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Abstract

In this paper, we introduce LR structures, a new and interesting form of symmetry in
graphs. LR structures are motivated by the search for semisymmetric graphs of degree
4. We show that all semisymmetric graphs of girth and degree 4 can be constructed in a
simple way from LR structures. We then show several ways in which LR structures can be
constructed or found.

Keywords: Graph, automorphism group, symmetry, locally arc-transitive graph, semisymmetric
graph, cycle structure, linking rings structure.

Math. Subj. Class.: 20B25, 05E18

1 Introduction
A regular graph Γ is semisymmetric provided that its symmetry group is transitive on edges
but not on vertices. The search for semisymmetric graphs has an intense 40-year history,
beginning with Harary and Dauber’s paper [9]. This unpublished work was seen by Folk-
man, and motivated his paper [5], which gives the smallest such graph, on 20 vertices. The
earliest known semisymmetric graph, due to Marion Gray in the 1930’s, shown in early
dittoed versions of Foster’s Census, was rediscovered by Bouwer, described in [1] and gen-
eralized in [2]. Progress on aspects of semisymmetric graphs was made in papers published
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since 1980 (see for example [4, 8, 10, 11, 12, 17, 18]). Recently, considerable attention was
given to semisymmetric graphs of valence 3 [13, 14, 15], and a list of all such graphs with
no more than 768 vertices was compiled in [3].

This paper continues work from [20], where the present authors began an investiga-
tion of tetravalent edge-transitive graphs, by considering those of girth at most 4. Such a
graph is either worthy or unworthy, depending on whether the neighborhoods of all pairs
of distinct vertices are distinct or not. Lemma 4.3 of [20] disposes of the unworthy case by
showing that every unworthy tetravalent semisymmetric graph has order 4n for some inte-
ger n, and arises as the “subdivided double” of a dart-transitive tetravalent graph of order
n. Note that the smallest semisymmetric graph, the Folkman graph on 20 vertices shown in
Figure 1, is unworthy, and it can be obtained as a subdivided double of the complete graph
K5. Similarly, it was shown in [17, Theorem 5.2] that every semisymmetric graph on 4p
vertices, for p ≥ 7 a prime, is unworthy.

Figure 1: The Folkman graph

On the other hand, [20, Theorem 5.1(5, b)] shows that every worthy tetravalent semi-
symmetric graph of girth 4 and order 2n is isomorphic to a graph obtained, via the “partial
line graph construction”, from a certain kind of cycle decomposition of a vertex-transitive
tetravalent graph of order n. A precise statement of this result can be found in Section 5.

The purpose of the present paper is to study worthy tetravalent semisymmetric graphs
of girth 4, and the cycle decompositions from which they arise, in more detail.

2 Preliminaries
A standard notation for graphs is used throughout the paper: if Γ is a graph, then V (Γ) is
its vertex set. An edge in Γ is an unordered pair from V (Γ) (so Γ is a simple graph), and the
set of edges is E(Γ). An ordered pair of adjacent vertices will be called a dart (or also, an
arc). In this paper, all graphs are finite and connected. Bipartition sets in bipartite graphs
are often referred to as colors, black and white, of the vertices.

A symmetry or automorphism of a graph Γ is a permutation of its vertices which pre-
serves adjacency. The symmetries of Γ form a group, Aut(Γ), under composition. A graph
is said to be vertex-, edge-, or dart-transitive if its automorphism group acts transitively on
its vertices, edges, or darts, respectively. Dart-transitive graphs are also called symmetric
or arc-transitive.
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A graph Γ is semisymmetric provided that it is connected, regular, and Aut(Γ) is tran-
sitive on edges but not on vertices. It follows easily (see [5] for example) that such a graph
Γ is bipartite, and that Aut(Γ) is transitive on each of the two color classes of vertices.

If for every vertex v of a regular graph Γ, the stabilizer Aut(Γ)v acts transitively on
the neighbors of v, then Γ is said to be locally dart-transitive. It is well known that a
locally dart-transitive graph is edge-transitive (recall that all the graphs are assumed to be
connected), and that it is either dart-transitive or semisymmetric (depending on whether
Aut(Γ) is transitive on the vertices or not).

