ACTA » AGRICULTURAE SLOVENICA Biotehniška fakulteta Univerze v Ljubljani Biotechnical Faculty University of Ljubljana Acta agriculturae Slovenica • ISSN 1581-9175 • 111 - 3 • Ljubljana, december 2018 Acta agriculturae Slovenica Volume / Letnik 111 • Number / Številka 3 • 2018 VSEBINA / CONTENTS Izvirni znanstveni članki / Original research articles Gholamreza MOHAMMADI, Mehdi NOOKANI, Hamidreza MOHAMMADDOUST, Danial KAHRIZI 525 The response of corn (Zea mays L.) cultivars to row spacing under weed interference condition Odziv sort koruze (Zea mays L.) na razmik med setvenimi vrstami in vpliv plevela Fouad MERADSI and Malik LAAMARI 535 Behavioral and biological responses of black bean aphid (Aphisfabae, Scopoli, 1763) on seven Algerian local broad bean cultivars Obnašalni in biološki odzivi črne fižolove uši (Aphisfabae Scopoli, 1763) na sedem alžirskih sort boba Marouf KHALILI, Mohammad Reza NAGHAVI, Said YOUSEFZADEH 545 Protein pattern analysis in tolerant and susceptible wheat cultivars under salinity stress conditions Anliza vzorca beljakovin v odporni in občutljivi sorti pšenice v razmerah slanostnega stresa Tohib Oyeyode OBALOLA and Opeyemi Eyitayo AYINDE 559 Risk and risk management strategies of smallholder onion farmers in Sokoto state, Nigeria Tveganja in strategije upravljanja s tveganji majhnih pridelovalcev čebule v državi Sokoto, Nigerija Tatjana G. SHIBAEVA, Elena G. SHERUDILO, Elena N. IKKONEN, Alexander F. TITOV 567 Responses of young cucumber plants to a diurnal temperature drop at different times of day and night Odziv mladih kumar na diurnalni upad temperature v različnih obdobjih dneva in noči Salim LEBBAL 575 Fluctuations of aphid populations on grapefruit (Citrus xparadisi Macfad.) Fluktuacije populacij listnih uši na grenivki (Citrus xparadisi Macfad.) Marianna MICOVA, Judita BYSTRICKA, Jan KOVAROVIČ, Luboš HARANGOZO, Adriana LIDIKOVA 581 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) Vsebnost bioaktivnih snovi in antioksidacijska aktivnost česna (Allium sativum L.) Kazem GHASSEMI-GOLEZANI, Salar FARHANGI-ABRIZ, Ali BANDEHAGH 597 Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress Salicilna in jasmonska kislina spreminjata fiziološke procese, mobilizacijo asimilatov in polnjenje semen soje v razmerah solnega stresa Maria Elizabeth CAWOOD, Ingrid ALLEMANN, James ALLEMANN 609 Impact of temperature stress on secondary metabolite profile and phytotoxicity of Amaranthus cruentus L. leaf extracts vpliv temperaturnega stresa na profil in fitotoksičnost sekundarnih metabolitov v listnem izvlečku zrnatega ščira (Amaranthus cruentus L.) Fereshteh ALIZADEH-VASKASI, Hemmatollah PIRDASHTI, Ali CHERATI ARAEI, Sara SAADATMAND 621 Waterlogging effects on some antioxidant enzymes activities and yield of three wheat promising lines Učinki zastajanja vode v tleh na aktivnost nekaterih antioksidacijskih encimov in pridelek treh obetajočih linij pšenice Olena VASYLYSHYNA 633 The quality of sour cherry fruits (Prunus cerasus L.), treated with chitosan solution before storaget Kakovost plodov višnje (Prunus cerasus L.), tretiranih z raztopino hitozana pred shranjevanjem Amin ASADI, Jaber KARIMI, Habib ABBASIPOUR 639 The effect of sublethal concentrations of malathion on some biological parameters of the ectoparasitoid wasp, Habrobracon hebetor (Say, 1836) Učinek subletalnih koncentracij malationa na nekatere biološke parametre ektoparazitske osice Habrobracon hebetor (Say, 1836) Tjaša POGAČAR, Lučka KAJFEŽ BOGATAJ, Zalika ČREPINŠEK 647 Obravnava vročinskih valov in primer toplotne obremenitve delavcev v kmetijstvu v času vročinskih valov 2017 Heat waves analysis and the heat load of agricultural workers during the heat waves in 2017 (using index WBGT) Awol MOHAMMED, Asnake FIKRE 661 Correlation and path coefficient analysis among seed yield and yield related traits of Ethiopian chickpea (Cicer arietinum L.) landraces Analiza odvisnosti pridelka semena etiopskih lokalnih zvrsti čičerke (Cicer arietinum L.) od s pridelkom povezanih lastnosti Rajko BERNIK, Filip VUČAJNK 671 Vpliv globine obdelave tal z vrtavkasto brano na porabo energije in pripravo setvenega sloja pred setvijo koruze Influence of soil cultivation depth on energy consumption and on preparation of seed bed using rotary harrow before maize planting Veronika KMECL, Dragan ŽNIDARČIČ 683 The influence of cultivation method on nitrate content in some lettuce samples Vpliv načina pridelave na vsebnost nitratov v vzorcih vrtne solate Blend FRANGU, Jennie SHEERIN POPP, Michael THOMSEN and Arben MUSLIU 691 Assessing government grants: evidence from greenhouse tomato and pepper farmers in Kosovo Ugotavljanje učinkovitosti vladnih pomoči: primeri pridelovalcev paradižnika in paprike v rastlinjakih na Kosovu Pregledni znanstveni članki / Review articles Tina SMRKE, Vesna ZUPANC 699 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo Deficit irrigation of vines (Vitis vinifera L.) - review of experiences and potential for Slovenia Neha CHATTERJEE, Deepranjan SARKAR, Ardith SANKAR, Sumita PAL, H. B. SINGH, Rajesh Kumar SINGH, J. S. BOHRA, Amitava RAKSHIT 715 On-farm seed priming interventions in agronomic crops Uvajanje predsetvene obdelave semen poljščin na kmetijah Kratke vesti / Short Communications Metka HUDINA 737 In Memoriam - Prof. dr. Julija Smole, 1930 - 2018 741 Navodila avtorjem Notes for authors doi:10.14720/aas.2018.111.3.01 Original research article / izvirni znanstveni članek The response of corn (Zea mays L.) cultivars to row spacing under weed interference condition Gholamreza MOHAMMADI1*, Mehdi NOOKANI2, Hamidreza MOHAMMADDOUST2, Danial KAHRIZI1 Received May 10, 2018; accepted October 23, 2018. Delo je prispelo 10. maja 2018, sprejeto 23. oktobra 2018. ABSTRACT This study was carried out in order to study the response of corn cultivars to row spacing and weed interference at the Research Farm of Agricultural and Natural Resources Faculty, Razi University, Kermanshah, Iran in 2011. The experiment was a split block factorial based on a randomized complete block design with three replications. Factors consisted of three corn cultivars ('KSC 704', 'Simon' and 'Maxima') and three plant row spacings (45, 60 and 75 cm) under weeded and un-weeded conditions for all of the growing season. Results indicated that for all three corn cultivars, the highest weed dry mass occurred in the row spacing of 75 cm. Weed interference throughout the growing season reduced corn grain yield by 20 %. This condition also significantly decreased corn yield components except the 100-seed mass. Increasing plant row spacing increased weed density, while decreased corn yield by 16.5 %. Corn cultivars were significantly different in terms of the number of seed per ear and 100-seed mass, as 'KSC 704' and 'Simon' showed the highest values for these yield components, respectively. However, the number of ear per plant and grain yield were not significantly different between the corn cultivars under study. Key words: corn; competition; 'KSC 704'; 'Maxima'; 'Simon'; weed; yield; yield component IZVLEČEK ODZIV SORT KORUZE (Zea mays L.) NA RAZMIK MED SETVENIMI VRSTAMI IN VPLIV PLEVELA V raziskavi je bil preučevan vpliv razmika med setvenimi vrstami in zapleveljenostjo pri treh sortah koruze na Research Farm of Agricultural and Natural Resources Faculty, Razi University, Kermanshah, Iran, v letu 2011. Poskus je bil izveden kot popolni naključni bločni poskus z deljenkami s tremi ponovitvami. Faktorje so predstavljali tri sorte koruze ('KSC 704', 'Simon' in 'Maxima') in trije razmiki med setvenimi vrstami (45, 60 in 75 cm) v razmerah brez plevela in s plevelom v celotni rastni sezoni. Rezultati so pokazali, da je bila največja masa plevelov pri vseh treh sortah pri razmiku setvenih vrst 75 cm. Zapleveljenost skozi celotno rastno sezono je zmanjšala pridelek zrnja koruze za 20 %. Te razmere so tudi značilno zmanjšale posamezne komponente pridelka razen mase 100-zrn. Povečan razmik med vrstami je povečal gostoto plevela, kar je zmanjšalo pridelek koruze za 16.5 %. Sorte koruze so se značilno razlikovale v številu zrn na storž in v masi 100-zrn, pri čemer sta imeli 'KSC 704' in 'Simon' največji vrednosti teh dveh komponent pridelka.Kljub temu se število storžev na rastlino in pridelek zrnja nista statistično značilno raziskovala med sortami, preučevanimi v tej raziskavi. Ključne besede: koruza; kompeticija; 'KSC 704'; 'Maxima'; 'Simon'; plevel; pridelek; komponente pridelka 1 INTRODUCTION Corn is one of the most important crops which is extensively planted in Iran and Kermanshah province is proposed as a major region to produce this crop. Weed interference is a main limiting factor which can significantly reduce corn yield and economic return. The reduction may range from 30 to 70 % when weeds are not controlled during the growing season (Ford and Mt Pleasant, 1994; Teasdale, 1995; Mohammadi 2010; Mohammadi et al., 2012b).In many regions of Iran such as Kermanshah, farmers highly use chemical and mechanical methods to control weeds in their corn production systems. These methods usually have 1 Dept. of Plant Production and Genetics, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran; Corresponding author: mohammadi114@yahoo.com 2 Dept. of Crop Production and Breeding, Faculty of Agricultural Sciences, University of MohagheghArdabili, Ardabil, Iran Acta agriculturae Slovenica, 111 - 3, december 2018 str. 525 - 533 Gholamreza MOHAMMADI et al. negative environmental consequences (such as soil erosion, water and soil pollution) and notably increase the cost of corn production. Alteration of planting arrangement has been documented as an efficient approach to suppress weeds in agroecosystems (Mohammadiet al., 2015) which can be achieved by a reduced row spacing.Vera et al. (2006) suggested that narrower row spacings can cause an earlier canopy closure and allow the crop to shade weeds in their early developmental stages. Other researchers working with barley showed that increasing seeding rate and the use of high competitive cultivars improved crop competitiveness against weeds (Watson et al., 2006; Harker et al., 2009). This can be due toan increased resource use by crop which can lead to the reduced effects of weeds (Berkowitz, 1988; Mohler, 1996). Chauhain and Johnson (2011) reported that rice grown in narrower rows had higher grain yield and lower weed biomass than in wider rows and increasing row spacing caused more crop vulnerability to weed competition for the longest period. Drews et al. (2004) also found that the competitive ability of short-stature cultivars could be improved by reducing row spacing. Weed competition to acquire limited resources is the primary cause for crop yield loss from weeds. Crop cultivars with high weed competitive abilities may be used in an integrated weed management (IWM) program (Lemerle et al., 1996; Lindquist and Kropff, 1996). Some studies have shown that corn cultivars differ in terms of their ability to suppress weeds (Mohammadi, 2007; So et al., 2009). Identification of these cultivars can significantly improve crop yield in the presence of weeds and reduce the cost and environmental consequences caused by weed control practices. According to McDonald (2003) the development of crop cultivars with high competitive abilities against weeds is an important aspect of IWM and can decrease the reliance of cropping systems to chemical herbicides. The main objective of this study was to evaluate the response of some corn cultivars to different row spacings under weed interference condition at Kermanshah, west Iran. 2 MATERIALS AND METHODS The study was carried out at the Research Farm of Agricultural and Natural Resources Faculty, Razi University, Kermanshah (latitude 34° 18' N, longitude 47° 4' E, altitude 1350 asl), Iranin 2011.Soil was a clay-loam with a pH of 8 and 1.4 % organic matter. The experiment was a factorial split block based on a randomized complete block design with three replications. The first factor was corn cultivars including KSC 704' (late matured), 'Simon' and 'Maxima' (both medium-matured cultivars) which are cultivars well-adapted to the environmental conditions of the region. The second factor was three plant row spacings including conventional (75 cm) and reduced (45 and 60 cm). To evaluate weed interference effect on corn plant traits each block was divided into two sections lengthways, which one of them was kept free of weeds and another was un-weeded for all of the growing season. There was a dense natural weed infestation in the experimental field.The list of dominant weed species is shown in Table 1. The land was plowed then disked before planting. Fertilizers were applied according to the soil test recommendations. Corn was planted on May 2011. Each plot consisted of 6 rows (6 m per row) with a planting density of 6.5 plant m-2. Weeds werehand weeded in weed-free section of each plot throughout the growing season. At maturity, the corn ears belong to the two center rows of each plot were harvested by hand, allowed to dry toa constant mass then threshed and grain yield was determined. Corn yield components including the number of ears per plant and the number of seeds per ear were determined on ten randomly selected plants of each plot. Additionally, 100-grainmass was calculated according to the recommendations of the International Seed Testing Association (ISTA) (Draper, 1985). At the end of the growing season, weed density and dry masswere determined by harvesting weeds at ground level in two random 0.5 x 0.5 m squaresin un-weeded section of each plot. Weeds were initially counted then dried at 80 °C to a constant mass then weighed. Data analyses including analysis of variance and mean comparison were carried out using SAS software (SAS Institute, 2003). Means were compared using Duncan test at the 0.05 level of probability. 6 Acta agriculturae Slovenica, 111 - 3, december 2018 The response of corn (Zea maysL.) cultivars to row spacing under weed interference condition Table 1: The list of dominant weed species emerged in the experimental field Common name Scientific name Johnsongrass Sorghum halepense (L.) Pers. Redroot pigweed Amaranthus retroflexus L. Lamb'squarters Chenopodium album L. Common cocklebur Xanthium strumarium L. Field bindweed Convolvulus arvensis L. Common purslane Portulaca oleracea L. 3 RESULTS AND DISCUSSION 3.1 Weed density Analysis of variance (data not shown) revealed that weed density (WD) was significantly influenced by row spacing. Weed density reduced in response to decreasing row spacing as the highest WD occurred in the conventional row spacing (75 cm). Although, there was no significant difference between the two reduced row spacings (45 and 60 cm) in terms of WD (Fig. 1).Reduction of WD in narrower rows can be attributed to an earlier canopy closure and consequently a less light level intercepted by weed seeds. Some studies showed that an earlier canopy closure can notably reduce weed germination and emergence by decreasing light quantity (intensity) and quality (spectrum)reaching the soil surface under the canopy (Bradley, 2006; Ghadiri and Bayat, 2004; Rajcan and Swanton, 2001). Lindquist and Mortensen (1999) also reported that a reduced row spacing can improve weed control in corn due to an earlier crop canopy closure. According to Porter et al. (1997) compared to wider rows (76.2 cm) a reduced row spacing (50.8 cm) decreased the light penetrated into the crop canopy by 10 % causing a 35 % decrease in weed infestation. Figure 1: The effect of corn planting row spacing on weed density. The same letters show non significant difference at the 0.05 level of probability 3.2 Weed dry mass There was a significant two-way interaction (cultivarxrow spacing) for weed dry mass (WDM). A notable higher WDM was observed in the conventional row spacing (75 cm) compared to the narrower rows (45 and 60 cm) (Fig. 2). Although, there was no significant differences between these two reduced row spacings with regard to WDM. It seems that reduced row spacing can cause a more equidistant plant distribution in the field and consequently higher efficient use of the environmental resources by crop plants which lead to a Acta agriculturae Slovenica, 111 - 3, december 2018 str. 527 - 533 Gholamreza MOHAMMADI et al. higher weed suppressing ability. In contrast, wider rows can intensify intra-specific competition between crop plants and provide a suitable space to weed growth between rows (Akbari et al., 2011). A reduced weed dry massproduced due to narrower rows was reported by Johnson and Haverstad (2002). Mohammadi et al. (2012a) also observed a 49.4 % decrease in weed biomass in response to reduced row spacing and increased planting density. Corn cultivars also showed different negative effects on WDMin relation to row spacing (Fig. 2). At the lowest row spacing (45 cm) 'Maxima' had higher weed suppressing effect than other two cultivars. However, there were no significant differences between the cultivars at the wider rows in terms of WDM (Fig. 2). According to Mohammadi (2007) corn cultivars differed in their competitive ability against weeds and the cultivars with higher relative growth rate and specific leaf area performed better than others. Similar results have been reported by So et al. (2009) working with sweet corn. 8000 CÖ ÖD 6000 § 4000 & T3 ^ 2000 o 3.0.C0;2-Q Hosseini Salekdeh, Gh., Siopongco, J. Wade, L. J. Ghareyazie B. and Bennett, J. (2002). Proteomics analysis of rice leaves during drought stress and recovery. Proteomics, 2, 1131-1145. doi:10.1002/1615-9861(200209)2:9<1131::AID-PR0T1131>3.0.C0;2-1 Ifuku, K., Ishihara, S. Shimamoto, S. Ido K. and Sato, F. (2008). Structure, function, and evolution of the PsbP protein family in higher plants. Photosynthesis Research, 98, 427-437. doi:10.1007/s11120-008-9359-1 Joseph, B. and Jini, D. (2010). Proteomic analysis of salinity stress-responsive proteins in plants. Asian Journal of Plant Sciences, 9, 307-313. doi:10.3923/ajps.2010.307.313 Kausar, R., Arshad. M. Shahzad A. and Komatsu, S. (2013). Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids, 44, 345-359. doi:10.1007/s00726-012-1338-3 Kieselbach, T. Bystedt M. and Zentgraf, U. (2000). A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. Febs Letters, 480(2-3), 271-276. doi:10.1016/S0014-5793(00)01890-1 Komatsu, S. and Tanaka, N. (2004). Rice proteome analysis: A step toward functional analysis of the rice genome. Proteomics, 4, 938-949. Liu, S., Liu, S. Wang, M. Wei, T. Meng, C. Wang, M. and Xia, G. (2014). A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. The Plant Cell, 26, 164-180. doi: 10.1105/tpc. 113.118687 Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405410. doi:10.1016/S1360-1385(02)02312-9 Morant-Manceau, A., Pradier E. and Tremblin, G. (2004). Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species salt stress. Journal of Plant Physiology, 169, 25-33. doi:10.1078/0176-1617-00963 Naghavi, M. R. (2014). Evaluation of spring wheat cultivars under drought stress and proteome analysis for the most tolerant and sensitive ones. PhD Thesis in Plant Breeding (Biometrical Genetics). Department of Plant Breeding and Biotechnology. Faculty of Agriculture. University of Tabriz, Iran. (In Persian). Naghavi, M. R. (2010). Response and 2-Dimensional electrophoresis pattern of spring rapeseed genotypes under osmotic stress. Master Science Dissertation in Plant Breeding. Department of Agronomy and Plant Breeding. Faculty of Agriculture, University of Tabriz, Iran. (In Persian). Noreen, S. and Ashraf, M. (2008). Alleviation of adverse effects of salt stress on sunflower (Helianthus annus L.) by exogenous application of salicylic acid: Growth and photosynthesis. Pakistan Journal of Botany, 40, 1657-1663. Panchuk, I. I., Zentgraf U. and Volkov, R. A. (2005). Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta, 222(5), 926-932. doi:10.1007/s00425-005-0028-8 Plucken, H., Muller, B. Grohmann, D. Westhoff P. and Eichacker, L. A. (2002). The HCF136 proteinis essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Letters, 532, 85-90. doi:10.1016/S0014-5793(02)03634-7 Porubleva, L., Vander Velden, K. Kothari, S. Oliver D. J. and Chitnis, P. R. (2001). The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 22, 1724-1738. doi:10.1002/1522- Acta agriculturae Slovenica, 111 - S, december 2018 557 Marouf KHALILI et al. 2683(200105)22:9<1724::AID-ELPS1724>3.0.C0;2-2 Saqib, M., Zorb C. and Schubert, S. (2006). Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. Journal of Plant Nutrition and Soil Science, 169, 542-548. doi: 10.1002/jpln.200520557 Song, X. Ni, Z. Yao, Y. Xie, C. Li, Z. Wu, H. Zhang, Y. and Sun, Q. (2007). Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 7(19), 3538-3557. doi:10.1002/pmic.200700147 Spreitzer, R. J. and Salvucci, M. E. (2002). Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annual Review of Plant Biology, 53, 449-475. doi:10.1146/annurev.arplant.53.100301.135233 Sun, Y., Ahokas, R. A. Bhattacharya, S. K. Gerling, I. C. Carbone L. D. and Weber, K. T. (2006). Oxidative stress in aldosteronism. Cardiovascular Research, 71, 300-309. doi:10.1016/j.cardiores.2006.03.007 Takahashi, S. and Murata, N. (2008). How do environmental stresses accelerate photo inhibition? Trends in Plant Science, 13, 178-182. doi:10.1016/j.tplants.2008.01.005 Tamoi, M., Nagaoka, M. Yabuta Y. and Shigeoka, S. (2005). Carbon metabolism in the Calvin cycle. Plant Biotechnology, 22, 355-360. doi: 10.5511/plantbiotechnology.22.355 Thiellement, H., Zivy M. and Plomion, C. (2002). Combining proteomic and genetic studies in plants. Chromatography B, 782, 137-149. doi:10.1016/S1570-0232(02)00553-6 Toorchi, M., Yukawa, K. Nouri M. Z. and Komatsu, S. (2009). Proteomics approach for identifying osmotic-stress-related proteins in soybeans roots. Peptides, 30, 2108-2117. doi:10.1016/j.peptides.2009.09.006 Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419-438. doi: 10.1016/S0076-6879(07)28024-3 Twyman, R. M. (2004). Principles of proteomics. BIOS Scientific Publishers. doi:10.4324/9780203507391 von Ballmoos, C. and Dimroth, P. (2007). Two distinct proton binding sites in the ATP synthase family. Biochemistry, 46, 11800-11809. doi:10.1021/bi701083v Wan, X. Y. and Liu, J. Y. (2008). Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Molecular & Cellular Proteomics, 7, 1469-1488. doi: 10.1074/mcp.M700488-MCP200 Wang, W., Vinocur, B. Soseyov O. and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244-52. doi:10.1016/j.tplants.2004.03.006 Xue, G. P., Mcintyre, C. L. Glassop D. and Shorter, R. (2008). Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology, 67, 197-214. doi:10.1007/s11103-008-9311-y Ye, J., Wang, S. Zhang, F. Xie D. and Yao, Y. (2013). Proteomic analysis of leaves of different wheat genotypes subjected to PEG6000 stress and rewatering. Plant Omics Journal, 6(4), 286-294. Zadraznik, T. Hollung, K. Egge-Jacobsen, W. Meglic, V. and Sustar-Vozlic, J. (2013). Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of Proteome, 78, 254-272. doi:10.1016/j.jprot.2012.09.021 Zhu, M., Simons, B. Zhu, N. David, G. Oppenheimer M. and Chen, S. (2010). Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. Journal of Proteomics, 73, 790-805. doi:10.1016/j.jprot.2009.11.002 558 Acta agriculturae Slovenica, 111 - 3, december 2018 doi:10.14720/aas.2018.111.3.04 Original research article / izvirni znanstveni članek Risk and risk management strategies of smallholder onion farmers in Sokoto state, Nigeria Tohib Oyeyode OBALOLA1* and Opeyemi Eyitayo AYINDE2 Received November 23, 2017; accepted October 08, 2018. Delo je prispelo 23. novembra 2017, sprejeto 08. oktobra 2018. ABSTRACT The study examines risk and its management strategies among smallholder onion farmers in Sokoto State. Data were collected with the use of structured questionnaire designed to pull together information on the socioeconomic characteristics of the farmers in the area such as age, level of education, experience, family size, membership of farmer association, extension contact, risk preference of the farmers etc. Data was also collected on risk sources and risk management strategies. The primary data used were obtained from structured questionnaire administered to 120 randomly selected farmers. The analytical techniques that were used in the analysis of data were descriptive statistical tools such as means and percentages, Equally Likely Certainty Equivalent with a Purely Hypothetical Risky prospect (ELCEPH) technique and the 5-point Likert scale. The result showed that majority of the farmers are risk averse having a positive Arrow-Pratt absolute risk aversion coefficient. Key words: risk; risk management; onion; smallholder farmers; strategies; ELCEPH IZVLEČEK TVEGANJA IN STRATEGIJE UPRAVLJANJA S TVEGANJI MAJHNIH PRIDELOVALCEV ČEBULE V DRŽAVI SOKOTO, NIGERIJA Raziskava preučuje tveganja in strategije upravljanja s tveganji majhnih pridelovalcev čebule v državi Sokoto, v Nigeriji. Podatki so bili zbrani z vprašalnikom, ki je bil zasnovan tako, da je zbral podatke o socioekonomskih lastnostih kmetov na območju kot so starost, raven izobrazbe, izkušenost, velikost družin, članstvo v kmečkih združenjih, povezava s svetovalno službo, prednostna tveganja kmetov, itd. Podatki so bili izbrani tudi glede na vire tveganja in strategije upravljanja z njimi. Primarni podatki so bili pridobljeni z vprašalnikom, ki ga je izpolnilo 120 naključno izbranih kmetov. Pri obdelavi podatkov so bila uporabljena orodja opisne statistike kot so poprečja in odstotki. Uporabljena sta bila ekvivalent enako verjetne gotovosti in tehnika popolnega hipotetičnega predvidevanja tveganja (ELCEPH) in pettočkovna Likertova skala. Rezultati so pokazali, da se večina kmetov izogiba tveganju, saj imajo pozitiven Arrow-Prattov koeficient absolutnega odklanjanja tveganj. Ključne besede: tveganje; upravljanje s tveganji; čebula; majhni pridelovalci; strategije; ELCEPH 1 INTRODUCTION Agricultural production is highly characterized by risks, which range from adverse weather, pests to diseases, which in turn lead to price uncertainty (Ayinde et al., 2008). For these reasons, farmers' attitude towards risk is imperative in understanding their behavior towards the adoption of new technology and managerial decisions. For example, the more risk-averse a farmer is, the more likely the farmer is to make managerial decisions that emphasize the goal of reducing variation in income, rather than the goal of maximizing income; the converse is also true (Binici et al., 2003). Production, which is considered as risky investment activity, takes place under either a perfect or an imperfect knowledge situation. A perfect knowledge occurs when the cause (action) and results are known 1 Department of Agricultural Economics, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria; "Corresponding author: oyeyodeobalola@yahoo.com 2 Department of Agricultural Economics and Farm Management, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria Acta agriculturae Slovenica, 111 - 3, december 2018 str. 559 - 533 Tohib Oyeyode OBALOLA et al. with certainty. Most economic analyses assume a perfect knowledge which is more theoretical than real. An imperfect knowledge situation occurs when the decision-maker (farmer) is not very sure of the result(s) of the action to be undertaken. A situation of imperfect knowledge is more common in agricultural enterprises than non-agricultural enterprises. However, there are two variants of imperfect knowledge situations. One of them is a situation of uncertainty, in which either all the possible outcomes of an event/action or the probabilities associated with each outcome or both are not known. The other is a situation of risk, which occurs when all possible outcomes for a given management decision (action) and the probability associated with each possible outcome are known (Kay, 1981). In Nigeria, onion is produced through commercial as well as smallholder farmers both as a source of income and food. However, due to perishable nature and biological nature of production process, onion productions are risky investment activities. The behavior of farmers under risk has been studied using two approaches. The expected utility model (EUM) which is an extension of the consumer behavior theory in which consumer behave like they have a utility function and make choices that maximize it. The second approach, been a situation in which risk is defined as the likelihood that income will fall below a predetermined disaster level thus, giving rise to the safety first models (SFM). Riskiness of onion production may be atributed to several factors that are beyond the control of the farmers. Sokoto state is endowed with resources for onion production but smallholder onion farmers in the state are faced with many risks in their farming activities. In the past, the state has recorded flood, drought, crop and animal diseases and pests as well as fluctuations in prices of both farm produce (outputs) and inputs. As a result, there has been variability in farmer's household income. The lack of clear understanding of farmers' attitudes towards risks remains an important factor inhibiting increased agricultural productivity. It is not in any way difficult to find out that the observed resource use of the farmers reveals their underlying degrees of risk preferences (Olarinde et al., 2008). Researches on risk analysis in Sokoto State of Nigeria are relatively scanty. However, there is no real evidence to prove the expectations of the behavior of farmers in the production environment. There is a need to have a better understanding of the risk and the coping strategies among onion farmers in order to ascertain the decision-making behaviors of the farmers, to develop appropriate risk-coping strategies for the farmers, and to add to the existing knowledge in the field of agricultural risk in the study area. These are key issues central to this study and which investigation can be useful for the formulation of policies to strengthen and improve the farmers' productivity. 2 MATERIAL AND METHODS 2.1 Study area Sokoto state is situated in the north-western part of Nigeria, close to Sokoto and Rima rivers confluence. It is situated between Latitudes 10°40' and 13°55' N and longitudes 3°30' and 7°06' E (Singh, 2000). It is one of the hottest region in the world. The maximum daytime temperature generally is under 40 0C (104.0 °F). The state falls within the semi-arid region where rainfall range from (400 - 700 mm per annum) which is erratic and poorly distributed (Singh, 1995). The main source of livelihood of the dwellers is farming and the crops cultivated include both food and cash crops such as millet, sorghum, rice, groundnut, cotton, cowpea, cassava and sweet potatoes. In addition, vegetable crops like onion, tomato, as well as sweet and hot peppers are grown during dry season under irrigation. 2.2 Sampling procedure A multi-stage sampling technique was used to select 120 farmers. In the first stage, two local government areas were purposively selected. The reason for the purposive selection was on the preponderance of smallscale onion farmers in these LGAs. The second stage involved a random selection of two villages from each LGA. In the third stage, there was a random selection of respondents each from the LGA and this form the sample size for the study. Since the population of the LGAs is not homogeneous, the number of farmers selected from each of the selected LGAs was calculated using the formula: P = - x n (1) N V ' Where, P = Proportion, S = Desired sample size, N = Total population, n = Population of the villages in LGA in question. The LGAs and the number of respondents are shown in Table 1 below. 40 Acta agriculturae Slovenica, 111 - 3, december 2018 Risk and risk management strategies of smallholder onion farmers in Sokoto state, Nigeria Table 1: The local government areas and the number of farmers. Local Government Area_Village_Sample_ Wamakko Kwalkwalawa 23 Kalambaina 26 Kware RuggarLiman 40 _More_31_ Total 120 Source: Authors computation 2.3 Analytical technique Descriptive statistical tools such as means, percentages etc., Equally Likely Certainty Equavilent with a Purely Hypothetical technique and the 5-point Likert scale type were used. 2.3.1 ELCE-PH This process begins by assigning the expected utility (EU) at two end point outcomes. Considering a low income of N 50, 000 and a high income of N 100, 000. This was followed by assigning utility value at each end point (low and high income) such that: U (50,000) = 0 U (100,000) = 1, respectively for the low and high income end point outcome. The researcher then asked the farmers how much they would be willing to take i.e. its certainty equivalent (CE) for a gamble paying of N50, 000 and N100, 000 with equal probability of 0.5 each. The CE was then used for utility function elicitation. The figures resulting from the elicitation sequence was then fit using the quadratic utility specification to yield: U (Y) = a + bY + cY2 (2) Where Y represents the unknown, and a, b, and c represent known numbers such that: 'c' is not equal to 0. If c = 0, then the equation is linear and not quadratic. The coefficients gotten from the fitted equation were used to estimate absolute risk-aversion coefficient. The coefficient was computed using equation below. ra = - U''(Y) (3) U' (Y) Where ra= coefficient of absolute risk aversion; U'' = second differential of the function; U' = first differential of the function The Arrow-pratt coefficient is positive if the individual is averse to risk, zero in the case of an individual that is indifferent to risk, and negative if the individual prefers to take risk (Korir, 2011). 3 RESULTS AND DISCUSSION 3.1 Socioeconomic characteristics of the farmers The results (Table 2) show that 21.7 % of the farmers are within the age group of 20 - 29 years, while 26.7 % of them fall within the age group 30 - 39 years old. 40.8 % and 10.8 % are observed for the 40 - 49 and 50 years above, respectively. The indication is that, most of the farmers are still very young, agriculturally active and energetic and the implication is their likeliness to have prospects for improvement upon their efficiency in onion production by better harnessing available production resources. Majority of the onion farmers (64.2 %) are married. The unmarried farmers constitute the minority (35.8 %). The implication of this is that those with children are assumed to have cheap agricultural family labour which will aid in the timely accomplishment of farm operations and in turn increases output at reduced rate. Education provides a base of understanding changes within agriculture, which may improve welfare and as such education is essential in any activity. The level of education determines the quality of skills of farmer, his allocative abilities and shows how informed they are of the new innovations and technology around him. In Table 2, majority of the farmer (63.3 %) had no formal education. Farmers with completed primary education constitute 17.5 %. Secondary education is achieved by 19.2 % of the farmers. The outcome is not a surprising one as the area falls within educationally deprived state of Nigeria. It corroborate with the finding of Tsoho and Salau (2012). Experience in farming is an essential factor affecting the farmer's level of production. Experienced farmers are able to combine factors of production (land, labour and capital) better to maximize output. However, 41.7 % of the farmers sampled have been into onion farming for between 1 - 10 years. Also, 42.5 % and 15.8 % of the farmers were within 11 - 20 Acta agriculturae Slovenica, 111 - 3, december 2018 str. 561 - 533 Tohib Oyeyode OBALOLA et al. and 21-30 years respectively. The experience years will significantly increase the farmers' attitude towards decision making. A household usually comprise of the man, his wife, children and other dependents if any. Majority of farmers (50.0 %) have 3-10 persons in the household. Another reasonable percentage (42.5 %) had 18 and above household member. All the above representations may be found important as it reduces the costs of production likely to be incurred by farmers with fewer household members. The polygamous nature as well as the family pattern of the area probably will explain the large family size recorded in the area. It is against the findings of Okoruwa, et al. (2009) which showed that 64.4 % of the farmers had less than 6 family members while 35.6 % had 6 and above. Also majority of the farmers (68.3 %) have no extension visit in the last cropping season. However, it was revealed that 21.7 % of the farmers have an extension visit of between 1 - 2 times, with 10.0 % between 3 - 4 times in the last growing season. It corroborates with the finding of Ojo et al. (2009) who reported that 60.9 % of the farmers do not have extension contact. Table 2 also shows the responses of the onion farmers as regards to their level of income obtained from onion production. It was observed that 40.0 % of the farmers are of income level between N51, 000.00 - N 150, 000.00. Another 35.0 % indicates farmers that fall between N 151,000 - N 250,000. The size of the farm is concerned with the land size. Land is a very important factor of production alongside with labour, capital and management. It is a true statement to say that without land, there is no agriculture. The size of the farm is vital to a farmer and the production of output. In view of this importance, questions are set about their farm sizes, since the size of the farm to some degrees determine the input to be used and responses shows that 54.2 % farmers have farm sizes between 0.7 - 1.1 hectare. Only a few of them have about 1.7 hectare and above. However, conclusion can be inferred that the farmers are smallholder onion farmers that limit their production on small hectares of land due to one reason or the other. It is in contrary to the work of Tsoho and Salau (2012), whose analysis although revealed that farm size ranged from 0.13 to 1.7 ha with the mean of 0.5 ha. Table 2: Socioeconomic characteristics of the farmers Parameter Option Frequency Percentage Age (years) 20-29 26 21.7 30-39 32 26.7 40-49 49 40.8 50 and ABOVE 13 10.8 Marital status Single 43 35.8 Married 77 64.2 Level of education (years) No formal education 76 63.3 Primary education 21 17.5 Secondary education 23 19.2 Years of experience 1-10 50 41.7 11-20 51 42.5 21-30 19 15.8 Household size (no of persons) 3-10 60 50.0 11-17 51 42.5 18 and ABOVE 9 7.5 Extension contacts (no of times) 1-2 26 21.7 3-4 12 10.0 No extension contact 82 68.3 Membership of cooperative Yes 54 45.0 No 66 55.0 Annual income (naira) 51,000 - 150,000 48 40.0 151,000 - 250,000 42 35.0 251,000 - 350,000 26 21.7 351,000 - 450,000 4 3.3 Farm size (hectares) 0.2-0.6 28 23.3 0.7-1.1 65 54.2 1.2-1.6 23 19.2 1.7 and ABOVE 4 3.3 Source: Field Survey, 2016 562 Acta agriculturae Slovenica, 111 - 3, december 2018 Risk and risk management strategies of smallholder onion farmers in Sokoto state, Nigeria 3.4 Risk attitude of the farmers presented in Table 3 and were subsequently grouped _ ,, . „ , „ , , into risk averters and risk takers and as such presented Following the procedure outlined in the methodology; in Table 4 the farmers risk aversion coefficient were estimated and Table 3: Absolute risk aversion coefficient of the farmers Farmer Absolute risk Farmer Absolute risk Farmer Absolute risk Farmer Absolute risk number aversion number aversion number aversion number aversion coefficient coefficient coefficient coefficient 1 0.000004954 31 0.000009770 61 0.00001091 91 0.000003688 2 0.000006130 32 0.000009770 62 0.00001055 92 -0.000001245 3 0.000002640 33 -0.000009590 63 0.00001112 93 0.0000009171 4 -0.00003615 34 -0.000009590 64 0.000009770 94 0.00001014 5 -0.00005389 35 -0.00002409 65 -.000009590 95 -0.000001124 6 0.00001558 36 0.0000009171 66 0.000001608 96 0.00001608 7 0.00001561 37 0.000004746 67 -0.000001245 97 0.0000009171 8 0.00001166 38 0.0000009171 68 0.00005554 98 0.00001608 9 0.00000117 39 -0.000009590 69 0.000009770 99 -0.000009590 10 0.000006327 40 0.0000009171 70 -0.000009590 100 0.00005240 11 0.000003184 41 -0.000009590 71 0.00001608 101 0.00001608 12 0.000003184 42 -0.000009590 72 0.000009769 102 0.00001073 13 0.00005956 43 0.0001198 73 0.00001608 103 0.000009769 14 0.00001668 44 -0.000009590 74 -0.000009590 104 0.00001608 15 0.00001668 45 0.000004813 75 0.00005554 105 0.000009769 16 0.000002770 46 0.0000007041 76 0.000009715 106 0.000009769 17 0.000003379 47 0.000004813 77 0.0000336 107 -0.000009590 18 0.000002770 48 0.0000009171 78 -0.000009590 108 -0.000009525 19 0.000003184 49 -0.000009590 79 0.00001604 109 0.0000009171 20 0.00004254 50 0.000009770 80 0.00005554 110 -0.000009575 21 0.00001069 51 0.000002234 81 0.000009769 111 -0.000009590 22 0.000007467 52 0.00001041 82 0.000009769 112 0.000009229 23 0.000003891 53 0.000005042 83 0.000009769 113 0.000009769 24 0.0001 54 0.0000009171 84 0.000009769 114 -0.000009590 25 0.0001485 55 0.00001075 85 -0.000009590 115 0.0000009171 26 0.0001485 56 0.0000009171 86 0.000009769 116 -0.000009590 27 0.0001 57 0.000008466 87 0.00001704 117 0.000009769 28 0.00001113 58 -0.00002514 88 0.000009769 118 0.000009769 29 0.00005680 59 -0.000009590 89 0.00001608 119 -0.000009575 30 -0.000001245 60 -0.000009590 90 0.00001608 120 0.000009731 Source: Authors Computation, 2016 Table 4: Distribution of the risk attitude of the farmers Risk attitude Frequency Percentage Risk averse 90 75.0 Risk neutral 0 0.00 Risk loving 30 25.0 Total 120 100.0 Source: Field Survey, 2016 Acta agriculturae Slovenica, 111 - 3, december 2018 563 Tohib Oyeyode OBALOLA et al. Tables 4 revealed that 75.0 % of the farmers in the study area have positive Arrow-Pratt absolute risk aversion coefficients and were therefore categorized as risk averters. The remaining 25.0 % of them have negative Arrow-Pratt absolute risk aversion coefficients and were grouped as risk seekers. However, none of the farmers has zero risk coefficients; an indication of risk indifference, hence none of the farmers was risk indifferent or neutral. The result of the study is a confirmation of the general assumption in the world of agriculture that farmers are risk averse and it is in line with empirical results of various studies (Sekar and Ramasamy, 2001; Korir, 2011). 3.3 Sources of risk The unpredictability nature of the outcome of production with certainty is believed to emanate from several sources and as such this study help looked into the various sources of risk and it is presented in Table 5. Table 5: Risk sources associated to the farmers in the study area Source of risk VI I NS NI NVI WS MS MP S RAN K Pests 74 46 0 0 0 554 4.62 92. 3 1st (61.7) (38.3) (0.00) (0.00) (0.00) 4 Diseases 73 45 2 0 0 551 4.59 91 8 2nd (60.8) (37.5) (1.7) (0.00) (0.00) 2 Price fluctuation 44 72 3 1 0 519 4.33 86 5 3rd (36.7) (60.0) (2.5) (0.8) (0.00) 2 Flood 36 83 1 0 0 515 4.29 85 8 4th (30.0) (69.2) (0.8) (0.00) (0.00) 4 Drought 48 60 11 1 0 515 4.29 85 8 4th (40.0) (50.0) (9.2) (0.8) (0.00) 4 Change in climate condition 34 84 2 0 0 512 4.27 85 3 6th (28.3) (70.0) (1.7) (0.00) (0.00) 2 Fertilizer 37 77 6 0 0 511 4.26 85 1 7th (30.8) (64.2) (5.0) (0.00) (0.00) 6 Erratic rainfall 23 83 11 3 0 486 4.05 81 0 8th (19.2) (69.2) (9.2) (2.5) (0.00) 8 Illness of household member 65 17 12 22 4 477 3.98 79 5 9th (54.2) (14.2) (10.0) (18.3) (3.3) 4 Excessive rainfall 18 80 19 3 0 473 3.94 78 8 10th (15.0) (66.7) (15.8) (2.5) (0.00) 4 Market failure 25 54 37 4 0 460 3.83 76 6 11th (20.8) (45.0) (30.8) (3.3) (0.00) 0 Insufficient family labour 22 25 16 40 17 409 3.41 68 0 12th (18.3) (20.8) (13.3) (33.3) (14.2) 8 Change in govt. & agricultural 27 19 3 48 23 339 2.83 56 4 13th policy (22.5) (15.8) (2.5) (40.0) (19.2) 8 Difficulties of finding labour 6 26 20 51 17 313 2.61 52 2 14th (5.0) (21.7) (16.7) (42.5) (14.2) 2 Fire outbreak 13 13 21 44 29 297 2.48 49 3 15th (10.8) 10.8 (17.5) (36.5) (24.2) 8 Theft 10 18 14 18 60 260 2.17 43 3 16th (8.3) (15.0) (11.7) (15.0) (50.0) 2 VI = Very important; I = Important; NS = Not sure; NI = Not important; NVI = Not very important; WS = Weighted score; MS = Mean score; MPS = Mean percent score. Figures in parenthesis are in percentages;Source: Field Survey, 2016 564 Acta agriculturae Slovenica, 111 - 3, december 2018 Risk and risk management strategies of smallholder onion farmers in Sokoto state, Nigeria Pests and diseases were recorded as the most important source of risk to the farmers as they were ranked first and second respectively. This corroborates with the findings of Obalola et al. (2017). However, an insight into the price movement during the irrigation season indicates that the prices of onion fluctuate widely and as such is an important source of risk. It is generally the highest at the beginning of the season but falls rapidly until it reaches its lowest values at the peak of harvest period and the farmers are forced to sell their produce at low prices after which the prices begins to rise again. Table 5 also reveals that drought, flood and change in climatic condition are important sources of risk to the farmers as it was ranked 4th and 6th respectively. This is in line with the findings of Ayinde et al. (2008) who Table 6: Risk management strategies Risk management strategies VI I NS NI NVI WS MS MPS RANK Investing off-farm 84 34 2 0 0 562 4.68 93.66 1st (70.0) (28.3) (1.7) (0.00) (0.00) Spraying for diseases & pests 75 4 4 1 0 0 554 4.62 92.34 2nd (62.5) (36.7) (0.8) (0.00) (0.00) Adashe (Cash contribution) 69 51 0 0 0 549 4.58 91.50 3rd (57.5) (42.5) (0.00) (0.00) (0.00) Gathering market information 49 68 3 0 0 526 4.38 87.66 4th (40.8) (56.7) (2.5) (0.00) (0.00) Training & education 48 70 2 0 0 526 4.38 87.66 4th (40.0) (58.3) (1.7) (0.00) (0.00) Borrowing 4 4 45 20 9 2 480 4.00 80.06 6th (36.7) (37.5) (16.7) (7.5) (1.7) Cooperative societies 39 31 32 18 0 451 3.76 75.16 7th (32.5) (25.8) (26.7) (15.0) (0.00) Selling of assets 12 12 31 55 10 331 2.76 53.46 8th (10.0) (10.0) (25.8) (45.8) (8.3) VI = Very important; I = Important; NS = Not sure; NI = Not important; NVI = Not very important; WS = Weighted score; MS = Mean score; MPS = Mean percent score. Figures in parenthesis are in percentages Source: Field Survey, 2016 reflected production risk in terms of weather to variation in yield of the crops over years and crop failures due to bad weather (drought or too much rain). Difficulty in finding labour was not seen as a bottleneck in their production and as such could pose little or no threat to the farmers. This was proven by a 42.5 % response who considers difficulties in finding labour not important and it was ranked 14th. It was observed that the respondents do not consider theft as a factor as it was recorded that 50.0 % of them indicated it as not very important. 3.4 Coping strategies The strategies that can help in coping or minimizing the source of risk faced by the farmers in the study area are captured and presented in Table 6. Investing off-farm was ranked as first as a very important strategy in managing risk. Ayinde et al. (2008) have shown the importance of diversification (investment in more than one portfolio) as important risk management strategies for agricultural enterprises. Spraying for diseases and pests was ranked second. This is not surprising considering the fact that pest and diseases were identified as a very important source of risk. Therefore, spraying for pests as well as diseases could help manage the riskiness attributed to it and as such help improve farmer's production and at the same time their productivity. This is in conformity with the finding of Obalola et al. (2017) who revealed that incidence of pests and diseases are the major problem limiting farmers output. Acta agriculturae Slovenica, 111 - 3, december 2018 565 Tohib Oyeyode OBALOLA et al. In addition, cash contribution was ranked third as management strategy to help manage risk in the study area. Training and education was recorded as an important factor that helps to minimize risk. This was proven by 58.3 % of the farmers highlighting it as important and as such ranked 4th. If the farmers are educated and trained, it could go a long way in helping improve the awareness level of the farmers with regards to a better perception of themselves and their problems. It is important to note that most of the farmers use more than one coping strategy in the face of risks. Other risk management strategies recorded in increasing order of importance are borrowing (37.5 %) and cooperative societies (32.5 %). It was however revealed that selling of assets is not an important factor in risk management as 45.8 % of the farmers attest to it and thus, ranked 9th. 4 CONCLUSION The majority of onion farmers were found to be risk averse. However, it should be noted that most of the sources of risk highlighted by the farmers could be analyzed within the context of the farmers operational level and can be managed by the farmers, if motivated in one way or another either by training and education, diversification of the enterprise (off-farm investment), crop insurance, spraying for pests and diseases etc. The study therefore recommends programmes towards education and diversification. The farmers were found to be risk averse implying that they were not fully insured by their self-insurance strategies. In order to improve this, policies that enhance access to insuring farm activities should be put in place. This can however be achieved by improving and intensifying extension services to impact technical and economic knowledge on farmers especially the farmers with few years of experience. 5 REFERENCES Ayinde, O.A., Omotesho, A.O., & Adewunmi, M.O. (2008). Risk attitudes and management strategies of small-scale crop producers in Kwara State, Nigeria: A ranking approach. African Journal of Business Management, 2(12), 217-221. Binici, T., Koc, A.A., Zulauf, C.R., & Bayaner, A. (2003). Risk attitudes of farmers in terms of risk aversion: A case study of lower seyhan plain farmers in adana province, Turkey. Turkish Journal of Agriculture, 27, 305-312. Kay, R.D. (1981). Farm management, planning, control and implementation: 334-353. McGraw Hill Book Company. Korir, L.K. (2011). Risk Management among Agricultural Households and the Role of Off-Farm Investments in Uasin Gishu County, Kenya. Thesis submitted to the Graduate School in Partial fulfillment for the Requirements of Master of science Degree in Agricultural and Applied Economics of Egerton University: 1-74 Obalola, T. O., Agboola, B. O., & Odum, E. B. E. (2017). Profitability and Constraints to Irrigated Onion Production in Wamakko and Kware Local Government Areas, Sokoto State, Nigeria. Journal of Global Agriculture and Ecology, 7(3), 106-110. Ojo, M.A., Muhammed, U.S., Adeniji, B., & Ojo, A.O. (2009). Profitability and Technical Efficiency in irrigated onion production under middle rima valley irrigation project in Goronyo, Sokoto State. Nigeria. Journal of Agricultural Science, 3, 7-14. Okoruwa, V.O., Akindeinde, A.O., & Salimonu, K.K. (2009). Relative economic efficiency of farms in rice production: A profit function Approach in North Central Nigeria Tropical and Sub-tropical. Agroecosystem, 10, 279-286. Olarinde, L.O., Manyong, V.M., & Okoruwa, V.O. (2008). Analysing optimum and alternative farm plans for risk averse grain crop farmers in Kaduna State, Northern Nigeria. World Journal of Agricultural Sciences, 4(1), 28-35. Sekar, I., & Ramasamy, C. (2001). Risk and resource analysis of rainfed tanks in South India. Journal of Social and Economic Development, 3(2), 208-215. Singh, B. R. (1995). Soil management strategies for the semiarid ecosystem in Nigeria: The case of Sokoto and Kebbi States. African Soils, 28, 317-320. Singh, B. R. (2000). Quality of irrigation water in fadama lands of north-western Nigeria II. Tube-well waters in Zamfara State. Nigeria Journal of Basic and Applied Sciences, 9, 191-193. Tsoho, B.A., & Salau, S.A. (2012). Profitability and Constraints to dry season Vegetable production under fadama in sudan savannah ecological zone of Sokoto State, Nigeria. Journal of Development and Agricultural Economics, 4(7), 214-222. 566 Acta agriculturae Slovenica, 111 - 3, december 2018 doi:10.14720/aas.2018.111.3.05 Original research article / izvirni znanstveni članek Responses of young cucumber plants to a diurnal temperature drop at different times of day and night Tatjana G. SHIBAEVA1*, Elena G. SHERUDILO1, Elena N. IKKONEN1, Alexander F. TITOV1 Received January 24, 2018; accepted October 25, 2018. Delo je prispelo 24. januarja 2018, sprejeto 25. oktobra 2018. ABSTRACT In greenhouse production of a number of vegetable and ornamental plant species, a short diurnal temperature drop in the end of the night or in the morning is commonly used to reduce stem elongation as an alternative to chemical growth retardants. Experiments were carried out to quantify the effects of a temperature drop at different times of the day and night on growth and photosynthetic activity of young cucumber plants. During 6 days plants were exposed daily to a temperature of 10 °C for 2 h at the beginning, in the middle and at the end of the night and day periods. The results have shown that plant response to drop may be qualitatively different in the light and darkness. While strongest effects of drop are observed when it is given in the daytime, for practical application in greenhouses it is more appropriate to reduce temperature at night. However, it may not be strictly necessary for cucumber seedlings to apply drop at the end of the night as it was stated in the literature. Thus, our results may cast doubt on the following statements: (a) temperature drops are not effective when delivered at other times of the day or night (except before sunrise), (b) optimal time for drop effects depends on the daily dynamics of stem and petiole elongation rate. It is rather drop itself is capable of modifying the dynamics of plant growth in the daily cycle. Key words: Cucumis sativus L.; growth; daily rhythms IZVLEČEK ODZIV MLADIH KUMAR NA DIURNALNI UPAD TEMPERATURE V RAZLIČNIH OBDOBJIH DNEVA IN NOČI Pri pridelavi različne zelenjave in okrasnih rastlin v rastlinjakih se pogosto uporablja kratkotrajno znižanje temperature proti koncu noči ali proti jutru za zmanjšanje podaljševanja stebla kot alternativa kemijskim rastnim zaviralcem. Izvedeni so bili poskusi za ovrednotenje učinkov znižanja temperature na rast in fotosintetsko aktivnost mladih kumar v različnih obdobjih dneva in noči. V obdobju šestih dni so bile rastline izpostavljene temperaturi 10 °C za 2 h na začetku, v sredini in ob koncu noči, ter podnevi. Rezultati so pokazali, da je odziv na znižanje temperature kvalitativno različen v svetlobi in v temi. Čeprav je bil največji učinek znižanja zabeležen ob tretmanu podnevi, je iz praktičnih razlogov za uporabo v rastlinjakih primernejše znižanje ponoči. Kljub temu, pa pri sadikah kumar ni nujno izvajati znižanje proti koncu noči kot navaja literatura. Na osnovi naših rezulatov lahko dvomimo o naslednjih trditvah: (a) znižanja temperature so neučinkovita, če so izvedena v drugih obdobjih dneva ali noči, razen pred sončnim vzhodom, (b) optimalni čas za učinke znižanja je odvisen od dnevne dinamike dolžinske rasti stebla in listnih pecljev. Obratno, že samo znižanje temperature je sposobno spremeniti dinamiko rasti rastlin v dnevnem ciklu. Ključne besede: Cucumis sativus L.; rast; dnevni ritmi 1 INTRODUCTION Plant growth retardants are widely used as tools for height control in order to obtain more compact plants. However, the use of growth retardants on vegetables is prohibited in many countries because of the potential danger of chemical residues to the environment and the consumer. At the same time, it has long been known that stem elongation can be controlled by temperature treatments rather than by the use of chemical growth retardants (Moe & Heins, 1990). In particular, a daily temperature drop or dip for 2-4 h is the practice of lowering the temperature in order to obtain compact transplants of vegetable crops, bedding plants and ornamentals (Myster & Moe, 1995; Berghage, 1998; Runcle, 2009). It is believed that the time during 24-h 1 Institute of Biology, Karelian Resarch Center, Russian academy of Sciences; Petrozavodsk, Karelia, Russia; "Corresponding author: shibaeva@krc.karelia.ru Acta agriculturae Slovenica, 111 - 3, december 2018 str. 567 - 533 Tatjana G. SHIBAEVA et al. period when the temperature decreases, has a certain effect on the degree of stem elongation inhibition (Myster & Moe, 1995; Grindal & Moe, 1995; Grimstad, 1995). In the earlier studies on Lilium longiflorium Wiebe, Begonia x hiemalis Fortsch and Solanum lycopersicum L., it was shown that the temperature drop effect is the greatest in the first period of the day (Myster & Moe, 1995). Later, it was found that the temperature drop in the last part of the night is even more effective in reducing plant height and internode length in Begonia x chiemantha Everett (Moe & Mortensen, 1992; Grindal & Moe, 1994, 1995; Bakken & Moe, 1995), Euphorbia pulcherrima Willd. (Moe et al., 1992), tomato and cucumber (Grimstad, 1995). This turned out to be very convenient for practical application of this technique as the lowering temperature in the end of the night is far more energy efficient than at the start of the day, especially if the lights are switched on in the morning. The required decrease in temperature can be obtained by turning off heaters for a short time. If the greenhouse does not cool rapidly enough, venting may be necessary to achieve the desired low-temperature setpoint. It is generally believed that temperature drops are not effective when delivered at other times of the day or night (except before sunrise) (Runcle, 2009). However, the information about the effects of a temperature drop given at other times of the day or night (except for the end of the night and the beginning of the day) is extremely scarce. There is evidence that a temperature drop in the middle of the night had small effect on plant height and petiole length in Euphorbia pulcherrima (Moe et al., 1992) and Begonia x hiemalis (Moe & Mortensen, 1992; Grindal & Moe, 1994). In our previous studies we have shown that a temperature drop at the beginning, middle or end of the night was equally effective in reducing plant height and petiole length in cucumber (Sysoeva et al., 1997, 1999). It is also suggested that a temperature drop at the beginning of the day is much more effective than later during the day in Euphorbia pulcherrima (Ueber & Hendriks, 1992) and Pelargonium (Ueber & Hendriks, 1995), and that a temperature decrease at any time during photoperiod may be equally effective in inhibiting stem elongation as a temperature decrease at the beginning of the day in Fuchsia, Antirrhinum majus L., Petunia and Salvia splendens F. (Erwin & Heins, 1995). Data on the effects of a temperature drop at different times of the day on plant characteristics other than stem elongation rate are even more fragmentary and contradictory. It was shown that plant dry mass was decreased by low temperature pulse treatment in cucumber and tomato and the largest effect was achieved at the end of the night in cucumber, but at the beginning of the day in tomato (Grimstad, 1995). Begonia plants affected by a temperature drop at the end of the night or in the morning had smaller dry mass compared to the control plants, but a temperature drop at the beginning of the night increased plant dry mass. Moreover, a temperature drop given in the night increased leaf weigh ratio (LWR), while a temperature drop given in the morning did not affect LWR (Bakken & Moe, 1995). There are also data on the effect of a temperature drop on the chlorophyll content. In experiments with Ocimum basilicum L., there was a tendency that plants treated by a temperature drop at the beginning and in the end of the day had lower concentrations of chlorophyll a and b, but in the cold-resistant species Viola x wittrockiana Gams., a temperature drop in the early morning increased total chlorophyll content (Vagen et al., 2003). The objective of the present experiment was to quantify the effects of a temperature drop at different times of the day and night on growth and photosynthetic activity of young cucumber plants. 