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Abstract 

The advantages of the naive Bayesian classifier are fast and incremental learning, robustness with 
respect to missing data, the inclusion of aH available attributes during classification and the expla-
nation of classification as the sum of Information gains. Besides the 'naivety', the vveaknesS is also 
the inability to deal with continuous attributes unless they are discretized in advance. In the paper 
three methods for dealing with continuous attributes are proposed. The fuzzy learning method 
assumes fuzzy bounds of a continuous attribute during learning, the fuzzy classification method 
assumes fuzzy bounds during classification and the last method tries to increase the reliability of 
probability approximations. The performance was tested in two medical diagnostic problems. 

Naivni Bayespv klasifikator in zvezni atr ibut i 
. •' (povzetek) 

Prednosti naivnega Bayesovega klasifikatorja so hitro in inkrementalno učenje, robustnost glede 
manjkajočih podatkov, uporaba vseh razpoložljivih atributov za klasifikacijo in razlaga odločitev 
kot vsota informacijskih prispevkov. Poleg naivnosti je slabost tudi nezmožnost obravnave zveznih 
atributov, ki morajo biti zato vnaprej diskretizirani. V članku so predstavljene tri metode za obrav
navanje zveznih atributov. Mehko učenje in mehko testiranje predpostavljata mehke meje zveznih 
atributov med učenjem oziroma med klasifikacijo. Tretja metoda temelji na povečanju zanesljivosti 
aproksimacij verjetnosti. Uspešnost je bil testirana na treh medicinskih diagnostičnih problemih. 

1 Introduction 

The basic Bayesian formula foi- calculating the 
probability of a class given the values of at
tributes, describing a given object, can be used 
either for generation of decision trees (Michie & 
AlAttar 1990) or can be simplified into 'naive' 
Bayesian classifier by assuming the indepen-

dence of attributes (Kononenko 1989). 

The advantages of the naive Bayesian classi
fier are fast and incremental learning, robust
ness with respect to missing values, the in
clusion of ali available attributes for classifica
tion, and the ability to explain decisions as the 
sum of Information gains (Kononenko 1990). 



It was shown by several authors that, despite 
'naivety', the naive Bayesian classifier performs 
in many real world problems approximately the 
same or even better than many well known in-
ductive learning systems (Bratko & Kononenko 
1987, Cestnik 1990, Kononenko 1990). 

The advantages of induction of decision trees 
are 'nonnaivety', simple and poiverful mech-
anism for on line spHtting of continuous at-
tributes, and explicit knowledge in the form of 
if-then rules. This paper is concerned with the 
problem of dealing with continuous attributes. 
The problem is to split the interval of possible 
values of a continuous attribute into subinter-
vals to obtain as much as possible useful infor-
mation for classification from a given attribute. 

In the algorithms for induction of decision trees 
a continuous attr ibute is binarized on-line dur-
ing learning. In a given node of a tree a bound 
is selected that maximi2es the information gain 
of the at t r ibute (Breiman et al. 1984, Pa-
terson & Niblett 1982, Bratko & Kononenko 
1987, Quinlan 1986). This approach can be 
applied for the naive Bayesian classifier only 
at the highest level by changing aH continu
ous attributes into binary attributes. Another 
approach is to define aH subintervals of-line 
before learning, either by a human expert or 
with an algorithm (e.g. Cestnik 1989). How-
ever, ali these approaches assume, that the op-
timal split can be obtained using exact bounds 
of subintervals. This is unrealistic assumption 
as typically the slight difference among two 
values, one above and one below the bound, 
should not have drastic effect. 

In this paper three new methods for dealing 
with continuous attributes are proposed. Two 
of them are based on the idea of fuzzy bounds 
and the third one is based on the reliability 
of probability estimation. In next section the 
naive Bayesian classifier is briefly described. In 
section 3 the three methods for dealing with 
continuous attributes are defined and in sec
tion 4 the experiments in two medical diagnos-
tic problems are described. Finally in section 
5 some conclusions are given and the further 
research is proposed. 