3 Cycle decompositions
Let Λ be a (connected) regular tetravalent graph and C a partition of E(Λ) into cycles (that
is, sets of edges which induce in Λ connected subgraphs of valence 2). We shall call such
a pair (Λ, C) a cycle decomposition. For the rest of this section, let (Λ, C) denote a cycle
decomposition.

Two edges of Λ will be called opposite at vertex v, if they are both incident with v and
belong to the same element of C. The partial line graph of a cycle decomposition (Λ, C)
is the graph P(Λ, C) whose vertices are edges of Λ, and two edges of Λ are adjacent in
P(Λ, C) whenever they share a vertex in Λ and are not opposite at that vertex.

The left hand side of Figure 2 shows a tetravalent graph Λ and a cycle decomposition C
with cycles indicated by a-a, b-b, etc; and the right hand side of Figure 2 shows the partial
line graph of (Λ, C).
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Figure 2: A cycle decomposition and its partial line graph

An isomorphism between two cycle decompositions (Λ1, C1) and (Λ2, C2) is an isomor-
phism f of Λ1 onto Λ2 for which f(C1) = C2. An automorphism is an isomorphism from
a cycle decomposition to itself. The group of automorphisms of (Λ, C) will be denoted by
Aut(Λ, C).

A cycle decomposition (Λ, C) is said to be flexible provided that for every vertex v and
each edge e containing v, there is a symmetry in Aut(Λ, C) which fixes pointwise the cycle
D ∈ C containing e and interchanges the other two neighbors of v. The edges joining v to
those neighbors are in some other cycle C of C, and the symmetry is called a C-swapper
at v.

A cycle decomposition (Λ, C) is called bipartite if C can be partitioned into two subsets
G and R so that each vertex of Λ meets one cycle from G and one from R. Especially in
constructions, we will refer to the edges of the cycles in G and those inR as green and red,
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respectively. The largest subgroup of Aut(Λ, C) preserving each of the sets G and R will
be denoted by Aut+(Λ, C), and we will think of it as the color-preserving group of (Λ, C).

Note that in a bipartite cycle decomposition, an element of Aut(Λ, C) either preserves
each of the sets G and R setwise, and is thus contained in Aut+(Λ, C), or interchanges
the sets G and R. (In particular, in a bipartite flexible structure, swappers belong to
Aut+(Λ, C).) This shows that the index of Aut+(Λ, C) in Aut(Λ, C) is at most 2. If
this index is 2, then we say that (Λ, C) is self-dual. Thus (Λ, C) is self-dual if and only if
there is σ ∈ Aut(Λ, C) such that Gσ = R andRσ = G.

We can now define the central notion of this paper:

4 LR Structures
Definition 4.1. A cycle decomposition (Λ, C) is called a linking ring structure (or briefly,
an LR structure) provided that it is bipartite, flexible and that Aut+(Λ, C) acts transtively
on V (Λ).

If (Λ, C) is an LR structure, then it follows from the definition that G = Aut+(Λ, C)
acts transitively on red darts, as well as on green darts, in such a way that the permutation
group GΛ(v)

v , induced by the vertex-stabiliser Gv on the neighbourhood Λ(v), is intransi-
tive and is in fact permutation isomorphic to the permutation group 〈(1, 2), (3, 4)〉 ≤ S4

(we shall call the permutation group 〈(1, 2), (3, 4)〉 the intransitive Klein 4-group). Con-
versely, if a connected tetravalent graph Λ admits a vertex- but not edge-transitive group
of automorphisms G such that GΛ(v)

v is permutation isomorphic to the intransitive Klein
4-group, then the two edge-orbits of G form the sets G andR of an LR structure (Λ, C) for
which Aut+(Λ, C) contains G. This shows that, in the group-theoretical language, an LR
structure could be equivalently defined as a transitive permutation group G admitting two
self-paired orbitals A1 and A2 of degree 2 such that GΛ(v)

v is permutation isomorphic to
the intransitive Klein 4-group.

