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A B S T R A C T A R T I C L E   I N F O 
The nonlinear and high-dimensional nature of the impact factors affecting the 
production quality of aerospace products represents a major difficulty for the 
quality control in the aerospace industry. To obtain the impact factors affect-
ing the product quality, it is plausible to perform dimensionality reduction on 
acquired samples before further manipulation. In this work, the isometric 
feature mapping (ISOMAP) algorithm of stream learning is employed to per-
form nonlinear dimensionality reduction on aerospace data. This enables a 
calculation of the correlation coefficients between the principal components 
after dimensionality reduction and the original factors, the classification of 
the correspondence, and the ranking of the principal components according 
to their degree of influence. The experimental results show that the algorithm 
is able to carry out correlation analysis of 17 factors affecting the production 
quality of aerospace products, and analyze the 13 main factors affecting the 
production quality of aerospace products, and the degree of influence, in 
descending order, are the rationality of measurement methods, the rationality 
of test point design, tool wear, equipment normalization rate, the degree of 
equipment aging, the rationality of program design, the degree of material 
defects, the rationality of process route design, the rationality of tooling de-
sign, the technical level of personnel, the level of personnel experience, the 
personnel work status, and operational standardization. The ISOMAP algo-
rithm was used to reduce the dimensionality of these 13 factors to form and 
rank the six main influence components, thus eliminating redundant factors, 
highlighting main influence features and extracting the intrinsic relation in 
data. The data analysis conclusions can facilitate a prevention of potential 
quality issues in aerospace production. To ensure the enhancement of the 
quality of aerospace product production, it is recommended that standard 
automated measurement methods be employed wherever feasible. Addition-
ally, it is recommended that the regular maintenance of machining tools and 
equipment be strengthened to ensure that the machining tools and equipment 
are in perfect condition. 
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1. Introduction
The development of aerospace products is contingent upon the attainment of exceptionally high 
reliability standards. Consequently, the supervision and prevention of the production quality of 
aerospace products represents a pivotal aspect of the aerospace product development process. 
The production of aerospace products is susceptible to the potential for the creation of sub-
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standard items if the procedures and equipment utilized are not sufficiently standardized. With 
the rapid development of manufacturing intelligence technology, big data, artificial intelligence 
and other new technologies are deeply integrated with manufacturing, becoming an important 
support for the transformation and upgrading of manufacturers [1-3]. Currently, research on 
applying big data and artificial intelligence technologies to manufacturing focuses on optimizing 
the power consumption of integrated systems for flexible manufacturing [4], increasing produc-
tion capacity [5], optimizing manufacturing schedules [6, 7], analyzing nonconforming produc-
tion [8], evaluating production efficiency [9] and classifying faults [10]. Mature methods have 
been developed in these areas. Aerospace product manufacturers have implemented digital pro-
duction through the implementation of a MES system, thereby accumulating substantial data 
regarding the production process and forming industrial big data [11, 12]. However, the ques-
tion of how to utilize this data to identify the main factors affecting the production quality of 
aerospace products remains a significant challenge that requires immediate attention. 

The main factors affecting the production quality of aerospace products are typically nonline-
ar and high-dimensional data, which pertain to all aspects of the production process. The use of 
high-dimensional data presents a number of evident challenges when undertaking decision-
making analysis. Firstly, the processing of high-dimensional data is inherently challenging due to 
its multidimensional nature, which often results in inefficiencies in computational operations. 
Secondly, the presence of redundancy between factors makes it challenging to ascertain the con-
tribution rate of each factor. Furthermore, it is difficult to identify the specific affecting factors 
that truly determine the quality of the production. 

In the context of high-dimensional data processing, the fundamental dimensionality reduction 
algorithms can be classified into two categories: linear and nonlinear ones. Linear dimensionality 
reduction algorithms mainly include Principal Component Analysis (PCA) algorithm [13] and Mul-
ti-Dimensional Scaling (MDS) algorithm [14]. PCA algorithm projects N-dimensional features to a 
K-dimensional orthogonal space through a linear transformation, thereby maximizing the variance 
of the projected data. The obtained K orthogonal components are designated as the principal com-
ponent. Currently, PCA has been widely used in network abnormal traffic detection [15], port 
throughput forecasting [16], image classification [17], predictions in precision agriculture [18], 
coin classification [19], etc. The core idea of the MDS algorithm is to utilize the distance matrix to 
illustrate the degree of similarity or the correlation between the data points. In contrast to the 
PCA algorithm, the MDS algorithm preserves the distance relationship between the original data 
points throughout the dimensionality reduction process. While, the PCA algorithm prioritizes 
the preservation of the primary trends within the data. With the advancement of computer tech-
nology, artificial intelligence technology, bioinformatics technology, and other multidisciplinary 
application technologies, an increasing number of high-dimensional data sets exhibit nonlinear 
structural characteristics. Consequently, linear dimensionality reduction algorithms have to be 
extended to effectively restore the low-dimensional structure in nonlinear data. 