2 Naive Bayesian Classi
fier 

The classification problem discussed in this pa
per is the following: given a set of training 
instances, each described with a set of n at
tributes and each belonging to exactly one of 
a certain number of possible classes, learn to 
classify new, unseen objects. In addition, each 
attribute A,- has a fixed number of NVi possi
ble values. 

Let C represent one of the possible classes. Let 
Vi,j, be a Boolean variable having value 1 if the 
current instance has value J,- of i-th attr ibute 
and O otherwise. The conditional probability 
of class C given the values of aH attributes is 
given with the following formula, derived from 
the Bayesian rule (Good 1950) (for brevity con-
ditions K j = 1 will be written simply as Vij): 

P{C\V^,j,,...,VnM) = PiC)l[Qi{C,J,) 
1=1 

(1) 

where 

Qi{C,Ji) = 
P(Kv. |C,Vi.7. , --- .V;- i , j ._ .) 

P{Vi,j,\Vx,j„...,Vi.,,j,_,) 

PiC\V^,j,,...,Vi,j,) 

P ( C | V M , , . . . , V ; - I . 7 . _ J 
(2) 

and P{C) is the prior probability of class C. 
It was shown in (Kononenko 1989) that the 
classification with ID3 like inductive learning 
system can be described with (1). 

From (1) the naive Bayesian classifier, as used 
by Bratko and Kononenko (1987), is obtained 
if the independence of attributes is assumed. 
Eq. (1) remains unchanged except that factors 
Qi defined with (2) are replaced with Q'i (we 
win refer to changed equation (1) vî ith (1')): 

g:(C,7.) = ^ i ^ = ^ i g ^ (3) 
P{Vi,j,) P{C) 

The probabilities necessary to calculate (3) are 
approximated with relative frequencies from 
the training set. A new object is classified by 



calculating the probability for each class using 
equation (1') and the object is classified into 
the class that fnaximizes the calculated proba-
bility. 

Cestnik (1990) has shown that the kind of ap-
proximation of probabilities in (3) consider-
ably influences the classification accuracy of 
the naive Bayesian classifier. Let N{C^Vi^j-) 
be the number of training instances with J, th 
value of i-th attribute and belonging to class C 
and let N(Vij^) be the number of training in
stances with J,-th value of i-th attribute. Usu-
ally, the probability is approximated with rel-
afive frequency, i.e. 

PiC\V,,j,) = 
N{Vi,j,) (4) 

Hovvever, if the training set is relatively small, 
the corrections are needed vvith respect to 
the assumption of initial distribution (Good 
1965). Cestnik (1990) used the foIlowing for
mula stemming from the assumption, that ini
tial distribution of classes is equal to P{C): 

P{C\V,j,) = 
NiC,V,,j^) + 2P{C) 

(5) 

the probabilities of ali classes of an object with 
a given value of a continuous attribute. These 
probabilities should be approximated vvith rel-
ative frequencies calculated from the distribu
tion of training instances with the similar value 
of the attribute. It is assumed, that small vari-
ations of the value of the attribute should have 
small efFects on the probabihties. As opposed 
to exact bounds, where slightly different value 
can have drastic effects on the calculated prob
abilities, the bounds of intervals are here as
sumed to be fuzzy. 

The three methods described in this section 
differ in the way how the distribution, used in 
the approximation of probabilities, is obtained. 
For aH three methods the pessimistic set of pos-
sible bounds is given in advance either by a hu
man expert or with a simple algorithm, that re-
turns bounds vvith the uniform distribution of 
instances over ali intervals. The set of bounds 
is pessimistic in the sense that more bounds are 
given than probably needed (e.g. ali attributes 
have in advance 20 possible intervals, which is 
typically too detailed split). Hovvever, exact 
values of these initial bounds are not impor-
tant and may vary vvithout significant changes 
in performance. 