2 MATERIALS AND METHODS Experimental facilities for this study were offered by the Shared Equipment Center of the Institute of Biology, Karelian Research Center, Russian Academy of Sciences. Imbibed seeds of cucumber (Cucumis sativus 'Zozulya F1') were sown in 7 cm pots containing sand and seedlings were watered daily with a complete nutrient solution (based on 1 g l-1 Ca(NOs)2, 0.25 g l-1 KH2PO4, 0.25 g l-1 MgSO4 7H2O, 0.25 g l-1 KNO3, trace quantity of FeSO4 and pH 6.2-6.4, EC 2.0 mS cm-1). Plants were grown under air temperature 23 °C, air humidity 70 %, a photoperiod of 12 h (from 9:00 to 21:00), under controlled environmental conditions (Votsch growth chamber, Germany) with a photosynthetic photon flux density of 200 ^mol m-2 s-1. Starting from the 7th day from seed soaking, different groups of plants were exposed daily for 6 days to a temperature of 10 °C for 2 hours at the beginning (21:00-23:00, N1), in the middle (2:00-4:00, N2) and at the end of the night period (7:00-9:00, N3), as well as at the beginning (9:00-11:00, D1), in the middle (14:0016:00, D2) and at the end of the day period (19:0021:00, D3). Control plants were not treated by a temperature drop (DROP). At the end of DROP treatments all plants were grown under air temperature 48 Acta agriculturae Slovenica, 111 - 3, december 2018 Responses of young cucumber plants to a diurnal temperature drop at different times of day and night of 23 °C. All measurements were carried out on the next day after the last DROP treatment (on the 14th day). Plant height, petiole length of the first true leaf, leaf area (n > 10), dry mass of leaves, stems and roots (n = 5) were recorded. The total chlorophyll content was determined non-destructively by using a SPAD 502 Plus chlorophyll meter (Konica Minolta, Japan) (n > 10). The chlorophyll fluorescence was measured using a portable chlorophyll fluorometer MINI-PAM (Walz, Germany) on the 1st true leaf. The maximal quantum yield of PSII photochemistry was calculated as F/Fm = (Fm - F0)/Fm after 20 min of dark adaptation of leaves (n = 5) (Maxwell & Johnson, 2000). All results are presented as means ± SE (n > 5). Data were tested for normality and homogeneity of variance using Chi-Square test and Levene's test in Statistica (v.8.0.550.0, StatSoft, Inc). Differences between the treatment means were tested with one-way ANOVA followed the Bonferroni test with P < 0.05 level of significance. Two similar trials were run. 3 RESULTS The obtained results showed that in general DROP treatments reduced the plant height by 14-16 %, compared with the control (Fig. a). The leaf petiole length in all plants treated by DROP was also less than in the control (Fig. b). The greatest retardation of the leaf petiole growth was noted when DROP had been given in the middle and at the end of the day (by 4647 %) (treatments D2 and D3), while the smallest inhibition (by 20 %) occurred when it had been given in the middle and at the end of the night (N2 and N3). The leaf area was reduced by all DROP treatments compared with the control. In case of DROP given in the daytime the reduction was by 47-49 %, but in the night - by 25-29 % (Fig. c). There were no significant differences between leaf area of plants treated by DROP at the beginning, in the middle or at the end of the day as well as between treatments at different times in the night. The similar effect was observed for the plant dry mass, which was decreased by 51-53 % compared with the control by DROP given in the daytime and by 2130 % by DROP given in the night (Fig. d). However, no effect of DROP on biomass allocation to leaves, stems and root (data not shown) was observed. The chlorophyll content in the leaves of plants exposed to DROP-treatments did not differ from the control, except for the plants treated by DROP at the beginning of the day (D1), when the chlorophyll content was reduced by 23 % (Fig. e). The values of F,/Fm in leaves treated by DROP in the night time were not significantly different from the control ones, but DROP given in the daytime lowered the values of F,/Fm (Fig. f). Acta agriculturae Slovenica, 111 - 3, december 2018 569 Tatjana G. SHIBAEVA et al. 40 30 20 10 b b b b b b C N1 N2 N3 D1 D2 D3 40 30 20 10 0 60 50 40 30 20 10 0 C N1 N2 N3 D1 D2 D3 e a a a a a a 25 20 J 15 0,81 0,80 0,79 b b b c c c rîi C N1 N2 N3 D1 D2 D3 f a Jl II C N1 N2 N3 D1 D2 D3 C N1 N2 N3 D1 D2 D3 Figure 1: Effect of a temperature drop (DROP) given at the beginning (N1), in the middle (N2), in the end (N3) of the night and in the beginning (D1), in the middle (D2) or in the end (D3) of the day b a a 0 c a a a a b b b 4 DISCUSSION The results of this work showed that the DROP treatments applied at any time of the day or night results in growth retardation (reduced plant height, leaf petiole length) of cucumber plants, which unequivocally indicates that there are no periods in the daily cycle when DROP treatments are absolutely ineffective for obtaining compact plants. The strongest morphogenetic responses to DROP treatments were observed when DROP had been given in the middle or at the end of the day, which from the practical point of view is of little use. DROP given at the end of the night or at the beginning of the day similarly reduced stem and petiole elongation, as it was earlier reported by Grimstad (1995) for young cucumber plants. Unlike in case with Euphorbia pulcherrima (Moe et al., 1992) and Begonia x hiemalis (Moe & Mortensen, 1992; Grindal & Moe, 1994), when DROP given in the middle of the night had only slight effect on plant height and leaf petiole length, in our work with cucumber plants there were no significant differences revealed between plant morphogenetic response to DROP given at different times during the night period. The same results we reported earlier (Sysoeva et al., 1997, 1999). Already in the early studies on the potential of fluctuating 570 Acta agriculturae Slovenica, 111 - 3, december 2018 Responses of young cucumber plants to a diurnal temperature drop at different times of day and night temperatures as alternative to growth retardants it was pointed out that plant responses are very much crop dependent (Cuijpers & Vogelezang, 1992). Therefore, it is not surprising that the results obtained in experiments with different species may differ significantly. Pronounced morphogenetic effect of DROP given in the daytime also indicates that although it is known that stem elongation is not constant during a 24-h period and that the major stem extension occurs during the night (Lecharny et al., 1985; Sweeny, 1987; Erwin & Heins, 1988; Bertram & Karlsen, 1994; Tutty et al., 1994; Luna-Maldonado et al., 2017), however, the optimal time for DROP treatments in order to obtain compact plants may not coincide with the periods of the greatest stem elongation rate. This has been also shown in several experiments with tomato (Gertsson, 1992; Grimstad, 1995). There are data that an increase in a temperature drop duration from 2 to 4 h (Grimstad, 1995; Sysoeva et al., 2008) or from 1.5 to 3 h (Mortensen & Moe, 1992) decreased or did not change the effect of DROP on stem length. These data are also formally in contradiction with the opinion that the optimal time for DROP effects depends on the daily dynamics of stem and petiole elongation rate. In this case it would seem logical to expect stronger DROP effects. Explanations for this fact have not yet been found, but there are some interesting results worth taking into consideration. In experiments with Chenopodium rubrum L., DROP stimulated stem elongation within 10 h after the termination of DROP treatment (Lecharny et al., 1985). In experiments with Dendranthema grandiflorum (Ramat.) Kitam., short-term temperature changes did not rephase the rhythm of stem growth, but significantly affected the amplitude for the remainder of the diurnal cycle (Tutty et al., 1994). These results let us to suggest that the DROP itself is capable of modifying the dynamics of plant growth in the daily cycle. Perhaps, sometimes this may be the reason of mismatch between the results obtained and those expected. Our results demonstrate significant decrease in the leaf area of plants treated by DROP in the daytime (by 4749 %) and in the night (by 25-29 %). Previously it was reported that DROP does not affect leaf length or width in cucumber, tomato (Grimstad, 1995), poinsettia (Moe et al., 1992). We believe that the reason for this disagreement may be related to the fact that in our experiments the temperature during DROP treatments was lowered to 10 °C, but in the experiments carried by Grimstad (1995) and Moe et al. (1992) the setpoint for low temperature was 12 ° and 13 °C, correspondingly. It is well established that at the temperature critical for chilling injury (10 °C for species of tropical and subtropical origin) cellular membranes in sensitive plants undergo a physical-phase transition from a normal flexible liquid-crystalline to a solid gel structure and other changes occur in cells that lead to numerous physiological dysfunctions (Theocharis et al., 2012). Differences in plant response to DROP in the daytime or in the night, recorded in our experiments, can partly be explained by the involvement of a mechanism of the DROP effect on gibberellins (GA) metabolism, which is different in light and dark. It was shown in pea that DROP in the light increases expression of GA-deactivation gene PsGA2ox2 (Stavang et al., 2007). By contrast, DROP in darkness does not affect steady-state expression of this gene, but instead slightly stimulate the GA-biosynthesis genes PsGA20ox1, PsGA3ox1, and NA. Therefore, plant responses to DROP in light and darkness can differ not only quantitatively, but also qualitatively. The fact that DROP given in the dark also reduces petiole length and leaf area (although to a lesser extent) indicates that this also involves other, not GA-dependent mechanisms. The reduced leaf area in DROP-treated plants can be considered as very important in practical terms, since undesirable elongation of stems when growing seedlings of vegetable or ornamental plants occurs mainly at the time when the leaves of neighboring plants begin to overlap and shade each other, leading to competition for light in dense monoculture crops. Data on the plant dry mass also indicate a significant difference between plants treated by DROP in the light and in the dark (DROP given in the daytime decreased the plant dry mass the most) and no differences related to the timing of DROP within the dark or light periods. Earlier, we found that DROP in the light period results in greater decrease in the apparent quantum yield of photosynthesis in cucumber plants than DROP in the dark (Ikkonen et al., 2016). At the same time, DROP in the light reduces not only light use efficiency, but also the rate of photosynthesis, which does not occur in plants treated by DROP in darkness. It is to presume that a greater decrease of biomass in plants treated by DROP in the light is associated with temporal photoinhibition, which is likely to occur, as indicated by lower values of the intrinsic photochemical efficiency (Fv/Fm). In our experiments DROP had no effect on the chlorophyll content, except for its decrease in the leaves of plants treated by DROP at the beginning of the day, which was also observed in the experiments with Ocimum basilicum (Vagen et al., 2003). The loss of chlorophyll in the leaves chilled in the light, as opposite to the leaves chilled in the dark, may occur as a result of the degradation of PSII and PSI and during photoinhibition (Hetherington et al., 1989). PSI, which had been believed to be tolerant to environmental stresses, was shown to be photoinhibited when chilling- Acta agriculturae Slovenica, 111 - 3, december 2018 51 Tatjana G. SHIBAEVA et al. sensitive plants were exposed to a chilling temperature under moderate light (Kudoh, Sonoike, 2002; Gururani et al., 2015). Why this does not happen when the leaves are short-term chilled in the middle or at the end of the day, remains unclear so far. It is worth noting that we observed very quick (within 24 h under optimal temperature conditions) increase in chlorophyll content to the control level in cucumber leaves after the cessation of DROP treatments (12 °C) (Shibaeva et al., 2018). The results of our experiments with cucumber plants treated by short-term temperature drop at different times of the day and night have shown that light conditions during chilling treatment (light or darkness) rather than diurnal variability in growth rate are responsible for plant response to short-term temperature changes. Plant response to a temperature drop may be not only quantitatively, but also qualitatively different in light and darkness. While the strongest effects of a temperature drop are observed when it is given in the daytime, for practical application in greenhouses it is more appropriate to reduce temperature at night. However, it may not be strictly necessary for cucumber seedlings to apply a temperature drop at the end of the night, as it was stated earlier. In fact, the same effect may be obtained by a temperature drop given at any time within the night period as the timing of a temperature drop within the dark or light periods has little effect on plant response. It might be of use in plant factories, where the interaction with the exterior climate is minimized (Graamans et al., 2018). Thus, our results may cast doubt on the following statements: (a) temperature drops are not effective when delivered at other times of the day or night (except before sunrise), (b) optimal time for a temperature drop effects depends on the daily dynamics of stem and petiole elongation rate. It is rather DROP itself is capable of modifying the dynamics of plant growth in the daily cycle. 5 ACKNOWLEDGEMENTS The reported study was partially supported by Russian 04-00840a and Russian Federal Agency for Scientific Foundation for Basic Research, research project N° 14- Organizations (N° 0221-2017-0051). 6 REFERENCES Bakken A.K. & Moe, R. (1995). Height and quality control in Christmas begonia by growth-retarding temperature regimes. Acta Agriculturae Scandinavica, Section B -Soil and Plant Science, 45, 283-291. Berghage, R. (1998). Controlling height with temperature. HortTechnology, 8(4). Bertram, L. & Karlsen, P. (1994) Patterns in stem elongation rate in chrysanthemum and tomato plants in relation to irradiance and day/night temperature. Scientia Horticulturae, 58, 139-150. doi:10.1016/0304-4238(94)90134-1 Cuijpers, L.H.M. & Vogelezang, J.V.M. (1992). DIF and temperature drop for short-day pot plants. Acta Horticulturae, 327, 25-32. doi: 10.17660/ActaHortic.1992.327.3 Erwin, J.E., Heins, R.D. (1988). Effect of diurnal temperature fluctuations on stem elongation circadian rhythms. HortScience, 23, 164. Erwin, J.E. & Heins, R.D. (1995). Thermomorphogenic responses in stem and leaf development. HortScience, 30, 940-949. Gertsson, U. (1992). Influence of temperature on shoot elongation in young tomato plants. Acta Horticulturae, 327, 71-76. doi: 10.17660/ActaHortic.1992.327.8 Grimstad, S.O. (1995). Low-temperature pulse affects growth and development of young cucumber and tomato plants. Journal of Horticultural Science, 70, 75-80. doi: 10.1080/14620316.1995.11515275 Grindal, G. & Moe, R. (1994). Effects of temperature-drop and a short dark interruption on stem elongation and flowering in Begonia x hiemalis Fotsch. Sci Hortic, 57, 123-132. doi:10.1016/0304-4238(94)90040-X Grindal, G. & Moe, R. (1995). Growth rhythm and temperature DROP. Acta Horticulturae, 378, 47-52. doi: 10.17660/ActaHortic .1995.378.6 Graamans, L., Baeza, E., Dobbelsteen, A.D., Tsafaras, I., & Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems, 160, 31-43. doi:10.1016/j.agsy.2017.11.003 Gururani, M.A., Venkatesh, J & Tran L.-S.P (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 13041320. doi:10.1016/j.molp.2015.05.005 Hetherington, S.E., He, J. & Smillie, R.M. (1989). Photoinhibition at low temperature in chilling-sensitive and -resistant plants. Plant Physiology, 90, 1609-1615. doi:10.1104/pp.90.4.1609 572 Acta agriculturae Slovenica, 111 - 3, december 2018 Responses of young cucumber plants to a diurnal temperature drop at different times of day and night Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G. & Titov, A.F. (2016). Effect of a temperature drop on the apparent quantum yield of photosynthesis in cucumber plants. Transactions of Karelian Research Centre of the Russian Academy of Sciences. Experimental Biology Series, 6, 49-55. Kudoh, H. & Sonoike, K. (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 215, 541-548. doi:10.1007/s00425-002-0790-9 Lecharny, A., Schwall, M. & Wagner, E. (1985). Stem extension rate in light-grown plants. Plant Physiology, 79, 625-629. doi:10.1104/pp.79.3.625 Luna-Maldonado, A.I., Vidales-Contreras, J.A. & Rodrigues-Fuentes, H. (2017) Advances and trends in development of plant factories. Frontiers Media SA. doi:10.3389/978-2-88945-139-5 Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51, 659-668. doi:10.1093/jexbot/51.345.659 Moe, R. & Heins, R.D. (1990). Control of plant morphogenesis and flowering by light quality and temperature. Acta Horticulturae, 272, 81-90. doi:10.17660/ActaHortic .1990.272.11 Moe, R., Gromsrud, N., Bratberg, I. & Vals0, S. (1992). Control of plant height in poinsettia by temperature drop and graphical tracking. Acta Horticulturae, 327, 41-48. doi:10.17660/ActaHortic.1992.327.5 Moe, R. & Mortensen, L.M. (1992). Thermomorphogenesis in pot plants. Acta Horticulturae, 305, 19-25. doi:10.17660/ActaHortic .1992.305.2 Mortensen, L.M. & Moe, R. (1992). Effects of various day and night temperature treatments on the morphogenesis and growth of some greenhouse and bedding plant species. Acta Horticulturae, 327, 77-86. doi: 10.17660/ActaHortic.1992.327.9 Myster, J. & Moe, R. (1995). Effect of diurnal temperature alternation on plant morphology in some greenhouse crops - a mini review. Scientia Horticulturae, 62, 205215. doi:10.1016/0304-4238(95)00783-P Runcle, E. (2009). Controlling height with temperature drops. Greenhouse Product News, 4, 50. Shibaeva, T.G., Sherudilo, E.G. & Titov, A.F. (2018) Cucumber plant response to constant long-term and daily short-term low temperature treatments. Russian Journal of Plant Physiology, 2(65), 68-77. Stavang, J.A., Junttila, O., Moe, R. & Olsen, J.E. (2007). Differential temperature regulation of GA metabolism in light and darkness in pea. Journal of Experimental Botany, 58, 3061-3069. doi:10.1093/jxb/erm163 Sysoeva, M., Markovskaya. E. & Kharkina, T. (1977). Optimal temperature drop for the growth and development of young cucumber plants. Plant Growth Regulation, 23, 135-139. doi:10.1023/A:1005834702680 Sysoeva, M., Markovskaya, E., Kharkina, T. & Sherudilo, E. (1999). Temperature drop, dry matter accumulation and cold resistance of young cucumber plants. Plant Growth Regulation, 28, 89-94. doi:10.1023/A:1006243230411 Sysoeva, M.I., Grindal Patil, G., Sherudilo, E.G., Torre, S., Markovskaya, E.F. & Moe, R. (2008). Effect of temperature drop and photoperiod on cold resistance in young cucumber plants - involvement of phytochrome B. Plant Stress, 2, 84-88. Sweeny, B.M. (1987). Rhythmic phenomena in plants. Academic Press, San Diego, USA. Theocharis, A., Clement, Ch. & Barka, E.A. (2012). Physiological and molecular changes in plants grown at low temperatures. Planta, 235, 1091-1105. doi:10.1007/s00425-012-1641-y Tutty, J.R., Hicklenton, P.R., Kristie, D.N. & McRae, K.B. (1994). The influence of photoperiod and temperature on the kinetics of stem elongation in Dendranthema grandiflorum. Journal of the American Society for Horticultural Science, 119, 138-143. Ueber, E. & Hendriks, L. (1992). Effects of intensity, duration and timing of a temperature drop on the growth and flowering of Euphorbia pulcherrima Willd. ex Klotzsch. Acta Horticulturae, 327, 33-40. doi:10.17660/ActaHortic .1992.327.4 Ueber, E. & Hendriks, L. (1995). Intensity effects of a temperature drop on pelargoniums. Acta Horticulturae, 378, 34. doi:10.17660/ActaHortic.1995.378.3 Vagen, I.M., Moe, R. & Ronglan, E. (2003). Diurnal temperature alternations (DIF/drop) affect chlorophyll content and chlorophyll a/chlorophyll b ratio in Melissa officinalis L. and Ocimum basilicum L., but not in Viola x wittrockiana Gams. Scientia Horticulturae, 97, 153-162. doi:10.1016/S0304-4238(02)00141-3 Acta agriculturae Slovenica, 111 - 3, december 2018 573 doi:10.14720/aas.2018.111.3.06 Original research article / izvirni znanstveni članek Fluctuations of aphid populations on grapefruit (Citrus xparadisi Macfad.) Salim LEBBAL1,2 Received February 02, 2018; accepted October 30, 2018. Delo je prispelo 02. februarja 2018, sprejeto 30. oktobra 2018. ABSTRACT Very few studies were carried out to investigate the aphids attacking grapefruit. These pests cause considerable damages on citrus trees and other crops. This paper reports on the fluctuations of aphids on grapefruit in the region of Skikda (Algeria). From January 2012 to December 2013, monthly surveys were performed to measure the abundance of aphids recorded on 16 leaves of grapefruit. Through this study, five aphid species were identified, among them Aphis spiraecola Patch, 1914 was the most numerous. Besides, we noticed that the populations of aphids reached high levels many times within the year. However, the most important densities were recorded in spring and autumn. Key words: Aphis spiraecola; Aphis gossypii; inter-annual variations of populations; intra-annual variations; population dynamics IZVLEČEK FLUKTUACIJE POPULACIJ LISTNIH UŠI NA GRENIVKI (Citrus x paradisi Macfad.) Zelo malo raziskav je bilo narejeno na listnih ušeh, ki napadajo grenivko. Ti škodljivci povzročajo znantne poškodbe na citrasih in drugih kulturah. Pripevek poroča o nihanju pojavljanja listnih uši na grenivki v območju Skikda (Alžirija). Od januarja 2012 do decembra 2013 so bili opravljeni mesečni pregledi za ovrednotenje pogostosti listnih uši, na osnovi ocene pojavljanja na 16 listih grenivke. V raziskavi je bilo najdenih pet vrst listnih uši, med katerimi je bila vrsta Aphis spiraecola Patch, 1914 najštevilčnejša. Opaženo je bilo, da so bile populacije listnih uši številčne večkrat v letu, vendar so bile najpomembnejše gostote zabeležene spomladi in v jeseni. Ključne besede: Aphis spiraecola; Aphis gossypii; medletna spremenljivost populacij; letna variabilnost; populacijska dinamika 1 INTRODUCTION Citrus fruits represent one of the most important fruit productions worldwide, with 109 million tonnes produced annually in the world (Maserti et al., 2011). In the Mediterranean region, the citrus fruits play a very important role in the nutrition, human health, food processing industry and economic incomes (Biche, 2012). The genus Citrus includes several species of economic importance such as grapefruits (Citrus x paradisi Macfad.) (Hanke & Flachowsky, 2010), which constitutes the only major citrus varieties having a level of processed utilization comparable to oranges (Lacirignola & D'Onghia, 2009). It is the largest citrus fruit grown commercially in many countries (Skaria, 2004). The production of grapefruit was estimated at about 8,550100 tonnes in 2015, including 2300 tonnes in Algeria (FAO, 2017). Besides, grapefruit or grapefruit juice is often recommended as a healthy dietary constituent, particularly in some weight reducing diets (Xiao & Hu, 2014). Furthermore, other authors reported many healthy benefits of grapefruit (Xu et al., 2007; Yin et al., 2012). In addition, its zest is exploited in the production of pectin and essential oils (Kimball, 1999). Several pests and diseases may attack grapefruit and reduce its yield. Among these plant enemies, aphids have a big importance. They comprise about 4000 described species, most of which are found only in temperate regions (Dixon, 1987). They cause direct (sap-feeding, deformation of their hosts) and indirect damage (transmission of plant diseases, deposition of honeydew on the leaves) (Cœur d'acier et al., 2010). For 1 Department of Agronomy, Faculty of Natural and Life Sciences, Abbas Laghrour University, Khenchela, Algeria; Corresponding author: salim-leb@hotmail.com 2 Department of Agronomy, Hadj Lakhdar University, Batna, Algeria Acta agriculturae Slovenica, 111 - 3, december 2018 str. 575 - 533 Salim LEBBAL instance, Citrus tristeza virus (CTV) which is considered to be the most destructive virus of citrus crops (Rehman et al., 2016), is present in most of the countries in the Mediterranean region and is transmitted by different aphid species (Lacirignola & D'Onghia, 2009). Thus, knowledge of the biology of aphids is an important basis for successful management of the aphids themselves and of the diseases they transmit (Hales et al., 1997). In Algeria, practically there is no specific studies on the aphids attacking grapefruit, although the importance of this aspect to obtain a good production qualitatively and quantitatively. Thus, our paper reports on the diversity and fluctuations of aphids on grapefruit in Skikda region (northeast Algeria), based on a two years investigation 2 MATERIAL AND METHODS A citrus orchard at the Technical Institute of Fruit Arboriculture in Emjez Djich (6° 47' E and 36° 42' N, 200 m above the sea level), province of Skikda situated in northeast of Algeria, was used for this study. The trees were arranged in 5 m separated rows. From January 2012 to December 2013, monthly surveys measured the abundance of aphids (adults and larvae) on grapefruit trees ('Shambar') grafted on Troyer citrange (C. sinensis L. x Poncirus trifoliata Raf.). Four young leaves from the four cardinal points per tree and four trees of grapefruit were selected randomly on each sampling date. Similarly, Yolda§ et al. (2011) and Mostefaoui et al. (2012) have sampled leaves to study citrus aphids. Identification of collected aphids was carried out using identification keys especially those of Blackman & Eastop (2000) and Stoetzel (1994). ANOVA analysis and Student-Newman-Keuls test were performed, by means of SPSS for Windows 10 software (SPSS Inc.), to compare the mean number of aphids between months and to classify homogeneous groups. 3 RESULTS AND DISCUSSION Through 2012 and 2013, five aphid species were identified in total (Table 1). They are already reported on other citrus species in Algeria (Aroun, 1986; Benoufella-Kitous, 2005; Mohammedi-Boubekka, 2006; Belkahla et al., 2013; Benoufella-Kitous et al., 2014; Aroun, 2015; Labdaoui & Guenaoui, 2015; Lebbal & Laamari, 2016). Citrus aphid species are widespread and four of them, Aphis spiraecola (Patch, 1914), A. gossypii (Glover, 1877), Toxoptera aurantii (Boyer de Fonscolombe, 1841) and T. citricidus (Kirkaldy, 1907), are especially abundant (Lapchin et al., 1994). Despite its presence in other Mediterranean countries, T. citricida, which is the vector the most implicated in the transmission of Tristeza disease (Lebdi Grissa, 2010), was not noted in the orchard of study. The complete elimination of Meyer lemon, the absence of the main vector T. citricidus and of natural transmission by other aphid species, have probably removed the risk of spreading the disease in Algeria (Larbi et al., 2009). Nevertheless, A. spiraecola, A. gossypii, M. persicae, and T. aurantii have some ability to transmit this virus (Bove, 1961; Ghosh et al., 2015). A. gossypii has been reported to cause major epidemics of CTV in the Mediterranean Basin (Yahiaoui, 2010) Table 1: Number of individuals of each aphid species found on grapefruit in the examined orchard during 2012 and 2013 Aphids / Years_2012_2013 Aphis spiraecola (Patch, 1914) 388 1448 Aphis gossypii (Glover, 1877) 0 19 Toxoptera aurantii (Boyer de Fonscolombe, 1841) 3 0 Aphis nerii (Boyer de Fonscolombe, 1841) 0 5 Macrosiphum euphorbiae (Thomas, 1878) 0 1 The morphological characteristics of the identified aphids are described below 576 Acta agriculturae Slovenica, 111 - 3, december 2018 Fluctuations of aphid populations on grapefruit (Citrus x paradisi Macfad.) 3.1 A. spiraecola (green citrus aphid or spiraea aphid) This is a small yellow or greenish-yellow aphid with black siphunculi and cauda (Blackman & Eastop, 2007). Its body length ranges between 1.2 and 2.2 mm (Blackman & Eastop, 2006). 3.2 A. gossypii (cotton or melon aphid) The coloration of adults, ranging in size from 0.8 to 1.5 mm, varies from light yellow or greenish to dark green. Their antenna are a little longer than half the (Celini, 2001). Cauda is lighter than siphunculi (Ilharco & Sousa-Silva, 2009). 3.3 A. nerii (oleander aphid) Aptera are bright lemon yellow with dark antenna and legs, and black siphunculi and cauda (Blackman & Eastop, 2006). Antenna with terminal process more than three times length of base of VI (Stoetzel, 1994). 3.4 T. aurantii (black citrus aphid) It is about 2.1 mm in length with striped legs (Fasulo & Halbert, 2015). Body of apterous form is dark-brown, while the apex of antennal segments III, IV and V, the apical half of base of VI and sometimes also the apex of terminal process are dark (Ilharco & Sousa-Silva, 2009). 3.5 M. euphorbiae (potato aphid) It is a medium-sized to large, spindle shaped aphid, usually green but sometimes pink or magenta, the adult apterae often rather shiny in contrast to the immature stages, which have a light dusting of greyish-white wax (Blackman & Eastop, 2007). Siphunculi with a subapical zone of polygonal reticulation whereas the cauda is longer (Blackman & Eastop, 2000). In our case, the most common species was A. spiraecola and with less degree A. gossypii. Tena & Garcia-Mari (2011) considered that these two species are the most harmful to citrus in the Mediterranean region. Its importance on citrus fruits has been mentioned, among others, in Algeria (Lebbal & Laamari, 2016), in Morocco (Elhaddad et al., 2016), in Syria (Abo Kaf, 2005) and in Turkey (Uygun & Satar, 2008). Whereas the weak infestation of A. nerii, M. persicae and M. euphorbiae on grapefruit in the studied orchard may be attributed to the competition from other species, particularly A. spiraecola. On the other hand, ANOVA showed no significant difference of the infestation degree between months in 2012 (P = 0.156) and highly significant difference in 2013 (P = 0.000). The most important densities were recorded in spring and autumn (Figure 1), especially in April 2013 (x = 57.69 aphids / leaf), which coincide with the formation of new flushes and optimal temperatures. CTJ "o 53 □ 2012 ■ 2013 Figure 1: Mean number of aphids/leaf recorded on grapefruit in the examined orchard during 2012 and 2013 The correlation analysis for weather parameters and some citrus aphids indicated a significant negative correlation between minimum temperature and incidence of aphid species (Chavan & Singh, 2005). In addition, the presence and the abundance of citrus-dependent aphids depend on the population size of the different flushes (Saharaoui et al., 2015). Braham & Amor (2018) noticed a positive relationship between the number of new shoots per experimental tree and A. spiraecola infestation. We observed an augmentation in the number of aphid species detected from two in 2012 to four species in 2013(Table 1). We also noticed big changes in the Acta agriculturae Slovenica, 111 - 3, december 2018 577 Salim LEBBAL distribution of aphids between years (Figure 1). For example, aphids did not infest grapefruit trees in five months during 2012, and in eight months during 2013. It seems that changes in climatic parameters between years influenced the infestation level. In the present study, the minimum temperature ranged from 9.48 to 27.37 °C in 2012; and between 11.24 and 25.22 °C in 2013 according to climatic data provided by the meteorological station of Skikda (longitude 6° 54' E; latitude 36° 52' N; altitude 1.30 m). Aphids are particularly sensitive to temperature changes due to certain specific biological features of this group (Hulle et al., 2010). The effect of temperature on the biology of many aphid species has been demonstrated (De Reggi, 1972; Kaakeh & Dutcher, 1993; Wang & Tsai, 2000; Morgan et al., 2001; Brabec et al., 2014; Ranila et al., 2015). Dixon & Hopkins (2010) revealed that for each species, there is a temperature range where the aphid can grow and reproduce. For example, Komazaki (1982) found that the intrinsic rate of natural growth is highest at 22 ° C for A. gossypii and 27 ° C for A. spiraecola. In addition, the generation time of the latter species was 5.8 days at 25 ° C and 12.1 days at 15 ° C, on orange (Satar & Uygun, 2008). 4 CONCLUSION The present study focused on grapefruit, which represents an underutilized fruit tree although its benefits, allows the obtaining of new data about the aphids attacking this citrus tree in Algeria. Five aphid species were identified, of which four species are considered as vectors of CTV causing the quarantine disease Tristeza. Furthermore, population fluctuations of these insects were very variable. Consequently, regular surveys in orchards, especially in the spring and autumn, are necessary to execute control measures to limit the attacks by these pests. 5 REFERENCES Abo Kaf, N. (2005). Quality and quantity diversity of aphids and its parasitoids on citrus in Coastal Regional of Syria. Arab Journal of Plant Protection, 23(2), 61-69. Aroun, M. E. (1986). Les aphides et leurs ennemis naturels en verger d'agrumes de la Mitidja. Annales de l'INA, 59-66. Aroun, M. E. (2015). Le complexe aphides et ennemis naturels en milieux cultivé et forestiers en Algérie. Doctoral dessertation, ENSA El Harrach. Belkahla, H., Larbi, D., Bouafia, L., Moudoud, R., Guettouche, F. & Bouzidi, S. (2013). Serodetection of Citrus Tristeza Closterovirus (CTV) in Algeria. American-Eurasian Journal of Sustainable Agriculture, 7(1), 10-13. Benoufella-Kitous, K. (2005). Les pucerons des agrumes et leurs ennemis naturels à Oued Aïssi (Tizi-Ouzou). Magister dessertation, INA El Harrach. Benoufella-Kitous, K., Doumandji, S. & Hance, T. (2014). Inventaire des aphides et de leurs ennemis naturels dans un verger d'agrumes. In: 10eme Conférence Internationale sur les Ravageurs en Agriculture, 22 - 23 octobre 2014, Montpellier. Biche, M. (2012). Les principaux insectes ravageurs des agrumes en Algérie et leurs ennemis naturels. Algérie, FAO. Blackman, R. L. & Eastop, V. F. (2000). Aphids on the world's crops: An identification and information guide. United Kingdom, John Wiley and Sons. Blackman, R. L. & Eastop, V. F. (2006). Aphids on the world's herbaceous plants and shrubs. United Kingdom, John Wiley & Sons. Blackman, R. L. & Eastop, V. F. (2007). Taxonomic issues. In: H. F. van Emden & R. Harrington (Eds.), Aphids as crop pests (1-29), United Kingdom, CAB International. Bové, J. M. (1961). Compte rendu du deuxième congrès international de virologie des citrus. Fruits, 16(4), 145-160. Brabec, M., Honek, A., Pekar, S. & Martinkova, Z. (2014). Population dynamics of aphids on cereals: Digging in the time-series data to reveal population regulation caused by temperature. Plos One, 9(9), 1-8. doi:10.1371/journal.pone.0106228 Braham, M., & Amor, N. (2018). Effect of pruning severity on the vegetative growth, density and population dynamics of the Spirea aphid, Aphis spiraecola in Citrus orchard. Journal of Entomology and Zoology Studies, 6(1), 311-319. 578 Acta agriculturae Slovenica, 111 - 3, december 2018 Fluctuations of aphid populations on grapefruit (Citrus x paradisi Macfad.) Célini, L. (2001). Le puceron du cotonnier Aphis gossypii (Glover) et son parasite Aphelinus gossypii Timberlake en République centrafricaine. Insectes, 122(3), 7-10. Chavan, V. M., & Singh, S. J. (2005). Population dynamics and management of aphid vectors of citrus tristeza virus in Maharashtra. Agricultural Science Digest, 25(2), 85-89. Cœur D'acier, A., Hidalgo, N.P., & Petrovič-Obradovič, O. (2010). Aphids (Hemiptera, Aphididae). BioRisk, 4(1), 435-474. doi:10.3897/biorisk.4.57 Dartigues, D. (1991). Spatiotemporal distribution of aphids and influence of ants, on orange-trees in Kabylia. Fruits, 46(4), 461-469. De Reggi, L. M. (1972). Développement larvaire du puceron Myzus persicae à une température anormalement élevée. Journal of Insect Physiology, 18(9), 1757-1761. doi:10.1016/0022-1910(72)90107-2 Dixon, A. F. G. & Hopkins, G. W. (2010). Temperature, seasonal development and distribution of insects with particular reference to aphids. In P. Kindlmann, A. F. G. Dixon & J. P. Michaud (Eds.), Aphid biodiversity under environmental change: Patterns and processes (pp. 129-147).Dordrecht, Springer. doi:10.1007/978-90-481-8601-3_8 Dixon, A.F.G., Kindlmann, P., Lepš, J., & Holman, J. (1987). Why there are so few species of aphids, especially in the tropics. The American Naturalist, 129, 580-592. doi:10.1086/284659 Elhaddad, A., ElAmrani, A., Fereres, A., & Moreno, A. (2016). Spatial and temporal spread of Citrus tristeza virus and its aphid vectors in the North western area of Morocco. Insect science, 23(6), 903-912. doi:10.1111/1744-7917.12228 F AO (2017). Citrus fruit: Fresh and processed statistical bulletin 2016. Rome, FAO. Fasulo T. R. & Halbert S. E. (2015). Aphid pests of Florida citrus, (University of Florida paper ENY 811). Retrieved from https://edis.ifas.ufl.edu/pdffiles/CH/CH05500.pdf Ghosh, A., Das, A., Lepcha, R., Majumdar, K. & Baranwal, V. K. (2015). Identification and distribution of aphid vectors spreading Citrus tristeza virus in Darjeeling hills and Dooars of India. Journal of Asia-Pacific Entomology, 18, 601605. doi:10.1016/j.aspen.2015.07.001 Hales, D. F., Tomiuk, J., Wöhrmann, K., & Sunnucks, P. A. U. L. (1997). Evolutionary and genetic aspects of aphid biology: A review. European Journal of Entomology, 94(1), 1-55. Hanke, M.-V. & Flachowsky, H. (2010). Fruit crops. In F. Kempken & C. Jung (Eds.), Genetic Modification of Plants (pp. 307-348). Berlin, Springer. doi:10.1007/978-3-642-02391-0_17 Hullé, M., Cœur D'acier, A., Bankhead-Dronnet, S. & Harrington, R. (2010). Aphids in the face of global changes. Comptes Rendus Biologies, 333, 497-503. doi:10.1016/j.crvi.2010.03.005 Ilharco, F. A., & Sousa-Silva, C. R. (2009). Toxoptera citricidus (Kirkaldy, 1907)(Homoptera, Aphidoidea), the tropical citrus aphid in continental Portugal. Options Méditerranéennes B65, 53 - 58. Kaakeh, W. & Dutcher, J. D. (1993). Survival of yellow pecan aphids and black pecan aphids (Homoptera: Aphididae) at different temperature regimes. Environmental Entomology Journal, 22(4), 810817. doi:10.1093/ee/22.4.810 Kimball, D. A. (1999). Citrus processing : A complete guide. Maryland, Aspen Publishers. doi:10.1007/978-1-4615-4973-4 Komazaki, S. (1982). Effects of constant temperatures on population growth of three aphid species, Toxoptera citricidus (Kirdkaldy), Aphis citricola Van Der Goot and Aphis gossypii Glover (Homoptera: Aphididae) on Citrus. Applied Entomology and Zoology, 17(1), 75-81. doi:10.1303/aez.17.75 Labdaoui, Z. E. & Guenaoui, Y. (2015). The aphids infesting citrus orchards and their natural enemies in the Northwestern Algeria. In Sixth International Scientific Agricultural Symposium" Agrosym2015", Jahorina, Bosnia and Herzegovina, October 15-18, 2015. Book of Proceedings (pp. 787-792). University of East Sarajevo. Lacirignola, C. & D'onghia, A. M. (2009). The Mediterranean citriculture: Productions and perspectives. Options Méditerranéennes, B 65, 1317. Lapchin, L., Guyot, H. & Brun, P. (1994). Spatial and temporal heterogeneity in population dynamics of citrus aphids at a regional scale. Ecological Research, 9, 57-66. doi:10.1007/BF02347242 Larbi, D., Ghezli, C. & Djelouah, K. (2009). Historical review of Citrus tristeza virus (CTV) in Algeria. Options Méditerranéennes,B 65, 107-110. Lebbal, S. & Laamari, M. (2016). Population dynamics of aphids (Aphididae) on orange (Citrus sinensis 'Thomson Navel') and mandarin (Citrus reticulata 'Blanco'). Acta agriculturaeSlovenica, 107(1), 137145. doi: 10.14720/aas.2016.107.1.14 Lebdi Grissa, K. (2010). Etude de base sur les cultures d'agrumes et de tomates en Tunisie. Regional Acta agriculturae Slovenica, 111 - 3, december 2018 579 Salim LEBBAL integrated pest management program in the Near East. Rome, FAO. Maserti, B.E., Del Carratore, R., Delia Croce, C.M., Podda, A., Migheli, Q., Froelicher,Y., Luro,F., Morillon,R., Ollitrault,P., Talon, M. & Rossignol, M. (2011). Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. Journal of Plant Physiology, 168, 392-402. doi:10.1016/j.jplph.2010.07.026 Mohammedi-Boubekka, N. (2006). Biosystématique des Aphididae et leur place dans l'entomofaune de l'oranger dans la plaine de la Mitidja. Magister dessertation, INA El Harrach. Morgan, D., Walters, K. F. A. & Aegerter, J. N. (2001). Effect of temperature and cultivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history. Bulletin of Entomological Research, 91(1), 47-52. Mostefaoui, H., Mahmoude, A., AllalBenfekih, L., Petit, D. & Saladin, G. (2012). Fluctuations des abondances saisonnières des populations d'aphidiens du clémentinier en fonction de l'accumulation de leurs réserves énergétiques. In: 3ème Congrès de Zoologie et d'Ichtyologie, 6 - 10 novembre 2012, Marrakech. Ranila, A., Kanani, M. K., Bhut, J. B. & Borad, P. K. (2015). Population dynamics of Aphis gossypii Glover on coriander in relation to biotic and abiotic factors. International Journal of Plant Protection, 8(2), 372-374. doi: 10.15740/HAS/IJPP/8.2/372-374 Rehman, S., Ahmad, J., Lanzoni, C., Rubies Autonell, C. & Ratti, C. (2016). The phytosanitary status of the National Collection of fruits and nuts of Afghanistan and the private Mother Stock Nurseries: A virus survey. Advances in Horticultural Science, 30(4), 239-248. Saharaoui, L., Hemptienne, J. L. & Magro, A. (2015). Partage des ressources trophiques chez les coccinelles. Bulletin de la Société Zoologique de France, 140(1), 5-23. Satar, S. & Uygun, N. (2008). Life cycle of Aphis spiraecola Patch (Homoptera: Aphididae) in East Mediterranean region of Turkey and its development on some important host plants. IOBC/WPRS Bulletin, 38, 216-224. Skaria, M. (2004). People, arthropods, weather and citrus diseases. In S. A. M. H. Naqvi (Ed.), Diseases of fruits and vegetables (pp. 307-337). The Netherlands, Kluwer Academic Publishers. doi:10.1007/1-4020-2606-4_7 Stoetzel, M. B. (1994). Aphids (Homoptera: Aphididae) of potential importance on Citrus in the United States with illustrated keys to species. Proceeding of the Entomology Society of Washington, 96, 7490. Uygun, N. & Satar, S. (2008). The current situation of citrus pests and their control methods in Turkey. IOBC/WPRS Bulletin, 38, 2-9. Wang, J.-J. & Tsai, J. H. (2000). Effect of temperature on the biology of Aphis spiraecola (Homoptera: Aphididae). Annals of Entomological Society of America, 93(4), 874-883. doi:10.1603/0013-8746(2000)093[0874:E0T0TB]2.0.C0;2 Xiao, Y.-J., Hu, M. & Tomlinson, B. (2014). Effects of grapefruit juice on cortisol metabolism in healthy male Chinese subjects. Food and Chemical Toxicology, 74, 85-90. doi:10.1016/j.fct.2014.09.012 Xu, W., Qu, W., Huang, K., Guo, F., Yang, J., Zhao, H. & Luo, Y. (2007). Antibacterial effect of Grapefruit Seed Extract on food-borne pathogens and its application in the preservation of minimally processed vegetables. Postharvest Biology and Technology, 45, 126-133. doi:10.1016/j.postharvbio.2006.11.019 Yahiaoui, D. (2010). Assessment of genetic diversity of Mediterranean Citrus Tristeza Virus (CTV) isolates and genomic RNA variability associated to their vector transmission. Doctoral dessertation, Universita Degli Studi Di Catania. Yin, X., Gyles, C. L. & Gong, J. (2012). Grapefruit juice and its constituents augment the effect of low pH on inhibition of survival and adherence to intestinal epithelial cells of Salmonella enterica serovar Typhimurium PT193. International Journal of Food Microbiology, 158, 232-238. doi:10.1016/j.ijfoodmicro.2012.07.022 Yolda§, Z., Guncan, A. & Koglut, T. (2011). Seasonal occurrence of aphids and their natural enemies in Satsuma mandarin orchards in Izmir, Turkey. Turkiye Entomoloji Dergisi, 35(1), 59-74. 580 Acta agriculturae Slovenica, 111 - 3, december 2018 doi: 10.14720/aas.2018.111.3.07 Original research article / izvirni znanstveni članek Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) Marianna MICOVA1*, Judita BYSTRICKA2, Jan KOVAROVIČ1, Luboš HARANGOZO1, Adriana LIDIKOVA3 Received April 23, 2018; accepted November 30, 2018. Delo je prispelo 23. aprila 2018, sprejeto 30. novembra 2018. ABSTRACT IZVLEČEK Garlic (Allium sativum L.) is highly regarded throughout the world for both its medicinal and culinary properties. With its bioactive compounds and sulphur containing compounds, high trace mineral content, garlic has shown anti-viral, antibacterial, anti-fungal and antioxidant abilities. This work has focused on the measurement and comparison of the total polyphenols content, the total sulphur content and antioxidant activity of the studied varieties of garlic in the area of Nitra and Bardejov, Slovak Republic. The highest content of monitored indicators (TPC, TSC, AOA) was measured in the area of Nitra. TPC was determined using the spectrophotometric method of Folin-Ciocalteu agents. The total polyphenols content were determined in the range 621.13 to 763.28 mg kg-1 in area of Nitra. The content of total sulphur compounds in the area of Nitra ranges from 0.562 to 0.800 % and in the second area ranges from 0.421 % to 0.658 %. Antioxidant activity was measured by the spectrophotometric method using a compound DPPH. The value of antioxidant activity ranged from 12.01 % to 20.22 % in both monitored locations. The content of TPC, TSC and AOA beside the variety may be affected by the localitylinked factors like climatic conditions and the agrochemical composition of the soil. Key words: antioxidant activity; garlic; polyphenols; sulphur compounds VSEBNOST BIOAKTIVNIH SNOVI IN ANTIOKSIDACIJSKA AKTIVNOST ČESNA (Allium sativum L.) Česen (Allium sativum L.) je zelo cenjen po celem svetu zaradi njegovih zdravilnih in kulinaričnih lastnosti. Na osnovi žveplo vsebujočih bioaktivnih snovi in elementov v sledeh ima proti virusne, protibakterijske, protiglivne in antioksidacijske lastnosti. Raziskava se osredotoča na meritve im primerjave vsebnosti polifenolnih in žveplo vsebujočih snovi v preučevanih sortah česna na območju Nitre in Bardejova, Slovaška Republika. Največja vsebnost merjenih indikatorjev (TPC, TSC, AOA) je bila izmerjena na območju Nitre. TPC je bil določen s spektrofotometrično metodo z uporabo Folin-Ciocalteujevega reagenta. Celokupna vsebnost polifenolov, izmerjena na območju Nitre je bila v razponu od 621,13 do 763,28 mg kg-'.Celokupna vsebnost žveplo vsebujočih snovi je bila na območju Nitre v razponu od 0,562 do 0,800 % in od 0,421 % do 0,658 % na drugem preučevanem območju. Antioksidacijska aktivnost je bila izmerjena spektrofotometrično z uporabo DPPH. Antioksidacijska aktivnost je bila v obeh preučevanih območjih v razponu od 12,01 % do 20,22 %. Na vsebnost TPC, TSC in AOA vplivajo poleg sorte z lokacijo povezani dejavniki kot so podnebne razmere, sestava tal in uporabljena agrotehnika. Ključne besede: antioksidacijska aktivnost; česen; polifenoli; žveplove spojine 1 Ing., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic; *Corresponding author: xlenkova@is.uniag.sk 2 Assoc. Prof. Ing., PhD., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic 3 Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic Acta agriculturae Slovenica, 111 - 3, december 2018 str. 581 - 533 Marianna MICOVA et al. 1 INTRODUCTION Garlic (Allium sativum L.) is a plant of the genus Alliaceae and is one of the longest cultivated crop plants in the world. It is known that it was used for healing purposes in the Middle Ages. Garlic is an important raw material of plant origin with observed and proven positive effects on the human organism. Garlic has a versatile use as a spice and also uses its healing properties. It is believed to originate in Central Asia, where it originated from the wildly growing species Allium longicuspis Regel (Iciek et al., 2012). Garlic was extended to the West, South and East more than 6000 years ago. Garlic, as we know it today, has been used in Chinese medicine for 3000 years ago. Egyptians used garlic to increase immunity and protect against various diseases and to improve performance (Sultan et al., 2014). Louis Pasteur, the famous bacteriologist found that garlic juice kills bacteria propagated at a laboratory dish. From this time on, it has been shown many times that garlic destroys a very wide range of bacteria and fungi that adversely affect our health (Fulder, 2002). In the past, garlic was used as a medicine during various epidemics such as typhus, dysentery, cholera and influenza. At present, garlic is grown around the world. In our territory, it is used as an important preventive medicine, universal spice and food (Petrovska & Cekovska, 2010). Several studies have shown multifaceted health benefits of garlic, it is recommended as a dietary supplement worldwide. The evidence of health effects has increased its consumption especially in the culinary field (Suleria et al., 2015). Current knowledge indicates that nature around us is a great source of available health-promoting and chemopreventive agents. Chemoprotective substances are part of foods of plant origin where they occur as natural ingredients. Garlic (Allium sativum L.) is a source of biologically active compounds such as phenolic acids, flavonoids, sulphur compounds, vitamins, minerals and others. Garlic is a good source of important vitamins. Although the amount of garlic consumed is not such as to cover the need for the body, sulphur compounds contained in garlic can enhance the effects of vitamins. Vitamin B1 (thiamine) is easily absorbed in the intestines in combination with allicin. Garlic contains B vitamins (B1, B3, B5 and B6), vitamins C and E. The content of individual vitamins in garlic is different and depends on many factors - variety, storage, treatment and cultivation (Butt & Sultan, 2009). Garlic belongs to the important and significant vegetables, characterized by significantly high content of polyphenolic compounds positively affecting human body. The majority of polyphenol compounds in garlic are phenolic acids and flavonoids (Piazzon et al., 2012; Obied, 2013). Polyphenols are heterogeneous oligo- or polymeric compounds combined with other compounds (Xiao et al., 2013). Polyphenols in plants fulfil important functions: they are carriers of flavours, fragrances and colorants, are building and structural components, and are defensive substances (from pests, various infections, pathogens and mechanical damage) (Knezevic et al., 2012). Polyphenol compounds according to the chemical structure are divided into phenolic acids, flavonoids, lignans and stilbenes (Pereira et al., 2009). The total polyphenol content of the garlic can be influenced by the variety (Srivastava et al., 2013), as well as storage and technological processing of garlic (Suli et al., 2014). The physiological effect of polyphenols is wide ranging and shows antioxidant, anti-carcinogenic, anti-mutagenic, antibacterial, anti-parasitic, and antidiabetic activity (Obied, 2013). For characteristic aroma and flavour of garlic are responsible sulphur compounds in garlic. These substances are physiologically active and used as antibiotics, particularly in the treatment of gastric cancer (Harris, 2004). The antibiotic value is influenced by the components: allicin, S-methylcysteine sulfoxide and S-propylcysteine sulfoxide. Allicin is the main biologically active ingredient of garlic (Lanzotti, 2006). Allicin is not found in garlic, it is produced by the enzyme allinase from alliin. After processing, such as cutting, crushing, chewing or dehydration, alliin is converted to allicin by allinase (Amagase et al., 2001; Bhuiyan et al., 2015). Sulphur compounds are very effective anticoagulant, prolong the clotting and promote blood circulation (Oberbeil & Lentzova, 2005). Sulphur compounds are characterized by their ability to support the immune system and also protect the cardiovascular system (Kacaniova & Tancinova, 2012). Garlic (Allium sativum L.) acts as a natural antioxidant and plays an important role in chemoprevention of many civilization diseases (Hamzah et al., 2013). Garlic is rich in antioxidant phytochemicals that prevent oxidative damage. In blood serum, bioactive compounds of garlic eliminate hydroxyl radicals and increase the activity of some enzymes with antioxidant effects. These include flavonoids and sulphur compounds soluble in water (S-allylcysteine and S-allylmercaptocysteine) and fat-soluble (allicin and its products) and selenium (Borek, 2001). In the present work we evaluated the beneficial effects of the total polyphenols content, sulphur compounds and antioxidant activity in individual varieties (Mojmir, Lukan, Zahorsky, Havran, Makoi) of garlic (Allium sativum L.) and we evaluated the impact of two sites Acta agriculturae Slovenica, 111 - 3, december 2018 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) (Nitra, Bardejov) on the total content of polyphenols, activity in selected garlic varieties. the total content of sulphur compounds and antioxidant 2 MATERIALS AND METHODS 2.1 The local climate conditions This study was performed in area of Nitra and Bardejov, Slovak Republic. Nitra is situated on the south-western Slovakia in the area of Podunajska lowland. Nitra belongs to warmer and dry areas with mild winters in Slovakia. The average annual rainfall is 550 - 600 mm and the average annual temperature is 9 - 10 °C. Bardejov is located in the north-eastern Slovakia. Bardejov belongs to slightly warm and mountain-continental climate area. The average annual rainfall is 700 - 750 mm and the average annual temperature is 5 -9 °C. Nitra and Bardejov have very good natural and climatic conditions for crop growth, without any adverse effects. 2.2 Samples of plant material The samples of plant material (5 variety of garlic -'Mojmir', 'Zahorsky', 'Lukan', 'Havran', 'Makoi') were collected in the phase of full ripeness from area of Nitra and Bardejov, Slovak republic. For analysis was used fresh material soil samples and plant. Samples were analysed by selected methodologies (determination of total polyphenols, total sulphur compounds and antioxidant activity). All samples of plant material were grown under the same conditions. The soil samples from the area, where was grown plant material, was analysed (Table 1 and Table 2). The analysis of soil samples was carried out four times in four sampling sites with pedological probe Geosampler Fisher. Only NPK fertilization (200 g m-2) was used for the achievement of favourable soil macroelements content. Table 1: Agrochemical characteristic of soil substrate in mg kg-1, content of nutrients from locality Nitra and Bardejov Locality K Ca Mg P pHKCl Humus % Cox % 399.2 3861.4 1312 97.6 6.91 2.9 1.68 Nitra ± ± ± ± ± ± ± 2.1 7.1 4 1.6 0.06 0.1 0.01 380.1 2170.8 259 406.7 5.51 3.58 6.17 Bardejov ± ± ± ± ± ± ± 2.7 2.2 1.2 1.7 0.09 0.03 0.01 Table 2: Content of heavy metals (mg kg-1) in soil substrate (extraction by aqua regia) Locality Zn Cu Ni Pb Cd 55.2 27.8 42.6 40.3 4.2 Nitra ± ± ± ± ± 2.3 1.4 1.8 1.6 0.04 90.1 33.5 37.7 19.2 1.9 Bardejov ± ± ± ± ± 2.9 1.2 1.6 1.1 0.1 Limit1 150 60 50 70 0.7 1 Limit value for aqua regia - Law No. 220/2004 Acta agriculturae Slovenica, 111 - 3, december 2018 583 Marianna MICOVÂ et al. 2.3 Sample preparation Extract was prepared from the 25 g samples garlic, which were shaken (shaker GFL 3006, 125 rpm) in 50 ml of 80 % ethanol for sixteen hours. Samples were kept at laboratory room temperature in dark conditions until the analysis. Each determination was carried out in six replications. 2.4 Determination of total polyphenols Total polyphenols content (TPC) was determined by the method according to Lachman et al. (2003). It is expressed as mg of gallic acid equivalent per kg of fresh matter. Total polyphenols content was determined using the Folin-Ciocalteu reagent. 2.5 ml of Folin-Ciocalteu reagent was added to 0.1 ml extract to volumetric flask. The content was mixed. After 3 minutes, 5 ml 20 % solution of sodium carbonate was added. Then the volume was adjusted to 50 ml with distilled water. After 2 hours, the samples were centrifuged (centrifuges UNIVERSAL 320, 15000 rpm) for 10 minutes. The absorbance was measured by use of spectrophotometer Shimadzu UV/VIS - 1240 at 765 nm. The concentration of polyphenols was calculated from a standard curve with known concentration of gallic acid. 2.5 Determination of total sulphur compounds The determination of the total sulphur content is based on dry combustion in the presence of oxygen and allows for the quantitative conversion of sulphur to SO2, the elimination of other combustion products including water and the separation of the generated gases. 50 mg of a lyophilized and homogenized sample is combusted in a tin crucible with a V2O5 catalyst in the elementar (Vario Macro Cube V 3.1.4, Elementar Analysensystem GmbH). After insertion of the crucible with the sample into the combustion tube, the oxygen stream produces a strong exothermic reaction, the temperature rises to 1250 °C and the sample is combusted. Combustion products are conveyed along the combustion tube where the oxidation is complete. SO3 is reduced to SO2. The mixture of gases flows into the chromatographic column where the separation takes place. The gases are sent to the thermal conductivity detector where the electrical signals are processed by the software and provide the percentage of sulphur contained in the sample. Sulfanilamide is used as the calibration standard (Šapčanin et al., 2013). 2.6 Determination of antioxidant activity Antioxidant activity (AOA) was measured according to Brand-Williams et al. (1995). The method is based on using DPPH' (2.2-diphenyl-1 -picrylhydrazyl). DPPH' (3.9 ml) was pipetted into the cuvette and the absorbance was measured using the spectrophotometer Shimadzu UV/VIS - 1240 at 515.6 nm. The measured value corresponds to the initial concentration of DPPH' solution at the time A0. Then 0.1 ml extract was added to start measuring dependence A = f (t). The content of cuvette was mixed and the absorbance was measured at 1, 5 and 10 minutes in the same way as DPPH' solution. The percentage of inhibition expresses how antioxidant compounds are able to remove DPPH' radical at the given period. Inhibition (%) = (A0 - At/ A0) x 100 2.7 Statistical analysis Results were statistically evaluated by the Analysis of Variance (ANOVA - Multiple Range Tests, Method: 95.0 percent LSD) by using the statistical software STATGRAPHICS (Centurion XVI.I, USA). 3 RESULTS AND DISCUSSION We analysed five varieties of garlic: Mojmir, Zahorsky, Lukan, Havran and Makoi produced in two localities of Slovakia: Nitra and Bardejov. Each of the locations is characterized by a different annual average temperature, annual rainfall and agrochemical composition of the soil. The total content of polyphenols in the samples from the area Nitra ranged from 621.13 ± 4.45 to 763.28 ± 3.60 mg kg-1 (Figure 1). In area Bardejov, the total polyphenols content in the studied samples ranged from 559.68 ± 2.26 to 682.94 ± 2.89 mg kg-1 (Figure 1). Statistically the highest content of total polyphenols was measured in the variety of garlic Havran and the lowest content of total polyphenols was found in the variety Zahorsky in both study areas. The higher content of total polyphenols in the variety Havran was found in the area of Nitra and was 1.12-times higher, compared with the locality Bardejov. In other studied varieties of garlic higher total polyphenols content was found in the area of Nitra. Chekki et al. (2014) indicated, that the total polyphenols content in garlic is in the wide range from 436 mg kg-1 to 645 mg kg-1, which good correlate with the results of this work. Some authors reported even a higher value of TPC in garlic: 812 mg kg-1 (Charles, 2013), 1290 mg kg-1 (Wangcharoen & Morasuk, 2009). In comparison with this study, lower content of TPC in garlic (493 mg kg-1) was measured by Jastrzebski et al. (2007). The influence of the area on the content of total polyphenols was confirmed by the team of authors 584 Acta agriculturae Slovenica, 111 - 2, september 2018 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) Hamouz et al. (2010). The above mentioned authors determined the total content of polyphenols by the same spectrophotometric method using the Folin-Ciocalteu reagent. 750 600 612,31c I ct E 450 300 150 698,82d 763,28e 678,18c Bardejov i Nitra Mojmir Zahorsky Lukan Variety Havran Makoi Figure 1: Average content of total polyphenols (TPC mg kg-1) from area Nitra and Bardejov * Multiple Range Tests, Method: 95.0 percent LSD, Different letters (a, b, c, d and e) between the factors show statistically significant differences (p < 0.05) The values of antioxidant activity in the studied samples from the area Nitra are varied from 17.31 % to 20.22 % (Figure 2). The antioxidant activity of the samples from the area Bardejov ranged from 12.01 % to 13.61 % (Figure 2). Statistically the highest value of antioxidant activity was observed in the variety Havran and the lowest value of antioxidant activity was found in the variety Zahorsky in both study areas. Higher value of antioxidant activity in the variety Havran was found in the area Nitra and was 1.13-times higher compared with the locality Bardejov. In other studied varieties of garlic was found higher value of antioxidant activity in the area Nitra. Statistically significant differences in the strength of antioxidant activity were also detected among all analysed varieties of garlic. Narendhirakannan & Rajeswari (2010) indicate that the antioxidant activity in garlic ranges from 12 % to 21 % and antioxidant activity of garlic determined in this study is within this range. According to Rai et al. (2015) the antioxidant activity in garlic is 21.5 %. Choi et al. (2014) measured lower values of antioxidant activity in garlic (7 %). The cited authors determined the antioxidant activity of the method using DPPH' and their results were comparably expressed in percentage as in our work. 0 Acta agriculturae Slovenica, 111 - 2, september 2018 585 Marianna MICOVA et al. Figure 2: Average value of antioxidant activity (AOA %) from area Nitra and Bardejov * Multiple Range Tests, Method: 95.0 percent LSD, Different letters (a, b, c, d and e) between the factors show statistically significant differences (p < 0.05) 25 -B 20 o £ 15 10 < 2 5 20,22e 16,52d 15,01d 13,61a 13,98 12,01a 13,71b 12,31bi Bardejov i Nitra Mojmir Zahorsky Lukan Variety Havran Makoi 0 The total sulphur content in the studied samples from area Nitra ranged from 0.562 ± 0.042 % to 0.800 ± 0.048 % (Figure 3). The total sulphur content in the studied samples from area Bardejov ranged from 0.421 ± 0.047 % to 0.658 ± 0.021 %. The highest content of total sulphur compounds of the analysed samples was measured in the variety Mojmir and the lowest total sulphur content was observed in the variety Zahorsky in the both study areas. In other studied varieties of garlic was found higher total sulphur content in the area of Nitra, compared with the locality Bardejov. Benkeblia & Lanzotti (2007) recorded, that the total sulphur content in garlic is 0.56 %. Muradic et al. (2010) mentioned value 0.63 %, which good correlate with the results of this work. Mahmutovic et al. (2014) indicate, that the content of total sulphur compounds in garlic is in the range of 0.63 % to 0.70 %. Munch (2013) report a lower total sulphur content in garlic (0.3 %). 