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Abstract

For a simple and connected graph, a new graph invariant s∗α(G), defined as the sum of
α powers of the eigenvalues of the normalized Laplacian matrix, has been introduced by
Bozkurt and Bozkurt (2012). Lower and upper bounds for this index have been proposed
by the authors. In this paper, we localize the eigenvalues of the normalized Laplacian
matrix by adapting a theoretical method, proposed in Bianchi and Torriero (2000), based
on majorization techniques. Through this approach we derive upper and lower bounds of
s∗α(G). Some numerical examples show how sharper results can be obtained with respect
to those existing in literature.
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1 Introduction
Among the various indices in Mathematical Chemistry, a whole new family of descriptors
s∗α(G), defined as the sum of α powers of the eigenvalues of the normalized Laplacian
matrix, has been proposed by Bozkurt and Bozkurt in [7]. These authors found a number
of bounds for arbitrary α and particularly for α = −1, which is the case of the degree
Kirchhoff Index. Recently, Bianchi et al. proposed a variety of lower and upper bounds
for s∗α(G) in [1] and for the Kirchhoff Index in [2] derived via majorization techniques. In
particular, the authors showed that it is possible to obtain tighter results taking into account
additional information on the localization of the eigenvalues of proper matrices associated
to the graph. From a theoretical point of view, some well–known inequalities on the local-
ization of real eigenvalues have been provided in literature and they can be used to compute
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the above mentioned bounds.
Alternative inequalities involving the localization of some eigenvalues of the transition ma-
trix of the graph have been numerically computed in [9] and [10] by applying a theoretical
methodology proposed in Bianchi and Torriero [5] based on nonlinear global optimization
problems solved through majorization techniques. By means of these results, tighter lower
bounds for the Kirchhoff Index for some classes of graphs have been derived in [9].
The original contribution of this paper is to exploit this fruitful theoretical method (see [5])
with the aim to provide some formulae that allow us to compute lower bounds for the first
and the second eigenvalues of the normalized Laplacian matrix in a fairly straightforward
way. These limitations on the eigenvalues are then used to assess bounds for s∗α(G) pro-
posed in [1]. We then obtain new bounds for s∗α(G) considering both non-bipartite and
bipartite graphs.

In Section 2 some preliminaries on graph theory are given. Furthermore, the definition
of s∗α(G) and the existing bounds on this index are presented. In Section 3 we describe
the nonlinear optimization problem based on majorization techniques. This methodology,
useful for our analysis, allows us to localize the first and second eigenvalues of the nor-
malized Laplacian matrix. Lower bounds of these normalized Laplacian eigenvalues have
been obtained in Section 4. We prove that our limitation on the first normalized Laplacian
eigenvalue is always sharper than the existing one for non-complete graph. By means of
this result, we provide bounds on s∗α(G) tighter than those given in [7]. Finally, in Section
5 a numerical comparison for bipartite and non-bipartite graphs is reported.

2 Notations and preliminaries
In this section we first recall some basic notions on graph theory. For more details refer to
[17].
Let G = (V,E) be a simple, connected, undirected graph where V = {1, 2, . . . , n} is the
set of vertices and E ⊆ V × V the set of edges, |E| = m.
The degree sequence of G is denoted by π = (d1, d2, .., dn) and it is arranged in non-
increasing order d1 ≥ d2 ≥ · · · ≥ dn, where di is the degree of vertex i. It is well

known that
n∑
i=1

di = 2m and that if G is a tree, i.e. a connected graph without cycles,

m = n − 1. Let A(G) be the adjacency matrix of G and D(G) be the diagonal matrix
of vertex degrees. The matrix L(G) = D(G) − A(G) is called Laplacian matrix of G,
while L(G) = D(G)−1/2L(G)D(G)−1/2 is known as normalized Laplacian matrix. Let
µ1 ≥ µ2 ≥ ... ≥ µn be the (real) eigenvalues of L(G) and λ1 ≥ λ2 ≥ ... ≥ λn be the
(real) eigenvalues of L(G). The following properties of spectra of L(G) and L(G) hold:

n∑
i=1

µi = tr(L(G)) = 2m; µ1 ≥ 1 + d1 ≥
2m

n
; µn = 0, µn−1 > 0.

n∑
i=1

λi = tr(L(G)) = n;

n∑
i=1

λ2i = tr(L2(G)) = n+ 2
∑

(i,j)∈E

1

didj
; λn = 0;λ1 ≤ 2.

