 A bunch of isomorphisms

It turns out that all the ∩-skew reducts of a nBA A are isomorphic. In order to prove this,
we study the action of the symmetric group Sn on A. The first part of this section is rather
technical.

Let A be a nBA. For every permutation σ of the symmetric group Sn and a, b1, . . . , bn ∈
A, we define a sequence us (1 ≤ s ≤ n+ 1) parametrised by another permutation τ :

un+1 = bτn; us = tτs(a, us+1, bστs) (1 ≤ s ≤ n).

In the following lemma we prove that u1 is independent of the permutation τ .
Notice that un = q(a, bτn/τn, bστn/τn) and us = q(a, us+1/τs, bστs/τs).

Lemma 4.10. For every 1 ≤ s ≤ n we have:

us = q(a, bτn/{τ1, τ2 . . . , τ(s− 1)}, bστs/τs, bστ(s+1)/τ(s+ 1), . . . , bστn/τn).

Then u1 = q(a, bστ1/τ1, bστ2/τ2, . . . , bστn/τn) = q(a, bσ1, bσ2, . . . , bσn).

Proof. Assume that

us+1 = q(a, bτn/{τ1, τ2 . . . , τs}, bστ(s+1)/τ(s+ 1), . . . , bστn/τn).

Then we have:

us = tτs(a, us+1, bστs)

= q(a, us+1/τs, bστs/τs)

=(B2) q(a, bτn/{τ1, τ2 . . . , τ(s− 1)}, bστs/τs, bστ(s+1)/τ(s+ 1), . . . , bστn/τn).

We define
aσ = q(a, eσ1, eσ2, . . . , eσn).

The transposition (ij) exchanges i and j: (ij)(i) = j and (ij)(j) = i.

Lemma 4.11. The following conditions hold in every nBA, for all permutations σ, τ and
indices i 6= j:

(1) The 2-ary decomposition operators ti(x,−,−) and tj(x,−,−) commute:

ti(x, tj(x, y, z), tj(x, u, w)) = tj(x, ti(x, y, u), ti(x, z, w))

= q(x, y/{i, j}, z/j, u/i);
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(2) ti(x, tj(x, y, z), u) = tj(x, ti(x, y, u), z) = q(x, y/{i, j}, z/j, u/i);

(3) q(x, yσ1, . . . , yσn)
= tτ1(x, tτ2(x, tτ3(x, . . . tτn(x, yτn, yστn) . . . , yστ3)), yστ2), yστ1);

(4) xσ = tτ1(x, tτ2(x, tτ3(x, . . . tτn(x, eτn, eστn) . . . , eστ3)), eστ2), eστ1);

(5) q(xσ, y1, . . . , yn) = q(x, yσ1, . . . , yσn);

(6) x(ij) = ti(x, tj(x, x, ei), ej) = tj(x, ti(x, x, ej), ei);

(7) q(x, y1, . . . , yn)σ = q(x, (y1)σ, . . . , (yn)σ);

(8) xτ◦σ = (xσ)τ .

Proof. Let A be a nBA and a, b, c, d, e, b1, . . . , bn be elements of A.
(1):

ti(a, tj(a, b, c), tj(a, d, e)) = q(a, tj(a, b, c)/̄i, tj(a, d, e)/i)

= q(a, q(a, b/j̄, c/j)/̄i, q(a, d/j̄, e/j)/i)

=(B2) q(a, b/{i, j}, c/j, d/i).

By symmetry we also get tj(a, ti(a, b, d), ti(a, c, e)) = q(a, b/{i, j}, c/j, d/i).
(2): ti(a, tj(a, b, c), d) = ti(a, tj(a, b, c), tj(a, d, d)) =(1) q(a, b/{i, j}, c/j, d/i), and

similarly tj(a, ti(a, b, d), c) = tj(a, ti(a, b, d), ti(a, c, c)) = q(a, b/{i, j}, c/j, d/i).
(3): By Lemma 4.10, u1 = q(a, bσ1, . . . , bσn). Then the conclusion follows from the

unfolding of the definition of u1:

u1 = tτ1(a, u2, bστ1) = tτ1(a, tτ2(a, u3, bστ2), bστ1) = · · ·

(4): Follows from (3) by putting yk = ek.
(5): q(aσ, b1, . . . , bn) = q(q(a, eσ1, . . . , eσn), b1, . . . , bn) =(B3) q(a, bσ1, . . . , bσn).
(6):

ti(a, tj(a, a, ei), ej) = tj(a, ti(a, a, ej), ei) by (2)

= q(a, a/{i, j}, ei/j, ej/i) by (2)

= q(a, q(a, e1, . . . , en)/{i, j}, ei/j, ej/i) by (B4)

= a(ij) by (B2)

(7):

q(a, b1, . . . , bn)σ = q(q(a, b1, . . . , bn), eσ1, eσ2, . . . , eσn)

=(B3) q(a, q(b1, eσ1, eσ2, . . . , eσn), . . . , q(bn, eσ1, eσ2, . . . , eσn))

= q(a, (b1)σ, . . . , (bn)σ).

(8):

(aσ)τ = q(a, eσ1, eσ2, . . . , eσn)τ

=(7) q(a, (eσ1)τ , . . . , (eσn)τ )

= q(a, eτ(σ1), . . . , eτ(σn))

= aτ◦σ.
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Theorem 4.12. For every transposition (rk) ∈ Sn, the map x 7→ x(rk) defines an isomor-
phism from S∩r (A) onto S∩k (A).

Proof. Let σ = (rk) in this proof. The map x 7→ xσ is bijective, because

(aσ)σ =(Lemma 4.11(8)) a
σ◦σ = aId = q(a, e1, . . . , en) =(B4) a,

for every a ∈ A. We now prove that x 7→ xσ is a homomorphism of SBIAs. We recall
from Definition 4.1 that the operations ∧r,∨r, \r are defined in terms of tr. Then to get the
conclusion it is sufficient to prove the following equalities, for all a, b, c ∈ A: tr(a, b, c)σ =
tk(aσ, bσ, cσ), (a ∩r b)σ = aσ ∩k bσ and (er)

σ = ek:

•

tr(a, b, c)
σ =(Lemma 4.11(7)) tr(a, b

σ, cσ) = tr((a
σ)σ, bσ, cσ) = q((aσ)σ, bσ/r, cσ/r)

=(Lemma 4.11(5)) q(a
σ, bσ/k, cσ/k) = tk(aσ, bσ, cσ).

• (er)
σ = eσr = ek.

•

(a ∩r b)σ = q(a, t1(b, er, a), . . . , tn(b, er, a))σ

= q(a, t1(b, er, a)σ, . . . , tn(b, er, a)σ)

= q(a, t1(b, (er)
σ, aσ), . . . , tn(b, (er)

σ, aσ))

= q(a, t1(b, ek, a
σ), . . . , tn(b, ek, a

σ))

= q((aσ)σ, t1((bσ)σ, ek, a
σ), . . . , tn((bσ)σ, ek, a

σ))

= q((aσ)σ, . . . , tr((b
σ)σ, ek, a

σ), . . . , tk((bσ)σ, ek, a
σ), . . . )

= q(aσ, . . . , tk((bσ)σ, ek, a
σ), . . . , tr((b

σ)σ, ek, a
σ), . . . )

= q(aσ, . . . , tr(b
σ, ek, a

σ), . . . , tk(bσ, ek, a
σ), . . . )

= aσ ∩k bσ.

4.3 A general representation theorem for right-handed SBAs

In this section we show that, for every n ≥ 3, there is a representation of an arbitrary
right-handed SBA within the skew i-reduct of a suitable nBA of n-partitions (described in
Example 3.11). The theorem also provides a new proof that every SBA can be embedded
into a SBA with a maximal class (see Proposition 4.7).

Theorem 4.13. Let n ≥ 3. Then every right-handed SBA can be embedded into the skew
i-reduct Si(A) of a suitable nBA A of n-partitions.

Proof. (a) By [17, Corollary 1.14] every right-handed SBA can be embedded into an alge-
bra of partial functions with codomain the set {1, 2} (see Example 2.15), where 0 = ∅ is
the empty function, f ∧ g = g|G∩F , f ∨ g = f ∪ g|G∩F and g \ f = g|G∩F (with F,G and
H the domains of the functions f, g, h, respectively).

(b) By Corollary 3.14 every nBA is isomorphic to a nBA of n-partitions of a suitable
set I (see Examples 3.3 and 3.11). If P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) are
n-partitions of I , then

P ∧i Q = ti(P,Q, ei) = q(P,Q/̄i, ei/i)

= (Pi ∩Q1, . . . , Pi ∪ (Pi ∩Qi), . . . , Pi ∩Qn).
(4.1)
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The other operations can be similarly defined.
(c) We define an injective function ∗ between the set of partial functions from a set

I into {1, 2} and the set of n-partitions of I . If f : I ⇀ {1, 2} is a partial function,
then f∗ = (P1, . . . , Pn) is the following n-partition of I: P1 = f−1(1), P2 = f−1(2),
Pi = I \ dom(f) and Pk = ∅ for any k 6= 1, 2, i.

(d) The map ∗ preserves the meet. Let f : F → {1, 2} and g : G → {1, 2} (F,G ⊆ I)
be functions. Then we derive (f ∧ g)∗ = f∗ ∧i g∗ as follows:

f∗ = (f−1(1), f−1(2), ∅, . . . , ∅, F , ∅, . . . , ∅)

g∗ = (g−1(1), g−1(2), ∅, . . . , ∅, G, ∅, . . . , ∅)

(f ∧ g)∗ = (g|G∩F )∗

= (F ∩ g−1(1), F ∩ g−1(2), ∅, . . . , ∅, G ∪ F , ∅, . . . , ∅)
= (F ∩ g−1(1), F ∩ g−1(2), ∅ . . . , F ∪ (F ∩G), ∅, . . . , ∅)
= f∗ ∧i g∗.

Similarly for the other operations.

5 Skew star algebras
The skew reducts of a nBA are so deeply related that they allow us to recover the full
structure of the nBA. It is worthwhile introducing a new variety of algebras, called skew
star algebras, equationally axiomatising n isomorphic SBAs and their relationships. In the
main result of this section we prove that the variety of skew star algebras is term equivalent
to the variety of nBAs.

By Lemma 4.4(2) we have that the identity

q(x, y1, . . . , yn) = t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1)

holds in every nBA. It follows that

tn(x, y, z) = t1(x, t2(x, t3(x, . . . tn−1(x, z, y) . . . , y), y), y),

so that tn is term definable by the remaining ti (1 ≤ i ≤ n− 1). This is one of the reasons
for introducing n − 1 (and not n) ternary operators in the following definition. Another
reason is technical simplification.

Definition 5.1. An algebra B = (B, t1, . . . , tn−1, 01, . . . , 0n), where ti is ternary and 0j is
a nullary operator, is called a skew star algebra if the following conditions hold, for every
1 ≤ i, k ≤ n− 1 and 1 ≤ j ≤ n:

(N0) (B, ti, 0i) is a SRCA.

(N1) ti(0j , y, z) = y (i 6= j).

(N2) t1(x, t2(x, t3(x, (. . . tn−1(x, 0n, 0n−1) . . . ), 03), 02), 01) = x.

(N3) ti(x, tk(x, y, z), tk(x, u, w)) = tk(x, ti(x, y, u), ti(x, z, w)) (i 6= k).

(N4) ti(x, tk(x, y, z), u) = tk(x, ti(x, y, u), z) (i 6= k).
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(N5) ti(x,−,−) is a homomorphism of the algebra (B, tk, 0k) × (B, tk, 0k) into
(B, tk, 0k):

ti(x, tk(y1, y2, y3), tk(z1, z2, z3)) = tk(ti(x, y1, z1), ti(x, y2, z2), ti(x, y3, z3)).

Skew star algebras constitute a variety of algebras.
The identities characterising skew star algebras deserve some explanation. Let Bi =

(B, ti, 0i) (i = 1, . . . , n− 1) be a family of SRCAs having the same universe B and such
that 01, . . . , 0n−1 are distinct elements of B. Let 0n be another element of B distinct from
01, . . . , 0n−1. Let B = (B, t1, . . . , tn−1, 01, . . . , 0n) be the algebra collecting the basic
operations of the algebras Bi and the constant 0n. Roughly speaking, the structure of an
nBA on B with respect to the term operation qt, defined by

qt(x, y1, . . . , yn) := t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1), (5.1)

can be recovered from the cluster of SRCAs Bi if (N1) – (N5) hold:

(i) (N1) implies that B is a nCA with respect to the operation qt.

(ii) Since Bi is a SRCA, then, for every b ∈ B, the function ti(b,−,−) satisfies con-
ditions (D1) and (D2) of Definition 2.2. Then, axiom (N5) implies that, for every
b ∈ B, the binary functions t1(b,−,−), . . . , tn−1(b,−,−) are 2-ary decomposition
operators of the nCA B.

(iii) (N3) means that the decomposition operators t1(b,−,−), . . . , tn−1(b,−,−) are pair-
wise commuting. Hence, by Proposition 2.4 and by Proposition 2.5 the n-ary op-
erator qt(b,−, . . . ,−) (see (5.1) above) is a n-ary decomposition operator of the
nCA B.

(iv) (N2) implies that the factor element b satisfies the identity qt(b, 01, . . . , 0n) = b.
Then b is a n-central element of the nCA B, for every b ∈ B. We conclude that
axioms (N1), (N2), (N3) and (N5) collectively imply that B is a nBA (w.r.t. qt).

(v) Axiom (N4) is used to recover the ternary operations ti (1 ≤ i ≤ n−1) from qt, i.e.,
ti(a, b, c) = qt(a, b/̄i, c/i).

We now are going to prove that the variety of skew star algebras and of nBAs are term
equivalent. Consider the following correspondence between the algebraic similarity types
of nBAs and of skew star algebras.

• Beginning on the nBA side: ti(x, y, z) := q(x, y/̄i, z/i) (1 ≤ i ≤ n − 1) and
0j := ej (1 ≤ j ≤ n).

• Beginning on the skew star algebra side:

qt(x, y1, . . . , yn) := t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1);

ej := 0j .

If B is a skew star algebra, then B• = (B; qt, e1, . . . , en) denotes the corresponding
algebra in the similarity type of nBAs.
Similarly, if A is a nBA, then A∗ = (A; t1, . . . , tn−1, 01, . . . , 0n) denotes the correspond-
ing algebra in the similarity type of skew star algebras.

It is not difficult to prove the following theorem.
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Theorem 5.2. The above correspondences define a term equivalence between the varieties
of nBAs and of skew star algebras. More precisely,

(i) If A is a nBA, then A∗ is a skew star algebra;

(ii) If B is a skew star algebra, then B• is a nBA;

(iii) (A∗)• = A;

(iv) (B•)∗ = B.

Proof. (i): (N0) derives from Proposition 4.6, while (N1) comes from Lemma 4.4(1). (N2)
follows from

t1(x, t2(x, t3(x, . . . tn(x, 0n−1, 0n) . . . , 03), 02), 01) =(B2) q(x, 01, . . . , 0n) =(B4) x.

(N3) is a consequence of Lemma 4.11(1). For (N4) we apply Lemma 4.11(2). (N5) follows
from (B3).

(ii): (B0) derives from (N0) and (N1). By (N0) and (N5), ti(x,−,−) (1 ≤ i ≤ n)
is a decomposition operator on B. Then, for every b ∈ B, qt(b,−, . . . ,−) is a n-ary
decomposition operator on B• (i.e., (B1) – (B3) hold), because commuting decomposition
operators are closed under composition (see [21], Proposition 2.4 and Proposition 2.5).
(B4) is a consequence of (N2).

(iii): Let A be a nBA. Since ti(x, y, z) = q(x, y/̄i, z/i), then by (B2) we have:

qt(x, y1, . . . , yn) = t1(x, t2(x, . . . ), y1)

= q(x, y1, t2(x, . . . ), . . . , t2(x, . . . ))

= q(x, y1, y2, t3(x, . . . ), . . . , t3(x, . . . ))
...

= q(x, y1, . . . , yn).

(iv): Let B = (B, t1, . . . , tn−1, 01, . . . , 0n) be a skew star algebra. The conclusion
(B•)∗ = B follows because by (N4) we obtain that ti(x, y, z) = qt(x, y/̄i, z/i) for every
1 ≤ i ≤ n− 1.