1 0,8 0,6 8 0,4 0,2 0,800d 0,658d 0,562a 0,565a Bardejov i Nitra Mojmir Zahorsky Lukan Variety Havran Makoi 0 Figure 3: Average content of total sulphur compounds (TSC %) from area Nitra and Bardejov * Multiple Range Tests, Method: 95.0 percent LSD, Different letters (a, b, c and d) between the factors show statistically significant differences (p < 0.05) 586 Acta agriculturae Slovenica, 111 - 3, december 2018 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) Khodadadi et al. (2015) in their experiment confirmed the site's impact on the content of sulphur compounds and also on the total polyphenols content and the value of antioxidant activity. Chekki et al. (2016) reported that the content of bioactive compounds is affected by the climatic conditions of the area. Sarosi et al. (2011) reported that the content of bioactive constituents in plants is heavily influenced by climatic conditions. Changing climatic conditions leads to stress in the plant. The content of total polyphenols and antioxidant activity are affected by sunny and warmer weather. In their work, they determined a higher content of total polyphenols and a higher value of antioxidant activity in a site with higher temperature and direct sunlight. This is well in agreement with ours results. Viljevac Vuletic et al. (2017) have indicated that higher level of precipitation at the site has a positive impact on the content of bioactive substances in the plant, which we unfortunately did not confirm in this study. The higher content of total polyphenols, sulphur compounds and antioxidant activity was recorded in the locality with increasing average annual temperature in Nitra. This area is characterized by a higher number of sunny days with an average annual temperature of 9 to 10 °C and a lower annual rainfall (550-600 mm). Environmental influence on polyphenols synthesis is very important. Polyphenols, especially flavonoids are synthesized via the phenylpropanoid pathway with stimulation of light, which protects plants from harmful UV radiation acting as a protective filter. High temperatures during the season contributed to higher polyphenols content (Viljevac Vuletic et al., 2017). In the locality of Nitra with a lower altitude (151 m a.s.l.) we found a higher content of bioactive compounds compared to the area of Bardejov with a higher altitude (323 m a.s.l.), which is in agreement with the results of Fertout-Mouri et al. (2014) and Ghasemi et al. (2011). Changes in the content of total polyphenols, sulphur compounds and antioxidant activity may be affected not only by climate conditions but as well as agrochemical composition of the soil and fertilization (Huchette et al., 2005). A higher content of total polyphenols, sulphur compounds and antioxidant activity was observed in the studied varieties of garlic in the area of Nitra, which may correlate with higher levels of potassium and magnesium in the soil. Hamouz et al. (2010) also pointed out that the content of total polyphenols is affected by the content of potassium and magnesium in the soil. Mudau et al. (2007) state that higher potassium content positively affects the content of total polyphenols, at higher doses of potassium were recorded higher values of total polyphenols. According to Ruan et al. (1999) the polyphenol content in studied spring and autumn tea was enhanced by potassium application, while magnesium apparently decreased the polyphenol content. Kraus et al. (2004) reported that the site conditions affect plant phenolic concentrations and changes in soil pH affect nutrient availability. According to Ali et al. (2012) cultivation factors such as soil type, com-posts, mulching and fertilisation influence the water and nutrient supply to the plant and affect the nutritional composition and antioxidant activity. In their study higher total polyphenol content was determined by high K treatment. Climatic factors (such as temperature, sunny days, rainfall) and environmental factors, such as soil type, nutrient level and application strategy, influence the nutrient supply to the plant and could thereby affect concentrations and composition of the bioactive compounds. Relations among the total polyphenols content, total sulfur content and the antioxidant activity in studied varieties of garlic (Mojmir, Zahorsky, Lukan, Havran and Makoi) were evaluated (Figure 4-23). The coefficient of correlation (r = 0.9315 - 0.9978) confirmed strong dependency between the content of polyphenols, total sulfur content and the antioxidant activity and the results are in good agreement with the findings of Mahmutovic et al. (2014), who confirmed correlations between total polyphenols content, total sulfur content and antioxidant activity in garlic. Ramkissoon et al. (2012), Chekki et al. (2014) indicated correlations between total polyphenols content and antioxidant activity in garlic, onion and other vegetable.. Figure 20: Relationship between TSC and AOA in 'Havran' Acta agriculturae Slovenica, 111 - 3, december 2018 587 Marianna MICOVA et al. Figure 5: Relationship between TPC and AOA in 'Mojmir' Figure 6: Relationship between TSC and AOA in 'Zahorsky' Zahorsky Bardejov v = o,o66ix-24,932 R2 = 0,8914 12,08 11,94 558,50 559,00 559,50 560,00 560,50 TPC (mg kg') Figure 7: Relationship between TPC and AOA in 'Zahorsky' Lukan Bardejov y^Y86"8-6839 14,02 13,90 0,438 0,440 0,442 0,444 0,446 0,448 0,450 TSC (%) Figure 8: Relationship between TSC and AOA in 'Lukan' 588 Acta agriculturae Slovenica, 111 - 3, december 2018 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) Figure 9: Relationship between TPC and AOA in 'Lukan' Figure 10: Relationship between TSC and AOA in 'Havran' Figure 11: Relationship between TPC and AOA in 'Havran' Figure 20: Relationship between TSC and AOA in 'Havran' Acta agriculturae Slovenica, 111 - 3, december 2018 589 Marianna MICOVA et al. Makoi Bardejov y-am,«,* w, R2 = 0,9566 12,26 -I-1-1-1-1-1-1-1-1 613,60 613,80 614,00 614,20 614,40 614,60 614,80 615,00 615,20 TPC (mg kg1) Figure 13: Relationship between TPC and AOA in 'Makoi' Figure 14: Relationship between TSC and AOA in 'Mojmir' Figure 15: Relationship between TPC and AOA in 'Mojmir' Figure 16: Relationship between TSC and AOA in 'Zahorsky' 590 Acta agriculturae Slovenica, 111 - 3, december 2018 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) Zahorsky Nitra y = 0,0352x39,334 R! = 0,9778 13,70 13,56 -1-1-1-1-1-1-1- 620,60 620,80 621,00 621,20 621,40 621,60 621,80 622,00 622,20 TPC (mg kg1) Figure 17: Relationship between TPC and AOA in 'Zahorsky' Figure 18: Relationship between TSC and AOA in 'Lukan' Figure 19: Relationship between TPC and AOA in 'Lukan' Havran Nitra v=7,3664« ti6,ios R = 0,9606 20,30 20,18 0,554 0,556 0,558 0,560 0,562 0,564 0,566 0,568 TSC {%) Figure 20: Relationship between TSC and AOA in 'Havran' Acta agriculturae Slovenica, 111 - 3, december 2018 591 Marianna MICOVA et al. Figure 21: Relationship between TPC and AOA in 'Havran' Makoi Nitra y=n,7osx+7,0912 R2 = 0,9606 0,562 0,564 0,566 0,568 0,570 0,572 TSC (*/.) Figure 22: Relationship between TSC and AOA in 'Makoi' Figure 23: Relationship between TPC and AOA in 'Makoi' 4 CONCLUSIONS The total polyphenols content, the total sulphur content and antioxidant activity in studed varieties of garlic in the both locality were comparable with the literature. We observed statistically significant differences between the analysed varieties of garlic and the monitored indicators. In this work was measured and evaluated the total polyphenols content, the total sulphur content and antioxidant activity of the studied varieties of garlic in the area of Nitra and Bardejov, Slovak Republic. Higher values of the monitored parameters (TPC, TSC, and AOA) were measured in the area of Nitra. This area is characterized by a higher number of sunny days with a higher average annual temperature, lower annual rainfall and lower altitude. The coefficient of correlation confirmed strong dependency between the total content of polyphenols, total sulphur content and the antioxidant activity. Climatic factors (such as temperature, sunny days, rainfall) and environmental factors, such as soil type, nutrient level and application strategy, influence the nutrient supply to the plant and could thereby affect concentrations and composition of the bioactive compounds in garlic. 592 Acta agriculturae Slovenica, 111 - 3, december 2018 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) 5 ACKNOWLEDGEMENTS This work was supported by scientific grant VEGA 1/0139/17, VEGA 1/0114/18, KEGA 011SPU-4/2017. 6 REFERENCES Ali, L., Alsanius, B., Rosberg, A., Svensson, B., Nielsen, T., Olsson, M. E. (2012). Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. European Food Research and Technology, 234(1), 33-44. doi:10.1007/s00217-011-1604-8 Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., Itakura, Y. (2001). Intake of Garlic and Its Bioactive Components. The Journal of Nutrition, 131, 955-962. doi:10.1093/jn/131.3.955S Benkeblia, N., & Lanzotti, V. (2007). Allium Thiosulfinates: chemistry, biological properties and their potential utilization in food preservation. Food, 1(2), 193-201. Bhuiyan, A., Papajani, V. T., Paci, M., Melino, S. (2015). Glutathione-Garlic Sulfur Conjugates: Slow Hydrogen Sulfide Releasing Agents for Therapeutic Applocations. Molecules, 20, 1731-1750. doi:10.3390/molecules20011731 Borek, C. (2001). Antioxidant Health Effects of Aged Garlic extracts. The Journal of Nutrition, 131(3), 1010-1015. doi:10.1093/jn/131.3.1010S Brand-Williams, E., Cuverlier, M. E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Techologie, 11, 925-929. doi:10.1016/S0023-6438(95)80008-5 Butt, S. M., & Sultan, T. M. (2009). Garlic: Nature's Protection Against Physiological Threats. Food Science and Nutrition, 49(10), 538-551. doi:10.1080/10408390802145344 Charles, D. J. (2013). Antioxidant properties of spices, herbs and other sources. New York: Springer science. doi:10.1007/978-1-4614-4310-0 Chekki, R. Z., Snoussi, A., Hamrouni, I., Bouzouita, N. (2014). Chemical composition, antibacterial and antioxidant activities of Tunisian garlic (Allium sativum) essential oil and ethanol extract. Mediterranean Journal of Chemistry, 3(4), 947956. doi:10.13171/mjc.3.4.2014.09.07.11 Chekki, R., Najjaa, H., Zouari, N., Mathe, A., Bouzouita, N. (2016). Detection of organo-sulphur volatiles in Allium sativum by factorial design. Natural Products Chemistry & Research, 4, 211. doi:10.4172/2329-6836.1000211 Choi, S., Cha, H. S., Lee, Y. S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19, 16811-16823. doi:10.3390/molecules191016811 Fertout-Mouri, N., Latreche, A., Mehdadi, Z., Bénali, F. T., Bassou. (2014). The Effect of Altitude and Development stage on the Synthetic Activity of some Polyphenols in Teucrium polium L. in Tessala Mountains (Western Algeria). Advances in Environmental Biology, 8, 193-201. Fulder, S. (2002). O cesneku. Praha: Pragma. Ghasemi, K., Ghasemi, Y., Ehteshamia, A., Nabavi, S. M., Nabavi, S. F., Ebrahimzadeh, M. H., Pourmord, H. (2011). Influence of Environmental Factors on Antioxidant Activity, Phenol and Flavonoids Contents of walut (Juglans regia L.) green huskd. Journal of Medicinal Plants Research, 5, 11281133. Hamouz, K., Lachman, J., Hejtmankova, K., Pazdern, K., Cizek, M., Dvorak, P. (2010). Effect of natural and growing conditions on the content of phenolics in potatoes with different flesh color. Plant, Soil and Environment, 56(8), 368-374. doi:10.17221/49/2010-PSE Hamzah, R. U., Jigam, A. A., Makun, H. A., Egwin, E. C. (2013). Antioxidant properties of selected African vegetables, fruits and mushrooms: A Review. Intech, 203-250. doi:10.5772/52771 Harris, J. C. (2004). Antimicrobial properties of Allium sativum. Revija Applied Microbiology and Biotechnology, 57(3), 282-286. doi:10.1007/s002530100722 Huchette, O., Kahane, R., Auger, J., Bellamy, C. (2005). Influence of environmental and genetic factors on the alliin content of garlic bulbs. Acta Horticulturae, 688, 93-100. doi:10.17660/ActaHortic.2005.688.9 Iciek, M., Kwiecien, I., Chwatko, G., Jezewicz, M. S., Pachel, D. K., Rokita, H. (2012). The effect of garlic-derived sulphur compounds on cell proliferation, caspase 3 activity, thiol levels ad anaerobic sulphur metabolism in human hepatoblastoma. Cell Biochemistry and Function, 30, 198-204. doi: 10.1002/cbf. 1835 Acta agriculturae Slovenica, 111 - 2, september 2018 73 Marianna MICOVA et al. Jastrzebski, Z., Leontowicz, M., Namiesnik, J., Zachwieja, Z., Barton, H., Pawelzik, E., Arancibia-Avila, P., Toledo, F., Gorinstein, S. (2007). The bioactivity of processed garlic (Allium sativum L.) as shown in vitro and in vivo studies on rats. Food and Chemical Toxicology, 45(9), 1626-1633. doi:10.1016/j.fct.2007.02.028 Kacaniova, M., & Tancinova, D. (2012). Prediktivna mikrobiologia v potravinarstve. Nitra: SPU. Khodadadi, S., Nejadsattari, T., Naqinezhad, A., Ebrahimzadeh, M. A. (2015). Diversity in antioxidant properties and mineral contents of Allium paradoxum in the Hyrcanian forests, Northern Iran. Biodiversitas, 16(2), 281-287. doi:10.13057/biodiv/d160224 Knezevic, V. S., Blazekovic, B., Bival, S. B., Babac, M. (2012). Plant Polyphenols as Antioxidant Influencing the Human Health. Phytochemicals as Nutraceuticals - Global Approaches to their Role in Nutrition and Health, 9, 156-180. Kraus, T. E. C., Zasoski, R. J., Dahlgren, R. A. (2004). Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots. Plant Soil, 262, 95-109. doi:10.1023/B:PLS0.0000037021.41066.79 Lachman, J., Hejtmankova, A., Dudjak, E. (2003). Content polyphenolic antioxidants and phenolcarboxylic acids in selected parts of yacon. Vitamins 2003- Prirodni antioxidanty a volne radikaly. Pardubice. Lanzotti, V. (2006). The analysis of onion and garlic. In Journal of Chromatography A, 1112(1), 3-22. doi:10.1016/j.chroma.2005.12.016 Mahmutovic, O., Tahirovic, I., Copra, A., Memic, M., Ibragic, S., Karic, L. (2014). Correlation of Total Secondary Sulfur compounds, Total Phenols and Antioxidant capacity in the Ramsons and Garlic. British Journal of Pharmaceutical Research, 4(23), 2662-2669. doi:10.9734/BJPR/2014/13977 Mudau, F. F., Saondy, P., Toit, E. S. (2007). Effects of nitrogen, phosphorus and potassium nutrition on total polyphenol content of Bush Tea (Athrixia phylicoides L.) Leaves in Shaded Nursery Environment. Horticultural Science, 42, 334-338. Munch, R. (2013). Deodorization of garlic breathe volatiles by food and food components. Graduate Program in Food Science & Technology, 66. doi:10.1111/1750-3841.12394 Muradic, S., Karacic, D., Mahmutovic, O., Mutovic, F., Sofic, E., Kroyer, G. (2010). Total sulphur and organosulphur compounds in garlic and ramsons plant organs at the end of vegetative period. Planta Medica, 76, 292. doi:10.1055/s-0030-1264590 Narendhirakannan, R. T., Rajeswari, K. (2010). In vitro antioxidant properties of three varieties of Allium sativum L. extracts. Journal of Chemistry, 7, 573579. doi:10.1155/2010/283627 Oberbeil, K., & Lentzova, CH. (2005). Ovocie a zelenina ako liek. Bratislava: Fortuna. Obied, H. K. (2013). Biography of biophenols: past, present and future. Functional Foods In Health and Disease, 3(6), 230-241. doi:10.31989/ffhd.v3i6.51 Pereira, D., Valentao, P., Pereira, J. A., Andrade, P. B. (2009). Phenolics: From Chemistry to Biology. Molecules, 14, 2202-2211. doi: 10.3390/molecules14062202 Petrovska, B. B., & Cekovska, S. (2010). Extracts from the history and medical properties of garlic. Pharmacognosy Review, 4(7), 106-110. doi:10.4103/0973-7847.65321 Piazzon, A., Vrhovsek, U., Masuero, D., Mattivi, F., Mandoj, F., Nardini, M. (2012). Antioxidant activity of Phenolic acids and their Metabolites: Synthesis and Antioxidant properties of the sulfate derivatives of ferulic and coffeic acids and of the acyl glucuronide of ferulic acids. Journal of Pharmacy and Pharmacology, 64(8), 1119-1127. https://doi:10.1021/jf304076 Rai, CH., Bhattacharjee, S., Nandi, N., Bhattacharyya, S. (2015). Influence of blanching on antioxidant and antimicrobial activities of raw garlic (Allium sativum). Indo American Journal of Pharmaceutical sciences, 2(6), 1071-1076. Ramkissoon, H., Weiler, B., Smith, L. D. G. (2012). Place attachment and pro-environmental behaviour in national parks: the development of a conceptual framework. Journal of Sustainable Tourism, 20(2), 257-276. doi: 10.1080/09669582.2011.602194 Ruan, J. Y., Wu, X., Hardter, R. (1999). Effects of potassium and magnesium nutrition on quality components of different types of tea. Journal of the Science of Food and Agriculture, 79(1), 47-52. doi:10.1002/(SICI)1097- 0010(199901)79:1<47::AID-JSFA172>3.0.C0;2-A Sarosi, S., Bernath, J., Burchi, G., Antonetti, M. (2011). Effect of different plant origins and climatic conditions on the total phenolic content and total antioxidant capacity of self-heal (Prunella vulgaris L.). Acta horticulturae, 925, 49-55. doi:10.17660/ActaHortic.2011.925.5 Srivastava, M. P., Tiwari, R., Sharma, N. (2013). Assessment of phenol and flavonoid content in the 594 Acta agriculturae Slovenica, 111 - 3, december 2018 Content of bioactive compounds and antioxidant activity in garlic (Allium sativum L.) plant materials. Journal on New Biological Reports, 2(2), 163-166. Suleria, H. A. R., Butt, M. S., Khalid, N., Sultan, S., Raza, A., Aleem, M., Abbas, M. (2015). Garlic (Allium sativum): diet based therapy of 21st century. Asian Pacific Journal of Tropical Disease, 5(4), 271-278. doi:10.1016/S2222-1808(14)60782-9 Sultan, M. T., Butt, M. S., Qayyum, M. M., Suleria, H. A. (2014). Imunnity: plants as effective mediators. Critical Reviews in Food Science and Nutrition, 54(10), 1298-1308. doi:10.1080/10408398.2011.633249 Süli, J., Homzova, K., Sobekova, A., Hruskova, T. (2014). Fyziologicke ucinky polyfenolov a ich metabolitov v strave. Diabetologie Metabolismus Endokrinologie Vyziva, 17(3), 162-170. Sapcanin, A., Jancan, G., Pazalja, M., Kresic, D., Pehlic, E., Uzunovic, A. (2013). Determination of Total Sulphur Content in Biological Samples by Using High Performance Ion Chromatography and Elemental Analysis. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 41, 1114. Viljevac Vuletic, M., Dugalic, K., Mihaljevic, I., Tomas, V., Vukovic, D., Zdunic, Z., Puskar, B., Jurkovic, Z. (2017) Season, location and cultivar influence on bioactive compounds of sour cherry fruits. Plant, Soil Environment, 63, 389-395. doi:10.17221/472/2017-PSE Wangcharoen, W., & Morasuk, W. (2009) Effect of heat treatment on the antioxidant capacity of garlic. Maejo International Journal of Science and Technology, 3(01), 60-70. doi:10.2306/scienceasia1513-1874.2013.39.246 Xiao, J. B., Kai, G. Y., Yamamoto, K., Chen, X. Q. (2013). Advance in Dietary Polyphenols as a-glucosidases inhibitors: A Review on structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition, 53, 818-836. doi:10.1080/10408398.2011.561379 Acta agriculturae Slovenica, 111 - 2, september 2018 595 doi: 10.14720/aas.2018.111.3.08 Original research article / izvirni znanstveni članek Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress Kazem GHASSEMI-GOLEZANI1*, Salar FARHANGI-ABRIZ1, Ali BANDEHAGH2 Received April 30, 2018; accepted October 22, 2018. Delo je prispelo 30. aprila 2018, sprejeto 22. oktobra 2018. ABSTRACT This research was conducted to investigate the morpho-physiological effects of salicylic acid and jasmonic acid on soybean performance and productivity under salinity. Leaf chlorophyll content index, carotenoids and anthocyanins content, photosystem II efficiency, relative water content, leaf area, leaf mass, specific leaf area, water use efficiency, seed filling duration, assimilate mobilization efficiency and seed mass decreased, but leaf temperature, specific leaf mass and electrolytic leakage of leaves increased with enhancing salinity. Salicylic acid improved leaf chlorophyll content index, anthocyanins content, leaf area, specific leaf area, water use efficiency, seed filing duration, assimilate mobilization efficiency and seed mass under both saline and non-saline conditions. The superior effects of salicylic acid on some traits such as maximum quantum yield of PSII, relative water content and leaf electrolytic leakage only occurred under different salinity levels. Jasmonic acid improved leaf mass, specific leaf mass, carotenoids content, relative water content, seed filling rate and reduced chlorophyll content index, leaf temperature, leaf area, specific leaf area, seed filling duration, assimilates mobilization efficiency and relative electrolytic leakage of soybean, with no significant effects on photosystem II efficiency and seed mass. Application of salicylic acid was, therefore, the superior treatment for enhancing physiological performance and seed mass of soybean plants under different salinity levels. Key words: chlorophyll content; jasmonic acid; salicylic acid; salinity; seed production; soybean IZVLEČEK SALICILNA IN JASMONSKA KISLINA SPREMINJATA FIZIOLOŠKE PROCESE, MOBILIZACIJO ASIMILATOV IN POLNJENJE SEMEN SOJE V RAZMERAH SOLNEGA STRESA Raziskava je bila izvedena za preučitev morfo-fizioloških učinkov salicilne in jasmonske kisline na rast in produktivnost soje v razmerah slanosti. Parametri kot so indeks vsebnosti klorofila listov, vsebnost karotenoidov in antocianinov, učinkovitost fotosistema II, relativna vsebnost vode, listna površina, listna masa, specifična listna površina, učinkovitost izrabe vode, trajanje polnjenja semen, učinkovitost mobilizacije asimilatov in masa semen so se zmanj šali medtem, ko so se parametri kot so temperatura listov, specifična listna masa in puščanje elktrolitov povečali z naraščajočo slanostjo. Salicilna kislina je izboljšala indeks vsebnosti klorofila listov, povečala vsebnost antocianinov, listno površino, specifično listno površino, učinkovitost izrabe vode, trajanje polnjenja semen, učinkovitost mobilizacije asimilatov in maso semen v razmerah slanosti in brez nje. Večji učinki salicilne kisline na nekatere preučevane parametre kot so maksimalna učinkovitost PSII, relativna vsebnost vode in puščanje elektrolitov iz listov so se pojavili samo v nekaterih ravneh slanosti. Jasmonska kislina je povečala maso listov, specifično listno maso, vsebnost karotenoidov, relativno vsebnost vode, hitrost polnjenja semena in zmanjšala indeks vsebnosti klorofilov, temperaturo listov, listno površino, specifično listno površino, trajanje polnjenja semena, učinkovitost mobilizacije asimilatov in relativno puščanje elktrolitov brez značilnih učinkov na učinkovitost PSII in maso semen. Uporaba salicilne kisline je bilo primernejše obravnavanje za povečanje fiziološke aktivnosti in mase semen soje v različnih razmerah slanosti. Ključne besede: vsebnost klorofila; jasmonska kislina; salicilna kislina; slanost; tvorba semena; soja 1 Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; "Corresponding author: golezani@gmail.com 2 Department of Plant Breading and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran Acta agriculturae Slovenica, 111 - 3, december 2018 str. 597 - 607 Kazem GHASSEMI-GOLEZANI et al. 1 INTRODUCTION Soybean originates from China and is a major source of protein and oil for humans and as a high-quality animal feed. Soybean is a crop sensitive-to-moderately tolerant to salinity (Luo et al., 2005). Salinity enhances ion toxicity and reduces photosynthesis. The reduction in photosynthesis under salinity could be attributed to a decrease in chlorophyll and other photosynthetic pigments contents (Sali et al., 2015). Salinity can affect the chlorophyll content through inhibition of chlorophyll synthesis or an acceleration of its degradation (Reddy & Vora, 1986). The maximum quantum yield of PSII (Fv/Fm) could also be reduced by salt stress. Disturbances of photosynthesis at the molecular level are related to the restricted electron transport through PSII and/or with structural injuries to PSII (Ghassemi-Golezani & Lotfi, 2015). Under environmental stresses such as drought and salinity, plant leaves are dehydrated, and photosynthesis is decreased. The decrease in photosynthesis of dehydrated leaves usually results from a decrease in stomatal conductance and transpiration (Mirfattahi et al., 2017). As a consequence of the reduction in transpiration rate, leaf temperature increases (Mohammadian et al., 2015). Salinity can also reduce seed yield by decreasing physiological performance and accelerating seed filling period (Ghassemi-Golezani et al., 2010). Growth inhibition, poor performance and decreasing seed yield of plants under salinity are attributed to osmotic stress imposed by salinity and to specific ion (Na+) toxicity (Farhangi-Abriz & Ghassemi-Golezani, 2018). In soybean, the number of seeds, pods and yield are directly related to the number of flowers per nodes and node number can be reduced by environmental stresses (Jiang & Egli, 1993). Moreover, several reports have shown that salinity increases the reactive oxygen species (ROS) and decreases seed filling duration (Ghassemi-Golezani et al., 2010; Farhangi-Abriz & Ghassemi-Golezani, 2018). In soybean seeds, the dynamic seed filling period begins when the pod wall has approximately reached its final size. At the end of this phase, cell division stops, linear dry matter accumulation begins in cotyledons and continues until mass maturity. Mass maturity (end of seed filling phase) in soybean cultivars can be classified according to the duration of the life cycle, being early, semi-early, medium, late medium and late, according to Oya et al. (2004) and Ghassemi-Golezani et al. (2010). Ghassemi-Golezani et al. (2010) showed that salinity reduced seed filling period and yield in different cultivars of soybean. Application of some growth regulators or plant hormones has been expanded to improve plant growth and development under stress and non-stress conditions. Salicylic acid (SA) is a plant phenolic compound and now considered as a hormone-like endogenous regulator. It plays diverse physiological roles in plants, which include plant growth, flower induction, nutrient uptake, stomatal movements, photosynthesis and enzyme activities (Hayat et al., 2007). Former reports show that SA plays important regulatory roles in plants against a wide range of environmental stresses (Choudhury & Panda, 2004; Gunes et al., 2007). Application of SA improves physiological performance of the crops (Shi et al., 2006; Farhangi-Abriz & Ghassemi-Golezani et al., 2018). Ghassemi-Golezani & Farhangi-Abriz (2018a) also reported that foliar application of SA stimulates the H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Jasmonates are ubiquitously-occurring lipid-derived compounds with signal function in plant responses to abiotic and biotic stresses, as well as in plant growth and development (Wasternack, 2007). Foliar application of jasmonic acid (J A) modulates several physiological responses, improving resistance against abiotic stresses (Farhangi-Abriz & Ghassemi-Golezani, 2018). J A application to the stressed plants reduces the amount of lipid peroxidation and stimulates the synthesis of antioxidant enzymes, enhancing the physiological performance and seed yield of Artemisia (Aftab et al., 2011). Previous studies have helped to understand the effects of SA and JA on decreasing destructive effects of salt toxicity in plants (Farhangi-Abriz & Ghassemi-Golezani, 2018), however the possible effects of SA and JA on the productivity of soybean under salt stress were not documented so far. Thus, this research was conducted to investigate: 1) the effects of SA and JA on some morpho-physiological traits of soybean under salt toxicity and 2) the effects of these growth regulators on soybean grain filling and productivity under saline and non-saline conditions. 2 MATERIALS AND METHODS 2.1 Experimental conditions This experiment was carried out in 2016 with a factorial arrangement on the basis of randomized complete block design with four replications at the greenhouse of the University of Tabriz, Iran. In each plastic pot, containing 1 kg perlite, seeds of soybean (M7 cultivar) 598 Acta agriculturae Slovenica, 111 - 3, december 2018 Salicylic acid and jasmonic acid alter physiological performance, ... seed filling of soybean under salt stress were sown and then tap water (non-saline) and saline solutions (4, 7 and 10 dS m-1) were added to achieve 100 % FC (Field capacity). All pots were placed in a glass greenhouse with a day-night mean temperatures of 28-26 °C and 35-40 relative humidity, natural light intensify and photoperiod. During the growth period, the pots were weighed and the losses were made up with the Hoagland solution (electrical conductivity = 1.3 dS m-1, pH 6.7-7.2). For avoiding extra electrical conductivity (EC), due to adding the Hoagland solution, perlites within the pots were washed every 30 days and non-saline and salinity treatments were reapplied. Salicylic acid (1 mM) and jasmonic acid (0.5 mM) were separately sprayed on plants at vegetative (V3) and flowering stages (R2). 2.2 Chlorophyll content index (CCI) Leaf CCI was measured using a portable chlorophyll meter (CCM-200, Opti-Sciences, USA). Two plants were selected in each pot and the CCI of the upper, middle and lower leaves of each plant was measured at the beginning of pod development (R3). Subsequently, the mean CCI for each treatment at each replicate was REL (%) = (j^j x determined. 2.6 Leaf area (LA) and dry mass (LDM) LA per plant was measured at the beginning pod formation stage using a leaf area meter (ADC-AM 300). Leaves per plant were dried in an oven at 80 oC for 48 h and then weighed. After determining leaf area and leaf mass, specific leaf area (SLA) and specific leaf mass (SLM) were calculated as: SLA= LA (mm2) / LDM (mg) SLM= LDM (mg) / LA (mm2) 2.7 Relative electrolytic leakage (REL) About 1 g of leaf sample was washed with deionized water and then placed in tubes with 15 ml of deionized water and incubated for 2 hours at 25 °C. Subsequently, the electrical conductivity of the solution (Lj) was determined. Samples were then autoclaved at 100 °C for 30 minutes, and the conductivity (L2) was recorded after cooling to 25°C. Then, the EL was calculated as (Lutts et al., 1996). 100 2.3 Anthocyanins and carotenoids contents About 0.2 g of leaf samples were homogenized in 4 ml acetone (80 %), and then centrifuged at 12,000 g for 20 min at 4 °C. The supernatant was collected and absorbance was recorded at 480 nm and 510 nm, using a spectrophotometer (Model Analytikjena Spekol 1500 Germany) (Maclachlan & Zalik, 1963). Another 0.2 g of leaf sample was homogenized in 3 ml extraction mixture (0.6 ml water, 2.37 ml methanol and 0.03 ml HCl) followed by centrifugation at 12,000 g for 20 min at 4 °C. The absorbance of supernatant was read at 530 nm and 657 nm (Mancinelli, 1984). 2.4 Maximum quantum yield of PSII (Fv/Fm) At early pod filling stage, maximum quantum yield of PSII (Fv/Fm) was measured using a portable chlorophyll fluorometer (OS-30, Opti-Sciences, USA). Dark-adapted leaves (30 min) were initially exposed to the weak modulate measuring beam, followed by exposure to saturated white light to estimate the initial (F0) and maximum (Fm) fluorescence values, respectively. Variable fluorescence (Fv) was calculated by subtracting F0 from Fm. 2.5 Leaf temperature (LT) Two plants were selected in each pot and LT (oC) of upper, middle and lower leaves were measured by an infrared thermometer (TES-1327) at beginning pod development stage. Then the mean temperature for each treatment was determined. 2.8 Relative water content (RWC) Relative water content of soybean leaves was determined according to Barrs and Weatherley. (1962) method. At the beginning of pod development, fresh mass (FM) of the youngest fully expanded leaf was recorded. Turgid mass (TM) was obtained after waterlogged the leaf for 24 h in distilled water. Finally, leaf dry mass (DM) was determined after drying at the 80 oC for 24 h. The value of RWC was calculated using the following equation: RWC = [(Fm - Dm) / (Tm - Dm)] * 100 2.9 Water use efficiency (WUE) Increasing seed mass per plant during seed development was estimated as the difference between the seed mass at the beginning and the end of the seed filling period. Crop water used up over these periods was estimated from the sum of the per diem water intake to the pots. WUE was determined as: WUE (g l-1) = (seed mass at final stage - seed mass at first stage)/total water used up 2.10 Rate and duration of seed filling During seed filling from seed formation (R5) up to full maturity (R8), two plants were harvested from each pot in 10 days' intervals at five stages. Seeds of each sample were oven-dried at 80 °C for 48 h and then seed dry mass was determined. Maximum seed mass and Acta agriculturae Slovenica, 111 - 3, december 2018 599 Kazem GHASSEMI-GOLEZANI et al. seed filling duration were estimated, using a two-piece regression model by SAS 9.1.3 software: jy _ (a + bt t < tm = {a + bt t>tm Where M is seed mass, a is the intercept, b is the slope, t is days after flowering and tm is the end of seed filling period (time of mass maturity). Subsequently, seed filling rate (SFR) was calculated as: SFR = MSM/SFD AME = (SMf _ SMp)/SWf x 100 Where AME is the assimilate mobilization efficiency during seed filling, SMF is the amount of seeds mass at the final stage (mg) and SMP is the amount of assimilates at the primary stage (mg). 2.12 Yield components At maturity (R8), two plants from each pot were harvested and pods and seeds per plant were determined. Where MSM is maximum seed mass and SFD is seed filling duration. 2.11 Assimilate mobilization efficiency Assimilate mobilization efficiency in the seeds was calculated, using seed mass at the first and final stages of seed filling: 2.13 Analysis of Variance After testing the normality and homogeneity of variance by Shapiro-Wilk test, the data were analyzed and the means were compared at p < 0.05 by Duncan multiple range test, using MSTATC software. The figures were drawn by Excel software. 3 RESULTS 3.1 Chlorophyll content index (CCI) Analysis of variance showed significant effects of salinity and hormonal application on soybean CCI. The CCI was decreased with increasing salinity. Plants with SA treatment showed the highest level of the CCI, but JA reduced the CCI (Table 1). 3.2 Carotenoids and anthocyanins The carotenoids and anthocyanins in soybean leaves were significantly affected by salinity and hormonal treatments. Salinity reduced leaf carotenoids and anthocyanins, but treatment with JA increased these pigments. Treatment with SA only improved anthocyanins with no tangible effect on carotenoids (Table 1). 3.3 Leaf temperature The effects of salinity and hormonal sprays on leaf temperature were significant. The leaf temperature increased as a consequence of enhancing salinity. Foliar application of SA and JA significantly reduced the leaf temperature (Table 1). Table 1: : Means of morpho-physiological traits of soybean leaf under different levels of salinity and hormonal treatments Treatments Chlorophyll content index Carotenoid (mg g-1DM) Anthocyanin (mg g-1DM) Leaf temperature (oC) Leaf area (mm2) Leaf dry mass (mg) Specific leaf area (mm2 mg- Specific leaf mass (mg mm-2) Salinity 0 dS m-1 20.63a 0.71a 0.28a 20.26d 26790a 2110a 12.68a 0.078b 4 dS m-1 19.40b 0.67b 0.24b 20.99c 26860a 2120a 12.64a 0.079b 7 dS m-1 18.24c 0.55c 0.20c 23.15b 21570b 1910b 11.27b 0.090a 10 dS m-1 17.12d 0.45d 0.17d 24.25a 18610c 1700c 10.95c 0.091a Hormonal treatments Con SA JA 18.83b 20.06a 17.65c 0.56b 0.58b 0.63a 0.19c 0.22b 0.26a 22.54a 21.85b 22.10b 23430b 24680a 22260c 1940b 1980b 2140a 11.88b 12.45a 10.41c 0.084b 0.081b 0.097a Con: Control, SA: Salicylic acid, JA: Jasmonic acid Different letters in each column indicate significant difference at p < 0.05 600 Acta agriculturae Slovenica, 111 - 3, december 2018 Salicylic acid and jasmonic acid alter physiological performance, ... seed filling of soybean under salt stress 3.4 Leaf area and mass Leaf area, leaf dry mass, specific leaf area and specific leaf mass were significantly affected by salinity and hormonal treatments. Leaf area and dry mass were reduced with enhancing salinity but the difference between non-saline and low salinity conditions were not significant. Foliar application of SA improved the leaf area with no significant effect on leaf mass, but JA showed vice-versa effect, despite reducing leaf area, increased leaf dry mass. Specific leaf area was reduced, but specific leaf mass was elevated under moderate and severe salinity levels. Application of SA increased specific leaf area, but had no significant effect on specific leaf mass. Treatment of plants with JA reduced the specific leaf area and increased specific leaf mass in comparison with control plants (Table 1). 3.5 Maximum quantum yield of PSII (Fv/Fm) Interaction of salinity x hormone for maximum quantum yield of PSII was significant. Fv/Fm was not changed significantly at 4 dS m-1 salinity, but thereafter it was diminished with enhanced salinity. The Fv/Fm for JA and SA treated plants were statistically similar up to 7 dS m-1, but SA treated plants in comparison with control and JA treatments showed the highest maximum quantum yield of PSII under severe salt stress (Fig. 1). 0,9 n 0,6 - £ £ £ 0,3 - 10 -| 8 - g 6 - ¡J w M 4 - 2 - a a a a a a i b ab b 4 7 Salinity (dS m-1) □ Con mSA □ JA c d r^d ri 0 4 7 10 Salinity (dS m-1) □ Con DSA DJA 10 100 80 60 40 20 0 0 4 7 10 Salinity (dS m-1) □ Con □ SA □ JA J w 0,3 0,2 0,1 - 47 Salinity (dS m-1) □ Con QSA □ JA 10 Figure 1: Changes in maximum quantum yield of PSII (Fv/Fm), relative electrolytic leakage (REL), water use efficiency (WUE) and relative water content (RWC) of soybean leaves under different levels of salinity and hormonal treatments. Different letters indicate significant difference at p < 0.05. Con: control, SA: salicylic acid and JA: Jasmonic acid 0 0 0 0 0 Acta agriculturae Slovenica, 111 - 3, december 2018 601 Kazem GHASSEMI-GOLEZANI et al. 3.6 Leaf electrolytic leakage Relative electrolytic leakage of soybean leaves was significantly enhanced by rising salt stress. Treatment of plants with SA and JA reduced the relative electrolytic leakage of soybean leaves under different levels of salt stress, but these hormonal treatments did not change this trait under non-saline condition (Fig. 1). 3.7 Relative water content (RWC) The interaction of salinity x hormone for relative water content of soybean leaves was significant. Leaf relative water content was decreased as salt stress increased. Exogenous application of JA and SA under non-saline and low salinity conditions had no significant effect on RWC, but these treatments improved relative water content of soybean leaves under moderate and severe salinities (Fig. 1). 3.8 Rate and duration of seed filling Seed mass was increased by increasing seed filling up to 39-56 days after flowering, depending on salinity level and hormonal treatments. Salinity reduced seed filling duration and increased seed filling rate. Maximum seed mass under salinity treatments was achieved about 6-12 days earlier than that under non-saline condition, and reduced with enhancing salinity levels. Treatment with SA under all salinity levels with rising seed filling duration increased maximum seed mass. Under non and low salinity levels, treatment with JA reduced seed filling duration, but in moderate and severe salinity levels, this reduction was not significant. JA increased seed filling rate of plants under all salinity levels, with no significant effect on control plants. Seeds from JA treated plants did not show significant difference with control plants in maximum seed mass (Fig. 2 and Tables 2 and 3). Table 2: Means of soybean seed filling duration, rate and assimilate mobilization efficiency under different salinity and hormonal treatments Salinity (dS m-1) Hormonal treatments Seed filling duration (day) Seed filling rate (mg day-1) Assimilate mobilization efficiency (%) Con 44.75b 2.28ef 66.24d 0 SA 47.02a 2.28ef 68.78bc JA 42.02d 2.34e 61.46f Con 42.91c 2.46cd 70.03b 4 SA 47.72a 2.21f 74.31a JA 39.05f 2.57ab 64.08e Con 37.24g 2.44cd 63.77e 7 SA 42.02d 2.38de 65.70d JA 36.86g 2.61ab 64.01e Con 34.35h 2.51bc 58.09g 10 SA 41.23e 2.28ef 68.07c JA 33.61h 2.63a 58.65g Different letters in each column indicate significant difference at p < 0.05. Con: control, SA: salicylic acid and JA: Jasmonic acid Salinity and hormonal treatments significantly affected assimilates mobilization efficiency to the seeds during the seed filling period. Assimilates mobilization efficiency to the seeds was increased by enhancing salinity up to 4 dS m-1, but with further increase in salinity it was reduced. Under all levels of salinity and non-salinity, SA treatment significantly improved the mobilization efficiency; this advantageous effect was higher under severe salinity. The J A treatments under non and low salinity levels reduced the mobilization efficiency of assimilates to the seeds, however, under moderate and severe salinities, there was no tangible difference between the JA and control plants (Table 2). 602 Acta agriculturae Slovenica, 111 - 3, december 2018 Salicylic acid and jasmonic acid alter physiological performance, ... seed filling of soybean under salt stress Figure 2: Changes in seed mass of soybean (M7 cultivar) in response to different salinity and hormonal treatments. Con: control, SA: salicylic acid and JA: Jasmonic acid 3.9 Yield components The effects of salinity and hormonal treatments on pod and seed number per plant were significant. Pod and seed number per plant were decreased with rising salinity, however the difference in pod number between 0 dS m-1 and 4 dS m-1 was not significant. Treatment with SA increased pod and seed number per plant, but JA did not improve number of the pods per plant (Table 3). Table 3: Means of soybean seed mass and yield components under different salinity and hormonal treatments Treatments Pods per plant Seeds per plant Maximum seed mass (mg seed-1) Salinity 0 dS m-1 10.16a 33.62a 103.52a 4 dS m-1 9.58a 30.93b 103.31ab 7 dS m-1 8.33b 27.33c 96.73b 10 dS m-1 7.33c 23.60d 89.32c Hormonal treatment Con 8.25b 27.30b 96.80b SA 9.81a 32.53a 104.37a JA 8.50b 26.76b 92.50b Different letters in each column indicate significant difference at p < 0.05. Con: control, SA: salicylic acid and JA: Jasmonic acid Acta agriculturae Slovenica, 111 - 3, december 2018 603 Kazem GHASSEMI-GOLEZANI et al. 4 DISCUSSION The decrement in CCI under severe salinity could be attributed to a salt-induced weakening of protein-pigment-lipid complex and enhancing the activity of chlorophyllase. The decrease in chlorophyll content under salt stress is commonly reported phenomenon (Noreen et al., 2009). Increasing the CCI and anthocyanins content with SA treatment may be related to increasing nitrogen absorption with the enhancing nitrate reductase activity (Farhangi-Abriz & Ghassemi-Golezani, 2016) and increasing the chlorophyll stability index (Farhangi-Abriz & Ghassemi-Golezani, 2018). The low Fv/Fm value under saline condition is the consequence of initial damage occurring in PSII, likely due to low water availability. This reduction in Fv/Fm under salt stress is dependent on damage to reaction centers and reducing electron transport capacity in PSII (Ghassemi-Golezani & Lotfi, 2015). Increasing PSII efficiency with SA treatment under severe salinity could be resulted from the effects of SA on decreasing the harmful effects of salt stress on plant performance (Farhangi-Abriz & Ghassemi-Golezani, 2018). Exogenous application of salicylic acid on mustard plants improved photosynthetic activities and growth through increasing ascorbate-glutathione metabolism and sulphur assimilation under salt stress (Nazar et al. 2015). Increasing Fv/Fm may be related to the effects of SA on inhibition of peroxidation of membrane lipid, decreasing electrolyte leakage and enhancement of electron transfer in membrane (Shi et al., 2006; Farhangi-Abriz & Ghassemi-Golezani, 2018). Increasing leaf temperature under salinity is related to low relative water content. One of the early symptoms of salinity stress in plant tissue is the decrease of RWC. This reduction of RWC in stressed plants may be associated with a decrease in plant vigor and was observed in many plant species. The decrease in leaf water could be associated with ion toxicities, ion imbalance and osmotic stress (Farhangi-Abriz & Ghassemi-Golezani, 2018). Reduction in RWC leads to enhanced temperature via closing stomata and decreasing transpiration. Reducing the leaf temperature by SA application closely related with higher RWC of plants treated with this hormone. This may be resulted from the accumulation of so-called SA induced proteins that were found in all plant species and can have a helpful effect on the osmoregulation process in plants (Farhangi-Abriz & Ghassemi-Golezani, 2018). Reduction of leaf area and leaf dry mass under salinity could be attributed to the nutritional imbalance due to an interference of salt ions, such as Na+ and Cl- with K+ involved in both uptake and translocation processes (Farhangi-Abriz & Ghassemi-Golezani, 2018). Potassium is a main plant macro-element that has some serious roles related to cell expansion and nutrient uptake. Restraining leaf expansion and reducing specific leaf area by salinity resulted in increasing specific leaf mass. Improving leaf area of soybean plants by SA application may be related to enhance essential nutrient uptake (Farhangi-Abriz & Ghassemi-Golezani, 2018) and inhibition of ethylene synthesis (Leslie & Romani, 1986). This leads to an increase in specific leaf area and a decrease in specific leaf mass. In contrast, JA application increases ethylene synthesis, which limits leaf area expansion, but increases leaf dry matter and specific leaf mass, probably with allocation of photo assimilate to produce secondary metabolites such as flavonoids and storing these metabolites in leaf cell vacuoles (Wasternack, 2007). Increasing relative electrolytic leakage of leaves under salinity shows the extent of membrane damages due to salt toxicity. The lipid peroxidation and increasing relative electrolytic leakage under salinity are the serious adverse effects of the salinity on plant cells. Treatment with SA and JA decrease adverse effects of salinity by increasing anti-oxidants activity (Farhangi-Abriz & Ghassemi-Golezani, 2018), inhibiting ethylene synthesis (Leslie & Romani, 1986), increasing RWC, CCI and allocation of amino acids to producing non-structural protein in vegetative sinks (Farhangi-Abriz & Ghassemi-Golezani, 2016). Decreasing WUE under salinity stress is largely related to limitation of crop growth. These reductions in growth of soybean under salinity might be caused by decreasing turgidity from high concentrations of Na+ in the soil under salt stress. The negative effect of salinity on plants may provoke osmotic potential by salt in the culture medium, so root cells do not obtain required water from the soil. Consequently, the uptake of some mineral nutrients such as nitrogen dissolved in water is also restricted (Farhangi-Abriz & Ghassemi-Golezani, 2016). Increasing WUE by SA treatments could be the result of improving water uptake, translocation and increasing physiological performance and photosynthetic activities (Farhangi-Abriz & Ghassemi-Golezani, 2018). Treatment with J A in some plants, reduces water and nutrient uptake, imbalances nutrient content and WUE, and reduces plant growth and seed production (Creelman & Mullet, 1995; Ghassemi-Golezani & Farhangi-Abriz, 2018b). Reduction in seed filling duration and increment in seed filling rate of plants with increasing salinity stress is the result of early plant senesces (Farhangi-Abriz & Torabian, 2017) and increasing ethylene synthesis (Cao et al., 2007). Yang et al. (2013) reported that a reformed 604 Acta agriculturae Slovenica, 111 - 3, december 2018 Salicylic acid and jasmonic acid alter physiological performance, ... seed filling of soybean under salt stress hormonal balance in rice seeds during seed filling, especially a decrease in gibberellic acids and an increase in abscisic acid, enhances the remobilization of prestored assimilated to the seeds and accelerates the seed filling rate. The decreasing maximum seed mass of soybean seeds under salinity is related to limitation of water and nutrient uptake (Cao et al., 2007) and decreasing seed filling duration. Treatment with SA by preventing ethylene synthesis in plants and regulating hormonal balance (Leslie & Romani, 1986) increased seed filing duration and maximum mass of seeds. In contrast, JA treatment by enhancing ethylene synthesis (Creelman & Mullet, 1995) and seed filling rate, reduced seed filling duration (only on 0 and 4 dS m-1). Consequently, the maximum mass of seeds did not significantly change by JA, compared with untreated plants. Reduction of assimilates mobilization efficiency under moderate and high salinity levels could be attributed to decreasing water availability, seed filling duration and photosynthetic activities. Foliar spray of SA increased assimilates mobilization to the seeds by rising seed filling period and improving water use efficiency. Decreasing assimilates mobilization efficiency by JA under non and low salinity conditions most likely related to the reduction of the seed filing period and allocation of assimilates to the vegetative sinks (Farhangi-Abriz & Ghassemi-Golezani, 2016). Pod number per plant is closely related with nod and flower number. Salinity could reduce nods and flowers per plant, leading to reduction in pods per plant. Treatment with SA increased number of pods and seeds per plant through improving flower-inducing factor (Hayat et al., 2007). Farhangi-Abriz and Ghassemi-Golezani (2018) reported that salinity can severely limit crop production, because high salinity reduces water potential and induces ionic stress. Large reductions in seed filling period, assimilate mobilization efficiency to the seeds, number of seeds and seed mass under saline conditions resulted in a considerable decrease in seed mass per plant. Exogenous application of SA improved seed mass via increasing morpho-physiological performance of plants, seed filling period, assimilate mobilization efficiency to the seeds, seed number per plant and seed mass. Foliar spray of SA decreases damages of salinity by increasing the activities of anti-oxidant enzymes, and also improving the general physiological performance of plants (Farhangi-Abriz & Ghassemi-Golezani, 2018), which result in higher seed mass. 5 CONCLUSIONS Salt stress considerably reduced seed mass of soybean by decreasing morpho-physiological performance of plants and seed filling duration. Foliar application of SA improved seed production under different levels of salt stress. The advantages of SA treated plants in seed mass were directly related with improving physiological performance of soybean plants such as leaf growth, water use efficiency, seed filling duration and assimilate mobilization efficiency under non-saline and saline conditions. 6 REFERENCES Aftab, T., Khan, M. M. A., Idrees, M., Naeem, M., Hashmi, N. (2011). Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma, 248, 601-612. doi:10.1007/s00709-010-0218-5 Barrs, H.D., Weatherley, P.E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413-428. doi:10.1071/BI9620413 Cao, W.H., Liu, J., He, X.J., Mu, R.L., Zhou, H.L., Chen, S.Y., Zhang, J.S. (2007). Modulation of ethylene responses affects plant salt-stress responses. Plant physiology, 143, 707-719. DOI: doi: 10.1104/pp. 106.094292 Choudhury, S., Panda, S.K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology, 30, 95-110. Creelman, R.A., Mullet, J.E. (1995). Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences, 92, 4114-4119. doi:10.1073/pnas.92.10.4114 Farhangi-Abriz, S., Ghassemi-Golezani, K. (2016). Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. Journal of Applied Botany and Food Quality, 89, 243-248. Acta agriculturae Slovenica, 111 - 3, december 2018 605 Kazem GHASSEMI-GOLEZANI et al. Farhangi-Abriz, S., Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety, 147, 1010-1016. doi:10.1016/j.ecoenv.2017.09.070 Farhangi-Abriz, S., Torabian, S. (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and environmental safety, 137, 6470. doi:10.1016/j.ecoenv.2016.11.029 Ghassemi-Golezani, K., Farhangi-Abriz, S. (2018a). Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and environmental safety, 166, 18-25. doi:10.1016/j.ecoenv.2018.09.059 Ghassemi-Golezani, K., Farhangi-Abriz, S. (2018b). Changes in Oil Accumulation and Fatty Acid Composition of Soybean Seeds under Salt Stress in Response to Salicylic Acid and Jasmonic Acid. Russian Journal of Plant Physiology, 65, 229-236. doi:10.1134/S1021443718020115 Ghassemi-Golezani, K., Lotfi, R. (2015). The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russian journal of plant physiology, 62, 611-616. doi:10.1134/S1021443715040081 Ghassemi-Golezani, K., Taifeh-Noori, M., Oustan, S., Moghaddam, M., Seyyed-Rahmani, S. (2010). Oil and protein accumulation in soybean grains under salinity stress. Notulae Scientia Biologicae, 2, 6469. doi: 10.15835/nsb224590 Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728-736. doi:10.1016/j.jplph.2005.12.009 Hayat, S., Ali, B., Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic acid: A plant hormone. Springer, Dordrecht. doi:10.1007/1-4020-5184-0 Jiang, H., Egli, D.B. (1993). Shade induced changes in flower and pod number and flower and fruit abscission in soybean. Agronomy Journal, 85, 221225. doi: 10.2134/agronj1993.00021962008500020011x Leslie, C. A., Romani, R. J. (1986). Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Reports, 5, 144-146. doi:10.1007/BF00269255 Luo, Q., Yu, B., Liu, Y. (2005). Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of plant physiology, 162, 1003-1012. doi:10.1016/j.jplph.2004.11.008 Lutts, S., Kinet, J. M., Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of botany, 78, 389-398. doi: 10.1006/anbo.1996.0134 Maclachlan, S., Zalik, S. (1963). Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany, 41, 1053-1062. doi: 10.1139/b63-088 Mancinelli, A.L. (1984). Photoregulation of anthocyanin synthesis: VIII. Effect of light pretreatments. Plant Physiology, 75, 447-453. doi: 10.1104/pp.75.2.447 Mirfattahi, Z., Karimi, S., Roozban, M.R. (2017). Salinity induced changes in water relations, oxidative damage and morpho-physiological adaptations of pistachio genotypes in soilless culture. Acta agriculturae Slovenica, 109, 291-302. doi: 10.14720/aas.2017.109.2.12 Mohammadian, R., Moghaddam, M., Rahimian, H. Sadeghian, S.Y. (2005). Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turkish journal of agriculture and forestry, 29, 357-368. Nazar, R., Umar, S., Khan, N.A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant signaling & behavior, 10. doi:10.1080/15592324.2014.1003751 Noreen, S., Ashraf, M., Hussain, M., Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41, 473-479. Oya, T., Nepomuceno, A. L., Neumaier, N., Farias, J. R. B., Tobita, S., Ito, O. (2004). Drought tolerance characteristics of Brazilian soybean cultivars. Plant Production Science, 7, 129-137. doi: 10.1626/pps.7.129 Reddy, M.P., Vora, A.B. (1986). Salinity induced changes in pigment composition and chlorophyllase activity of wheat. Indian Journal of plant physiology, 29, 331-334. Sali, A.L.I.U., Rusinovci, I., Fetahu, S., Gashi, B., Simeonovska, E., Rozman, L. (2015). The effect of 606 Acta agriculturae Slovenica, 111 - 3, december 2018 Salicylic acid and jasmonic acid alter physiological performance, ... seed filling of soybean under salt stress salt stress on the germination of maize (Zea mays L.) seeds and photosynthetic pigments. Acta agriculturae Slovenica, 105, 85-94. doi:10.14720/aas.2015.105.1.09 Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant growth regulation, 48, 127-135. doi:10.1007/s10725-005-5482-6 Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of botany, 100, 681-697. doi:10.1093/aob/mcm079 Yang, D.L., Yang, Y., He, Z. (2013). Roles of plant hormones and their interplay in rice immunity. Molecular plant, 6, 675-685. doi: 10.1093/mp/sst056 Acta agriculturae Slovenica, 111 - 3, december 2018 607 doi:10.14720/aas.2018.111.3.09 Original research article / izvirni znanstveni članek Impact of temperature stress on secondary metabolite profile and phytotoxicity of Amaranthus cruentus L. leaf extracts Maria Elizabeth CAWOOD1*, Ingrid ALLEMANN1, James ALLEMANN2 Received May 23, 2018; accepted November 07, 2018. Delo je prispelo 23. maja 2018, sprejeto 07. novembra 2018. ABSTRACT In this study Amaranthus cruentus plants were grown under controlled optimal conditions (28/21 °C) for three months and then subjected to cold (14/7 °C) and hot (33/40 °C) temperatures. We investigated the influence of these temperature regimes on the metabolite profile of the leaves through analyses of data by TLC, HPLC and GC-MS spectrometry. The phytotoxic potential of a methanol-water (MW) and dichloromethane (DCM) extract from the aerial parts were examined through in vitro screening of germination and growth of lettuce and pepper. The optimal extracts displayed the highest diversity of secondary metabolites, and the highest total phenolics and flavonoids content. Through TLC and HPLC analysis the significantly lower phenolic content in the hot temperature treated samples was confirmed. A wide range of metabolites were detected in the DCM extracts through GC-MS analyses. The phytotoxicity of both the MW and DCM extracts were demonstrated, as germination and growth of pepper and lettuce were significantly inhibited, indicating the presence of more than one allelochemical compound which may affect the allelopathic activity of A. cruentus during changes in environmental temperatures. Key words: Amaranthus cruentus; temperature; stress; phytotoxcitiy; metabolites; phenolic compounds IZVLEČEK VPLIV TEMPERATURNEGA STRESA NA PROFIL IN FITOTOKSIČNOST SEKUNDARNIH METABOLITOV V LISTNEM IZVLEČKU ZRNATEGA ŠČIRA (Amaranthus cruentus L.). Rastline zrnatega ščira so bile za namene te raziskave gojene v nadzorovanih optimalnih temperaturnih razmerah tri mesece (28/21 °C) in nato izpostavljene hladu (14/7 °C) in vročini (33/40 °C). Preučevan je bil vpliv temperaturnih režimov na profil metabolitov v listih ščira z metodami kot so TLC, HPLC in GC-MS spektroskopija. Fitotoksični potencial metanolno-vodnih (MW) in diklormetanskih (DCM) izvlečkov nadzemnih delov ščira je bil analizirana preko in vitro analize kalitve vrtne solate in paprike. Optimalni izvlečki so imeli največjo raznolikost sekundarnih metabolitov in največjo vsebnost celokupnih fenolov in flavonoidov. S TLC in HPLC analizo je bila potrjena značilno manjša vsebnost fenolov v vročinsko obdelanih vzorcih. Z GC-MS analizo je bil ugotovljen širok nabor metabolitov v diklormetanskih izvlečkih (DCM). Fitotoksičnost MW in DCM izvlečkov se je izrazila v značilno zmanjšani kalitvi in rasti solate in paprike, kar kaže na prisotnost več kot ene alelokemične spojine. To lahko posledično vpliva na alelopatsko aktivnost zrnatega ščira med spremembami temperature v okolju. Ključne besede: Amaranthus cruentus; temperatura; stres; fitotoksičnost; metaboliti; fenolne spojine 1 INTRODUCTION Several studies documented on the increase of secondary compounds or changes in chemical profile within specimens of the same plant species growing under different or environmental stress conditions (Gobbo-Neto & Lopes, 2007; Ramakrishna & Ravishankar, 2011; Gouvea et al., 2012). The interaction between plants and their environment influence synthesis and accumulation of secondary 1 Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa *Corresponding author: cawoodme@ufs.ac.za 2 Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa This article is part of a Master thesis entitled » Influence of abiotic stress on allelopathic properties of Amaranthus cruentus L. «, issued by Ingrid Allemann, Supervisor Dr Maria Elizabeth Cawood, Ph. D., Co-Supervisor Dr James Allemann, Ph.D. Acta agriculturae Slovenica, 111 - 3, december 2018 str. 609 - 607 Maria Elizabeth CAWOOD et al. metabolites and their roles as a response to the environment. (Rhoads et al., 2006). The exposure to various environmental stresses can strengthen the allelopathic potential of many plants (Einhellig, 1987, 1996; Gershenzon, 1984; Tang et al., 1995; Kobayashi, 2004) and can affect allelopathy in at least three ways: 1) the production of allelochemicals by the donor species, 2) their bioavailability and 3) modify the effect of an allelochemical on the target plant (Einhellig, 1996, Trezzi et al., 2016). Amaranth is one of the few multi-purpose crops which can supply grain as well as tasty leafy vegetables of high nutritional quality (Mensah et al., 2008; Maiyo et al., 2010; Nana et al., 2012; Alemayehu et al., 2015). The chemical constituents and medicinal value of amaranth have been well described in the literature (Stintzing et al., 2004; Steffensen et al., 2011; Kraujalis et al., 2013). Most of the reported compounds include: carotenoids, steroids (Maiyo et al., 2010; Oboh et al., 2008; Bishop & Yokoto, 2001), terpenoids (Connick et al., 1989), ascorbic acid, betacyanins (Cai et al., 1998), a-spinasterol, spinoside, amaranthoside, amaracine (Shah, 2005), phenolic compounds (Kraujalis et al., 2013) and saponins (Vincken et al., 2007). Some of these compounds are considered to be allelochemicals which are able to affect surrounding plants once released into the environment (Rice, 1984; Waller, 1987). These phytotoxic compounds offer the opportunity to act as natural herbicides, since there is an increasing need for more cost-effective, safer, and more selective herbicides. This study evaluated the influence of temperature on plant secondary metabolite production of A. cruentus L. and whether the chemical-mediated interaction is involved in A. cruentus allelopathy. Thus, phytotoxcitiy of A. cruentus was evaluated with extracts of the different temperature treatments. 2 MATERIALS AND METHODS 2.1 Plant material Amaranthus cruentus 'Anna' seeds were planted in pots containing a soil-compost (80 : 22 v/v) mixture and grown at 28/21 °C; day/night temperatures in climate controlled chambers at The Department of Agriculture, University of the Free State as described by Allemann et al. (2017). Vegetable seeds used in this study were obtained from Starke Ayres: 'California Wonder' Sweet Pepper and 'Great Lakes' Lettuce. 2.2 Crude extracts Methanol-water (70 : 30 v/v) and dichloromethane (DCM) were used as solvents. Ten grams of the powdered A. cruentus leaf material (oven dried at 40 °C) was extracted twice by shaking overnight in the different solvents (1 : 20 w/v). The pooled extracts were dried and kept at 4 °C until further analyses. 2.3 Allelopathy determination A combination of the 'sandwich method' of Fujii et al. (2003) and Hill et al. (2007) was used to determine the in vitro phytotoxicity of the crude leaf extracts from the different temperature treatments of A. cruentus on the vegetable seeds. For this method 5 and 20 mg of each extract was dissolved in 1 ml of their own solvent, and 1 ml pipetted onto a filter paper. The filter papers were allowed to dry then placed on the bottom layer of agar resulting in 0.5 or 2 mg ml-1 extract per well. Controls contain only the solvents on filter paper. Lettuce (Lactuca sativa L.) and pepper (Capsicum annuum L.) seeds were surface sterilised as described by Allemann et al. (2017) and each of the experiments was done in triplicate and presented as the mean of the replicates. 2.4 Total phenolic and flavonoid content Total phenolic content was evaluated in the methanolic extract, using the Folin-Ciocalteu method as reported by Singleton & Rossi (1965). The absorption was measured at 550 nm and the content in phenolics was expressed as mg galllic acid equivalents (GAE) of dry mass extract. Total flavonoid content was determined as reported by Zhishen et al. (1999). The absorption was measured at 510 nm and the content in flavonoids was expressed as mg quercetin equivalents (QE) of dry mass extract. 