Our aim is the analysis of a particular topological index, s∗α(G). In particular, Zhou (see
[18]) proposed the index:

sα(G) =

n−1∑
i=1

µαi , α 6= 0, 1,
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defined as the sum of the α-th power of the non-zero Laplacian eigenvalues of a graph G.
Over the last years this index and its bounds have been intensely studied: Zhou (see

[18]) established some properties of sα(G) and some improvements have been provided
in [14], [16], [19] and [20]. In [3], taking into account the Schur-convexity or Schur-
concavity of the functions sα(G) for α > 1 and α < 0 or 0 < α < 1 respectively, the same
bounds as in [18] have been derived. Furthermore, considering additional information on
the localization of the eigenvalues, the authors provide also sharper bounds.

Bozkurt and Bozkurt in [7] introduced parallely to [18] the following new graph invari-
ant:

s∗α(G) =

n−1∑
i=1

λαi , α 6= 0, 1,

characterized as the sum of the α-th power of the non-zero normalized Laplacian eigenval-
ues of a graph. Several properties of this index have been proposed in [7] and some lower
and upper bounds for a connected graph have been derived.

In [1], considering the Schur-convexity or Schur-concavity of the functions s∗α(G) and
using additional information on the localization of the eigenvalues, the following Theo-
rems, which generalize Theorem 3.3 in [7], have been proved.

Theorem 2.1. Let G be a simple connected graph with n ≥ 3 vertices and λ1 ≥ θ:

1. if α < 0 or α > 1 then

s∗α(G) ≥ θα +
(n− θ)α

(n− 2)α−1
(2.1)

2. if 0 < α < 1 then

s∗α(G) ≤ θα +
(n− θ)α

(n− 2)α−1
. (2.2)

Theorem 2.2. Let G be a simple connected graph with n ≥ 4 vertices which is not com-
plete and λ1 ≥ θ, λ2 ≥ β with θ ≥ β and θ + β(n− 2) > n.

1. if α < 0 or α > 1 then

s∗α(G) ≥ θα + βα +
(n− θ − β)α

(n− 3)α−1
(2.3)

2. if 0 < α < 1 then

s∗α(G) ≤ θα + βα +
(n− θ − β)α

(n− 3)α−1
. (2.4)

It is noteworthy to state that the results in Theorem 2.2 are tighter than those in Theorem
2.1 (for more details see [3] and [4]).

In [7], the bounds in Theorem 2.1 have been previously proved identifying θ as

P = 1 +

√√√√ 2

n(n− 1)

∑
(i,j∈E)

1

didj
. (2.5)

In Section 4, by applying some results proved in [5], we provide lower bounds of λ1
and λ2 that enable us to assess tighter bounds of s∗α(G) than in [7]. In particular, we obtain
an alternative value of θ than (2.5) (referred as Q) and a specific value of β (referred as R).
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3 A nonlinear optimization problem to bound eigenvalues
We now recall a methodology based on majorization techniques (see [5] and [15]) that
allows us to find a suitable localization of λ1 and λ2.
At this regard, we define the set

Sλb = {λ ∈ Rn−1+ : λ1 ≥ λ2 ≥ ... ≥ λn−1 ≥ 0,

n−1∑
i=1

λi = n, g(λ) =

n−1∑
i=1

λpi = b},

where p is an integer greater than 1, b ∈ R and g is a continuous function, homogeneous of
degree p, real and strictly Schur-Convex (see [15]).
The following fundamental lemma holds (see Lemma 2.1 in [5]):

Lemma 3.1. Fix b ∈ R and consider the set Sλb . Then either b = np

(n−1)p−1 or there exists
a unique integer 1 ≤ h∗ < (n− 1) such that:

np

(h∗ + 1)
p−1 < b ≤ np

(h∗)
p−1 , (3.1)

where h∗ =
⌊
p−1

√
np

b

⌋
.