6 Multideals
The notion of ideal plays an important role in order theory and universal algebra. Ideals,
filters and congruences are interdefinable in Boolean algebras. For every Boolean ideal I ,
we have that a ∈ I if and only if ¬a ∈ ¬I if and only if a θI 0 if and only if ¬a θI 1. In
the case of nBAs, the couple (I,¬I) is replaced by a n-tuple (I1, . . . , In) satisfying some
compatibility conditions that extend in a conservative way those of the Boolean case.

Definition 6.1. Let A be a nBA. A multideal is a n-partition (I1, . . . , In) of a subset I of
A such that

(m1) ek ∈ Ik;

(m2) a ∈ Ir, b ∈ Ik and c1, . . . , cn ∈ A imply q(a, c1, . . . , cr−1, b, cr+1, . . . , cn) ∈ Ik;

(m3) a ∈ A and c1, . . . , cn ∈ Ik imply q(a, c1, . . . , cn) ∈ Ik.
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The set I is called the carrier of the multideal. An ultramultideal of A is a multideal whose
carrier is A.

The following lemma, whose proof is straightforward, shows the appropriateness of
the notion of multideal. In Section 7 we show that there exists a bijective correspondence
between multideals and congruences.

Lemma 6.2. If θ is a proper congruence on a nBA A, then I(θ) = (e1/θ, . . . , en/θ) is a
multideal of A.

Multideals extend to the n-ary case the fundamental notions of Boolean ideal and filter,
as shown in the following proposition.

Recall from [23] that a 2BA A = (A, q, e1, e2) is term equivalent to the Boolean alge-
bra A∗ = (A,∧,∨,¬, 0, 1), where 0 = e2, 1 = e1, x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y),
¬x = q(x, 0, 1). We remind the reader here how q is recovered from the Boolean algebra
operations: q(x, y, z) = (x ∧ y) ∨ (¬x ∧ z).

Proposition 6.3. Let A be a 2BA, and I1, I2 ⊆ A. Then (I1, I2) is a multideal of A if and
only if I2 is an ideal of A∗, and I1 = ¬I2 is the filter associated to I2 in A∗.

Proof. If (I1, I2) is a multideal, then 0 = e2 ∈ I2 and 1 = e1 ∈ I1. Moreover, if a, b ∈ I2
then a ∨ b = q(a, 1, b) ∈ I2 by (m2), and if a ∈ I2 and b ∈ A, then b ∧ a = q(b, a, 0) ∈ I2
by (m3). It follows that I2 is a Boolean ideal. By (m2) and the definition of ¬ we have
I1 ⊇ {¬a | a ∈ I2} and I2 ⊇ {¬a | a ∈ I1}. Then from ¬¬a = a it follows that
I1 = {¬a | a ∈ I2}.

Conversely, if I2 is a Boolean ideal of A∗ and I1 = ¬I2, then the condition (m1) is
clearly satisfied. Concerning (m2), it is worth noticing that q(a, c, b) = (a∧ c)∨ (¬a∧ b).
Then if a ∈ I2, b ∈ I1, c ∈ A (for instance, the other 3 cases being similar to this one),
we have that ¬a ∈ I1, so that ¬a ∧ b ∈ I1 and we conclude that (a ∧ c) ∨ (¬a ∧ b) =
q(a, c, b) ∈ I1. Concerning (m3), if a, b ∈ I2 and c ∈ A then c ∧ a,¬c ∧ b ∈ I2, hence
(c ∧ a) ∨ (¬c ∧ b) = q(c, a, b) ∈ I2. If a, b ∈ I1 and c ∈ A, then

(c ∧ a) ∨ (¬c ∧ b) ≥ (c ∧ (a ∧ b)) ∨ (¬c ∧ (a ∧ b))
= (c ∨ ¬c) ∧ (a ∧ b) = a ∧ b ∈ I1,

so that (c ∧ a) ∨ (¬c ∧ b) = q(c, a, b) ∈ I1.

In the n-ary case, multideals of A may be characterised as n-tuples of ideals in the skew
i-reducts Si(A) of A, satisfying the conditions expressed in the following proposition.

Proposition 6.4. Let A be a nBA and (I1, . . . , In) be a n-partition of a subset I of A.
Then (I1, . . . , In) is a multideal if and only if the following conditions are satisfied:

(I1) er ∈ Ir;

(I2) a ∈ Ir, b ∈ Ik and c ∈ A imply tr(a, c, b) ∈ Ik;

(I3) a, b ∈ Ir and c ∈ A imply tk(c, a, b) ∈ Ir, for all k.

Proof. Showing that a multideal satisfies (I1), (I2) and (I3) is straightforward. A n-partition
satisfying (I1), (I2) and (I3), trivially verifies (m1). Concerning (m2), let us suppose that
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a ∈ Ir, b ∈ Ik and c1, . . . , cn ∈ A. In order to show that q(a, c1, . . . , cr−1, b, cr+1, . . . ,
cn) ∈ Ik, we apply Lemma 4.11(4):

q(x, cσ1, . . . , cσn) = tτ1(x, tτ2(x, tτ3(x, . . . tτn(x, cτn, cστn) . . . , cστ3)), cστ2), cστ1)

in the case σ = Id, τ = (1r), and we get

q(a, c1, . . . , cr−1, b, cr+1, . . . , cn) = tr(a, t2(a, . . . , c2), b) ∈ Ik, by (I2).

Concerning (m3), let a1, . . . , an ∈ Ik and b ∈ A. By Lemma 4.4(2) we have

q(b, a1, . . . , an) = t1(b, t2(b, t3(b, . . . tn−1(b, an, an−1) . . . , a3), a2), a1).

By applying (I3) n times, we conclude that q(b, a1, . . . , an) ∈ Ik, since tn−1(b, an,
an−1) ∈ Ik, hence tn−2(b, tn−1(b, an, an−1), an−2) ∈ Ik, and so on.

By using the characterisation of Proposition 6.4 it is easy to see that the components of
a multideal are ideals of the SBA corresponding to their index.

Recall from Section 2.4 the notion of an ideal of a SBA.

Corollary 6.5. If (I1, . . . , In) is a multideal of a nBA A and 1 ≤ i ≤ n, then Ii is an ideal
of the skew i-reduct Si(A) = (A,∧i,∨i, \i, ei).

Proof. Since Si(A) is right-handed, a non empty set K ⊆ A is an ideal of Si(A) if and
only if, for all a, b ∈ K and c ∈ A, a ∨i b ∈ K and a ∧i c ∈ K (see Section 2.4). Given
a, b ∈ Ii and c ∈ A, we have a ∨i b = ti(a, a, b) ∈ Ii and a ∧i c = ti(a, c, ei) ∈ Ii, by
using in both cases condition (I2) of Proposition 6.4 (notice that ei ∈ Ii, by (I1)).

Lemma 6.6. The carrier I of a multideal (I1, . . . , In) of a nBA A is a subalgebra of A.

Proof. The constants e1, . . . , en belong to I by (m1). If a ∈ Ir and b ∈ Ik, then q(a, c1,
. . . , cr−1, b, cr+1, . . . , cn) ∈ Ik, for all c1, . . . , cn ∈ A, by (m2). Hence I is a subalgebra
of A.

Any component Ii of a multideal (I1, . . . , In) determines the multideal completely, as
shown in the following lemma.

Lemma 6.7. If (I1, . . . , In) is a multideal of a nBA A, then Ik = I
(rk)
r for all r, k.

Proof. Let a ∈ Ir. Then a(rk) = tr(a, tk(a, a, er), ek) ∈ Ik by Lemma 4.11(5) and
Proposition 6.4(I2). Then we have

I(rk)r ⊆ Ik; I
(rk)
k ⊆ Ir.

The conclusion follows because (a(rk))(rk) = a, by Lemma 4.11(6) and (B4).

Multideals are closed under arbitrary nonempty componentwise intersection. The min-
imum multideal is the sequence ({ek})k∈n̂. Given a nBA A, and A1, . . . , An ⊆ A,
let us consider the set A of multideals containing (A1, . . . , An). The ideal closure of
(A1, . . . , An) is the componentwise intersection of the elements of A, if A 6= ∅. Other-
wise, the ideal closure of (A1, . . . , An) is the constant n-tuple I> = (A, . . . , A), that we
consider as a degenerate multideal, by a small abuse of terminology.

As a matter of fact, I> is the only degenerate multideal.
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Lemma 6.8. Let A be a nBA and I = (I1, . . . , In) be a tuple of subsets of A satisfying
the closure properties of Definition 6.1. The following are equivalent:

(i) there exist a ∈ A and r 6= k such that a ∈ Ir ∩ Ik.

(ii) there exist r 6= k such that ek ∈ Ir.

(iii) I = I>.

Proof. (i) ⇒ (ii): Since a ∈ Ik, by Lemma 6.7 we have that a(rk) ∈ Ir. By Defini-
tion 6.1(m2), we conclude that q(a, ek/r, a(rk)/r) =(B2) q(a, ek, . . . , ek) = ek ∈ Ir.

(ii) ⇒ (iii): Given b ∈ A, we have b = q(ek, b/r, er/r) ∈ Ir by Definition 6.1(m2).
Hence Ir = A and the result follows from Lemma 6.7 since A(rk) = A for all 1 ≤ k ≤ n.

(iii)⇒ (i): Trivial.

7 The relationship between multideals and congruences
For any congruence θ on a nBA, the equivalence classes ei/θ form a multideal (see Lem-
ma 6.2), exactly as in the Boolean case where 0/θ is an ideal and 1/θ the corresponding
filter. Conversely, in the Boolean case, any ideal I (resp. filter F ) defines the congruence
x θI y ⇔ x⊕ y ∈ I (resp. x θF y ⇔ x ↔ y ∈ F ), where x⊕ y = (x ∧ ¬y) ∨ (¬x ∧ y)
and x↔ y = (¬x∨ y)∧ (x∨¬y). Rephrasing this latter correspondence in the n-ary case
is a bit more complicated.

7.1 The Boolean algebra of coordinates

Let A be a nBA, a ∈ A and i ∈ n̂. We consider the factor congruence θia = θ(a, ei) =
{(x, y) : ti(a, x, y) = x} generated by a. By Lemma 6.2 the tuple (e1/θ

i
a, . . . , en/θ

i
a) is a

multideal of A.
We recall that4iR and≤i denote the preorder and the partial order of the SBA Si(A) =

(A,∧i,∨i, \i, ei), respectively (see Section 2.4).

Lemma 7.1. ei/θ
i
a = {b ∈ A : b 4iR a}.

Proof. By definition of θia, we have b θia c iff ti(a, b, c) = b. Then b ∈ ei/θ
i
a iff b =

ti(a, b, ei) = a ∧i b iff b 4iR a (by definition of 4iR).

The following proposition is a consequence of [9, Proposition 4.15].

Proposition 7.2.

(i) The set ei/θia is a subalgebra of the right Church i-reduct (A, ti, ei).

(ii) The algebra (ei/θ
i
a, ti, ei, a) is a 2CA.

(iii) The set ↓i a = {b : b ≤i a} is the Boolean algebra of 2-central elements of
(ei/θ

i
a, ti, ei, a).

Proof. (i): Let b, c, d ∈ ei/θ
i
a. Then b θia ei, c θia ei and d θia ei. By applying the properties

of the congruences, we derive ti(b, c, d) θia ti(ei, ei, ei) = ei.
(ii): By ti(a, b, c) = b and ti(ei, b, c) = c, for every b, c ∈ ei/θ

i
a.

(iii): By Lemma 4.5(i) b is a factor element for every b ∈ ei/θ
i
a. Then b is 2-central

iff ti(b, a, ei) = b iff b ∧i a = b iff b ≤i a, because a ∧i b = ti(a, b, ei) = b for all
b ∈ ei/θ

i
a.
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Notice that a is maximal (w.r.t. ≤i) because, if a ≤i b ∈ ei/θ
i
a, then a = a ∧i b =

ti(a, b, ei) = b.
We now specialise the above construction to the case a = ej for a given j 6= i.

Definition 7.3. Let A be a nBA and i 6= j. The Boolean centre of A, denoted by Bij , is
the Boolean algebra of 2-central elements of the 2CA (A, ti, ei, ej).

By Proposition 7.2(iii) the carrier set of Bij is the set ↓i ej = {b ∈ A : b ≤i ej} and
we call Boolean any element of Bij .

Remark 7.4. The Boolean algebra Bij was defined in [6] in a different but equivalent way
(see [6, Section 6.1, Lemma 7(iii)]).

Lemma 7.5. Let A be a nBA, Bij be the Boolean centre of A, Si(A) = (A,∧i,∨i, \i, ei)
be the skew i-reduct of A, and i 6= j. Then, for all b, c ∈ Bij , we have b∨i c = ti(b, ej , c).

Proof. b ∨i c = ti(b, b, c) =(b≤iej) ti(b, ti(b, ej , ei), c) =(B2) ti(b, ej , c).

By Lemma 7.5 and by [23] the Boolean operations on Bij are ∧i,∨i,¬ij , where ∧i,∨i
are the corresponding operation of Si(A) restricted to Bij , and ¬ij(b) = ti(b, ei, ej) for
every b ∈ Bij .

In [6] a representation theorem is proved, showing that any given nBA A can be embed-
ded into the nBA of the n-central elements of the Boolean vector space Bij × . . .×Bij =
(Bij)

n (see Example 3.2). The proof of this result makes an essential use of the notion
of coordinates of elements of A, that are n-tuples of elements of (Bij)

n, codifying the
elements of A as linear combinations (see Lemma 7.12(5)). In this paper, the notion of
coordinate is again a central one, being used to define the congruence associated to a mul-
tideal. In order to highlight their relationship with the skew reducts of A, here we define
the coordinates in terms of the operations tk.

Definition 7.6. The coordinates of a ∈ A are the elements ak = tk(a, ei, ej), for
1 ≤ k ≤ n.

Notice that ak ∈ Bij for every 1 ≤ k ≤ n, because ak ≤i ej :

ak ∧i ej = ti(tk(a, ei, ej), ej , ei) =(B3) q(a, ei/k̄, ej/k) = tk(a, ei, ej) = ak.

Lemma 7.7. Let a, b, b1, . . . , bn ∈ A. We have:

(i) ak ∧i ar = ei for all k 6= r.

(ii) a1 ∨i a2 ∨i · · · ∨i an = ej .

(iii) q(a, b1, . . . , bn)k = q(a, (b1)k, . . . , (bn)k) = (a1 ∧i (b1)k) ∨i · · · ∨i (an ∧i (bn)k).

(iv) (a ∧i b)k = a ∧i bk, for every k 6= i.

(v) ak ∧i a = ak ∧i ek, for every k 6= i.

(vi) ai ∧i a = ei.
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(vii) If a ∈ Bij , then

ak =


¬ij(a) if k = i

a if k = j

ei otherwise

Proof. (i) – (vi): It is sufficient to check in the generator n of the variety nBA, where
Bij = {ei, ej}, (er)r = ej and (er)k = ei if r 6= k.

(vii): (k = i): By definition of ¬ij :

ai = ti(a, ei, ej) = ¬ij(a).

(k 6= i, j):

ak = tk(a, ei, ej) = tk(a ∧i ej , ei, ej) = tk(ti(a, ej , ei), ei, ej) = ti(a, ei, ei) = ei.

(k = j):

aj = tj(a, ei, ej) = tj(a ∧i ej , ei, ej) = tj(ti(a, ej , ei), ei, ej) = ti(a, ej , ei) = a.

Proposition 7.8. The following conditions are equivalent for an element a ∈ A:

(a) a is Boolean;

(b) a ∧i ej = a;

(c) a = bk, for some b ∈ A and index 1 ≤ k ≤ n;

(d) a = aj;

(e) ak = ei, for every k 6= i, j;

(f) a = (ai)i.

Proof. (a)⇔ (b): We have that a ≤i ej iff a ∧i ej = a and ej ∧i a = a. The conclusion is
obtained because the latter equality is trivially true.

(c)⇒ (b):

bk ∧i ej = ti(tk(b, ei, ej), ej , ei) =(B3) q(b, ei/k̄, ej/k) = tk(b, ei, ej) = bk.