2.5 Thin Layer Chromatography Thin layer chromatography (TLC) was carried out using silica gel 60 F450-aluminium backed pre-coated plates. Extracts (50 mg ml-1) were dissolved in their appropriate extraction solvents and 10 ^l applied to the TLC. The mobile phase for development of the MW extracts was chloroform-methanol-water-acetic acid (65:35:5:1), while for the DCM extracts, plates were developed in toluene-ethyl acetate (93:7). Compounds resolved on the plate were visualized using ultraviolet light (UV) at 365 nm and 254 nm, ninhydrin (Pifrung, 2006), p-anisaldehyde-sulphuric/acetic acid, 5 % ferric chloride and dragendorf reagents, prepared according to 90 Acta agriculturae Slovenica, 111 - 3, december 2018 Impact of temperature stress on secondary metabolite profile and phytotoxicity of Amaranthus cruentus L. leaf extracts the standard methods described by Wagner & Bladt (1996). 2.6 High Pressure Liquid Chromatography The MW extracts (20 mg ml-1) were separated and identified through high pressure liquid chromatography (HPLC) by comparing the retention times to standard phenolic compounds. Standards were prepared in methanol (3 mg ml-1) and absorption measured between 200 and 400 nm. Ten micro litre of extracts and 2 ^l of standards were injected while the flow rate was kept at 1 ml min-1. A Shimadzu instrument with a Photo Diode Array Detector (PDA) and an elution procedure as described by Vidovic et al. (2015) with a C18 column (Phenomenex C18, 250mm x 4.6mm, 5^m diameter), was used to achieve acceptable separation of all compounds. The mobile phase consisted of: A, acetonitrile and B, a mixture of acetic acid- acetonitrile-phosphoric acid-water (10:5:0.1:84:9, by vol.). 2.7 GC-MS analysis The DCM extracts (10 mg) were dissolved in 1 ml hexane. Analyses was done through GC-MS using a Shimadzu GC-MS QP-2010 gas chromatography equipped with a DB-5 MS column (30 m length x 0.32 mm diameter x 0.25 ^m film thickness) and injecting 1 ^l of sample. The GC operating conditions were the following: 5 min at 60 °C, then gradually increased to 280 °C at a rate of 2 °C min-1, and held for 10 min. Helium was used as the carrier gas (1.5 ml min-1 flow rate). Spectra analysis was conducted using the library "National Institute of Standard and Technology (NIST) version 5.0. 2.8 Statistical analysis The experiments were carried out adopting a completely randomized design with three replications. The results were expressed as means with least significant difference (LSD). Analysis of variance (ANOVA) was performed using SAS 9.3 (Institute Inc., Cary, NC, USA, 2008) statistical programme for data and Tukey-Kramer's LSD procedure for comparison of means. Significance of differences compared to the control groups was determined using the t-test (Steel & Torrie, 1980). 3 RESULTS AND DISCUSSION 3.1 Metabolites Comparison of the compounds in the MW and DCM leaf extracts of the different temperature treatments of A. cruentus plants, are illustrated by TLC in Figure 1. It is clear that temperature played an obvious role in the production of secondary compounds, as clear differences in compounds between the treatments were visible in both the polar and non-polar extracts (Fig. 1A & B). Different compounds with varying Rf values were visible when spraying the TLC's with p-anisaldehyde-sulphuric/acetic acid reagent. Colours of compounds range from green, yellow, pink, blue and purple with different Rf values for the polar and non-polar extracts. The diverse coloured compounds with varying Rf values visible in both polar and non-polar extracts on TLC (Fig. 1) may indicate many different compounds, including terpenes, saponins, sugars and flavonoids amongst others (Wagner & Bladt 1996). In the optimal treatment of the MW extract, 11 compounds were noted, compared to 8 and 5 in the cold and hot treated samples respectively. Prominent spots, including a dark purple (Rf = 0.055), a blue-purple (Rf = 0.49) and a light blue spot (Rf = 0.6) were only present in the optimal extract (Fig. 1A). From these results one can deduct that the stress temperatures, particularly the hot, inhibited the biosynthesis of some of the more polar compounds. Differences were also visible in the non-polar samples (Fig. 2B), with a noticeable blue coloured compound visible at Rf = 0.83, solely in the hot treatment DCM extract (Fig 1B). Less green pigment, probably chlorophyll was also observed in the hot treatment extract, indicating the effect the hot treatment had on photosynthesis. Several studies were conducted on the impact of increased temperatures on secondary metabolite production of plants (Morrison & Lawlor, 1999). Phenolic compounds are important and common plant allelochemicals in the ecosystem and the main phenolic compounds are water soluble (Li et al., 2010). Kraujalis et al. (2013) reported on the antioxidant properties and phytochemical composition of amaranth extracts isolated by acetone and methanol-water from plant leaves, flowers, stems and seeds. They found that the methanol-water extract of the leaves possessed the highest antioxidant activities and various phenolic compounds and flavonoids e.g. rutin, nicotiflorin, isoquercitrin, 4-hydroxybenzoic and p-coumaric acids were identified as major constituents. In the review article by Mroczek (2015) it is reported that saponins were isolated from a diversity of Amaranthaceae genera and species. Acta agriculturae Slovenica, 111 - 3, december 2018 611 Maria Elizabeth CAWOOD et al. Rf = 0.60 Rf = 0.49 Rf = 0.055 Opt Cold Hot Opt Cold Hot Baseline Figure 1: Qualitative TLC profiles of the optimal, cold and hot treated A. cruentus MW (A) and DCM (B) leaf extracts. Detection by /-anisaldehyde reagent In this study, the total phenolic and flavonoid content significantly declined in A. cruentus plants exposed to hot temperatures compared to plants grown at the optimal temperature (Table 1). The decrease in total phenolic and flavonoid content are in contrast with findings of many authors who reported an increase in production of phytotoxic phenolic compounds in plant tissues exposed to high temperatures and solar radiation (Koeppe et al., 1969; Wender, 1970; Einhelig & Eckrich, 1984). Rudikovskaya et al. (2008), however reported that low growth temperature decreased the content of some phenolic compounds in pea seedling roots and according to Krol et al. (2014), long-term drought stress caused a decrease in particular components of secondary metabolism in the leaves and roots of grapevine. It seems therefore that one cannot expect generalized patterns of phenolic compounds in stress situations. Table 1: Total phenolic and flavonoid compounds in temperature stressed amaranth leaf material Treatment Total phenolic content (mg GAE g D.M-1.) Total flavonoid content (mg QE g D.M-1.) Cold 12.0 b 5.4 a Optimal 18.8 a 5.6 a Hot 10.1 b 4.1 b 612 Acta agriculturae Slovenica, 111 - 3, december 2018 Impact of temperature stress on secondary metabolite profile and phytotoxicity of Amaranthus cruentus L. leaf extracts Analyses by HPLC confirmed the decrease in phenolic compounds in the temperature stressed plants (Fig 2). 2 A Figure 2: Comparison of HPLC-PDA chromatograms of optimal (A), cold (B) and hot (C) temperature treated A. cruentus methanol-water leaf extracts. 1 = Catechin; 2 = Rutin; 3 = Quercetin Flavonoids are not usually seen as allelopathic compounds but they have other roles in plants such as attractants to pollinators, protection against ultraviolet light (Li et al., 1993) and as an anti-inflammatory, antiallergic and anti-viral activities (Miller, 1996). Some flavonoids do however have allelopathic properties such as quercetin (Inderjit & Dakshini, 1995), catechin (Bais & Kaushik, 2010; Chobot et al., 2009) and rutin (Basile et al., 2000), which has been found in both A. hybridus and A. cruentus. From our HPLC results, catechin and rutin were identified in the optimal and cold treated amaranth MW leaf litter extracts (Fig 2A & B), while a small amount of quercetin was detected in only the cold treated sample (Fig 2B). The heat treated sample contained a reduced amount of unidentified compounds (Fig 2C), indicating the role temperature play on the biosynthesis of flavonoids and the possible consequence on allelopathy. The influence of temperature on the expressed compounds in the different DCM extracts were clearly visible after analyses through gas chromatography and mass spectrometry (GC-MS). Major compounds made up a total composition of 75.69 % (9 compounds), 90.44 % (7 compounds) and 91.89 % (9 compounds), of the optimal, cold and heat treated samples respectively (Table 2). Neophytadiene and hexadecanoic acid were the only compounds present in all three extracts, although the concentrations of these compounds varied substantially between the treatments (Table 2). The highest concentration of neophytadiene (27.53 %) was found in the cold treated sample, while hexadecanoic acid (13.52 %) was maximum in the heat treatment extract. Squalene, trans-phytol and the phytosterol, stigmasta-7,22-dien-3-ol were present in only cold and heat treated samples. Gamel et al. (2007) found high squalene concentrations in oil fractions of A. caudatus L. and A. cruentus, while Shah (2005) reported on the presence of stigmasta-7,22-dien-3-ol (a-spinasterol) in A. spinosus L.. According to Szakiel et al. (2010), lower soil temperatures triggered an increase in levels of steroidal furostanol and spirostanol saponins. 1 Acta agriculturae Slovenica, 111 - 3, december 2018 613 Maria Elizabeth CAWOOD et al. Table 2: GC-MS results of compounds present in optimal, cold and hot temperature treated DCM leaf extracts of A. cruentus Retention time (min) Compound name* Optimal area % Cold area % Hot area % 63.315 16-Heptadecenal 13.22 - - 64.054 Neophytadiene 9.03 30.70 4.44 65.296 3,7,11,15 -Tetramethyl-2- 5.19 3.72 hexadecen-1-ol 66.193 trans-Phytol - 10.04 6.01 70.621 Hexadecanoic acid (Palmitic acid) 11.01 3.29 13.52 77.243 2-Hexadecen-1-ol, 3,7,11,15- 7.82 tetramethyl 78.458 9,12,15-Octadecatrienoic acid (a- 27.40 29.68 Linolenic acid) 79.695 Octadecanoic acid (Stearic acid) - - 2.30 81.156 Tetrahydrofurano [6a,7a-b] -5 -oxa-8 - 9.86 thiaphenanthrene 97.733 Hexahydrothunbergol 7.07 - - 102.751 bis-Naphthylfuran 5.47 - - 103.841 Methyl ester of decyclotrenudine 5.02 - - 103.992 (-)-18-Noramborx 4.84 - - 104.067 Benzyl methyl ether 10.17 - - 104.920 Squalene - 3.73 6.22 121.002 Stigmasta-7,22-dien-3-ol (a- 10.09 12.36 Spinasterol) Total 75.69 90.44 91.89 Area (%) of compound = height of peak x width of peak at ^height < x Total area-1 * Identification by Library: NIST 05. LIB 3.2 Phytotoxcitiy Germination Phytotoxic activity of A. cruentus extracts may be ascribed to a wide range of biologically active phytochemicals such as phenolic acids, flavonoids and fatty acids which are known for their phytotoxic and allelochemical activities. When these compounds are released into the soil by leaf litter decomposition there may be a change in both the physical and chemical properties and therefore affecting the organization and growth of plant communities. At different concentrations both the MW and DCM extracts of the different temperature treatments, significantly inhibited germination of both lettuce and pepper (LSD(T 260 23 25 18 20 Acta agriculturae Slovenica, 111 - 3, december 2018 649 Tjaša POGAČAR et al. 3 REZULTATI 3.1 Vročinski valovi v Ljubljani in Biljah Število dni v vročinskih valovih je začelo po letu 1990 močno naraščati. V Ljubljani, ki ima omiljeno celinsko podnebje, so nastopili po letu 1988 vročinski valovi prav vsako leto, z izjemo leta 1997, okoli 20 do 30 dni v vročinskih valovih vsako poletje je postalo stalnica (Slika 1). V tem času so postali običajni tudi vročinski valovi v juniju (zgornji, svetel del stolpcev). Najbolj ekstremno po številu dni je bilo leto 2003, ko so se vročinski valovi vrstili en za drugim tekom celotnega poletja (Slika 2). Temnejše barve nakazujejo, da se ne povečuje le število dni v vročinskih valovih, temveč tudi njihova intenzivnost, saj povprečne dnevne temperature zraka dosegajo precej večje vrednosti kot v prvi polovici obravnavanega obdobja. Slika 1: Število dni v vročinskih valovih po mesecih in letih v obdobju 1961-2017 v Ljubljani Figure 1: Number of days within heat waves in months and years in the period 1961-2017 in Ljubljana 650 Acta agriculturae Slovenica, 111 - 3, december 2018 Obravnava vročinskih valov in primer toplotne obremenitve delavcev v kmetijstvu v času vročinskih valov 2017 Slika 2: Ljubljana od 1. junija do 31. avgusta v obdobju 1961-2017: dnevi v vročinskem valu so obarvani sivo (višja povprečna dnevna temperatura zraka je predstavljena s temnejšo barvo) (različica do leta 2015 objavljena v Kajfež Bogataj in sod., 2018) Figure 2: Ljubljana from June 1 to August 31 in the period 1961-2017: days in heat waves are colored grey (higher average daily air temperature is represented with darker color) (version until 2015 was published in Kajfež Bogataj et al., 2018) Stanje je podobno v Biljah, ki imajo omiljeno sredozemsko podnebje, kjer je prag za nastop vročinskega vala 1 °C višji kot v omiljenem celinskem podnebju. Poleg leta 1997 so bila tu brez vročinskih valov še leta 1991, 1998, 2000 in 2001 (Slika 3). Tudi tu je bilo najbolj ekstremno leto 2003, vendar z manjšim številom dni v vročinskih valovih kot Ljubljana. Sledijo leta 2012, 2015 in 2013. Podobno kot v Ljubljani, so tudi v Biljah povprečne dnevne temperature zraka v vročinskih valovih v zadnjih letih višje. Na obeh lokacijah je jasno vidno, da se pred letom 1990 vročinski valovi niso pojavljali zgodaj junija in pozno avgusta, v zadnjih dveh desetletjih pa ni to nič nenavadnega. Razpon povprečnih dnevnih temperatur zraka v času vročinskih valov je bil v Ljubljani od 24 do 30 °C (doseženo v letih 2013 in 2017) in v Biljah od 25 do 30 °C (doseženo v letih 2012 in 2017). Acta agriculturae Slovenica, 111 - 3, december 2018 651 Tjaša POGAČAR et al. Junij ^m Avgust 30- 20 10- 1970 l. ..LiM I L 1980 1990 2000 L 2010 Slika 3: Število dni v vročinskih valovih po mesecih in letih v obdobju 1970-2017 v Biljah Figure 3: Number of days within heat waves in months and years in the period 1970-2017 in Bilje 1970 ^ 1971 19731974 1976 19781979 1981 1982 1984 1986 1987 1989 1991 - 1992 1994 19951997 1999 2000 2002 2004 2005 2007 2008 2010 2012 20132015 2017 ll 1 3 5 7 9 11131517192123252729 1 3 5 7 9 1113151719212325272931 2 4 6 8 1012141618 20 22 24 2628 30 Junij Julij Avgust Slika 4.: Bilje od 1. junija do 31. avgusta v obdobju 1971-2017: dnevi v vročinskem valu obarvani sivo (višja povprečna dnevna temperatura zraka je predstavljena s temnejšo barvo) Figure 4: Bilje from June 1 to August 31 in the period 1970-2017: days in heat waves are colored grey (higher average daily air temperature is represented with darker color) 3.2 Polurne vrednosti toplotne obremenitve med vročinskim valovi v letu 2017 Leta 2017 je tako v Ljubljani kot v Biljah nastopilo 5 vročinskih valov, dolgih od 3 do 7 (Bilje) oz. 8 (Ljubljana) dni. Za vsak vročinski val smo predstavili izmerjene polurne terminske vrednosti temperature zraka in izračunane vrednosti kazalnika WBGT. Te predstavljajo toplotno obremenitev delavcev, ob preseženih mejnih vrednostih gre za vročinski stres, ki negativno vpliva na počutje, zdravje in produktivnost. Pri različni stopnji fizične obremenjenosti morajo delavci upoštevati različne mejne vrednosti (Preglednica 1). V urah, ko so mejne vrednosti presežene, bi se 652 Acta agriculturae Slovenica, 111 - 3, december 2018 Obravnava vročinskih valov in primer toplotne obremenitve delavcev v kmetijstvu v času vročinskih valov 2017 delavci morali poskušati izogniti delu ali uporabiti omilitvene ukrepe. V Ljubljani (Slika 5) vrednosti kazalnika WBGT niso nikoli presegle mejne vrednosti 28 °C, v najhujšem vročinskem valu (Slika 5 spodaj) so od tretjega dne dalje vsak dan presegle vrednost 25 °C za 6 do 9 ur (4 dni), v šestih dneh za 3 do 4 ure in v dveh dneh za dve uri, z začetkom nekje med 11. in 14. uro. Meja WBGT 23 °C je bila v vseh vročinskih valovih presežena vsaj za nekaj ur, večinoma od 7 do 9 ur, v najhujšem vročinskem valu pa 10 do 15 ur, z začetkom običajno med 9. in 11. uro. V celotnem poletju niso vrednosti WBGT nikoli izven vročinskih valov presegle vrednosti 25 °C. WBGT Temperatura A \ \ "s j X -7 22.6. 23.6. 24.6. 18 7 19.7. 20 7. 21.7. 22.7. 23 7 - WBGT Temperatura /' A • ". • ' . jA \ ."A; .A" J\ ; \Y V • '■) \xi ^ \ v/ SL E — WBGT ......... Temperatura r \ V-j V v 5.7. 6.7. 7.7. 8.7. 9.7. 10.7. £ E - WBGT Tampa rahjre - \ ■ *f \ »7 \ / \ V / vy 25 8 26.8 27 S - WBGT Temperatura / ' ■' • '' A \ ■' /A -A'-, :A \ - r\"'~ ' '•• ; fl Y, ■( V. J ■ j \\ :j \ ■". :J \ . : / --N"'/ 'J V V ^ v Slika 5: Polurne vrednosti temperature zraka in WBGT med vročinskimi valovi leta 2017 v Ljubljani, z vodoravnimi linijami so označene nekatere mejne vrednosti za kazalnik WBGT iz Preglednice 1 (23 °C, 25 °C in 28 °C, ki za aklimatizirano osebo predstavljajo prag za stopnjo metabolizma več kot 260 W m-2, 200 do 260 W m-2 in 130 do 200 W m-2) Figure 5: Air temperatures and WBGT values every half hour during heat waves in the year 2017 in Ljubljana, reference WBGT values (see Table 1) are marked with horizontal lines (23 °C, 25 °C and 28 °C, for acclimatized person representing threshold for metabolic rates more than 260 W m-2, 200 to 260 W m-2 and 130 to 200 W m-2, respectively Acta agriculturae Slovenica, 111 - 3, december 2018 653 Tjaša POGAČAR et al. Slika 6: Polurne vrednosti temperature zraka in WBGT med vročinskimi valovi leta 2017 v Biljah, z vodoravnimi linijami so označene nekatere mejne vrednosti za kazalnik WBGT iz Preglednice 1 (23 °C, 25 °C in 28 °C, ki za aklimatizirano osebo predstavljajo prag za stopnjo metabolizma več kot 260 W m-2, 200 do 260 W m-2 in 130 do 200 W m-2) Figure 6: Air temperatures and WBGT values every half hour during heat waves in the year 2017 in Bilje, reference WBGT values (see Table 1) are marked with horizontal lines (23 °C, 25 °C and 28 °C, for acclimatized person representing threshold for metabolic rates more than 260 W m-2, 200 to 260 W m-2 and 130 to 200 W m-2, respectively) 654 Acta agriculturae Slovenica, 111 - 3, december 2018 Obravnava vročinskih valov in primer toplotne obremenitve delavcev v kmetijstvu v času vročinskih valov 2017 Temperature zraka so v času vročinskih valov dnevno močno nihale, tudi za več kot 15 °C, najvišje so segale v Ljubljani od 30 do 38 °C, najnižje pa od 15 do skoraj 24 °C. V Biljah (Slika 6) najnižje temperature zraka na splošno niso bile bistveno višje, morda le kakšno stopinjo, gibale so se v podobnem intervalu, najvišja dosežena temperatura zraka pa je bila 39 °C. Temperatura zraka in vlaga sta bili v Biljah glede na Ljubljano toliko bolj obremenilni, da je bila v vseh dneh v vročinskih valovih razen dveh presežena tudi mejna vrednost WBGT 25 °C. Mejna vrednost 23 °C je bila v času vročinskih valov v Biljah presežena večinoma nekje od 8. oziroma 9. ure dalje od 10 do 11 ur dnevno (tudi do 14, izjemoma po en dan 4 in 6 ur), enkrat pa se je celo zgodilo, da se ni prekinila od 7. ure zjutraj do 16. ure naslednjega dne. Meja 25 °C je bila večinoma presežena nekje od 9. do 12. ure dalje, največkrat za več kot 8 ur. Poleg tega pa je bila v Biljah v najhujšem vročinskem valu v začetku avgusta v petih dneh za vsaj pet ur med 12. in 17. uro (izjemoma med 10:30 in 17:30) presežena tudi mejna vrednost 28 °C. Za lažjo predstavo je na primeru četrtega (najdaljšega) vročinskega vala v Biljah predstavljena odvisnost kazalnika WBGT od temperature zraka in relativne vlage (Slika 7). Največje vrednosti je kazalnik dosegal ob visokih temperaturah zraka in majhni vlagi, za manjše vrednosti WBGT pa se snop zlagoma širi proti večjim vrednostim vlage in manjšim vrednostim temperature zraka. V času vročinskih valov je bil v vseh primerih precej tipičen potek, da se je relativna vlaga z dviganjem temperature zraka tekom dneva zmanjševala in obratno. Slika 7: Polurne vrednosti WBGT v odvisnosti od temperature zraka in relativne vlage med 4. vročinskim valom leta 2017 v Biljah Figure 7: WBGT values vs. air temperature and relative humidity every half hour during 4th heat wave in the year 2017 in Bilje 4 DISKUSIJA Z naraščanjem temperature zraka se opazno povečuje število dni v vročinskih valovih in njihova intenzivnost, podaljšuje pa se tudi časovni razpon, v katerem se pojavljajo, kar potrjuje mnogo različnih raziskav kljub različnim definicijam vročinskih valov (npr. Morabito et al., 2017; Russo et al., 2015; Bittner et al., 2013; Kuglitsch in sod., 2010). Povprečna dnevna temperatura zraka je v Sloveniji uporabljena kot prag za določanje nastopa vročinskega vala, saj njena vrednost odraža informacijo o najnižji in najvišji temperaturi zraka ter relativni vlagi. Je dobra mera za jakost toplotne obremenitve, saj bo približno enaka za dolgotrajno obremenitev pri nekoliko nižjih temperaturah (majhna amplituda dnevnega temperaturnega hoda v vlažni zračni masi) ali kratkotrajno obremenitev pri višjih temperaturah z vmesno osvežitvijo (velika amplituda dnevnega temperaturnega hoda v suhi zračni masi) (Ključevšek in sod., 2018). Tako nam pove več kot le Acta agriculturae Slovenica, 111 - 3, december 2018 135 Tjaša POGAČAR et al. najvišje dnevne temperature zraka, kljub vsemu pa ljudje po naravi nimamo občutka za povprečje in v običajnem poletnem dnevu težko ocenimo, kakšna je bila povprečna dnevna temperatura zraka. Svojo ogroženost dojemamo na podlagi najvišjih dnevnih temperatur zraka in občutka, da nam je vroče. Pri rezultatih lahko približno ocenimo, da WBGT preseže 23 °C pri temperaturah zraka okoli 30 °C, medtem ko preseže 25 °C običajno pri temperaturah zraka okoli 32 °C, če ostaja vlaga v normalnih okvirih. Za kmetijska opravila se glede na težavnost dela stopnja metabolizma giblje od 150 do 500 W m-2 (Preglednica 2). Lundgren in sod. (2014) so iz srčnega utripa in opazovanja štirih delavcev v Indiji za pripravo zemlje za obdelavo, sejanje, zalivanje, pletje, kontrolo škodljivcev, gnojenje, vzdrževanje rastlin, žetev ter vmesno hojo in sklanjanje ocenili stopnjo metabolizma na 190 W m-2. Pri lažjih delih, kot je oranje s traktorjem ali zgoraj našteto delo, lahko za mejo nevarne ogroženosti z vročinskim stresom upoštevamo mejo pri vrednosti WBGT 28 °C (Preglednica 1), ki v Ljubljani v letu 2017 ni bila presežena, v Biljah pa le v najhujšem vročinskem valu po vsaj 5 ur dnevno, vedno vsaj med 12. in 17. uro. Pri nekoliko bolj zahtevnih delih, kot je na primer skobljanje lesa ali podiranje drevesa z motorno žago, je meja za kazalnik WBGT nižja - v mirnem ozračju 25 °C (z vetrom 26 °C) za aklimatizirane delavce in še nižja 22 °C (oz. 23 °C) za ne-aklimatizirane delavce. V večini dni v vročinskih valovih je bila leta 2017 tako v Ljubljani kot v Biljah meja 23 °C presežena praktično cel dan, kar za delavce pomeni visoko stopnjo tveganja zaradi obremenitve z vročinskim stresom. Pri zelo napornem fizičnem delu, kot je kopanje z lopato ali sekanje, je stanje v mirnem ozračju, ko kazalnik WBGT preseže 23 °C, nevarno že za aklimatizirane delavce (z vetrom pri 25 °C), za ne-aklimatizirane pa se lahko težave pojavijo že pri preseženih vrednostih 18 oz. 20 °C. Pri preseženih mejnih vrednostih WBGT bi morali delodajalci oz. kmetje sami uvesti preventivne ukrepe, kot so reorganizacija dela, več odmorov na hladnem, več zaužite tekočine ipd., da zmanjšajo tveganje vročinskega stresa (Staal Wasterlund, 2018). Preglednica 2: Ocene stopnje metabolizma za nekaj kmetijskih opravil po ISO standardu (2004) (Staal Wasterlund, 2018) Table 2: Estimates of metabolic rate for agricultural activities, according to ISO (2004) (Staal Wasterlund, 2018) Opravilo Stopnja metabolizma M [W m- ] Sekanje (2 kg težka sekira, 33 udarcev na minuto) 500 Kopanje z lopato (24 dvigov na minuto) 380 Podiranje drevesa z motorno žago 235 Skobljanje lesa 225 Obrezovanje sadnega drevja 205 Prenašanje tovora (10 kg pri hitrosti hoje 10 km/h) 185 Grabljenje listja 170 Oranje s traktorjem 170 Za primerjavo, delavci na poljih sladkornega trsa v Kostariki v precej bolj vročem podnebju so v letih 2010 in 2011 delali pri vrednostih WBGT med 20 °C in 34 °C (Crowe in sod., 2013). Sahu in sod. (2013) so ugotovili, da v prvi uri pobiranja riža pri vrednostih WBGT 27 °C delavci v povprečju poberejo 86 svežnjev, pri vrednostih 31 °C pa le še 65. V raziskavi na Cipru so delavci v vinogradu tekom poletja 87 % časa delali pri vrednostih WBGT, višjih od 25 °C (Ioannou in sod., 2017). Za zagotavljanje normalnega delovanja organov moramo telesno temperaturo ohranjati na 37 °C, najbolj običajen način hlajenja je potenje. Raziskave so pokazale, da se ženske potijo manj kot moški, potiti pa se začnejo pri višji telesni temperaturi, zato je pri njih večje tveganje za simptome vročinskega stresa ali z vročino izzvane bolezni (Staal Wasterlund, 2018). To se je potrdilo tudi v raziskavi med slovenskimi delavci v kmetijstvu, kjer so ženske v večjem deležu navajale težave zaradi vročinskega stresa (Pogačar in sod., 2017). Razpon potrebne količine popite tekočine je zelo velik -od dveh litrov na dan pri lahkem delu in vrednostih WBGT okoli 10 °C do 15 litrov pri izredno napornem delu in vrednostih WBGT okoli 30 °C (Staal Wasterlund, 2018). Dodatno toplotno obremenitev, ki je kazalnik WBGT ne prikaže, pomenijo pretople, t.i. tropske noči, ko se tudi ponoči temperatura zraka ne spusti pod 20 °C. Takrat se delavci med nočnim počitkom večinoma slabo odpočijejo in naslednji dan že začnejo utrujeni. Zanimivo je, da se je v Ljubljani to zgodilo že po prvem dnevu prvega vročinskega vala leta 2017, ko je bila najnižja 24-urna temperatura zraka 23,8 °C. Dve tropski noči sta bili še ob koncu drugega vročinskega vala, ena predzadnji dan tretjega ter štiri z vmesno prekinitvijo ob koncu četrtega vala. V Biljah sta bili tropski zadnji dve 656 Acta agriculturae Slovenica, 111 - 3, december 2018 Obravnava vročinskih valov in primer toplotne obremenitve delavcev v kmetijstvu v času vročinskih valov 2017 noči prvega vročinskega vala, zadnja noč drugega, druga noč tretjega in prva noč petega vročinskega vala. V najhujšem, četrtem vročinskem valu je bilo kar pet tropskih noči. Številne raziskave so pokazale, da nočne temperature zraka naraščajo hitreje kot dnevne, prav tako modeli za prihodnost napovedujejo, da se bo ta trend nadaljeval (Peng in sod., 2013). Tudi za Slovenijo velja, da se zadnja leta pojavljajo rekordno visoke nočne temperature (Sušnik in Pogačar, 2011; Vertačnik, 2014), kar za delavce pomeni še dodatno toplotno obremenitev, ki jo bo v nadaljnjih raziskavah potrebno upoštevati. 5 SKLEPI Analiza vročinskih valov za obdobje 1961-2017 za Ljubljano in Bilje je pokazala, da je število dni v vročinskih valovih začelo močno naraščati po letu 1990 na obeh lokacijah. Prav tako se je povečala intenziteta vročinskih valov, saj povprečne dnevne temperature zraka dosegajo precej večje vrednosti kot v prvi polovici obravnavanega obdobja. Podaljšuje se časovni razpon, v katerem se pojavljajo, na obeh lokacijah je jasno vidno, da se pred letom 1990 vročinski valovi niso pojavljali zgodaj junija in pozno avgusta, v zadnjih dveh desetletjih je takšna časovna razporeditev postala običajna. Leta 2017 je tako v Ljubljani kot v Biljah nastopilo 5 vročinskih valov, dolgih od 3 do 7 (Bilje) oziroma 8 (Ljubljana) dni, za katere smo izračunali kazalnik WGBT za oceno tveganja vročinskega stresa pri delavcih v kmetijstvu. Nekatere mejne vrednosti so redno presežene tudi v Sloveniji, torej je primerno, da kazalnik WBGT uporabimo za prikaz toplotne obremenitve delavcev. V Ljubljani vrednosti kazalnika WBGT sicer niso nikoli presegle mejne vrednosti 28 °C (meja za običajno kmetijsko delo), v najhujšem vročinskem valu so presegle vrednost 25 °C (težje delo), v vseh vročinskih valovih pa vsaj za nekaj ur 23 °C (fizično izredno naporno delo). Temperatura zraka in vlaga sta bili v Biljah glede na Ljubljano toliko bolj obremenilni, da je bila skoraj v vseh dneh v vročinskih valovih presežena tudi mejna vrednost WBGT 25 °C. Poleg tega je bila v Biljah v najhujšem vročinskem valu v začetku avgusta v petih dneh za vsaj pet ur (med 12. in 17. uro) presežena tudi mejna vrednost 28 °C. Pri preseženih mejnih vrednostih WBGT bi morali delodajalci oziroma kmetje sami uvesti preventivne ukrepe za zmanjšanje tveganja vročinskega stresa, na primer reorganizirati delo, uvesti več rednih odmorov na hladnem, piti več tekočine in nositi primerna oblačila. 6 ZAHVALA Raziskava je bila finančno podprta s strani okvirnega programa EU za razvoj in inovacije Obzorje 2020 s pogodbo št. 668786. Zahvaljujemo se prof. Larsu Nybu, Andreasu Flourisu in Tordu Kjellstromu za vodenje projekta. 7 VIRI ARSO. (2013). Podnebna spremenljivost Slovenije: Glavne značilnosti gibanja temperature zraka v obdobju 1961-2011. Dostopno na: http://meteo.arso.gov.si/uploads/probase/www/clim ate/text/sl/publications/PSS-Glavne-znacilnosti-gibanj a-temperature-zraka-1961-2011.pdf ARSO. (2017). Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja: Povzetek temperaturnih in padavinskih povprečij. Dostopno na: http://meteo.arso.gov.si/uploads/probase/www/clim ate/text/sl/publications/povzetek-podnebnih-sprememb-temp-pad.pdf Bernard, T. E., Pourmoghani, M. 1999. Prediction of Workplace Wet Bulb Global Temperature. Applied Occupational and Environmental Hygiene, 14, 126134. doi: 10.1080/104732299303296 Bittner, M.I., Matthies, E.F., Dalbokova, D., Menne, B. (2013) Are European countries prepared for the next big heat-wave? European Journal of Public Health, 24(4), 615-619. doi:10.1093/eurpub/ckt121 Crowe, J., Wesseling, C., Roman Solano, B., Umana, M.P., Ramírez, A.R., Kjellstrom, T., Morales, D., Nilsson, M. (2013). Heat exposure in sugarcane harvesters in Costa Rica. American Journal of industrial Medicine, 56(10), 1157-1164. doi: 10.1002/ajim.22204 d'Ambrosio Alfano, F.R., Palella, B.I., Riccio, G., Malchaire, J. (2016). On the Effect of Thermophysical Properties of Clothing on the Heat Strain Predicted by PHS Model. The Annals of Occupational Hygiene, 60(2), 231-251. doi:10.1093/annhyg/mev070 Acta agriculturae Slovenica, 111 - 3, december 2018 137 Tjaša POGAČAR et al. Flouris, A. D., McGinn, R., Poirier, M. P., Louie, J. C., Ioannou, L. G., Tsoutsoubi, L., Sigal, R. J., Boulay, P., Hardcastle, S. G., Kenny, G. P. (2018). Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31-70 years. Temperature, 5, 86-99. doi: 10.1080/23328940.2017.1381800 Gao, C., Kuklane, K., Ostergren, P. O., Kjellstrom, T. (2018). Occupational heat stress assessment and protective strategies in the context of climate change. International Journal of Biometeorology, 62, 359-371. doi:10.1007/s00484-017-1352-y Gubernot, D.M., Andersson, G.B., Hunting, K.L. (2015). Characterizing occupational heatrelated mortality in the United States, 2000-2010: An analysis using the census of fatal occupational injuries database. American Journal of Industrial Medicine, 58(2), 203-211. doi:10.1002/ajim.22381 Ioannou, L. G., Tsoutsoubi, L., Samoutis, G., Kajfez Bogataj, L., Kenny, G.P., Nybo, L., Kjellstrom, T., Flouris, A. D. (2017). Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers. Temperature, 4, 330-340. doi:10.1080/23328940.2017.1338210 Kajfež Bogataj, L., Katkic, V., Pogačar, T. (2018). Vpliv podnebnih sprememb na povečano rabo energije za klimatizacijo. V: Lipič, K. (ur.), Rižnar, K. (ur.). Nacionalni program varstva okolja in njegov dialog z lokalnimi skupnostmi : strokovno posvetovanje 2018, Moravske Toplice, Hotel Ajda, 5. in 6. april 2018. Ljubljana: Zveza ekoloških gibanj Slovenije, str. 145-152. Kjellstrom, T., Holmer, I., Lemke, B. (2009). Workplace heat stress, health and productivity - an increasing challenge for low and middle income countries during climate change. Global Health Action, 2(1), 2047. doi:10.3402/gha.v2i0.2047 Kjellstrom, T., Freyberg, C., Lemke, B., Otto, M., Briggs, D. (2018). Estimating population heat exposure and impacts on working people in conjunction with climate change. International Journal of Biometeorology, 62(3), 291-306. doi:10.1007/s00484-017-1407-0 Ključevšek, N., Hrabar, A., Dolinar, M. (2018). Podnebne podlage za definicijo vročinskega vala. Vetrnica, 10, 44-53. Kuglitsch, F.G., Toreti, A., Xoplaki, E., Della-Marta, P.M., Zerefos, C.S., Turkey M., Luterbacher, J. (2010). Heat wave changes in the eastern Mediterranean since 1960. Geophysical Research Letters, 37. doi:10.1029/2009GL041841 Lemke, B., Kjellstrom, T. (2012). Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Industrial Health, 50(4), 267-278. doi: 10.2486/indhealth.MS1352 Lundgren, K., Kuklane, K., Venugopal, V. (2014). Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India. Global Health Action, 2014 (7). doi: 10.3402/gha.v7.25283 McPherson, M. J. (2008). Subsurface Ventilation and Environmental Engineering, 2nd Ed., Ch. 17. Physiological reactions to climatic conditions. Mine Ventilation Services Inc., Clovis. http://www. mvsengineering. com/index.php?cPath= 25 Morabito, M., Crisci, A., Messeri, A., Messeri, G., Betti, G., Orlandini, S., Raschi, A., Maracchi, G. (2017). Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere, 8(7), 115. doi:10.3390/atmos8070115 Peng S., Piao S., Ciais P., Myneni R.B., Chen A., Chevallier F., Dolman A.J., Janssens I.A., Penuelas J., Zhang G., Vicca S., Wan S., Wang S., Zeng H. 2013. Asymmetric effects of daytime and nighttime warming on Northern Hemisphere vegetation. Nature, 501, 88-92. doi:10.1038/nature12434 Pogacar, T., Crepinsek, Z., Kajfez Bogataj, L., Nybo, L. (2017). Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia. Acta Agriculturae Slovenica, 109(3), 545-554. doi: 10.14720/aas.2017.109.3.06 Pogacar, T., Casanueva, A., Kozjek, K.,Ciuha, U., Mekjavic, I., Kajfez Bogataj, L., Crepinsek, Z. (2018). The effect of hot days on occupational heat stress in the manufacturing industry: implications for workers' well-being and productivity. International Journal of Biometeorology. doi:10.1007/s00484-018-1530-6 Russo, S., Sillman, J., Fischer, E.M. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10(12), 124003. doi: 10.1088/1748-9326/10/12/124003 Sahu, S., Sett, M., Kjellstrom, T. (2013). Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future. Industrial Health, 51(4), 424-431. doi: 10.2486/indhealth.2013-0006 658 Acta agriculturae Slovenica, 111 - 3, december 2018 Obravnava vročinskih valov in primer toplotne obremenitve delavcev v kmetijstvu v času vročinskih valov 2017 Staal Wasterlund, D. (2018). Managing heat in agricultural work: increasing worker safety and productivity by controlling heat exposure. Forestry Working Paper No. 1. Rome, FAO. 53 str. Sušnik, A., Pogačar, T. 2011. Vremensko povzročeni stresi kmetijskih rastlin v letu 2011. Ujma, 25, 8192. Vertačnik, M. (2014) Ekstremne temperature in njihova spremenljivost v Sloveniji v obdobju 1961-2013. Diplomska naloga. Ljubljana, Biotehniška fakulteta, oddelek za agronomijo: 36 str. Acta agriculturae Slovenica, 111 - 3, december 2018 659 doi: 10.14720/aas.2018.111.3.14 Original research article / izvirni znanstveni članek Correlation and path coefficient analysis among seed yield and yield related traits of Ethiopian chickpea (Cicer arietinum L.) landraces Awol MOHAMMED*, Asnake FIKRE1 Received July 13, 2018; accepted November 23, 2018. Delo je prispelo 13. julija 2018, sprejeto 23. novembra 2018. ABSTRACT The experiment was done on 202 new chickpea (Cicer arietinum L.) landraces with 2 checks to assess the association, direct and indirect effect of different characters on yield. The experiment was planted at Sirinka and Jari, Ethiopia, under rain fed condition in 2016 using alpha lattice design with three replications. Data were collected on yield and yield related traits. Analysis of variance showed highly significant differences among genotypes. The correlation of grain yield with biomass and with harvest index was positive and highly significant both at genotypic and phenotypic levels. In addition, its association with pod filling period, plant height, secondary branches and hundred seed mass was positive but unsignificant both at genotypic and phenotypic levels. Path coefficient analysis at genotypic level showed that among the 15 causal (independent) traits; biomass, harvest index, pod length, days to pod setting, pod filing period, canopy width, primary branches, secondary branches, and number of pods per plant had positive and directly influence on grain yield. Although the days to flowering, plant height and hundred seed mass had positive genotypic correlation with grain yield. In general correlation coupled with path coefficient analysis revealed that biomass and harvest index had a direct relationship with seed yield. Key words: chickpea; correlation; path coefficient analysis; seed yield; yield related traits IZVLEČEK ANALIZA ODVISNOSTI PRIDELKA SEMENA ETIOPSKIH LOKALNIH ZVRSTI ČIČERKE (Cicer arietinum L.) OD S PRIDELKOM POVEZANIH LASTNOSTI Poskus je potekal na 202 novih lokalnih zvrsteh čičerke (Cicer arietinum L.) z dvema preiskusoma za ovrednotenje neposredne in posredne povezave učinkov različnih lastnosti na pridelek. Poskus je bil izveden leta 2016 v krajih Sirinka in Jari v Etiopiji v razmerah brez namakanja kot nepopolni bločni poskus s tremi ponovitvami. Zbrani so bili podatki o pridelku in z njim povezanimi lastnostmi. Analiza variance je pokazala zelo značilne razlike med genotipi. Povezava med pridelkom z biomaso in žetvenim indeksom je bila pozitivna in zelo značilna na genotipski in fenotipski ravni. Dodatno je bila povezava pridelka pozitivna z lastnostmi kot so obdobje polnjenja strokov, višina rastlin, število sekundarnih poganjkov in masa stotih semen a nestatistično značina, ne na genotipski niti na fenotipski ravni. Analiza povezav na genotipski ravni je pokazala, da ima 15 znakov (lastnosti) kot so biomasa, žetveni indeks, dolžina stroka, število dni do nastavka strokov, obdobje polnjena strokov, širina nadzemnega dela rastlin, število primarnih in sekundarnih stranskih pogankov in število strokov na rastlino pozitivni in neposredni vpliv na pridelek semena. Tudi lastnosti kot so število dni do cvetenja, višina rastlin in masa stotih semen so imele pozitivne genetske povezave s pridelkom zrnja. Nasplošno je povezava med znaki povezana s povezavo med posameznimi znaki odkrila, da sta imela biomasa in žetveni indeks neposredno povezavo s pridelkom semena. Ključne besede: čičerka; korelacija; analiza odvisnosti posameznih znakov; pridelek semena; s pridelkom povezani znaki 1 Sirinka Agricultural Research Center, P. O.Box 74, Woldia, Ethiopia; "Corresponding author: mawol50@yahoo.com Acta agriculturae Slovenica, 111 - 3, december 2018 str. 661 - 659 Awol MOHAMMED, Asnake FIKRE 1 INTRODUCTION Chickpea (Cicer arietinum L.) is the third most important pulse crop in the world, after dry common bean and field pea (Padmavathiv et al., 2013). Southeast Turkey and Syria are considered as the two primary centers of origin of chickpea (Singh et al., 1997). The world chickpea production reached 13.3 million tons in 2013 and 14.2 million tons in 2014 (FAO, 2014). India is the largest chickpea producing country accounting for 72 % of the global chickpea production (Ojiewo, 2016). Ethiopia is considered as one of the secondary centers of diversity for chickpea (van der Maesen, 1987). In Ethiopia, chickpea is the third largest legume crop in area and production (CSA, 2015). There are two types of chickpea depending on seed color, shape, and size. The Kabuli type has large, round or ram head and cream-colored seeds, and is grown in temperate regions (ICRISAT, 2010). The Desi type chickpea is grown in the semi-arid tropics and is characterized by relatively small angular shaped seeds with light brown, yellowish or black colour. Chickpea is very important due to its good nutritional value having an average of 4.5 % fat, 8 % crude fiber, 22 % protein, 63 % carbohydrate and 2.7 % ash (Shafiqueet al., 2016). Besides being an important source of human food and animal feed, it is also an important contributor to soil fertility as it provides nitrogen to soil through fixation of atmospheric nitrogen (Gul et al., 2011). Many international agreements proclaim food security which implies the conservation of plant genetic resources for food and agriculture. The landraces or farmer varieties are important source of the genetic diversity and potential material that could be used to broaden the base for plant breeding. An indigenousness landrace is a variety with a high capacity to tolerate biotic and abiotic stress, resulting in high yield stability and an intermediate yield level under a low input agricultural system (FAO, 1998). Ethiopia has a large number of chickpea landraces cultivated by the farmers through traditional method of selection over a long time. This provides the basic material for developing any variety or hybrid. Study of yield and yield components provide a basic framework for selecting useful characters in chickpea improvement programs. Seed yield is an important character that is polygenic in nature and significantly influenced by environmental conditions (Singh et al., 2014). Most of plant breeders are interested in maximizing selection efficiency that supports the identification of best genotypes. Estimation of correlation coefficient is useful in planning future breeding and provides a measure of association among traits, which could be useful as a selection guide. The path coefficient analysis enables to determine the direct and indirect contribution of various traits toward yield. Correlation analysis provides information of associations among yield components. Path coefficient analysis permits the separation of the correlation coefficient into component of direct and indirect effects and to measure the relative importance of each (Singh and Chaudhary, 1977; Sharma, 1998). Therefore the objective of this study was to determine the association of different characters with seed yield, direct and indirect influence of characters towards yield and yield contributing traits and assess magnitude to define seed yield. 2 MATERIALS AND METHODS 2.1 Description of Experimental Sites The experiment was carried out under rain fed condition at Sirinka and Jari Agricultural stations, Ethiopia. The former one is located at 110 45' North latitude and 390 36' 36 East longitudes. Its altitude is 1850 meter above sea level located in North Wollo Zone. The annual rainfall of this site is 1006.3mm with 13.6 0C minimum and 26.7 0C maximum temperature. Jari, is located at 110 21 North latitude and 390 47' East longitudes and at an altitude of 1680 meter above sea level in South Wollo Zone. The annual rainfall of this site is 987.3 mm with 14.2 0C minimum and 28.7 0C maximum temperature. According to Sirinka Agricultural Research Center soil classification (unpublished), the soils of the sites are classified advertises. 2.2 Experimental Materials and Design A total of 202 newly collected Desi type landraces from Amhara, Oromiya and SNNP Regional States were used for this study. The collecting expedition was done on elevations ranging from 1174 to 2660meter above sea level. The collections were made in 2013 (N = 42) and 2016 (N = 160). This puts 90 landraces from Amhara region, 91 from Oromiyaand 24 from SNNP. A total of 202 collected landraces with two released varieties as checks, 'Fetenech' (early maturing) and 'Minjar' (high yielder) were tested and characterized for morphological traits. The experiment was planted on 02 September 2016 by using alpha lattice designwith three replications. Each landrace was sown in two rows at 60 cm, 30 cm, and 10 cm spacing between plots, rows, and 142 Acta agriculturae Slovenica, 111 - 3, december 2018 Correlation and path coefficient analysis among seed yield ... chickpea (Cicer arietinum L.) landraces plants, respectively; with 1 m row length. All agronomic practices were done uniformly for all accessions as required. There was no fertilizer application. For controlling pod borer Karatewas sprayed at the rate of 200 ml 300 liter-1ha-1 and picked by hand. 2.3 Data Collection The data of morphological, phenological, and agronomical traits were collected during the growth period of the crop, depending on the descriptors for chickpea (IBPGR, ICRISAT and ICARDA, 1993). The data of plant height, stem colour, number of leaflets per leaf, plant canopy width, number of primary branches, number of secondary branches, pod length, number of pods per plant, number of seeds per pod, days to 50 % flowering, days to 50 % pod setting, pod filling period, days to 75 % maturity, total biomass, hundred seed mass, seed yield, harvest index, seed coat colour, seed shape, diseases and insect damage score (1-9) and seed testa texture were collected. 2.4 Analysis of variance Analysis of variance (ANOVA) was performed for the quantitative data using SAS computer software (SAS, 2004) as per the following linear model for alpha lattice design. Yljk = ^ + R ¡+ Bjj+ Tk + eljk:where, ^ = the grand mean of trait Y; R = the effect of replicate I; BiJ = effect of block j within replicate I; Tk = effect of treatment k 2.5 Phenotypic coefficients and genotypic correlation Phenotypic and genotypic correlation were estimated using the formula suggested by Miller et al (1958) Phenotypic correlation was computed as: pxy yl(a2 fix)(a2 py) 2 2 a py and a gy are phenotypic and genotypic variances for character y. The coefficient of correlation at phenotypic level was tested for its significance with table for simple correlation coefficient using n-2 df as suggested by Gomez and Gomez (1984) or using 't' table, with observed t expressed as rm4n-2 - r pxy The calculated 't' value was compared with the tabulated 't' value at n-2 degree of freedom, (n = 204) at 5 % and 1 % level of significance (where n is the number of genotypes). The coefficient of correlation at genotypic level was tested according to Robertson (1959); r. gxy t = gxy where, coefficient, rgxy = genotypic correlation SErgxy = standard error of genotypic correlation coefficient (1 - r2 gxy )2 SEr = * gxy 2 7„2 2h2 h Where h2j and h2 2 are broad sense heritability for character 1 and 2 The calculated 't' value was compare with the 't' tabulated value at n-2 (df = 202) at the 5 % and 1 % level of significance (where n is the number of accessions). Genotypic correlation was computed as: gxy 4(a2 gx)(a2 gy) Where rpy is phenotypic correlation coefficient and rgxy is genotypic correlation coefficient between 22 characters x and y; a pxy and a gxy are phenotypic covariance and genotypic covariance between 2 2 characters x and y, respectively. u px md u gx are phenotypic and genotypic variances for character x and 2.6 Path coefficient analysis Associations of yield with its components were determined by the application of correlation and path analysis. The use of path analysis requires a cause and effect situation among the variables. Path coefficient analysis was calculated using the formula suggested by Dewey and Lu (1959) to assess direct and indirect effects of different traits on grain yield as: = pij + S rik pkj 2 pxy r r Acta agriculturae Slovenica, 111 - 3, december 2018 663 Awol MOHAMMED, Asnake FIKRE Where rij is mutual association between the independent traits (i) and the dependent trait (j) as measured by the correlation coefficient, pij is component of direct effect of the independent trait (i) on the dependent variable (j); and rik pkj is the components of indirect effect of a given independent trait (i) on the dependent traits (j) via all other independent traits (k). The residual effect (U) which is the unexplained variation of the trait that is not accounted for by path coefficient and is calculated using the formula of Dewey and LU (1959) as: U = Vl - R2 , where R2 = ^ T'k Pkj 3 RESULTS AND DISCUSSION 3.1 Analysis of variance Analysis of variance revealed highly significant differences (P < 0.001) among genotypes for most of the studied traits indicating genetic variability in the characters studied (Table 1).The magnitude of mean squares due to genotypes was high for grain yield, biomass yield, harvest index and number of pods per plant; while low genotype mean square values exhibited for number of seed per pod, primary branches per plant, pod length, and number of leaflets per leaf (Table 1).Similarly, previous studies on chickpea landraces also reported by (Tesfamickael et al., 2014; Uday et al., 2012). Table 1: Mean squares, significance and CV % of morpho - agronomic characters of chickpea germplasm Traits Mean square (CV %) Sirinka Jari Combined DF 24.25**(6.56) 23.73**(5.04) 4.24 ns(8.2) DP 31.23**(6.46) 15.06**(4.89) 9.73 ns(4.98) PFP 18.70**(6.07) 24.54**(5.02) 5.99 ns(6.23) DM 42.32**(4.28) 22.08**(5.68) 5.39 ns(4.52) CW 38.83**(8.15) 122.25**(11.5) 14.03*(22.31) NLtL 0.87**(5.97) 3.04*(15.78) 0.79*(16.23) PH 31.12**(9.85) 96.27**(17.60) 8.61**(20.13) PB 0.72**(19.65) 0.05ns(21.5) 0.11ns(28.9) SB 11.11**(17.16) 0.62ns(20.42) 1.88*(25.61) NPP 520.46**(21.02) 267.32*(28.6) 50.90**(30.2) NSP 0.08 ns (12.06) 0.02ns(15.23) 0.029 ns(11.6) PL 0.24**(26.5) 0.65*(29.42) 0.25*(31.2) HSW 8.34**(13.23) 6.27**(12.52) 0.43ns(8.96) GYKH 441140.22**(28.66) 393086.47**(24.56) 23558.56ns (30.2) BMKH 1936174.5**(25.97) 1734469.2*(29.62) 123242.6ns(32.21) HI 240.00**(21.48) 189.23* (18.96) 1.42ns(28.9) DF = Days to flowering, DP = Days to pod setting, PFP = Pod filling period, DM = Days to maturity, CW = Canopy width, NLtL = Number of leaflets per leaf, PH = Plant height, PB = Primary branches, SB = Secondary branches, NPP = Number of pods per plant, NSP = Number of seeds per pod, PL = Pod length, HSW = Hundred seed mass, GYKH = Grain yield kilo gram per hectare, BM = Biomass kilo gram per hectare, HI = Harvest index, ns = non -significant and *, ** significant at 5 % and 1 % probability level, respectively. This low magnitude of mean squares indicated the traits were relatively sensitive to environmental effects. These results are also confirmed similarly by reports of Zerihun (2011), Feven (2002) and Melese (2005). 3.2 Correlation studies Studies on correlations among agronomic traits and seed yield can supply reliable information on the nature and level of their inter relationships. Identification and 664 Acta agriculturae Slovenica, 111 - 3, december 2018 exploitation of traits positively attributing to seed yield is essential as it enhances breeding efficiency of chickpea. In this study, genotypic and phenotypic correlation coefficients for all possible combinations among 16 traits are presented in Table 2. 3.2.1 Association of grain yield with other traits The linear correlation coefficient analysis determines the magnitude and degree of relationship between two Correlation and path coefficient analysis among seed yield ... chickpea (Cicer arietinum L.) landraces traits. Association between traits could be due to genotypic correlation, which is attributed to linkage between genes or pleiotropic gene effect (Shafique et al., 2016), or due to environmental effect, or both (Falconer and Mackey 1996).The correlation of grain yield with biomass (rg = 0.71 and rph = 0.72) and with harvest index (rg = 0.52 and rph = 0.54) was positive and highly significant both at genotypic and phenotypic levels. The correlation of grain yield with pod filling period, plant height, secondary branches and hundred seed mass was positive but non-significant both at genotypic and phenotypic levels. Muhammad et al. (2005) reported similar results. On the other hand, the correlation of grain yield with days to maturity, primary branches, and number of seeds per pod was negative but no significant at both levels. The genotypic correlations of grain yield with days to flowering, days to pod setting, canopy width and number of pods per plant were positive but not significant. On the other hand, grain yield was negatively and non- significantly correlated with number of leaflets per leaf. However, genotypic correlation between grain yield and biomass yield was positive and highly significant, which is in agreement with the reports of Zerihun (2011), Melese (2005), and Tesfamickael et al. (2014).That means breeding for better biomass cultivars could be an indirect selection on chickpea improvement or landrace promotion. 3.2.2 Associations among other traits Days to flowering was positively and significantly correlated with days to maturity, days to pod setting, number of leaflets per leaf, secondary branches, number of pods per plant, and hundred seed mass, but negatively correlated with primary branches at phenotypic and genotypic level (Table 2).Moreover, the genotypic correlation coefficients of days to flowering with these traits were greater than the corresponding phenotypic correlation coefficients, indicating genetic causes for the observed association. As a result, late flowering varieties are expected to take long duration to develop pods and mature late. According to Thakur and Sirohi (2009), genotypic correlation coefficients higher than that of phenotypic correlation coefficients indicate strong inherent association between the traits and the possibility of effective phenotypic selection. Days to maturity showed significant and positive correlations with days to flowering, days to pod setting, number of leaflets per leaf, canopy width, secondary branches, number of pods per plant, and hundred seed mass at both phenotypic and genotypic levels. This is in agreement with Zerihun (2011). However, the correlation of days to maturity with primary branches and number of seeds per pod was negative at both phenotypic and genotypic levels (Table 2). Plant height correlated positively and strongly with days to pod setting, number of leaflets per leaf, canopy width, and pod filing period; but negatively associated with number of seeds per pod both at genotypic and phenotypic levels. Primary branches had strong negative correlation with days to pod setting, pod filing period, days to maturity, and secondary branches at genotypic level; and with harvest index at phenotypic level. On the other hand,it had positive and significant correlation with number of pods per plant and number of seeds per pod at phenotypic level. Secondary branches had high positive correlation with days to flowering, days to pod setting, pod filing period, canopy width, plant height, number of pods per plant, and hundred seed mass at both phenotypic and genotypic levels. However, it showed negative correlation with primary branches at both levels. Hundred seed mass showed high positive correlation with days to flowering, days to pod setting, days to maturity, plant height, and secondary branches both at genotypic and phenotypic level; but negatively associated with the number of seeds per pod at both levels. Biomass yield had high positive correlation with grain yield at genotypic and phenotypic levels, but negatively correlated with harvest index at both levels (Table 2).Generally, among the 16 traits in this study, biomass and harvest index correlated positively and significantly with grain yield at both genotypic and phenotypic levels. In general, all positive correlation between grain yield with traits of pod filling period, plant height, secondary branches, hundred seed mass and biomass both at genotypic and phenotypic levels are best traits which are important to direct selection process. Acta agriculturae Slovenica, 111 - 3, december 2018 665 Awol MOHAMMED, Asnake FIKRE Table 2: Genotypic (above diagonal) and phenotypic (below diagonal) correlation coefficients among 16 traits of 204 chickpea genotypes Trait DF DP PFP DM CW NLtL PH PB SB NPP NSP HSW GY BY HI PL DF 0.94** 0.03 0.48** 0.24** 0.17* 0.44 -0.23** 0.32** 0.17* -0.18 0.25** 0.04 -0.07 0.1 -0.10 DP 0.89** 0.09 0.44** 0.25** 0.17* 0.43** -0.25 0.32** 0.16* -0.16* 0.27** 0.02 -0.05 0.09 -0.09 PFP -0.1* 0 0.35** 0.06 0.2* 0.32** -0.2* 0.19* 0.16* -0.17* 0.2* 0.06 0.01 0.06 0.1 DM 0.39** 0.35** 0.33** 0.24* 0.27** 0.44** -0.18* 0.24* 0.15* -0.15* 0.10 -0.01 -0.03 0.01 -0.07 CW 0.16 0.16** 0.12* 0.18** 0.04 0.55** -0.05 0.42** 0.29** 0.01 -0.02 0.05 0.05 0.01 -0.01 NLtL 0.11* 0.11* 0.09* 0.16** 0 0.18* -0.11 0.09 -0.02 0.04 0.05 -0.06 -0.07 0.01 -0.03 PH 0.34** 0.33** 0.29** 0.37** 0.54** 0.10* -0.11 0.51** 0.5** -0.23* 0.17* 0.1 0.04 0.1 0.03 PB -0.18** -0.2** -0.17** -0.15** 0.01 -0.06 -0.06 -0.14* 0.07 0.06 0.06 -0.05 0.03 -0.12 -0.03 SB 0.20** 0.22** 0.13* 0.19** 0.39** 0.05 0.42** -0.06 0.57** 0.02 0.14* 0.05 -0.02 0.06 -0.08 NPP 0.12* 0.12* 0.16** 0.15** 0.32** -0.03 0.46** 0.08* 0.55** 0.04 0.05 0.02 0.01 -0.03 0.01 NSP -0.13 -0.13* -0.11* -0.1* 0.06 0.07 -0.12* 0.08* 0.06 0.08 -0.2* -0.08 -0.04 -0.06 -0.07 HSW 0.18** 0.18** 0.13 0.11* -0.01 0.01 0.12* 0.04 0.09* 0.05 -0.14* 0.07 0.09 -0.02 -0.04 GY -0.04 -0.02 0.06 -0.02 -0.02 0.04 0.05 -0.05 0.02 -0.01 -0.06 0.04 0.72** 0.54** -0.02 BY -0.1* -0.07 0.06 -0.01 0.01 -0.03 0.02 0.02 0.03 -0.03 -0.03 0.05 0.71** -0.18* -0.04 HI 0.06 0.06 0.01 -0.01 -0.05 0.07 0.04 -0.10* 0.03* -0.01 -0.05 -0.04 0.52** -0.22** 0.02 PL -0.06 -0.07 0.04 -0.03* 0.01 -0.04 0.01 -0.01 -0.06 -0.04 0.03 -0.03 0.04 -0.03 0.07 DF = Days to flowering, DP = Days to podding, DP = Pod filling period, DM = Days to maturity, CW = Canopy width. Number of leaflets per leaf, PH = Plant height, PB = Primary branches, SB = Secondary branches, NPP = Number of pods per plant, NSP = Number of seeds per pod, HSW = Hundred seed weight, GY = Grain yield, BY = Biomass, HI = Harvest index, PL = Pod length, and *, ** significant at 5 % and 1 % probability level, respectively Correlation and path coefficient analysis among seed yield ... chickpea (Cicer arietinum L.) landraces 3.3 Path coefficient analysis Grain yield is a resultant trait of many component traits, known as yield components. Associations between yield and yield components as determined by correlation coefficients do not indicate the relative importance of the direct and indirect effect of associated trait on grain yield. Hence, path coefficient analysis would give the opportunity to see grain yield as the dependent variable and other traits as casual factors (independent variables). The results of genotypic path coefficient analysis are given in Table 3. Path coefficient analysis at genotypic level showed that among the fifteen traits; biomass (0.84), harvest index (0.69), pod length (9.73), days to pod setting (0.024), pod filing period (0.020), canopy width (0.003), primary branches (0.007), secondary branches (0.003), and number of pods per plant (0.019) had positive directly influence on grain yield. Other traits such as days to flowering (-0.016), days to maturity (-0.015), number of leaflets per leaf (-0.004), plant height (-0.019), number of seeds per pod (-0.002), and hundred seed mass (-0.002) had negative direct effects on grain yield. These study findings are also in line with the reports of Yucel et al. (2006), Yucel and Anlarsal (2010), Ali et al. (2011) and Jadhav et al. (2014) in chickpea. Padmavathi et al., (2013) also reported high positive direct effects of biological yield, number of pods per plant, and harvest index on grain yield signifying the importance of these traits in improvement of grain yield. Pod length exerted the highest direct effect (9.73), and also positive indirect effects on grain yield via pod filing period, plant height, number of pods per plant, and harvest index. However, the positive direct effect of pod length on grain yield was counter balanced by relatively high negative indirect effects via days to flowering, days to pod setting, days to maturity, canopy width, number of leaflets per leaf, primary branches, secondary branches, number of seeds per pod, hundred seed mass and biomass; which resulted in negative correlation with grain yield (rg = -1.44) (Table 3). Biomass yield exerted the second highest positive direct effect (0.84) on grain yield. It also exhibited positive indirect effects on grain yield through pod filing period, canopy width, plant height, primary branches, number of pods per plant and hundred seed mass. However, it had high negative indirect effects on grain yield through days to flowering, days to pod setting, days to maturity, number of leaflets per leaf, secondary branches, and number of seeds per pod, harvest index, and pod length. Although the days to flowering, plant height and hundred seed mass had positive genotypic correlation with grain yield, their direct effects on grain yield were negative. This imply that the observed positive correlations of these traits with grain yield were due to their indirect positive effects on grain yield through primary branches, number of seeds per pod, biomass, pod length, canopy width and harvest index. This indicates the importance of these traits in the breeding program to identify high yielding genotypes through indirect selection for these traits. According to Singh and Chaudhary (1977), whenever a character has positive association and high positive indirect effects but negative direct effect on economic trait like grain yield, emphasis should be given to the indirect effects. The estimated residual effect of path analysis was low (0.156), which indicated that about 85 % of the variability in grain yield was contributed by the traits studied. This residual effect towards grain yield in the present study might be due to other characters or environmental factors and, or sampling errors (Sengupta and Kataria, 1971). According to the path coefficient analysis at phenotypic level biomass (0.86), harvest index (0.71), pod length (0.01), days to pod setting (0.021), primary branches (0.004) hundred seed mass (0.003) and number of pods per plant (0.011) had positive directly influence on grain yield and signifying the importance of these traits in improvement of grain yield (Table 4). Other traits such as days to flowering (-0.02), days to maturity (-0.004), number of leaflets per leaf (-0.02), plant height (-0.04), canopy width (-0.01),), secondary branches (-0.04), and pod filing period (-0.01) had negative direct effects on grain yield (Table 4). The estimated residual effect of path analysis was low (0.168), which indicated that about 84 % of the variability in grain yield was contributed by the traits studied. This residual effect towards grain yield in the present study might be due to other characters or environmental factors and, or sampling errors (Sengupta and Kataria, 1971). Acta agriculturae Slovenica, 111 - 3, december 2018 667 Awol MOHAMMED, Asnake FIKRE Table 3: Genotypic direct (bold, underlined and diagonal) and indirect effects of 15 traits on grain yield for 204 chickpea genotypes Traits DF DP PFP DM CW NLtL PH PB SB NPP NSP HSM BM HI PL DF -0.016 0.023 0.001 -0.07 0.001 -0.02 -0.09 -0.02 0.001 0.003 0.001 -0.01 -0.06 0.069 -9.82 DP -0.015 0.024 0.002 -0.06 0.001 -0.01 -0.08 -0.02 0.001 0.003 0.001 -0.01 -0.04 0.061 -8.33 PFP -0.001 0.002 0.020 -0.05 0.002 -0.01 -0.06 -0.05 0.001 0.003 0.001 -0.01 0.010 0.04 9.60 DM -0.007 0.010 0.006 -0.02 0.001 -0.01 -0.08 -0.01 0.001 0.003 0.001 -0.01 -0.02 0.009 -6.25 CW -0.004 0.006 0.001 -0.03 0.003 -0.01 -0.01 -0.01 0.001 0.005 -1.3 3.49 0.044 0.004 -6.72 NLtL -0.003 0.004 0.003 -0.03 0.001 -0.04 -0.04 -0.01 0.001 -0.01 -6.2 -0.01 -0.06 0.007 -3.04 PH -0.007 0.010 0.006 -0.06 0.002 -0.01 -0.02 -0.01 0.002 0.009 0.001 -0.01 0.035 0.067 3.31 PB 0.004 -0.06 -0.04 0.03 -0.01 0.001 0.002 0.01 -0.01 0.001 -0.01 -0.01 0.024 -0.08 -2.77 SB -0.005 0.007 0.003 -0.03 0.001 -0.01 -0.01 -0.01 0.003 0.011 -2.7 -0.01 -0.02 0.041 -7.56 NPP -0.003 0.003 0.003 -0.02 0.001 6.48 -0.09 0.001 0.001 0.019 -7.4 -0.01 0.007 -0.02 1.30 NSP 0.003 -0.04 -0.03 0.02 2.42 -0.01 0.004 0.001 5.22 0.001 -0.02 0.001 -0.03 -0.04 -6.99 HSW -0.004 0.007 0.004 -0.02 -4.8 -0.02 -0.03 0.005 0.001 0.001 0.004 -0.02 0.08 -0.01 -3.90 BY 0.001 -0.01 0.001 4.82 0.002 0.001 -0.01 0.001 -6.1 0.001 6.9 -0.01 0.84 -0.12 -3.71 HI -0.002 0.002 0.001 -0.01 2.02 -3.7 -0.01 -0.01 0.001 -6.2 0.001 4.37 -0.15 0.69 2.18 PL 0.001 -0.01 0.002 0.01 -2.2 1.11 -0.01 -0.01 -0.01 0.001 0.001 9.37 -0.03 0.02 9.73 DF = Days to flowering, DP = Days to podding, DP = Pod filling period, DM = Days to maturity, CW = Canopy width NLtL = Number of leaflets per leaf, PH = Plant height, PB = Primary branches, SB = Secondary branches, NPP = Number of pods per plant, NSP = Number of seeds per pod, HSM = Hundred seed mass, BM = Biomass, HI = Harvest index, PL = Pod length; Residual = 0.156 Correlation and path coefficient analysis among seed yield ... chickpea (Cicer arietinum L.) landraces In general the information obtained from path analysis revealed that number of pods per plant, biomass, harvest index, secondary branches per plant, canopy width, days to podding and pod filing period had positive direct effect on grain yield at both genotypic and phenotypic levels. Thus, these traits may be used as effective selection parameters for obtaining high yield in breeding programme for yield enhancement in chickpea. 