To address the challenge of nonlinear dimensionality reduction within the linear dimension-
ality reduction framework, several nonlinear dimensionality reduction methods have been pro-
posed. For instance, Shawe-Taylor et al. employed nonlinear dimensionality reduction algo-
rithms based on kernel methods to conduct research on nonlinear high-dimensional data di-
mensionality reduction [20]. Schölkopf et al. proposed the kernel principal component analysis 
(KPCA) [21], which has since become a widely used technique in fields such as face recognition 
[22], speech recognition [23] and novelty detection [24]. Maaten et al. proposed the t-distributed 
Stochastic Neighbor Embedding (t-SNE) algorithm [25]. The t-SNE algorithm is primarily em-
ployed for the analysis of local data structures, with a focus on the extraction of local clusters. 
This capability is particularly advantageous for the visualization of high-dimensional data sets 
comprising multiple streams of varying types (e.g., the MNIST dataset). However, it is important 
to note its limitation in preserving the global structure of the data. The t-SNE algorithm finds 
primary application in fields such as bioinformatics, image processing, and related domains. 
McInnes et al. proposed the Uniform Manifold Approximation and Projection (UMAP) algorithm 
[26], which was developed to address the limitations of t-SNE. t-SNE has been shown to lack 
scalability for large data sets, does not support model persistence, and does not preserve the 
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global structure. The UMAP algorithm has been demonstrated to be well-suited for large-scale 
data downscaling and visualization applications. Tenenbaum et al. put forth the concept of ISO-
MAP (Isometric Mapping) [27], which integrates PCA and MDS. Thereafter, the geodesic distance 
matrix has been used as the input to the MDS algorithm, leading to an improved performance. 

Presently, the ISOMAP algorithm has been employed in a variety of applications, including 
generating training parameters for ROMs [28], fault diagnosis [29], equipment condition analy-
sis [30], EEG classification analysis [31], groundwater systems analysis [32], and other fields. 
The findings from these applications have been encouraging, suggesting the potential of the 
ISOMAP algorithm in a variety of domains. Despite extensive research efforts have been paid on 
various dimensionality reduction algorithms, a notable gap persists in applying these algorithms 
to the production quality analysis of aerospace products. 

The analysis of the main factors affecting the production quality of aerospace products is a 
typical small sample data analysis scenario, and the factors affecting the production quality of 
aerospace products have strong non-linear coupling relationships. This paper presents an analy-
sis of the production features of aerospace products and the various types of quality-affecting 
factors. Compared with algorithms such as t-SNE and UMAP, the ISOMAP algorithm is more suit-
able for the small sample non-linear data dimension reduction scenario in the analysis of the 
main factors affecting the production quality of aerospace products. To achieve this, the ISOMAP 
algorithm is employed to carry out nonlinear dimensionality reduction, enabling a calculation of 
correlation coefficients between the principal component after dimensionality reduction and the 
original factors, a clarification of the correspondence, and a ranking of the principal component 
according to the degree of influence. This approach allows for the identification of the main fac-
tors that most affect the production quality of aerospace products. The algorithm is capable of 
effectively eliminating redundant factor interference, highlighting the main affecting features, 
and obtaining the inner law of the data. This can assist in addressing relevant issues in a timely 
manner and preventing potential quality issues in production. 

2. Algorithm design 
In this paper, the ISOMAP algorithm is employed for the purpose of analyzing the production 
quality data of aerospace products through the use of dimensionality reduction, with the objec-
tive of identifying the main affecting factors. The design of the algorithm is presented in Fig. 1.  

Sample input
（x1,…,xi）

Sample preprocessing
（x1',…,xi'）

Establish the geodetic distance 
array between samples, plot the 

residual curve, and carry out 
residual analysis.

centralization

Calculate the low-dimensional 
embedding result T.

Calculate the correlation 
coefficients between the 

principal component and the 
original factors to clarify the 
corresponding relationship.

 
Fig. 1 Algorithm for production quality analysis of aerospace products 



Shen, Liu, Liu, Wang 
 

90 Advances in Production Engineering & Management 20(1) 2025 
 

The ISOMAP-based algorithm for production quality analysis of aerospace products compris-
es the following steps: sample preprocessing, residual analysis, calculation of low-dimensional 
embedding results, calculation of correlation coefficients between the principal component and 
the original factors, and clarification of the corresponding relationship. 

Step 1: Sample preprocessing 
In accordance with Eq. 1, the input samples (x1, … , xi) are normalized so that the transformed 
data are mapped between [0,1], thereby eliminating the influence of disparate factors due to the 
discrepancy in magnitude and size of the values. The transformed data (x1', … , xi') are then ob-
tained. 