(b)⇒ (d): If a ∧i ej = a, then we have:

aj = tj(a, ei, ej) = tj(a ∧i ej , ei, ej) = tj(ti(a, ej , ei), ei, ej)

=(B3) ti(a, ej , ei) = a ∧i ej = a.

(d)⇒ (c): Trivial.
(a)⇒ (e): By Lemma 7.7(vii).
(e) ⇒ (d): By Lemma 7.7(ii) the join of all coordinates of a ∈ A in Bij is the top

element ej . By hypothesis (e) we derive ai ∨i aj = ej . Then, by applying the strong
distributive property of ∧i w.r.t. ∨i in the SBA Si(A), we obtain:

a = ej ∧i a =(Lemma 7.7(ii)) (ai ∨i aj) ∧i a = (ai ∧i a) ∨i (aj ∧i a)

=(Lemma 7.7(vi)) ei ∨i (aj ∧i a) = aj ∧i a =(Lemma 7.7(v)) aj ∧i ej =(aj≤iej) aj.

(f)⇔ (b): (ai)i = ti(ti(a, ei, ej), ei, ej) =(B3) ti(a, ej , ei) = a ∧i ej . Then (ai)i = a
iff a ∧i ej = a.

By Lemma 7.7(iv) and Proposition 7.8(d) a ∧i b is a Boolean element, for every a ∈ A
and b ∈ Bij .



A. Bucciarelli and A. Salibra: On noncommutative generalisations of Boolean algebras 29

7.2 The congruence defined by a multideal

Let A be a nBA and Bij be the Boolean centre of A.

Lemma 7.9. Let I be a multideal on A. Then I∗ = Bij ∩ Ii is a Boolean ideal and
I∗ = Bij ∩ Ij is the Boolean filter complement of I∗.

Proof. Recall that, in Bij , ei is the bottom element, ej is the top element and b ∈ Bij iff
b ∧i ej = b. We prove that I∗ is a Boolean ideal. First ei ∈ I∗. If b, c ∈ I∗ and d ∈ Bij ,
then we prove that b ∨i c and b ∧i d belong to I∗. By Proposition 6.4(I2) b ∨i c and b ∧i d
belong to Ii. Moreover, since b, c, d ∈ Bij and ∧i,∨i are respectively the meet and the join
of Bij , then b∨i c and b∧i d also belong to Bij . We now show that I∗ is the Boolean filter
complement of I∗.

(b ∈ I∗ ⇒ ¬ijb ∈ I∗): As b ∈ Ii ∩Bij , then by Proposition 6.4(I2)

¬ijb = ti(b, ei, ej) ∈ Ij ∩Bij .

(¬ijb ∈ I∗ ⇒ b ∈ I∗): As ti(b, ei, ej) ∈ Ij , then

b = ¬ij¬ijb = ti(ti(b, ei, ej), ei, ej) ∈ Ii.

The following lemma characterises multideals in terms of coordinates.

Lemma 7.10. Let (I1, . . . , In) be a multideal on a nBA A and let b ∈ A. Then we have:

(a) b ∈ Ir if and only if the coordinate br of b belongs to Ij .

(b) If b ∈ Ii, then the coordinate bk of b belongs to Ii, for every k 6= i.

Proof. (a): We start with r = i.
(⇒): Let b ∈ Ii. By Proposition 6.4(I2) we have bi = ti(b, ei, ej) ∈ Ij , because b ∈ Ii

and ej ∈ Ij .
(⇐): By hypothesis bi ∈ Ij . Then by Lemma 6.7 b(ij)i ∈ Ii. Now

b
(ij)
i = q(bi, e(ij)1, . . . , e(ij)n) = q(ti(b, ei, ej), e(ij)1, . . . , e(ij)n)

=(B3) ti(b, ej , ei) = b ∧i ej ∈ Ii.

We conclude b ∈ Ii by applying Proposition 6.4(I2) to ti(b∧i ej , b, ei), because b∧i ej ∈ Ii
and b =(Lemma 4.4(3)) b ∧i b =(b=ej∧ib) b ∧i ej ∧i b = ti(b ∧i ej , b, ei).

We analyse r 6= i. Let σ be equal to the transposition (ir). By definition of bσ we
derive (bσ)i = ti(q(b, eσ1, . . . , eσn), ei, ej) =(B3) q(b, ej/r, ei/r̄) = tr(b, ei, ej) = br.
Then, br ∈ Ij ⇔ br = (bσ)i ∈ Ij ⇔ bσ ∈ Ii ⇔(Lemma 6.7) b = (bσ)σ ∈ Ir.

(b): By Proposition 6.4(I2), k 6= i and b ∈ Ii we get bk = tk(b, ei, ej) ∈ Ii.

We consider the homomorphism fI : Bij → Bij/I∗ and we define on A the following
equivalence relation:

b θI c⇔ ∀k.fI(bk) = fI(ck),

where bk, ck are the k-coordinates of b and c, respectively (see Definition 7.6).

Proposition 7.11. θI is a congruence on A.
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Proof. Let a, b, c1, d1, . . . , cn, dn be elements ofA such that a θI b and ck θI dk, for every
k. Then q(a, c1, . . . , cn) θI q(b, d1, . . . , dn) iff

∀k.fI(q(a, c1, . . . , cn)k) = fI(q(b, d1, . . . , dn)k).

The conclusion follows, because fI is a Boolean homomorphism and

q(a, c1, . . . , cn)k =(Lemma 7.7(iii)) q(a, (c1)k, . . . , (cn)k)

=(Lemma 7.7(iii)) (a1 ∧i (c1)k) ∨i · · · ∨i (an ∧i (cn)k).

We define a new term operation to be used in Theorem 7.13:

x+i y = q(x, ti(y, ei, e1), . . . , ti(y, ei, ei−1), y, ti(y, ei, ei+1), . . . , ti(y, ei, en)),

where y is at position i.

Lemma 7.12. Let a, b ∈ A and a1, a2, . . . , an be the coordinates of a. Then

(1) a+i ei = ei +i a = a;

(2) a+i b = b+i a;

(3) a+i ek = ek +i a = ai ∧i ek (k 6= i).

(4) a+i a = ei;

(5) The value of the expression E ≡ (a1 ∧i e1) +i ((a2 ∧i e2) +i (· · ·+i (an ∧i en)) · · · )
is independent of the order of its parentheses. Without loss of generality, we write
(a1 ∧i e1) +i (a2 ∧i e2) +i · · ·+i (an ∧i en) for the expression E. Then we have:

(a1 ∧i e1) +i (a2 ∧i e2) +i · · ·+i (an ∧i en) = a.

(6) If a and b have the same coordinates, then a = b.

Proof. (1):

a+i ei = q(a, ti(ei, ei, e1), . . . , ti(ei, ei, ei−1), ei, ti(ei, ei, ei+1), . . . , ti(ei, ei, en))

= q(a, e1, . . . , en) =(B4) a.

(2):

a+i b = q(a, ti(b, ei, e1), . . . , ti(b, ei, ei−1), b, ti(b, ei, ei+1), . . . , ti(b, ei, en))

=(B4) q(ti(b, a, a), ti(b, ei, e1), . . . , ti(b, ei, ei−1),

q(b, e1, . . . , en), ti(b, ei, ei+1), . . . , ti(b, ei, en))

=(B3) q(b, ti(a, ei, e1), . . . , ti(a, ei, ei−1),

q(a, e1, . . . , en), ti(a, ei, ei+1), . . . , ti(a, ei, en))

= b+i a.

(3):

a+i ek = q(a, ti(ek, ei, e1), . . . , ti(ek, ei, ei−1), ek, ti(ek, ei, ei+1), . . . , ti(ek, ei, en))

=(k 6=i) q(a, ei, . . . , ei, ek, ei, . . . , ei) = ti(a, ei, ek) = ek +i a.
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Moreover, ai ∧i ek = ti(ti(a, ei, ej), ek, ei) =(B3) ti(a, ei, ek).
(4):

a+i a = q(a, ti(a, ei, e1), . . . , ti(b, ei, ei−1), a, ti(a, ei, ei+1), . . . , ti(a, ei, en))

=(B2) q(a, ei, . . . , ei, a, ei, . . . , ei)

=(B4) q(a, ei, . . . , ei, q(a, e1, . . . , en), ei, . . . , ei)

= q(a, ei, . . . , ei) = ei.

(5): It is easy to check the identity in the generator n of the variety nBA.
(6): is a consequence of (5).

Theorem 7.13. Let φ be a congruence, I(φ) = (e1/φ, . . . , en/φ) be the multideal of A
determined by φ, H = (H1, . . . ,Hn) be a multideal and θH be the congruence on A
determined by H . Then

θI(φ) = φ and I(θH) = H.

Proof. We first prove I(θH)k = Hk, for all k. Recall that ej = (ei)i is the i-coordinate of
ei and ei = (ei)k is the k-coordinate of ei for every k 6= i.

(1) First we provide the proof for k = i. Let a ∈ I(θH)i. If a θH ei then fH(ai) =
fH((ei)i) = fH(ej), that implies ai ∈ H∗. By Lemma 7.10(a) we get the conclusion
a ∈ Hi.

For the converse, let a ∈ Hi. By Lemma 7.10(a) we have ai ∈ H∗ and by Lem-
ma 7.10(b) ak ∈ H∗ for all k 6= i. This implies fH(ai) = fH(ej) = fH((ei)i) and
fH(ak) = fH(ei) = fH((ei)k) for all k 6= i, that implies a θH ei. Since I(θH)i = ei/θH ,
we conclude.

(2) Let now k 6= i. By Lemma 6.7 we have Hk = H
(ik)
i . Let a ∈ Hk. Then a = b(ik)

for some b ∈ Hi. As, by (1), bθHei, then we have a = b(ik)θH(ei)
(ik) = ek. Since

I(θH)k = ek/θH , we conclude. Now, assuming aθHek, we have: b = (a)(ik)θH(ek)(ik) =
ei. Then b ∈ Hi and a = b(ik) ∈ Hk.

Let φ be a congruence.
(a) Let a φ b. Then ∀h. ah φ bh. Since φ restricted to Bij is also a Boolean congruence,

then we obtain (ah⊕ij bh) φ ei, where⊕ij denotes the symmetric difference in the Boolean
centre Bij . We now prove that a θI(φ) b. We have a θI(φ) b iff ∀h. fI(φ)(ah) = fI(φ)(bh)
iff ∀h. ah ⊕ij bh ∈ I(φ)∗ = Bij ∩ ei/φ iff ∀h. ah ⊕ij bh ∈ ei/φ iff ∀h. (ah ⊕ij bh) φ ei.
This last relation is proved above and we conclude a θI(φ) b.

(b) Let a θI(φ) b. Then ∀h. ah ⊕ij bh ∈ ei/φ that implies ∀h. ah φ bh, because φ
restricted to Bij is a Boolean congruence. Since by Lemma 7.12(5) there is a n-ary term
u such that a = u(a1, . . . , an) and b = u(b1, . . . , bn), then we conclude a φ b by using
∀h. ah φ bh.

7.3 Ultramultideals

In the Boolean case, there is a bijective correspondence between maximal ideals and ho-
momorphisms onto 2. In this section we show that every multideal can be extended to an
ultramultideal, and that there exists a bijective correspondence between ultramultideals and
homomorphisms onto n. We also show that prime multideals coincide with ultramultideals.

Let (I1, . . . , In) be a multideal of a nBA A and U be a Boolean ultrafilter of Bij that
extends I∗ = Bij ∩ Ij , and so the maximal ideal Ū = Bij \ U extends I∗ = Bij ∩ Ii.
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Lemma 7.14. For all a ∈ A, there exists a unique k such that ak ∈ U .

Proof. By Lemma 7.7(ii) the meet of two distinct coordinates is the bottom element ei.
Then at most one coordinate may belong to U . On the other hand, if all coordinates belong
to Ū , then the top element ej belong to Ū .

Let (Gk)k∈n̂ be the sequence such that Gk = {a ∈ A : ak ∈ U}, which, by Lem-
ma 7.14, is well defined.

Lemma 7.15. (Gk)k∈n̂ is a ultramultideal which extends (Ik)k∈n̂.

Proof. (m1): ek ∈ Gk because (ek)k = ej ∈ U .
(m2): Let a ∈ Gr, b ∈ Gk, and c1, . . . , cn ∈ A. By Lemma 7.7(ii),

q(a, c1, . . . , cr−1, b, cr+1 . . . , cn)k = [
∨
s6=r

(as ∧i (cs)k)] ∨i (ar ∧i bk).

Since ar, bk ∈ U , then ar∧ibk ∈ U , and so ar∧ibk v [
∨
s 6=r(as∧i(cs)k)] ∨i (ar∧ibk) ∈ U ,

where v is the Boolean order of the Boolean algebra Bij . Hence,

q(a, c1, . . . , cr−1, b, cr+1 . . . , cn) ∈ Gk.

(m3): It can be proved similarly.
We now prove that (Gk)k∈n̂ extends (Ik)k∈n̂. It is sufficient to show that, for every a ∈ Ik,
we have that ak ∈ U . We get the conclusion by Lemma 7.10(a).

Theorem 7.16.

(i) Every multideal can be extended to an ultramultideal.

(ii) There is a bijective correspondence between ulramultideals and homomorphisms
onto n.

Proof. (i) follows from Lemma 7.15. Regarding (ii), we remark that the algebra n is the
unique simple nBA.

We conclude this section by characterising prime multideals.

Definition 7.17. We say that a multideal (I1, . . . , In) is prime if, for every i, a ∧i b ∈ Ii
implies a ∈ Ii or b ∈ Ii.

Proposition 7.18. A multideal is prime iff it is an ultramultideal.

Proof. (⇒): Let (I1, . . . , In) be a prime multideal. If a ∈ Bij , then a∧i ¬ij(a) = ei ∈ Ii.
Then either a or ¬ij(a) ∈ Ii. This implies that I∗ = Bij ∩ Ii is a maximal Boolean ideal
and the complement I∗ = Bij ∩ Ij is a Boolean ultrafilter.

Let now b ∈ A such that b /∈ I =
⋃n
k=1 Ik. By Lemma 7.10(a) we have that b ∈ Ir

iff br ∈ I∗. Then br /∈ I∗ for all r. Since I∗ is a Boolean ultrafilter, then br ∈ I∗ for all r.
Hence ej =

∨n
r=1 br ∈ I∗, contradicting the fact that the top element does not belong to a

maximal ideal. In conclusion, b ∈ I =
⋃n
k=1 Ik for an arbitrary b, so that I = A.

(⇐): Let I be an ultramultideal. Let a ∧i b ∈ Ii with a ∈ Ir and b ∈ Ik (with
r 6= i and k 6= i). Then by property (m2) of multideals we get a ∧i b = ti(a, b, ei) =
q(a, b, . . . , b, ei, b, . . . , b) ∈ Ik. Contradiction.
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Conclusion
Boolean-like algebras have been introduced in [6, 23] as a generalisation of Boolean alge-
bras to any finite number of truth values. Boolean-like algebras provide a new characterisa-
tion of primal varieties exhibiting a perfect symmetry of the values of the generator of the
variety. In this paper we have investigated the relationships between skew Boolean algebras
and Boolean-like algebras. We have shown that any n-dimensional Boolean-like algebra is
a skew cluster of n isomorphic right-handed skew Boolean algebras, and that the variety of
skew star algebras is term equivalent to the variety of Boolean-like algebras. Moreover, we
have got a representation theorem for right-handed skew Boolean algebras, and developed
a general theory of multideals for Boolean-like algebras. Several further topics are worth
mentioning:

1. How is the duality theory of SBAs and BAs related to a possible duality theory of
nBAs (a Stone-like topology on ultramultideals).

2. Find a more satisfactory axiomatisation of skew star algebras.

3. Each SBA living inside a nBA has a bottom element 0 and several maximal elements.
The construction could be made symmetric, by defining “skew-like” algebras having
several minimal and several maximal elements.