Since Aut+(Λ, C) acts transitively on G and on R, it follows that all cycles in G must
have the same length, say p, and all cycles inR must be of the same length q. We then say
that the LR structure (Λ, C) is of type {p, q}. For a self-dual structure, of course, p = q.
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Figure 3: Three LR structures on the 4-dimensional cube Q4, presented as a toroidal map
{4, 4}4,0. The labels indicate the identifications of vertices and edges.

Note that a tetravalent graph can admit more than one LR structure. For example, the 4-
dimensional cube Q4 (see Figure 3) has three distinct bi-colorings of edges, each of which
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makes it into a self-dual LR structure of type {4, 4}. The three structures are isomorphic.
This leads us to pose the following open question:
Question 1: Does there exist a graph admitting non-isomorphic LR structures?

5 Suitable LR Structures
Let us now describe the relationship between LR structures and tetravalent edge-transitive
graphs. If (Λ, C) is a cycle decomposition, then a cycleC in Λ is said to be alternating if no
two consecutive edges ofC belong to the same element of C. In [20], a cycle decomposition
(Λ, C) was called smooth, provided that Λ contained no alternating 4-cycles, and no 3-
cycles except possibly those contained in C. Note that the latter condition on 3-cycles is
automatically satisfied for an LR structure: if (Λ, C) is an LR structure, and if bcd is a
triangle in Λ, but not in C, then two of the three edges are the same color; say bc and cd are
red, while bd is green. Then a swapper at b which fixes the red cycle containing bcd would
interchange the two green neighbors at b. But one of these is d, which is left fixed by this
symmetry. This is a contradiction, and so no such triangle can exist.

Definition 5.1. An LR structure which is not self-dual and contains no alternating 4-cycles
is called suitable.

It is not difficult to see that a cycle decomposition (Λ, C) is a suitable LR structure
if and only if it satisfies the conditions stated in [20, Theorem 5.1(5, b)]. This theorem,
combined with Lemma 6.3, which will be proved in the following section, implies the
following correspondence, which explains the relevance of LR structures to the study of
tetravalent edge-transitive graphs.

Theorem 5.2. The partial line graph construction P induces a bijective correspondence
between the set of LR structures and the set of worthy bipartite locally dart-transitive
tetravalent graphs of girth 4. If (Λ, C) is an LR structure, then P(Λ, C) is semisymmet-
ric if and only if (Λ, C) is suitable; and is arc-transitive otherwise. If (Λ, C) contains an
alternating 4-cycles, then P(Λ, C) is a skeleton of an arc-transitive map of type {4, 4} on
the torus.

Remark. If a graph Λ has a cycle decomposition C for which (Λ, C) is a suitable LR
structure, it is conceivable that it might allow a different cycle decomposition C′ for which
(Λ, C′) is an LR structure. We know of no such example, and we conjecture that none exist.
Proving that the conjecture holds would allow us to simplify our notation, and talk about
an LR graph Λ. We will discuss this conjecture further in our final section.

Every new LR structure gives a new edge-transitive graph, and so we are interested in
finding and creating LR structures. The aim of this paper is to provide constructions of LR
structures (and thus of bipartite tetravalent edge-transitive graphs), which show how varied
the LR structures can be.

6 Basic constructions
We begin our investigation of LR structures by presenting some basic contructions.

6.1 LR Structures on the wreath graphs

The wreath graph W (n, 2) is defined to be the graph on 2n vertices ui, vi, for i ∈ Zn, with
all edges from vertices of subscript i to those of subscript i + 1. Alternatively, W (n, 2)
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can be defined as the lexicographic product of the cycle Cn with the edgeless graph on two
vertices.

Construction 6.1. If n is even, let Λ be the wreath graph W (n, 2) and let C be the set of
4-cycles of W (n, 2) of the form [ui, ui+1, vi, vi+1]. Color such a 4-cycle red if i is even
and green if i is odd. Then (Λ, C) is clearly a self-dual LR-structure of type {4, 4}.