𝑥𝑥𝑖𝑖′ =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (1) 

Step 2: Establish the geodetic distance array between samples, plot the residual curve, and carry 
out residual analysis 
The residual curve is plotted in accordance with Eq. 2, wherein Dg represents the geodetic dis-
tance array, DY denotes the Euclidean distance array, and R signifies the correlation coefficient 
(R = ρx,y). Based on the residual curve, the sample eigen-dimension d is determined. Eq. 3 illus-
trates the calculation of the correlation coefficient, wherein: ρ is the correlation coefficient; E is 
the mathematical expectation; X is the composite factor vector; and Y is the original factor vector. 

𝑒𝑒𝑑𝑑 = 1 − 𝑅𝑅2�𝐷𝐷𝑔𝑔,𝐷𝐷𝑦𝑦� (2) 

𝜌𝜌𝑋𝑋,𝑌𝑌 =
𝐸𝐸(𝑋𝑋𝑋𝑋) − 𝐸𝐸(𝑋𝑋)𝐸𝐸(𝑌𝑌)

�𝐸𝐸(𝑋𝑋2) − 𝐸𝐸2(𝑋𝑋)�𝐸𝐸(𝑌𝑌2) − 𝐸𝐸2(𝑌𝑌)
 (3) 

Step 3: The results of the low-dimensional embedding are calculated 
In accordance with Eq. 4, the low-dimensional embedding result T, that is to say the eigen sam-
ples (z1, … , zd), is computed. Where: (𝜆𝜆1, … , 𝜆𝜆d) represents the largest d eigenvalue of Dg, and its 
corresponding eigenvector is (u1, … , ud). The matrix U is defined as (u1, … , ud). As the eigenvalue 
increases, the importance of each factor increases. 

𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝜆𝜆1
1/2, … , 𝜆𝜆𝑑𝑑

1/2�𝑈𝑈𝑇𝑇 (4) 
Step 4: The correlation coefficients between the principal component and the original factors are 
calculated 
The correlation coefficients between the principal component and the original factors are calcu-
lated using Eq. 3. By comparing the size of the correlation coefficients, the most relevant original 
factors to the principal component after dimensionality reduction are identified. 

3. Example analysis 
An analysis of the production process for a given product is conducted within an aerospace 
company. The experiment obtains the on-site processing information of this product in recent 
years from the MES system and takes 500 samples, including qualified and unqualified samples 
of 250 cases for verification. The experiment employs the PyCharm 2020 runtime environment. 

3.1 Sample selection and pre-processing 

The production process of aerospace products is influenced by a multitude of factors, including 
the interactions between men, machines, materials, methods, measurements, and the environ-
ment (5M1E). Each of these categories contains a multitude of affecting factors that collectively 
determine the quality of the product and its qualification status. These factors are causal regard-
ing quality outcomes. 

By combing the historical records of the production process of aerospace products in an aer-
ospace company, we have identified the factors that influence the quality of aerospace product 
production around the 5M1E and determined the threshold value of each factor. This initial 
phase of the study represents the fundamental research component, providing the foundation 
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for subsequent analysis of the main factors affecting the production quality of aerospace prod-
ucts. The factors affecting the production quality of aerospace products are presented in Fig. 2. 

In terms of man factors, the following variables have been identified as affecting factors: the 
technical level of personnel, the level of personnel experience and the personnel work status. 
The technical level of personnel reflects the technical level of production personnel, encompass-
ing primary, intermediate, and senior levels. The level of personnel experience is defined as the 
work experience of the production personnel involved in manufacturing and processing. Accord-
ing to the number of years of experience, it can be divided into three levels: level 1 (0-2 years of 
experience), level 2 (3-5 years of experience), and level 3 (more than 5 years of experience). 
Personnel work status refers to the personal status of production personnel while performing 
production work, reflects the degree of personal fatigue, and is closely related to individual con-
tinuous working time. The personnel work status is divided into two categories: "good" and 
"bad." If the personnel work continuously for more than eight hours or for more than five days, 
the status is designated as "bad." Conversely, if the personnel work continuously for less than 
eight hours or for less than five days, the status is designated as "good." 
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Fig. 2 The factors affecting the production quality of aerospace products 
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Affecting factors with regard to the machine are mainly the equipment precision, the degree 
of equipment aging, the quality of equipment maintenance, and the equipment normalization 
rate. The term "equipment precision" is used to describe the degree of refinement of equipment 
processing, including ordinary, computer numerical control (CNC), or precision machine tools 
and other equipment. There is a notable difference in precision between these categories. The 
degree of aging is directly proportional to the cumulative usage time of the equipment in ques-
tion. Therefore, the longer the cumulative usage time of the equipment, the greater the degree of 
aging will be. The quality of equipment maintenance can be defined as the degree and quality to 
which equipment is maintained. The equipment normalization rate refers to the normal work 
time of the equipment/the production time of the product. The impact of the aforementioned 
factors on production results will vary in accordance with their differences. 

The main factor affecting the material is the degree of material defects. The presence of mate-
rial defects, such as cracks, impurities, and sand holes, will inevitably exert an influence on the 
quality of the final product to a certain extent. 