4 CONCLUSSION The correlation of grain yield with biomass and harvest index was positive and highly significant both at genotypic and phenotypic levels. In addition, its association with pod filling period, plant height, secondary branches and hundred seed mass was positive both at genotypic and phenotypic levels.In general, all positive correlation between grain yield with traits of pod filling period, plant height, secondary branches, hundred seed mass and biomass both at genotypic and phenotypic levels are best traits which are important to direct selection process. Path coefficient analysis at genotypic level showed that among the fifteen causal (independent) traits; biomass, harvest index, pod length, days to pod setting, pod filing period, canopy width, primary branches, secondary branches and number of pods per plant had positive direct effects on grain yield per plot.In generalthe information obtained from path analysis revealed that number of pods per plant, biomass, harvest index, secondary branches per plant, canopy width, days to podding and pod filing period had positive direct effect on grain yield at both genotypic and phenotypic levels. Thus, these traits may be used as effective selection parameters for obtaining high yield in breeding programme for yield enhancement in chickpea. 5 ACKNOWLEDGEMENTS First of all, the authors deepest gratitude and acknowledge goes to Amhaera Agricultural Research Institute and/or Sirinka Agricultural Research Center for providing research budget and facilitate the process. We would like also to express sincere thanks to Sirinka Agricultural Research Center pulse case team members for contributing their great effort this successful accomplishment of the experiment. 6 REFERENCES Ali Q, Tahir MHN, Sadaqat HA, Arshad S, Farooq J, Ahsan M, Waseem M, Iqbal A (2011). Genetic variability and correlation analysis for quantitative traits in chickpea genotypes (Cicer arietinum L.). Jornal of Bacteria Research, 3, 6-9. Central Statistical Authority (2014/2015). Agricultural Sample Survey, Volume I:Report on Area and Production for major crops (Meher Season) Statistical Bulletin No. 578 Addis Ababa, Ethiopia Dewey, J.R and K.H. Lu (1959). A correlation and path coefficient analysis of yield components of crested wheat seed production.AgronomyJournal,51, 515-518.doi:10.2134/agronj1959.000219620051000900 02x Falconer, D.S. and T.F.C. Mackay (1996). Introduction to Quantitative Genetics, 4th, ed. Longma Group Limited, Malaysia. 438 p FAO.(1998). The state of ex situ conservation. Page 90 in the state of world's plant genetic resources for food and agriculture. Rome, Italy: Food and Agriculture Organization of the United Nations. Feven W. (2002). Morphological and biochemical diversity analysis in chickpea (Cicer arietinum L.) landraces of Ethiopia. M.Sc. Thesis submitted to Addis Ababa University,Addis Ababa Gomez, A.K. and Gomez A.A. (1984).Statistical procedure for agricultural research. John Wiley and Sons 680 p. Gul R., Khan H., Sattar S, Farhatullah, Munsif F, Shadman, Khan BSA, Khattak SH, Arif M, Ali A. (2011). Comparison among nodulated and non nodulated chickpea genotypes.Sarhad Journal of Agriculture,27(4), 577-581. IBPGR, ICRISAT and ICARDA. (1993). Descriptor for chickpea (Cicer arietinum L.). International Board for Plant Genetic Resources, Italy; International Crop Research Institute for the Semi-Arid Tropics, Patancheru, India and International Center for Agricultural Research in Dry Areas, Aleppo, Syria. ICRISAT (International crop research institute for semi arid tropics) (2010). Acta agriculturae Slovenica, 111 - 3, december 2018 149 Awol MOHAMMED, Asnake FIKRE Pooran M. Gaur, Shailesh Tripathi, CL Laxmipathi Gowda, GV Ranga Rao, HC Sharma, Suresh Pande and Mamta Sharma, Patancheru 502 324 Andhra Pradesh, India 2010. Chickpea Seed Production Manual. Melese D., (2005). Morphological and Random Amplified Polymorphic DNA (RAPD) marker variation analysis in some drought tolerance and susceptible chickpea (Cicer arietinum L.) genotypes; Thesis submitted to University of Addis Ababa, Ethiopia. Ojiewo Chris (2016). Presentation of Chickpea Production, Technology Adoption and Market Linkages in Ethiopia on Pan-African Grain Legume and World Cowpea Conference Livingstone -Zambia Feb 28 - Mar 4, 2016 Padmavathi P.V, Sreemannarayana S, Murthy, V. Satyanarayana Rao and Lal Ahamed M. (2013). Correlation and Path Coefficient Analysis in Kabuli Chickpea (Cicer arietinum L.) on International Journal of Applied Biology and Pharmaceutical Technology, Robertson, G.E. (1959). The sampling variance of genetic correlation coefficient. Biometrics, 15, 469-485. SAS Institute 2004 SAS/STAT guide for personal computers, version 9.0 edition, SAS Institute Inc. Cary, NC. Sengupta, K. and Kataria A.S. 1971.Path coefficient analysis for some characters in soybean. Indian Jornal of Genetics, 31, 290-295. Shafique MS, Ahsan M, Mehmood Z, Abdullah M, Shakoor A, Ahmad MI. (2016). Genetic variability and interrelationship of various agronomic traits using correlation and path analysis in Chickpea (Cicer arietinum L.). Acadamic Journal of Agricultural Research, 4(2), 082-085. Sharma J.R. (1998). Statistical and biometrical techniques in plant breeding. New Age International (P) Limited Publishers. New Delhi. 432 p. Singh, R.K and Chaudhary. (1977). Biometrical methods in quantitative genetic analysis. Kalyani Publisher, New Delhi, Ludhiana, India.300 p. Singh, K. B., M. Omar, M. C. Saxena, and C. Johansen (1997). Screening for drought resistance in spring chickpea in the Mediterranean region. Journal of Agronomy & Crop Science, 178, 22-235. doi: 10.1111/j.1439-037X.1997.tb00495.x Singh JL, Prasad C, Madakemohekar AH, Bornare SS (2014). Genetic variability and character association in diverse genotypes of barley (Hordeum vulgare L.). The Bioscan (Supplement on Genetics and Plant Breeding), 9(2),759-761. Tesfamichael Semere Mullu, Stephen Githiri Mwangi, Aggrey Bernard Nyende, N. V. P. R Ganga Rao, Damaris Achieng Odeny, Abhishek Rathore and Anil Kumars (2014). Assessment of genetic variation and heritability of agronomic traits in chickpea (Cicer arietinum L). International Journal of Agronomy and Agricultural Research. (IJAAR) ISSN: 2223-7054 (Print) 2225-3610 (Online) http://www.innspub.net Vol. 5, No. 4, p. 76-88, 2014. Thakur, S.K. and Sirohi, A. (2009). Correlation and path coffient analysis in chickpea (Cicer arietinum L.) under different seasons. Legume Research, 32, 1-6. Uday Chand Jha1, Singh D.P. and Roopa Lavanya (2012). Assessment of genetic variability and correlation of important yield related traits in chickpea (Cicer arietinum L.). Department of Genetics and Plant Breeding G.B. Pant University of Agriculture & Technology, Pantnagar-263 145 India agricultural research communication centre www.arccjournals.com /. Indian journals.comLegume Research, 35 (4), 341 - 344. Van der Maesen LJG (1987). Origin, history and taxonomy of chickpea. In: Saxena MC, Singh KB (eds) The Chickpea. Wallingford: C.A.B International, pp. 11-34. Yucel DO, Anlarsal AE, Yucel C (2006). Genatic Variabilty, Correalation and Path Analysis of Yield and Yield Components in Chickpea (Cicer arietinum L.). Turky Journal of Agriculture, 30, 182-188. Yucel DO and Anlarsal AE. (2010). Determination of selection criteria with path coefficient analysis in chickpea (Cicer arietinum L.) breeding. Bulgarian Journal of Agricultural Science, 16(1), 42-48. Zerihun J. B. (2011). Genetic diversity of elite chickpea (Cicer arietinum L.) varieties using morphological and inter simple sequence repeat markers. Thesis Submitted to the College of Natural and Computational Sciences, Department f Biology, School of Graduate Studies Haramaya University, Haramaya 2011. 150 Acta agriculturae Slovenica, 111 - 3, december 2018 doi:10.14720/aas.2018.111.3.15 Original research article / izvirni znanstveni članek Vpliv globine obdelave tal z vrtavkasto brano na porabo energije in pripravo setvenega sloja pred setvijo koruze Rajko BERNIK1, Filip VUČAJNK1 Received July 30, 2018; accepted November 23, 2018. Delo je prispelo 30. julija 2018, sprejeto 23. novembra 2018. IZVLEČEK Na Laboratorijskem polju Biotehniške fakultete smo v letu 2012 izvedli poljski poskus, v katerem smo želeli ugotoviti vpliv obdelave tal na porabo energije, na fizikalno mehanske lastnosti tal v setveni posteljici in na vznik koruze. Za predsetveno pripravo tal smo uporabili vrtavkasto brano, s katero smo nastavili globino obdelave tal na 5 cm, 10 cm in 15 cm (dejansko dosežene globine tal 7,3 cm, 8,7 cm in 11,2 cm). Poskusna zasnova so bili slučajni bloki. V poskusu smo uporabili traktor z brezstopenjskim menjalnikom z imensko močjo 73 kW in vrtavkasto brano z delovno širino 2,5 m. Hitrost obdelave tal na traktometru je bila 5,0 km h-1 in vrtilna frekvenca motorja 1900 min-1. Poraba goriva na uro, poraba goriva na hektar ter poraba energije na hektar so naraščali s povečanjem nastavljene globine obdelave tal z vrtavkasto brano od 5 do 15 cm. Pri nastavljenih globinah obdelave tal 10 in 15 cm je bila vertikalna upornost tal na globinah med 8 in 13 cm manjša kot pri globini obdelave tal 5 cm. Med tremi nastavljenimi globinami obdelave tal z vrtavkasto brano ni bilo značilnih razlik v fizikalnih lastnosti tal v setveni posteljici in vzniku koruze. Globina obdelave tal 5 cm je bila najprimernejša, tako glede porabe goriva in porabe energije, kot tudi fizikalno mehanskih lastnosti tal v setvenem sloju in poljskega vznika koruze. Ključne besede: obdelava tal; vrtavkasta brana; poraba energije; fizikalno-mehanske lastnosti tal; koruza ABSTRACT INFLUENCE OF SOIL CULTIVATION DEPTH ON ENERGY CONSUMPTION AND ON PREPARATION OF SEED BED USING ROTARY HARROW BEFORE MAIZE PLANTING In 2012 on the Laboratory Field of Biotechnical Faculty the field trial was carried out, trying to establish the influence of the soil cultivation on the fuel consumption, on the physical-mechanical soil properties of the seed bed and at the end on the field emergence of maize. A rotary harrow was used for soil preparation just before maize planting and it was adjusted to the soil cultivation depths of 5 cm, 10 cm and 15 cm. The trial was designed as random blocks. A tractor with stepless transmission and nominal power of 73 kW and a rotary harrow with working width of 2.5 m were used. The speed of soil cultivation was 5.0 km h-1 on the tractometer and the engine rotational frequency was 1900 rpm. The fuel consumption per hour, the fuel consumption per hectare and the energy consumption per hectare increased by increasing the adjusted soil depth cultivation from 5 cm to 15 cm using the rotary harrow. At the adjusted soil cultivation depth of 10 and 15 cm cm, the vertical soil resistance at depths between 8 and 13 cm was lower than at the adjusted soil depths of 5 cm. No significant differences were found regarding the soil physical properties in the seed bed and the field emergence of maize among three adjusted soil cultivation depths. The soil cultivation depth of 10 cm proved to be the most appropriate in view of the fuel consumption, energy consumption as well as the physical-mechanical soil properties of the seed bed and plant emergence. Key words: soil cultivation; rotary harrow, energy consumption; physical-mechanical soil properties; maize 1 University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva ulica 101, SI-1111 Ljubljana, Slovenia, *corresponding author: filip.vucajnk@bf.uni-lj.si Prispevek je del magistrskega dela Luke Dularja. Mentor: prof. dr. Rajko Bernik Acta agriculturae Slovenica, 111 - 3, december 2018 str. 671 - 659 Rajko BERNIK, Filip VUČAJNK 1 UVOD Z dopolnilno obdelavo tal poskrbimo, da je velikost talnih delcev v setveni plasti ustrezna in so s tem tla optimalno pripravljena za setev (Bernik, 2005). Obdelava tal je eden najpomembnejših, energetsko potratnih in dragih tehnoloških postopkov pri pridelavi rastlin. Ustrezen način obdelave tal je odvisen od rastlinske vrste, vremenskih razmer, fizikalno mehanskih lastnosti tal, obstoječih strojev za obdelavo tal in ostalih dejavnikov. Vsak način obdelave tal ima določene prednosti in slabosti. Pri konvencionalni obdelavi tal je večja možnost za doseganje večjih pridelkov in boljše kakovosti kot pri drugih načinih obdelave tal. Po drugi strani je zaradi slabe storilnosti strojev in potrebe po močnejših traktorjih konvencionalna obdelava tal dražja (Šarauskis in sod., 2014). Isti avtorji so v poskusu primerjali globoko in plitvo oranje, globoko in plitko rahljanje tal ter direktno setev pri pridelavi koruze. Pri reducirani obdelavi tal brez oranja je bila poraba goriva 12-58 % manjša kot pri konvencionalni obdelavi tal, ki je vključevala oranj e. Zaradi manjše porabe goriva so bili pri reducirani obdelavi tal manjši stroški in manjši izpusti CO2. Pri uporabi kmetijskih strojev pri reducirani obdelavi tal znašajo izpusti CO2 v okolje 107-223 kg ha-1, medtem ko pri globokem oranju 253 kg ha-1 CO2. Mileusnic in sod. (2010) so primerjali različne načine obdelave tal glede na porabo goriva. V poskusu so primerjali 4 različne traktorje s priključenimi stroji za konvencionalno ter konzervirajočo obdelavo tal ter direktno setev. Pri konvencionalni obdelavi tal je pri vseh uporabljenih traktorjih znašala energijska poraba goriva od 412 do 740 MJ ha-1. V primeru konzervirajoče obdelave tal je le-ta segala od 183 do 266 MJ ha-1, medtem ko je bila pri direktni setvi med 80 do 284 MJ ha-1. Energijska poraba goriva (MJ ha-1) se izračuna kot produkt porabljene količine nafte (kg ha-1) in kurilne vrednosti plinskega olja (42 MJ kg-1). Deperon Júnior in sod. (2016) so analizirali stroje za obdelavo tal pri pridelavi koruze, in sicer diskasto brano, plug in rahljalnik ter 4 stopnje zbitosti tal. Prva stopnja pomeni, da ni bilo prehoda traktorja, druga stopnja pomeni 3 prehode traktorja, tretja stopnja pomeni 6 prehodov traktorja in četrta stopnja pomeni 9 prehodov traktorja. Rezultati kažejo, da izbira stroja za obdelavo tal vpliva na volumsko gostoto tal in poroznost tal na globini 0-10 cm. Zaradi večje zbitosti tal se je povečala vertikalna upornost tal na globini 0-30 cm. Pri vertikalni upornosti tal nad 153 N cm-2 se je linearno zmanjšal pridelek suhe snovi in pridelek zrnja. Če je bila vertikalna upornost tal večja kot 218 N cm-2, se je zmanjšala tudi suha snov korenin. Z uporabo ustreznih strojev za obdelavo tal je mogoče zmanjšati stroške energije pri rastlinski pridelavi (Mani in sod., 2007; Ozkan in sod., 2007; Tabatababaeefar in sod., 2009). Način obdelave tal vpliva na lastnosti tal, kot so volumska gostota tal, poroznost in zbitost tal (Strudley in sod., 2015). Vertikalna upornost tal služi kot indikator vpliva obdelave tal in števila prehodov tal s kmetijskimi stroji na talne lastnosti. Veliko raziskav je bilo narejenih o vplivu števila prehodov tal s kmetijskimi stroji na vertikalno upornost tal (Carrara in sod., 2007; Koch in sod., 2008). Ugotovljeno je bilo, da vertikalna upornost tal narašča s povečanjem števila prehodov (Barik in sod., 2014). Botta in sod. (2004) so ugotovili, da je zaradi večje vertikalne upornosti tal prišlo do zmanjšanja pridelka soje od 10 do 38 %. Pri konvencionalni obdelavi tal, ki vključuje oranje s plugom, je v zgornji plasti tal manjša vertikalna upornost tal za 230 N cm-2 kot pri konzervirajoči obdelavi tal in tudi direktni setvi (Kuhwald in sod., 2016). Pri slednjih dveh obdelavah tal znaša vertikalna upornost tal 380 N cm-2 v zgornjih 30 cm tal, medtem ko pri konvencionalni obdelavi tal le 150 N cm-2. Na drugi strani nastane pri konzervirajoči obdelavi tal večje število por in večja hidravlična prevodnost na globini 30-35 cm kot pri konvencionalni obdelavi tal. Zaradi obračanja na koncu njive se tam pojavi največja vertikalna upornost tal, in sicer 600 N cm-2. Pred setvijo koruze je pomembna pravilna delovna globina predsetvene priprave tal, ki je odvisna tudi od priporočene globine setve koruze. Kot splošno priporočilo naj bi globina setve koruze znašala 5 cm, nikakor pa ne sme biti manjša kot 3,8 cm (Crop Focus, 2015). V setveni posteljici in tudi na površini tal ne sme biti prevelikih talnih delcev, ki bi lahko ovirali vznik rastlin. V Sloveniji za predsetveno pripravo tal v mnogih primerih uporabljajo vrtavkasto brano. Njena uporaba je smiselna na srednje težkih do težkih tleh, pri katerih samo z rotirajočimi elementi dosežemo zadovoljivo drobljenje talnih delcev in optimalno pripravo setvene posteljice. Zaradi zgoraj naštetih dejavnikov smo se odločili za poskus, v katerem smo uporabili tri različne nastavitve globine obdelave tal, in sicer 5, 10 in 15 cm pri predsetveni pripravi tal z vrtavkasto brano za kasnejšo setev koruze. Namen dela je bil ugotoviti primerno delovno globino pri predsetveni pripravi tal za setev koruze za zrnje na težkih tleh. Pri tem nas je zanimala poraba energije, fizikalno-mehanske lastnosti tal v setvenem sloju, dejanska globina obdelave tal in na koncu tudi vznik koruze. 672 Acta agriculturae Slovenica, 111 - 3, december 2018 Vpliv globine obdelave tal z vrtavkasto brano na porabo energije in pripravo setvenega sloja pred setvijo koruze 2 MATERIALI IN METODE Poskusna zasnova so bili naključni bloki s štirimi ponovitvami. Obravnavali smo tri različne nastavljene globine obdelave tal pri delu z vrtavkasto brano pred setvijo koruze, in sicer 5 cm, 10 cm in 15 cm. Posamezna parcela je bila dolga 100 m in široka 2,5 m. V poskusu smo uporabili traktor imenske moči 73 kW in vrtavkasto brano delovne širine 2,5 m. Vrtilna frekvenca priključne gredi traktorja pri delu z vrtavkasto brano je bila 540 min-1, medtem ko je bila vrtilna frekvenca nožev 284 min-1. Nastavljena delovna hitrost na tempomatu je znašala 5,0 km h-1. Za doseganje želene globine obdelave tal 5, 10 in 15 cm smo postavili sornik na nosilcu stroja v 3 različne izvrtine. Dolžina nožev na vrtavkasti brani je znašala 280 mm. Porabo goriva na uro smo odčitali na traktometru vsakih 20 m na posamezni poskusni parceli. Na podlagi porabe goriva na uro in površinske storilnosti smo izračunali porabo goriva na hektar. Nato smo iz porabe goriva na hektar in kurilne vrednosti plinskega olja (42 MJ kg-1) določili porabo energije na hektar. Globino obdelave tal smo izmerili z merilnim trakom na petih naključnih mestih pri vsakem obravnavanju. Vertikalno upornost tal smo merili z vertikalnim hidravličnim penetrometrom. Hitrost pomikanja konice potenciometra v tla je 1,8 cm s-1, frekvenca meritev pa 10 Hz. Podatki meritev so se shranjevali v .txt datoteko. Podatki meritev se obdelajo v programu Lab View. Program izračuna vertikalno upornost tal za vsak centimeter globine in tudi povprečno vertikalno upornost tal do globine 25 cm. Meritev velikosti talnih delcev smo opravili do globine obdelave tal, in sicer po en vzorec za vsako obravnavanje. Vzorec tal smo vzeli na naključnem mestu s posebno lopato in ga stresli na sita, ki so bila zložena eden na drugega. Mase s sit s talnimi delci smo stehtali na elektronski tehtnici Kern. Sita so imela različne velikosti mrež, in sicer 50, 30, 10, 5, 3, 1 in 0,5 mm. Na podlagi mase posameznih frakcij talnih delcev in skupne mase talnih delcev smo izračunali povprečni masni premer talnih delcev. S Kopeckijevimi cilindri smo vzeli vzorce tal do globine obdelave tal z vrtavkasto brano. Vzorce smo po odvzemu najprej stehtali, nato pa smo jih 24 ur sušili na 105 °C. Po koncu sušenja smo jih ponovno stehtali in na izračunali volumsko gostoto tal, poroznost in masni odstotek vode. Koruzo smo posejali 12.05. 2012 s pnevmatsko nadtlačno sejalnico za presledno setev Becker Aeromat 2. Na sejalnici smo najprej nastavili medvrstno razdaljo na 70 cm. Sejalnico smo s potisnim kolesom nastavili na želeno globino setve 5 cm. V poskusu smo uporabili seme koruze proizvajalca Pioneer du Pont hibrid PR39B29, zrelostni razred FAO 180. Proizvajalec priporoča gostoto setve od 90000 do 95000 zrn na hektar. Sejalnico smo nastavili na razdaljo med semeni v vrsti 15,5 cm, kar je pomenilo gostoto 92166 semena na hektar. Vznik koruze smo določili 13 dni po setvi tako, da smo na naključnem mestu prešteli rastline na dolžini 15,5 m. Povprečna dnevna temperatura zraka je v obdobju od priprave tal do vznika znašala 14,4 °C, medtem ko je bila količina padavin v tem obdobju 84,9 mm (Meteo, 2018). V programu Statgraphics Centurion 16 smo opravili analizo variance po postopku za slučajne bloke. Za ugotavljanje statističnih razlik med obravnavanji smo uporabili Duncanov test mnogoterih primerjav pri 5 % tveganju. Razlike med obravnavanji smo označili z različnimi črkami. Z regresijsko analizo smo ugotavljali odvisnost porabe energije na hektar od dejanske globine obdelave tal z vrtavkasto brano. Najprej smo preverili, kateri model je najprimernejši in nato izračunali ocene za posamezne parametre modela. Kasneje smo naredili analizo variance in izračunali F-statistiko, koeficient determinacije, koeficient korelacije in standardno napako regresije. 3 REZULTATI Pri nastavljeni globini obdelave tal z vrtavkasto brano 5 cm je bila dejanska izmerjena globina nekoliko večja, in sicer 7,3 cm. Pri nastavljeni globini obdelave tal 10 cm in 15 cm je bila dejanska globina obdelave tal manjša, in sicer je znašala 8,7 cm oz. 11,2 cm (slika 1). Acta agriculturae Slovenica, 111 - 3, december 2018 673 Rajko BERNIK, Filip VUČAJNK Slikal: Izmerjena globina tal pri treh nastavljenih globinah obdelave tal z vrtavkasto brano Figure 1: Measured values of soil depth at three adjusted soil depths using rotary harrow Slika 2: Vertikalna upornost tal pri treh globinah obdelave tal z vrtavkasto brano Figure 2: Vertical soil resistance at three soil cultivation depths using rotary harrow Na sliki 2 je prikazana vertikalna upornost tal pri treh globinah obdelave tal z vrtavkasto brano. Do globine obdelave tal 7 cm ni bilo značilnih razlik v vertikalni upornosti tal med tremi nastavljenimi globinami obdelave tal (Pregl. 1). Vertikalna upornost tal je na območju globine 0-7 cm znašala do 6,6 N cm-2. Na 8 cm globine je bila pri nastavljeni globini 5 cm vertikalna upornost tal (9,5 N cm-2) značilno večja kot pri 674 Acta agriculturae Slovenica, 111 - 3, december 2018 Vpliv globine obdelave tal z vrtavkasto brano na porabo energije in pripravo setvenega sloja pred setvijo koruze nastavljeni globini obdelave 15 cm (6,9 N cm-2). Na globinah 9 in 10 cm je bila vertikalna upornost tal pri nastavljeni globini obdelave 5 cm značilno večja kot pri ostalih dveh nastavljenih globinah 10 in 15 cm. Na globini meritve 11 cm so bile med vsemi tremi nastavljenimi globinami značilne razlike. Pri nastavljeni globini obdelave tal 5 cm je bila največja vertikalna upornost tal (22,7 N cm-2), medtem ko je bila najmanjša vertikalna upornost tal pri nastavljeni globini 15 cm (11,4 N cm-2). Pri nastavljeni globini obdelave tal 10 cm je bila vertikalna upornost vmes med obema globinama obdelave tal 5 in 15 cm. Na globini meritve 12 cm je bila vertikalna upornost tal pri nastavljenih globinah 5 in 10 cm značilno večja kot pri globini meritve 15 cm. Na globinah meritve 13-15 cm ni bilo značilnih razlik med tremi nastavljenimi globinami obdelave tal v vertikalni upornosti tal. Preglednica 1: Razlike v vertikalni upornosti tal (CI) po globini meritev med posameznimi obravnavanji Table 1: Differences in vertical soil resistance (CI) at measurement depths between individual treatments Globina (cm) Značilnost razlik CI (N cm-2) 5 cm 10 cm 15 cm 1 p = 0,0783 0,2 a* -0,02 a 0,19 a 2 p = 0,4034 0,9 a 0,9 a 0,4 a 3 p = 0,5015 1,3 a 1,6 a 1,1 a 4 p = 0,2764 1,9 a 2,4 a 1,7 a 5 p = 0,2525 2,9 a 3,5 a 2,6 a 6 p = 0,3669 4,6 a 4,9 a 3,9 a 7 p = 0,1935 6,6 a 6,2 a 5,3 a 8 p = 0,0236 9,5 b 7,8 ab 6,9 a 9 p = 0,0002 13,4 b 9,8 a 8,2 a 10 p = 0,0001 18,6 b 12,6 a 10,2 a 11 p = 0,0001 22,7 c 16,4 b 11,4 a 12 p = 0,0001 24,0 b 21,1 b 13,8 a 13 p = 0,0915 23,0 a 23,7 a 18,5 a 14 p = 0,7019 24,1 a 24,8 a 26,5 a 15 p = 0,1015 24,1 a 25,0 a 29,8 a * različne črke v isti vrsti pomenijo statistično značilno razliko po Duncanov testu (a = 0,05) Izračunali smo tudi povprečno vertikalno upornost tal na območju globine 0-15 cm pri vseh treh nastavljenih globinah obdelave tal z vrtavkasto brano (Slika 3). Pri nastavljeni globini obdelave tal 5 cm je bila vertikalna upornost tal značilno večja kot pri globini obdelave tal 15 cm (9,4 N cm-2). 14,0 12,0 i" i ab 10,0 1. •J- 8,0 | C 6,0 4,0 - 11,8 10,7 1 9,4 2,0 5 cm 10 cm Globina obdelave tal 15 era Slika 3: Povprečna vertikalna upornost tal za območje globine 0-15 cm Figure 3: Mean vertical soil resistance at the depth area of 0 to 15 cm Acta agriculturae Slovenica, 111 - 3, december 2018 675 Rajko BERNIK, Filip VUČAJNK Na območju globine 0-5 cm ni bilo značilnih razlik v povprečni vertikalni upornosti tal med tremi nastavljenimi globinami (slika 4). Pri nastavljeni globini obdelave tal 5 in 10 cm je bila vertikalna upornost tal na območju globine 5-10 cm značilno večja kot pri nastavljeni globini obdelave tal 15 cm. Na območju globine 10-15 cm ni bilo značilnih razlik med tremi nastavljenimi globinami obdelave tal. Slika 4: Povprečna vertikalna upornost tal po globinah 0-5 cm, 5-10 cm in 10-15 cm Figure 4: Mean vertical soil resistance at depths of 0-5 cm, 5-10 cm and 10-15 cm Poraba goriva na uro je naraščala s povečanjem nastavljene globine tal (Slika 5). Najmanjša poraba goriva na uro je bila pri nastavljeni globini obdelave tal 5 cm, in sicer 11,8 l h-1. Pri nastavljeni globini obdelave tal 15 cm smo dosegli največjo porabo goriva uro (18,3 l h-1). Pri nastavljeni globini obdelave tal 10 cm je znašala poraba goriva 14,5 l h-1, kar je bilo vmes med porabo goriva pri 5 in 15 cm nastavljene globine. Slika 5: Poraba goriva na uro pri treh nastavljenih globinah obdelave tal Figure 5: Fuel consumption per hour at three adjusted soil cultivation depths 676 Acta agriculturae Slovenica, 111 - 3, december 2018 Vpliv globine obdelave tal z vrtavkasto brano na porabo energije in pripravo setvenega sloja pred setvijo koruze Izračunali smo tudi porabo goriva na hektar (Slika 6). Tudi poraba goriva na hektar je naraščala s povečanjem nastavljene globine obdelave tal z vrtavkasto brano. Najmanjša poraba goriva na hektar je znašala 9,4 l ha-1 pri nastavljeni globini obdelave 5 cm, medtem ko je bila največja poraba 14,7 l ha-1 pri nastavljeni globini obdelave 15 cm. Pri globini obdelave 10 cm je znašala 11,6 l ha-1 in je bila vmes med obema globinama 5 in 15 cm. Slika 6: Poraba goriva na hektar pri treh globinah obdelave tal Figure 6: Fuel consumption per hectare at three soil cultivation depths Na sliki 7 je prikazana odvisnost porabe goriva na hektar od dejanske globine obdelave tal z vrtavkasto brano. Model: Poraba na ha (l ha-1) = 1,06815 + 1,19812*izmerjena globina (cm) Če znaša globina obdelave tal z vrtavkasto brano 5,0 cm, bo predvidena poraba goriva znašala 7,1 l ha-1. V kolikor bi bila globina obdelave tal 10 cm, bo napovedana poraba goriva znašala 13,0 l ha-1. Za vsak cm v globini obdelave tal se poraba goriva poveča za 1,2 l ha-1. Dejanska globina obdelave tal (cm) Slika 7: Linearni regresijski model za odvisnost porabe goriva na hektar od dejanske globine obdelave tal z intervali zaupanja za povprečno (notranji hiperboli) in posamezno napoved (zunanji hiperboli) Figure 7: Linear regression model for the relationship between the fuel consumption per hectare and the actual soil cultivation depth with confidence intervals for the mean prediction (i.e. the inner bounds) Acta agriculturae Slovenica, 111 - 3, december 2018 157 Rajko BERNIK, Filip VUČAJNK Poraba energije pri obdelavi tal z vrtavkasto brano na globini 5 cm je znašala 347 MJ ha-1 in je bila najmanjša med vsemi tremi nastavljenimi globinami obdelave tal z vrtavkasto brano. Pri nastavljeni globini obdelave tal 15 cm je bila poraba energije največja in je znašala 539 MJ ha-1 (Slika 8), medtem ko je pri nastavljeni globini obdelave tal 10 cm znašala 427 MJ ha-1. Slika 8: Poraba energije pri treh nastavljenih globinah obdelave tal z vrtavkasto brano Figure 8: Energy consumption at three adjusted soil cultivation depths using rotary harrow Med obravnavanji ni bilo ugotovljenih razlik v volumski gostoti tal, poroznosti, masnem odstotku vode in povprečnem masnem premeru talnih delcev. Volumska gostota tal je bila med 1,12 in 1,16 g cm-3, medtem ko je poroznost znašala med 56,4 in 57,8 %. Masni odstotek vode se je gibal med 31,7 in 33,3 %, povprečni masni premer talnih delcev pa med 7,7 in 9,1 mm (Pregl. 2). Preglednica 2: Volumska gostota tal, poroznost, masni odstotek vode v tleh in povprečni premer talnih delcev Table 2: Soil density, soil porosity, soil water content and mean diameter of soil particles Nastavljena globina Volumska gostota tal (g cm-3) Poroznost (%) Masni odstotek vode(%) Povprečni premer talnih delcev (mm) 0 cm 1,12 a 57,8 a 33,3 a 7,7 a 5 cm 1,16 a 56,4 a 31,7 a 8,1 a 10 cm 1,15 a 56,4 a 32,5 a 9,1 a Med nastavljenimi globinami setve ni bilo razlik v poljskem vzniku koruze. Le ta je znašal od 96,0 do 97,7 %. Preglednica 3: Vznik koruze pri treh nastavljenih globinah obdelave tal Table 3: Maize emergence at three adjusted soil cultivation depths Nastavljena globina Vznik (%) 0 cm 97,7 a 5 cm 96,3 a 10 cm 96,0 a 678 Acta agriculturae Slovenica, 111 - 3, december 2018 Vpliv globine obdelave tal z vrtavkasto brano na porabo energije in pripravo setvenega sloja pred setvijo koruze 4 RAZPRAVA Dejanska globina obdelave tal je bila za 2,3 cm večja od nastavljene globine 5 cm. V tem primeru bi morali sornik na vrtavkasti brani prestaviti za 1 izvrtino nižje na nosilcu in s tem bi zmanjšali globino obdelave tal. Nastavljena globina 10 cm je bila za 1,3 cm manjša, kar pomeni, da bi morali sornik prestaviti za 1 izvrtino višje in s tem bi globino obdelave približali 10 cm. Pri nastavljeni globini 15 cm je bila dejanska globina za 3,8 cm manjša, kar pomeni, da bi morali sornik prestaviti za 2 luknji višje na nosilcu, s tem bi povečali delovno globino. Rezultati kažejo, da je dejansko globino obdelave tal težko natančno nastaviti predvsem pri večjih globinah. Značilne razlike v vertikalni upornosti tal so se med tremi nastavljenimi globinami obdelave tal z vrtavkasto brano 5 cm, 10 cm in 15 cm pojavile na globinah od 812 cm. Na globinah 8 cm, 9 cm in 10 cm je bila pri nastavljeni globini obdelave tal 5 cm večja vertikalna upornost tal, kot je bila pri nastavljenih globinah 10 cm in 15 cm. Ti rezultati so bili pričakovani, saj so noži pri nastavljenih globinah 10 cm in 15 cm rahljali zemljo na globinah od 8-10 cm, medtem ko se pri nastavljeni globini 5 cm to ni zgodilo. Na globinah 11 in 12 cm je bila pri nastavljeni globini obdelave tal 15 cm manjša vertikalna upornost tal kot pri ostalih dveh nastavljenih globinah obdelave tal 5 in 10 cm, kar je bilo pričakovano. Podobne razlike smo pričakovali tudi na globinah 14 in 15 cm, vendar je bila dejanska globina delovanja nožev pri nastavljeni globini 15 cm manjša. V poskusu se je izkazalo, da je izredno težko nastaviti natančno dejansko globino delovanja nožev, kljub temu da smo pred izvedbo poskusa te nastavitve izvedli na sosednji parceli. Neposrednih primerjav iz tujih raziskav ni. Večina raziskav glede vertikalne upornosti tal pri pridelavi koruze se nanaša na različne načine obdelave tal. Zeyada in sod. (2017) pišejo, da je v tleh z majhno do srednje veliko vertikalno upornostjo tal (od 60 do 165 N cm-2) najprimernejša globina obdelave tal z diskasto brano 10 cm. Na tleh z veliko vertikalno upornostjo tal (od 165 do 230 N cm-2) pa je potrebno tla obdelati do globine 20 cm. Podatki iz njihove raziskave se navezujejo na vertikalno upornost tal pred dopolnilno obdelavo tal, kar pa ni direktno primerljivo z našim poskusom, saj mi nismo merili vertikalne upornosti pred dopolnilno obdelavo tal. V našem poskusu je bila izmerjena vertikalna upornost tal bistveno manjša, in sicer ni presegla 30 N cm-2 na globini 15 cm, kolikor je znašala globina obdelave tal. Tako lahko trdimo, da je bila setvena posteljica zelo rahla in praktično nič zbita. Povprečna vertikalna upornost na globini 0-15 cm ni presegala 12 N cm-2. Kuhwald in sod. (2016) so ugotovili manjšo vertikalno upornost tal v zgornji plasti tal pri konvencionalni obdelavi tal v primerjavi s konzervirajočo obdelavo tal in neposredno setvijo. Rezultate drugih raziskav o vertikalni upornosti tal ne moremo neposredno primerjati z našimi, saj gre za različne globine meritev vertikalne upornosti tal, različni čas meritev, različne načine obdelave tal, različne traktorje, stroje za obdelavo tal, različne vremenske razmere, itd.. Zaradi navedenega so vrednosti vertikalne upornosti v teh raziskavah precej večje od naših. Ker je neposrednih primerjav zelo malo, smo navedli nekatere rezultate raziskav. Deperon in sod. (2016) so ugotovili zmanjšanje pridelka koruznega zrnja in pridelka suhe snovi, če je znašala vertikalna upornost tal več kot 153 N cm-2 pred dopolnilno obdelavo tal. Leghari in sod. (2016) trdijo, da je bila pri direktni setvi ugotovljena največja vertikalna upornost tal v primerjavi z konvencionalno in konzervirajočo obdelavo tal, in sicer je znašala 80 N cm-2. Veliko je bilo raziskav o vplivu števila prehodov s kmetijskimi stroji, v katerih so ugotovili povečanje vertikalne upornosti tal s povečanjem števila prehodov po polju (Barik in sod., 2014; Koch in sod., 2008). Te rezultate ne moremo neposredno primerjati z našimi, saj mi števila prehodov v poskusu nismo obravnavali. Poraba goriva na uro je naraščala s povečanjem globine obdelave tal z vrtavkasto brano, kar je bilo pričakovano. Bolj poglobljeno sliko glede porabe goriva nam pokaže poraba goriva na hektar. S povečanjem nastavljene delovne globine je značilno naraščala poraba goriva na hektar in to od 9,4 l ha-1 pri nastavljeni globini 5 cm do 11.6 l ha-1 pri nastavljeni globini 10 cm in na koncu do 14.7 l ha-1 pri nastavljeni globini 15 cm. Naši rezultati glede porabe goriva na hektar pri delu z vrtavkasto brano so primerljivi z rezultati, ki jih navaja KTBL (2012), kjer znaša poraba goriva 10,4 l ha-1, le da je v njihovem primeru delovna širina vrtavkaste brane znašala 3 m. Tudi Brehm (2010) je pri preizkušanju 3 m vrtavkaste brane na delovni globini 8 cm ugotovil porabo goriva 11,0 l ha-1, kar je popolnoma primerljivo z našimi rezultati. Poraba goriva (l h-1) je odvisna od imenske moči traktorja (kW) in specifične porabe goriva (g kWh-1). Če primerjamo traktorja z isto imensko močjo, ki poganjata vrtavkasto brano iste delovne širine pri isti vozni hitrosti, bo poraba goriva na hektar manjša pri traktorju z manjšo specifično porabo goriva. V kolikor bi uporabili traktor z večjo imensko močjo in večjo specifično porabo goriva od našega v poskusu pri isti vozni hitrosti, bi bila poraba goriva na hektar večja kot je bila v našem poskusu. Traktor Fendt 210 Vario, ki je bil uporabljen v poskusu, ima pri imenski moči 70 kW specifično porabo goriva 210 g kWh-1, kar pomeni zelo majhno specifično porabo goriva. Odvisnost porabe goriva na hektar od dejanske globine obdelave tal z vrtavkasto brano smo potrdili z linearnim regresijskim modelom. 86,4 % variabilnosti porabe goriva na hektar pojasni dejanska globina Acta agriculturae Slovenica, 111 - 3, december 2018 159 Rajko BERNIK, Filip VUČAJNK obdelave tal, ostali del ostane nepojasnjen. Koeficient korelacije znaša 0,99, kar pomeni močno povezavo med porabo goriva na hektar in dejansko globino obdelave tal. Mileusnic in sod. (2010) so izračunali energijsko porabo goriva pri različnih načinih obdelave tal (MJ ha-1) kot produkt porabljene količine plinskega olja (kg ha-1) in kurilne vrednosti plinskega olja (42 MJ kg-1). Če naše podatke o porabi goriva v litrih na hektar pretvorimo v kg ha-1 in pomnožimo s 42 MJ kg-1, dobimo energijsko porabo goriva na hektar. Pri nastavljeni globini obdelave tal 5 cm z vrtavkasto brano znaša poraba energije 347 MJ ha-1, pri nastavljeni globini 10 cm znaša 427 MJ ha-1 in pri nastavljeni globini 15 cm znaša 539 MJ ha-1. Rezultati kažejo, da poraba energije na hektar značilno narašča z nastavljeno globino obdelave tal. Direktno primerljivih rezultatov z našo raziskavo ni. Po ugotovitvah Mileusnica in sod. (2010) je znašala poraba energije pri konvencionalni obdelavi tal med 412 in 740 MJ ha-1. V tej energiji je zajeta energija za oranje, pripravo tal in setev, česar mi v našem poskusu nismo merili. V poskusu smo mi analizirali le porabo energije pri predsetveni pripravi tal, nič pa porabo energije za samo oranje in setev. Vsekakor naši podatki kažejo, da je pri nastavljeni globini 15 cm poraba energije na hektar nekoliko prevelika za predsetveno pripravo tal za koruzo. Veliko avtorjev navaja, da se pri konzervirajoči obdelavi tal in pri direktni setvi poraba energije na hektar zmanjša (Šarauskis in sod., 2014; Stajnko, 2017), a tega mi v poskusu nismo ugotavljali. Med fizikalnimi lastnostmi tal ni bilo ugotovljenih razlik pri različnih nastavljenih globinah obdelave tal z vrtavkasto brano pred setvijo koruze, kar ni bilo v skladu s postavljeno hipotezo. Predvidevamo, da se razlike niso pojavile, ker je bila razlika v globini odvzema vzorcev tal S Kopeckijevimi cilindri zelo majhna (od 5 do 10 cm). Pri večjih globinah obdelave tal se fizikalne lastnosti tal na tako ozkem območju globine niso spremenile. Če bi bile te razlike med globinami obdelave tal večje, se bi pojavile tudi razlike v fizikalnih lastnostih tal. Volumska gostota tal je znašala od 1,12 do 1,16 g cm-3. Tla, ki imajo volumsko gostoto manjšo od 1,40 g cm-3, kot je bilo v našem poskusu, veljajo po Mrharju (1995) za malo zbita. Vsekakor je bila v našem poskusu precej manjša volumska gostota tal, kot navajajo Leghari in sod. (2016). V njihovem poskusu z različnimi načini obdelave tal pri koruzi je volumska gostota tal pri direktni setvi znašala med 1,4 in 1,5 g cm-3. Pri konvencionalni in konzervirajoči obdelavi tal je bila volumska gostota tal manjša kot pri neposredni setvi. Tudi v poroznosti tal in masnem odstotku vode ni bilo značilnih razlik med tremi nastavljenimi globinami obdelave tal z vrtavkasto brano. Poroznost tal je v neposredni povezavi z volumsko gostoto tal, saj se s povečanjem zbitosti tal zmanjša poroznost tal zaradi zmanjšanega deleža makropor (Sommer, 1974). Po navedbah Sommerja in Zacha (1986) znaša poroznost za poljska tla med 40 in 50 %. V našem poskusu je bila poroznost nad 56 %, kar pomeni, da je bil delež makropor v tleh velik, zato so nastale ugodne razmere za izmenjavo zraka in vode v setveni posteljici ter kasneje tudi za rast korenin. Prav tako nismo ugotovili razlik v povprečnem premeru talnih delcev (MWD) in odstotku talnih delcev po frakcijah med tremi nastavljenimi globinami obdelave tal z vrtavkasto brano. MWD je znašal med 7,7 in 9,1 mm. Direktnih primerjav s tujimi raziskavami nimamo. Brehm (2010) navaja, da je po obdelavi tal z vrtavkasto brano povprečni premer na ilovnatem pesku znašal 9,6 mm, kar je nekoliko več kot v našem poskusu. Bernik (2005) navaja, da naj bi v srednji Evropi povprečni premer talnih delcev v setveni posteljici znašal med 8 in 10 mm, kar smo mi v našem poskusu potrdili. Med tremi nastavljenimi globinami obdelave tal ni bilo razlik v poljskem vzniku koruze. Ta je znašal od 96,0 do 97,7 %. Rezultati kažejo, da je bila setvena posteljica pri vseh treh nastavljenih globinah dobro pripravljena, kar je omogočilo dober vznik rastlin. Lütke Entrup in sod. (2013) navajajo, da lahko pride do zaskorjenja površine tal, kar privede do zmanjšanega vznika rastlin. Do zaskorjenja lahko pride, če takoj po dopolnilni obdelavi tal pade večja količina dežja, nato pa nastopi daljše sušno obdobje brez padavin. Takrat se tla zaskorjijo še posebej, če so bila preveč intenzivno obdelana in ni bilo na površini tal večjih talnih agregatov. Ti bi povzročili, da bi bila površina bolj hrapava in ne bi prišlo do zaskorjenja tal. Predvidevamo, da bi lahko tudi v našem poskusu v primeru ekstremnih vremenskih razmer prišlo do zaskorjenja. Glede na dobre fizikalno-mehanske lastnosti tal pri vseh treh nastavljenih globinah obdelave tal z vrtavkasto brano predvidevamo, da bi lahko izbrali večjo delovno hitrost od 5 km h-1, ki je bila v poskusu (npr. 8 km h-1). Tako bi dosegli manjšo porabo goriva na hektar in prav tako tudi manjšo porabo energije na hektar pri pripravi tal z vrtavkasto brano. Ta dejavnik hitrosti obdelave tal bo potrebno vključiti v nadaljnje poskuse 680 Acta agriculturae Slovenica, 111 - 3, december 2018 Vpliv globine obdelave tal z vrtavkasto brano na porabo energije in pripravo setvenega sloja pred setvijo koruze 5 ZAKLJUČEK Rezultati kažejo, da se je pri predsetveni pripravi tal z najprimernejša izkazala nastavljena globina obdelave tal vrtavkasto brano za setev koruze, tako glede porabe 5 cm. goriva kot tudi fizikalno mehanskih lastnosti tal, kot ó VIRI Barik K., Aksakal E. L., Islam K. R., Sari S., Angin I. (2014). Spatial veriability in soil compaction properites associated with field traffic operations. Catena, 120, 122-133. doi:10.1016/j.catena.2014.04.013 Bernik R. (2005). Tehnika v kmetijstvu: obdelava tal, setev, gnojenje. Predavanja za študente agronomije in zootehnike. Biotehniška fakulteta, Oddelek za agronomijo: 138 str. Botta G.P., Jorajuria D., Balbuena R., Rosatto H. (2004). Mechanical and cropping behavior of direct drilled soil under different traffic intensities: effect on soybean (Glycine max L.) yields. Soil & Tillage Research, 78, 53-58. doi:10.1016/j.still.2004.01.004 Brehm D. (2010). Amazone KE 3000 Super. DLG-Prüfbericht 5897 F. Groß-Umstadt, DLG e.V. Teestzentrum Tachnik und Betriebsmittel: 6 str. http://www.dlg-test.de/tests/5897F.pdf (19. 3. 2018) Carrara M., Castrignanô A., Comparetti A., Febo P., Orlando S. (2007). Mapping of penetrometer resistance in relation to tractor traffic using multivariate geostatistics. Geoderma, 142, 294-307. doi:10.1016/j.geoderma.2007.08.020 Crop Focus. (2015). Planting depth and spacing. https://growersunited.files.wordpress.com/2014/03/ c_depth-considerations.pdf (22.1.2018) Deperon Júnior A. M., Nagahama H. J., Olszevski N., Cortez J. W., De Souza E. B. (2016). Tillage machinery and compaction level influence on soil physical properties and corn agronomic aspects. Journal of the Brazilian Association of Agricultural Engineeing, 36, 367-376. Dyer J.A., Desjardins R. L. (2003). The impact of farm machinery management on the greenhouse gas emission from Canading agriculture. Journal of Sustainable Agriculture, 22(3), 59-47. doi:10.1300/J064v22n03_07 Filipovič D., Košutič S., Gospodaric Z., Zimmer R., Banaj D. (2006). The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia. Agriculture, Ecosysistems and Environment, 115, 290-294. doi:10.1016/j.agee.2005.12.013 Koch H. J., Heuer H., Tomanova O., Märländer B. (2008). Cumulative effect of annually repeated passes of heavy agricultural two tillage systems. Soil and Tillage Research, 101, 69-77. doi:10.1016/j.still.2008.07.008 KTBL (2012). Betriebsplanung Landwirtschaft, Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, 824 str. Kuhwald M., Blaschek M., Minkler R., Nazemtseva Y., Schwanebeck M., Winter J., Duttmann R. (2016). Spatial analysis of long-term effects of different tillage practices based on penetration resistance. Soil Use and Managment, 32, 240-249. doi: 10.1111/sum. 12254 Leghari N., Mughal A. Q., Leghari K. Q., Farhad W., Mohkum Hammad M. and H. (2016). Efect of various tillage practices on soil properties and maize growth. Pakistan Journal Botany, 48(3), 1173-1182. Lütke Eintrup N., Schwarz F.J., Heilmann H. (2013). Handbuch Mais. Frankurt am Main, DLG Verlag: 442 str. Meteo (2018). http ://meteo .arso. gov. si/met/sl/app/web met/#web m et==8Sdwx2bhR2cv0WZ0V2bvEGcw9ydlJWblR3 LwVnaz9 SYtVmYh9iclFGbt9 SaulGdugXbsx3cs9 mdl5WahxXYyNGapZXZ8tHZv1WYp5mOnMHb vZXZulWYnwCchJXYtVGdlJn0n0UQQdSf; Mileusnič Z.I., Petrovič D.V., Devic M.S. 2010. Comparison of tillage systems according to fuel consumption. Energy, 35, 221-228. doi:10.1016/j.energy.2009.09.012 Mrhar M. (1995). Racionalna obdelava tal. Ljubljana, Kmetijski inštitut Slovenije: 109 str. Ozkan B., Fert C., Karadeniz C. F. (2007). Energy and cost analysis for greenhouse and open-field grape production. Energy, 32, 1500-1504. Sommer C. (1974). Die Verdichtungsempfindlichkeit zweier Ackerböden. Dissertation. Braunschweig, Technische Universität: 158 str. Acta agriculturae Slovenica, 111 - 3, december 2018 str. 161 - 659 Rajko BERNIK, Filip VUČAJNK Sommer C., Zach M. (1986). Bodenverdichtungen und deren Auswirkungen auf die Pflanzenentwicklung und den Ertrag. V: Bodenverdichtungen beim Schlepper- und Maschineneinsatz und Möglichkeiten zu ihrer Verminderung. KTBL-Schrift, 308, 73-88. Stajnko D. (2017). Obdelovanje tal in protierozijska zaščita na vodovarstvenih območjih. Maribor, Univerzitetna založba Univerze v Mariboru: 100 str. doi:10.18690/978-961-286-066-0 Strudley M. W., Green T. R., Ascough I. I., James C. (2008). Tillage effects on soil hydraulic properties in space and time: state of the science. Soil and Tillage Research, 99, 4-48. doi:10.1016/j.still.2008.01.007 Sarauskis E., Buragiene S., Masilionytè L., Romaneckas K., Avizienytè D., Sakalauskas D. (2014). Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy, 69, 220235. doi:10.1016/j.energy.2014.02.090 Tabatabaeefar A., Emamzadeh H., Gasemi Varnamkhasti M., Rahimizadeh R., Karimi M. (2009). Comparison of energy of tillage systems in wheat production. Energy, 34, 41-45. doi:10.1016/j.energy.2008.09.023 Zeyada A. M., Al-Gaadi K. A., Tola E., Madugundu R., Kayad A. G. (2017). Impact of soil firmness and tillage depth on irrigated maize silage performance. Applied Engineering in Agriculture, 33, 491-498. doi:10.13031/aea.11641 682 Acta agriculturae Slovenica, 111 - 3, december 2018 doi: 10.14720/aas.2018.111.3.16 Original research article / izvirni znanstveni članek The influence of cultivation method on nitrate content in some lettuce samples Veronika KMECL1, Dragan ŽNIDARČIČ2 Received August 22, 2018; accepted November 13, 2018. Delo je prispelo 22. avgusta 2018, sprejeto 13. novembra 2018. ABSTRACT The use of nitrogen fertilizers is one of the main effects for the accumulation of nitrates in plants. Conventional agriculture, in comparison to integrated and organic farming, causes greater environmental pollution and poorer quality of crops. Within the framework of the research, we studied the influence of the method of cultivation on the content of nitrates in the samples of lettuce (Lactuca sativa L.). The samples were received directly from growing areas from different parts of Slovenia and analysed in the laboratory for the nitrate content (NO3-) according to the accredited method. The samples from conventional cultivation showed the highest sample representation (51 %), with values in the highest concentration range (1000 - 2500 mg of NO3- kg-1, one sample exceeded 2500 mg kg-1 fresh mass). Within the framework of integrated cultivation, there were less such samples (34 %), and among the samples from organic cultivation no sample exceeded 1000 mg of NO3- kg-1. Of 88 analysed samples, one sample exceeded the statutory limit value applicable to lettuce of the type Iceberg ('Ljubljanska ledenka'). On average, the Iceberg samples contained more nitrates than other types of lettuce. Key words: organic; conventional; integrated cultivation; nitrates; lettuce IZVLEČEK VPLIV NAČINA PRIDELAVE NA VSEBNOST NITRATOV V VZORCIH VRTNE SOLATE Raba dušikovih gnojil je eden glavnih vplivov kopičenja nitratov v rastlinah. Konvencionalno kmetijstvo, v primerjavi z integriranim in ekološkim kmetijstvom povzroča večje onesnaženje okolja in slabšo kakovost pridelkov. V okviru raziskave smo ugotavljali vpliv načina pridelave na vsebnost nitratov v vzorcih vrtne solate (Lactuca sativa L.). Vzorce smo prejeli neposredno iz pridelovalnih površin iz različnih delov Slovenije. V laboratoriju smo vzorce analizirali na vsebnost nitrata (NO3-) po akreditirani metodi. Kot pričakovano, so vzorci iz konvencionalne pridelave pokazali največjo zastopanost vzorcev (51 %), z vrednostmi v najvišjem koncentracijskem območju (1000 - 2500 mg NO3- kg-1 sveže mase, en vzorec je presegel vrednost 2500 mg kg-1). V okviru integrirane pridelave je bilo takšnih vzorcev manj (34 %), izmed vzorcev iz ekološke pridelave pa ni bilo vzorca, ki bi presegel vrednost 1000 mg NO3- kg-1. Izmed 88 analiziranih vzorcev, je en vzorec presegel zakonsko predpisano mejno vrednost, ki velja za vrtno solato tipa ledenka ('Ljubljanska ledenka'). V povprečju so vzorci ledenk vsebovali več nitratov, kot druge vrste vrtne solate. Ključne besede: ekološka; konvencionalna; integrirana pridelava; nitrat; vrtna solata 1 INTRODUCTION Nitrogen is the most important element in plant nutrition. The plants need it as a nutrient for building amino acids, proteins, nucleic acids and other vital compounds. The plants receive the nitrogen in the form of nitrate (NO3-) and ammonium ion (NH4+). Due to the oxidation of the ammonium nitrogen form to nitrate, which takes place in the soil in the presence of bacteria, the nitrate is the predominant form received by the plant (Below, 1994). The intensity of farming and the associated use of nitrogen fertilizers cause nitrates to accumulate in plants. Most of nitrate is accumulated in vegetables (especially leafy vegetables), less in field crops, and much less in fruits (Schuddeboom, 1993; Ysart et al., 1999; Zhong et al., 2002). Vegetables are the largest source of nitrate input in the human body; that is 7080 % of the total NO3- input (Gangolli et al., 1994). Nitrate itselves is harmless to health, however, after ingestion, it is influenced by microbiological processes 1 M.Sc. Chem., Agricultural Institute of Slovenia, Hacquetova 17, SI-1000 Ljubljana, Slovenia, e-mail: veronika.kmecl@kis.si 2 Ph.D., Agr., University of Ljubljana, Biotechnical Faculty, Department of agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia, e-mail: dragan.znidarcic@bf.uni-lj. si Acta agriculturae Slovenica, 111 - 3, december 2018 str. 683 - 659 Veronika KMECL, Dragan ŽNIDARČIČ which convert it into nitrite that can cause "methemoglobinemia" (inability of oxygen transfer in organism). Nitrite is in the stomach precursor for the nitrosation of the compound (nitrosamines, nitrosamides), which are, according to the criteria of the International Agency for Research on Cancer, grouped into individual groups of carcinogenicity (Boink and Speijers, 1999, Santamaria, 2006). The accumulation of nitrate in plants is influenced by various factors, such as the harvest time, the length of the growth age, soil fertility characteristics (pH), weather conditions (rainfall, light), cultivar type and to a great extent the use of nitrogen fertilizers (McCall and Willumsen, 1999; Dapoigny et al., 2000; Chen et al., 2004; Guadagnin et al., 2005; Weightman et al., 2006). The latter can be influenced by different methods of cultivation. Lately, great attention is being paid to the organic and integrated cultivation methods, which are, unlike conventional, more environmentally friendly. Conventional cultivation allows the use of mineral fertilizers, plant protection products (FFS) and genetically modified organisms. Mineral fertilizers additionally improve the supply of the soil with nutrients and increase the fertility of the soil, but on the other hand pollute the environment (Kocjan Acko, 2000). Integrated cultivation represents a more friendly form of farming for the environment and for the consumer. This mode of cultivation is today widespread in most of Western European countries and ensures the consumers that vegetables do not contain harmful substances above the permitted limit (Osvald and Kogoj Osvald, 2003). Unlike conventional farming, integrated farming demands careful monitoring of the use of minerals and organic fertilizers, whereby the fertilization with organic fertilizers is preferred (livestock manure, animal or plant residues, compost). Soil analysis is needed before fertilization, from which we find out how much nutrient intake is needed. Plant protection products in integrated farming are used only when biological, mechanical and other measures do not work (Dzuban, 2015). Organic cultivation is the only sustainably oriented agricultural food production system. It is a way of farming, which also pays attention to the balance between living organisms. Also, among all the ways of farming, it is the least burdensome on the environment (Postrak, 2010). Organic farming system prohibits the use of soluble mineral fertilizers, as well as the use of plant protection products and genetically modified organisms. Crop plants absorb nitrogen mainly in the form of nitrate ions. Mineral nitrogen fertilizers used in conventional agriculture directly provide the nitrate, while many organic fertilizers gradually release their nitrogen content. The amount of nitrate absorbed by plants depends on the nitrate dissolved in the soil solution and, therefore, the type of fertilizer is not the only cause of nitrate accumulation in plant. Incorrect practices, such as overfertilization with nitrogen also favour this accumulation (Matallana Gonzalez et al., 2010; Barker, 1975; Muramoto, 1999; Raigon et al., 2002). Many studies have demonstrated that organically grown crops have lower nitrate content that integrated and conventionally grown crops (Muramoto, 1999; Pussemier et al., 2006, Merino et al., 2006), although this conclusion is not uniformly supported (De Martin and Restani, 2003; Guadagnin et al., 2005). Woese et al. (1997) reviewed 41 comparative studies of nitrate content in conventional and organically grown vegetable and concluded that, in general, higher nitrate levels were found in leaf, root and tuber vegetables with mineral fertilization. Worthington (2001) summarized the results of 18 studies comparing nitrate levels of organic and conventional vegetable, and found that in 72 % of the cases nitrate levels were higher in the conventional products, while in 24 % of the cases nitrate levels were higher in the organic products. In Slovenia, a comparison between conventionally cultivated lettuce and organic lettuce was presented and confirmed 30 % higher values of nitrates using conventional method of cultivation (Hmeljak Gorenjak et al., 2012). In recent years, organic farming is becoming an increasingly way of producing food. Consumers are becoming more aware of the importance of a healthy diet, and organic farming is thus becoming a fast growing industry in the world. The data show that the share of organic land in the EU is around 4 %. Some countries are more "ecologically aware", such as Liechtenstein (26 %), Austria (11 %), Switzerland (10 %), Italy (8 %), Sweden (6 %) (Postrak, 2010; Repic, 2010). In 2016, 3518 Slovenian agricultural holdings, which represent 4.8 % of all Slovenian farms, were included in "Eco control - organic method of cultivation", however, the number of them is increasing every year (MKGP RS, 2016). Within the framework of the research, we wanted to determine how the cultivation method (conventional, integrated or organic) affects the nitrate content in the cultivated vegetables of Slovenian producers. We focused on the samples of lettuce. 164 Acta agriculturae Slovenica, 111 - 3, december 2018 The influence of cultivation method on nitrate content in some lettuce samples 2 MATERIAL AND METHODS 2.1 Sampling In the laboratory of the Agricultural Institute of Slovenia we received 88 samples of lettuce from different regions of Slovenia. The samples belongs to various lettuce cultivar groups, such as Iceberg lettuce ('Ljubljanska ledenka'), Crisphead lettuce ('Margord', 'Beldi' and 'Vegor'), Looseleaf lettuce ('Green Oakleaf), Romaine lettuce ('Salakis'), Batavian lettuce ('Noisete' and 'Vanity'), Frilly open lettuce type with an iceberg bite ('Crystal') and Butterhead lettuce ('Zimska rjavka'). Plants were harvested at the stage of market acceptance (5 May and 23 October). The samples were grown outdoors, with the exception of one ('Marcord') that was from a greenhouse. They were cultivated using organic, integrated or conventional method. Among them, there were 31 samples which were produced conventionally, 53 were cultivated using integrated method and only 4 samples were organically produced. A similar ratio represents the actual state of organic, integrated and conventional farming in Slovenia (MKGP RS, 2016). This might be a reason for a small number of samples in organic farming. At organic cultivation method farmers used fertilizers of organic origin, such as compost manure, green manure and places emphasis on techniques such as crop rotation and companion planting. In the frame of integrated production system, farmers mostly used fertilizers of organic origin and mineral nitrogen fertilizers. Synthetic pesticides were not included in their way of production, as they can be in conventional method of cultivation. 2.2 Chemical analysis One lettuce sample consisted of several heads of lettuce. The scrap leaves of each head were removed and all inner and outer leaves were homogenized and prepared for the analysis. Water was added to homogenized sample and the nitrate ions were extracted into the solution by shaking with the shaker. The content of nitrate in the extraction solution was determined photometrically with a segment flow analyser (San, Skalar). The nitrate in the sample was reduced to nitrite with hydrazine sulphate. The nitrite forms, in reaction with sulphanilamide, a diazo compound, the latter turning red after the addition of NEDD (N-naphthylethylenediamine dihydrochloride). The colour intensity was measured photometrically at a wavelength (X = 540 nm) (EN 12014-7, 1998). The method for the determination of nitrate in vegetables is accredited at the Agricultural Institute of Slovenia (Kmecl and Znidarcic, 2015). 2.3 Limit values of nitrates in lettuce in accordance with the legislation Table 1: The prescribed threshold values for nitrates in lettuce (Commission Regulation (EU) No. 1258/2011) Foodstuffs Harvesting time/ Maximum levels _Place of production_(mg NO3- kg-1) 1.1. Lettuce (Lactuca sativa L.) Harvested 1 October to 31 March: (protected and open-growth Lettuce grown under cover 5000 lettuce) excluding lettuce Lettuce grown in the open air 4000 listed in point 1.2. Harvested 1 April to 30 September: Lettuce grown under cover 4000 Lettuce grown in the open air 3000 1.2. Iceberg type lettuce Lettuce grown under cover 2500 Lettuce grown in the open air 2000 3 RESULTS AND DISCUSSION The Commission Regulation (EU) No. 1258/2011 defines the maximum permissible levels of nitrate for the lettuce cultivar groups (Lactuca sativa L.) and among this groups separately defines the permissible value for Iceberg type lettuce, which naturally accumulates less nitrates. In the light of the above classification, we present the values of nitrates in analyzed samples of lettuce (Table 2 and 3). Acta agriculturae Slovenica, 111 - 3, december 2018 685 Veronika KMECL, Dragan ŽNIDARČIČ Table 2: Concentration of nitrates in the samples of lettuce Nitrates (NO3") Sample No. of samples Min. (mg kg-1) Max. (mg kg-1) Average (mg kg-1) Median (mg kg-1) Iceberg lettuce 20 47 3211 968 912 Other types of lettuce 68 11 2451 841 780 Table 3: Number and percentage of samples in a particular concentration range Number and percentage of samples in the concentration range of nitrates (NO3-) Sample <200 (mg kg-1) 200-500 (mg kg-1) 500-1000 (mg kg-1) 1000-2500 (mg kg-1) >2500 (mg kg-1) Iceberg lettuce 1 (5 %) 4 (20 %) 6 (30 %) 8 (40 %) 1 (5 %) OfÍettuc!;^ 10 ^ %) 9 (D %) 19 (28 %) 30 (44 %) 0 (0 %) The amount of nitrates in vegetables depends on the type of cultivar, the weather conditions (light, quantity of rainfall), method of cultivation and harvesting time. Vegetables that are grown in winter or early spring and those grown in greenhouses contain more nitrates. Lettuce grown in a greenhouse in winter in reduced light can contain up to 3500 mg of NO3- kg-1. If it is grown outdoors, at a time when the illumination is greater, the content of nitrates can be ten times smaller (Brown et al., 1993; Amr and Hadidi, 2001). In general, the cultivars of lettuce with looseleaf heads accumulate more nitrates than lettuce with tightly formed heads, such as Iceberg type lettuce (Commission Regulation (EU) No 1258/2011). The latter statement could not be confirmed by our research. Iceberg type samples on average contained more nitrates (968 mg kg-1), compared to other types of lettuce (841 mg kg-1). The reason probably lies in the fact that a significant proportion of these samples were produced in a conventional way (35 %) and the rest of the samples used integrated cultivation method (65 %). No sample was produced organically. The highest concentration of nitrates was contained in a sample of Iceberg lettuce ('Ljubljanska ledenka'), 3211 mg kg-1 (grown outdoors in June, using conventional cultivation method). Among other varieties of lettuce we found the highest value in the sample of 'Marcord', which was cultivated in a greenhouse in spring (2451 mg NO3- kg-1). The reason of so high value of nitrates is due to the conventional farming system and the way of cultivation in greenhouse. Individual samples contained very little nitrates (<50 mg NO3- kg-1), which is likely the result of lower intensification of fertilization with nitrogen fertilizers or other aforementioned factors. Most samples of all types of lettuce (43 %) contained nitrate in the concentration range from 1000 to 2500 mg kg-1 (38 samples). Of these, 4 samples exceeded 2000 mg NO3 kg-1. 