4. For each nBA A, the algebras S1(A), . . . , Sn(A), constituting the skew cluster of
A, are isomorphic. This result is also of technical interest for the following open
problem in the theory of skew Boolean algebras:

Problem 7.19. Given a SBA A with a maximal class M ⊇ {m1,m2}, let Am1
and

Am2
be the algebras obtained from A on distinguishing the elements m1 and m2

respectively. Are the algebras Am1
and Am2

isomorphic?

This problem is part of the folklore and it does not appear in any published work to
date. It is implicit in Leech [17], where both skew Boolean algebras (as they are now
understood) and skew Boolean algebras possessing a maximal class are introduced.

The difficulty in obtaining a solution to Problem 7.19 evidently lies in construct-
ing the required isomorphism. For skew Boolean ∩-algebras, a related problem
has been considered and resolved in the positive by Bignall [2]. The proof exploits
sheaf (Boolean product) representations to obtain the desired isomorphism; as skew
Boolean algebras admit only a weak Boolean product representation, the proof does
not seem readily adaptable.

Problem 7.19 is of purely technical interest in the theory of skew Boolean alge-
bras. However, it assumes greater prominence in logics arising from (structurally
enriched) skew Boolean algebras. Very roughly speaking, let S be an algebraisable
logic arising from a quasivariety K of 1-regular (necessarily structurally enriched)
skew Boolean algebras. Given n residually distinct constant terms of K, 1 < n < ω
(working with the finite case for simplicity), S admits n−1 negation connectives via
implication into m, for each m a constant term distinct from 1. A positive solution
to Problem 7.19 would imply that these n− 1 negations are not essentially different,
and hence that it is enough to fix a single such negation univocally when studying S;
whereas a negative solution to Problem 7.19 would imply that these n− 1 negations
are all distinct, and hence that they must all be accounted for in any study of S.
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1 Introduction
Recall that the ternary discriminator on a set A is the function t : A3 → A defined for all
elements a, b, c ∈ A by t(a, b, c) = a if a 6= b, and c otherwise. A ternary discriminator
algebra is an algebra A for which there exists a term t(x, y, z) in the language of A that
realises the ternary discriminator on A. A ternary discriminator variety is a variety gener-
ated by a class K of ternary discriminator algebras, for which there exists a term t(x, y, z)
realising the ternary discriminator function on each A ∈ K. Ternary discriminator varieties
generalise Boolean algebras and have been widely studied; see [15, Chapter IV§9].

A key property of the ternary discriminator term t(x, y, z) for a ternary discriminator
variety V is that it determines the congruences on each algebra A ∈ V, in the sense that
the congruences of A are precisely those of the term reduct 〈A; tA〉. This motivates the
following definition.

Definition 1.1. The generic2 ternary discriminator variety TD is the variety of algebras of
similarity type 〈3〉 generated by the class of all algebras of the form A = 〈A; t〉, where the
ternary operation t is the ternary discriminator function on A.

Algebras in ternary discriminator varieties have a number of strong congruence proper-
ties. In particular, they are congruence-distributive, congruence-permutable, congruence-
regular, and congruence-uniform. Moreover, every compact congruence is a principal fac-
tor congruence. Consequently, every algebra in a ternary discriminator variety can be rep-
resented as a Boolean product of ternary discriminator algebras; for details see [15, Chap-
ter IV§9].

Examples of ternary discriminator varieties include varieties generated by a primal al-
gebra (and thus the variety of Boolean algebras), monadic algebras, cylindric algebras of
dimension n, and skew Boolean intersection algebras. The latter are used as a paradig-
matic example of a (pointed) ternary discriminator variety in this paper. Briefly, a skew
Boolean intersection algebra (SBIA) is a skew lattice with additional operations such that
each principal subalgebra a ∧ A ∧ a is a Boolean lattice, and for which finite meets exist
with respect to the natural skew lattice partial order. For a more detailed definition and
some key properties of SBIAs see [7].

While the generic ternary discriminator variety is a useful concept (see for example [14]
and [29]), it can be somewhat unintuitive to work directly with the ternary discriminator
term. In practice, almost all natural examples of ternary discriminator varieties have at least
one constant term,3 which facilitates the definition and use of more familiar binary terms.
In particular, it is shown in [7] that every algebra A in a pointed ternary discriminator
variety, that is, a ternary discriminator variety with a constant term, has a right handed
(and thus also a left handed) SBIA term reduct that has the same congruences as A. This
follows from the observation that the variety of left (or right) handed SBIAs is, up to term
equivalence, the generic pointed ternary discriminator variety, namely the variety TD0

generated by the class of all algebras of type 〈3, 0〉, having the form 〈A; t, 0〉, where the
operation t is the ternary discriminator on A.

More generally, if an algebra A is a member of a (not necessarily pointed) ternary dis-
criminator variety V with ternary discriminator term t(x, y, z) and c is an arbitrary element

2Alternatively called pure by some authors; see for example [14].
3Two important exceptions [36, Corollary 4.31] are the varieties SA3 and BN4 arising respectively as the

equivalent quasivariety semantics (in the sense of Blok and Pigozzi [10]) of the 3-valued relevant logic with
mingle RM3 [5, §26.9, §29.12] and its 4-valued cousin, the logic BN4 of Brady [13].
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of its base set A, then the polynomial reduct Ac = 〈A;∨c,∧c, \c,∩c, c〉 is a left handed
skew Boolean intersection algebra4 such that ConA = ConAc, with operations defined
by5

a ∨c b := t(b, c, a); a ∧c b := t(b, t(b, c, a), a);

a/cb := t(a, b, c); a\cb := t(c, b, a), and
a ∩c b := t(c, t(c, b, a), a) = a/c(a/cb).

The various reducts of Ac are also familiar structures. For example, 〈A;∧c, c〉 is a left
normal band; 〈A; \c, c〉 is an implicative BCS-algebra; 〈A; /c, c〉 is an implicative BCK-
algebra; 〈A;∨c,∧c, c〉 is a left handed strongly distributive skew lattice with zero c; and
〈A;∨c,∧c, \c, c〉 is a left handed skew Boolean algebra.

Up to isomorphism the structure of each of these derived algebras is independent of the
choice of c. This is shown by the following result from [6]. It can be proved using the
Boolean product representations of Ac and Ad.

Theorem 1.2. Let V be a ternary discriminator variety, with A ∈ V. Then for all c, d ∈ A,
Ac
∼= Ad.

Every congruence on an algebra must also be a congruence on each of its reducts.
Since the congruence lattice of every algebra is always a complete sublattice of the lattice
of equivalence relations on its base set, the congruence lattice of Ac, and thus of A, is a
sublattice of the congruence lattice of each reduct of Ac. Of course, such reducts do not
in general have amenable congruence properties. In particular, their congruence lattices
may satisfy no special lattice identities and they need not be congruence n-permutable for
any n ≥ 2. However, it follows from Theorem 2.19 in the next section that whenever
∧c is included as one of its operations such a reduct has the same principal ideals as Ac.
Moreover, for each such reduct there exists a corresponding function that generalises the
ternary discriminator, and each of these generalised discriminator functions gives rise to a
class of pointed discriminator varieties that generalises the class of pointed ternary discrim-
inator varieties. The class of dual binary discriminator varieties and its subclass of binary
discriminator varieties, which have been studied by a number of authors, are examples.

Section 2 of this paper provides a new characterisation of the class of dual binary dis-
criminator varieties (Theorem 2.19). In subsequent sections a number of its pointed dis-
criminator variety subclasses are described and characterised. These are the classes of
binary, skew, skew Boolean, multiplicative, pointed fixedpoint, and pointed ternary dis-
criminator varieties. It is shown that the principal ideals of algebras in such varieties are
entirely determined by their dual binary discriminator term. Various characterisations, in-
cluding some that are purely ideal-theoretic in nature, are obtained for the classes of binary,
skew Boolean, pointed fixedpoint, and pointed ternary discriminator varieties; see Theo-
rems 3.2, 6.6, 8.1, and 9.1 respectively.

2 The class of dual binary discriminator varieties
Binary and dual binary discriminator varieties were introduced in [16]. The next three
definitions are based on that paper, with some minor differences in the terminology and

4Note that Ac is term equivalent to the algebra 〈A;∨c,∧c, /c, c〉.
5We follow the normal convention of writing t(a, b, c) rather than tA(a, b, c) for the realisation in an algebra

A of a term t(x, y, z), provided that there is no ambiguity about which algebra is intended.
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notation used.

Definition 2.1. Let A be a non-empty set and let 0 ∈ A. The dual binary 0-discriminator
on A is the binary function ∧ defined for all a, b ∈ A by a ∧ b = a, if b 6= 0, and 0
otherwise. 0 is called the discriminating element.

Definition 2.2. A dual binary discriminator algebra is an algebra A for which there exists
a binary term x ∧ y and a constant term 0 in the language of A that induce the dual binary
0-discriminator and its discriminating element 0 respectively on the base set A of A.

Definition 2.3. A dual binary discriminator variety is a variety V with a binary term x∧ y
and a constant term 0 in the language of V such that V is generated by a class K of dual
binary discriminator algebras, with the terms x ∧ y and 0 inducing the dual binary 0-
discriminator and its discriminating element respectively on each A ∈ K.

The constant term in Definition 2.3 is referred to as the discriminating constant of
the variety. A dual binary discriminator variety with discriminating constant 0 is called a
dual binary 0-discriminator variety. Similarly, a dual binary discriminator algebra with
discriminating element 0 is called a dual binary 0-discriminator algebra.

Natural examples of dual binary discriminator varieties are common and diverse, and
include normal bands with zero, semilattices with zero, strongly distributive skew lattices
with zero, pseudocomplemented semilattices, bounded distributive lattices, Stone algebras,
skew Boolean algebras, skew Boolean intersection algebras, and many others.

Definition 2.4. The generic dual binary discriminator variety, denoted by DBD, is the va-
riety of similarity type 〈2, 0〉 generated by the class of all dual binary discriminator algebras
of the form A = 〈A;∧, 0〉, with ∧ being the dual binary 0-discriminator on A.

Recall that an idempotent semigroup A = 〈A; ·〉 (i.e. a band) is normal if it satisfies
the identity xyzx ≈ xzyx. A is left normal (resp. right normal) if it satisfies xyz ≈ xzy
(resp. xyz ≈ yxz). A band with zero is an algebra A = 〈A; ·, 0〉 of similarity type 〈2, 0〉
with a band operation · and a constant 0, satisfying the band identities plus the identities
x0 ≈ 0x ≈ 0. By Schein [32] the only subdirectly irreducible normal bands with zero are
(up to isomorphism) S0, the 2-element meet semilattice with zero; L, the three-element left
normal band with zero that has no non-trivial two-sided semigroup ideals; and R, the three-
element right normal band with zero that has no non-trivial two-sided semigroup ideals. It
is easily seen that the term xyx induces the dual binary 0-discriminator ∧ on each of these
algebras.

Since the identity xyx ≈ xy holds for left normal bands, the semigroup operation re-
alises the dual binary 0-discriminator on L. We denote the variety of left normal bands with
zero by LNB0. Since S0 and L are the only subdirectly irreducible members of LNB0

and S0 is a subagebra of L, it follows that LNB0 = HSP({L}), the variety generated
by L.

Proposition 2.5. DBD = LNB0.

Proof. It is straightforward to check that every dual binary 0-discriminator algebra 〈A;∧, 0〉
in DBD is an idempotent semigroup with zero that satisfies the left normal band identity
x ∧ y ∧ z ≈ x ∧ z ∧ y. Let K denote the class of all dual binary discriminator alge-
bras in DBD. Then K ⊆ LNB0 and hence HSP(K) = DBD ⊆ LNB0. But L ∈ K, so
HSP({L}) = LNB0 ⊆ DBD.
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It is convenient to use the term 0-band for a band with a zero element that is the reali-
sation of a constant term 0.

Corollary 2.6. Every algebra A in a dual binary 0-discriminator variety has a left nor-
mal 0-band term reduct 〈A;∧, 0〉, where ∧ is the operation induced by the dual binary
discriminator term.

Clearly, the dual binary discriminator term for a given dual binary 0-discriminator vari-
ety is unique up to identity of terms. However, it is possible for a variety to be a dual binary
discriminator variety with respect to more than one constant. For example, the variety L10
of bounded distributive lattices 〈L;∨,∧, 0, 1〉 is both a dual binary 0-discriminator vari-
ety, with dual binary discriminator term x ∧ y, and a dual binary 1-discriminator variety,
with dual binary discriminator term x ∨ y. L10 is generated by the two-element bounded
distributive lattice, which is both a dual binary 0-discriminator algebra and a dual binary
1-discriminator algebra.

Let A be an algebra in a dual binary 0-discriminator variety with dual binary 0-
discriminator term x ∧ y. It is well-known from semigroup theory (and straightforward
to prove) that the binary relation � defined for all a, b ∈ A by a � b if a ∧ b = a is a
preorder on A, and that the binary relation ≤ defined for all a, b by a ≤ b if b ∧ a = a
is a partial order.6 Observe that ≤ ⊆ � and 0 ≤ a for all a ∈ A, where 0 is the element
induced by the discriminating constant 0. The equivalence relation Ξ given by a Ξ b if
a � b and b � a is referred to as the Clifford-Mclean relation on A. It is a congruence on
the left normal 0-band reduct of A, with 〈A;∧, 0〉/Ξ being the maximal meet semilattice
homomorphic image of 〈A;∧, 0〉.

Definition 2.7. An element m ∈ A is called maximal if a � m for all a ∈ A.

For example, every non-zero element of a dual binary 0-discriminator algebra is maxi-
mal. Clearly, when the set M of maximal elements of an algebra A is non-empty it forms
an equivalence class of Ξ.

Recall from [20] that a term t(~x, ~y) is an ideal term in ~y for a class K of algebras with
respect to a constant term 0 if K |= t(~x,~0) ≈ 0, where ~x and ~y denote sequences of
variables. A non-empty subset I of A ∈ K is a 0-ideal of A (or just an ideal when there
is no ambiguity regarding which constant term is intended) if 0 = 0A ∈ I and for every
~a ∈ A and ~b ∈ I , tA(~a,~b) ∈ I whenever t(~x, ~y) is an ideal term in ~y for K. The ideals of
an algebra A form an algebraic lattice under set inclusion, so for everyX ⊆ A the smallest
ideal containing X exists. It is denoted by 〈X〉 and is called the ideal generated by X .
WhenX = {a} this ideal is called principal and is denoted by 〈a〉. We denote the set of all
ideals of A by IdA, and the lattice of ideals of A by IdA. Clearly, for every congruence
ψ, [0]ψ = {a | a ψ 0} is always an ideal. However, it is not always the case that an ideal is
a congruence class. If every ideal of A is the 0-class of a congruence on A, then A is said
to be normal or to have normal ideals.

Definition 2.8. Given a language with a constant 0, a term t(x1, . . . , xn) is called 0-
reflexive if it satisfies the identity t(0, . . . ,0) ≈ 0. An algebra A with a constant term 0 in
its language is said to be reflexive if {0} = {0A} is a one-element sub-universe, that is, if
fγ(0, . . . , 0) = 0 for each operation fγ of A. A class K of algebras with a constant term 0
is reflexive if every member of K is reflexive.

6For a detailed discussion of the various order relations (called Green’s preorders) on semigroups in general
see [33, Section 0].
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Clearly, a reflexive algebra must have (up to term equivalence) exactly one constant
term in its language. Thus, a reflexive dual binary discriminator variety has, up to term
equivalence, exactly one discriminating constant and one dual binary discriminator term.
The generic dual binary discriminator variety is an example.

Lemma 2.9. Let V be a dual binary 0-discriminator variety with dual binary discriminator
term x ∧ y and let t(x1, . . . , xn), where n > 0, be a term in the language of V. Then

1. V satisfies every identity of the form

t(x1, . . . , xn) ∧ y ≈ t(x1 ∧ y, . . . , xn ∧ y) ∧ y.

2. When t(x1, . . . , xn) is 0-reflexive it satisfies the identity

t(x1, . . . , xn) ∧ y ≈ t(x1 ∧ y, . . . , xn ∧ y).

Proof. It is straightforward to verify that these identities hold on every member of V that
is in the class of dual binary discriminator algebras that generates V.

Definition 2.10. An algebra A in a variety with a constant term 0 is called 0-ideal simple
if its only 0-ideals are {0A} and A.