\vhere the probability of class C is calculated 
using the Laplace's law of succession (Good 
1950,1965): 

P{C) = 
N{C) + 1 

N + 2 (6) 

Cestnik has shown some niče properties of us
ing approximation (5) in formula (3) and has 
shown experimentally, that the naive Bayesian 
classifier using approximation (5) performs sig-
nificant!y better than if (4) is used. The same 
formula was used also by Smyth and Goodman 
(1990). 

3 Dealing with continuous 
attributes 

The idea of ali three methods defined in this 
section is the folowing. The task is to calculate 

3.1 Fuzzy learning 
The fuzzy learning is performed by calculating 
the probability distribution for a given interval 
from ali training instances rather than from in
stances that have value of a given continuous 
attribute in this interval. The influence of an 
instance is assumed to be normally distributed 
vvith mean value equal to the value of the re-
garded attribute and vvith given a. a is the pa
rameter to the learning algorithm and is used 
to control the 'fuzziness' of the bounds. As 
shown in figure 1, the influence of a given in
stance vvith value v of the given continuous at
tribute on the distribution of interval {bj..bj+i) 
is proportional to the foUovving expression: 

Jb, 

1 
c7\/27r 

r'^(^fdx (7) 

If (J = O then the usual exact bounds are as
sumed and the distribution ovef classes in the 
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Figure 1: The normal distribution of the influence of: 
- an instance over intervals of a continuous attribute for fuzzy learning, 
- an interval on classification for fuzzy testing 

given interval is calculated from relative fre-
quency of training instances belonging exactly 
to that interval. The greater a implies fuzzier 
bounds for continuous attributes. For exam-
ple, for N learning instances, each with influ
ence P{vk,cr,Ji), k = l..n on J,-th interval of 
i-th at tribute the probability that an instance 
belongs to that interval is calculated with; 

tion (T) is here replaced with: 

^N 

PiV,,j.) 
N 

(8) 

3.2 Fuzzy classification 

The fuzzy classification is performed by cal-
culating the probability of aH classes for a 
given object, given the value of the continuous 
attribute, from ali intervals of that attribute 
rather than from the interval to which the ob
ject belongs. The influence of intervals is as-
sumed to be normally distributed with mean 
value equal to the value of the regarded at
tribute of an object and with given a. 

a is like in the previous method the parame
ter to the classification algorithm and is used to 
control the 'fuzziness' of the bounds. As shown 
on figure 1, the influence of a given interval on 
the probability of aH classes is proportional to 
the expression'(7). The expression (3) in equa-

Q."(C) = f:P(. ,a, i)x^^£^ (9) 

where v is the value of i-th attribute of a given 
object. Like in fuzzy learning method, for G = 
O the usual exact bounds are assumed and the 
probabilities of aH classes for the given object 
are calculated from relative frequencies of one 
interval only. 

3.3 Reliable approximations of 
probabilities 

The idea of the last method is to increase the 
reliability of approximation of the probabili
ties for given interval by adding to the interval 
the instances from neighbor intervals. For the 
estimation of the reliability of the probability 
approximation the theorem of Chebyshev (e.g. 
Vadnal 1979) can be used. The theorem gives 
the lower bound on the probability, that rela
tive frequency / of an event after n trials dif-
fers from the factual prior probability p for less 
than e: 

P ( | / - p | < £ ) > l 
p(l -p) 

e^n 
(10) 

The lower bound is proportional to n and to 



Table 1: Charkcteristics of two medical data sets. 