28 % of the samples (25 samples) contained nitrate in the range of 500 to 1000 mg kg-1, 15 % of the samples (13 samples) were in the range of 200 to 500 mg of NO3- kg-1, and in 13 % of the samples (11 samples) we determined lower values (< 200 mg NO3- kg-1). In one sample, the presence of nitrate was greater than 2500 mg of NO3- kg-1 (1 % of the samples). 686 Acta agriculturae Slovenica, 111 - 3, december 2018 The influence of cultivation method on nitrate content in some lettuce samples Figure 1: The proportion of samples in a particular concentration range of NO3 > 2500 < 200 mg/kg Since 2011, the Slovenian legislation has prescribed nitrate limits for some leafy vegetables such as spinach, rocket and lettuce, and prepared baby food. For lettuce with looseleaf heads and tightly formed heads (Iceberg type), the limit values from 2000 to 5000 mg of NO3- kg-1 are prescribed. The values vary according to the harvest time (cultivation from October 1 to March 31, and from April 1 until September 30) and according to the method of cultivation (outdoor cultivation or in sheltered spaces). The standards are in accordance with the norms of the European Union (Commiss. Reg. (EU), 1258/2011). All the samples that were analysed were growing the period from May to October, when the illumination of the plants is greater. During this time, less nitrogen accumulated in plants and NO3- values, which are prescribed by the legislation, were not exceeded. In winter, the light is less intense, which causes slower rates of photosynthesis, and at the same time greater accumulation of nitrate in certain parts of plants (Schuddeboom, 1993). Of the 88 analysed samples, 1 sample of Iceberg type with the value of 3211 mg of NO3- kg-1, exceeded the legislative limit value (2000 mg NO3- kg-1; for Iceberg type lettuce grown in an open air). Other samples did not exceed the limit values. With this investigation we wanted to determine how the cultivation method (organic, integrated or conventional) affects the nitrate content in the crops. According to the producers' statements, most of the lettuce was grown using the integrated cultivation method (60 %), 35 % of the samples used the conventional method and only 5% of farmers cultivated lettuce organically. Ecological farming Integrated farming Conventional farming Figure 2: The proportion of organic, integrated or conventionally cultivated lettuce Acta agriculturae Slovenica, 111 - 3, december 2018 687 Veronika KMECL, Dragan ŽNIDARČIČ A similar ratio represents the actual state of organic, integrated and conventional agriculture in Slovenia. Therefore, it is not surprising that we received only four samples of lettuce produced with organic method of cultivation (5 %), for which the producers used primarily organic fertilizers (compost, matured livestock manure, etc.). Most of the samples were received within the framework of the integrated cultivation method (53 samples), for which the use of mineral fertilizers (N, P2O5, K2O fertilizers) is otherwise allowed, however, carefully monitored. A relatively large proportion of the samples (31) was received from the conventionally oriented farms, where the intensive farming method has been maintained, with the emphasis on the quantity of produce and less on the quality (greater soil stocking with mineral fertilizers). 3.1 Organic method of cultivation Two of the 4 lettuce samples of organic production ('Green Oakleaf and 'Zimska rjavka') contained below 500 mg of NO3- kg-1 (138 and 429 mg kg-1). Two samples ranged from 500 to 1000 mg of NO3- kg-1 (783 and 969 mg kg-1; 'Crystal' and 'Noisette'). Values above 1000 mg of NO3- kg-1 were not detected in any sample. It is interesting that organic cultivation did not result in very low levels of nitrates, as opposed to individual samples that came from integrated and also conventional cultivation. 3.2 Integrated method of cultivation Within the framework of integrated production, 53 samples of lettuce were analysed ('Ljubljanska ledenka', 'Marcord', 'Beldi', 'Salakis', 'Noisette', 'Vegor', 'Vanity' and 'Green Oakleaf). 34 % of samples contained nitrate in higher concentration range (from 1000 to 2500 mg of NO3- kg-1). The highest proportion of samples (38 %) had values between 500 and 1000 mg kg-1, while 28 % of the samples were in the <500 mg NO3- kg-1 range. The lowest measured value was 29 mg of NO3- kg-1 ('Marcord') and the highest 2200 mg of NO3- kg-1 ('Beldi'). 3.3 Conventional method of cultivation In the context of conventional production, 31 samples were analysed ('Ljubljanska ledenka', 'Noisette', 'Marcord' and 'Green Oakleaf'). The values of almost half of the samples (48 % or 15 samples) ranged from 1000 to 2500 mg of NO3- kg-1. 23 % of the samples (7) ranged between 500 and 1000 mg kg-1, 26 % of the samples (8) between 0 and 500 mg kg-1. Two samples contained very little nitrate, which is unusual for conventionally grown lettuce (11 mg NO3- kg-1, 'Noisette' and 47 mg NO3- kg-1, 'Green Oakleaf). One sample exceeded the value of 2500 mg NO3- kg-1 ('Ljubljanska ledenka'). Figure 3 shows the distribution of nitrate content in lettuce according to the method of cultivation (in %). The highest values of nitrates (1000 to 2500 mg NO3-kg-1 and more) contain samples from the conventional production. In the case of the samples from integrated production, the proportion of such samples is lower, while the organically cultivated samples had values below 1000 mg of NO3- kg-1. □ < 200 mg/kg □ 200-500 mg/kg □ 500-1000 mg/kg ■ 1000-2500 mg/kg ■ > 2500 mg/kg conventional (N=31) integrated (N=53) ecological (N=4) 10 16 23 48 i 13 15 38 34 25 25 50 0% 20% 40% 60% 80% 100% Figure 3: The distribution of nitrate content in lettuce according to the method of cultivation (in %) 688 Acta agriculturae Slovenica, 111 - 3, december 2018 The influence of cultivation method on nitrate content in some lettuce samples 4 CONCLUSION Farmers advocated for a long time the conventional way of cultivation, where it was possible to produce more crops with less effort. Today, the opinion is different, especially with consumers who want healthy food and clean environment. In Slovenia, the share of producers who cultivate in the traditional way is still great. However, other methods of cultivation are becoming popular, such that use more environmentally friendly methods. The integrated cultivation of vegetables and fruits is becoming almost a demand on the Slovenian market, while more and more farmers are becoming interested in organic farming. As part of our research we analysed the samples of lettuce of different types and cultivars. Of the 88 samples, there was 1 sample with a value of 3211 mg NO3- kg-1 which exceeded the statutory limit value of 2000 mg kg-1, which applies to Iceberg type lettuce ('Ljubljanska ledenka'). The sample was cultivated outdoors and grown in the conventional way. Other samples did not exceed the statutory limit values, although for 43 % of the samples we determined relatively high values (from 1000 to 2500 mg of NO3-kg-1). On average, Iceberg type samples contained more NO3- than other types of lettuce, which is probably because of different ways of cultivation and other factors that affect the accumulation of nitrates in plants (the use of nitrogen fertilizers, plant illumination, rainfall amount, soil fertility, length of growing, harvesting time and others). Depending on the method of cultivation (conventional, integrated, organic), the laboratory received 35 % of the samples from conventional production, 60 % of samples from integrated and 4.5 % from organic production. Despite the fact that the number of analysed samples was relatively small, the results of the research confirm that the samples, cultivated in the conventional way, were the most contaminated with nitrates. On the other hand, it is surprising to know that the lowest values of nitrates (<50 NO3- mg kg-1) were detected in individual samples from integrated and conventional cultivation and not in organic lettuce. 5 REFERENCES Amr, A., Hadidi, N. (2001). Effect of cultivar and harvest date on nitrate and nitrite content of selected vegetables grown under open field and greenhouse conditions in Jordan. Journal of Agricultural and Food Chemistry, 14, 59-67. doi: 10.1006/jfca.2000.0950 Barker, A.V. (1975). Organic vs. inorganic nutritional and horticultural crop quality. Hortscience, 10(1), 50-53. Below, F.E. (1994). Nitrogen metabolism and crop productivity. In: Handbook of plant and crop physiology. Mohammad Pessarakli (Ed.), New York, Marcel Dekker, 275-312. Boink, A., & Speijers, G. (1999). Health effects of nitrates and nitrites: A review. Proceedings of the International Conference on Environmental Problems Associated with Nitrogen Fertilization of Field Grown Vegetable Crops. Postdam, Germany, ISHS. Acta Horticulturae, 563, 29-36. doi:10.17660/ActaHortic.2001.563.2 Brown, J.R., Christy, M., Smith, G.S. (1993). Nitrate in soils and plants. Retrieved from http://extension.missouri.edu/xplor/agguides/agchem/ g09804.htm Chen, BM., Wang, ZH., Li, SX., Wang, GX., Song, HX., Xi-Na, W. (2004). Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, 167, 635-43. doi:10.1016/j.plantsci.2004.05.015 Commission regulation (EU) No. 1258/2011. (2011). Amending regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs, OJEU 15. Dapoigny, L., de Tourdonnet, S., Roger-Estrade, J., Jeuffroy, M.H., Fleury, A. (2000). Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and temperature. Agronomie, 20, 843-855. doi:10.1051/agro:2000162 De Martin, S., Restani, P. (2003). Determination of nitrates by a novel ion chromatographic method: occurance in leafy vegetables (organic and conventional) and exposure assessment for Italian consumers. Food Additives & Contaminants, 20 (9), 787-792. doi: 10.1080/0265203031000152415 European Norms EN 12014-7. (1998). Foodstuffs -Determination of nitrate and/or nitrite content - Part 7: Continuous Flow method for the determination of nitrate content of vegetables and vegetable products after cadmium reduction (EN standard No. 12014-7). Retrieved from https://standards. globalspec.com/std/415364/cen-en-12014-7 Gangolli, SD., van den Brandt, P., Feron, V., Janzowsky, C., Koeman, J., Speijers, G., Winshnok, J. (1994). Assessment of nitrate, nitrite, and N-nitroso Acta agriculturae Slovenica, 111 - 3, december 2018 169 Veronika KMECL, Dragan ŽNIDARČIČ compounds. European Journal of Pharmaceutics and Biopharmaceutics, 29, 1-38. Guadagnin, SG., Rath, S., Reyes, FGR. (2005). Evaluation of the nitrate content in leaf vegetables produced through different agricultural systems. Food Additives & Contaminants, 22 (12), 1203-08. doi: 10.1080/02652030500239649 Hmeljak Gorenjak, A., Rizman Koležni,k U., Cenčič, A. (2012). Nitrate content in dandelion (Taraxacum officinale) and lettuce (Lactuca sativa) from organic and conventional origin: intake assessment. Food Additives & Contaminants, Part B, 5(2), 93-99. doi: 10.1080/19393210.2012.658873 Kmecl, V., Žnidarčič, D. (2015). Accreditation of analytical method used for determination of nitrate in vegetable. Archives of Biological Sciences, 67, 295302. doi:10.2298/ABS140428046K Kocjan Ačko, D. (2000). Alternativne oblike kmetovanja. Novi izzivi v poljedelstvu 2000, Moravske Toplice, 14. in 15. december 2000. Zbornik simpozija. Slovensko agronomsko društvo, Ljubljana, (pp. 244-251). Matallana Gonzales, M.C., Martinez-Tome, M.J., Torija Isasa, M.E. (2010). Nitrate and nitrite content in organically cultivated vegetables. Archives of Biological Sciences, Part B, 3(1), 19-29. McCall, D., & Willumsen, J. (1999). Effect of nitrogen availability and supplementary light on the nitrate content of soil-grown lettuce. Journal of Horticultural Science and Biotechnology, 74(4), 458-463. doi: 10.1080/14620316.1999.11511137 Merino, L., Darnerund, P.O., Edberg, U., Aman, P. Castillo, MdP. (2006). Levels of nitrate in Swedish lettuce and spinach over the past ten years. Food Additives & Contaminants, 23(12), 1283-1289. doi:10.1080/02652030600930543 MKGP RS, Analiza stanja ekološkega kmetovanja. (2016). Retrieved from http://www.mkgp.gov.si/si/delovna_podrocja/kmetijst vo/ekolosko_kmetovanj e/analiza_stanj a ekoloskega_kmetovanja/ Muramoto, J. (1999). Comparison of nitrate content in leafy vegetables from organic and conventional farms in California. University of California, Santa Cruz: Center for Agroecology and Sustainable Food systems. Retrieved from http ://envs .ucsc. edu/shennan/Joj i/leafnitrate -1. pdf Osvald, J., Kogoj Osvald, M. (2003). Integrirano pridelovanje zelenjave, Kmečki glas (pp. 1-295). Ljubljana. Poštrak, N. (2010). Krompir, vaša hrana in zdravilo, Ekološko kmetijstvo v Sloveniji in svetu. Sončni hribček, 27-31. Pussemier, L., Larondelle, Y., Van Peteghem, C., Huyghebaert, A. (2006). Chemical safety of conventionally and organically produced foodstuffs: a tentative comparison under Belgian conditions. Food Control, 17, 14-21. doi: 10.1016/j.foodcont.2004.08.003 Raigon, M.D., Dominguez Gento, A., Carrot Sierra, J.M., Vidal, E. (2002). Comparación de parámetros de calidad en hortalizas de hoja ancha bajo sistemas de producción ecológica y convencional. Agrícola Vergel, 241, 26-32. Repič, P. (2010). Krompir, vaša hrana in zdravilo, Ekološko kmetijstvo, razvoj in prepoznavanje ekoloških živil. Sončni hribček, 33-43. Sanatamaria, P. (2006). Nitrate in vegetables: toxicity, content, intake and EC regulation. Food Additives & Contaminants, 86, 10-17. Schuddeboom, L. J. (1993). Nitrates and nitrites in foodstuffs. Council of Europe Press, Strasbourg. Džuban, T. (2015). Tehnološka navodila za integrirano pridelavo zelenjave za leto 2015. Ministrstvo za kmetijstvo, gozdarstvo in prehrano, Ljubljana. Uredba komisije (EU) št. 1258/2011. (2011). Sprememba Uredbe Komisije (ES) št. 1881/2006 glede mejnih vrednosti nitratov v živilih. Weightman, RM., Dyer, C., Buxton, J., Farrington, DS. (2006). Effects of light level, time of harvest and position within field on the variability of tissue nitrate concentration in commercial crops of lettuce (Lactuca sativa) and endive (Cichorium endiva). Food Additives & Contaminants, 23, 462-69. doi: 10.1080/02652030500522606 Woese, K., Lange, D., Boess, C., Werner Bogl, K. (1997). A comparison of organically and conventionally grown foods. Results of a review of the relevant literature. Journal of the Science of Food and Agriculture, 74, 281-293. doi:10.1002/(SICI)1097-0010(199707)74:3<281: :AID-JSFA794>3.0.C0;2-Z Worthington, MS. (2001). Nutritional Quality of Organic Versus Conventional Fruits, vegetables and Grains. Journal of Alternative and Complementary Medicine, 7(2), 161-173. doi:10.1089/107555301750164244 Ysart, G., Clifford, R., Harrison, N. (1999). Monitoring for nitrate in UK-grown lettuce and spinach. Food Additives & Contaminants, 16, 301-306. doi: 10.1080/026520399283966 Zhong, W., Hu, C., Wang, M. (2002). Nitrate and nitrite in vegetables from north China: Content and intake. Food Additives & Contaminants, 19, 1125-1129. doi: 10.1080/0265203021000014806 690 Acta agriculturae Slovenica, 111 - 3, december 2018 doi:10.14720/aas.2018.m.3.17 Original research article / izvirni znanstveni članek Assessing government grants: evidence from greenhouse tomato and pepper farmers in Kosovo Blend FRANGU1, Jennie SHEERIN POPP1, Michael THOMSEN1 and Arben MUSLIU2* Received September 10, 2018; accepted October 27, 2018. Delo je prispelo 10. septembra 2018, sprejeto 27. oktobra 2018. ABSTRACT Genetic matching with an evolutionary algorithm was applied to evaluate the impact of the Ministry of Agriculture, Forestry and Rural Development (MAFRD) grant programs to support greenhouse vegetable production in Kosovo. The primary contribution of the paper is to assess whether grants have an impact on the farmers' gross seasonal revenue after matching similar grantees to non-grantees. The findings showed that greenhouse tomato grantees make 2,151.80 euros more per growing season in comparison to the non-grantees (95 % confidence interval -324.71 to 4,628.31 euros). Similarly, greenhouse pepper grantees make 2,866.69 euros more per growing season compared to non-grantees (95 % confidence interval 446.42 to 5,286.96 euros). The study identified farmers' education and region as important matching variables which may be of interest to policy researchers in Kosovo. Key words: greenhouse economics; genetic matching; government farm grants; Kosovo agriculture IZVLEČEK UGOTAVLJANJE UČINKOVITOSTI VLADNIH POMOČI: PRIMERI PRIDELOVALCEV PARADIŽNIKA IN PAPRIKE V RASTLINJAKIH NA KOSOVU Genetsko ujemanje in razvojni alagoritem sta bila uporabljena pri vrednotenju vpliva programov pomoči Ministrstva za kmetijstvo, gozdarstvo in razvoj podeželja pri vzpodbujanju pridelave zelenjave v rastlinjakih na Kosovu. Glavni pripevek te raziskave je ocena pomoči na sezonski bruto prihodek kmetov, ki so vladno pomoč dobili v primerjavi s tistimi, ki je niso prejeli. Izsledki so pokazali, da je pomoč pri pridelavi paradižnika v rastlinjakih prispevala 2.151,80 EUR več na sezono v primerjavi s tistimi, ki pomoči niso dobili. (95 % interval zaupanja je znašal -324,71 do 4.628,31 EUR). Podobno je pomoč pri pridelavi paprike v rastlinjaku dala za 2.866,69 EUR več na sezono v primerjavi s tistimi, ki pomoči niso dobili (95 % interval zaupanja je bil 446,42 do 5.286,96 EUR). Raziskava je pokazala, da sta izobrazba kmetov in območje pridelave pomembni vplivni spremenljivki, ki bi lahko zanimali raziskovalce agrarne politike na Kosovu. Ključne besede: ekonomika rastlinjakov; genetsko ujemanje; vladna pomoč kmetom; kmetijstvo Kosova 1 INTRODUCTION The development of Kosovo's agriculture has long been adversely affected by the Kosovo war, a conflict that shaped the dynamics of the agricultural sector and left it vulnerable with large losses of productivity. After the war, the newly formed government of Kosovo invested in agriculture to reestablish a well-functioning economy. Over the last decade, some government investments in the form of competitive grants were targeted to support greenhouse farming. Across Kosovo, tomatoes and peppers are among the main crops grown in greenhouses. In Kosovar greenhouses, tomatoes are more common than peppers (Kaciu, 2008), however, the Ministry of Agriculture, Forestry and Rural Development or MAFRD (2016) suggests that the cultivation of both of these crops have increased since the end of the war. 1 Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA 2 Department of Agricultural Economics, Faculty of Agriculture and Veterinary, University of Prishtina "Hasan Prishtina", Pristina, Kosovo. *Corresponding author: arben.musliu@uni-pr.edu This paper is part of the MS thesis of B.F. under the supervision of J.S.P. Acta agriculturae Slovenica, 111 - 3, december 2018 str. 691 - 659 Blend FRANGU et al. In Kosovo, agricultural production has intensified because of increasing support through grant programs (Miftari et al., 2016). These grants have helped support desperately needed upgrades in farm facilities. These grants may also affect farmers' gross revenue levels, however, details regarding gross revenue changes are lacking. Similarly, reliable evidence regarding the relationship between government financial support and higher gross farm revenue per growing season could be valuable to policy makers. This study considers whether awardees of the MAFRD grants for the purchase of new greenhouses (grantees) have gross seasonal revenues that differ from non-grantees. We chose to examine the tomato and pepper crops because of their increasing levels of production in a greenhouse setting and because tomatoes and peppers remain among the main vegetables produced in Kosovo (Kaciu et al., 2016). In fact, vegetable farms are among the highest income generating farms (Martinovska Stojceska et al., 2008). Understanding the gross revenue impacts of the grant programs are also important given the increasing inequality in productivity between small and large greenhouse tomato and pepper farms. This may be one factor that is leading to different gross seasonal revenue levels. Governmental reports address the effectiveness of the MAFRD grant programs (MAFRD, 2017), but empirical studies on the effects of these grants to advance the greenhouse vegetable subsector are lacking. Without the backing of empirical evidence, conclusions reached about the effectiveness of MAFRD's provision of grants for the greenhouse farmers can be misleading. It is important to know what factors impact greenhouse tomato and pepper farmers' ability to win grants. One approach to understand the gross revenue differences between farmer grantees and non-grantees is the use of matching to compare grantees to similar non-grantees. There are many methods available to perform matching and no consensus has emerged in the literature as to the best matching method (Stuart, 2010; Ruiz et al., 2017). There are several studies which have reviewed propensity score matching methods (see e.g. DAgostino, 1998; Terza et al., 2008; Caliendo & Kopeinig, 2008). A review of the literature revealed no studies since the early 2000s that have looked at the financial determinants of the greenhouse tomato and pepper production in Kosovo. A matching method known as genetic matching was selected to estimate casual treatment effects of the farmers who received an MAFRD grant. The analysis using this method allows us to quantify the treatment effects of grants on the farmers' gross revenues. 2 MATERIALS AND METHODS 2.1 Data The data for the study were obtained from surveys completed by greenhouse tomato and pepper farmers in Kosovo from June to August 2017. Two research surveys (one for each crop) were developed to interview the farmers. There were three steps involved in gathering data from the field: (a) prioritize municipalities and villages with a greater number of farmers growing greenhouse tomatoes and peppers; (b) interview farmers over the age of 18; and (c) evaluate the data for quality and outlying values. The initial sample covered 136 greenhouse farms which, after accounting for data outliers, decreased to 127 greenhouse farms. The farmers producing tomatoes were from the four regions of Ferizaj, Gjakova, Peja and Prizren and those producing peppers were from the four regions of Ferizaj, Gjakova, Peja and Mitrovica. 2.2 Descriptive Statistics The summary statistics of the covariates used for analysis are separated by grant status (grantee or non-grantee) for both greenhouse tomato and pepper farmers (Table 1). These covariates included distance to market in km, education in years, experience in years, and region indicators that take values of 0 or 1. The grantees producing tomatoes are located on average 12.9 km further away from the market than non-grantees and they have roughly two more years of education than non-grantees. However, there is no large difference in years of experience (0.11 years) between grantees and non-grantees producing tomatoes. The majority of these grantees (50 %) are from the region of Prizren. The largest percentage of non-grantees (32 %) are also from the region of Prizren. While grantees producing peppers are located on average only 3.2 km further away from the market than non-grantees and they have roughly three more years of education than non-grantees. The mean level of experience is 5.75 years among grantees showing that these farmers do not have extensive experience in growing greenhouse peppers. Similarly, non-grantees have only one more year of experience than grantees. Grantees producing peppers come mainly from the region of Peja (38 %), however, non-grantees are mostly from the region of Ferizaj (31 %). 692 Acta agriculturae Slovenica, 111 - 2, september 2018 Assessing government grants: evidence from greenhouse tomato and pepper farmers in Kosovo Table 1: Descriptive statistics of the covariates by grant status Grant Status Grantees Non-Grantees Covariates (x) Mean St. Dev. Min Max Mean St. Dev. Min Max Tomato Farmers N = 10 = 7 Distance to market in km 28.23 27.52 0.30 66 15.36 14.11 0.50 62 Education in years 12.20 5.01 8 20 10.48 2.95 8 20 Experience in years 9.60 3.41 5 17 9.71 7.72 2 30 Region of Ferizaj 0.30 0.48 0 1 0.16 0.37 0 1 Region of Gjakova 0.10 0.32 0 1 0.04 0.20 0 1 Region of Peja 0.10 0.32 0 1 0.06 0.25 0 1 Region of Prizren 0.50 0.53 0 1 0.32 0.47 0 1 Pepper Farmers N = 8 N = 32 Distance to market in km 28.38 20.58 10 60 25.22 21.45 3 84 Education in years 13.88 4.22 8 20 11.06 2.65 8 15 Experience in years 5.75 2.92 2 9 6.41 2.80 2 13 Region of Ferizaj 0.25 0.46 0 1 0.31 0.47 0 1 Region of Gjakova 0.25 0.46 0 1 0.13 0.34 0 1 Region of Peja 0.38 0.52 0 1 0.13 0.34 0 1 Region of Mitrovica 0.13 0.35 0 1 0.09 0.30 0 1 2.3 Methods Early work to develop propensity score matching (PSM) was conducted by Rosenbaum and Rubin (1983), and has become a widely used approach to estimate causal treatment effects (Caliendo & Kopeinig, 2008). Propensity score matching can be performed using various methods to match subjects. One method includes genetic matching as a multivariate matching method. In this study, the genetic matching algorithm is used to find covariate balance after matching between MAFRD grantees and non-grantees. The implementation of this method enables us to estimate the average treatment effect on the treated (ATT), which we use to assess the average differences in the farmers' gross seasonal revenue between grantees and non-grantees. According to Diamond and Sekhon (2013), genetic matching is performed by reducing a generalized version of the Mahalanobis distance (GMD). In contrast to the Mahalanobis distance, genetic matching includes an extra weight parameter W. GMD(Xi,XJ,W) = J(Xi-XJ)T (S-1/2)T WS-1/2 (Xi-Xj) From equation (1), X and Xj are covariates from farmers i and j, respectively. The matrix from the model contains the covariates described in Table 1. W is a k x k positive definite weight matrix, S is the sample covariance of matrix S, and S-12 is the Cholesky decomposition of S (Diamond & Sekhon, 2013). Replacement was used to ensure that a farmer who received a grant (treatment group) has a proper match with a non-grantee (control group). It is noted in the literature that matching with replacement can provide better matches (Stuart & Rubin, 2008), and is preferred to use in methods with a control group that has similar values relative to a treatment group (Dehejia & Wahba, 2002). Lastly, we do our analysis with the help of the R-CRAN package "Matching" pioneered by Sekhon (2011). 2.4 Considerations in covariate selection Four factors that we measure may have influence on a MAFRD grantee's ability to match with a non-grantee. The first covariate is distance to market in km. Farmers' markets bring consumers closer to producers (Ling & Newman, 2011), and the farmer's distance to market may impact both produce quantity and ability to sell the produce in a timely manner. Distance from farm to market can also be an important factor determining the farmer's access to the product markets (Ahmed, et al., 2016). Agricultural education may influence productivity gains (Fintineru & Madsen, 2012). An earlier study that used propensity score matching found that education was positive and significant for cherry production (Ali et al., 2013). In a later study, education was found to be a contributing factor affecting the farmer's income (Panda, 2015). Based on these previous studies, we concluded that education was an important matching variable. Farm experience is included as a matching variable for similar reasons. Farmers' years of experience vary by region in Kosovo when growing greenhouse tomatoes and peppers. For example, given the strong tradition of tomato production in the region Acta agriculturae Slovenica, 111 - 3, december 2018 str. 693 - 659 Blend FRANGU et al. of Prizren, it is expected that Prizren greenhouse tomato producers may have more years of farm experience than producers in other regions. For greenhouse pepper producers, however, years of farm experience may differ little from region to region. Lastly, we consider using covariates to control for four greenhouse tomato and pepper producing regions. Potentially, region may be an important variable in matching MAFRD grantees to non-grantees. For example, Kosovo's regions can have differences in the production of greenhouse vegetable crops because of the climatic conditions, or because of regional differences in family farming traditions. However, reasons may vary as why farmers from one region or another are more or less likely to acquire government farm grants. Therefore, it is important to use the covariate region in the matching procedures. 3 RESULTS AND DISCUSSION When analyzing gross revenue per growing season, it was suggested from both groups of farmers that grantees compared to non-grantees were associated with higher revenue levels (Figure 1). The box plot analysis from Figure 1 shows that farmers producing tomatoes who received MAFRD grants have a mean of 5,759.30 euros while non-grantees have a lower mean of 3,178.84 euros of gross revenue per growing season. Grantees producing peppers suggest a mean of 5,080.43 euros while non-grantees suggest a lower mean of 3,739.02 euros of gross seasonal revenue. Figure 1 indicates also that when observing the densities of both groups of farmers, grantees highlight higher seasonal revenue levels than non-grantees. There were only few grantees producing tomatoes and peppers with gross seasonal revenue greater than 10,000.00 and less than 3,000.00 euros. However, there were more non-grantees producing tomatoes and peppers with revenue levels less than 3,000.00 euros. Considering that grants could have a positive impact on farmers' gross seasonal revenues, we estimated possible differences using gross seasonal revenue as the outcome variable in the model. As explained above, covariates including distance to market in km, education in years, and farm experience in years were used in the matching of greenhouse tomato and pepper grantees to non-grantees. Depending on the region, however, farmers were sometimes from different locations. For the matching of greenhouse tomato grantees to non-grantees, we included the regions of Ferizaj, Gjakova, Peja and Prizren. While, the regions of Ferizaj, Gjakova, Peja and Mitrovica were used in the matching of greenhouse pepper grantees to non-grantees. 694 Acta agriculturae Slovenica, 111 - 2, september 2018 Assessing government grants: evidence from greenhouse tomato and pepper farmers in Kosovo Grant Status: | | grantees | | Non-Grantees Grant Status: | | grantees | | N Figure 1: Greenhouse Tomato and Pepper Farmers' Gross Seasonal Revenue Levels The average treatment effect on the treated (ATT) estimates revealed significant differences in gross seasonal revenue among greenhouse tomato and pepper farmer grantees and non-grantees. There was a statistically significant impact of grants for both greenhouse tomato and pepper farmers (Tables 2 and 3). Table 2 shows a positive and marginally significant (p < 0.1) ATT among greenhouse tomato farmers. The estimate of a difference of 2,151.80 euros in gross revenue per growing season was estimated for grantees relative to non-grantees. The 95 % confidence interval is -324.71 to 4,628.31 euros per growing season. However, it should be noted that the study contains a smaller sample of farmers than was desired. Therefore, ATT results could vary with a larger sample. The findings here suggest that it is possible MAFRD grant programs positively affect gross seasonal revenue levels of greenhouse tomato farmers that were awarded grants. Table 2: Greenhouse Tomato Grantees' Average Treatment Effect on the Treated Greenhouse Tomato Grantees 95% CI Outcome Variable Unit Mean T-stat p-value Lower Upper Gross Seasonal Revenue Estimate euro 2,151.80 1.703 0.088* -324.71 4,628.31 Note: T-stat, t statistic; CI, confidence interval. The statistical significance of the estimate is denoted by *p < 0.1; **p < 0.05; ***p < 0.01. Similarly, Table 3 shows a positive and significant estimate of a difference of 2,866.69 euros in gross (p < 0.05) ATT for greenhouse pepper farmers. The seasonal revenue was suggested for grantees relative to Acta agriculturae Slovenica, 111 - 3, december 2018 695 Blend FRANGU et al. non-grantees. The 95 % confidence interval is 446.42 to programs seem to influence positively the gross 5,286.96 euros per growing season. The MAFRD grant seasonal revenue levels of greenhouse pepper farmers. Table 3: Greenhouse Pepper Grantees' Average Treatment Effect on the Treated Greenhouse Pepper Grantees 95% CI Outcome Variable Unit Mean T-stat p-value Lower Upper Gross Seasonal Revenue Estimate euro 2,866.69 2.322 0.020** 446.42 5,286.96 Note: T-stat, t statistic; CI, confidence interval. The statistical significance of the estimate is denoted by *p < 0.1; **p < 0.05; ***p < 0.01. The evolutionary algorithm of genetic matching determines the weight each covariate receives (Diamond & Sekhon, 2013). These weights are used in the matching estimate of the ATT. Improvements in the standardized mean difference (SMD) between pre and post matched samples are influenced by these covariate weights. Covariate balance results for tomato producers are presented in Table 4. There was a slight improvement in the mean value of distance to market. This covariate's SMD went from 46.77 to -36.95 showing that it was not considered important by the algorithm. In fact, distance to market had a low weight of only 3.86. Education in years showed a mean improvement of roughly a year and a half of education. Its SMD reduced from 34.34 to 5.99, and with a much larger weight of 601. Although experience in years had a relatively high weight of 440, yet its SMD did not improve. Regions of Ferizaj, Gjakova, and Peja marked SMD improvements from 29.84 to 0, 19.30 to 0, and 11.10 to 0, respectively. The three regions showed balance in mean values in the post-match phase (Table 4). Accordingly, the three regions were assigned high weights (594, 655, and 619) which could support the improvement in balance for these region indicators. However, region of Prizren registered a smaller improvement in its SMD and mean value. This covariate highlighted only a weight of 229. Overall balance was favored for the measure of education and indicators for the regions of Ferizaj, Gjakova, and Peja. Table 4: Greenhouse Tomato Covariate Balance Results Covariate Pre-Match (N=87) Post-Match (N=10) Tomato Farmers Grantees Non-Grantees d Grantees Non-Grantees d Distance to market 28.23 15.36 46.77 28.23 38.40 -36.95 Education in years 12.20 10.48 34.34 12.20 11.90 5.99 Experience in years 9.60 9.71 -3.36 9.60 9.90 -8.81 Region of Ferizaj 0.30 0.16 29.84 0.30 0.30 0 Region of Gjakova 0.10 0.04 19.30 0.10 0.10 0 Region of Peja 0.10 0.06 11.10 0.10 0.10 0 Region of Prizren 0.50 0.32 33.27 0.50 0.40 18.97 Note: N, number of observations; d, standardized mean difference. As in the case of tomato farms, distance to market similarly continued to have an imbalance in in the post-matched sample of pepper farms. This measure received a low weight of 126. Likewise, education in years did not show a large reduction in its mean or SMD. Its SMD decreased from 66.59 to 38.47 and it had a weight of 225. Experience in years had the highest weight (909) and the balance improved from -22.51 to -8.57. The SMDs of regions of Ferizaj and Gjakova decreased from -13.50 to 0 and 27 to 0, respectively. The two regions showed balance in the post-match phase (Table 5). In addition, the former region had a weight of 814 and the latter a weight of 899. Region of Peja had a small balance in its mean and SMD and a low weight of 71. While the mean of region of Mitrovica improved, its SMD degraded from 8.84 to -35.36. However, this indicator had a very small weight (4.94) among the covariates. In comparison to greenhouse tomato farmers, balance was favored partly for the covariate experience in years and indicators for the regions of Ferizaj and Gjakova. 696 Acta agriculturae Slovenica, 111 - 2, september 2018 Assessing government grants: evidence from greenhouse tomato and pepper farmers in Kosovo Table 5: Greenhouse Pepper Covariate Balance Results Covariate Pre-Match (N=40) Post-Match (N=8) Pepper Farmers Grantees Non-Grantees d Grantees Non-Grantees d Distance to market 28.38 25.22 15.33 28.38 27.50 4.25 Education in years 13.88 11.06 66.59 13.88 12.25 38.47 Experience in years 5.75 6.41 -22.51 5.75 6.00 -8.57 Region of Ferizaj 0.25 0.31 -13.50 0.25 0.25 0 Region of Gjakova 0.25 0.13 27.00 0.25 0.25 0 Region of Peja 0.38 0.13 48.31 0.38 0.25 24.15 Region of Mitrovica 0.13 0.09 8.84 0.13 0.25 -35.36 Note: N, number of observations; d, standardized mean difference. 4 CONCLUSIONS The presence of the government grant programs as an agricultural policy may provide the opportunity to promote Kosovo's greenhouse production given that each year more and more farmers apply to the MAFRD grant programs. In this study, important matching variables for greenhouse tomato farmers were education and indicators for the regions of Ferizaj. Gjakova, and Peja. While indicators for the regions of Ferizaj and Gjakova and partly experience in years were most important for greenhouse pepper farmers. Policy researchers in Kosovo may take interest in the evidence of the positive gross seasonal revenue difference of 2,151.80 euros for the greenhouse tomato grantees relative to the non-grantees, and 2,866.69 euros for the greenhouse pepper grantees relative to the non-grantees. This evidence may help to identify which group of greenhouse farmers are likely to be influenced from the MAFRD grant programs. The study results should also be of interest to nonprofit organizations and agencies for development that invest to help MAFRD's efforts in Kosovo for the provision of new and upgraded farm facilities and greenhouses. Regarding the impact estimates, this study found the genetic matching method with a good convergence of the results with our sample of surveyed farmers. Despite the large or small mean differences of the covariates pertaining to the greenhouse tomato grantees and non-grantees prior to matching, the genetic matching method provided a significant improvement in the covariate balance. Nevertheless, it should be noted that the study contained a sample of farmers that was not sufficiently large, and ATT results could vary with a larger sample. In conclusion, these overall results suggest that grants awarded to the greenhouse farmers improved their gross revenue levels per growing season. Greenhouse tomato and pepper MAFRD grantees attained higher gross seasonal revenue levels relative to the non-grantees. Considering balance on the covariates, it was found that based on the farmers' education and depending on the region, balance was possible for MAFRD grantees and non-grantees. 5 REFERENCES Ahmed, U. I., Ying, L., Bashir, M. K., Abid, M., Elahi, E. and Iqbal, M. A. (2016). Access to output market by small farmers: The case of Punjab, Pakistan. Journal of Animal and Plant Sciences, 26(3), 787793. Ali, A., Sharif, M., Mahmood, K. and Akmal, N. (2013). Determinants of cherry production and marketing in Pakistan: A propensity score matching approach. Agricultural Economics Review, 14(1). Caliendo, M. and Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22, 31-72, doi: 10.1111/j. 1467-6419.2007.00527.x D'Agostino, R. B. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine, 17, 2265-2281, doi:10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.C0;2-B Dehejia, R. H. and Wahba, S. (2002). Propensity score matching methods for non-experimental causal studies. The Review of Economics and Statistics, 84, 151-161, doi: 10.1162/003465302317331982 Acta agriculturae Slovenica, 111 - 3, december 2018 str. 697 - 659 Blend FRANGU et al. Diamond, A. and Sekhon, J. S. (2013). Genetic matching for estimating causal effects: A general multivariate matching method for achieving balance in observational studies. The Review of Economics and Statistics, 95, 932-945, doi: 10.1162/REST_a_00318 Fintineru, G. and Madsen, O. (2012). Farmers' education and farm productivity. Evidence from Denmark and from Romania. AgroLife Scientific Journal, 2(1), 175-180. Kaciu, S. (2008). Study of the current situation of pepper production in Kosovo. Retrieved from http://helvetas- ks.org/documentation/technical_reports/Study_of_t he_current_situation_of_pepper_production_in_Ko sovo_HPK_Prishtina_35.pdf. Kaciu, S., Babaj, I., Aliu, S. and Demaj, I. (2016). Potential of protected vegetable production in Kosovo and future perspectives. Acta Hortic, 1142, 461-466, doi: 10.17660/ActaHortic.2016.1142.70 Ling, C. and Newman, L. L. (2011). Untangling the Food Web: Farm-to-market distances in British Columbia, Canada. Local Environment, 16, 807822, doi:10.1080/13549839.2010.539602 Martinovska Stojcheska A., Georgiev, N. and Eijavec, E. (2008). Farm income analysis of agricultural holdings in Macedonia using FADN methodology. Acta agriculturae Slovenica, 92(1), 41-51. Miftari, I., Hoxha, B. and Gjokaj, E. (2016). Kosovo*: Agricultural policy brief (CAPB). Joint Research Centre: Institute for Prospective Technological Studies (IPTS). Ministry of Agriculture, Forestry and Rural Development. (2016). Green report. Retrieved from http://www.mbpzhr- ks.net/repository/docs/Green_Report_Kosovo_2016 _Final_050417.pdf. Ministry of Agriculture, Forestry and Rural Development. (2017). Green report. Retrieved from http://www.mbpzhr- ks.net/repository/docs/Raporti_i_Gjelber_2017_En g_Final.pdf. Panda, S. (2015). Farmer education and household agricultural income in rural India. International Journal of Social Economics, 42, 514-529, doi: 10.1108/IJSE-12-2013-0278 Ruiz, D., Stout, D. and Herlihy, C. (2017). Use of genetic matching in program evaluation: The case of RAD. Cityscape, 19(2), 337-349. Sekhon, J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: The Matching package for R. Journal of Statistical Software, 42, 1-52. doi:10.18637/jss.v042.i07 Stuart, E. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 25(1), 1-21, doi: 10.1214/09-STS313 Stuart, E. and Rubin, D. B. (2008). Best Practices in Quasi-Experimental Designs: Matching Methods for Causal Inference. Thousand Oaks, CA: SAGE Publications Ltd. Terza, J. V., Basu, A. and Rathouz, P. J. (2008). Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling, Journal of Health Economics, 27(3), 531-543, doi:10.1016/j.jhealeco.2007.09.009 698 Acta agriculturae Slovenica, 111 - 2, september 2018 doi: 10.14720/aas.2018.111.3.18 Review article / pregledni znanstveni članek Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo Tina SMRKE1, Vesna ZUPANC2* Received November 10, 2017; accepted November 25, 2018. Delo je prispelo 10. novembra 2017, sprejeto 25. novembra 2018. IZVLEČEK Deficitno namakanje je eden izmed najbolj raziskanih načinov upravljanja namakanja vinske trte, katerim so raziskovalci potrdili veliko pozitivnih učinkov na pridelavo grozdja. Za doseganje optimalne rasti in mase grozdja pri posamezni sorti moramo vinski trti med rastno dobo zagotoviti ustrezno količino vode. Vinsko trto bo potrebno v bližnji prihodnosti zaradi vse pogostejše suše ponekod namakati tudi v Sloveniji. Pri deficitnem namakanju z manjšo količino dodane vode, kot bi bilo optimalno, vplivamo na rast vinske trte in s tem na kakovost in količino pridelka. Pričakovani rezultat deficitnega namakanja so krajše mladike (15,5 % pri sorti 'Monastrell', manjša listna površina, manjša masa lesa po rezi), manjše jagode in s tem manjši pridelek za 38 % do 57 % pri sorti 'Monastrell' in 24 % do 27 % pri sorti 'Tempranillo', manjše število grozdov na trto, primernejšo sestavo jagod (več sladkorjev in antocianov, manj kislin) in učinkovitejšo rabo vode, pomeni več pridelka na enoto dodane vode. Zelo primeren način za nadzor deficitnega namakanja pri vinski trti je merjenje vodnega potenciala rastline. Za uspešen prenos principa deficitnega namakanja v prakso je potrebno poznati tudi kritične fenofaze različnih sort vinske trte, in odziv sorte v dotičnem okolju. Uspešen prenos deficitnega namakanja v prakso bo mogoč le ob finančni in strokovni podpori pridelovalcem. Ključne besede: vinska trta; namakanje; deficitno namakanje; rast; rodnost; sestava grozdnih jagod ABSTRACT DEFICIT IRRIGATION OF VINES (Vitis vinifera L.) -REVIEW OF EXPERIENCES AND POTENTIAL FOR SLOVENIA Deficit irrigation is one of the most researched irrigation water management techniques for vines with many potential benefits for successful grape production. For optimal growth and grape quantity of individual variety, suitable water quantity over growing season should be provided. Due to more frequent droughts vine irrigation will be needed also in Slovenia. The principle of deficit irrigation is affecting vine growth and quality and quantity of the yield by adding smaller amount of water than optimal. Decreased vine growth (reduced growth of shoots, 15.5 % for 'Monastrell, reduced leaf area, reduced pruning mass), smaller berries, and thus yield quantity from 38 % to 57 % for 'Monastrell' and 24 % to 27 % for 'Tempranillo', respectively, improved berry composition (higher sugar and antocianin content, lower acid content), better water use efficiency, meaning higher yield per unit of added water, are expected. Most suitable method for deficit irrigation management of vines is by measuring plant water potential. For successful transfer of deficit irrigation in practice, good knowledge of critical growth stages of irrigated vine variety and its behavior in a certain environment is needed. Successful application of this irrigation method in practice will be possible only with financial and expert support. Key words: vines; irrigation; deficit irrigation; growth; fertility; grape berry composition 1 Mag. inž. hort., Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Jamnikarjeva 101, Ljubljana, tina.smrke@bf.uni-lj.si 2 Doc. dr., Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo, Jamnikarjeva 101, Ljubljana, *corresponding author: vesna.zupanc@bf.uni-lj .si Acta agriculturae Slovenica, 111 - 3, december 2018 str. 699 - 659 Tina SMRKE, Vesna ZUPANC SEZNAM OKRAJŠAV ¥ - vodni potencial WPD - vodni potencial pred zoro Ws - opoldanski vodni potencial ET - evapotranspiracija ETa - dejanska evapotranspiracija ETC - potencialna evapotranspiracija rastline oziroma v primeru tega članka trte ET0- referenčna evapotranspiracija INK - izmenično namakanje korenin IPNK - izmenično polovično namakanje korenin kc - koeficient rastline NDN - nadzorovano deficitno namakanje OIV - Mednarodna organizacija za trto in vino (International Organisation of Vine and Wine) PN - podzemno namakanje TDN - trajno deficitno namakanje WP -produktivnost rastlin Ya - masa tržnega pridelka 1 UVOD Glede na zadnje podatke Mednarodne organizacije za trto in vino (International Organisation of Vine and Wine; OIV, 2018) je površina svetovnih vinogradov leta 2017 pokrivala 7,6 milijonov ha. Največji doprinos k svetovni pridelavi grozdja imajo ravno evropske države, predvsem Španija, Francija ter Italija, saj pridelajo okoli 70 % celotnega svetovnega pridelka grozdja in zavzemajo okoli 60 % skupnih pridelovalnih površin grozdja v svetu (Malheiro in sod., 2010). V Sloveniji je bilo leta 2016 v Register pridelovalcev grozdja in vina (RPGV) vpisano okoli 16 000 ha vinogradov (Simončič in sod., 2017). Območje pridelave grozdja v Evropi se zaradi segrevanja ozračja pomika proti severu, medtem ko se bodo pridelovalci grozdja v državah južne Evrope in drugod po svetu (Kajfež-Bogataj, 2009; Hannah in sod., 2013) vse pogosteje spopadali s sušo (Malheiro in sod., 2010). Zaradi tovrstnih razmer je namakanje neizbežen tehnološki ukrep, v mnogih državah pridelovalkah grozdja, kot so Alžirija, Avstralija, Čile, Italija, Črna Gora, Nova Zelandija, Srbija, Slovenija, Španija, Švica in Urugvaj (Matthews in sod., 1987; FAO database, 2016). Po podatkih Statističnega urada Republike Slovenije (Stat, www.stat.si) smo vinograde in trsnice v Sloveniji prvič namakali leta 2007, in sicer 4 ha, leta 2014 se je že namakalo 12 ha. Dandanes namakanje slovenskih vinogradov ni pogosta praksa, za katero nimamo uradnih podatkov. Zaradi nenadzorovane porabe vode pri namakanju kmetijskih rastlin in hkrati globalnega segrevanja ozračja lahko pride v naravi do velike omejitve razpoložljivih vodnih virov (Döll, 2002; Kumar Kar, 2011), zato pridelovalci iščejo najbolj učinkovit način namakanja, s katerim bi dosegli optimalno razmerje med rastjo in rodnostjo, primerno sestavo jagod ter hkrati minimalno porabo vode (Cifre in sod., 2005; Edwards in Clingeleffer, 2013; Zhang in sod., 2014). Trti je potrebno dodati toliko vode, da se ji ustrezno omeji vegetativno rast, optimizira maso pridelka in izboljša sestavo jagod, kar je najbolj pogojeno z značilnostmi gojene sorte. Za doseganje opisanih ciljev je danes v vinogradništvu najbolj primerno deficitno namakanje, pri kateremu trtam dodamo manjšo količino vode, kot znaša njihova evapotranspiracija (Fereres in Soriano, 2007; Ruiz-Sanchez in sod., 2010; Lanari in sod., 2014). Deficitno namakanje vinske trte se v državah Sredozemlja ter v aridnih delih Severne in Južne Amerike uspešno uporablja s tehnologijo kapljičnega namakanja in namakanja z razpršilci (Moriana in sod., 2003, Ruiz-Sanchez in sod., 2010), vendar je zaradi večje učinkovitosti smotrnejša uporaba kapljičnega namakanja. Raziskav o vplivu sušnega stresa oziroma uravnavanja vodnega režima vinske trte pri nas še ni, se pa podrobno raziskuje občutljivost vinske trte na bolezni in škodljivce (Hladnik in sod., 2014; Lamovšek in sod., 2014; Štrukelj in sod., 2016) ter preverja avtohtonost sort (Štajner, 2010; Pelengič in sod., 2012; Imazio in sod., 2014; Rusjan in sod., 2015), saj naj bi bile udomačene, lokalne sorte vinske trte najmanj prizadete v sušnih rastnih razmerah. 2 POTREBE VINSKE TRTE PO VODI Na odziv vinske trte na sušni stres vpliva več dejavnikov. Z vidika pridelka je ključno vprašanje, za kateri namen gojimo vinsko trto, namizno grozdje ali pridelavo vina. V Sloveniji imamo 95 % vinske trte namenjene za pridelavo vina, zato v prispevku obravnavamo zgolj to. Vinska trta ima v posameznih fenofazah različne potrebe po vodi (Slika 1). Med brstenjem in razvojem mladik (BBCH 01-10) korenine črpajo vodo in v njej raztopljene rudninske snovi, ki so potrebne za uspešno rast vinske trte. Stalna preskrba z vodo med rastjo mladik in listov (BBCH 11-19) omogoči optimalen razvoj listne stene, ki je pomembna Acta agriculturae Slovenica, 111 - 3, december 2018 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo za absorpcijo svetlobe in tvorbo asimilatov. Od brstenja do začetka cvetenja (BBCH 07-60) znaša potreba vinske trte po vodi 9 % potreb celotne rastne dobe. Takrat je voda potrebna za optimalno rast korenin in razvoj listne stene ter nastavek grozdja za prihajajočo in naslednjo sezono. Med začetkom cvetenja in razvojem plodičev (BBCH 60-70) je zadostna količina vode, ki znaša 6 % nujna za tvorbo fertilnega peloda, pestiča in prašnikov ter za uspešno oprašitev in oploditev. Največ vode vinska trta potrebuje med debeljenjem jagod (BBCH 71-79), in sicer okrog 35 % celokupne potrebne količine v rastni dobi, to je od 1. 4. do 31. 10. (Maljevič, 2003). Rast jagod sprva poteka na račun hitre delitve celic in kasneje njihovega večanja. Če v tem času pride do pomanjkanja vode, bo manjše število celic in hkrati tudi njihova velikost, kar se bo odražalo v manjši končni velikosti jagod. Med zorenjem, vse do trgatve (BBCH 81-89) vinska trta potrebuje približno 36 % celokupne potrebne količine vode v rastni dobi, z namenom, da trte ne izpostavljamo sušnemu stresu po nepotrebnem in ji ohranjamo zdravo listno steno. Od trgatve in vse do odpadanja listov (BBCH 91-97) znaša poraba vode vinske trte 14 % porabe celotne rastne dobe. Pred mirovanjem je pomembno, da se v listih še vedno sintetizirajo sladkorji, ki se nato transportirajo in skladiščijo v lesu vinske trte za naslednjo rastno dobo (Moyer in sod., 2013; Goldammer, 2018). Brstenje Nastavek grozdja Trgatev Opadanje listov in mirovanje Čas vegetativne rasti Čas akumulacije rezervnih snovi Čas razvoja jagod Območje prekrivanja vegetativne in generativne faze Slika 1: Razpored fenofaz in delež potreb vinske trte po vodi v rastni dobi (prirejeno po Romero in sod., 2013) Figure 1: Vine's growth stages and water demand in the growing season (adapted from Romero et al., 2013) Vinski trti najbolj ustrezajo globoka in zračna tla, ki dobro prepuščajo vodo, da lahko razvije globok koreninski sistem. Slednji ji omogoča lažje preživetje sušnih razmer, da najde in izkoristi tudi najmanjše zaloge razpoložljive vode v tleh (Vršič in Lešnik, 2010). Koreninski sistem vinske trte se lahko razvije do globine več metrov, sesalna sila za vodo lahko znaša do -1,6 MPa (Deluc in sod., 2009; Vršič in Lešnik, 2010). Enako kot ostale rastline trta uravnava vodni status z regulacijo prevodnosti listnih rež. Glede na ohranjanje vodnega potenciala v listih (¥) ločimo izohidre in anizohidre sorte vinske trte (Schultz, 2003; Hochberg in sod., 2017). Izohidre sorte ob pomanjkanju vode v tleh natančno regulirajo transpiracijo listov in hitro zapirajo listne reže, da ohranjajo vodni status blizu optimalnega. Pri teh sortah, je ¥ redko manjši od -1,5 MPa (Lovisolo in sod., 2010). Dosedanje raziskave kažejo, da so izohidre sorte vinske trte 'Montepulciano', 'Grenache', 'Modra frankinja', in 'Portugalka' (Zsofi in sod., 2008). Anizohidre sorte so tolerantnejše na pomanjkanje vode in listnih rež, ob manjši količini razpoložljive vode ne zapirajo tako hitro, kar pomeni, da njihov ¥ bolj variira. Primer takšnega načina ohranjanja vodnega režima so sorte 'Shyrah', 'Sangiovese', 'Semillon' in 'Chardonnay' (Rogiers in sod., 2009). Pri omenjeni razdelitvi sort vinske trte lahko zaradi različnih okoljskih razmer pride do odstopanj, saj ima lahko ista sorta izohidrni in tudi anizohidrni odziv na pomanjkanje vode, ki je po navedbah mnogih avtorjev odvisen od fenofaze rastline in pojava suše v dnevnem ciklu in rastni dobi (Medrano Acta agriculturae Slovenica, 111 - 3, december 2018 701 Tina SMRKE, Vesna ZUPANC in sod., 2003; Chaves in sod., 2007; Rogiers in sod., 2009; Lovisolo in sod., 2010; Conesa in sod., 2016). Sorte s tovrstnim odzivom so 'Syrah', 'Grenache', 'Merlot' in 'Modri Pinot' (Lovisolo in sod., 2010; Zhang in sod., 2012). Kljub dobrim fiziološkim, morfološkim in anatomskim prilagoditvam vinske trte na pomanjkanje vode v tleh, lahko pride do negativnih posledic suše, ki se najpogosteje kažejo kot omejena rast mladik, manjši pridelek in slabša sestava jagod (Intrigliolo in Castel, 2009). Pri vinskih sortah so zaželene manjše jagode, z manjšo vsebnostjo kislin in večjo vsebnostjo sladkorjev ter fenolnih spojin, ki so po McCarthy (1997) tudi edini parametri, ki vplivajo na končno kakovost vina. To se lahko doseže, če ima vinska trta na voljo manj vode, kot je potencialna evapotranspiracija (ETc), kar pomeni, da se trte načrtno izpostavi blagemu sušnemu stresu. V številnih raziskavah so v jagodah trt pod sušnim stresom izmerili večjo vsebnost antocianov in drugih fenolnih snovi kot v jagodah trt, ki so bile zadostno preskrbljene z vodo (Matthews in Anderson, 1988; Matthews in sod., 1990; Roby in sod., 2004; Salon in sod., 2005). Prekomerno dodajanje vode lahko vodi do manj izrazite barve vina zaradi manjše vsebnosti antocianov v kožici jagod, manjše vsebnosti sladkorjev ter fenolnih spojin in kislinskega neravnovesja (Hepner in sod., 1985; Esteban in sod., 2001; Lanari in sod., 2014). 3 DOLOČANJE POTREB PO VODI Na volumen trti razpoložljive vode v vinogradnih se lahko vpliva z različnimi tehnološkimi ukrepi (Cancela in sod., 2017; Tomaz in sod., 2017), katerih izvajanje je pomembno pred ureditvijo in v obdobju rodnosti vinograda. Pomembna je izbira lege (Stajnko in sod., 2010), obdelava tal pred sajenjem, predvsem je pomembno globoko rigolanje, izbira podlage (Lavrenčič in sod., 2007) in sorte vinske trte, redno gnojenje, predvsem z dušikom, od brstenja do začetka cvetenja, sadilne razdalje ter gojitvene oblike, urejen odtok vode oziroma osuševanje tal ob pojavu prevelike količine vode. Med rastno dobo je pomembno odstranjevanje zalistnikov, redčenje listov in grozdov (Reščič in sod., 2015, 2016), košnja ali mulčenje travne ruše večkrat v sezoni (od brstenja do trgatve), ki preprečuje izsušitev tal in namakanje ob pomanjkanju vode v tleh (Novello in sod., 1992; Kosta, 1998; Pintar, 2006). Rastlini razpoložljiva voda v tleh je v območju matričnega potenciala tal, ki je med poljsko kapaciteto in točko venenja (Romano in Santini, 2002). Poljska kapaciteta predstavlja največjo količino vode, ki jo tla lahko zadržijo; le-ta se vzpostavi, ko odteče gravitacijsko odcedna voda. V literaturi je največkrat privzeta poljska kapaciteta -0,033 MPa. Točka venenja predstavlja tisto količino vode, pri kateri rastline ireverzibilno uvenijo. Splošno privzeta sila vezave vode pri točki venenja je -1,5 MPa. Voda, ki je vezana šibkeje kot poljska kapaciteta, gravitacijsko odteče, voda, ki je vezana močneje od točke venenja predstavlja rastlinam nedostopno vodo. Evapotranspiracija (ET) je prehod vode v obliki vodne pare z vodne površine ali iz tal ter iz rastline v atmosfero (Pintar, 2006). Referenčna evapotranspiracija (ET0) predstavlja ET iz površine aktivno rastoče travne ruše, ki popolnoma prekriva površino povprečne višine 12 cm, ki je zadostno preskrbljena z vodo, s povprečno upornostjo rastlinskega pokrova 70 m s-1 in albedom 0,23. ETc predstavlja ET v primeru zadostne količine vode v tleh za izbrano rastlino. Izračunamo jo po Penman-Monteith metodi, ki upošteva temperaturo zraka, sončno sevanje, relativno zračno vlago in hitrost vetra. Pri izračunu referenčno evapotranspiracijo (ET0) pomnožimo s koeficientom rastline (kc), ki pri vinski trti običajno ni večji od 0,8 (pogosto med 0,35 in 0,76) (Slika 2). Slednji nam pove, koliko vode potrebuje vinska trta v primerjavi s travno rušo. Večji kot je kc, več vode trta potrebuje, kar kaže na veliko površino listne stene ter senčenje pod trto in medvrstnega prostora (Allen in sod., 1998; Evapotranspiration..., 2015). 