For the remainder of this paper, in order to simplify the notation and unless stated oth-
erwise, we regard a dual binary discriminator variety as having just one discriminating
constant, which will normally be denoted by 0. An ideal term of such a dual binary dis-
criminator variety V means an ideal term with respect to 0, while an ideal of an algebra
A ∈ V means a 0-ideal. In a similar fashion, an ideal simple algebra in V means one that
is 0-ideal simple.

Lemma 2.11. Every dual binary 0-discriminator algebra A is ideal simple.

Proof. Clearly x ∧ y, the dual binary discriminator term for A, is an ideal term in y.
Suppose I ∈ A is such that I 6= {0}. Let b ∈ I be such that b 6= 0. Then for all a ∈ A,
a = a ∧ b ∈ I . Thus I = A. Hence A is ideal simple.

Thus a non-trivial dual binary 0-discriminator algebra has exactly two equivalence
classes under the relation Ξ, namely {0} and A \ {0}. We say that such an algebra is
flat, since it is order isomorphic to a flat Scott domain.7

The universal algebraic notions of a semisimple algebra and a semisimple variety (see
[15, Chapter IV§12]) have exact ideal-theoretic analogues.

Definition 2.12. An algebra is said to be ideal semisimple if it is isomorphic to a subdirect
product of ideal simple algebras. A variety V is ideal semisimple if every member of V is
ideal semisimple.

The proof of the following lemma is directly analogous to the proof of [15, Lem-
ma IV§12.2] characterising semisimple varieties.

7In the literature, a skew lattice having exactly two Clifford-Maclean equivalence classes is said to be primitive.
In general neither of these classes need be a singleton. However, if A is a primitive skew lattice with zero then
the lower equivalence class is a singleton, and in that case A is order isomorphic to a flat Scott domain.
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Lemma 2.13. A variety V is ideal semisimple if and only if every subdirectly irreducible
member of V is ideal simple.

Examples of ideal semisimple dual binary discriminator varieties include normal bands
with zero, strongly distributive skew lattices with zero, and skew Boolean algebras; see
[26, 27].

In [3] Agliano and Ursini introduce the notion of equationally definable principal ideals
for arbitrary varieties with a constant term. A variety V with a constant term 0 has equation-
ally definable principal ideals (EDPI) if there exist pairs of binary terms pi, qi, i = 1, . . . , n
such that for every A ∈ V and all a, b ∈ A, a ∈ 〈b〉 if and only if pi(a, b) = qi(a, b) for
i = 1, . . . , n, where 〈b〉 denotes the principal ideal generated by b. A related notion was
subsequently considered by van Alten in [4] as follows:

Definition 2.14. A class K of algebras is said to have EDPI ? if there exists an ideal term
t(x, y) in y such that for each A ∈ K and all a, b ∈ A, a ∈ 〈b〉 if and only if a = tA(a, b).

The following key result follows from [4, Theorems 4.2 and 4.3].

Theorem 2.15. Let V be a variety with constant term 0 generated by a class K. The
following are equivalent.

1. V has EDPI.

2. V has EDPI ?.

3. K has EDPI ?.

Proposition 2.16. Every dual binary discriminator variety V has EDPI. A term in the
language of V witnesses EDPI ? if and only if it is, up to term identity, the dual binary
discriminator term.

Proof. If K is a class of dual binary discriminator algebras, then by Lemma 2.11 its mem-
bers are ideal simple and it is clear that the dual binary discriminator term witnesses EDPI ?

for K, so by Theorem 2.15 V has EDPI. Suppose that t(x, y) is an ideal term in y witness-
ing EDPI ? for V. Then for every dual binary discriminator algebra A ∈ V and for all
a, b ∈ A, a ∈ 〈b〉 if and only if a = tA(a, b). Since A is ideal simple, this implies that
tA(a, b) = a when b 6= 0, with 0 being the realisation in A of the discriminating constant
of V. Also, tA(a, 0) = 0, since t(x, y) is an ideal term in y. Thus tA(a, b) is the dual
binary discriminator on A, and hence t(x, y) is the dual binary discriminator term for V,
since V is generated by a class of dual binary discriminator algebras.

Corollary 2.17. The principal ideals of every algebra in a dual binary 0-discriminator
variety coincide with those of its left normal 0-band term reduct.

In particular, every principal ideal 〈b〉 of an algebra A in a dual binary discriminator
variety has the form 〈b〉 = {a ∈ A | a ∧ b = a} = {a ∈ A | a � b}, and so every ideal I
is a down set with respect to the natural preorder, that is, if b ∈ I and a � b then a ∈ I .

Definition 2.18. Let A be an algebra with a left normal 0-band term reduct A0 = 〈A;∧, 0〉.
A has ideal-compatible operations if the principal 0-ideals of A coincide with those of A0.
A class K of algebras with a left normal 0-band term is said to have ideal-compatible op-
erations if every A ∈ K has ideal-compatible operations with respect to its left normal
0-band term reduct.
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Theorem 2.19. Every dual binary discriminator variety is term equivalent to a variety of
left normal bands with ideal-compatible operations. A variety V with a constant term 0 is
a dual binary 0-discriminator variety if and only if it has EDPI and is generated by a class
of 0-ideal simple algebras.

Proof. The first statement is clear in view of Corollary 2.17. For the second statement,
suppose that V is a dual binary 0-discriminator variety. Then by Proposition 2.16 and
Theorem 2.15 V has EDPI and the dual binary 0-discriminator term for V witnesses EDPI ?.
By Lemma 2.11, every dual binary 0-discriminator algebra is ideal simple, so V is generated
by a class of ideal simple algebras. Conversely, if V has EDPI and is generated by a family
K of ideal simple algebras, then by Theorem 2.15 the members of K have EDPI ?. If
t(x, y) is a term in the language of V that witnesses EDPI ? then it follows from the proof
of Proposition 2.16 that t(x, y) realises the dual binary 0-discriminator function on each
member of K. Hence V is a dual binary 0-discriminator variety.

2.1 Central elements

Let V be a dual binary 0-discriminator variety, with A ∈ V. Denote the element 0A by 0.
For each c ∈ A let Ψc denote the binary relation on A given by a Ψc b if a ∧ c = b ∧ c.
It follows from Lemma 2.9 that Ψc is a congruence on A; see also [16, Theorem 5.3].
Let Θc denote the smallest congruence on A that identifies the elements 0 and c. Since
a Ψc (a ∧ c) Θc 0 for all a ∈ A, it follows that Ψc ∨ Θc = ιA, the largest congruence
on A.

Definition 2.20. An element c of an algebra A in a dual binary 0-discriminator variety is
said to be central if Θc and Ψc are complementary factor congruences of A.

In general, Ψc and Θc will be complementary factor congruences when Θc ◦ Ψc =
Ψc ◦Θc = ιA, and Ψc ∧Θc = ωA. Since Ψc ∨Θc = ιA for every c, a sufficient condition
for Ψc and Θc to be factor congruences is that Ψc ∧ Θc = ωA. When c = 0, Ψc = ιA,
while Θc = ωA, the smallest congruence on A. On the other hand, if c is a maximal
element, then Ψc = ωA, while Θc = ιA, so 0, and maximal elements when they exist, are
examples of central elements.

Since the concept of a central element considered in this paper does not require algebras
to have elements that are residually distinct, it differs from the notion of a central element
due to Vaggione [38]. In the case of algebras in dual binary discriminator varieties having a
second constant term that is residually distinct from the discriminating constant, the central
elements in the sense of Vaggione are the same as the central elements considered in this
paper. In view of that, the following definition is useful.8

Definition 2.21. A dual binary 0-discriminator variety V is said to be double pointed if
there exists a constant term 1 in the language of V that is residually distinct from 0; that is,
Θ1 = ιA for all A ∈ V, where 1 = 1A.

Examples of double pointed dual binary discriminator varieties include bounded dis-
tributive lattices, pseudocomplemented semilattices, Stone algebras, and Boolean algebras.
Many examples that are double pointed ternary discriminator varieties arise in the study

8In conformance with our notation, Θ1 abbreviates Θ(0, 1), the smallest congruence that identifies the ele-
ments 0 and 1.
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of discriminator logics, since double pointedness ensures the existence of logical negation.
For details, see [35].

Proposition 2.22. A dual binary 0-discriminator variety V is double pointed if and only if
there exists a constant term 1 in the language of V such that V |= x ∧ 1 ≈ x. In that case
the element 1A ∈ A is both maximal and central for every A ∈ V.

Proof. Let V be a double pointed dual binary 0-discriminator variety and let 1 be a con-
stant term that is residually distinct from 0. Let A ∈ V be a non-trivial dual binary 0-
discriminator algebra. Then A has at least two elements, so Θ1 = ιA implies that 1 6= 0,
where 1 = 1A and 0 = 0A. But then a ∧ 1 = a for all a ∈ A, since ∧ is the dual binary
0-discriminator on A. Hence the identity x ∧ 1 ≈ x is satisfied by a class of algebras that
generates V.

Conversely, if V has a constant term 1 such that V |= x ∧ 1 ≈ x, then the element
1 = 1A is maximal for every A ∈ V, so Θ1 = ιA for every A ∈ V. The second statement
of the proposition follows because maximal elements are always central.

When a variety V is a ternary discriminator variety every element of an algebra A ∈ V
is central. However, the converse does not hold. For example, every element of a skew
Boolean algebra is central (see Proposition 6.2), but the variety of skew Boolean algebras
is not a ternary discriminator variety. The following lemma identifies a necessary (but not
sufficient) condition for every element of every algebra in V to be central.

Lemma 2.23. Let V be a dual binary 0-discriminator variety. If the congruences Θc and
Ψc permute for every A ∈ V and all c ∈ A then there exists a binary term s(x, y) which
satisfies the identities s(x,0) ≈ x and s(x, x) ≈ 0.

Proof. Let F(x, y) denote the free V-algebra on free variables x and y. Assume that
Θy ◦ Ψy = ιF(x,y). Then there exists an element s = s(x, y) of F (x, y) such that
x Θy s(x, y) Ψy 0. Since y ≡ 0(Θy) this implies that x = s(x, 0). Also, s(x, y) Ψy 0
implies that s(x, y) ∧ y = 0 ∧ y = 0. Now F(x, y) is free in x and y, so s(x,0) ≈ x
and s(x, y) ∧ y ≈ 0 are identities of V. Since s(x, y) is a 0-reflexive term, V |= 0 ≈
s(x, y)∧ y ≈ s(x∧ y, y ∧ y), by Lemma 2.9. Putting x = y gives V |= s(x, x) ≈ 0. Thus,
when V has the property that Θc ◦ Ψc = ιA for every A ∈ V and c ∈ A, a binary term
satisfying the stated identities must exist.

A term s(x, y) satisfying the identities of Lemma 2.23 is called 0-subtractive; see
[37]. A variety V with a constant term 0 is called subtractive at 0, or 0-subtractive, if
it has a 0-subtractive term. An algebra A with a constant term 0 is 0-subtractive if the
variety HSP({A}) is 0-subtractive. Subtractive algebras have normal 0-ideals and are
congruence-permutable at 0, that is, [0]θ◦ψ = [0]ψ ◦θ for every pair of congruences θ and
ψ, where 0 = 0A. Conversely, a variety V with a constant 0 and the property that every
A ∈ V is congruence-permutable at 0A has a 0-subtractive term; see [37, Proposition 1.2].
Such a variety is therefore also called 0-permutable, or congruence-permutable at 0. When
a dual binary 0-discriminator variety is subtractive at 0 we simply say that it is subtractive.

3 Binary discriminator varieties
The definitions of the binary discriminator function, a binary discriminator algebra, a binary
discriminator variety, and the generic binary discriminator variety mirror Definitions 2.1,
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2.2, 2.3, and 2.4 in the previous section. Thus, given a set A with element 0 ∈ A, the
binary 0-discriminator on A is the function \ : A2 → A defined for a, b ∈ A by a\b = a
if b = 0, and 0 otherwise. A binary discriminator algebra is an algebra A for which there
exists a a binary term x\y and a constant term 0 that induce the binary 0-discriminator
and its discriminating element 0 = 0A on the base set A of A. A binary discriminator
variety is a variety generated by a class K of binary discriminator algebras, with terms x\y
and 0 inducing the binary 0-discriminator and its discriminating constant 0 and on each
A ∈ K. The generic binary discriminator variety is the variety of similarity type 〈2, 0〉
generated by the class of all algebras of the form A = 〈A; \, 0〉, with \ being the binary
0-discriminator on A.

Lemma 3.1 (cf. [16, Theorem 2.1]). A variety V is a binary 0-discriminator variety if and
only if V is a 0-subtractive dual binary 0-discriminator variety.

Proof. Suppose V is a binary 0-discriminator variety. It is immediate that the binary dis-
criminator term x\y witnesses 0-subtractivity. Moreover, a\(a\b) is the dual binary 0-
discriminator a ∧ b on every binary 0-discriminator algebra in V. On the other hand,
if V is a dual binary 0-discriminator variety with a 0-subtractive term s(x, y) then it is
easily checked that s(x, x ∧ y) realizes the binary 0-discriminator on every dual binary
0-discriminator algebra in V.

It was shown in [8] that the generic binary discriminator variety is the variety iBCS of
implicative BCS-algebras of type 〈2, 0〉, axiomatised by the identities

iBCS :
x\x ≈ 0 (x\y)\z ≈ (x\z)\y

(x\y)\z ≈ (x\z)\(y\z) x\(y\x) ≈ x

It was also shown there that iBCS is generated as a variety by the three-element bi-
nary discriminator algebra B2 = 〈{0, 1, 2}; \, 0〉, that is, iBCS = HSP({B2}). Implica-
tive BCS-algebras are precisely the 〈\, 0〉-subreducts of pseudocomplemented semilattices,
where a\b = a∧b∗ for each pseudocomplemented semilattice 〈A;∧, ∗, 0〉 and all a, b ∈ A.
As such, they occur widely as subreducts of algebras such as Stone algebras, linearly or-
dered Heyting algebras, pseudocomplemented semilattices, skew Boolean algebras, strict
basic logic algebras, product logic algebras, and algebras in residually finite varieties of
basic logic algebras.

If A ∈ iBCS then the Clifford-McLean equivalence relation Ξ is a congruence on A and
A/Ξ ∈ iBCK, the variety of implicative BCK-algebras, which is the reflective subvariety
of iBCS axiomatised relative to iBCS by the identity x\(x\y) ≈ y\(y\x).

Combining Theorem 2.19 and Lemma 3.1 yields the following.

Theorem 3.2. Every binary discriminator variety is term equivalent to a variety of im-
plicative BCS-algebras with ideal-compatible operations. A variety V with a constant term
0 is a binary 0-discriminator variety if and only if V is subtractive at 0, has EDPI and is
generated by a class of 0-ideal simple algebras.

Let A be an algebra in a binary 0-discriminator variety V. Recall that Θc denotes
the smallest congruence on A equating the elements 0 and c, where 0 is the realisation of
the discriminating constant 0 of V. Subtractivity ensures that every 0-ideal I of A is a
congruence class, so it is meaningful to let ΘI denote the smallest congruence θ of A such
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that [0]θ = I .9 It turns out that ΘI has a simple characterisation that depends only on the
binary discriminator term. This means that some key structural properties of algebras in
binary discriminator varieties can be conveniently studied by restricting attention to their
iBCS-algebra term reducts; see for example [9], where the following result is proved.

Theorem 3.3. Let V be a binary 0-discriminator variety and let A ∈ V. For all a, b, c ∈ A,

1. a ≡ b mod Θc if and only if a\c = b\c.
2. [0]Θc = 〈c〉 = {a ∈ A | a\c = 0} = {a ∈ A | a ∧ c = a}.
3. For every ideal I , a ≡ b mod ΘI if and only if a\c = b\c for some c ∈ I .

4. For all Ψ ∈ ConA, ΘI ∨Ψ = ΘI ◦Ψ ◦ΘI .

Let A ∈ V, where V is a binary 0-discriminator variety. Since V is 0-subtractive,
an element c ∈ A will be central if and only if Ψc ∧ Θc = ωA. Let QB2 denote the
quasi-identity x ∧ z ≈ y ∧ z & x\z ≈ y\z ⇒ x ≈ y. The next result is immediate.