The partial line graphs of the LR-structures on the wreath graphs defined above are
thus arc-transitive tetravalent graphs, which may also be obtained as 2-fold covers over the
wreath graphs. These graphs have appeared in the literature before, for example in [6, 7].

6.2 Toroidal LR Structures

Consider the LR structure on the cube Q4 depicted in the left-hand side of Figure 3. This
structure can be generalized to other maps on the torus:

Definition 6.2. LetM be a map of type {4, 4} on the torus. ThenM arises as a quotient
{4, 4}T of the tessellation {4, 4} by a group T of translations. Color edges of the tessella-
tion belonging to one parallel class green, the other edges red. Since translations preserve
these colors, we can consider the edges ofM colored in the same way. If the group T is
normalized by horizontal and vertical reflections, we will say that T is reflective. In this
case, then those reflections act onM as well, giving the structure its swappers. In any map
of type {4, 4} on the torus, the group of translations is transitive on vertices, and so if T is
reflective, the resulting graph {4, 4}T is an LR structure, and we will call it a toroidal LR
structure.

Note that if (Λ, C) is a toroidal LR structure, then P(Λ, C) is a bipartite edge-transitive
skeleton of a map of type {4, 4} on the torus.

Remark: The possibilities for the group T of translations satisfying the requirement
that T is normalized by all horizontal and vertical reflections are exactly these two:

(I) T is generated by (b, 0) and (0, c) for some b and c both at least 3. The resulting
graph has bc vertices and is of type {b, c}. We will call this structure {4, 4}[b,c].

(II) T is generated by (b, c) and (b,−c) for some b and c both at least 2. The resulting
graph has 2bc vertices and is of type {2b, 2c}. We will call this structure {4, 4}<b,c>.

These two types are shown in Figure 4; on the left is {4, 4}[4,3], and on the right is
{4, 4}<3,2>.

Observe that every toroidal LR structure, as defined above, has alternating 4-cycles.
Surprisingly, the converse holds as well.

Lemma 6.3. An LR structure which has an alternating 4-cycle is toroidal and arises as in
Definition 6.2.

Proof. Suppose that a, b, c, d is an alternating 4-cycle in which {a, b} and {c, d} are the
green edges, {b, c} and {d, a} the red. Then a green swapper at a fixes a and d but not b,
and so sends abcd to a different alternating 4-cycle containing the red edge {d, a}. Thus
every red edge belongs to at least two alternating 4-cycles, and similarly, so does every
green. Now if any edge belongs to more than two alternating 4-cycles, it is not hard to
show that the structure must be the toroidal structure for the map {4, 4}2,2 (its underlying
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Figure 4: Two kinds of toroidal LR structures

graph is K4,4). If not, then every edge belongs to exactly two alternating 4-cycles. Using
these cycles as faces constructs a map on a surface. The map has quadrangular faces, and
four meet at every vertex and so the Euler characteristic of the surface is 0. The surface is
thus the torus or the Klein bottle. The results of the paper [21] show that no map on the
Klein bottle can have swappers except for some whose skeleton is not a simple graph, and
therefore the map and structure must be toroidal.

This lemma, combined with [20, Theorem 5.1(5, b)], proves Theorem 5.2

6.3 Barrels

In this section, we introduce our first families of suitable LR structures. The barrels
Br(k, n; r) and the mutant barrels MBr(k, n; r) are, of all known LR structures, the sim-
plest to describe, the easiest to visualize and the most common to occur.

The structure Br(k, n; r) is defined for k even, k ≥ 4, n ≥ 5, and r2 = ±1 mod n
but not r = ±1 mod n. It has vertices Zk × Zn, with (i, j) red-adjacent to (i ± 1, j) and
green-adjacent to (i, j ± ri). We may and usually do assume that 0 ≤ r < n

2 .
We should mention that the underlying graphs of the LR structures Br(k, n; r) have

appeared in different contexts under different names before, most recently in [16], where
the class of Y graphs include the graph Br(k, n; r) as Y(k, n, r, 0).