Affecting factors in terms of production methods are the rationality of process route design, 
the rationality of tooling design, the degree of tooling maintenance, tool wear, operational 
standardization, and the rationality of program design. Process route refers to the processing 
route of the product, and rationality of tooling design refers to the operability of the process 
equipment for the processing of the product. The more reasonable the process route and tooling 
design, the greater the likelihood of successful product processing. Furthermore, the degree of 
tooling maintenance, tool wear, operational standardization, and the rationality of program de-
sign also have an impact on the quality of the processing. 

Affecting factors with regard to the measurement are the rationality of the test point design, 
the precision of the measuring instruments, and the rationality of the measurement methods 
employed. The quality of the processing will be adversely affected by the unreasonable setting of 
test points, the low precision of measuring instruments, and the use of unreasonable measuring 
methods. 

The aforementioned five affecting factors collectively determine the quality of production of 
aerospace products. An analysis of these factors, coupled with the identification of the most sig-
nificant factors and the establishment of a correlation between them, can effectively inform the 
classification of production quality and facilitate decision-making. 

The affecting factors and factor value settings are presented in Table 1. 
Information regarding the on-site processing of a product in recent years is obtained from the 

MES system, as detailed in Table 2. The following table presents the actual data on some of the 
original affecting factors and the actual processing results. 

The correlation coefficients between the original affecting factors of the production quality of 
aerospace products and between the original affecting factors and the production results (quali-
fied) have been calculated and presented in Fig. 3 for purposes of illustration. The magnitude of 
the correlation coefficients serves to reflect the strength of the relationship between the various 
original affecting factors and the extent to which they impact the production outcomes. As 
demonstrated by the correlation coefficient calculation, 13 original affecting factors with a nota-
ble impact on production results have been identified as the original factors for subsequent di-
mensionality reduction. The 13 original affecting factors are as follows: the technical level of 
personnel (x1), the level of personnel experience (x2), the personnel working status (x3), the de-
gree of equipment aging (x5), the equipment normalization rate (x7), the degree of material de-
fects (x8), the rationality of process route design (x9), the rationality of tooling design (x10), tool 
wear (x12), operational standardization (x13), the rationality of program design (x14), the rational-
ity of test point design (x15), and the rationality of measurement methods (x17). 
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Table 1 Affecting factors and thresholds 
Category Factor Factor name Factor value Description of factor 
Man x1 Technical level of 

personnel 
{1,2,3} primary, intermediate and senior 

x2 Level of personnel 
experience 

{1,2,3} Years of experience in this position: 
1: 0-2 years 
2: 3-5 years 
3: more than 5 years 

x3 Personnel working 
status 

{1,2} Personnel work status: 
1: Bad (more than 8 hours of continuous work 
or more than 5 days of continuous work) 
2: Good (less than 8 hours of continuous work 
and less than 5 days of continuous work) 

Machine x4 Equipment precision [0,1] The degree of refinement of equipment 
processing, such as ordinary, CNC or precision 
machine tools, etc. 

x5 Degree of equipment 
aging 

[0,1] Based on cumulative usage time of equipment 

x6 Quality of equipment 
maintenance 

[0,1] Quality of equipment repair and maintenance 

x7 Equipment normali-
zation rate 

[0,1] Normal working time of the equipment /  
Production time 

Material x8 Degree of material 
defects 

[0,1] Material integrity, material processing features 

Method x9 Rationality of process 
route design 

[0,1] Design rationality of processing sequence and 
content 

x10 Rationality of tooling 
design 

[0,1] Operability of tooling design 

x11 Degree of tooling 
maintenance 

[0,1] maintenance level 

x12 Tool wear [0,1] Tool wear level 

x13 Operational stand-
ardization 

[0,1] Operational standardization 

x14 Rationality of pro-
gram design 

[0,1] Organizational rationality, operability 

Measurement x15 Rationality of test 
point design 

[0,1] Reasonable level of test point setup 

x16 Precision of measur-
ing instruments 

[0,1] Precision of measuring instruments 

x17 Rationality of meas-
urement methods 

[0,1] Reasonableness of the test engineer's  
measurement method 

 
Table 2 Each original affecting factor in MES system and actual results (partial data) 

No. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 Result 
1 2 3 2 0.9 0.7 0.8 0.9 0.9 0.9 0.8 0.7 0.8 0.8 0.8 0.7 0.7 0.8 1 
2 3 3 2 0.8 0.6 0.7 0.6 0.8 0.6 0.7 0.8 0.9 0.8 0.8 0.8 0.5 0.9 1 
3 2 2 2 0.9 0.8 0.8 0.9 0.9 0.9 0.8 0.9 0.8 0.8 0.9 0.8 0.9 0.8 1 
4 1 2 2 0.7 0.7 0.7 0.9 0.8 0.9 0.9 0.6 0.7 0.9 0.9 0.9 0.7 0.8 1 
5 1 3 1 0.8 0.6 0.7 0.9 0.9 0.9 0.8 0.8 0.8 0.9 0.9 0.8 0.8 0.8 1 
6 3 1 2 0.9 0.6 0.9 0.9 0.9 0.9 0.8 0.6 0.9 0.8 0.9 0.9 0.9 0.9 1 
7 1 1 1 0.7 0.8 0.7 0.9 0.8 0.9 0.9 0.8 0.5 0.8 0.9 0.6 0.7 0.6 -1 
8 2 2 1 0.9 0.9 0.6 0.8 0.7 0.3 0.6 0.7 0.6 0.8 0.3 0.5 0.8 0.6 -1 
9 2 3 1 0.8 0.8 0.8 0.9 0.7 0.7 0.2 0.8 0.4 0.8 0.9 0.6 0.9 0.5 -1 

10 1 1 2 0.8 0.9 0.9 0.2 0.8 0.8 0.9 0.9 0.5 0.9 0.9 0.7 0.8 0.4 -1 
11 2 3 1 0.9 0.6 0.7 0.9 0.8 0.6 0.8 0.7 0.6 0.8 0.2 0.3 0.9 0.5 -1 

 
 



Shen, Liu, Liu, Wang 
 

94 Advances in Production Engineering & Management 20(1) 2025 
 

 
Fig. 3 The correlation coefficients between each original affecting factor and the qualified production results 

3.2 Dimensionality reduction and data analysis 
The geodetic distance array Dg between samples has been established, and in accordance with 
Eq. 2, the residual curve has been drawn and presented in Fig. 4. It is evident that as the dimen-
sionality exceeds 6, the curve displays enhanced smoothness, with residual variations confined 
to a 5 % range. It is thus established that the intrinsic dimensionality of the sample is equal to 6, 
indicating that there are six principal features that collectively account for 95 % of the sample's 
features. 

 
Fig. 4 Residual curve 
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In accordance with Eq. 4, the low-dimensional embedding result T can be calculated. This re-
sult is represented by the eigen-sample (z1, … , z6), which comprises six principal components 
after dimensionality reduction. The correlation coefficients between each principal component 
after dimensionality reduction and the original factors are calculated in accordance with Eq. 3 
and are presented in Table 3. 

The size of the correlation coefficient between each principal component and the original fac-
tors allows us to elucidate the corresponding relationship between them and to ascertain which 
original factors are most pertinent to the principal component after dimensionality reduction. As 
illustrated in Table 3, the original factors with high correlation coefficients for the first principal 
component z1 include the technical level of personnel, the level of personnel experience, the per-
sonnel working status and operational standardization, which are personnel-related factors. The 
original factors with high correlation coefficients for the second principal component z2 include 
the degree of equipment aging, equipment normalization rate and tool wear, which are equip-
ment-related factors. The original factor with a high correlation coefficient for the third principal 
component z3 is the degree of material defects, which is material-related factor. The original 
factors with high correlation coefficients for the fourth principal component z4 include the ra-
tionality of process route design and the rationality of tooling design, which are process design-
related factors. The original factor with a high correlation coefficient for the fifth principal com-
ponent z5 is the rationality of program design, which is program design-related factor. The origi-
nal factors with high correlation coefficients for the sixth principal component z6 include the 
rationality of test point design and the rationality of measurement methods, which are meas-
urement method-related factors. 

Fig. 5 illustrates the two-dimensional spatial projection of the two original factors, namely the 
technical level of personnel and the level of personnel experience. It can be observed that the 
original sample features are not readily discernible. Fig. 6 illustrates the two-dimensional spatial 
projection of the first feature z1 and the second feature z2 after dimensionality reduction using 
an ISOMAP-based dimensionality reduction algorithm, which can be seen that the principal 
components are clearly featured and can reflect the main features that affect the quality of prod-
uct production. 

Table 3 The correlation coefficients between each principal component after dimensionality reduction and 
           the original factors 

Principal 
component x1 x2 x3 x5 x7 x8 x9 x10 x12 x13 x14 x15 x17 

z1 0.72 0.62 0.59 -0.02 0.07 0.04 0.06 0.06 0.07 0.74 0.07 0.06 0.10 
z2 0.06 -0.07 0.07 -0.72 -0.68 0.01 -0.02 -0.02 -0.71 0.01 -0.03 0.01 -0.03 
z3 0.22 0.13 -0.09 -0.01 -0.11 -0.75 -0.11 -0.09 -0.15 -0.03 -0.12 -0.16 -0.14 
z4 0.04 0.13 0.37 0.05 -0.36 -0.13 -0.73 -0.69 -0.30 -0.28 -0.36 -0.25 -0.31 
z5 0.01 -0.01 -0.01 0.07 -0.71 0.08 0.31 0.43 -0.32 -0.04 0.86 0.19 0.06 
z6 0.01 0.01 0.04 0.01 0.25 0.01 0.25 0.20 0.06 -0.23 -0.21 -0.62 -0.62 