A lower bound for λh (h = 1, ..., n − 1) can be obtained by solving the following
optimization problem P ∗(h):

min (λh) subject to λ ∈ Sλb P ∗(h)

The solution of the nonlinear optimization problem P ∗(h) is given in the following Theo-
rem that we recall from Theorem 3.2 in [5] (for detailed proof see [5]).

Theorem 3.2. The solution of the optimization problem P ∗(h) is ( n
n−1 ) if b = np

(n−1)p−1 .

If b 6= np

(n−1)p−1 , the solution of the optimization problem P ∗(h) is δ∗ where

1. for h = 1, δ∗ is the unique root of the equation

f(δ, p) = h∗δp + (n− h∗δ)p − b = 0 (3.2)

in I =
(

n
h∗+1 ,

n
h∗

]
;

2. for 1 < h ≤ (h∗ + 1), δ∗ is the unique root of the equation

f(δ, p) = (n− h)δp + (h− 1)
(n− (n− h)δ)p

(h− 1)p
− b = 0 (3.3)

in I = (0, n
n−1 ];

3. for h > (h∗ + 1), δ∗ is zero.

It is noteworthy that we use this Theorem in the next Section to obtain lower bounds for λ1
and λ2.
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4 New bounds for normalized Laplacian eigenvalues and s∗α(G)

We now present a schematic framework of the main steps we follow in order to provide
new limitations for λ1 and λ2 useful to get new bounds for the descriptor s∗α(G).

1. A new lower boundQ for λ1

At this regard, we consider Theorem 3.2 limiting1 the analysis when p = 2: in
this case we know indeed that b = n + 2

∑
(i,j)∈E

1
didj

. For Lemma 3.1, when

b = n2

(n−1) the solution of optimization problem P ∗(h) is
(

n
n−1

)
. This is the case of

the complete graph Kn. Instead, when b 6= n2

(n−1) , h∗ =
⌊
n2

b

⌋
.

Considering non-complete graphs, to get a lower bound for λ1 we solve Equation
(3.2) being h = 1. By some basic algebra, the acceptable solution in the interval I is

equal to δ∗ =

(
n+

√
b(h∗+1)−n2

h∗

)
(1+h∗) and we refer to this value as Q.

2. New bounds for s∗α(G) based onQ
Considering Theorem 2.1 we obtain new bounds for s∗α(G) by replacing the generic
limitation θ with Q in (2.1) and (2.2).

3. Comparison betweenQ and P
The value of Q can be compared to P (see Equation (2.5)) in order to show how
bounds (2.1) and (2.2), computed by assuming θ = Q, perform better than those
with θ = P (as proposed in [7]). It is well known that, for every connected graph of
order n (see [2]), we have:

1

n− 1
≤ 2

n

∑
(i,j)∈E

1

didj
< 1, (4.1)

and the left inequality is attained for the complete graph G = Kn.
Figure 1 reports patterns of P and Q, varying the quantity t = 2 ·

∑
(i,j)∈E

1
didj

in

the proper interval
(

n
n−1 , n

)
(see Equation (4.1)) for alternative values of number

of vertices n. Being P = 1 +
√

t
n(n−1) , it is easy to see that P has a monotonic

behaviour with respect to t. P ∈
(

n
n−1 , 1 +

√
1

n−1

)
, while Q ∈ ( n

n−1 , 2). Further-

more, Figure 1 shows that Q increases faster than P when t ∈
(

n
n−1 , n

)
.

1For values of p 6= 2, b depends on the graph’s structure and topology. So the procedure can be only numeri-
cally applied: we need to compute the eigenvalues of normalized Laplacian matrix, but this information allows to
directly obtain s∗α(G). In this case, the evaluation of bounds is useless.
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Figure 1: Q and P according to different values of t ∈
(

n
n−1 , n

)
and several number of

vertices.