Figure 5 shows part of such a graph having n = 5 and r = 2, with red edges shown
thin, green edges shown bold.

Br(k, n; r), has color-preserving symmetries (i, j) 7→ (i, j+1) and (i, j) 7→ (i+1, rj),
which show it to be vertex transitive. In the stabilizer of (0, 0) are symmetries (i, j) 7→
(−i, j) and (i, j) 7→ (i,−j) which act as swappers there. Thus, Br(k, n; r) is an LR
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Figure 5: part of Br(k, 5; 2)

structure.
A related graph is MBr(k, n; r), which is defined if both k and n are even, k ≥ 2,

n ≥ 6, and r2 = ±1 mod n but not r = ±1 mod n. It has vertices Zk × Zn, with (i, j)
red-adjacent to (i + 1, j) for 0 ≤ i < k − 1, (k − 1, j) red-adjacent to (0, j + n/2) and
(i, j) green-adjacent to (i, j ± ri) for all i.

MBr(k, n; r) has symmetries that are swappers with definitions similar to those for
Br(k, n; r). Thus, every member of these two families is an LR structure.

For most parameters k, n and r, the LR structures Br(k, n; r) and MBr(k, n; r) are
suitable. Each one has kn vertices and is of type {k, n}, {2k, n}, respectively.

We are now ready to determine which barrels give rise to suitable LR-structures.

Theorem 6.4. Each of the LR structures Br(k, n; r),MBr(k, n; r) has kn vertices and is
of type {k, n}, {2k, n}, respectively.

The LR structures Br(k, n; r) are suitable for all admissible parameters: k ≥ 4 even,
n ≥ 5, and 2 ≤ r < n

2 , r2 ≡ ±1 (mod n).
The LR structure MBr(k, n; r) is suitable for all admissible parameters: k ≥ 4 even,

n ≥ 6 even, 2 ≤ r < n
2 , r2 ≡ ±1 (mod n), with the exceptions of MBr(k, 2k; k − 1) for

k even, k ≥ 4, which is self-dual; and MBr(2, n; n
2 ± 1), which has alternating 4-cycles.

Proof. The claim about the type of Br(k, n; r) and MBr(k, n; r) follows immediately
from the definition of the two structures. It is also clear that no member of either family
has an alternating 4-cycle, except in the case of MBr(2, n; n

2 ± 1); here, an alternating
4-cycle is (0, 0) ∼ (0, 1) ∼ (1, 1 + n

2 ) ∼ (1, 1 + n
2 + r) = (1, 0) ∼ (0, 0).

Number the red cycles 1, 2, . . . in the order in which they appear around a fixed green
cycle, and do the same for green cycles. In Br(k, n; r), every green cycle appears once
around each red cycle and vice versa; in MBr(k, n; r), every green cycle appears twice
around each red cycle and vice versa. Then in every red cycle, the green cycles appear in
the same order, 1, 2, . . . , while around alternating green cycles, they appear in the orders
1, 2, 3 . . . and 1, 1 + r, 1 + 2r, . . . . In most cases, these are different orders, and so no
symmetry can switch red with green. The only way that these can be the same order is if:

(1) each number appears twice, so the graph is the underlying graph of a mutant barrel
LR structure,

(2) the cycles have the same length, so that n = 2k,
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(3) r + 1 ≡ 2 mod k, so that r = k + 1

It remains to show that MBr(k, 2k; k − 1) is indeed self-dual. To do that, we observe
that it is isomorphic to the following LR structure: vertices are elements of Zk ×Zk ×Z2;
red edges are of the form:

• (i, j, d) ∼ (i+ 1, j, d), 0 ≤ i < k − 1

• (k − 1, j, d) ∼ (0, j, d+ 1),

while green edges are of the form:

• (i, j, d) ∼ (i, j + 1, d+ i), 0 ≤ j < k − 1

• (i, k − 1, d) ∼ (i, 0, d+ 1 + i),

The function ϕ : (i, j, r) 7→ (i, j + rk) is an isomorphism from this structure to the
structure MBr(k, 2k; k − 1). In this form, it is easy to check that (i, j, r) 7→ (j, i, r + ij)
is a color-reversing symmetry of the structure. Thus, MBr(k, 2k; k − 1) is self-dual and
so not suitable.