702 Acta agriculturae Slovenica, 111 - 2, september 2018 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo Slika 2: Razmerje med izračunanim koeficientom rastline (kc) in listno površino (m2/trto) sorte 'Thompson Seedless' (prirejeno po Williams in Ayars., 2005) Figure 2: Ratio between calculated crop coefficient (kc) and leaf area (m2/vine) for 'Thompson Seedless' (adapted from Williams and Ayars, 2005) Pri namakanju rastlinam dodajamo toliko vode, da je rastlina optimalno preskrbljena, t.j. do poljske kapacitete (Pintar, 2006). Hkrati pri načrtovanju namakalnega sistema upoštevamo načelo, da pokrivamo potrebe najbolj zahtevne rastline, pri čemer pokrivamo 80-90 % verjetne potencialne evapotranspiracije (Cvejič in Pintar, 2013), izračunane po Penman Monteithovi metodi (Allen in sod., 1998). Pri deficitnem namakanju je količina dodane vode pod točko optimalne preskrbe, zato je dovoljen manjši vodni stres, ki ima minimalen učinek na pridelek (English in Raja, 1996). Primanjkljaj vode pri deficitnem namakanju torej ni prepuščen naključju, temveč količino vode nadzorovano zmanjšamo glede na razvoj rastline in lastnosti tal (Lu in sod., 2003). Dodajanje manjše količine vode, kot je trta izgubi z evapotranspiracijo, a še vedno dovolj, da le-ta nima negativnega vpliva na pridelek, imenujemo deficitno namakanje (Intrigliolo in Castel, 2009). Z dodajanjem manjše, nezadostne količine vode, se izboljša sestava jagod in hkrati manj obremenjuje naravne zaloge vode v tleh (Fereres in Soriano, 2007; Podgornik in Bandelj, 2015). Voda v tleh, in sicer del, ki je dostopen, prehaja iz tal v korenine na osnovi razlike v ¥. Sprejem je možen, kadar je ¥ tal večji kot ¥ korenin. Razliko v vodnem potencialu v razmerah, ko rastline transpirirajo, generira matrični potencial (tenzija) v listih. Ta je tudi osnova za snovni tok vode iz korenin v nadzemne dele. V razmerah, ko je transpiracija omejena, se lahko razlika v ¥ med koreninami in tlemi ustvarja na račun sprejema ionov mineralnih hranil v centralni cilinder korenine. S tem se ustvarja osmotski učinek, ki omogoča sprejem vode, tlačna sila, ki nastaja v koreninah (koreninski tlak), prispeva k transportu po ksilemu. V sušnih razmerah lahko rastline z aktivnim kopičenjem osmotikov vzdržujejo sprejem vode iz tal in ohranjajo turgor (Steudle, 2001; Vodnik, 2012). Razpon intervala rastlinam dostopne vode je odvisen od lastnosti tal, predvsem od teksture in strukture (Tuller in Or, 2005). Praksa pri konvencionalnem namakanju za doseganje optimalnega pridelka je dodajanje vode do poljske kapacitete, kjer se, odvisno od rastline dopusti 30 ali 50 % primanjkljaj glede na rastlinam dostopno vodo v tleh. Pri vinski trti se pri deficitnem pristopu namaka, ko je dosežen 70 % primanjkljaj (Du in sod., 2008). Za uspešno deficitno namakanje je nujno poznavanje vodnozadrževalnih lastnosti tal (Montalebifard in sod., 2013). V peščenih tleh lahko rastline hitreje občutijo vodni stres, medtem ko imajo v tleh finejših teksturnih frakcij možnost postopne prilagoditve na večji matrični potencial (Katerji in sod., 2008). Acta agriculturae Slovenica, 111 - 3, december 2018 703 Tina SMRKE, Vesna ZUPANC Za uspeh deficitnega namakanja sta ključna dobro poznavanje rastline in nadzor nad primanjkljajem vode, ki mu je rastlina izpostavljena (Lu in sod., 2003; Pintar in Zupanc, 2017). Nadomeščanje primanjkljaja vode lahko uravnavamo na podlagi potreb rastlin po vodi, t.j. rastlinam je v namakalnem obroku dodan za nek količnik zmanjšan delež potencialne evapotranspiracije rastline (Moriana in sod., 2003); na osnovi meritev stanja rastline, t.j. merjenje vodnega potenciala rastlin (Moriana in sod., 2003; Fernandez in sod., 2008; Fernandez, 2014), merjenje vodnega toka v ksilemu (Yunusa in sod., 2004; Sousa in sod., 2006; Zhang in sod., 2011; Zhang in sod., 2012; Edwards in Clingeleffer, 2013); dodajanje vode v obsegu intervala rastlinam dostopne vode na podlagi meritev količine vode v tleh (Moriana in sod., 2003; Ruiz-Sanchez in sod., 2010). Slednji pristopi zahtevajo opremo, ki omogoča meritve vsaj vodnega potenciala trt neposredno v vinogradu. Vodni status rastline ugotavljamo z merjenjem vodnega potenciala v listih ali deblu rastlin (Patakas in sod., 2005). To sta vodni potencial pred zoro (?pD) ali opoldanski vodni potencial (fS), ki predstavljata maksimum in minimum v 24 urnem hodu vodnega potenciala. V splošnem velja, da imajo rastline, ki niso v sušnem stresu ¥S večji od -1,0 MPa; rastline v blagem sušnem stresu imajo ¥S med -1,0 in -1,2 MPa, medtem ko imajo rastline v močnem sušnem stresu ¥S med -1,2 in -1,5 MPa (Acevedo-Opazo in sod., 2010; Vodnik, 2012). Po Podgornik in Bandelj (2015) deficitno namakanje temelji na načelu, da vodo dodamo takrat, ko jo rastlina najbolj gospodarno uporabi. Namakanje lahko izvajamo v kritični razvojni fazi vinske trte (NDN - nadzorovano deficitno namakanje), med celo rastno dobo v enakih odmerkih (TDN - trajno deficitno namakanje) oziroma del korenin v enem odmerku optimalno oskrbimo z vodo in drugega izpostavimo sušnemu stresu (IPNK -izmenično polovično namakanje korenin) (Ruiz-Sanchez in sod., 2010; Podgornik in Bandelj, 2015). Pri NDN trte, se le-to v dotični fenofazi ohranja na točno določeni stopnji sušnega stresa. Običajno se ga prvič izvaja po nastavku grozdja (BBCH 71), z namenom zmanjšanja rasti mladik, listov ter jagod, in drugič po začetku zorenja z namenom izboljšanja sestave jagod (Romero in sod., 2013), vendar le v vinogradih, ki so že v obdobju polne rodnosti. Glavni cilj pri oskrbi mladega vinograda je pospešiti razvoj trsov, da jih čim hitreje uredimo v želeno gojitveno obliko in pri tem se je vsakršnemu pomanjkanju vode najbolje izogniti. NDN upošteva tudi sposobnost rastline za preživetje v sušnih razmerah in njeno fenofazo, od česa je odvisen tudi odziv vinske trte na omejeno razpoložljivost vode, čas njene aplikacije ter trajanje in intenziteto sušnega stresa (Ruiz-Sanchez in sod., 2010). Manjša količina vode v namakalnem obroku zmanjša evapotranspiracijo (ET) in rast rastlin predvsem zaradi manjše transpiracije vode iz jagod (Greenspan in sod., 1996) in liste zaradi zapiranja listnih rež ter posledično manjše asimilacije ogljika (Medrano in sod., 2003). Ker je transpiracija na pripiranje rež bolj odzivna kot fotosinteza je mogoče, da ob zmernem pripiranju rež, slednja ni nujno zmanjšana. V takem primeru se zelo poveča trenutna učinkovitost izrabe vode (razmerje fotosinteza/transpiracija). Ko prihaja do omejitev fotosinteze, je rast lahko zmanjšana, spremeni se tudi premeščanje sladkorjev. Tako se lahko z deficitnim namakanjem omeji tudi rast jagod in izboljša njihova kemijska sestava (poveča se vsebnost sladkorjev, zmanjša vsebnost kislin ter izboljša razmerje med sladkorji in kislinami). Do tega pride zaradi koncentriranja omenjenih snovi v jagodah na račun manjše vsebnosti vode v jagodah ter večje izpostavljenosti grozdov svetlobi (Grimplet in sod., 1970; Barroso in sod., 2017). Če rastlinam dodamo toliko vode, da so v stanju močnega sušnega stresa oz. prevelikega pomanjkanja vode, lahko pride do manjšega pridelka in slabše kakovosti grozdja. Ključno vprašanje je, katera je še sprejemljiva spodnja meja zmanjšanja namakalnega obroka, da se ohrani ali celo poveča koristi tovrstnega načina dodajanja vode (English in Raja, 1996; Intrigliolo in Castel, 2009), kar se s poskusi ugotavlja za posamezno sorto v različnih okoljskih razmerah. Cilj deficitnega namakanja je povečati produktivnost rastlin z uporabo vode (WP - crop water productivity). Po Geerts in Raes (2009) produktivnost rastlin (WP) opišemo kot razmerje med maso pridelka (Ya) in količino vode, ki jo rastlina porabi (ETa). Na območjih, kjer pogosto prihaja do pomanjkanja razpoložljive vode v tleh, so zaželene vrste in sorte z večjo WP, kar pomeni večji pridelek in manjšo porabo vode (Geerts in Raes, 2009). WP (kg m-3) = Ya/ETa Za dosego deficitnega namakanja je na voljo več tehnologij. Najbolj pogosto uporabljena tehnologija v intenzivni rastlinski pridelavi je kapljično namakanje, kjer so cevi s kapljači položene nad površino tal ali celo v tleh, t.i. podzemno namakanje (Camp, 1998). Če ob enem obroku namakanja omočimo samo eno stran vrste ter ob drugem obroku drugo, namakanje izvajamo z metodo izmeničnega polovičnega namakanja korenin (IPNK). To se lahko poleg kapljičnega namakanja 704 Acta agriculturae Slovenica, 111 - 3, december 2018 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo izvaja z namakanjem v brazde, ki v Sloveniji ni uveljavljena praksa in je z vidika porabe vode tudi neracionalna (Pintar, 2006; Araujo in sod, 1995a,b). V prispevku bomo v nadaljevanju obravnavali kapljično namakanje za štiri sorte vinske trte. Kapljično namakanje Pri kapljičnem namakanju se vodo aplicira neposredno v območje korenin, kar poveča izkoristek dodane vode, in sicer na od 85 do 95 % (Pintar, 2006). V svetovno znanih vinorodnih območjih v Italiji, Španiji in Čilu so izpeljali raziskave, kjer so proučevali vpliv različnih obravnav NDN na rast, pridelek in sestavo jagod ob trgatvi, pri različnih sortah vinske trte. Izbrani poskusi na sortah 'Cabernet Sauvignon', 'Monastrell', 'Sangiovese' in 'Tempranillo' z rezultati so prikazani v preglednici 1. Pri sorti 'Cabernet Sauvignon' deficitno namakanje ni vplivalo na vegetativno rast, za razliko od sorte 'Monastrell'. Izmerjene razlike med parametri rasti so bile pri 'Cabernet Sauvignon' majhne, kjer voda v globokih ilovnatih tleh z velikim volumskim deležem vode (420 mm) ni bila omejujoč dejavnik rasti trt, ki so imele koreninski sistem vse do 350 cm globine tal. Pri sorti 'Monastrell' je prišlo do značilnega zmanjšanja rasti pri trtah z NDN, kjer so zabeležili krajše mladike in manjšo maso lesa po rezi v primerjavi s TDN. Rezultati nakazujejo, da je vegetativna rast pri omenjeni sorti zelo občutljiva na pomanjkanje vode, predvsem rast mladik v dolžino (Romero in sod., 2013). To potrjujejo tudi rezultati raziskave na sorti 'Tempranillo', saj je bila rast mladik in debla ter masa lesa po rezi zmanjšana zaradi vpliva manj razpoložljive vode (Preglednica 1). Če primerjamo dva deficitna obroka vode se je masa lesa po rezi najbolj zmanjšala pri NDN2, kjer je bila najmanjša izmerjena 0,34 kg, največja pa 0,49 kg (Acevedo-Opazo in sod., 2010; Santesteban in sod., 2011). Pri sorti 'Sangiovese' je na maso lesa po rezi močno vplivala letna količina padavin. Povprečno najmanjša masa je znašala 0,53 kg na trto in je bila izmerjena pri I2, medtem ko je bila povprečno največja masa izmerjena pri obravnavanju Ii (0,65 kg na trto) (Lanari in sod., 2014). Pri sortah 'Monastrell' in 'Tempranillo' je nadzorovano deficitno namakanje (NDN, Preglednica 1) značilno zmanjšalo pridelek ob trgatvi, predvsem na račun manjših jagod. Pri sorti 'Monastrell' je bil pridelek pri trtah z NDN-1 zmanjšan za od 38 do 47 % in pri NDN-2 za od 52 do 57 % (Preglednica 1). Zmanjšalo se je število grozdov na trto pri sorti 'Tempranillo' (Santesteban in sod., 2011; Romero in sod., 2013), medtem ko pri sorti 'Sangiovese' ni prišlo do značilnih razlik med obravnavanji, vendar so pri slednji, kljub temu, značilno največji pridelek izmerili pri namakanih trtah (Lanari in sod., 2014). Pri sortah 'Cabernet Sauvignon' in 'Monastrell' se je v jagodah trt pod deficitnim namakanjem vsebnost sladkorjev povečala. Rezultati nakazujejo, da blag sušni stres pred začetkom zorenja pozitivno vpliva na vsebnost sladkorjev in hkrati na končno sestavo jagod sort v poskusu (Santesteban in sod., 2011; Romero in sod., 2013). Med zorenjem jagod se vsebnost sladkorjev veča in hkrati vsebnost kislin manjša, kar pomeni da večja vsebnost sladkorjev nakazuje manjšo vsebnost kislin. To potrjujejo rezultati poskusa na sortah 'Monastrell' in 'Sangiovese', kjer so v jagodah trt pod največjim sušnim stresom izmerili največjo vsebnost sladkorjev ter najmanjšo vsebnost titrabilnih kislin (Romero in sod., 2013; Lanari in sod., 2014). Pri vseh proučevanih sortah različna namakanja niso vplivala na pH jagod (Acevedo-Opazo in sod., 2010; Santesteban in sod., 2011; Romero in sod., 2013; Lanari in sod., 2014). Kapljično namakanje je učinkovit način, s katerim lahko izvajamo nadzorovano deficitno namakanje na rastlinah vinske trte in jih s tem izpostavimo blagemu sušnemu stresu. Zmerno pomanjkanje vode vodi do manjše rasti mladik v dolžino, manjšega pridelka na trto in boljše sestave jagod, kar je pri vinskih sortah ključnega pomena za pridelavo kakovostnega vina (Cifre in sod., 2005). Kljub obetavnim rezultatom raziskav se še vedno opazi velik vpliv okolja na sam potek poskusov oziroma na nadzor dodajanja vode za dosego deficitnega namakanja. Moyer in sod. (2013) navajajo, da se globina največje gostote korenin razlikuje pri namakanih in nenamakanih trtah. Pri kapljičnem namakanju naj bi se glavnina korenin nahajala blizu površja, pod kapljači (Araujo in sod., 1995a, b). Na takšno namakanje tip tal nima značilnega vpliva, saj se vodo dodaja večkrat in počasi, v manjših količinah, ki jo tla lahko sproti absorbirajo (Poling in Spayd, 2015). Acta agriculturae Slovenica, 111 - 3, december 2018 705 Tina SMRKE, Vesna ZUPANC Preglednica 1: Opis raziskav nadzorovanega deficitnega namakanja (NDN) na sortah 'Cabernet Sauvignon', 'Monastrell', Sangiovese' in 'Tempranillo' ter vpliv posameznega obravnavanja na rast, pridelek in sestavo jagod (Prirejeno po Intrigliolo in Castel, 2009, Acevedo-Opazo in sod., 2010, Santesteban in sod., 2011, Romero in sod., 2013, Lanari in sod., 2014). Table 1: Description of studies with regulated deficit irrigation on 'Cabernet Sauvignon', 'Monastrell', 'Sangiovese' and 'Tempranillo' and impact of different treatments on growth, yield and berry composition (adapted from Intrigliolo and Castel, 2009, Acevedo-Opazo et al., 2010, Santesteban et al., 2011, Romero et al., 2013, Lanari et al., 2014). Način namakanja Sorta Fenofaza Mejni parameter za razpoložljivost vode v obravnavanju Lastnosti tal Rast Pridelek Sestava jagod Referenca Masa lesa Dolžina Kg trto 1 Št. Masa Vsebnost Vsebnost % po rezi (kg trto-1) mladik (cm) grozdov trto-1 grozda "(g) sladkorjev (°Brix) titrabilnih kislin (g l-1) PH Nastavek Acevedo- grozdja - -0,80 do-0,95 MPa(Tl) 1,29 148,1 3,15 26 122,6 23,6 - 3,6 Opazo in sod.. ~ § 2 c S .£» o > trgatev -1,00 do -1,20 MPa (T2) I, globoka 1,29 147,1 2,90 24,8 117,7 24,5 3,6 2010 ■a S O M -1,25 do -1,40 MPa (T3) 1,19 134,3 2,76 25,1 109,2 24,8 - 3,6 Čile ETC TDN 40% 0,75 129 3,71 18,2 207 22,2 3,04 3,89 Romero in sod.. 2013 Brstenje- nastavek grozdja Nastavek 30% G (48% gline, 30% melja, 22% peska) grozdja -začetek 20% 0,51 109 2,08 15 141,8 22,9 2,84 4,01 Španija § z E O ■g O W C N ■a ra Z m cö § S zorenja Začetek zorenja -trgatev 12.3% Brstenje- nastavek grozdja Nastavek grozdja -začetek zorenja Začetek zorenja -trgatev 20,7% 22,3% 0.46 111 1.72 14.1 121.4 22.4 2.98 4.02 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo ETC > o » ss iS 3. o £ C? rt I rt § I "73 >o č S „ C & 2 q ž* o- o o ñ cc £ c g § i N C Nastavek grozdja -začetek zorenja Nastavek grozdja -začetek zorenja Začetek ¡2 zorenja -'I trgatev Začetek cvetenja -trgatev I & .............MGI (55% 0,59 melja, 37,5% gline, 7,5% peska) 33 % (10 0,65 70 % (10 0,53 5,43 5,16 13.7 13.2 358.7 411.7 13,5 380,3 23.1 21,7 22,1 6.3 6.6 3.37 3.34 Lanari in sod., 2014 Italija 6,4 3,35 -0,2 do -0,9 MPa < -0,8 MPa < -0,8 MPa -0.2 do -0.9 MPa < -0,8 MPa < -0,6 MPa 0,64 0,45 0.40 4,18 3,05 3.18 18,35 227,5 14,63 208,5 14.65 217.1 5,26 4,65 4.52 Santesteban in sod.. 2011 Španija ETc 0% 50% 50% (+ IKN) 100% 100% (+IKN) GI-G, globina tal več kot 2 m Listna površina (nr trto-1) 1,20 6,6 5,92 16 370 20,9 5,3 3,23 1.46 7.5 6.54 16 409 22 5.4 3.33 1.37 7.6 6.59 16 412 22.1 5.2 3.35 1.59 8.3 6.8 16 425 22.8 5.5 3.37 1.59 8.8 7.43 17 437 22.1 5.3 3.32 Intrigliolo in Castel, 2009 Španija Pri sorti 'Cabernet Sauvignon' so obravnavanja brez sušnega stresa (Wpo -0,80 do -0,95 MPa), blag sušni stres (-1,00 do -1,20 MPa) in močan sušni stres (-1,25 do -1,4 MPa). Pri sorti 'Monatrell' je TDN trajno deficitno namakanje (40 ° o celotne ETC), NDN nadzorovano deficitno namakanje (NDN-1: 30 ° o celotne ETC med brstenjem in nastavkom grozdja, 12,3 ° o ETC med nastavkom grozdja in začetkom zorenja, 20,7 0 o ETC med začetkom zorenja in trgatvijo; NDN-2: 20 ° o celotneETC med brstenjem in nastavkom grozdja, med nastavkom grozdja in začetkom zorenja niso namakali, med začetkom zorenja in trgatvijo 22,3 0 o celotne ETC). Pri sorti 'Sangiovese' pomeni Io kontrola (nenaniakane trte), pri Ii so trte namakane s 33 ° o ETC in pri I2 s 70 0 o ETC zadnjih 7 dni, med nastavkom grozdja in začetkom zorenja. Trte so bile namakane, ko je ¥s dosegel okvirno -0,9 MPa, neto fotosinteza okvirno 11 (.imol CO2 m_2s_1 in ko je razpoložljiva voda v tleh na 0,6 111 globine pod listno steno dosegla točko venenja. Pri sorti 'Tempranillo' in nadzorovanem deficitnem namakanju -NDN je KN konvencionalno namakanje (Wpo od -0,2 MPa do -0,9 MPa), NDN je nadzorovano deficitno namakanje (NDN-1 namakali ko je Wpo padel pod -0,8 MPa, pri NDN-2 med nastavkom grozdja in začetkom zorenja, ko je Wpo padel pod -0,8 MPa, med začetkom zorenja do trgatve, ko je Wpo padel pod -0,6 MPa). Pri sorti 'Tempranillo' in izmeničnem polovičnem kapljičnemu namakanju - IPK je kontrola nenaniakane trte, pri 50 (50 % ETC) in 100 (100 % ETC) so vodo dodali na obe strani trt, pri 50-IKN (50 ° o ETC) in 100-IKN (100 %ETC) so vodo dodali le na eno stran trt. o Tina SMRKE, Vesna ZUPANC Izmenično polovično namakanje korenin (IPNK) Izmenično polovično namakanje korenin (IPNK) temelji na izmenjujočem dodajanju vode dvema deloma korenin vinske trte (Slika 2). Del korenin v mokrih tleh naj bi trto preskrboval z vodo, del v suhih tleh naj bi listom in mladikam poslal signal o pomanjkanju vode, ki bi posledično zmanjšale prevodnost listnih rež in s tem transpiracijo (dos Santos in sod., 2003; Intrigliolo in Castel, 2009). Dosedanji rezultati o vplivu izmeničnega namakanja na rast, rodnost in sestavo jagod pri vinski trti kažejo na velik vpliv sorte, okoljskih razmer, lastnosti tal in načina aplikacije vode na fiziološke odzive posamezne trte. Posledično še ni moč zagotovo trditi ali se IPNK dobro obnese v vseh pridelovalnih razmerah (Gu in sod., 2004; Du in sod., 2013). Slika 3: Izmenično kapljično namakanje (prirejeno po Du in sod., 2008) Figure 3: Alternate partial drip irrigation (adapted from Du et al., 2008 Poskus, kjer so ugotavljali vpliv IPNK na rast, pridelek in sestavo jagod so izvedli v Španiji na sorti 'Tempranillo'. Pri obravnavanjih so upoštevali ET0 in kc, stran namakanja so zamenjali na vsaka dva tedna. Pri obravnavanjih z izmeničnim namakanjem so najprej namakali severno in nato južno stran trt (preglednica 1). Izmenično kapljično namakanje (IKN) ni značilno vplivalo na vegetativno rast vinske trte. Masa lesa po rezi ter površina listne stene sta se opazno povečala pri bolj namakanih trtah (100 % in 100 % IKN), vendar razlik med običajnim in izmeničnim namakanjem niso opazili. Pri 50 % je bila površina listne stene na trto 7,5 m2, pri 50 % IKN pa 7,6 m2 (Intrigliolo in Castel, 2009). Pridelek in parametri rodnosti (št. grozdov na trto in masa posameznega grozda) se pod vplivom različnega načina namakanja niso značilno razlikovali. Razlike so bile opazne le med trtami, ki so jim dodali različen volumen vode (Preglednica 1). Pri kontroli brez namakanja so izmerili najmanjši povprečni pridelek na trto (5,92 kg/trto) in maso grozdov (370 g), medtem ko so polno namakane trte pod običajnim namakanjem dale največ grozdja (7,43 kg/trto, masa enega grozda v povprečju 437 g). Število grozdov na trto se med obravnavanji ni spremenilo (Intrigliolo in Castel, 2009; preglednica 1). Način dodajanja vode ni vplival na končno sestavo jagod. Pri vseh obravnavanjih je vsebnost sladkorjev variirala med 20,9 °Brix pri kontroli in 22,8 °Brix pri trtah pod običajnim 100 % kapljičnim namakanjem. Med obravnavanji se tudi pri vsebnosti titrabilnih kislin in pH vrednosti niso pokazale značilne razlike (Intrigliolo in Castel, 2009). Dosedanje raziskave vpliva izmeničnega kapljičnega namakanja na rast in rodnost vinske kažejo nasprotujoče rezultate, predvsem zaradi velikega števila dejavnikov, ki vplivajo na procese v sistemu tla - vinska trta - listna stena. Omeniti velja predvsem vremenske razmere, značaj sorte, lastnosti tal in načine namakanja, zato bi morali tovrstno namakanje preizkusiti v različnih okoljskih razmerah z različnimi tipi tal, na več sortah in pod različnimi načini dodajanja vode (Gu in sod., 2004). Še bolj kot pri kapljičnem namakanju, kjer namakamo celotno območje korenin, tip tal močno vpliva na izmenično namakanje, pri katerem je pomembno, da dosežemo očitno mejo med mokrim in suhim delom tal. Težja tla se počasneje segrevajo ter ohlajajo in hkrati osušujejo, kar pomeni, da mora cikel namakanja ene in osuševanja druge strani vinske trte trajati dlje časa, sicer izmenično namakanje ne pride do izraza (Du in sod., 2008). 188 Acta agriculturae Slovenica, 111 - 3, december 2018 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo 4 NAMAKANJE VINSKE TRTE V SLOVENIJI Namakanje vinske trte v Sloveniji nima takšne tradicije izvajanja kot v drugih državah pridelovalkah grozdja s toplejših območij, vendar se je tudi že pri nas nekaj vinarjev odločilo za ureditev namakalnega sistema. Prvi poskusi vpeljave deficitnega namakanja so v teku pri oljkah (Podgornik in Bandelj, 2015), medtem ko vinsko trto pri nas namakajo predvsem na Primorskem, kjer izrazito plitva tla ne omogočajo zadrževanja vode. Po podatkih javnih baz namakanih vinogradov v Sloveniji ni. V zadnjih letih se je na nekaterih omejenih območjih Goriških brd in Krasa uredilo posamezne kapljične namakalne sisteme. Najverjetneje je vodni vir vodovodna voda ali deževnica. V drugih vinorodnih okoliših se namakanje v pridelavi grozdja ne izvaja (Rusjan, 2018). Za strokovno pravilno namakanje ter prenos principa deficitnega namakanja v prakso bo potrebno preveriti odziv sort v danem okolju. Na uspešnost izbranega pristopa k namakanju oziroma deficitnemu principu namakanja imajo velik vpliv številni dejavniki, kot so sorta in podlaga vinske trte, poznavanje kritičnih faz namakane sorte, lastnosti tal. Zato je smiselno tovrstni princip namakanja dobro preučiti v različnih okoljskih in eksperimentalnih razmerah ter ločeno za vsak vinorodni okoliš v Sloveniji. Dobro poznavanje nadzora deficita je ključno, za kar je potrebno znanje ter dostop do opreme, ki bo omogočala nadzor deficita. V Sloveniji se namaka pogosto le po občutku (Cvejic s sod., 2015), zato sta strokovna in finančna podpora pridelovalcem pri vpeljavi te tehnologije namakanja v vinogradništvu nujni. 5 ZAKLJUČKI V pregledu vsebin dosedanjih objav obravnavamo vpliv različnih pristopov deficitnega namakanja na rast in rodnost žlahtne vinske trte (Vitis vinifera L.). Deficitno namakanje je eno izmed najbolj raziskanih načinov upravljanja namakanja vinske trte, pri katerem raziskovalci navajajo veliko pozitivnih učinkov za uspešno pridelavo grozdja. Takšen način upravljanja namakanja vinske trte se je v svetu začel uporabljati zaradi zmanjševanja zalog rastlinam razpoložljive vode v tleh. Pri deficitnem namakanju se nadzorovano dodaja manjši volumen vode, kot jo trta potrebuje. Rezultati tovrstnega namakanja so manjša rast trte (krajše mladike, manjša listna površina, manjša masa lesa po rezi), manjše jagode in s tem sprejemljivo manjši pridelek, boljša sestava jagod (več sladkorjev in antocianov, manj kislin), večja učinkovitost rabe vode (več pridelka na enoto dodane vode) in manjša poraba vode. Najboljši način za nadzor deficitnega namakanja pri vinski trti je sprotno merjenje vodnega potenciala oziroma ksilemskega toka trte. Izkušnje z dosedanjimi poskusi nakazujejo, da sušni stres pred in po začetku zorenja vodi do najboljšega razmerja med rastjo in količino pridelka ter sestavo grozdja sort 'Cabernet Sauvignon', 'Monastrell' in 'Sangiovese'. Na uspešnost izbranega pristopa k deficitnemu namakanju imajo velik vpliv sorta in podlaga vinske trte ter tekstura tal, zato je smiselno to tehnologijo namakanja dobro preučiti v različnih okoljskih in eksperimentalnih razmerah ter za vsak vinorodni okoliš v Sloveniji. Za uspešen prenos principa deficitnega namakanja v prakso je potrebno poznati tudi kritične fenofaze namakanih sort vinske trte, kakšen je odziv sorte v nekem okolju, potreben je dostop do opreme, ki bo omogočala nadzor deficita. Uspešen prenos v prakso bo mogoč le ob finančni in strokovni podpori pridelovalcem pri vpeljavi te tehnologije namakanja. 6 VIRI Acevedo-Opazo C., Ortega-Farias S., Fuentes S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Managament, 97, 956-96. doi:10.1016/j.agwat.2010.01.025 Allen R.G., Pereira L.S., Raes D., Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and drainage paper, 56. Rome, Food and Agriculture Organization of the United Nations: 300 str. Araujo F., Williams L. E., Grimes D. W., Mathews M. A. (1995a). A comparative study of young 'Thompson Seedless' grapevines under drip and furrow irrigation. I. Root and soil water distributions. Scientia Horticulturae, 60, 235-249. doi:10.1016/0304-4238(94)00710-W Araujo F., Williams L. E., Mathews M. A. (1995b). A comparative study of young 'Thompson Seedless' Acta agriculturae Slovenica, 111 - 3, december 2018 189 Tina SMRKE, Vesna ZUPANC grapevines (Vitis vinifera L. ) under drip and furrow irrigation. II. Growth, water use efficiency and nitrogen partitioning. Scientia Horticulturae, 60, 251-265. doi:10.1016/0304-4238(94)00711-N Barroso J.M., Pombeiro L., Rato A.E. (2017). Impacts of crop level, soil and irrigation management in grape berries of cv 'Trincadeira (Vitis vinifera L.). Journal of Wine Research, 28 (1), 1-12. doi:10.1080/09571264.2016.1238350 Camp C. R. (1998). Subsurface drip irrigation: a review. Transactions of the ASAE, 41, 5, 1353-1367. doi:10.13031/2013.17309 Cancela, J.J., Rey, B.J., Fandiño, M., Martínez, E.M., Lopes, C.M., Egipto, R., Silvestre, J.M. (2017) Tools for management of irrigation in vineyards: An approach to farmers. Acta Horticulturae, 1150, 471-476, doi: 10.17660/ActaHortic.2017.1150.65 Chaves M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues M.L. Lopes, C.M. (2007). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105, 661-676. 2010 doi: 10.1093/aob/mcq030 Cifre J., Bota J., Escalona J.M., Medrano H., Flexas J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agriculture, Ecosystems and Environment, 106, 159-170. doi:10.1016/j.agee.2004.10.005 Conesa M.R., de la Rosa J.M., Domingo R., Baqon S., Pérez-Pastor A. (2016). Changes induced by water stress on water relations, stomatal behaviour and morphologyof table grapes (cv. Crimson Seedless) grown in pots. Scientia Horticulturae, 202, 9-16. doi:10.1016/j.scienta.2016.02.002 Cvejič R., Pintar M. (2013). Namakanje. Šentjur, 27 november 2013. Oddelek za agronomijo, Biotehniška fakulteta, Univerza v Ljubljani Cvejič R., Zupanc V., Pintar M. (2015). Primerjava razvoja namakanja v Sloveniji z globalnim trendom = Development of irrigation in Slovenia from a global perspective. Hmeljarski bilten, 22, 74-85. Deluc L.G. Quilici D.R., Decendit A., Grimplet J., Wheatley M.D., Schlauch K.A., Merillon J. Cushman J.C., Cramer G.R. (2009). Water deficit alters differentialy metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10. Doll P. (2002). Impact ofclimate change an variability on irrigation requirements: A global perspective. Climatic change, 54, 269-293. doi:10.1023/A:1016124032231 dos Santos T.P., Lopes C.M., Rodrigues M.L., de Souza C.R., Maroco J.P., Pereira J.S., Silva J.R., Chaves M.M. (2003). Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Functional plant biology, 30, 663671. doi:10.1071/FP02180 Du T., Kang S., Zhang J., Li F., Yan B. (2008). Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agricultural water management, 95, 659-668. doi:10.1016/j.agwat.2008.01.017 Du T., Kang S., Yan B., Zhang J. (2013). Alternate furrow irrigation: A practical way to improve grape quality and water use efficiency in arid northwest China. Journal of Integrative Agriculture, 12(3), 509-519. doi: 10.1016/S2095-3119(13)60252-X Edwards E.J., Clingeleffer P.R. (2013). Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition, and wine attributes of Cabernet Sauvignon grapevines. Australian Journal of Grape and Wine Research, 19, 261-276. doi: 10.1111/ajgw. 12027 English M., Raja S.N. (1996). Perspectives on deficit irrigation. Agricultural Water Management, 32, 114. doi:10.1016/S0378-3774(96)01255-3 Esteban M.A, Villanueva M.J., Lissarrague J. (2001). Effect of irrigation on changes in the anthocyanin composition of the skin of cv. Tempranillo (Vitis vinifera L.) grape berries during ripening. Journal of the Science of Food and Agriculture, 81, 409420. doi:10.1002/1097-0010(200103)81:4<409::AID-JSFA830>3.0.C0;2-H Evapotranspiration and Grapevine Water Use. (2015). WSU viticulture and enology, Washington State University. http://wine.wsu.edu/research- extension/weather/evapotranspiration/ (1. sept. 2015) FAO database. Food and Agriculuture Organisation of the United Nations. Aquastat. http://www.fao.org/nr/water/aquastat/data/query/res ults.html (18.feb. 2016) Fereres E., Soriano M.A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147-159. doi: 10.1093/jxb/erl165 Fernandez J.E., Green S.R., Caspari H.W., Diaz-Espejo A., Cuevas M.V. (2008). The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant 710 Acta agriculturae Slovenica, 111 - 3, december 2018 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo and Soil, 305(1-2), 91-104. doi:10.1007/s11104-007-9348-8 Fernandez J.E. (2014). Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environmental and Experimental Botany, 103, 158-179. doi:10.1016/j.envexpbot.2013.12.003 Geerts S., Raes D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96, 1275-1284. doi:10.1016/j.agwat.2009.04.009 Goldammer T. (2018). Grape Grower's Handbook: A Guide to Viticulture for Wine Production. Third edition. U.S.A., Apex Publishers: 482 str. Greenspam M.D., Schultz H.R., Matthews M.A. (1996). Field evaluation of water transport in grape berries during water deficits.Physiologia Plantarum, 97(1), 55-62. doi: 10.1111/j. 1399-3054.1996.tb00478.x Grimplet J., Deluc L.G., Cramer G., Cushman J.C. (1970). Integrating functional genomics with salinity and water deficit stress responses in wine grape - Vitis vinifera. Advances in molecular breeding toward drought and salt tolerant crops, 643-668. Gu S., Du G., Zoldoske D., Hakim A., Cochran R., Fugelsang K., Jorgensen G. (2004). Effects of irrigation amount on water relations, vegetative growth, yield and fruit composition of Sauvignon blanc grapevines under partial rootzone drying and conventional irrigation in the San Joaquin Valley of California, USA. Journal of Horticultural Sciense and Biotechnology, 79(1), 26-33. doi: 10.1080/14620316.2004.11511732 Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R., Tabor G., Zhi L., Marquet P.A., Hijmans R.J. (2013). Climate change, wine and conservation. Proceedings of the National Academy of Sciences of the Unated States of America, 110(17), 6907-6912. doi:10.1073/pnas.1210127110 Hepner Y., Bravdo B., Loinger C., Cohen S., Tabacman H. (1985). Effect of drip irrigation schedules on growth, yield, must composition and wine quality of Cabernet Sauvignon. American Journal of Enology and Viticulture, 36, 77-85. Hladnik M., Jakse J., Bandelj D., Vuk I. (2014). The characterisation of Vitis vinifera 'Refosk' with AFLP and SSR molecular markers and ampelographic traits. Acta Agriculturae Slovenica, 103(1), 55-64. doi:10.14720/aas.2014.103.1.06 Hochberg U., Degu A., Fait A., Rachmilevitch S. (2017). Grapevines hydraulic diversity - A critical consideration for irrigation management. Acta Horticulturae, 1150, 443-448. doi:10.17660/ActaHortic.2017.1150.61 Imazio S., De Lorenzis G., Scienza A., Failla O., Vouillamoz J., Korošec-Koruza Z., Rusjan D., Nikolao N. (2014). 'Ribolla Gialla' from North Eastern Italy, 'Rebula' from Northern Balkans and 'Robola' from Ionian Islands; Do they belong to the same population variety or are they genetically different? Acta Horticulturae, 1046, 645-652. doi:10.17660/ActaHortic.2014.1046.88 Intrigliolo D.S., Castel J.R. (2009). Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality. Agricultural Water Managament, 96, 282-292. doi:10.1016/j.agwat.2008.08.001 Kajfež Bogataj L. (2009). Climate change and future adaptation. Economic and business review, 11(1), 9-27. Katerji N., Mastrorilli M., Rana G. (2008). Water use efficiency of crops cultivated in the Mediterranean region: Review and analysis. European Journal of Agronomy, 28(4). doi:10.1016/j.eja.2007.12.003 Kosta H. (1998). Vinogradniški nasveti. Ljubljana, Kmečki glas: 149 str. Kumar Kar R. (2011). Plant responses to water stress. Role of reactive oxygen species. Plant Signaling and Behavior, 6(11), 1741-1745. doi:10.4161/psb.6.11.17729 Lamovšek, J., Zidarič, I., Mavrič Pleško, I., Urek, G., Trdan, S. (2014). Comparative study of diagnostic methods used for monitoring of common grape vine (Vitis vinifera L.) crown gall (Agrobacterium vitis Ophel & Kerr) in Slovenia. Acta Agriculturae Slovenica, 103(2), 313-321. doi:10.14720/aas.2014.103.2.16 Lanari V., Pallioti A., Sabbatini P., Howell G.S. (2014). Optimizing deficit irrigation strategies to manage vine performance and fruit composition of field-grown 'Sangiovese' (Vitis vinifera L.) grapevines. Scientia Horticulturae, 179, 239-247. doi:10.1016/j.scienta.2014.09.032 Lavrenčič P., Peterlunger P., Sivilotti E. (2007). Water stress and root hydraulic conductivity in grapevine grafted on different rootstocks. Acta Horticulturae, 754, 283-288. doi:10.17660/ActaHortic.2007.754.36 Lovisolo, C., Perrone, I., Carra, A., Ferrandino, A., Flexas, J., Medrano, H., Schubert, A. (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular Acta agriculturae Slovenica, 111 - 3, december 2018 711 Tina SMRKE, Vesna ZUPANC update. Functional Plant Biology, 2010(37), 98116. doi:10.1071/FP09191 Lu P., Yunusa I.A.M., Walker R.R., Müller W.J. (2003). Regulation of canopy conductance an transpiration and their modeling in irrigated grapevines. Functional Plant Biology, 30, 689-698. doi:10.1071/FP02181 Malheiro A.C., Santos J.A., Fraga H., Pinto J.G. (2010). Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 43, 163-177. doi:10.3354/cr00918 Maljevič J. (2003). Naravi in ljudem prijazno vinogradništvo. Novo mesto, KGZS - Zavod: 93 str. Matthews M.A., Anderson M.M., Schultz H.R. (1987). Phenologic and growth responses to early and late season water deficits in Cabernet franc. Vitis -Journal of Grapevine Research, 26, 147-160. Matthews M.A., Anderson M.M. (1988). Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. American Journal of Enology and Viticulture, 39(4), 313-320. Matthews M.A., Ishii R., Anderson M.M., O'Mahony M. (1990). Dependence of wine sensory attributes on wine water status. Journal of the Science of Food and Agriculture, 51(3), 321-335. doi: 10.1002/jsfa.2740510305 McCarthy M.G. (1997). The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 3, 102-108. doi:10.1111/j.1755-0238.1997.tb00128.x Medrano H., Escalona J.M., Cifre J., Bota J., Flexas J. (2003). A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Functional Plant Biology, 30, 607-619. doi: 10.1071/FP02110 Montalebifard R., Najafi N., Oustan S. Nyshabouri M. R., Valizadeh M. (2013). The combined effects of phosporous and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162, 31 - 38. doi:10.1016/j.scienta.2013.07.043 Moriana A., Orgaz F., Pastor M., Fereres E. (2003). Yield responses of a mature olive orchard to water deficits. Journal of the American Society of Horticultural Science, 128(3), 425-431. Moyer M., Peters R. T., Hamman R. (2013). Irrigation Basics for Eastern Washington Vineyards. Washington State University Extension. http ://cru. cahe.wsu. edu/CEPublications/EM061E/E M061E.pdf (12.dec. 2015) Novello V., Schubert A., Antonietto M., Boschi A. (1992). Water relations of grapevine cv. Cortese with different training systems. Vitis - Journal of Grapevine research, 31(2), 65-75. OIV (International Organisation of Vine and Wine). (2011). http://www.oiv.int/en/ (9.11.2018) Patakas A., Noitsakis B., Chouzouri A. (2005). Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agriculture, Ecosystem and Environment, 106, 253-259. doi:10.1016/j.agee.2004.10.013 Pelengič R., Pipan B., Meglic V., Rusjan D. (2012). Ovrednotenje genskih virov belih sort žlahtne vinske trte (Vitis vinifera L.). Acta agriculturae Slovenica, 99, 433-438. Pintar M. (2006). Osnove namakanja s poudarkom na vrtninah in sadnih vrstah v zahodni, osrednji in južni Sloveniji. Ljubljana, Ministrstvo za kmetijstvo, gozdarstvo in prehrano: 55 str. Pintar M., Zupanc V. (2017). Deficitno namakanje v poljedelstvu in zelenjadarstvu - izzivi in perspektive. V: Čeh B. (ur.), et al. Novi izzivi v agronomiji 2017 : zbornik simpozija, Laško, 2017 Ljubljana: Slovensko agronomsko društvo. 2017, str. 272-276 Podgornik M., Bandelj D. (2015). Deficitni princip namakanja oljčnih nasadov v Slovenski Istri. Acta agriculturae Slovenica, 105, 337-344. Poling B., Spayd S. (2015). Grapevine water relations and vineyard irrigation. The North Carolina Winegrape Grower's Guide. http://content.ces.ncsu.edu/chapter-10-grapevine-water-relations-and-vineyard-irrigation.pdf (12. dec. 2015) Reščič J., Mikulič-Petkovšek M., Štampar F., Zupan A., Rusjan D. (2015). The impact of cluster thinning on fertility and berry and wine composition of 'Blauer Portugieser' (Vitis vinifera L.) grapevine variety. Journal International des Sciences de la Vigne et du Vin, 49(4), 275-291. doi:10.20870/oeno-one.2015.49.4.16 Reščič J., Mikulič-Petkovšek M., Rusjan D. (2016). The impact of canopy managements on grape and wine composition of cv. 'Istrian Malvasia' (Vitis vinifera L.). Journal of the Science of Food and Agriculture, 96(14), 4724-4735. doi:10.1002/jsfa.7778 71 2 Acta agriculturae Slovenica, 111 - 3, december 2018 Deficitni princip namakanja vinske trte (Vitis vinifera L.) - pregled dosedanjih izkušenj in izhodišča za Slovenijo Roby G., Harbertson J.F., Adams D.A., Matthews M.A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10, 100-107. doi:10.1111/j.1755-0238.2004.tb00012.x Rogiers S. Y., Greer D. H., Hutton R. J., Landsberg J. J. (2009). Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? Journal of Experimental Botany, 60(13), 1-13. doi: 10.1093/jxb/erp217 Romano N, Santini, A.. (2002). Water retention and storage: Field. V: Methods of Soil Analysis, Part 4, Physical Methods, Edition: SSSA Book Series N.5, Chapter: Water retention and storage: Field., Publisher: Soil Science Society of America, Editors: J.H. Dane, G.C. Topp, pp.721-738 Romero P., Gil-Muñoz R., M. del Amor F., Valdés E., Fernandez J.I., Martinez-Cutillas A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and vines. Agricultural Water Managament, 121, 85-101. doi:10.1016/j.agwat.2013.01.007 Ruiz-Sanchez M.C., Domingo R., Castel J.R. (2010). Review. Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research, 8, S5-S20. doi:10.5424/sjar/201008S2-1343 Rusjan D. (2018). Osebna komunikacija. Rusjan D., Bubola M., Janjanin D., Uzila Z., Radeka S., Poljuha D., Pelengic R., Javornik B., Stajner N. (2015). Ampelographic characterisation of grapevine accesions denominated 'Refosk', 'Refosco', Teran' and 'Terrano' (Vitis vinifera L.) from Slovenia, Croatia and Italy. Vitis - Journal of Grapevine Research, 54, 77-80. Salon J.L., Chirivella C., Castel J.R. (2005). Response of cv. Bobal to timing on deficit irrigation in Requena, Spain: Water relations, yield and wine quality. American Journal of Enology and Viticulture, 56, 1, 1-8. Santesteban L.G., Miranda C., Royo J.B. (2011). Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. 'Tempranillo'. Agricultural Water Managament, 98, 1171-1179. doi:10.1016/j.agwat.2011.02.011 Schultz H.R. (2003). Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant, Cell and Environment, 26, 1393-1405. doi:10.1046/j.1365-3040.2003.01064.x Simončič J., Mavric Štrukelj M., Brdnik M., Štabuc R., Novak E. (2017). Slovenski vinogradi. V: Zbornik prispevkov. 5. Slovenski vinogradniško-vinarski kongres, Šentjernej, 12. maj 2017. Čuš F., Košmerl T., Vanzo A. (ur.). Ljubljana, Kmetijski Inštitut Slovenije: 2-36 Sousa T.A., Oliveira M.T., Pereira J.M. (2006). Physiological indicators of plant water status of irrigated an non-irrigated grapevines grown in a low rainfall area of Portugal. Plant and Soil, 282, 127-134. doi: 10.1007/s11104-005-5374-6 Stajnko D., Pulko B., Rakun J. (2010). Possible application of didifferental global positioning siystem (DGPS) to harvesting date and precision viticulture. African Journal of Biotechnology, 9(48), 8182-8191. doi:10.5897/AJB10.1245 Statistični urad Republike Slovenije. Irrigation by type of area, Slovenia, annually by IRRIGATED AREA, MEASURES and YEAR. http ://pxweb. stat. si/pxweb/Dialog/Saveshow. asp (18.feb. 2016) Steudle E., (2001). The cohesion-tension mechanism and the acquisition of water by plant roots. Annual Review of Plant Physiological and Molecular Biology, 52, 847-875. doi:10.1146/annurev. arplant.52.1.847 Štajner N., (2010). Mikrosatelitski markerji uporabni za identifikacijo kultivarjev vinske trte (Vitis vinifera L.). Acta agriculturae Slovenica, 95, 183-192. Štrukelj, M., Razinger, J., Grubar, B., Žibrat, U., Mavric Pleško, I., Vodnik, D., Urek, G. (2016) Physiological response of grapevine Vitis vinifera L. to grapevine leafroll associated viruses (GLRaV-1 and GLRaV-1 + GLRaV-3) | [Fiziološki odziv žlahtne vinske trte Vitis vinifera L. na okužbo z zvijanjem listov vinske trte povezanih virusov (GLRaV-1 in GLRaV-1 + GLRaV-3)] Acta Agriculturae Slovenica. 107(2), 519-529. doi:10.14720/aas.2016.107.2.22 Tomaz A., Pacheco C.A., Coleto Martinez J.M. (2017). Influence of cover cropping on water uptake dynamics in an irrigated Mediterranean vineyard. Irrigation and Drainage, 66(3), 387-395. doi:10.1002/ird.2115 Tuller M., Or D. (2005). Water films and scaling of soil characteristic curves at low water contents. Water Resources research, 41(9), W09403. doi:10.1029/2005WR004142 Vodnik D. (2012). Osnove fiziologije rastlin. Ljubljana, Oddelek za agronomijo, Biotehniška fakulteta: 141 str. Acta agriculturae Slovenica, 111 - 3, december 2018 713 Tina SMRKE, Vesna ZUPANC Vršič S., Lešnik M. (2010). Vinogradništvo. 2. dopolnjena izdaja, Ljubljana, Kmečki glas: 403 str. Williams L.E., Ayars J.E. (2005). Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agricultural and Forest Meteorology, 132, 201211. doi:10.1016/j.agrformet.2005.07.010 Yunusa I.A.M., Walker R.R., Lu P. (2004). Evapotranspiration components from energy balance, sapflow and microlysimetri techniques for an irrigated vineyard in inland Australia. Agricultural and Forest Meteorology, 127, 93-107. doi:10.1016/j.agrformet.2004.07.001 Zhang Y., Kang S., Ward E.J., Ding R., Zhang X., Zheng R. (2011). Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dyanmics and influental factors. Agricultural Water Management, 98, 1207-1214. doi:10.1016/j.agwat.2011.03.006 Zhang Y.,Oren R., Kang S. (2012). Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects on hydraulic properties and indirect effects of canopy leaf area. Tree Physiology, 32, 262-279. doi: 10.1093/treephys/tpr120 Zhang Q., Wang S., Li L., Inoue M., Xiang J., Qui G., Jin W. (2014). Effects of mulching and sub-surface irrigation on vine growth, berry sugar content and water use of grapevines. Agricultural Water Management, 14, 1-8. doi:10.1016/j.agwat.2014.05.015 Zsófi Z., Tóth E., Váradi G., Rusjan D., Bálo B. (2008). The effect of progressive drought on water relations and photosynthetic performance of two grapevine cultivars (Vitis vinifera L.). Acta Biologica Szegediensis, 52(2), 321-322. 714 Acta agriculturae Slovenica, 111 - 3, december 2018 doi: 10.14720/aas.2018.111.3.19 Review article / pregledni znanstveni članek On-farm seed priming interventions in agronomic crops Neha CHATTERJEE1, Deepranjan SARKAR2, Ardith SANKAR1, Sumita PAL3, H. B. SINGH3, Rajesh Kumar SINGH1, J. S. BOHRA1, and Amitava RAKSHIT2* Received May 07, 2018; accepted November 12, 2018. Delo je prispelo 07. maja 2018, sprejeto 12. novembra 2018. ABSTRACT Priming techniques are gaining importance in agriculture with the increase in environmental stresses. Resource-poor farmers are in urgent need of such techniques as they are simple, economical, and value-added intervention associated with low-risk bearing factors. Seed enhancement methods are key to improve seed performance and achieve a good stand establishment. Worldwide beneficial effects of priming are recorded. But these technologies have still not reached most farmers. This review highlights the importance of on-farm priming strategies in modern crop production system to yield better productivity and obtain higher economic returns. Stimulation of the pre-germination metabolic changes by priming is necessary to overcome the environmental challenges that a plant can encounter. Thus, the study also focuses on mechanisms associated with priming-induced stress tolerance of crops. Various safe practical methods of seed priming can be easily adopted by the farming community to alleviate the levels of different stresses which can hamper productivity. Simultaneously they can produce good quality seeds and use them further for the next crop cycle cutting the costs of seed purchase. Key words: priming methods; priming agents; stress; stress tolerance; plant growth IZVLEČEK UVAJANJE PREDSETVENE OBDELAVE SEMEN POLJŠČIN NA KMETIJAH Tehnike predsetvene obdelave semen pridobivajo na pomenu v kmetijstvu s povečevanjem okoljskih stresov. Zaradi preprostosti uporabe, ekonomičnosti in dodane vrednosti zaradi zmanjšanja tveganja so te metode nujno potrebne za revne kmete. Metode pospeševanja kalitve semen so ključne za izboljšanje setve in za vzpostavitev dobrih posevkov. Blagodejni učinki predsetvene obdelave semen so zabeleženi širom po svetu, vendar te tehnologije še vedno niso dosegle večine kmetov. Ta pregled osvetljuje pomen teh postopkov na kmetijah v modernih sistemih pridelovanja poljščin za boljšo produktivnost in doseganje večjih iztržkov. Vzpodbujanje predkalitvene presnovne aktivnosti semen z njihovo predsetveno obdelavo je potrebno za preseganje okoljskih izzivov s katerimi se soočajo rastline. Raziskava se osredotoča tudi na mehanizme, povezane s predsetveno obdelavo semen vzpodbujene tolerance na stres pri kmetijskih rastlinah. Različne varne in praktične metode predsetvene obdelave semen bi lahko bile z lahkoto uporabljene pri kmetovalcih za zmanjševanje okoljskih stresov, ki ovirajo produktivnost rastlin. Hkrati bi tako pridelali kvalitetna semena za naslednjo setev in s tem zmanjšali stroške njihovega nakupa. Ključne besede: metode predsetvene obdelave semen; sredstva za predsetveno obdelavo; stres; toleranca na stres; rast rastlin 1 Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India 2 Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Corresponding author: amitavar@bhu.ac.in 3 Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India Acta agriculturae Slovenica, 111 - 3, december 2018 str. 715 - 735 Neha CHATTERJEE et al. 1 INTRODUCTION Farmers in developing countries often encounter poor crop establishment in crop production practices. The reasons for this failure might be due to some basic factors like availability of good quality seeds, knowledge of seed technology, proper sowing techniques, or climate change and various environmental stresses (Figure 1). The extra costs in labour, draft power, and materials hinder the small and marginal farmers to alleviate these constraints efficiently. Therefore, we need to popularize the seed enhancement technologies which could be easily adopted by all farmers, irrespective of their socioeconomic conditions. Because successful crop production depends on good quality seeds. Abiotic and biotic stresses are the norm for any plant while completing its phenology (Suzuki et al., 2014). Among others, the predominant abiotic stresses include extremes of temperature, drought, high salinity, nutrient, and oxidative stress. While pathogens (fungi, bacteria, viruses, and nematodes) and pests (insects, arachnids, herbivores, and weeds) are threats to plants as biotic stress. These stresses are known to cause physiological, biochemical, and metabolic changes in crop plants affecting the metabolism, performance, and ultimately adversely reducing the yield of plants (Anjum et al., 2011; Rejeb et al., 2014). High salt stress is the cause for disruption of water relations and ionic distribution in plants (Munns & Tester, 2008). Basically, salinity has a negative impact on seed germination and seedling establishment either by inhibiting water uptake with development of high external osmotic potential or through accumulation of toxic ions (Na+ and Cl-) in the system (Nasri et al., 2015; Negrao et al., 2017). Water is a primary factor of production, and hence drought stress, particularly at the critical growth stages is one of the major environmental limiting factor affecting crop growth and productivity (Araus et al., 2002). The negative consequences of drought stress can be seen in every aspect of plant life (Rahman et al., 2004). Drought stress is known to bring about a series of adverse effect in biochemical and physiological processes of plants, viz., disturbance in ion homeostasis and enzymatic activities, increased levels of reactive oxygen species (ROS), decreased cell division, leaf parameters (area, size, and chlorophyll contents), CO2 assimilation, photosynthesis, root proliferation, stem elongation, and water use efficiency, and consequently reduction in grain yield (Farooq et al., 2009; Anjum et al., 2011; Farooq et al., 2012; Nikju et al., 2015). Moreover, seeds sown in dry soil often delays in germination as they absorb too little water from the soil, following delay in several imbibition processes. If a method of germination could be devised to overcome with this time lag in germination by pre-soaking of the seeds in water, germination would occur swiftly ensuing in a better crop stand. Another major global constraint in productivity of agricultural crops is the inaccessibility of nutrients by plants due to their deficiency in soil, commonly known as nutrient stress (Baligar et al., 2001; Sun et al., 2011). Both macro- and micronutrients have great roles in meeting crops demands and improving the yield levels. Micronutrient deficiency has already been found in the food chain; proper management strategies focusing on nutritional quality is a serious concern in sustainable agriculture (Khoshgoftarmanesh et al., 2010). Several other abiotic stresses like cold, heat, light, or irradiation can adversely alter the plant physiology and govern the occurrence of biotic stresses in the environment (Suzuki et al., 2014; Pandey et al., 2017). Plants in response to multiple environmental stresses activate various defense mechanisms and signaling pathways regulated by ROS, hormones (salicylic acid, abscisic acid, jasmonic acid, ethylene, gibberellic acid, auxins, and cytokinins), proteins, and transcription factors (Verma et al., 2016; Gimenez et al., 2018). Understanding these mechanisms will not only help in saving important crops but also preventing economic losses. Searching suitable priming agents can significantly contribute to acclimation pathways of plants developed against the threats of stress-induced infections. 716 Acta agriculturae Slovenica, 111 - 3, december 2018 On-farm seed priming interventions in agronomic crops Slow and non-uniform germination * * Poor sowing techniques Figure 1: Basic issues in low productivity of crops While attempting to maintain an optimum external environment for crops, the overdependence on natural resources and fossil fuel-based technology, over the years, has led to the gradual depletion of global water resources, escalating greenhouse gas emissions, and a gradual decline in productivity particularly in the high input-intensive agriculture systems. This scenario is likely to worsen and the brunt of the menace will supposedly be faced by rainfed agriculture systems globally on account of their inherent resource limitation. While 40 % of the world's and 68 % of Indian agriculture is rainfed, 42 % of the Indian food requirement is met through dryland agriculture (Singh et al., 2004). Climate change is a real intimidation to the developing world which unchecked, will become a major hindrance to poverty eradication. Besides, the contamination of the natural water bodies and soil strata through excessive agrochemical use coupled with improper irrigation techniques in intensive-irrigated agriculture systems call for alternative options under low-input sustainable agriculture systems with the ultimate aim of acquiring global food security. 2 POSSIBLE ALTERNATIVES Throughout the history of agriculture, several methods have been adopted to achieve better crop tolerance to stresses and production in unfavorable environmental conditions. These entail breeding strategies (selection and hybridization, molecular breeding, genetic engineering) (Athar & Ashraf, 2009; Waqar et al., 2014), agronomic strategies (variety selection, date of sowing, soil management, irrigation) (Mariani & Ferrante, 2017; Lamaoui et al., 2018), physiological approaches (seed priming, foliar spray) (Bakhtavar et al., 2015), etc. The success of breeding techniques is often limited due to huge requirement of skilled manpower and energy, complexity associated with stress tolerance traits, tedious and costly methods, and ethical regulations. These drawbacks have forced the researchers to go for the alternatives which are simple and low-cost solution so that they are easily introduced at the field scale by resource-poor farmers. Pre-sowing seed treatment (seed priming, seed coating, and seed pelleting), in this regard, is an effective strategy to overcome different stresses. This pragmatic and short-term approach is basically used as seed enhancement aimed at value adding or upgrading the quality of seed (Taylor et al., 1998). Such intervention involves the application of physical, chemical, and/or biological agents to stimulate seed germination, seedling vigour, and crop yield in a sustainable manner (Sharma et al., 2015). Seed priming is an effective pre-germination physiological method that mends seed performance and delivers quicker and synchronized seed germination (Matsushima & Sakagami, 2013; Nawaz et al., 2015) by prior exposure of seed to a stress Acta agriculturae Slovenica, 111 - 3, december 2018 717 Neha CHATTERJEE et al. situation, which endows plant to better withstand the fUture stress imposition (Yadav et al., 2011; Ibrahim, 2016). It involves soaking of seeds in water (hydropriming) or solutions of lower water potential (osmotic solutions) composed of polyethylene glycol (PEG) (osmopriming) or salts (CaCl2, CaSO4, KH2PO4, KCl, NaCl, etc.) (halopriming) prior to germination (Jisha et al., 2013; Paparella et al., 2015; Wojtyla et al., 2016). In priming, controlled imbibition is provided so as to induce the metabolic process of germination without actual germination and seminal root emergence (Binang et al., 2012; Nejad & Farahmand, 2012). Seed coating is a process of application of adhesive polymers with active ingredients (nutritional elements, plant growth regulators, insecticides, fungicides, and other chemicals) to the seed surface without altering its original shape or size (Avelar et al., 2012; Mandal et al., 2015; Pedrini et al., 2017). Seed pelleting came out as an advanced form of seed coating technology. The method includes enclosing of seed in a layer of inert material that may change the shape and size of raw seed, but produce a standard product (uniform round seeds) to facilitate improved planting (Mandal et al., 2015; Mei et al., 2017 ). Seed coating technologies are sophisticated and expensive (Sharma et al., 2015). Seed priming emerged as the most common method of pre-sowing treatments (Parera & Cantliffe, 1994; Jisha et al., 2013; Soleimanzadeh, 2013; Paparella et al., 2015; Lutts et al., 2016; Wojtyla et al., 2016). 3 ON-FARM PRIMING OPTIONS In ''on-farm'' seed priming, seeds are soaked in water, surface dried, and sown in the field (Rashid et al., 2002). The term on-farm is used to differentiate it from the intensive agricultural systems using high input and advance technology for seed priming (Harris et al., 1999). This practice is very common in tropical environments or semi-arid agricultural lands as a low-cost and low-risk intervention. A plethora of priming techniques has been developed to enhance and stabilize field emergence, and those are categorized according to the priming agents used. The efficiency of these approaches is dependent upon certain factors like aeration and water potential of priming solution, light, temperature, priming duration, post-hydration drying, seed and storage condition, and plant species (Parera & Cantliffe, 1994; Wojtyla et al., 2016). Thus, it is essential to evaluate the efficacy of various priming options in different crops and agro-climatic conditions, and optimize our chosen priming technique. 3.1 Hydropriming Slow and non-uniform germination of seeds induced the requirement of water-based seed priming. Hydropriming is a very simple, cost-effective, and eco-friendly technique which basically involves soaking seeds in water for a pre-determined time followed by re-drying to their initial moisture content (Farooq et al., 2006; Lutts et al., 2016). Submergence can also be performed in distilled water with or without aeration. Earlier, this practice was known as hardening, which was done by alternate soaking of seeds in water and drying before sowing. The process of seed germination occurs in three phases, viz., rapid water uptake or imbibition (phase I), lag or plateau phase (phase II), and protrusion of seminal root and resumption of growth (phase III) (Bewley, 1997). Hydropriming reduces the lag period, and ensures rapid and uniform germination for good stand establishment (Ahammad et al., 2014). Controlled seed hydration as a pre-sowing strategy triggers pre-germination metabolic activities in the form of cellular physiological, biochemical, and molecular changes (Figure 2) (Ibrahim, 2016; Wojtyla et al., 2016). Improved germination of hydroprimed seeds is a result of activation of enzymes (amylase, protease, phosphatase, lipase, etc.), ATP production, RNA and protein synthesis, DNA replication, detoxification of ROS and lowering of lipid peroxidation by antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione reductase (GPx)], accumulation of germination enhancing metabolites (proline, soluble sugars, etc.), higher utilization of seed reserves (proteins, carbohydrates, lipids, and phosphorus compounds), and other metabolic repairing mechanisms (McDonald, 2000; Ghassemi-Golezani & Hosseinzadeh-Mahootchi, 2013; Vaz Mondo et al., 2016). Information on duration (maximum length of time) (Table 3) of hydration treatment can bring success at the farmer's level. Mahmoodi et al. (2011) evaluated four hydropriming durations (6, 12, 18 and 24 h) to improve seedling vigour and field establishment of maize, and found 18 h to be the most effective priming period. In case of pinto bean, Ghassemi-Golezani et al. (2010) reported 7 and 14 h priming is sufficient to augment seed and seedling vigour, stand establishment, and grain yield instead of soaking the seeds for 21 h. For optimizing duration of hydropriming in mung bean, Shukla et al. (2018) chose five intervals of time viz., 2, 4, 6, 8, 24 h, and concluded 6 h of priming to be optimum as the germination responses were almost similar if the duration was increased after this priming treatment. 718 Acta agriculturae Slovenica, 111 - 2, september 2018 On-farm seed priming interventions in agronomic crops The major limitations associated with this technique include uncontrolled water uptake, which cannot be regulated because it is a property of seeds; and nonuniform hydration of seeds may result in unsynchronized germination (Taylor et al., 1998; McDonald, 2000; Di Girolamo & Barbanti, 2012). To overcome these challenges, drum priming is often used, where major focus is given on duration, temperature, and volume of water. 3.2 Osmopriming Osmopriming is alternatively known as osmotic priming, osmotic conditioning or osmoconditioning. In this technique, seeds are soaked in osmotic solutions of organic compounds like PEG, mannitol, glycerol, sorbitol, etc. having low water potential so as to restrict the water uptake by seeds and allow the pre-germinative metabolic events to continue, but prevent the seminal root protrusion (Ashraf & Foolad, 2005). PEG with a molecular weight of 6000-8000 daltons having some osmotic potential (¥s) is dissolved in water for seed treatment. Out of the different concentrations (5, 10, 15, and 20 %) of PEG solutions, Faijunnahar et al. (2017) reported 10 % is sufficient to improve the germination, seedling growth, and water relation behaviour of wheat genotypes. Sadeghi et al. (2011) tested the efficacy of PEG-6000 with different levels of osmotic potentials (0.4, -0.8, -1.2, -1.6, and -2 MPa) and priming durations (6, 12, 24, and 48) on germination behaviour (percentage, mean time, index) and vigour of soybean seeds. Better results were observed in the seeds primed with -1.2 MPa for 12 h. This technique is further classified as halopriming when the seeds are soaked in low water potential solutions composed of inorganic salts. Osmopriming/halopriming are also used for developing stress tolerances in plants (Table 2 and 3). Eivazi (2012) found wheat seeds primed with 2.5 % KCl for 16 h developed drought tolerance in plants besides increasing the grain yield. Rice seeds primed with NaCl @ 50 and 75 mM performed higher seedling vigor, osmotic stress tolerance potential, and overall crop growth than hydropriming (Jisha & Puthur, 2014). However, both of the priming treatments were able to modulate antioxidant enzyme activities, reduce lipid peroxidation of biomembranes, and increase the protein, carbohydrate, photosynthetic pigment, photochemistry, and mitochondrial activities of rice seedlings under salt stress conditions. A similar study of Goswami et al. (2013) revealed that rice seedlings conferred drought resistance by seed priming with 5 % of PEG-6000 and NaCl, which strengthened GPx activity and reduced peroxidative damage of the crop. Interestingly, priming effects of NaCl and PEG was not visible in chickpea under water deficit stress conditions (Kaur et al., 2002); priming with mannitol (4 %) and water gave better results in growth by modulating enzymes (amylase, invertase, sucrose synthase, and sucrose phosphate synthase) of sucrose metabolism (Kaur et al., 2002, 2005). Seed pretreatment with NaCl (50 mM) moderated the adverse effect of salt stress by modifying the antioxidant enzymes like SOD, CAT, and catechol peroxidase (CPX), enhancing accumulation of osmolytes (proline), lowering malondialdehyde (MDA) and H2O2 contents of plants, and improving growth and photosynthetic pigments (total chlorophyll, chlorophyll-a, chlorophyll-b, and carotenoids) (Saha et al., 2010). Application of PEG may cause disruption in aeration of solution due to its high viscosity (Paparella et al., 2015). 3.3 Solid Matrix Priming In solid matrix priming (SMP) or matric conditioning, solid or semi-solid medium is used instead of liquid medium (Copeland & McDonald, 1995). This technique is accomplished by mixing seeds with a solid or semisolid medium and specified amounts of water. By the virtue of the physical and chemical characteristics of the matrix, the water uptake by the seeds is restricted. In SMP, a small amount of liquid per unit of seed and solid particles is used. During SMP, water is slowly provided to the seeds and thus, slow or controlled imbibition occurs, allowing cell repair mechanisms to function (Jisha et al., 2013). Predominant solid matrices are exfoliated vermiculite, expanded calcined clay, bituminous coal, sodium polypropionate gel or synthetic calcium silicate (Kubik et al., 1988). Some locally available materials that are generally utilized as solid matrices are sawdust, charcoal and volcanic cinder and they offer the scope for reducing priming costs (Lorenzo, 1991). In the study of Lorenzo (1991) on SMP using sawdust, ground charcoal and volcanic cinder, soybean seeds responded favorably to shorter incubation periods, i.e., 1, 2, and 5 days. The longer incubation periods and higher water levels were harmful to the seeds because they encouraged fungal growth. SMP was also found to be effective in improving soybean germination by Mercado & Fernandez (2002). 