Theorem 3.4. Let V be a binary 0-discriminator variety. The following are equivalent.

1. For all A ∈ V, every c ∈ A is central.

2. For all A ∈ V and a, b, c ∈ A, a ∧ c = b ∧ c and a\c = b\c implies a = b.

3. V |= QB2.

We call a binary 0-discriminator variety satisfying the equivalent conditions of Theo-
rem 3.4 a QB2 variety. This terminology reflects the fact that the quasi-variety generated
by B2, the three-element binary 0-discriminator algebra, is axiomatised by the iBCS iden-
tities together with the QB2 quasi-identity. Most natural examples of binary discriminator
varieties are QB2 varieties.10 Such varieties are of interest because their members have
weak Boolean product representations. A number of examples of weak Boolean prod-
uct representations of algebras in QB2 varieties appear in the literature; see, for example,
[18, 23], or [30].

4 Some other pointed discriminator functions
In the following definitions we follow the convention of using infix notation for functions
in two variables.

Definition 4.1. Let A be a set and let 0 ∈ A. Then the

• skew 0-discriminator on A is the function s defined for all a, b, c ∈ A by

s(a, b, c) =


c if c 6= 0,

a if c = 0 and b 6= 0,

0 otherwise;

• multiplicative 0-discriminator on A is the function q defined for all a, b, c ∈ A by

q(a, b, c) =

{
a if c 6= 0 and a = b,

0 otherwise;
9Thus ΘI is Iδ in the terminology of Agliano and Ursini [2].

10Two significant exceptions are the varieties of implicative BCS-algebras and pseudocomplemented semilat-
tices.
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• pointed fixedpoint 0-discriminator on A is the function f defined for all a, b, c ∈ A
by

f(a, b, c) =

{
c if a = b,

0 otherwise;

• skew Boolean 0-discriminator on A is the function w defined for all a, b, c ∈ A by

w(a, b, c) =


0 if c 6= 0,

b if c = 0 and b 6= 0,

a otherwise;

• meet 0-discriminator on A is the function ∩ defined for all a, b ∈ A by

a ∩ b =

{
a if a = b,

0 otherwise;

• monoidal 0-discriminator on A is the function ∨ defined for all a, b ∈ A by

a ∨ b =

{
b if b 6= 0,

a otherwise.

• Implicative BCK difference (brieflly, iBCK difference) is the function / defined for
all a, b ∈ A by

a/b =

{
a if a 6= b,

0 otherwise.

Implicative BCK difference may alternatively be defined in terms of the binary and
meet 0-discriminators: a/b = a\(a ∩ b). For each of the 0-discriminator functions we
have the associated notions of a discriminator algebra, discriminator variety, and generic
discriminator variety, with definitions analogous to those for the corresponding dual binary
and binary 0-discriminator constructs. Some examples of skew, skew Boolean, multiplica-
tive, and pointed fixedpoint discriminator varieties are provided in the next four sections.

All of these pointed discriminator functions are to some extent interdefinable. For
example, each of the cited 0-discriminator functions with two arguments can be written
as a composition using just the ternary discriminator and the element 0, while each of the
cited 0-discriminator functions with three arguments can be written as a composition of the
cited 0-discriminator functions with two arguments. In particular, we have the following.

a ∧ b = t(b, t(b, 0, a), a) q(a, b, c) = (a ∩ b) ∧ c
a ∨ b = t(b, 0, a) s(a, b, c) = (a ∧ b) ∨ c
a ∩ b = t(a, t(a, b, 0), 0) w(a, b, c) = (a ∨ b)\c
a ∨ b = w(a, b, 0) = s(a, a, b) a\b = t(0, b, a)

a\b = w(a, a, b) = f(b, 0, a) a/b = t(a, b, 0)

a ∩ b = q(a, b, b) = f(a, b, a)

a ∧ b = f(0, f(b, 0, a), a) = w(0, a, w(0, a, b)) = s(a, b, 0) = q(a, a, b) = a\(a\b)
f(a, b, c) = (c\(a\(a ∩ b)))\(b\(a ∩ b)) = (c\(a/b))\(b/a)

t(a, b, c) = f(a, b, c) ∨ (a\(a ∩ b)) = ((c\(a/b))\(b/a)) ∨ (a/b)
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In view of these equalities and Theorem 2.19 the following is immediate.

Proposition 4.2. Every pointed ternary, pointed fixedpoint, skew Boolean, skew, multi-
plicative, and binary 0-discriminator variety is also a dual binary 0-discriminator variety.
Hence, every such variety has both ideal-compatible operations and EDPI. Moreover, ev-
ery pointed ternary discriminator variety is also a monoidal disciminator variety, a binary
discriminator variety, a meet discriminator variety, a multiplicative discriminator variety, a
skew discriminator variety, a skew Boolean discriminator variety, and a pointed fixedpoint
discriminator variety.

As a consequence of Proposition 4.2 and the displayed equalities, the various classes
of pointed discriminator varieties can be ordered by class inclusion, as shown in Figure 1.
For each class, the figure also shows which of the pointed discriminator terms with two
arguments are definable in the varieties making up that class. Note that there are a number
of subclasses of the class of dual binary discriminator varieties that are not included in
the diagram; for example, the class of pointed dual discriminator varieties and the class of
multiplicative skew discriminator varieties described in Section 7.
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Figure 1: Some classes of pointed discriminator varieties.

4.1 Additivity

Definition 4.3. Let K be a class of algebras with a constant term 0 in its language. A
binary term x+ y is called additive with respect to 0, or 0-additive, if K |= x+ 0 ≈ x and
K |= 0 + x ≈ x. An algebra A is 0-additive if {A} has a 0-additive term.11

11The terminology additive is preferred over monoidal in this paper in view of the connection with direct
summands, and to avoid confusion with the monoidal discriminator.
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A variety that is reflexive and additive with respect to a constant term 0 has the property
that a direct product A = B ×C of two algebras decomposes into the direct sum of two
subalgebras A = B1 ⊕C1, where B1

∼= B and C1
∼= C. (See [28, §2] for the definition

of a direct sum and an outline of its properties.) In view of [28, Theorem 2] the converse is
also true; a variety in which every product of two algebras decomposes into the direct sum
of two subalgebras must have a constant term 0 in its language such that it is both reflexive
and 0-additive.

We omit the prefix and say that a dual binary discriminator variety is additive when
there is no ambiguity regarding which discriminating constant is intended. Skew, skew
Boolean, and pointed ternary discriminator varieties are additive, so reflexive members of
them that are isomorphic to finite direct products can be represented as a direct sum of
subalgebras.

5 Skew discriminator varieties
A skew lattice 〈A;∨,∧〉 is an algebra with two associative and idempotent binary opera-
tions ∨ and ∧, satisfying the dual pair of absorption laws x ∧ (x ∨ y) ≈ x ≈ (y ∨ x) ∧ x
and x∨ (x∧ y) ≈ x ≈ (y ∧ x)∨ x. For precise details, see [25]. By a strongly distributive
skew lattice is meant a skew lattice that is symmetric, normal, and distributive; for details
about such algebras see [27, §3].

Proposition 5.1. The generic skew discriminator variety is term equivalent to the variety
of left handed strongly distributive skew lattices with zero. Thus every skew discriminator
variety is term equivalent to a variety of strongly distributive skew lattices with zero and
with ideal-compatible operations.

Proof. The skew 0-discriminator on a pointed setA ⊇ {0} can be written as a composition
of the dual binary and monoidal 0-discriminators: s(a, b, c) = (a ∧ b) ∨ c. Conversely,
we have a ∧ b = s(a, b, 0) and a ∨ b = s(a, a, b). Thus any skew 0-discriminator algebra
in the generic skew 0-discriminator variety is term equivalent to an algebra of the form
A = 〈A;∨,∧, 0〉. The remainder of the proof is analogous to the proof of Proposition 2.5.
It is straightforward to verify that an algebra such as A is a primitive, and therefore flat, left
handed strongly distributive skew lattice with zero and that every flat left handed strongly
distributive skew lattice with zero has this form. On the other hand, it follows from [27,
Theorem 3.2] that every subdirectly irreducible strongly distributive skew lattice with a
zero is flat. Hence the generic skew discriminator variety is term equivalent to the variety
of left handed strongly distributive skew lattices with zero. The second assertion of the
proposition now follows from Theorem 2.19.

More generally, if A = 〈A;∨,∧, 0〉 is a flat strongly distributive skew lattice with a
zero, then the skew 0-discriminator can be defined on A by

s(a, b, c) = c ∨ (a ∧ b ∧ a) ∨ c.

Examples of skew discriminator varieties that are not ternary discriminator or skew Boolean
discriminator varieties thus include strongly distributive skew lattices with zero and hence
also distributive lattices with zero, as well as certain varieties in which each member has a
bounded distributive lattice term reduct, such as the variety of Q-distributive lattices intro-
duced in [17].
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While the term x ∨ y witnesses additivity for every skew discriminator variety, an ad-
ditive dual binary discriminator variety need not be a skew discriminator variety. However,
an additive binary discriminator variety is always a skew discriminator variety. In fact,
rather more is true.

Proposition 5.2. A variety V with a constant term 0 is a 0-additive binary 0-discriminator
variety if and only if it is a skew Boolean 0-discriminator variety. Hence a subtractive skew
discriminator variety is always a skew Boolean discriminator variety.

Proof. Let V be a binary 0-discriminator variety with a 0-additive term x+ y and a binary
0-discriminator term x\y. Let A be a binary 0-discriminator member of V. A straightfor-
ward case-splitting argument shows that the term ((x\y) + y)\z realises the skew Boolean
0-discriminator on A, with the sub-term (x\y) + y realising the monoidal 0-discriminator
on A. Hence V is a skew Boolean 0-discriminator variety. Conversely, if V is a skew
Boolean 0-discriminator variety with skew Boolean 0-discriminator term w(x, y, z) then,
by considering their realisations on a skew Boolean 0-discriminator algebra in V, it is easy
to verify that w(x,0, y) is a binary 0-discriminator term, while w(x, y,0) is a 0-additive
term.

6 Skew Boolean discriminator varieties
A skew Boolean algebra may be regarded as an algebra A = 〈A;∨,∧, \, 0〉, where the
reducts 〈A;∨,∧〉 and 〈A; \, 0〉 are respectively a strongly distributive skew lattice and an
implicative BCS-algebra, such that A |= x ∧ y ∧ x ≈ x\(x\y). This identity ensures that
the natural preorders on the two reducts coincide. For an alternative definition, and further
details about the variety of skew Boolean algebras, see [26].

By [26, Theorem 1.13], there are, up to isomorphism, just three subdirectly irreducible
skew Boolean algebras. Moreover, each of these algebras is flat. Given a flat skew Boolean
algebra A, it is straightforward to verify that the ternary function w defined for all a, b, c ∈
A by w(a, b, c) = (b ∨ a ∨ b)\c is the skew Boolean 0-discriminator on A. It follows that
skew Boolean algebras constitute a skew Boolean discriminator variety.

Proposition 6.1. The generic skew Boolean discriminator variety is term equivalent to
the class of left handed skew Boolean algebras. Thus, every skew Boolean discriminator
variety is term equivalent to a variety of skew Boolean algebras with ideal-compatible
operations.

Proof. If A is a skew Boolean 0-discriminator algebra with a skew Boolean 0-discriminator
w, the left handed skew Boolean algebra operations may be defined for all a, b, c ∈ A by
a∧ b = w(0, a, w(0, a, b)), a∨ b = w(a, b, 0) and a\b = w(0, a, b). Conversely, if A is an
ideal simple left handed skew Boolean algebra then the skew Boolean 0-discriminator on
A is given for all a, b, c ∈ A by w(a, b, c) = (a ∨ b)\c. The result now follows in a similar
manner to Proposition 2.5, since every subdirectly irreducible skew Boolean algebra is flat
and thus ideal simple. The second statement of the Proposition follows from Theorem 2.19.

Proposition 6.2. Every skew Boolean discriminator variety satisfies the QB2 quasi-identity.
Thus every element of an algebra in skew Boolean discriminator variety is central.
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Proof. By [26, Theorem 1.13], there are, up isomorphism, just three subdirectly irre-
ducible skew Boolean algebras. Moreover, these algebras are ideal simple and have at most
three elements, so their implicative BCS-algebra reducts are isomorphic to either B2, the
three-element implicative BCS-algebra, or to the two-element implicative BCK-algebra,
which is a subalgebra of B2. Therefore, every subdirectly irreducible skew Boolean alge-
bra must satisfy QB2. Birkhoff’s Theorem (see [15, Theorem II§9.6]) ensures that every
skew Boolean algebra is isomorphic to a subdirect product of subdirectly irreducible skew
Boolean algebras. Thus every skew Boolean algebra must satisfy QB2, since the satisfac-
tion of quasi-identities is preserved under the taking of subdirect products. The result now
follows from Theorem 3.4 and Proposition 6.1.

Apart from skew Boolean algebras, examples of skew Boolean discriminator varieties
include Stone algebras, double Stone algebras, Kleene-Stone algebras, strict basic logic
algebras, and many others, including every pointed ternary discriminator variety. Skew
Boolean discriminator varieties have a close connection with Church algebras, namely
algebras that have a ternary term q(x, y, z) and two constant terms 0 and 1 in their language
satisfying the identities q(1, x, y) ≈ x and q(0, x, y) ≈ y; see [18]. The next result is
inspired by [31, Proposition 3.2].

Proposition 6.3. Let V be a double-pointed skew Boolean 0-discriminator variety. Then
V is a variety of Church algebras.

Proof. Let 1 be a constant term that is residually distinct from 0. By Proposition 2.22,
V |= x ∧ 1 ≈ x, and for every A ∈ V the element 1 = 1A ∈ A is maximal. Let x′

abbreviate the term 1\x and let q(x, y, z) denote the ternary term (y ∧ x) ∨ (z ∧ x′). Then
for all a, b ∈ A we have

qA(0, a, b) = (a ∧ 0) ∨ (b ∧ 0′) = 0 ∨ (b ∧ (1\0))

= 0 ∨ (b ∧ 1) = 0 ∨ b = b,

and

qA(1, a, b) = (a ∧ 1) ∨ (b ∧ 1′) = a ∨ (b ∧ (1\1))

= a ∨ (b ∧ 0) = a ∨ 0 = a.

Hence V is a variety of Church algebras.

In the particular case of semicentral right Church algebras there is an even closer cor-
respondence. Briefly, V is a variety of semicentral right Church algebras if its language
includes a constant term 0 and a ternary term q(x, y, z) satisfying q(0, x, y) ≈ y, such that
for every A ∈ V, all elements of A are semicentral. For details see [18].

Proposition 6.4. The class of skew Boolean discriminator varieties coincides with the class
of varieties of semicentral right Church algebras.12

Proof. Let V be a variety of semicentral right Church algebras, with right Church algebra
term q(x, y, z). By [18, Lemma 4.5], A ∈ V is directly indecomposable if and only if for
all a, b, c ∈ A, q(a, b, c) = b if a 6= 0 and c otherwise. Let w(a, b, c) = q(c, 0, q(b, b, a)).

12The authors are grateful to the referee for pointing out this result.
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Then for all a, b, c ∈ A, w(a, b, c) = 0 if c 6= 0, and q(b, b, a) otherwise. But q(b, b, a) = b
if b 6= 0, and a otherwise. Hence w(a, b, c) is the skew Boolean 0-discriminator on A.
Since every subdirectly irreducible algebra is directly indecomposable it follows that the
term q(z,0, q(y, y, x)) realises the skew Boolean 0-discriminator on a class of algebras that
generates V. Thus V is a skew Boolean discriminator variety.

Conversely, suppose that V is a skew Boolean discriminator variety with skew Boolean
discriminator term w(x, y, z) and discriminating constant term 0. Let q(x, y, z) be the
term w(w(y, y, w(y, y, x)), w(z, z, x),0) and suppose that A ∈ V is a skew Boolean
0-discriminator algebra. Then for all a, b, c ∈ A,

q(a, b, c) = w(w(b, b, w(b, b, a)), w(c, c, a), 0)

= w(w(b, b, 0), 0, 0) = w(b, 0, 0) = b

when a 6= 0, while

q(a, b, c) = w(w(b, b, w(b, b, 0)), w(c, c, 0), 0)

= w(w(b, b, b), c, 0) = w(0, c, 0) = c

when a = 0. Thus A is a directly indecomposable semicentral right Church algebra. Since
V is generated by a class of such algebras, it must be a variety of semicentral right Church
algebras.