Going deeply into the analysis, we now analytically prove that our bound Q on λ1 is
always better than bound P provided in [7]

Main Result. The limitation Q is strictly greater than P for non-complete graphs.

Proof. We start considering:

f(t) = Q− P =

(
n+

√
(n+t)(h∗+1)−n2

h∗

)
(1 + h∗)

− 1−

√
t

n(n− 1)
, (4.2)

where f(t) ∈
(
0, 1−

√
t

n(n−1)

)
, h∗ =

⌊
n2

n+t

⌋
and h∗ ∈

(⌊
n
2

⌋
, n− 1

)
.

Furthermore, when

t =
n(n− x)
n+ x

with x =

{
0, 2, 4, ..., (n− 2) if n is even
1, 3, 5, ..., (n− 2) if n is odd (4.3)

n2

n+t is an integer (i.e. h∗ = n2

n+t ).

We can now distinguish two cases:

• when (4.3) holds, n2

n+t is an integer. Doing some algebra, we have f(t) =

t
n −

√
t

n(n−1) . It is immediate to see that f(t) > 0, with f(t) = 0 only for
complete graphs (being in that case t = n

n−1 );
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• otherwise, n2

n+t is not an integer. Being f(t) ≥ 0 at the boundaries of its
domain and f(t) > 0 for values of t so that h∗ is an integer, by proving that
f(t) is strictly increasing on its remaining domain, we have f(t) > 0. Since
f(t) is required to be strictly increasing, we compute
f ′(t) = 1

2h∗
√

(n+t)(h∗+1)−n2

h∗

− 1
2n(n−1)

1√
t

n(n−1)

(defined in t 6= n(n−x)
n+x ).

In order to show that f ′(t) > 0, by simple algebra we get:
t (n(n− 1)− h∗(h∗ + 1)) + nh∗ (n− (h∗ + 1)) > 0.
Being h∗ < n− 1 for non-complete graphs, we have f ′(t) > 0.

It follows that Q > P for non-complete graphs.

Now, λ1 ≥ Q ≥ P entails that bounds (2.1) and (2.2) with θ = Q perform better
than those in [7] (see [3] and [4] for more theoretical details).

4. A new lower boundR for λ2

With the aim to improve previous results, we can now derive additional information
on λ2. We still apply Theorem 3.2, considering the case h = 2. Since h ≤ (h∗ + 1),
we solve the Equation (3.3) finding in the interval I the acceptable solution:

R = δ∗ =
n−

√
b(n−1)−n2

n−2

n− 1
.

5. New bounds for s∗α(G) based onQ andR
Considering Theorem 2.2, it is possible to obtain new bounds for s∗α(G) by replacing
the generic limitations θ and β with Q and R respectively in (2.3) and (2.4). In order
to assess these bounds, both conditions of Theorem 2.2 must be satisfied.

In this case, the leftmost inequality of (4.1) implies b ≥ n2

n−1 . By plugging this
information in the value of R, we easily obtain R ≤ n

n−1 that fulfills the condition
R ≤ Q of Theorem 2.2. The other condition, Q + R(n − 2) > n, required by
Theorem 2.2 will be numerically checked in the next Section.

In case of bipartite graphs it is well known that λ1 = 2. If we set θ = 2 in Theorem
2.1, we derive the same results found in [1]. Furthermore, by placing θ = 2 and β = R in
bounds (2.3) and (2.4), we also provide limitations for bipartite graphs.

5 Some numerical results
The proposed bounds have been evaluated on different graphs. We now focus only on non-
bipartite graphs and we provide a comparison with literature (see [7]).
In order to assure a robust analysis, graphs have been randomly generated following the
Erdös-Rényi (ER) model GER(n, q) (see [6], [8], [11] and [12]). Graphs have been ob-
tained by using a MatLab code that gives back only connected graph based on the ER
model (see [9] and [10]). In this fashion, the graph is constructed by connecting nodes
randomly such that edges are included with probability independent from every other edge.
The results are based on a classic assumption of a probability of existence of edges q equal
to 0.5. We obtain indeed that the generated graphs have a number of edges not far from the
half of its maximum value as proved in the literature (see for example [13]).
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At this regard, in Table 1, s∗α(G) has been computed for several graphs by fixing α
equal to 0.5. We report values of upper bound (2.2) evaluated by using θ = Q or θ = P (as
proposed in [7]).