 
Fig. 5 2D feature space of the original factors sample 
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Fig. 6 2D feature space of the principal component after dimensionality reduction 

3.3 Data analysis conclusion 

From the correlation coefficients between each original affecting factor and the qualified pro-
duction results presented in Fig. 3, as well as the correlation coefficients between the principal 
component after dimensionality reduction and the original factors detailed in Table 3, it can be 
observed that the rationality of measurement methods, the rationality of test point design, tool 
wear, equipment normalization rate, the degree of equipment aging, the rationality of program 
design, the degree of material defects, the rationality of process route design, the rationality of 
tooling design, the technical level of personnel, the level of personnel experience, the personnel 
work status, and operational standardization have a significant impact on production quality. 
The main features of the influence degree, in descending order of magnitude, are z6, z2, z5, z3, z4, 
and z1. 

The sixth feature, z6, pertains to the rationality of measurement methods and the rationality 
of test point design. To minimize the potential for error in on-site measurement results, it is rec-
ommended that standard automated measurement methods be employed wherever feasible. 

The second feature, z2, is associated with tool wear, equipment normalization rate, and the 
degree of equipment aging. It is recommended that regular maintenance of processing tools and 
equipment be conducted to ensure normalization of said tools and equipment. 

The fifth feature, Z5, pertains to the rationality of program design. It is imperative to reinforce 
training and review of the program design. 

The third feature, Z3, is associated with the degree of material defects and thus requires com-
prehensive examination through rigorous testing. 

The fourth feature, Z4, is associated with the rationality of process route design and the ra-
tionality of tooling design. It is of the utmost importance to reinforce the process route design 
and tooling design optimization, and these are subjected to the closest scrutiny by experts. 

The first feature, z1, pertains to the technical level of personnel, the level of personnel experi-
ence, the personnel work status, and operational standardization. It is of the utmost importance 
to reinforce the training and examinations of personnel. 

4. Conclusion 
This paper addresses the issue of identifying the main factors affecting the production quality of 
aerospace products. It begins by providing a comprehensive analysis of the characteristics of 
aerospace product production and the various types of quality-affecting factors. Secondly, the 
isometric feature mapping (ISOMAP) algorithm of stream learning is used to reduce the dimen-
sionality of nonlinear data. Finally, the correlation coefficients between each principal compo-
nent after dimensionality reduction and the original factors are calculated to elucidate their cor-
respondence, and the main factors are ranked according to the degree of influence. The process 
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can identify the factors that have the greatest impact on the quality of aerospace product pro-
duction, mainly those related to inspection methods, the condition of equipment, etc. Therefore, 
to ensure that the quality of aerospace product production is improved, it is recommended that 
standard automated measurement methods be used wherever feasible. In addition, it is recom-
mended that regular maintenance of machining tools and equipment be enhanced to ensure that 
they are in good condition. The proposed changes will enable the targeted use of costs to signifi-
cantly improve the quality of aerospace product production and achieve cost savings. The exper-
imental results certify the capability of the algorithm in analyzing the main factors affecting the 
production quality of aerospace products, eliminating redundant factor interference, highlight-
ing the main affecting features, and obtaining the inner law of the data, with the limitation that 
the algorithm is only applicable to the scenarios of analysing the production quality of all kinds 
of aerospace products with small samples. On the basis of this study, further research and prac-
tice on online classification and prediction of aerospace product production quality will be car-
ried out in the future. 

Acknowledgement 
Project supported by the Natural Science Foundation of Jiangsu Province of China (BK20222012). 

References 
[1] Nazifa, T.H., Ramachandran, K.K. (2019). Information sharing in supply chain management: A case study be-

tween the cooperative partners in manufacturing industry, Journal of System and Management Sciences, Vol. 9, 
No. 1, 19-47, doi: 10.33168/JSMS.2019.0102. 

[2] Shafiq, S.I., Sanin, C., Szczerbicki, E., Toro, C. (2017). Towards an experience based collective computational 
intelligence for manufacturing, Future Generation Computer Systems, Vol. 66, 89-99, doi: 10.1016/j.future.2016. 
04.022. 

[3] Liang, Q. (2020). Production logistics management of industrial enterprises based on wavelet neural network, 
Journal Européen des Systèmes Automatisés, Vol. 53, No. 4, 581-588, doi: 10.18280/jesa.530418. 

[4] Păun, M.-A., Coandă, H.-G., Mincă, E., Iliescu, S.S., Duca, O.G., Stamatescu, G. (2024). Improved multi-objective 
genetic algorithm used to optimizing power consumption of an integrated system for flexible manufacturing, 
Studies in Informatics and Control, Vol. 33, No. 1, 27-36, doi: 10.24846/v33i1y202403.  