In [18] the variety of pure semicentral right Church algebras is defined to be the variety
of type 〈3, 0〉 comprising all semicentral right church algebras of the form 〈A; q, 0〉, with
q being its right Church algebra operation. Combining Propositions 6.1 and 6.4 with [18,
Theorem 4.6] yields the following.

Corollary 6.5. The generic skew Boolean discriminator variety, the variety of pure semi-
central right Church algebras, the variety of left handed skew Boolean algebras, and the
variety of right handed skew Boolean algebras are all term equivalent.

Every skew Boolean discriminator variety is additive, as witnessed by the term x ∨ y.
As a consequence, every principal ideal 〈c〉 of a reflexive algebra A in a skew Boolean
discriminator variety is a direct summand. Its complementary direct summand is the ideal
ann(c) = {a ∈ A | a ∧ c = 0}. We remark that there is a converse to this result: a
reflexive variety V with the property that the principal ideals of every member of V are
direct summands must be a skew Boolean discriminator variety.

Theorem 6.6. Let V be a variety with constant 0. The following are equivalent.

1. V is a skew Boolean 0-discriminator variety.

2. V is an additive binary 0-discriminator variety.

3. V is a subtractive skew 0-discriminator variety.

4. V is an additive and subtractive dual binary 0-discriminator variety.

5. V is additive and subtractive at 0, has EDPI and is generated by a class of 0-ideal
simple algebras.

Proof. Combine Theorem 3.2 and Proposition 5.2.
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Corollary 6.7. A congruence-permutable dual binary 0-discriminator variety is additive
and subtractive, and hence is a skew Boolean 0-discriminator variety.

Proof. Let V be a congruence-permutable dual binary 0-discriminator variety. By a theo-
rem of Mal’cev (see [15, Theorem II§12.2]), there exists a term p(x, y, z) in the language
of V such that V |= p(x, y, y) ≈ p(y, y, x) ≈ x. Let x + y be the term p(x,0, y) and let
s(x, y) be the term p(x, y, 0). Then x+ 0 ≈ p(x,0,0) ≈ x, and 0 + x ≈ p(0,0, x) ≈ x,
so V is additive. Also s(x,0) ≈ p(x,0,0) ≈ x and s(x, x) ≈ p(x, x,0) ≈ 0, so V is
subtractive. Thus V is a skew Boolean 0-discriminator variety.

7 Multiplicative discriminator varieties
Definition 7.1. An algebra A in a dual binary discriminator variety V has intersections if
finite meets exist under the natural dual binary discriminator partial order on A. A dual
binary discriminator variety V is said to have intersections if every member of V has inter-
sections.

The variety of skew Boolean intersection algebras introduced in [7] is an example of a
dual binary discriminator variety with intersections.

Lemma 7.2. Let V be a multiplicative 0-discriminator variety. Then there exist terms
x ∩ y and x ∧ y that induce the meet 0-discriminator and the dual binary 0-discriminator
respectively on the multiplicative 0-discriminator algebras in V.

Proof. Let q(x, y, z) be the multiplicative discriminator term for V. Put x∩ y = q(x, y, x)
and x ∧ y = q(x, x, y). Let A ∈ V be a multiplicative 0-discriminator algebra with
discriminating element 0 = 0A. Then for all a, b ∈ A, qA(a, b, a) = a if a = b and
0 otherwise; while qA(a, a, b) = a if b 6= 0 and 0 otherwise. Hence these functions are
respectively the meet and the dual binary 0-discriminators on A.

Theorem 7.3. Let V be a dual binary 0-discriminator variety with dual binary discrimina-
tor term x∧ y. Then V is a multiplicative 0-discriminator variety if and only if there exists
a binary term x ∩ y such that V satisfies the following identities:

x ∩ 0 ≈ 0 ∩ x ≈ 0 x ∩ y ≈ y ∩ x x ∩ (y ∩ z) ≈ (x ∩ y) ∩ z
x ∩ x ≈ x x ∧ (x ∩ y) ≈ x ∩ y (x ∧ z) ∩ (y ∧ z) ≈ (x ∩ y) ∧ z

Moreover, every dual binary 0-discriminator variety with such a term has intersections and
is a meet 0-discriminator variety.

Proof. Let V be a multiplicative 0-discriminator variety and suppose that A ∈ V is a
multiplicative 0-discriminator algebra. By Lemma 7.2 there are terms x ∧ y and a ∩ y
that realise the dual binary and meet 0-discriminators on A. Straightforward case-splitting
arguments show that the displayed identities hold on A and hence they are identities of V,
since it is a variety generated by a family of such algebras.

Conversely, if V is a dual binary 0-discriminator variety with dual binary 0-discrimina-
tor term x ∧ y, and a term x ∩ y such that the displayed identities are satisfied, then these
identities imply that for every A ∈ V the term reduct 〈A;∩, 0〉 is a meet semilattice with
zero. Moreover, the identities also imply that for all a, b ∈ A, a ∩ b ≤ a and a ∩ b ≤ b
under the natural dual binary discriminator partial order. Suppose that c ∈ A is such that
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c ≤ a and c ≤ b, so that a∧ c = c and b∧ c = c. Then c = (a∧ c)∩ (b∧ c) = (a∩ b)∧ c,
which implies that c ≤ a∩ b. Thus a∩ b is the greatest lower bound of a and b with respect
to the natural dual binary discriminator partial order and hence V has intersections.

To see that V is a meet 0-discriminator variety, let A be a dual binary 0-discriminator
algebra in V. Let a, b ∈ A. Now a ∩ b is the meet of a and b under the natural dual binary
discriminator partial order onA. But A is order isomorphic to a flat domain, which implies
that a ∩ b = 0 when a 6= b. Also a ∩ a = a. Thus the term x ∩ y realises the meet
0-discriminator on a class of algebras that generates V.

In view of this result we say that a dual binary discriminator variety V is multiplicative
if it has a binary term x ∩ y such that for every A ∈ V and all a, b ∈ A, a ∩ b is the meet
of the elements a and b under the natural dual binary discriminator partial order on A.

Example 7.4. The dual discriminator on a set A is the ternary function d : A3 → A given
for all a, b, c ∈ A by d(a, b, c) = a if a = b, and c otherwise; see [19]. Let V be a pointed
dual discriminator variety, with dual discriminator term d(x, y, z) and a constant term 0. If
A ∈ V is a dual discriminator algebra then dA(a, b, 0) = a if a = b, and 0 otherwise, while
dA(0, b, a) = a if b 6= 0, and 0 otherwise, so d(x, y, 0) and d(0, y, x) are respectively meet
and dual binary discriminator terms for V, with the multiplicative discriminator term for V
being d(0, z, d(x, y, 0)).

Jonathan Leech [24] has shown that a multiplicative skew discriminator variety is a
pointed dual discriminator variety (and hence is congruence distributive). The converse
does not hold, since the generic pointed dual discriminator variety is not additive.

8 Pointed fixedpoint discriminator varieties
Fixedpoint discriminator varieties arise in algebraic logic and were introduced by W. Blok
and D. Pigozzi in [11]. Pointed fixedpoint discriminator varieties were introduced in [1],
where they are called dual fixedpoint discriminator varieties, and independently in [34].
The generic pointed fixedpoint discriminator variety is (up to term equivalence) the variety
iBCSK of implicative BCSK-algebras, introduced in [34]. An implicative BCSK-algebra
is an algebra A = 〈A; /, \, 0〉 of type 〈2, 2, 0〉, where 〈A; /, 0〉 is an implicative BCK-
algebra, 〈A; \, 0〉 is an implicative BCS-algebra, such that the natural partial orders on
each of these term reducts coincide. An equational base for the variety iBCSK may be
obtained by taking the iBCS and iBCK identities, together with the identities (x\y)/x ≈ 0
and x ∧ (x/y) ≈ x/y. Humberstone [21, 22] has extensively investigated the deductive
system canonically associated with the variety iBCSK from the perspective of the normal
modal logic S5.

Recall that an algebra with a constant term 0 is 0-regular if for every two congruences
θ and ψ, [0]θ = [0]ψ implies θ = ψ. A variety with a constant term 0 is 0-regular
if every member of it is 0-regular. A variety V is said to be ideal determined at 0 if
every ideal of an algebra A ∈ V is the 0-class of a unique congruence relation; see [20,
Definition 1.3]. Clearly, every algebra in such a variety has the property that its lattice
of 0-ideals is isomorphic to its lattice of congruences. By [20, Corollary 1.9] a variety V
with a constant term 0 is ideal determined at 0 if and only if it is both subtractive at 0 and
0-regular.

Implicative BCSK-algebras are 0-regular and, since the iBCS and iBCK operations are
both subtractive at 0, the variety iBCSK is ideal determined. Moreover, iBCSK is semi-
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simple, that is, every subdirectly irreducible member of iBCSK is simple. Full details
appear in [34]. Since every pointed fixedpoint discriminator variety is term equivalent to a
variety of iBCSK-algebras with ideal-compatible operations, it follows that such a variety
must be ideal determined at its discriminating constant, and thus must also be semi-simple.
In summary:

Theorem 8.1. The following are equivalent for a variety with constant 0.

1. V is a pointed fixedpoint 0-discriminator variety.

2. V is a subtractive multiplicative 0-discriminator variety.

3. V is a multiplicative binary 0-discriminator variety.

4. V is a 0-regular binary 0-discriminator variety.

5. V is an ideal determined dual binary 0-discriminator variety.

6. V is ideal determined at 0 and is semi-simple with EDPI.

The equivalence of 1 and 6 was shown independently in [1, Theorem 4.8]. We remark
that for the double-pointed analogue of Theorem 8.1, further equivalences are possible: in
particular, fundamental connections can be established with the pseudo-interior algebras of
Blok and Pigozzi [12].

9 Pointed ternary discriminator varieties
Pointed ternary discriminator varieties can be characterised in many different ways. Note
that a ternary discriminator variety is a dual binary 0-discriminator variety for each constant
term 0 in its language.

Theorem 9.1. For each constant term 0 in the language of a variety V the following are
equivalent.

1. V is a pointed ternary discriminator variety.

2. V is term equivalent to a variety of skew Boolean intersection algebras with ideal-
compatible operations.

3. V is a multiplicative skew Boolean 0-discriminator variety.

4. V is an ideal determined skew 0-discriminator variety.

5. V is a multiplicative and subtractive skew 0-discriminator variety

6. V is an additive and multiplicative binary 0-discriminator variety.

7. V is an additive, subtractive and multiplicative dual binary 0-discriminator variety.

8. V is an additive pointed fixedpoint 0-discriminator variety.

9. V is a congruence-permutable multiplicative 0-discriminator variety.

Proof. Let V be a pointed ternary discriminator variety with constant term 0. By The-
orem 1.2 and Proposition 4.2, V is a dual binary 0-discriminator variety. By [7, Theo-
rem 4.7], the generic pointed ternary discriminator variety is term equivalent to the variety
of left handed skew Boolean intersection algebras, so it follows from Theorem 2.19 that
V must be term equivalent to a variety of skew Boolean intersection algebras with opera-
tions that are ideal-compatible with respect to its dual binary 0-discriminator term. Thus
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1 implies 2. Now 2 implies 3 because every skew Boolean intersection algebra is a multi-
plicative skew Boolean algebra in view of [7, §4] and Theorem 7.3.

Since every ternary 0-discriminator variety is also a skew, skew Boolean, binary, dual
binary, and pointed fixedpoint 0-discriminator variety, the equivalence of 3, 4, 5, 6, 7 and
8 follows directly from Theorems 3.2, 6.6, 7.3, and 9.1.

In view of Corollary 6.7, a congruence-permutable dual binary 0-discriminator variety
is skew Boolean 0-discriminator variety, so 9 implies 3. Ternary discriminator varieties are
congruence-permutable by [15, Theorem IV§9.4] and a ternary 0-discriminator variety is a
multiplicative 0-discriminator variety by Proposition 4.2, so 1 implies 9.

To complete the proof it is sufficient to show that 3 implies 1, so assume that V is a
multiplicative skew Boolean 0-discriminator variety. Then by Proposition 6.1 V is term
equivalent to a variety of skew Boolean algebras with ideal-compatible operations. By
Theorem 7.3 these algebras have intersections, that are witnessed by a binary meet 0-
discriminator term x ∩ y. Thus, by [7, Theorem 4.4], when the meet discriminator term
is included in their type, they are members of the ternary discriminator variety of skew
Boolean intersection algebras. Hence the ideal simple members of V are ternary discrimi-
nator algebras, and since it is generated by its ideal simple members, V must be a pointed
ternary discriminator variety.
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Abstract

All participants in the workshop NCS 2018 were invited to submit a list of open prob-
lems, typically problems relevant to the subject matter of their talk. These problems follow,
grouped according the particular individual presenting them. These individuals appear with
their problem sets in alphabetical order, the sole exception being that the Honoree of the
workshop appears first. Some of the presenters give a bit of background to accompany their
problems. In other cases, such as myself, the presenter assumes that enough background
was given in their talk as published herein. Thus the reader is invited to refer back to the
relevant article. It is hoped that in the months to follow some of these problems will be
solved, or at least, considerable light will be shed on them.

Keywords: Skew lattice, ring, primitive skew lattice, dual congruence distributivity, orthodox semi-
group, sheaf representation, left regular band, quasilattice, paralattice, covering lattice, skew Bool-
ean algebra, congruence lattice, antilattice, skew Heyting algebra, coset structure, comodernistic
lattice.

Math. Subj. Class.: 06A75, 06B20, 06B75

1 Jonathan Leech
Problem 1.1. The following problem considers skew lattices in the context of rings.

(1) Given a finite left (right) regular band B, must the skew lattice generated from B in
the semigroup ring Z(B) be finite also?

(2) If B is the free left (right) regular band on generators, x1, x2, . . . , xn, what must its
generated skew lattice in Z(B) look like. . . in detail?
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The Z-coefficient case has implications for the case of an arbitrary commutative ring
K with identity being used as the coefficient ring. Of course, if the generated skew lattice
in (2) is finite for all n, then the answer to (1) is YES. In this case, for any finite left regular
band in any ring, the generated skew lattice is finite.

Problem 1.2. Find necessary and sufficient conditions for a skew lattice S to be embed-
ded into a ring. That is for S to have an isomorphic copy consisting of idempotents in a
ring with the operations being multiplication and either the quadratic or cubic join. Pre-
conditions include: being distributive (and thus categorical); being cancellative (and thus
symmetric). Clearly skew Boolean algebras and their duals can be embedded into a ring.
More generally, strongly distributive skew lattices [satisfying x∧(y∨z) = (x∧y)∨(x∧z)
and (x∨y)∧z = (x∧z)∨ (y∧z)] and dual strongly distributive lattices can be embedded
into a ring. Are there other sufficient conditions?

Problem 1.3. In particular, find necessary and sufficient conditions for a primitive skew
lattice to be embedded into a ring. A primitive skew lattice is both distributive and cancella-
tive, Perhaps all primitive skew lattices can be so embedded. If not, then a third general
requirement for a skew lattice to be embedded into a ring is that all of its primitive subal-
gebras can be so embedded. More generally, find necessary and sufficient conditions for
skew chains A > B > C or A > B > C > D or longer, to be so embedded.

Problem 1.4. What can be said about the subvariety of skew lattices generated from all
primitive skew lattices? It must be: distributive (and thus categorical), cancellative (and
thus symmetric) and strictly categorical. What else? Again, what are necessary and suffi-
cient conditions for a skew lattice to be in this subvariety?

Problem 1.5. What can one say about the subvariety of skew lattices generated jointly
from the varieties of normal and conormal skew lattices?

2 Robert J. Bignall
Problem 2.1. Find a Mal’cev condition (see [21]) for dual congruence distributivity at a
constant.

Problem 2.2. Characterise the class of dual binary discriminator varieties that are dually
congruence distributive at their discriminating constant.