3.4 Biopriming Biopriming or biological seed treatment is the application of beneficial microbes in seed-plant-soil system to enhance plant productivity and simultaneously maintain the ecological balance. The process is accomplished by controlled seed hydration followed by coating of seeds with biological agents (Sarkar et al., 2017). The priming agents help in plant growth promotion by supplying nutrients to crops, enhancing resistance of plants to biotic and abiotic stresses, improving soil diversity (Singh, 2016), ameliorating soil structure, bioremeding the polluted soils (Mahmood et al., 2016). The technology basically Acta agriculturae Slovenica, 111 - 3, december 2018 719 Neha CHATTERJEE et al. aims at reduction of chemical inputs in our production system. Farmers can treat the seeds with microbial formulations at the rate of 10 g kg-1 seed after soaking the seeds for 12 h and incubate at room temperature for 48 h to obtain microbial coating of seeds (Reddy, 2013). Carboxymethyl cellulose (CMC), gum arabic, rice water, etc. are used for adhesion of inoculums. The seeds are air-dried after incubation, and then used for sowing. Liquid formulations can also be used by the farmers as they mix well over the seed surface without any sticking agent. Root dipping of the seedlings for few hours before transplanting is also a common practice now-a-days. Biopriming agents are potential in promoting germination, controlling Table 1: Some field experiments carried on biopriming pathogens, and favouring growth and development in plants (Table 1). Microbial consortium of compatible microbes can also be used for better effects. Selection of microbes is an important step in biopriming as the growth-promoting abilities of microbes are highly specific to certain plant species, cultivars, and genotypes (Rakshit et al., 2015). Further, it can also promote synergistic interaction between microbes (e.g., Trichoderma and arbuscular mycorrhiza) (Meena et al., 2017). Arbuscular mycorrhizal fungi (AMF) (e.g., Glomus sp.) are getting special attention in biopriming techniques because of their multi-functional nature stimulating the growth and development of plants (Dhawal et al., 2016). Biopriming is a suitable tool to enhance the nutrient use efficiency in soil-plant-environment system (Meena et al., 2016). Crop Biological agent Method Major effect References Boro rice Trichoderma sp. Seed inoculation @ 4 % of seed weight before 4 h of sowing Higher grain yield Rahman et al. (2015) Maize Trichoderma harzianumRifai, (1969) Seed inoculation @ 10 g kg-1 seed Reduction of Fusarium verticillioides (Sacc.) Nirenberg (1976) and fumonisin infection, increased seed germination, vigour index, field emergence, yield, 1000 seed mass Chandra Nayaka et al. (2010) Barley Azospirillum sp. Seed inoculation @ 7 g kg-1 seed Increased plant height, spike length, number of spike per area, grains per spike, 1000 grain mass, grain yield Shirinzadeh et al. (2013) Soybean Rhizobium sp. Seed inoculation @ 7.5 x 106 cells seed-1 Increased germination, nodulation, seed yield, harvest index, nitrogen harvest index Amule et al. (2017) Pearl millet Pseudomonas Seed inoculation fluorescens (Flügge 1886) Migula, 1856 Enhanced germination, seedling vigour, plant height, leaf area, tillering capacity, 1000 seed weight, grain yield, induction of resistance against downy mildew Niranjan Raj et al. (2004) 720 Acta agriculturae Slovenica, 111 - 3, december 2018 On-farm seed priming interventions in agronomic crops 3.5 Nutrient priming Nutrient priming has been proposed as a novel technique that combines the dual benefits of seed priming with an improved nutrient supply (Al-Mudaris & Jutzi, 1999). In nutrient priming, seeds are primed in solutions containing the limiting nutrients instead of being soaked just in water (Arif et al., 2005). Of the mineral nutrients, potassium plays an important role in imparting stress tolerance to plants (Cakmak, 2005). Seed priming in Zn2+ solutions improves grain yield of chickpea and wheat (Arif et al., 2007). Micronutrients are required in traces however, their deficiencies are quite common in crop plants (Abd El-Wahab, 2008). There are mainly 3 methods of micronutrient application in crops: application to soil, through foliar sprays and seed treatment (Johnson et al., 2005). Each method may affect plant growth distinctly. The use of micronutrient enriched seeds (seed priming) has been reported to be an easier and cost-effective strategy in overcoming micronutrient deficiencies (Harris et al., 1999; Rakshit et al., 2013). Seed priming has been shown to enhance the speed of germination (Deering & Young, 2006), reduce the emergence time, enhance seedling vigour (Harris, 1996) and obtain better stand establishment (Diniz et al., 2009), and increase yield (Yilmaz et al., 1998) in wheat, rice, maize, sorghum, chickpea, and soybean. There is evidence that sowing seeds enriched with micronutrients is also agronomically beneficial (Welch, 1986). 3.6 Redox priming The cell processes are largely determined by "redox state". While redox state can categorically imply to the ratio of interconvertible oxidized and reduced species in a redox pair, lately this term is also correlated to define the cellular redox environment (Krebs, 1967; Schaefer & Buettner, 2001). It is opined that if the reduced redox state of a cell is possible to maintain, the extent of stress-induced damage can be significantly mitigated (Mittler, 2002). Srivastava et al. (2009) found that thiourea treatment to the seeds of Indian mustard (Brassica juncea (L.) Czem.) was helpful in maintaining the integrity and functioning of mitochondria in seeds as well as seedlings under salinity stress conditions. Srivastava et al. (2010b) treated Brassica juncea seeds with thiourea and observed different signaling and effector mechanisms to be regulated in a synchronized manner. Seed priming with hydrogen peroxide was also reported in wheat (Wahid et al., 2007). Manjunatha et al. (2008) reported notable enhancement of seed germination and seedling vigour due to exogenous application of nitric oxide (NO) donors through seed treatment in pearl millet. Recently, Barba-Espin et al. (2012) reported that hydrogen peroxide could act as signaling molecule during the initiation of seed germination involving certain specific changes at proteomic, trancriptomic and hormonal levels. In the opinion of Draganic & Lekic (2012), priming with antioxidant substances like ascorbic acid, glutathione and tocopherol (vitamin E) was beneficial in increasing the vigour of sunflower seeds exposed to low temperatures. In sorghum, seed priming with cysteine reduced the injury caused by gamma radiations and the effects of cysteine were most prominent in primary root elongation (Reddy & Smith, 1978). 3.7 Hormonal priming Plant growth regulators like auxins, cytokinins, and gibberellins can be utilised as a pre-sowing seed treatment to improve their germination and emergence in stress situations (Lee et al., 1998; Jisha et al., 2013). Particularly, abscisic acid (ABA) is extensively involved in plant responses to abiotic stresses such as drought, low temperature, and osmotic stress (Fujita et al., 2006). Besides inducing the expression of many salt-responsive genes (Chandler & Robertson, 1994), exogenous ABA application was found in some experiments to increase salt tolerance of the treated plants or plant tissues (Xiong & Zhu, 2002). At the molecular level, ABA is known to induce the expression of numerous plant genes (Rock, 2000). ABA priming showed increased rate of germination as compared to nonprimed seeds in Indian mustard (Srivastava et al. 2010a, b). The beneficial effects of gibberellic acid (GA3) on germination are well known (Angrish et al., 2001; Radi et al., 2001). GA3 (100 mg l-1) applied as presowing treatment resulted in the highest K+ and Ca2+ content in the shoots of faba beans (Vicia faba L.) and cotton (Gossypium barbadense L.) (Harb, 1992). Auxin has also been used for priming. In wheat seed germination, auxin treatments increased the hypocotyl length, fresh and dry mass of seedlings and hypocotyl dry mass (Akbari et al., 2007). Improved replication in root tips has been found by hormonal and vitamin priming (Shakirova et al., 2003) which could be attributed to rapidly dividing root apical meristem, consequently leading to better growth. Moreover, hormone applications maintain the auxin and cytokinin ratios in the tissues, which inadvertently are responsible for enhancing cell division (Sakhabutdinova et al., 2003). Hormonal priming, specifically ethylene (ET) and chloroethylphosphonic acid (CEPA) has also been found to impart tolerance to cadmium toxicity (50 ^M cadmium chloride (CdCl2) to pigeon pea (Cajanus cajan (L.) Mill.) (Sneideris et al., 2015). Some seed priming options adopted in various crops over time are presented in Table 2. Detailed description of seed priming agents and their respective Acta agriculturae Slovenica, 111 - 3, december 2018 721 Neha CHATTERJEE et al. concentrations along with the treatment durations are mentioned in Table 3. The major events of seed priming responsible for improved plant performances are shown in Figure 2. Table 2: Seed priming methods developed for various agro-ecologies and their effect on imparting stress tolerance in agronomic crops Crop Agro-ecology Treatment Effect and References protective mechanism Cereals Rice Rainfed Halopriming (NaCl, KH2PO4), osmopriming (PEG), hydropriming Drought and salinity tolerance by increasing carbohydrate, protein, and photosynthetic pigment content, modulating antioxidant enzyme activities (SOD, POD, GPx), reducing lipid peroxidation of biomembranes, enhancing photochemistry and mitochondrial activities of rice seedlings Goswami et (2013); Jisha Puthur (2014) al. & Subtropics Se and SA priming Chilling resistance by increasing membrane stability, antioxidant activity, starch metabolism (a-amylase activity, total soluble sugar contents) of primed seedlings Wang et al. (2016a,b) Wheat Arid and semi-arid Halopriming (CaCl2), hydropriming, chemical priming (H2O2), hormonal priming (auxin), choline priming Salt tolerance by increasing antioxidant activity (SOD, CAT), leaf water relations, nutritional status (K+, Ca2+, NO3-, PO43), improving K+:Na+ ratio, reducing toxic elements (Na+, Cl), RMP leakage of ions, enhancing root Afzal et al. (2006); Wahid et al. (2007); Akbari et al. (2007); Salama et al. (2011) 722 Acta agriculturae Slovenica, 111 - 3, december 2018 On-farm seed priming interventions in agronomic crops growth Hormonal (ascorbic acid) priming Drought resistance due to accumulation of proline and phenolics leading to membrane stability, tissue water maintenance, reduced oxidative damages Farooq et al. (2013) Barley Arid Nutrient priming (KH2PO4, ZnSO4) Drought nutrient tolerance increase and stress due to in root Ajouri et al. (2004) biomass influencing nutrient uptake, water use efficiency Maize Sub-tropical semi- Halopriming (CaCl2) arid Drought resistance Khan et al. (2015) due to well- developed root system facilitating higher water and nutrient supplies Triticale Rainfed Hydropriming, halopriming (KH2PO4) Drought and salt Yagmur and tolerance is related Kaydan (2008) with higher water uptake ability of seeds enhancing the relative water content of shoot, increased root and shoot growth Pulses Mung bean Subtropics Halopriming (NaCl) Salt stress tolerance by enhancing growth, photosynthetic pigments (chlorophyll, carotenoids), activities of antioxidant enzymes (SOD, CAT, CPX), accumulation of osmolytes (proline), lowering MDA and H2O2 contents of Saha et al. (2010) Acta agriculturae Slovenica, 111 - 3, december 2018 723 Neha CHATTERJEE et al. plants Chickpea Semi-arid Osmopriming Drought tolerance Kaur et al. (2002, (mannitol), by rapid hydrolysis 2005) hydropriming of transitory starch Soybean Dryland Nutrient priming Soda saline-alkali Dai et al. (2017) (ZnSO4), halopriming stress tolerance by (CaCl2), vitamin better osmotic priming (betaine adjustment, hydrochloride), antioxidant defense hormonal priming (GA3) system, membrane integrity, higher photosynthetic pigment contents, starch accumulation Alfalfa Arid and semi-arid Hydropriming, Salinity tolerance Amooaghaie (2011) osmopriming (mannitol) with higher activity of antioxidant enzymes (POD, CAT, SOD), accumulation of proline, stabilizing membranes by reducing MDA accumulation and electrolyte leakage Sugar crops Sugarcane Tropics and Halopriming (NaCl), subtropics osmopriming (PEG) Salt and drought tolerance by osmotic adjustment, antioxidant defense system Patade et al. (2011) 724 Acta agriculturae Slovenica, 111 - 3, december 2018 On-farm seed priming interventions in agronomic crops Table 3: Seed priming agents and treatment durations applied for developing tolerances in some crops under drought and salinity stress Crop species Seed priming treatment References Rice Halopriming (NaCl @ 50 and 75 mM) for 12 h; hydropriming with distilled water for 24 h; biopriming with Trichoderma harzianum @ 10 g kg-1 of seed for 24 h; Jisha and Puthur (2014); Yuan-Yuan et al. (2010); Rawat et al. (2012); Zheng et spermidine (0.5 mM) priming for 24 h al. (2016) Wheat Hydropriming (16 h); halopriming (2.5 % KCl) for 16 h; osmopriming (10 % PEG) for 12 h; hormonal priming (2 mM ascorbic acid solution) for 10 h; choline priming (5 mM choline chloride) for 24 h Patra et al. (2016); Eivazi (2012); Faijunnahar et al. (2017); Farooq et al. (2013); Salama et al. (2011) Barley Hydropriming for overnight (12 to 16 h) Rashid et al. (2006) Maize Osmopriming with aerated solution of CaCl2 (ys -1.25 MPa) for 24 h Khan et al. (2015) Mung bean Hydropriming (6 h); chemical priming with p-amino butyric acid solution (1.0 mM) for 6 h Shukla et al. (2018); Jisha and Puthur (2016) Pea Halopriming with KCl and KOH @ 250 and 500 ppm (1 h) Naz et al. (2014) Soybean Hydropriming (12 h) and hormonal priming (gibberlic acid @ 50 ppm) for 14 h; biopriming with Trichoderma harzianum @ 10 g kg-1 of seed Langeroodi & Noora (2017); Khomari et al. (2018) Indian mustard Hydropriming with distilled water (18 h) Srivastava et al. (2010a) Sunflower Hydropriming with distilled water (18 h) Kaya et al. (2006); Moghanibashi et al. (2013) Sugarcane Halopriming (NaCl @ 100 mM) for 8 days Patade et al. (2009) Acta agriculturae Slovenica, 111 - 3, december 2018 725 M On > o sr c. % c. t-i NJ O Nelia CHATTERJEE et al. Modulation of physiological and biochemical processes Increased ATP DNA repaired Mitochondria repaired Protein synthesis Activation of cell cycle Metabolism of reserves Alteration of hormonal status ROS detoxification Osmotic adjustment Cell protection from lipid peroxidation Seed soaking Activation of metabolism > Shortening of emergence time > Greater stress tolerance > Improved photosynth Figure 2: Schematic representation of the major processes induced by seed priming during pre- and post-germination stages On-farm seed priming interventions in agronomic crops 4 CHALLENGES IN ADOPTION OF SEED PRIMING Many of the experiments which showed better results were practiced in greenhouse or controlled conditions, especially in the rainfed regions of Bangladesh, Pakistan, Nepal, Africa, and India. Their validation in field conditions is still unexplored. However, this customised method is gaining popularity, and emerged as a smart intervention across diversified agro-ecological regions. Harris et al. (1999, 2001) suggested on-farm seed priming can be revived through farmer-participatory approaches. Farm walks, group discussions, and other tools of extension should be adapted by the researchers/scientists. If the duration of priming is exceeded, then it may lead to seed or seedling damages. Special care is needed while transporting liquid inoculants and applying to the fields (Mahmood et al., 2016). Higher concentrations of priming agents may hamper or delay seed germination. The longevity of low vigour seeds are improved, but reduced in high vigour seeds (Varier et al., 2010). Reduced storability of primed seeds enhances the maintenance costs of farmers (Lutts et al., 2016). In hydropriming, the activation of the physiological processes are non-uniform because seeds are not equally hydrated (Girolamo & Barbanti, 2012). Heavy rainfall after sowing decays primed seeds in soils remaining saturated for a longer period of time (e.g., black soils) (Ramamurthy et al., 2005). Contamination of priming agents can heavily impair seed germination. The efficiency of the biological agents is often low or variable due to unfavourable environmental conditions (e.g., relative humidity, temperature, etc.), shorter shelf-life, low quality, and/or competition with local microbes (O'Callaghan, 2016). For better implementation of seed priming processes, crop species, location, duration of priming, priming agents, temperature, and storage conditions must be considered. 5 CONCLUSION On-farm seed priming is an apt technology for the predominantly resource-poor farmers of the developing world. It is a simple, low-cost intervention which shows quick results in varied eco-systems ranging from arid and semi-arid tropics in India, Africa, the Middle East as well as in highly controlled temperate agriculture systems. Pre-sowing water hardening of seeds has been an age-old practice in several dryland agro-ecosystems. However, the recent advances in halopriming, chemical priming with KNO3, KH2PO4, ZnSO4, MnSO4, etc., solid matrix priming, ascorbate priming, and redox priming have given this technique an added edge over the traditional system of seed hardening. Coupled with the success of modern science in agriculture, our understanding of the priming-induced responses of crops will open new vistas regarding their stress tolerance abilities, and devise further integrated and sustainable approach applicable in diverse agro-ecosystems. Biopriming with potent strains of Trichoderma spp. and Pseudomonas spp. among others is a stratagem of not only alleviating moisture stress but also imparting much needed biotic stress tolerance. Seed priming is known to activate certain signaling pathways during the early stages of plant phenology and result in quicker plant defence responses. Thereby, upon subsequent or future exposure to these biotic and abiotic stresses, a second signaling event would excite/stimulate the signaling proteins consequently amplifying the signal transduction, and therefore leading to more rapid and/or more intense activation of previously acquired defence responses (Conrath et al., 2006). A better and refined transition from laboratory to field adaptability of the different seed priming methods is also needed, which essentially should be adjudged to extensive farmer participatory trials. While seed priming is indeed ascertained as a potential technology to mitigate the adverse effects of climate change and the ensuing alterations in water availability, extremes of temperatures, salinity stress, etc.; future work is needed on the usability of various priming options for varied agro-ecosystems and different crops. 6 ACKNOWLEDGEMENT Sumita Pal is thankful to DST, New Delhi(SR/WOS-A/LS-1199/2015(G))for financial support. 727 Acta agriculturae Slovenica, 111 - 3, december 2018 Neha CHATTERJEE et al. 7 REFERENCES Abd El-Wahab, A.M., & Mohamed, A. (2008). Effect of some trace elements on growth, yield and chemical constituents of Trachyspermum ammi L. plants under Sinai conditions. Research Journal of Agriculture and Biological Sciences, 4, 717-724. Afzal, I., Basra, S. M. A., Hameed, A., & Farooq, M. (2006). Physiological enhancements for alleviation of salt stress in wheat. Pakistan Journal of Botany, 38(5), 1649-1659. Ahammad, K. U., Rahman, M. M., & Ali, M. R. (2014). Effect of hydropriming method on maize (Zea mays) seedling emergence. Bangladesh Journal of Agricultural Research, 39(1), 143-150. doi:10.3329/bjar.v39i1.20164 Ajouri, A., Asgedom, H., & Becker, M. (2004). Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science, 167, 630-636. doi: 10.1002/jpln.200420425 Akbari, G., Sanavy, S. A. M. M., & Yousefzadeh, S. (2007). Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pakistan Journal of Biological Sciences, 10(15), 2557-2561. doi:10.3923/pjbs.2007.2557.2561 Al-Mudaris, M. A., & Jutzi, S. C. (1999). The influence of fertilizer based seed priming treatment on emergence and seedling growth of Sorghum bicolor and Pennisetum glaucum in pot trials under greenhouse conditions. Journal of Agronomy & Crop Science, 182, 135-141. doi:10.1046/j.1439-037x.1999.00293.x Amooaghaie, R. (2011). The effect of hydro and osmopriming on alfalfa seed germination and antioxidant defenses under salt stress. African Journal of Biotechnology, 10(33), 6269-6275. Amule, F. C., Rawat, A. K., & Rao, D. L. N. (2017). Mono and co-inoculation response of Rhizobium and PGPR on soybean in central India. International Journal of Plant & Soil Science, 20(6), 1-13. doi:10.9734/IJPSS/2017/36997 Angrish, R., Kumar, B., & Datta, K. S. (2001). Effect of gibberellic acid and kinetin on nitrogen content and nitrate reductase activity in wheat under saline condition. Indian Journal of Plant Physiology, 6, 172-177. Anjum, S. A., Xie, X. -Y., Wang, L. -C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, 89(7), 925-940. doi: 10.1093/aob/mcf049 Arif, M., Ali, S., Shah, A., Javed, N., & Rashid, A. (2005). Seed priming maize for improving emergence and seedling growth. Sarhad Journal of Agriculture, 21, 239-243. Arif, M., Waqas, M., Nawab, K., & Shahid, M. (2007). Effect of seed priming in Zn solutions on chickpea and wheat. African Crop Science Conference Proceedings, 8, 237-240. Ashraf, M., & Foolad, M. R. (2005). Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy, 88, 223-271. doi:10.1016/S0065-2113(05)88006-X Athar, H. R., & Ashraf, M. (2009). Strategies for crop improvement against salinity and drought stress: an overview. In M. Ashraf, M. Ozturk, & H. R. Athar (Eds.), Salinity and water stress (pp. 1-16). Springer, Netherlands. doi:10.1007/978-1-4020-9065-3_1 Avelar, S. A. G., de Sousa, F. V., Fiss, G., Baudet, L., & Peske, S. T. (2012). The use of film coating on the performance of treated corn seed. Revista Brasileira de Sementes, 34(2), 186-192. doi: 10.1590/S0101 -31222012000200001 Baligar, V. C., Fageria, N. K., & He, Z. L. (2001). Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 32(7-8), 921950. doi:10.1081/CSS-100104098 Barba-Espín, G., Hernández, J.A., Diaz-Vivancos, P. (2012). Role of H2O2 in pea seed germination. Plant Signaling and Behavior, 7, 193-195. doi:10.4161/psb.18881 Bakhtavar, M. A., Afzal, I., Basra, S. M. A., Ahmad, A-u-H, & Noor, M. A. (2015). Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS ONE, 10(4), e0124441. doi:10.1371/journal.pone.0124441 Bewley, J. D. (1997). Seed germination and dormancy. The Plant Cell, 9, 1055-1066. doi:10.1105/tpc.9.7.1055 728 Acta agriculturae Slovenica, 111 - 3, december 2018 On-farm seed priming interventions in agronomic crops Binang, W. B., Shiyam, J. O., & Ntia, J. D. (2012). Effect of seed priming method on agronomic performance and cost effectiveness of rainfed, dry-seeded NERICA rice. Research Journal of Seed Science, 5(4), 136-143. doi:10.3923/rjss.2012.136.143 Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521-530. doi:10.1002/jpln.200420485 O'Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100, 5729-5746. doi:10.1007/s00253-016-7590-9 Chandler, P. M., & Robertson, M. (1994). Gene expression regulation by abscisic acid and its relation to stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 113141. doi:10.1146/annurev.pp.45.060194.000553 Chandra Nayaka, S., Niranjana, S. R., Uday Shankar, A. C., Niranjan Raj, S., Reddy, M. S., Prakash, H. S., & Mortensen, C. N. (2010). Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Archives of Phytopathology and Plant Protection, 43(3), 264-282. doi:10.1080/03235400701803879 Copeland, L. O., & McDonald, M. B. (1995). Principles of seed science and technology. 3rd Edn. USA, Chapmann and Hall. Dai, L. Y., Zhu, H. D., Yin, K. D., Du, J. D., & Zhang, Y. X. (2017). Seed priming mitigates the effects of saline-alkali stress in soybean seedlings. Chilean Journal of Agricultural Research, 77(2), 118-125. Deering, R. H., & Young, T. P. (2006). Germination speeds of exotic annual and native perennial grasses in California and the potential benefits of seed priming for grassland restoration. Grasslands, 16, 14-15. Dhawal, S., Sarkar, D. R., Yadav, R. S., Parihar, M., & Rakshit, A. (2016). Bio-priming with Arbuscular mycorrhizae for addressing soil fertility with special reference to phosphorus. International Journal of Bioresource Science, 3(2), 35-40. doi:10.5958/2454-9541.2016.00013.X Di Girolamo, G., & Barbanti, L. (2012). Treatment conditions and biochemical processes influencing seed priming effectiveness. Italian Journal of Agronomy, 7, e25. doi:10.4081/ija.2012.e25 Diniz, K. A., Silva, P. A., Oliveira, J. A., & Evangelista, J. R. E. (2009). Sweet pepper seed responses to inoculation with microorganisms and coating with micronutrients, amino acids and plant growth regulators. Scientia Agricola, 66, 293-297. doi:10.1590/S0103-90162009000300002 Draganic, I., & Lekic, S. (2012). Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turkish Journal of Agriculture and Forestry, 36, 421-428. Eivazi, A. (2012). Induction of drought tolerance with seed priming in wheat cultivars (Triticum aestivum L.). Acta agriculturae Slovenica, 99(1), 21-29. doi:10.2478/v10014-012-0003-6 Faijunnahar, M., Baque, A., Habib, M. A., & Hossain, H. M. M. T. (2017). Polyethylene glycol (peg) induced changes in germination, seedling growth and water relation behavior of wheat (Triticum aestivum L.) Genotypes. Universal Journal of Plant Science, 5(4), 49-57. Farooq, M., Basra, S. M. A., Afzal, I., & Khaliq, A. (2006). Optimization of hydropriming techniques for rice seed invigoration. Seed Science and Technology, 34, 507-512. doi: 10.15258/sst.2006.34.2.25 Farooq, M., Irfan, M., Aziz, T., Ahmad, I., & Cheema, S. A. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. Journal of Agronomy and Crop Science, 199, 12-22. doi:10.1111/j.1439-037X.2012.00521.x Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212. doi: 10.1051/agro:2008021 Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: an overview. In R. Aroca (Ed.), Plant responses to drought stress: from morphological to molecular features (pp. 133). Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-32653-0_1 Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozak, K. (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436-442. doi:10.1016/j.pbi.2006.05.014 Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrollahzadeh, S., & Moghaddam, M. (2010). Effects of hydro-priming duration on seedling vigour and grain yield of pinto bean (Phaseolus vulgaris L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 109-113. Acta agriculturae Slovenica, 111 - 3, december 2018 729 Neha CHATTERJEE et al. Ghassemi-Golezani, K., & Hosseinzadeh-Mahootchi, A. (2013). Influence of hydro-priming on reserve utilization of differentially aged chickpea seeds. Seed Technology, 35(1), 117-124. Gimenez, E., Salinas, M., & Manzano-Agugliaro, F. (2018). Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability, 10, 391. doi:10.3390/su10020391 Goswami, A., Banerjee, R., & Raha, S. (2013). Drought resistance in rice seedlings conferred by seed priming. Protoplasma, 250, 1115-1129. doi:10.1007/s00709-013-0487-x Harb, E. Z. (1992). Effect of soaking seeds in some growth regulators and micronutrients on growth, some chemical constituents and yield of faba bean and cotton plants. Bulletin of Faculty of Agriculture University of Cairo, 43, 429-452. Harris, D. (1996). The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of Sorghum bicolor (L.) Moench in semi-arid Botswana. Soil & Tillage Research, 40, 73-88. Harris, D., Joshi, A., Khan, P. A., Khan, P. A., Gothkar, P., & Sodhi, P. S. (1999). On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture, 35, 15-29. doi:10.1017/S0014479799001027 Harris, D., Pathan, A. K., Gothkar, P., Joshi, A., Chivasa, W., & Nyamudeza, P. (2001). On-farm seed priming: using participatory methods to revive and refine a key technology. Agricultural Systems, 69, 151-164. doi:10.1016/S0308-521X(01)00023-3 Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. doi:10.1016/j.jplph.2015.12.011 Jisha, K. C., & Puthur, J. T. (2014). Seed halopriming outdo hydropriming in enhancing seedling vigour and osmotic stress tolerance potential of rice varieties. Journal of Crop Science and Biotechnology, 17(4), 209-219. doi:10.1007/s12892-014-0077-2 Jisha, K. C., & Puthur, J. T. (2016). Seed priming with BABA (P-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma, 253, 277-289. doi:10.1007/s00709-015-0804-7 Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35, 1381— 1396. doi:10.1007/s11738-012-1186-5 Johnson, S. E., Lauren, J. G., Welch, R. M., & Duxbury, J. M. (2005). A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Experimental Agriculture, 41, 427-448. doi: 10.1017/S0014479705002851 Kaur, S., Gupta, A. K., & Kaur, N. (2002). Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation, 37, 17-22. doi: 10.1023/A: 1020310008830 Kaur, S., Gupta, A. K., & Kaur, N. (2005). Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. Journal of Agronomy & Crop Science, 191, 81-87. doi:10.1111/j.1439- 037X.2004.00140.x Kaya, M. D., Okcu, G., Atak, M., Cikili, Y., & Kolsaric, O. (2006). Seed treatments to overcome salt and drought stress during germination in sunfower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. doi:10.1016/j.eja.2005.08.001 Khan, M. B., Hussain, M., Raza, A., Farooq, S., & Jabran, K. (2015). Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turkish Journal of Agriculture and Forestry, 39(2), 193-203. doi:10.3906/tar-1405-39 Khomari, S., Golshan-Doust, S., Seyed-Sharifi, R., & Davari, M. (2018). Improvement of soybean seedling growth under salinity stress by biopriming of high-vigour seeds with salt-tolerant isolate of Trichoderma harzianum. New Zealand Journal of Crop and Horticultural Science, 46(2), 117-132. doi:10.1080/01140671.2017.1352520 Khoshgoftarmanesh, A. H., Schulin, R., Chaney, R. L., Daneshbakhsh, B., & Afyuni, M. (2010). Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30(1), 83-107. doi: 10.1051/agro/2009017 Krebs, H. A. (1967).The redox state of nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Advances in Enzyme Regulation, 5, 409-434. doi:10.1016/0065-2571(67)90029-5 730 Acta agriculturae Slovenica, 111 - 3, december 2018 On-farm seed priming interventions in agronomic crops Kubik, K. K., Eastin, J. A., & Eskridge, K. M. (1988). Solid matrix priming of tomato and pepper. In Proceedings of the international conference on stand establishment for horticultural crops (pp. 8696). Lancaster, Pennsylvania, USA. Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26. doi:10.3389/fchem.2018.00026 Langeroodi, A. R. S., & Noora, R. (2017). Seed priming improves the germination and field performance of soybean under drought stress. The Journal of Animal and Plant Sciences, 27(5), 1611-1621. Lee, S. S., Kim, J. H., Hong, S. B., Yuu, S. H., & Park, E. H. (1998). Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean Journal of Crop Science, 43, 194-198. Lorenzo, M. C. B. (1991). Seed invigoration of soybean and corn through solid matrix priming. BS, Philippines. Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed priming: new comprehensive approaches for an old empirical technique. In S. Araujo & A. Balestrazzi (Eds.), New challenges in seed biology - basic and translational research driving seed technology (pp. 1-46). InTechOpen. doi:10.5772/64420 Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92(8). doi: 10.1093/femsec/fiw112 Mahmoodi, T. M., Ghassemi-Golezani, K., Habibi, D., Paknezhad, F., & Ardekani, M. R. (2011). Effect of hydro-priming duration on seedling vigour and field establishment of maize (Zea mays L.). Research on Crops, 12(2), 341-345. Mandal, A. B., Mondal, R., & Dutta, P. M. S. (2015). Seed enhancement through priming, coating and pelleting for uniform crop stand and increased productivity. Journal of the Andaman Science Association, 20(1), 26-33. Manjunatha, G., Raj, S. N., Shetty, N. P., & Shetty, H. S. (2008). Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pesticide Biochemistry and Physiology, 91, 1-11. doi:10.1016/j.pestbp.2007.11.012 Mariani, L., & Ferrante, A. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae, 3, 52. doi:10.3390/horticulturae3040052 Matsushima, K. -I., & Sakagami, J. -I. (2013). Effects of seed hydropriming on germination and seedling vigor during emergence of rice under different soil moisture conditions. American Journal of Plant Sciences, 4, 1584-1593. doi:10.4236/ajps.2013.48191 McDonald, M. B. (2000). Seed priming. In M. Black & J. D. Bewley (Eds.), Seed technology and its biological basis (pp. 287-325). Sheffield Academic Press, Sheffield. Meena, S. K., Rakshit, A., & Meena, V. S. (2016). Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatalysis and Agricultural Biotechnology, 6, 68-75. doi:10.1016/j.bcab.2016.02.010 Meena, S. K., Rakshit, A., Singh, H. B., & Meena, V. S. (2017). Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatalysis and Agricultural Biotechnology, 12, 172-178. doi:10.1016/j.bcab.2017.10.006 Mei, J., Wang, W., Peng, S., & Nie, L. (2017). Seed pelleting with calcium peroxide improves crop establishment of direct-seeded rice under waterlogging conditions. Scientific Reports, 7, 4878. doi:10.1038/s41598-017-04966-1 Mercado, M. F. O., & Fernandez, P. G. (2002). Solid matrix priming of soybean seeds. Philippines Journal of Crop Science, 27, 27-35. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 9, 405410. doi:10.1016/S1360-1385(02)02312-9 Moghanibashi, M., Karimmojeni, H., & Nikneshan, P. (2013). Seed treatment to overcome drought and salt stress during germination of sunflower (Helianthus annuus L.). Journal of Agrobiology, 30, 89-96. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. doi: 10.1146/annurev.arplant.59.032607.092911 Nasri, N., Saïdi, I., Kaddour, R., & Lachaâl, M. (2015). Effect of salinity on germination, seedling growth and acid phosphatase activity in lettuce. American Journal of Plant Sciences, 6, 57-63. doi:10.4236/ajps.2015.61007 Acta agriculturae Slovenica, 111 - 3, december 2018 731 Neha CHATTERJEE et al. Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G. A., Sajid, M., Subtain, M. U., & Shabbir, I. (2013). Seed priming a technique. International Journal of Agriculture and Crop Sciences, 6(20), 1373-1381. Naz, F., Gul, H., Hamayun, M., Sayyed, A., Khan, H., & Sherwani, S. (2014). Effect of NaCl stress on Pisum sativum germination and seedling growth with the influence of seed priming with potassium (KCL and KOH). American-Eurasian Journal of Agricultural and Environmental Sciences, 14(11), 1304-1311. Negrao, S., Schmockel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. doi:10.1093/aob/mcw191 Nejad, H. A., & Farahmand, S. (2012). Evaluating the potential of seed priming techniques in improving germination and early seedling growth of Aeluropus macrostachys under salinity stress condition. Annals of Biological Research, 3(11), 5099-5105. Nikju, M. B., Mobasser, H. R., & Ganjali, H. R. (2015). Influence of variety on biological yield, harvest index, percent of protein in Zea mays. Biological Forum - An International Journal, 7(1), 662-667. Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537. doi:10.3389/fpls.2017.00537 Paparella, S., Araujo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281-1293. doi:10.1007/s00299-015-1784-y Parera, C. A., & Cantliffe, D. J. (1994). Presowing seed priming. Horticultural Reviews, 16, 109-141. doi: 10.1002/9780470650561.ch4 Patade, V. Y., Bhargava, S., & Suprasanna, P. (2009). Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agriculture, Ecosystems and Environment, 134, 24-28. doi:10.1016/j.agee.2009.07.003 Patade, V. Y., Bhargava, S., & Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions, 6(4), 275-282. doi:10.1080/17429145.2011.557513 Patra, S. S., Mehera, B., Rout, S., Tomar, S. S., Singh, M., & Kumar, R. (2016). Effect of hydropriming and different sowing dates on growth and yield attributes of Wheat (Triticum aestivum L.). Journal of Applied and Natural Science, 8(2), 971-980. Pedrini, S., Merritt, D. J., Stevens, J., & Dixon, K. (2017). Seed coating: science or marketing spin? Trends in Plant Science, 22(2), 106-116. doi:10.1016/j.tplants.2016.11.002 Radi, A. F., Shaddad, M. A. K., El-Enany, A. E., & Omran, F. M. (2001). Interactive effects of plant hormones (GA3 or ABA) and salinity on growth and some metabolites of wheat seedlings. In W. J. Horst, M. K. Schenk, A. Urkert , N. Claassen, H. Flessa, W. B. Frommer, H. Goldbach, H. W. Olfs, & V. Romheld (Eds.), Plant nutrition, food security and sustainability of agro-ecosystems through basic and applied research. 14th international plant nutrition colloquium (pp. 436-437). Hannover, Germany. doi: 10.1007/0-306-47624-X_211 Rahman, M. U., Gul, S., & Ahmad, I. (2004). Effects of water stress on growth and photosynthetic pigments of corn (Zea mays L.) cultivars. International Journal of Agriculture & Biology, 6(4), 652-655. Rahman, M., Ali, J., & Masood, M. (2015). Seed priming and Trichoderma application: a method for improving seedling establishment and yield of dry direct seeded boro (winter) rice in Bangladesh. Universal Journal of Agricultural Research, 3(2), 59-67. Ramamurthy, V., Gajbhiye, K. S., Venugopalan, M. V., & Parhad, V. N. (2005). On-farm evaluation of seed priming technology in sorghum (Sorghum bicolor L.). Agricultura Tropica et Subtropica, 38(1), 34-41. Rakshit, A., Pal, S., Rai, S., Rai, A., Bhowmick, M. K., & Singh, H. B. (2013). Micronutrient seed priming: a potential tool in integrated nutrient management. Satsa Mukkhapatra- Annual Technical Issue, 17, 77-89. Rakshit, A., Sunita, K., Pal, S., Singh, A. & Singh, H. B. (2015). Bio-priming mediated nutrient use efficiency of crop species. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: from basics to advances (pp. 181-191). Springer, India. doi:10.1007/978-81-322-2169-2_12 Rashid, A., Harris, D., Hollington, P. A., & Khattak, R. A. (2002). On-farm seed priming: a key technology for improving the livelihoods of resource-poor farmers on saline lands. In R. Ahmad & K. A. Malik (Eds.), Prospects for saline agriculture (pp. 423-431). Springer, Dordrecht. doi:10.1007/978-94-017-0067-2 44 732 Acta agriculturae Slovenica, 111 - 3, december 2018 On-farm seed priming interventions in agronomic crops Rashid, A., Hollington, P. A., Harris, D., & Khan, P. (2006). On-farm seed priming for barley on normal, saline and saline-sodic soils in North West Frontier Province, Pakistan. European Journal of Agronomy, 24, 276-281. doi:10.1016/j.eja.2005.10.006 Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2012). Seed biopriming with salinity tolerant isolates of Trichoderma harzianum alleviates salt stress in rice: growth, physiological and biochemical characteristics. Journal of Plant Pathology, 94(2), 353-365. Reddy, P. P. (2013). Bio-priming of seeds. In P. P. Reddy (Ed.), Recent advances in crop protection (pp. 83-90). Springer, India. doi:10.1007/978-81-322-0723-8 Reddy, C. S., & Smith, J. D. (1978). Effects of delayed post treatment of gamma-irradiated seed with cysteine on the growth of Sorghum bicolor seedlings. Environmental and Experimental Botany, 18, 241-243. doi:10.1016/0098-8472(78)90050-3 Rejeb, I. B., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3, 458-475. doi:10.3390/plants3040458 Rock, C. D. (2000). Pathways to abscisic acid regulated gene expression. New Phytologist, 148, 357-384. doi:10.1046/j. 1469-8137.2000.00769.x Sadeghi, H., Khazaei, F., Yari, L., & Sheidaei, S. (2011). Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.). ARPN Journal of Agricultural and Biological Science, 6(1), 39-43. Saha, P., Chatterjee, P., & Biswas, A. K. (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian Journal of Experimental Biology 48, 593-600. Sakhabutdinova, A. R., Fatkhutdinova, D. R., Beazrukova, M. V., & Shakirova, F. M. (2003). Salicylic acid prevents the damaging action of stress factor of wheat plants. Bulgarian Journal of Plant Physiology, Special Issue, 314-319. Salama, K. H. A., Mansour, M. M. F., & Hassan, N. S. (2011). Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Australian Journal of Basic and Applied Sciences, 5(11), 126-132. Sarkar, D., Pal, S., Singh, H. B., Yadav, R. S., & Rakshit, A. (2017). Harnessing bio-priming for integrated resource management under changing climate. In H.B. Singh, B.K. Sarma, & C. Keswani (Eds.), Advances in PGPR Research (pp. 349-363). CAB International, UK. Schaefer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30(11), 1191-1212. doi:10.1016/S0891-5849(01)00480-4 Shakirova, F. M., Sakhabutdinova, A. R., Bezrokuva, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317-322. doi:10.1016/S0168-9452(02)00415-6 Sharma, K. K., Singh, U. S., Sharma, P., Kumar, A., & Sharma, L. (2015). Seed treatments for sustainable agriculture-a review. Journal of Applied and Natural Science, 7(1), 521-539. doi:10.31018/jans.v7i1.641 Shirinzadeh, A., Soleimanzadeh, H., & Shirinzadeh, Z. (2013). Effect of seed priming with plant growth promoting rhizobacteria (PGPR) on agronomic traits and yield of barley cultivars. World Applied Sciences Journal, 21(5), 727-731. Shukla, N., Kuntal, H., Shanker, A., & Sharma, S. (2018). Hydro-priming methods for initiation of metabolic process and synchronization of germination in mung bean (Vigna radiata L.) Seeds. Journal of Crop Science and Biotechnology, 21(2), 137-146. doi:10.1007/s12892-018-0017-0 Singh, H. B. (2016). Seed biopriming: a comprehensive approach towards agricultural sustainability. Indian Phytopathology, 69(3), 203-209. Singh, H. P., Sharma, K. D., Reddy, G. S., & Sharma, K. L. (2004). Dryland agriculture in India. In S. C. Rao & J. Ryan (Eds.), Challenges and strategies of dryland agriculture (pp. 67-92). Madison, WI (USA), Crop Science Society of America, American Society of Agronomy. Sneideris, L. C., Gavassi, M. A., Campos, M. L., D'Amico-Damiao, V., & Carvalho, R. F. (2015). Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. Anais da Academia Brasileira Ciencias, 87(3), 1847-1852. doi:10.1590/0001-3765201520140332 Soleimanzadeh, H. (2013). Effect of seed priming on germination and yield of corn. International Journal of Agriculture and Crop Sciences, 5(4), 366-369. Acta agriculturae Slovenica, 111 - 3, december 2018 733 Neha CHATTERJEE et al. Srivastava, A. K., Lokhande, V. H., Patade, V. Y., Suprasanna, P., Sjahril, R., & D'Souza, S. F. (2010a). Comparative evaluation of hydro-, chemo-, and hormonal priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiologiae Plantarum, 32, 1135-1144. doi: 10.1007/s11738-010-0505-y Srivastava, A.K., Ramaswamy, N. K., Mukopadhyaya, R., Chiramal Jincy, M. G., & D'Souza, S. F. (2009). Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea L. Annals of Botany, 103, 403-410. doi: 10.1093/aob/mcn229 Srivastava, A.K., Suprasanna, P., Srivastava, S., & D'Souza, S.F. (2010b). Thiourea mediated regulation in the expression profile of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Science, 178, 517-522. doi:10.1016/j.plantsci.2010.02.015 Sun, C. -X., Cao, H. -X., Shao, H. -B., Lei, X. -T., & Xiao, Y. (2011). Growth and physiological responses to water and nutrient stress in oil palm. African Journal of Biotechnology, 10(51), 10465-10471. doi: 10.5897/AJB 11.463 Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203, 32-43. doi: 10.1111/nph. 12797 Taylor, A. G., Allen, P. S., Bennett, M. A., Bradford, K. J., Burris, J. S., & Misra, M. K. (1998). Seed enhancements. Seed Science Research, 8, 245-256. doi:10.1017/S0960258500004141 Varier, A., Vari, A.K., & Dadlani, M. (2010). The subcellular basis of seed priming. Current Science, 99(4), 450-456. Vaz Mondo, V. H., Nascente, A. S., Neves, P. D. C. F., Taillebois, J. E., & Oliveira, F. H. S. (2016). Seed hydropriming in upland rice improves germination and seed vigor and has no effects on crop cycle and grain yield. Australian Journal of Crop Science, 10(11), 1534-1542. doi:10.21475/ajcs.2016.10.11.PNE70 Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86. doi:10.1186/s12870-016-0771-y Wahid, A., Perveen, M., Gelani, S., & Basra, S. M. A. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology, 164, 283-294. doi:10.1016/j.jplph.2006.01.005 Wang, W., Chen, Q., Hussain, S., Mei, J., Dong, H., Peng, S, Huang, J., Cui, K., & Nie, L. (2016a). Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Scientific Reports, 6, 19637. doi:10.1038/srep19637 Wang, W., Peng, S., Chen, Q., Mei, J., Dong, H., & Nie, L. (2016b). Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress. AoB Plants, 8, plw074. doi: 10.1093/aobpla/plw074 Wojtyla, L., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. Journal of Plant Physiology, 203, 116-126. doi:10.1016/j.jplph.2016.04.008 Waqar, K., Surriya, O., Afzal, F., Kubra, G., Iram, S., Ashraf, M., & Kazi, A. G. (2014). Modern tools for enhancing crop adaptation to climatic changes. In P. Ahmad (Ed.), Emerging technologies and management of crop stress tolerance, volume 1 (pp. 143-157). Elsevier Inc. doi:10.1016/B978-0-12-800876-8.00007-2 Welch, R. M. (1986). Effects of nutrient deficiencies on seed production and quality. Advances in Plant Nutrition, 2, 205-247. Xiong, L., & Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment, 25, 131-139. doi:10.1046/j.1365-3040.2002.00782.x Yadav, P. V., Kumari, M., & Ahmed, Z. (2011). Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science, 4(3), 125-136. doi:10.3923/rjss.2011.125.136 Yagmur, M., & Kaydan, D. (2008). Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnology, 7(13), 2156-2162. Yilmaz, A., Ekiz, H., Gultekin, I., Torun, B., Barut, H., Karanlik, S., & Cakmak, I. (1998). Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. Journal of Plant Nutrition, 21, 2257-2264. doi:10.1080/01904169809365559 Yuan-Yuan, S., Yong-Jian, S., Ming-Tian, W., Xu-Yi, L., Xiang, G., Rong, H., & Jun, M. (2010). Effects of seed priming on germination and seedling 734 Acta agriculturae Slovenica, 111 - 3, december 2018 growth under water stress in rice. Acta Agronomica Sinica, 36(11), 1931-1940. doi:10.1016/S1875-2780(09)60085-7 Zheng, M., Tao, Y., Hussain, S., Jiang, Q., Peng, S., Huang, J., Cui, K., & Nie, L. (2016). Seed priming On-farm seed priming interventions in agronomic crops in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 78, 167-178. doi:10.1007/sl0725-015-0083-5 Acta agriculturae Slovenica, 111 - 3, december 2018 735 In Memoriam - Prof. dr. Julija Smole (1930-2018) V jeseni, ko je sadjar poplačan za ves trud z obilico plodov raznolikih oblik in barv, nas je 27. septembra 2018, v 89. letu starosti zapustila naša cenjena pedagoginja, spoštovana sodelavka in kolegica profesorica dr. Julije Smole. Prof. dr. Julija Smole se je rodila 25. aprila 1930 v Ljubljani. Osnovno šolo je obiskovala v Šmarju pri Ljubljani (1937-1942), gimnazijo pa v Ljubljani. Leta 1949 se je vpisala na tedanjo Agronomsko in gozdarsko fakulteto, kjer je junija 1955 diplomirala. 1. avgusta 1955 se je zaposlila v Sadni drevesnici in vrtnariji v Kamniku. Tu je ob nastajajočih nasadih uspešno opravila prakso in se v štirih letih usposobila za vodenje pridelave ter leta 1959 postala direktor obrata. Leta 1961 je bila izvoljena na razpisano mesto asistenta na Katedri za sadjarstvo Biotehniške fakultete. S tem imenovanjem se je začela njena uspešna, hitra akademska kariera ter pot med vodilne univerzitetne učitelje na fakulteti in med vrhunske strokovnjake v pomoloških vedah, v teoriji in praksi. Prevzela je naloge iz teme proučevanja in selekcije češenj in marelic v goriškem in istrskem sadnem okolišu. Njeni dosežki so zbrani v letnih poročilih in zbirkah Pomološke raziskave slovenskega ozemlja ter v veliko objavljenih razpravah v domačih in tujih publikacijah. Leta 1971 je prido- bila akademski naziv magistra, 1973 pa je bila promovirana za doktorico agronomskih znanosti. Njeno magistrsko delo, disertacija in druge razprave predstavljajo znanstvene temelje sodobnega izbora češenj in višenj za goriški sadni okoliš ter priporočilo za vseslovenski perspektivni sadni izbor. Na osnovi raziskovalnih dosežkov je bila prof. dr. Julija Smole leta 1974 habilitirana, leta 1976 izvoljena v naziv docentke, leta 1978 v naziv izredne profesorice in leta 1983 v naziv redne profesorice za področje sadjarstva. Delovno področje prof. dr. Julije Smole je bila tudi hibridizacija, selekcija in introdukcija ter vzgoja novih sort breskev in češenj ter proučevanje in uvajanje marelic v posavskem in goriškem sadnem okolišu. Uspešno je bilo križanje in vzgoja novih sort breskev. V sedemdesetih letih je opravila s sodelavci križanje sorte 'Slovenija' z ameriškimi sortami ter s testiranjem in odbiro dobila osem pozitivnih križancev. Posebej uspešno je bilo tudi križanje češenj in kot rezultat je nova slovenska sorta 'Vigred'. Rezultati njenega dela so objavljeni v knjigah Naš sadni izbor, Razmnoževanje sadnih rastlin, Češnje in višnje. Sodelovala je na mnogih domačih in tujih konferencah in znanstvenih srečanjih, bila je mentor številnim diplomantom, pod njenim mentorstvom pa je magistriralo in doktoriralo 6 kandidatov. Acta agriculturae Slovenica, 111 - 3, december 2018 str. 737 - 735 Prof. dr. Julija Smole je prejela številna priznanja in odlikovanja. Za uspehe pri pedagoškem in znanstvenem delu, za prizadevanje pri razvoju stroke in fakultete je leta 1975 prejela Priznanje Biotehniške fakultete. Za ekološke in fiziološke raziskave pri češnjah je prejela leta 1978 Nagrado sklada Borisa Kidriča. Za uresničevanje delavskih interesov z dolgoletnim in požrtvovalnim delom v sindikalni organizaciji in za pomembne uspehe v njenem uveljavljanju in razvoju je prejela leta 1978 Srebrni znak sindikatov Slovenije, leta 1979 pa od takratnega predsednika SFRJ Red dela s srebrnim vencem. Bila je namestnica predstojnika za agronomijo in dolgoletna predstojnica Katedre za sadjarstvo in kasneje Inštituta za sadjarstvo, vinogradništvo in vrtnarstvo, kjer je vzgojila precej diplomantov in mladih raziskovalcev. Z veseljem je priskočila na pomoč z idejami, komentarji, popravki, sadjarskimi nasveti in nasveti za vsakdanje življenje. 15. 10. 1994 se je upokojila. Prof. dr. Julija Smole je bila dejavna v strokovnih organizacijah, združenjih in društvih, v odborih Poslovne skupnosti za sadjarstvo Republike Slovenije in delovnih skupinah Alpe - Jadran. Bila je član oddelčnih in fakultetnih teles, Raziskovalne skupnosti Slovenije, Strokovnega sadjarskega društva Slovenije in Hortikulturnega društva, uredniškega odbora glasila Naš vrt in revije SAD in drugih upravnih, poslovnih in družbenih teles. Bila je ustanovna članica Strokovnega sadjarskega društva Slovenije in v njem delovala že od vsega začetka - zavidljivih 48 let. Predavanja prof. Smoletove niso bila obvezna, pa je bila predavalnica vedno polna. Njena predavanja so bila izredno zanimiva in so vedno pritegnila študente. Snov je podajala na zelo razumljiv in zanimiv način, vzbujala je vedoželjnost. Mnogo študentov ima shranjene zapiske njenih predavanj in velikokrat pridejo prav še danes. Bila je odličen pedagog. V odnosu z nami študenti je bila vedno prijateljska, izkazovala je pomoč pri delu in si zavzeto prizadevala za boljši učni uspeh. Svoje znanje je nesebično razdajala številnim generacijam sadjarjev, povedala kakšno modrost in življenjski nasvet. Prof. dr. Julija Smole je pustila pomemben pečat v slovenskem sadjarstvu s svojim raziskovalnim, strokovnim in pedagoškim delom ter s svojim znanjem zaznamovala slovenske sadjarje. In memoriam Prof. Dr. Julija Smole (1930-2018) Fall is the time, when fruit grower's work is rewarded with bountiful and vibrant fruit. But as the earth gives it also takes away and we are sad to say goodbye to our esteemed colleague, teacher and friend, prof. dr. Julija Smole, who passed away on 27th of September 2018. Prof. dr. Julija Smole was born on 25th of April 1930 in Ljubljana. She attended primary school in Šmarje near Ljubljana (1937-1942) and high school in Ljubljana. In 1949 she enrolled to the former Faculty for Agronomy and Forestry in Ljubljana and graduated in June 1955. She started work at a fruit nursery in Kamnik on August 1st 1955, where she acquired practical experience by setting up and managing new orchards. After four years, in 1959, she became the director of the company. In 1961 she started work as an assistant at the Chair for Fruit Growing at Biotechnical Faculty. Her fast and fruitful academic carrier launched her among the leading university professors at the Faculty. Moreover, she became a skilled professional in pomological sciences, both in theoretical and practical aspects. She was involved in cherry and apricot selection set up in Gorica and Istria fruit-growing regions. Her achievements were described in Pomological yearbooks and other Slovenian pomological publications. She was also very active in disseminating her work in national and international periodicals. In 1971 she became Master of Science and defended her PhD in agronomy in 1973. Her MSc and doctoral thesis represented the scientific basis for modern sweet cherry and sour cherry selection suitable for the Gorica fruit-growing region. Moreover, these works paved the path for Slovenian Fruit selection today. Research achievements enabled prof. dr. Julija Smole to acquire university habilitation in 1974, promotion to assistant professor for Fruit Growing in 1976, associate professor in 1978 and full professor in 1983. The work field of prof. dr. Julija Smole extended to hybridization, selection and introduction of new peach and sweet cherry cultivars as well as to the study and introduction of apricot cultivars in the Posavje and Gorica fruitgrowing regions. She was successful in crossing and cultivation of new peach cultivars. In 1970's she and her colleagues succeeded in crossing the cultivar 'Slovenia' with several American cultivars with an outcome of 8 new promising crosses. She was also successful in sweet cherry breeding and is most known for the 'Vigred' cultivar. She published her breeding activities in the following publications: Naš sadni izbor (Our fruit selection), Razmnoževanje sadnih rastlin (Propagation of fruit plants) and Češnje in višnje (Sweet and sour cherries). She actively participated in many national and international conferences and research meetings, and mentored numerous graduate and MSc theses. She was a mentor to no less than 6 doctoral students. Acta agriculturae Slovenica, 111 - 3, december 2018 str. 738 - 735 Prof. dr. Julija Smole was the recipient of several awards and honours. Among others, she received the award of Biotechnical Faculty for her teaching and research work in 1975 as well as the Boris Kidič fund award for her environmental and physiological research on cherries in 1978. She received the Silver token of the labour union in 1978 as she devoted many years and energy for recognition and progress of this organization and particularly, worker's rights. In 1979 the former president of SFRY awarded prof. dr. Julija Smole the Silver wreath order. She was deputy head of the Agronomy Department and long-time head of the Chair for Fruit Growing, Viticulture and Vegetable Growing. She was always eager to help, advise, comment, direct and lead young undergraduate students, PhD students, researchers and colleagues. Her professional knowledge was also complemented with day-to-day advice on life itself. Prof. dr. Julija Smole retired on 15th of October 1994 but she remained active in professional society as well as warmly greeted by her co-workers on different social occasions. Prof. dr. Julija Smole actively participated in professional organizations, associations and societies, took part in the Slovenian Business Community for Fruit Growing and in Alpe - Jadran working groups. She was a member of different committees at the Department and Faculty levels, Slovenian Research society, Professional Fruit Growing Society, Horticultural Society, she was on editorial board of Naš vrt and SAD newsletters and attended several other administrative, legal and social groups. She was one of the founding members of Professional Fruit Growing Society in Slovenia and has been active in it since the very beginnings - for 48 years! Her classes were not obligatory but nevertheless, the classroom was always full. She was a compelling lecturer and always knew how to appeal to students. She presented the topics coherently and intrigued curiosity. Many students still have notes from her lectures and these remain relevant today. Prof. dr. Julija Smole was simply an amazing professor. She was always friendly with the students, helpful and eagerly trying to promote their learning success. She unselfishly distributed her knowledge to many generations of fruit growers, shared her wisdom and advice. Prof. dr. Julija Smole assigned a significant mark on Slovenian fruit growing both in research and professional fields but mostly left a lasting impression of her knowledge on many generations of Slovenian fruit growers. prof. dr. Metka Hudina Biotehniška fakulteta / Biotehnical Faculty Oddelek za agronomijo / Department of Agronomy Acta agriculturae Slovenica, 111 - 3, december 2018 str. 739 - 735 NAVODILA AVTORJEM AUTHOR GUIDELINES UVOD Acta agriculturae Slovenica je četrtletna odprtodo-stopna znanstvena revija z recenzentskim sistemom, ki jo izdaja Biotehniška fakulteta Univerze v Ljubljani. Revija sprejema izvirne in še neobjavljene znanstvene članke v slovenskem ali angleškem jeziku, ki se vsebinsko nanašajo na širše področje rastlinske pridelave in živalske prireje in predelave. Pokritost zajema širok razpon tem, kot so agronomija, hortikultura, biotehnologija, fiziologija rastlin in živali, pedologija, ekologija in okoljske študije, agrarna ekonomika in politika, razvoj podeželja, sociologija podeželja, genetika, mikrobiologija, imunologija, etologija, mlekarstvo, živilska tehnologija, prehrana, bi-oinformatika, informacijske znanosti in ostala področja, povezana s kmetijstvom. Pregledne znanstvene članke sprejemamo v objavo samo po poprejšnjem dogovoru z uredniškim odborom. Objavljamo tudi izbrane razširjene znanstvene prispevke s posvetovanj, vendar morajo taki prispevki zajeti najmanj 30 % dodatnih originalnih vsebin, ki še niso bile objavljene. O tovrstni predhodni objavi mora avtor obvestiti uredniški odbor. Če je prispevek del diplomske naloge, magistrskega ali doktorskega dela, navedemo to in tudi mentorja na dnu prve strani. Navedbe morajo biti v slovenskem in angleškem jeziku. Uredništvo revije zagotovi prevode izbranih bibliografskih elementov (naslova, izvlečka, opomb in ključnih besed) v primeru tujih avtorjev. Prispevke sprejemamo skozi celo leto. PROCES ODDAJE PRISPEVKA Avtorji lektorirane prispevke oddajo v elektronski obliki na spletni strani OJS Acta agriculturae Slovenica. Pred oddajo prispevka se mora avtor na spletni strani najprej prijaviti oziroma registrirati, če prvič vstopa v sistem (potrebno je klikniti na Registracija in izpolniti obrazec za registracijo). Bodite pozorni, da na dnu regis- INTRODUCTION Acta agriculturae Slovenica is an open access peer-reviewed scientific journal published quarterly by the Biotechnical Faculty of the University of Ljubljana, Slovenia. The Journal accepts original scientific articles from the fields of plant production (agronomy, horticulture, plant biotechnology, plant-related food-and-nutrition research, agricultural economics, information-science, ecology, environmental studies, plant physiology & ecology, rural development & sociology, soil sciences, genetics, microbiology, food processing) and animal production (genetics, microbiology, immunology, nutrition, physiology, ecology, ethology, dairy science, economics, bioinformatics, animal production and food processing, technology and information science) in Slovenian or English language. Review articles are published upon agreement with the editor. Reports presented on conferences that were not published entirely in the conference reports can be published. Extended versions of selected proceedings-papers can also be considered for acceptance, provided they include at least 30 % of new original content, but the editorial board must be notified beforehand. If the paper is part of BSc, MSc or PhD thesis, this should be indicated together with the name of the mentor at the bottom of the front page and will appear as foot note. All notes should be written in Slovenian and English language. Slovenian-language translation of selected bibliographic elements, for example the title, abstract, notes and keywords, will be provided by the editorial board. Manuscripts are accepted throughout the year. SUBMISSION PROCESS Manuscripts should be submitted to the Acta ag-riculturae Slovenica OJS site. The submitting author should be registered to the site. Click Register and fill in the registration form. Be sure to check in the Author Acta argiculturae Slovenica, 111- 3, december 2018, 741-742 tracijskega obrazca ne pozabite odkljukati potrditvenega polja »Avtor«, sicer oddaja prispevka ne bo mogoča. Proces oddaje prispevka poteka v petih korakih. Priporočljivo je, da se avtor pred oddajo najprej seznani s postopkom in se na oddajo prispevka pripravi: Korak 1: Začetek oddaje prispevka - izbrati je potrebno eno od sekcij, - pri rubriki »Pogoji za oddajo prispevka« morate potrditi vsa potrditvena polja, - dodatna pojasnila uredniku je mogoče vpisati v ustrezno polje. Korak 2: Oddaja prispevka - Naložite prispevek v formatu Microsoft Word (.doc ali .docx). Korak 3: Vpis metapodatkov - Podatki o avtorjih: ime, priimek, elektronski naslovi in ustanove vseh avtorjev v ustreznem vrstnem redu. Korespondenčni avtor mora biti posebej označen. - Vpišite naslov in izvleček prispevka, - Vpišite ključne besede (največ 8, ločeno s podpičjem) in označite jezik besedila, - Vnesete lahko tudi podatke o financerjih, - V ustrezno besedilno polje vnesite reference (med posameznimi referencami naj bo prazna vrstica). Korak 4: Dodajanje morebitnih dodatnih datotek - Grafično gradivo naj bo naloženo v eni ZIP datoteki. Grafične slike imenujte Slika1.jpg, Slika2.eps, in podobno, - Za vsako dodatno naloženo datoteko je potrebno zagotoviti predvidene metapodatke. Korak 5: Potrditev - Potrebna je končna potrditev. check box on the form. We advise you to check in also the Reader check box. Submission process consists of 5 steps. Before submission, authors should go through the checklist and prepare for submission: Step 1: Starting the submission - Choose one of the journal sections. - Confirm all the requirements of the Submission Preparation Checklist. - Additional plain text comments for the editor can be provided in the relevant text field. Step 2: Upload submission - Upload full manuscript in the form of the Microsoft Word document file format (.doc or .docx). Step 3: Enter metadata - First name, last name, contact e-mail and affiliation for all authors, in relevant order, must be provided. Corresponding author has to be selected. - Title and abstract must be provided in plain text. - Key words must be provided (max. 8, separated by semicolons) and enter the language of the text. - Data about contributors and supporting agencies may be entered. - References in plain text must be provided in the relevant text filed (between each reference should be a blank line). Step 4: Upload supplementary files - All graphic have to be uploaded in a single ZIP file. Graphics should be named Figure1.jpg, Fig-ure2.eps, etc. - For each uploaded file the author is asked for additional metadata which may be provided. Step 5: Confirmation - Final confirmation is required. PODROBNEJŠA NAVODILA / DETAILED INSTRUCTIONS http://ojs.aas.bf.uni-lj.si/index.php/AAS/about/submissions#authorGuidelines Acta agriculturae Slovenica, 111 - 3, december 2018 str. 742 - 735