[5] Malega, P., Daneshjo, N. (2024). Increasing the production capacity of business processes using plant simulation, 
International Journal of Simulation Modelling, Vol. 23, No. 1, 41-52, doi: 10.2507/ijsimm23-1-669. 

[6] Sun, H. (2023). Optimizing manufacturing scheduling with genetic algorithm and LSTM neural networks, Inter-
national Journal of Simulation Modelling, Vol. 22, No. 3, 508-519, doi: 10.2507/IJSIMM22-3-CO13. 

[7] Yildiz, İ., Saygin, A., Çolak, S. Abut, F. (2023). Development of a neural network algorithm for estimating the 
makespan in jobshop production scheduling, Tehnički Vjesnik–Technical Gazette, Vol. 30, No. 4, 1257-1264, doi: 
10.17559/TV-20220818161430. 

[8] Schindlerova, V., Marcik, J., Cada, R., Sajdlerova, I. (2024). Analysis of non-conforming production in an engineer-
ing company, Tehnički Vjesnik–Technical Gazette, Vol. 31, No. 1, 296-302, doi: 10.17559/TV-20230907000920. 

[9] Kliment, M., Trebuna, P., Pekarcikova, M., Straka, M., Trojan, J., Duda, R. (2020). Production efficiency evaluation 
and products' quality improvement using simulation, International Journal of Simulation Modelling, Vol. 19, No. 3, 
470-481, doi: 10.2507/IJSIMM19-3-528. 

[10] Liang, S., Chen, C., Wu, D., Chen, L., Wu, Q., Gu, T.T. (2024). An ensemble learning method for the fault multi-
classification of smart meters, Tehnički Vjesnik–Technical Gazette, Vol. 31, No. 5, 1514-1522, doi: 10.17559/TV-
20230417000543. 

[11] Yin, B., Wei, X., Wang, J., Xiong, N., Gu, K. (2019). An industrial dynamic skyline based similarity joins for multi-
dimensional big data applications, IEEE Transactions on Industrial Informatics, Vol. 16, No. 4, 2520-2532, doi: 
10.1109/TII.2019.2933534. 

[12] Rosin, F., Forget, P., Lamouri, S., Pellerin, R. (2021). Impact of Industry 4.0 on decision-making in an operational 
context, Advances in Production Engineering & Management, Vol. 16, No. 4, 500-514, doi: 10.14743/apem2021. 
4.416. 

[13] Jolliffe, I. (2002). Principal component analysis and factor analysis, In: Principal component analysis. springer 
series in statistics, Springer, New York, USA, 150-166, doi: 10.1007/0-387-22440-8_7. 

[14] Cox, M., Cox, T. (2008). Multidimensional scaling, In: Handbook of data visualization, Springer handbooks of com-
putational statistics, Springer, Berlin, Germany, 316-341, doi: 10.1007/978-3-540-33037-0_14. 

[15] Wang, Z., Han, D., Li, M., Liu, H., Cui, M. (2022). The abnormal traffic detection scheme based on PCA and SSH, 
Connection Science, Vol. 34, No. 1, 1201-1220, doi: 10.1080/09540091.2022.2051434. 

[16] Jiang, L., Jiang, H., Wang, H.H. (2020). Soft computing model using cluster-PCA in port model for throughput 
forecasting, Soft Computing, Vol. 24, No. 7, 14167-14177, doi: 10.1007/s00500-020-04786-y. 

https://doi.org/10.33168/JSMS.2019.0102
https://doi.org/10.1016/j.future.2016.04.022
https://doi.org/10.1016/j.future.2016.04.022
https://doi.org/10.18280/jesa.530418
https://doi.org/10.24846/v33i1y202403
https://doi.org/10.2507/IJSIMM23-1-669
https://doi.org/10.2507/IJSIMM22-3-CO13
https://doi.org/10.17559/TV-20220818161430
https://doi.org/10.17559/TV-20220818161430
https://doi.org/10.17559/TV-20230907000920
https://doi.org/10.2507/IJSIMM19-3-528
https://doi.org/10.17559/TV-20230417000543
https://doi.org/10.17559/TV-20230417000543
https://doi.org/10.1109/TII.2019.2933534
https://doi.org/10.1109/TII.2019.2933534
https://doi.org/10.14743/apem2021.4.416
https://doi.org/10.14743/apem2021.4.416
https://doi.org/10.1007/0-387-22440-8_7
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1080/09540091.2022.2051434
https://doi.org/10.1007/s00500-020-04786-y


Shen, Liu, Liu, Wang 
 

98 Advances in Production Engineering & Management 20(1) 2025 
 

[17] Ye, M., Ji, C., Chen, H., Lei, L., Lu, H., Qian, Y. (2020). Residual deep PCA-based feature extraction for hyperspectral 
image classification, Neural Computing and Applications, Vol. 32, No. 7, 14287-14300, doi: 10.1007/s00521-019-
04503-3. 