Background

Let K be a class of algebras of some given similarity type and let 0 be a constant term.
Given an algebra A ∈ K and Θ ∈ ConA, denote the congruence class {a ∈ A | a Θ 0}
by [0]Θ, where 0 = 0A. A is said to be congruence distributive at 0, or congruence
0-distributive if for all Θ,Ψ,Φ ∈ ConA

[0](Θ ∨Ψ) ∧ Φ = [0](Θ ∧ Φ) ∨ (Ψ ∧ Φ).

A is said to be dually congruence distributive at 0, or dually congruence 0-distributive if
for all Θ,Ψ,Φ ∈ ConA

[0](Θ ∧Ψ) ∨ Φ = [0](Θ ∨ Φ) ∧ (Ψ ∨ Φ).



J. Leech and J. Pita Costa: Open problems on skew lattices 3

The class K is congruence 0-distributive (resp. dually congruence 0-distributive) if every
A ∈ K is congruence 0-distributive (resp. dually congruence 0-distributive); see [2]. These
properties are described as being ideal-theoretic, because [0]Θ is an ideal of A with respect
to the constant 0.

Dual congruence 0-distributivity is a stronger condition than congruence 0-distributi-
vity. For example, meet semilattices with 0, or more generally normal bands with 0, are
congruence 0-distributive but not dually congruence 0-distributive. On the other hand,
skew Boolean algebras are dually congruence 0-distributive, and hence are also congru-
ence 0-distributive. Skew Boolean algebras, or more generally algebras in skew Boolean
discriminator varieties, enjoy a number of other strong ideal-theoretic properties, despite
the fact that their congruence lattices in general satisfy no lattice identities.

I. Chajda [2] has given a Mal’cev condition for the class of congruence 0-distributive
varieties, modelled on Bjarni Jónsson’s well-know Mal’cev condition for the class of con-
gruence distributive varieties [11]. However, it would appear that no-one has as yet solved
the harder problem of finding a Mal’cev condition for the class of dually congruence 0-
distributive varieties (or dually congruence 0-distributive SP classes; that is classes of al-
gebras that are closed under the taking of products, subalgebras and isomorphisms.) The
congruence lattices of algebras in dual binary discriminator varieties do not in general have
any special properties. However, the ideals of such algebras play a central role. Another
significant ideal theoretic property is congruence permutability at 0. A class K of algebras
with a constant 0 is congruence permutable at 0 if for any A ∈ K and any Θ,Φ ∈ ConA,

[0]Θ ◦ Φ = [0]Φ ◦Θ.

K is arithmetic at 0 if it is both congruence distributive and congruence permutable at 0, in
which case it is also dually congruence distributive at 0.

The class of binary discriminator varieties has an entirely ideal-theoretic characterisa-
tion as that class of pointed varieties that are arithmetic at their constant term, have equa-
tionally definable principal ideals, and are generated by a sub-class of ideal simple mem-
bers. A worthwhile but as yet incomplete research program would be to characterise each
pointed discriminator variety sub-class of the class of dual binary discriminator varieties in
terms of the ideal theoretic properties of its members.

3 Des FitzGerald
Problem 3.1. Let A be an algebra and S its monoid of endomorphisms. It is known that if
S has commuting idempotents then A has the properties:

(RI) the intersection of two retracts of A is also a retract,

(UR) to each retract of A corresponds a unique idempotent with that range,

and their duals. Is the converse true? This was posed as Problem 7.4 of [10] where a proof
of the forwards implication may be found.

Problem 3.2. My paper [5] necessarily included (in Section 2) a development of groupoids
over a band of objects. It seemed likely that this topic had been considered already, but I
have since found nothing directly comparable in the literature. Hence the problem: describe
the class of orthodox semigroups which are obtained as groupoids over a band of objects
in the manner shown there.
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Background for 3.1

First note that every homomorphism (written as a right mapping) in a variety has a factori-
sation f = hj with h surjective and j injective. If there are h : A → R, j : R → A such
that jh = 1R, then h is called a retraction (and in fact is surjective) and j is a section (and
is injective). R is a retract of A and the congruence ρh := h ◦ h−1 is a coretract of A. Of
course R ∼= A/ρh, so the distinction between retracts and coretracts is solely whether we
consider R as a subalgebra or a quotient algebra. Put f = hj; then jh = 1R is equivalent
to f2 = f (this is easy folklore).

Now (RI) and (UR) are as stated, but to unpick my little concealment, we could rephrase
(UR) as: to each section j : R → A corresponds a unique right inverse h : A → R. Then
the duals are

(RI*) the join of two coretracts of A is a coretract of A;

(UR*) each retraction h : A→ R has a unique section (left inverse).

I know no reference for my claim that CI: S = EndA has commuting idempotents
implies all of these; here’s my proof.

Proof. Let two retracts of A be determined (as Af and Ag) by f, g ∈ S with f = f2,
g = g2, and fg = gf . Then (fg)2 = fg and Afg is a retract (and ρfg is a coretract).
Clearly

Afg = Agf ⊆ Af,Ag

and so Afg ⊆ Af ∩ Ag. But if x ∈ Af ∩ Ag then x = xf = xg = xfg, so x ∈ Afg.
This proves Af ∩ Ag = Afg, a retract, and establishes (RI). Similarly, any two coretracts
of A are of the forms ρf and ρg , with f, g idempotents of EndA. Then ρf ∨ ρg ⊆ ρfg
(xf = x′f ⇒ xfg = x′fg, etc.) But if xfg = x′fg, we have

x ρf xf ρg x
′f ρf x

′ and x ρg xg ρf x
′g ρg x

′,

and thus (x, x′) ∈ ρf ∨ ρg whence ρfg ⊆ ρf ∨ ρg . Thus ρf ∨ ρg = ρfg , a coretract; so
(RI*) holds.

Now for (UR). Suppose there are f = f2, g = g2 such that the retract R = Af = Ag.
Then for any x ∈ A, there are y, z ∈ A such that xf = yg, xg = zf . Then

xfg = yg = xf

= xgf = zf = xg,

and so f = g and we see (UR). To (UR*): Suppose there is h : A → R and sections
j, k : R → A such that jh = kh = 1R. Then hj, hk are idempotents in EndA and we
have in turn hjhk = hkhj, hk = hj, and k = j.

4 Sam van Gool
Problem 4.1. What is the relationship, if any, between the duality for sheaf representa-
tions of distributive-lattice-ordered algebras of Gehrke and van Gool [6] and the duality for
strongly distributive skew lattices of Bauer, Cvetko Vah, Gehrke, van Gool, and Kudryavt-
seva [1]? Sheaves play prominent but apparently distinct roles in these two dualities; any
connection between the two could be an interesting direction for further research.
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5 Michael Kinyon
5.1 Left regular bands and left-handed skew lattices as ordered sets

When I’ve given talks about skew lattices to nonexperts, one of the things that typically
bothers members of the audience is that unlike lattices, skew lattices do not have a nice
order theoretic definition.

There was one attempt to give such a characterization by Gerhardts [7], who studied
a variety of noncommutative lattices he called Fastverbanden. They have an unintuitive
definition, but it is not difficult to show that they are precisely what we now call left-
handed binormal (normal and conormal) skew lattices. Gerhardts attempted to characterize
Fastverbanden entirely in terms of their natural partial order and their natural preorder.
Unfortunately, [7] has at least one mistake in it. However, the definitions can be modified
to get his idea to work. For simplicity, I will just focus on bands here instead of skew
lattices.

The basic structure (X,�,≤) consists of a set X with a preorder � and a partial order
≤ which refines � (that is, ≤ ⊆ �). Let L denote the equivalence relation associated to �.
We assume the following:

If x L y and x, y ≤ z, then x = y. (∗)

For a, b ∈ X , an element c ∈ X is said to be a lower bound of the pair (a, b) if c ≤ a and
c � b. We say that c is an infimum of (a, b) if

(i) c is a lower bound of (a, b), and

(ii) if x � a, b, then x � c.

It is easy to prove that a pair (a, b) can have at most one infimum. (The definition of
infimum is where I differ from Gerhardts.)

A left normal band (X,≤,�) (in the order theoretic sense) is a structure as above such
that every ordered pair (a, b) of elements has an infimum, which we denote by a ∧ b. We
then can prove the expected theorem: left normal bands in the order theoretic sense are
precisely the same as left normal bands in the algebraic sense.

It is easy to get the corresponding result for left-handed binormal skew lattices, and it
is also not hard to generalize from the one-sided case to normal bands by using both the L-
andR-preorders.

Left normality essentially comes from property (∗) above.

Problem 5.1. Generalize the above characterization to left regular bands. What property
should replace (∗)?

5.2 Quasilattices and paralattices

Recall that a double band (X,∨,∧) is a

• quasilattice if the natural preorders dualize each other,

• paralattice if the natural partial orders dualize each other.

Both classes of noncommutative lattices form varieties. Quasilattices are axiomatized by

x ∧ (y ∨ x ∨ y) ∧ x = x = x ∨ (y ∧ x ∧ y) ∨ x,
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while paralattices are axiomatized by

(x ∨ y ∨ x) ∧ x ∧ (x ∨ y ∨ x) = x = (x ∧ y ∧ x) ∨ x ∨ (x ∧ y ∧ x).

(These are not the four identities axiomatizing paralattices in [12] but it is easy to see these
two are equivalent to those.)

Let us say that a double band (X,∨,∧) is a -lattice if it satisfies the following
implications:

x ≤∧ y ⇒ y �∨ x
x ≤∨ y ⇒ y �∧ x

(Part of the problem here is to find a suitable name for this class of noncommutative lat-
tices.) It is clear that -lattices include both quasilattices and paralattices as special
cases. It is also straightforward to show that -lattices form a variety axiomatized by

x ∧ (x ∨ y ∨ x) ∧ x = x = x ∨ (x ∧ y ∧ x) ∨ x.

Problem 5.2 (Suggested by J. Leech). Describe the join variety of the varieties of paralat-
tices and quasilattices.

6 Jurij Kovič
Problem 6.1. Define the concept of (and develop a theory for) a covering of a (skew)
lattice. Use the analogy with covering graphs (voltages).

Background

The concept of a covering graph. Definitions of graphs, covering graphs and voltages are
in detail explained in [15, pp. 96–97]. Covering graphs were first introduced in [9] for
directed graphs, but they may be applied also to undirected graphs, as in [16]. Lifting
graph automorphisms from the underlying graph is explained in [14].

7 Ganna Kudryavtseva
Some problems on skew Boolean algebras are proposed below. For a concise background
on skew Boolean algebras, please refer to [13].

Problem 7.1. Study objects obtained by relaxations of the definition of an SBA S. What
if normality is dropped and one requires only S is symmetric, has 0 and S/D is a Boolean
lattice? What if symmetricity is dropped and one requires only S is normal, has 0 and
S/D is a Boolean lattice? These, in each case, are generalizations of SBAs. Study their
structure. Do they form a variety (in each case)? How are they related to SBAs?

Problem 7.2. Let S be a LSBIA (left handed skew Boolean intersection algebra). Then
S∗ is a (locally compact) Boolean space so that there is its dual GBA, B. Is it possible to
extend the assignment S 7→ B to a functor? What are adjoints, if exist? What can be said
about the relationship between S/D and B?

Problem 7.3. There is a forgetful functor from Boolean inverse semigroups to LSBAs
(indeed, domain and range maps of an étale groupoids are étale maps). Does it have a left
adjoint? Then how is it constructed? A similar question can be asked also about Boolean
inverse ∧-semigroups and LSBIAs.
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8 Tomaž Pisanski
Problem 8.1. Given a finite lattice K. Find a test that will tell whether K is isomorphic to
a congruence lattice Con(N) of some antilattice.

Problem 8.2. Any automorphism α of N induces an automorphism α̂ of Con(N). Hence,
there is an obvious group homomorphism h : AutN → AutCon(N) mapping α to α̂.
Classify those antilattices N for which h is an isomorphism.

Problem 8.3. Let us call a lattice L transitive if for each pair of maximal chains a and b of
L there exists an automorphism of L that maps one to the other one, i.e. it maps a into b.
We call an antilattice N transitive, if its congruence lattice Con(N) is transitive. Classify
transitive antilattices.

Background

For an antilatticeN , a congruence θ is an equivalence relation onN that is compatible with
both ∧ and ∨. Congruence relations form a lattice, Con(N).

9 Joao Pita Costa
Problem 9.1. Can we build on the coset structure of a skew distributive lattice to charac-
terize skew Heyting algebras through their coset structure. And what can be said about the
coset structure of skew Boolean algebras? Will it give us some insights on the respective
dual spaces?

Problem 9.2. Can we always describe coset law-like identities that can determine a variety
of skew lattices? Or are there varieties of skew lattices that do not permit such characteri-
zation?

Problem 9.3. The index theorems presented for some varieties of skew lattices in [3, 17]
and [19] show a combinatorial perspective on these algebras as a direct consequence of
their coset structure. Can we always obtain such results? What can they bring to the study
of skew lattices?

For a concise background on the coset structure of several varieties of skew lattices and
how they relate to each other, and to their index theorems, please refer to [18].

10 Andreja Tepavčević
Problem 10.1. Representation of algebraic lattices by a weak congruence lattice. All weak
congruences form an algebraic lattice under inclusion. The diagonal relation (equality) has
a particular role within weak congruence lattice. A 30-years unsolved problem [22] is as
follows: if we take an algebraic lattice L and pick an element a, under which conditions
there is an algebra such that its weak congruence lattice is isomorphic to L and the diagonal
element corresponds to the fixed element a under this isomorphism. This is not possible
for every element in a lattice, since this element should be codistributive and should satisfy
some particular conditions. For further background please read [4] and [23].

Problem 10.2. Congruence lattice characterization. Characterize congruence lattices (and
later weak congruence lattices) of skew lattices. It is well-known [8] that the congruence
lattice of a lattice is distributive since there is the corresponding Mal’cev term. Is there a
similar result for skew lattices?
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Background

Congruences are compatible equivalence relations. Weak congruences are compatible rela-
tions satisfying the same as congruences except they are not reflexive. Weak congruences
are congruences on subalgebras of an algebra A (equivalently - symmetric, transitive and
compatible relations of A).

11 Russ Woodroofe
Problem 11.1. What is the correct universal algebra generalization of order congruence
lattices? More broadly: find examples of comodernistic lattices!

Background

An element m of a lattice L is left-modular if for every pair x ≤ y of elements in L, we
can write x ∨m ∧ y without parentheses. That is, m is left-modular if

∀x ≤ y, (x ∨m) ∧ y = x ∧ (m ∧ y) .

Left-modularity is a lattice-theoretic generalization of the Dedekind modular identity of
group theory.

A lattice L is comodernistic if every nontrivial interval [a, b] of the lattice has a coatom
that is left-modular in the interval. That is, for every a < b in L, there is an m covered by
b, so that m satisfies the left-modular relation with respect to every pair a ≤ x ≤ y ≤ b.
Jay Schweig and myself introduced comodernistic lattices in [20].

Comodernistic lattices generalize dual semimodular lattices, which can be defined as
those lattices where every coatom of every interval is left-modular. Comodernistic lattices
also generalize supersolvable lattices, which are those graded lattices which have a maxi-
mal chain consisting of left-modular elements. There are additional examples:

Example 11.2. The subgroup lattice of any finite solvable group is comodernistic. This
follows from the fact that normal subgroups are left-modular, by the Dedekind modular
identity.

Example 11.3. Similarly, the subalgebra lattice of any finite Lie algebra is comodernistic.

Example 11.4. The order congruence lattice O(P ) of a finite poset P consists of all the
level sets of all the order preserving maps with domain P , ordered by refinement. Order
congruence lattices are comodernistic, as can be seen in two steps:

(1) Let µ be the partition with a maximal element in a singleton block, and all other
elements together in a big block. Then µ is left-modular.

(2) Intervals in O(P ) are direct sums of order congruence lattices of quotients of sub-
posets of P . Existence of modularity in coatoms of quotients follows from (1). Ex-
istence of left-modular coatoms is preserved by direct sum.

Back to the Problem

I’m interested in finding comodernistic lattices (or dually, modernistic lattices) in other
settings. Perhaps there is a wider class of congruence lattices from universal algebra or
similar which yields comodernistic lattices?
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