domain 

# instances 
•#• classes 
# attributes 
average # vals/att 
average #missing data 
majority class -
entropy (bit) 
# continuous atts 
average jf^ intervals/att 

tiiyroid 

884 
4 
15 
9.1 
2.7 
56% 
1.59 
7 
17.3 

rheumai 

355 
6 
32 
9.1 
0.0 
66% 
1.70 
22 
10.0 

tology 

e^. In our čase we are interested in the relia-
bility of the approximation of probability (5). 
Therefore the number of trials n in (10) is 
equal to Nv^ _, , i.e. the number of training in
stances having value inside interval K\j, of at-
tribute Ai. As prior probability p is unknown, 
in our experiments for approximation of p at 
the right-hand side of (10) the worst čase was 
assumed, i.e. p = 0.5. It remains to determine 
the value of e. The influence of interval J,- of 
ž-th attr ibute to class C is proportional to the 
difference between (5) and (6). If the influence 
is greater the reliability of approximation of (5) 
should be greater. Therefore e should be pro
portional to the influence. As we regard the 
influence of an interval for ali the classes C j , 
i = l..n, for e the average difference is used: 

n 

c = ^ P ( C , ) x | P ( C , | K v . ) - P ( C , ) | (11) 
i=i 

From above forniulas it follovvs that the interval 
is unreliable if: 

1 
1 -

4e2iVv., <Pr (12) 

where Pr is the lower bound of the probabiHty 
(10) and is a parameter of the learning algo-
rithm for controlling the reliability of approxi-
mations of probabilities. Now we can define an 
algorithm for postprocessing the distributions 
obtained by usual learning for naive Bayesian 
classifier. The algorithm is as follovvs: 

for each continuous attribute Ai do 
for each interval Vij do 
while unreliable interval K j do 

add appropriate % (possibly 100%) 
of instances from neighbor 
intervals of attribute Ai 

Note that here one training instance can influ
ence more than one interval of a continuous at
tribute, analogously to fuzzy learning method. 

4 Experiments 
in two medical diagnos-
tic problems 

We experimented with the naive Bayesian clas
sifier and with three methods for dealing with 
continuous attributes in two medical diagnos-
tic problems: diagnosing thyroid diseases and 
rheumatology. The characteristics of data sets 
used in our experiments are summarized in ta
ble 1. The medical data sets were collected at 
the University Medical Center in Ljubljana. 

One run was performed by randomly selecting 
70% of instances for learning and 30% for test-
ing. Results are averages of 10 runs. For fuzzy 
learning and fuzzy testing methods parameter 
a was determined with the following formula 
for each continuous attribute A,-: 

Gi = SIG X 
upperboundi — lowerboundi 

^intervalsi 



Table 2: Results of fuzzy leaniing and fuzzy classification. 

method 

-

f.learn. 
f.learn. 
f.learn. 
f.learn. 
f.learn. 
f.learn. 

f.class. 
f.class. 
f.class. 
f.class. 

both 
both 
both 
both 

SIG 

0.0 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

0.3 
0.4 
0.5 
0.6 

0.3 
0.4 
0.5 
0.6 

thyroid 
acc(%) 

69.7 

71.7 
71.9 
72.1 
72.3 
72.5 
72.5 

71.4 
71.6 
70.8 
70.8 

72.2 
72.2 
72.3 
72.2 

inf.(bit) 

0.79 

0.84 
0.85 
0.85 
0.85 
0.86 
0.85 

0.84 
0.84 
0.82 
0.82 

0.85 
0.85 
0.86 
0.85 

rheumatology 
acc(%) 

67.4 

67.9 
67.8 
68.1 
68.1 
68.1 
68.0 

59.6 
60.7 
62.6 
62.0 

68.9 
68.7 
69.0 
69.4 

inf.(bit) 

0.51 

0.54 
0.53 
0.54 
0.54 
0.54 
0.54 

0.38 
0.40 
0.45 
0.43 

0.58 
0.57 
0.58 
0.59 

Table S: Results with reliable approximations of probabilities (for Pr = 0.0 the result is of the original 
naive Bayesian classifier without reliable approximation of probabilities). 