We conclude this section by mentioning that the smallest suitable barrel Br(4, 5; 2)
gives rise to the the semisymmetric graph P(Br(4, 5; 2)), which has 40 vertices, 80 edges,
and the automorphism group of which has order 80. This appears to be the smallest auto-
morphism group of any semisymmetric graph. There is a second semisymmetric graph of
the same size whose group also has size 80. This graph is P(MBr(2, 10; 3)).

7 Quotients and covers
Quotients and covers of graphs have become a standard tool in studying vertex-transitive
graphs, and can be used almost without any change in the setting of LR structures as well.
Here we only briefly summarize the basic ideas of the covering techniques.

Let Λ be a graph, and let B be a partition of the vertex-set V (Λ). Then the quotient
graph ΛB is the graph with B as its vertex-set and with two elements B1, B2 ∈ B adjacent
in ΛB whenever there is an edge in Λ between some v1 ∈ B1 and some v2 ∈ B2. If the
partition B is invariant under some G ≤ Aut(Λ), then G acts in a natural way on ΛB by
automorphisms. If there are no edges within the elements of B and if the graph induced by
two adjacent elements of B is a perfect matching, then Λ is called a cover of ΛB.

An important special case of quotients and covers arises in the following setting. Let
G be a vertex-transitive group of automorphisms of a connected graph Λ, and let N be a
normal subgroup of G acting semiregularly on V (Λ) (i.e. Nv = 1 for every v ∈ V (Λ)).
Then the orbits of N form a G-invariant partition of V (Λ). The corresponding quotient
graph is then called a G-normal quotient of Λ by N and denoted by ΛN . If in addition Λ is
a cover of ΛN , then it is called a regular cover. In this case, the action of G on ΛN induces
a faithful vertex-transitive action of G/N on ΛN , and we say that G ≤ Aut(Λ) is a lift of
G/N ≤ Aut(ΛN ).

All these notions extend naturally to LR structures. In particular, ifG ≤ Aut(Λ, C) and
B is a G-invariant partition of V (Λ) such that Λ is a cover of ΛB, then one can define an
LR structure (ΛB, CB) in an obvious way. For example, take any of the three LR structures
on Q4 depicted in Figure 3, and let B be a partition of V (Q4) into pairs of antipodal
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vertices in Q4. The corresponding quotient graph (Q4)B is isomorphic to K4,4, and Q4 is
a cover of the quotient. In fact, letting N be the group generated by the automorphism of
Q4 interchanging the pairs of antipodal vertices, we see that (Q4)B = (Q4)N is a normal
quotient of Q4. Clearly, B is invariant under Aut(Q4), and so the three (isomorphic) LR
structures on Q4 induce three isomorphic LR structures on K4,4.

7.1 Loose and antipodal attachments

Consider two cycles, C1 and C2, of an LR structure (Λ, C), one green and one red, which
intersect in a common vertex v. If v is the only vertex in their intersection, then the vertex-
transitivity of the automorphism group implies that any two intersecting cycles meet in
exactly one vertex. Following the language of [19], we will say in this case that the LR
structure is loosely attached.

On the other hand, if there is another vertex u in the intersectection of C1 and C2, then
the existence of swappers at v implies that u is the vertex which is antipodal to v on C1

and C2 (in particular, C1 and C2 are of even length). If this is the case, then by vertex-
transitivity, any two intersecting cycles intesect in exactly two vertices, located antipodally
on the intersecting cycles. LR structures of this type will be called antipodally attached.

Of course, if (Λ, C) is an antipodally attached LR structure, then the permutation swap-
ping the two vertices in each antipodal pair is a central involution in Aut(Λ, C), and thus
generates a normal subgroup N ≤ Aut(Λ, C). Unless the type of (Λ, C) is {4, q} or {p, 4},
identifying pairs of antipodal vertices projects (Λ, C) onto a loosely attached LR structure
(ΛN , CN ) and the projection is a regular covering projection.