[18] Dong, M., Yu, H., Zhang, L., Sui, Y., Zhao, R. (2023). A PCA-smo based hybrid classification model for predictions in 
precision agriculture, Tehnički Vjesnik–Technical Gazette, Vol. 30, No. 5, 1652-1660, doi: 10.17559/TV-2023053 
0000682. 

[19] Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M. (2005). Classification of coins using an eigenspace approach, 
Pattern Recognition Letters, Vol. 26, No. 1, 61-75, doi: 10.1016/j.patrec.2004.09.006.  

[20] Shawe-Taylor, J., Cristianini, N. (2004). Kernel methods for pattern analysis, Cambridge University Press, London, 
UK, doi: 10.1017/CBO9780511809682.  

[21] Schölkopf, B., Smola, A., Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem, 
Neural Computation, Vol. 10, No. 5, 1299-1319, doi: 10.10.1162/089976698300017467.  

[22] Kim, K.I., Jung, K., Kim, H.J. (2002). Face recognition using kernel principal component analysis, IEEE Signal Pro-
cessing Letters, Vol. 9, No. 2, 40-42, doi: 10.1109/97.991133.  

[23] Lima, A., Zen, H., Nankaku, Y., Miyajima, C., Tokuda, K., Kitamura. T. (2004). On the use of kernel PCA for feature 
extraction in speech recognition, IEICE TransactionS on Information and Systems, Vol. E87-D, No. 12, 2802-2811. 

[24] Hoffmann, H. (2007). Kernel PCA for novelty detection, Pattern Recognition, Vol. 40, No. 3, 863-874, doi: 
10.1016/j.patcog.2006.07.009.  

[25] Van der Maaten, L., Hinton, G. (2008). Visualizing data using t-SNE, Journal of Machine Learning Research, Vol. 9, 
2579-2605. 

[26] Mcinnes, L., Healy, J. Saul, N., Großberger, L. (2018). UMAP: Uniform manifold approximation and projection for 
dimension reduction, The Journal of Open Source Software, Vol. 3, No. 29, Article No. 861, doi: 10.21105/ 
joss.00861. 

[27] Tenenbaum, J.B., de Silva, V., Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality 
reduction, Science, Vol. 290, No. 5500, 2319-2323, doi: 10.1126/science.290.5500.2319. 

[28] Halder, R., Fidkowski, K.J., Maki, K.J. (2024). An adaptive sampling algorithm for reduced-order models using 
isomap, International Journal for Numerical Methods in Engineering, Vol. 125, No. 8, Article No. e7427, doi: 
10.1002/nme.7427. 

[29] Lu, W., Shi, C., Fu, H., Xu, Y. (2023). Research on transformer fault diagnosis based on ISOMAP and IChOA-ISSVM, 
IET Electric Power Applications, Vol. 17, No. 6, 773-787, doi: 10.1049/elp2.12302. 

[30] Li, M., Yang, J.H., Xu, J.W., Yang, D.B. (2009). Trend analysis method via manifold evolution in high dimensional 
space for state of machinery equipment, Journal of Mechanical Engineering, Vol. 45, No. 2, 213-218. 

[31] Reddy, C.S., Reddy, M.R. (2024). Nonlinear difference subspace method of motor imagery EEG classification in 
brain-computer interface, Digital Signal Processing, Vol. 155, Article No. 104720, doi: 10.1016/j.dsp.2024. 
104720. 

[32] Mohammed, M.A.A., Szabó, N.P., Szűcs, P. (2025). High-resolution characterization of complex groundwater 
systems using wireline logs analyzed with machine learning classifiers and isometric mapping techniques, Mod-
eling Earth Systems and Environment, Vol. 11, Article No. 85, doi: 10.1007/s40808-024-02263-1. 

 

https://doi.org/10.1007/s00521-019-04503-3
https://doi.org/10.1007/s00521-019-04503-3
https://doi.org/10.17559/TV-20230530000682
https://doi.org/10.17559/TV-20230530000682
https://doi.org/%2010.1016/j.patrec.2004.09.006
https://doi.org/10.1017/CBO9780511809682
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1109/97.991133
https://doi.org/10.1016/j.patcog.2006.07.009
https://doi.org/10.1016/j.patcog.2006.07.009
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1002/nme.7427
https://doi.org/10.1002/nme.7427
https://doi.org/10.1049/elp2.12302
https://doi.org/10.1016/j.dsp.2024.104720
https://doi.org/10.1016/j.dsp.2024.104720
https://doi.org/10.1007/s40808-024-02263-1

	Shen, D.Y.a,b, Liu, N.Z.a,*, Liu, W.b, Wang, Z.b
	1. Introduction
	2. Algorithm design
	3. Example analysis
	3.1 Sample selection and pre-processing
	3.2 Dimensionality reduction and data analysis
	3.3 Data analysis conclusion

	4. Conclusion
	Acknowledgement
	References