Pr 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

thyroid 
acc(%) 

69.7 
70.6 
71.0 
70.9 
70.9 
70.7 
70.5 

inf.(bit) 

0.79 
0.80 
0.80 
0.80 
0.80 
0.79 
0.79 

rheumatology 
acc(%) 

67.4 
67.0 
67.5 
67.9 
68.3 
69.2 
69.3 

inf.(bit) 

0.51 
0.51 
0.52 
0.53 
0.53 
0.55 
0.53 



Table 4: The comparison of performance of different classifiers in two medical domains. 

classifier 

f.learn. 
f.class. 
f.learn&class 
reliable app. 
naive Bayes 
Assistant 
physicians 

thyroid 
acc(%) 

73 
72 
72 
71 
70 
73 
64 

inf(bit) 

0.86 
0.84 
0.86 
0.80 
0.79 
0.87 
0.59 

rheumatology 
acc(%) 

68 
61 
69 
69 
67 
61 

. 56 

. inf(bit) 

0.54 
0.40 
0.58 
0.55 
0.51 
0.46 
0.26 

where S IG is parameter that was varied in our 
experiments. If SIG = 1 then cTi is equal to 
the average interval length for i-th attribute. 
Therefore fuzziness is the function of average 
length of intervals. For last method the pa
rameter Pr from (12) was varied. 

Besides the average percent of correct guesses, 
the average information score per ansvver 
(Kononenko &; Bratko 1991) was measured. In
formation score is the measure that eliminates 
the influence of prior probabilities of classes 
and can be applied to various kinds of incom-
plete and probabilistic answers. This measure 
is necessary as in each domain a classifier that 
classified each instance into the majority class 
(see table 1) would achieve high classification 
accuracy. 

Results are given in tables 2 and 3. In ta
ble 2, the results are given for fuzzy learn-
ing, fuzzy classification and both methods to-
gether for various values of parameter SIG, 
In table 3 the results of reliable approxima-
tions of probabilities are presented for various 
values of parameter Pr. The combination of 
the latter method with other two did not give 
any improvements. In table 4 the results are 
compared with the accuracy of ID3-like induc-
tive learning system Assistant (Cestnik et al. 
1987), the naive Bayesian classifier without any 
method for dealing with continuous attributes 
and with the performance of physicians ex-
perts. The performances of physicians are the 
averages of four physicians experts in each do
main that were tested in University Medical 

Center in Ljubljana. 

5 Discussion 

The results from table 4 show that proposed 
methods for dealing with continuous attributes 
perform better than splitting of attribute's val
ues with exact bounds. The performance of 
the naive Bayesian classifier with these meth
ods achieves and outperforms the perforrnance 
of Assistant inductive learning system as well 
as the performance of physicians specialists. 
The performance of physicians is the worse, 
probably due to the inability to see the patient 
during the diagnostic process, when they were 
tested. Such diagnosing is, of course, unusual 
and unnatural for physicians. The results are 
presented to show that the performance of the 
learning systems is high enough, and not to 
show that the systems are better than physi-
cians. 

Ali three proposed methods for dealing with 
continuous attributes" are based on the idea 
that a continuous attribute should not be dis-
cretized with exact bounds. It is interesting 
that none of the methods ušes the information 
gain of the attribute as the measure for appro-
priate split. Further research should concen-
trate on the selection of appropriate values of 
parameters Pr and SIG. Obviously, optimal 
value of two parameters may differ among dif
ferent attributes in the same problem domain. 
The appropriate value of the parameter may 
depend on the information gain of the attribute 
as well as on the amount of noise associated 
with values of the attribute. 



The problem with the naive Bayesian classi-
fier is the independence assumption. In some 
cases this may be too unrealistic assumption. 
But it seems that in the data used by human 
experts there are no strong dependencies be-
tween attributes because attributes are prop-
erly defined. With the independence assump
tion the reliabiHty of approximating factors 
with relative frequencies is much greater. This 
is supported with experimental results. The 
naive Bayesian classifier despite its naiveness 
achieved good classification accuracy. There is 
a trade-ofF betvveen the reliability of approxi-
mating probabilities and the errors due to the 
independence assumption (Kononenko 1989). 
An algorithm that tries to optimize this trade-
ofF is described elsewhere (Kononenko 1991). 
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