We already have examples of both kinds of attachments and the corresponding projec-
tions. Each toroidal LR structure {4, 4}<b,c> is antipodally attached, and the projection
sends it onto {4, 4}[b,c] (if b and c are both at least 3). Each MBr(2k, 2n; r) is antipodally
attached, and the projection sends it onto Br(k, n; r) (if k and n are both at least 3).

If (Λ, C) is an antipodally attached LR structure of type {4, 4}, then it is easy to see
that Λ is a wreath graph with C the decomposition presented in Construction 6.1.

Antipodally attached LR structures of type {4, q} for some q > 4 will be studied in a
future paper, where we show that such a structure arises from a certain cycle decomposition,
called a “cycle structure”, in a smaller tetravalent dart-transitive graph, thus allowing a
reduction to smaller graphs.

The above discussion is summarized in the following theorem.

Theorem 7.1. Let (Λ, C) be an antipodally attached LR structure of type {p, q}. If p =
q = 4, then (Λ, C) is the type {4, 4} LR structure on a wreath graph W (n, 2) described
in Construction 6.1. If p, q ≥ 6, then (Λ, C) arises as a 2-fold cover of a loosely attached
LR-structure.

Question 2: For which loosely attached LR structures does an antipodally attached
cover exist?

Question 3: How is such a cover constructed?
Question 4: If (Λ, C) is suitable and antipodally attached, when is the factor structure

suitable?
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8 The Big question
In Section 5, we conjectured that a suitable LR structure is unique on its graph. We believe
that a stronger conjecture holds:

Conjecture 8.1. If (Λ, C) is an LR structure for which Aut+(Λ, C) is a proper subgroup
of Aut(Λ), then it is self-dual.

Certainly, if Aut+(Λ, C) is a proper subgroup of Aut(Λ, C), then (Λ, C) is self-dual.
So we may suppose that Aut(Λ) contains some σ which sends some red edges to red edges
and some red edges to green edges. The conjecture would imply that (Λ, C) is self-dual.
While that conjecture is still open, we can and will prove that such an LR structure must be
of a self-dual type.

Theorem 8.2. If (Λ, C) is an LR structure of type {p, q} and Aut(Λ) contains some σ
which does not preserve C, then p = q.

Proof. We will actually prove that under the hypothesis, some symmetry must send some
red cycle to a green cycle. Suppose not. Let m be maximal such that some σ in Aut(Λ)
sends some m consecutive edges of a red cycle to green edges. Then m must be less than
both p and q. Suppose that u0, u1, . . . , um−1, um, um+1, . . . are consecutive vertices on
some red cycle, v0, v1, . . . , vm−1, vm, vm+1, . . . are consecutive vertices on some green
cycle, and that for i = 0, 1, 2 . . . ,m, uiσ = vi. Suppose that a, b are the green neighbors
of um, that c, d are the red neighbors of vm. Finally, let µ be a green swapper at um and τ
be a red swapper at vm, as shown in Figure 6.

u u u u u u u0 1 m-3 m-2 m-1 m m+1

v v v v v v v0 1 m-3 m-2 m-1 m m+1

c

d

a

b

µ

Figure 6: A color-mixing symmetry σ

Because m is maximal, we know that um+1σ 6= vm+1. Assume, without loss of
generality, that um+1σ = c, aσ = vm+1, bσ = d. Consider σ′ = στσ−1µσ. Then
for i = 0, 1, 2, . . . ,m, µ fixes ui and τ fixes vi and so uiσ

′ = vi. And um+1σ
′ =

um+1στσ
−1µσ = cτσ−1µσ = dσ−1µσ = bµσ = aσ = vm+1, contradicting the maxi-

mality of m. Thus p = q.

The techniques of this proof will extend to prove the existence of a symmetry which
sends one red cycle and all of its green neighbors to a green cycle and all of its red neigh-
bors, but we cannot see how to push the technique any farther.

In future papers, we will show both algebraic and combinatorial constructions for LR
structures.
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