We refer to these bounds as (2.2Q) and (2.2P ). Likewise bound (2.4QR) identifies
bound (2.4) evaluated when θ = Q and β = R, where the results has been provided
assuring that assumptions of Theorem 2.2 are satisfied. Relative errors r measures the
absolute value of the difference between the upper bounds and s∗α(G) divided by the value
of s∗α(G). We observe an improvement with respect to existing bounds according to all the
analyzed graphs and the improvement appears reduced for very large graphs. However, for
large graphs the formula provided in [7] already gives a very low relative error.

n d1 m s∗α(G) bound (2.2Q) bound (2.4QR) bound (2.2P ) r(2.2Q) r(2.4QR) r(2.2P )

4 2 3 3.35 3.44 3.43 3.46 2.86% 2.55% 3.47%
5 4 9 4.46 4.47 4.47 4.47 0.23% 0.21% 0.25%
6 3 6 5.30 5.47 5.46 5.48 3.13% 3.00% 3.27%
7 5 14 6.43 6.48 6.48 6.48 0.83% 0.81% 0.86%
8 5 13 7.33 7.48 7.48 7.48 2.02% 1.98% 2.06%
9 6 16 8.31 8.48 8.48 8.48 2.04% 2.01% 2.07%
10 8 25 9.39 9.51 9.48 9.52 1.36% 1.04% 1.37%
20 15 95 19.37 19.51 19.49 19.51 0.71% 0.62% 0.72%
30 19 209 29.36 29.50 29.50 29.50 0.49% 0.46% 0.49%
50 33 604 49.37 49.50 49.50 49.50 0.27% 0.26% 0.27%

100 60 2459 99.37 99.50 99.50 99.50 0.13% 0.12% 0.13%
200 116 10001 199.38 199.50 199.50 199.50 0.06% 0.05% 0.06%
300 179 22437 299.37 299.50 299.50 299.50 0.04% 0.04% 0.04%
500 279 62456 499.38 499.50 499.50 499.50 0.03% 0.02% 0.03%

Table 1: Upper bounds for s∗α(G) for α = 0.5 and relative errors.

The comparison has been extended in order to test the behaviour of the upper bounds
on alternative graphs. First of all, in the ER model used to generate graphs, the parameter q
can be thought of as a weighting function. As q increases from 0 to 1, the model becomes
more and more likely to include graphs with more edges and less and less likely to include
graphs with fewer edges. In this regard, we assign several values of q moving from the
default value of 0.5. For sake of simplicity we report only the relative errors derived for
graphs generated by using respectively q = 0.1 and q = 0.9 (see Figure 2). In all cases
bound (2.4QR) assures the best approximation to s∗α(G) for α = 0.5. We observe a best
behaviour of all bounds when q = 0.9 because we are moving towards the complete graph.
We have indeed that the density of the graphs increases as long as greater probabilities are
considered.

Figure 2: Relative errors of upper bounds of s∗0.5(G) for graphsER(n, 0.1) andER(n, 0.9)
respectively.
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Finally, for the same index s∗0.5(G), upper bounds have been evaluated for trees2. Table
2 depicts slighter differences for larger graphs in this case too. However it could be noticed
how the relative improvement of bounds respect to other bounds is greater than in case
of non-bipartite graphs. Despite greater relative errors are observed, bound (2.4QR) is
confirmed as the tighter bound also in this case.

Trees
n s∗α(G) r(2.2Q) r(2.4QR) r(2.2P )

4 3.35 2.04% 1.95% 3.47%
5 4.32 2.17% 2.14% 3.48%
6 5.23 3.56% 3.51% 4.73%
7 6.19 3.62% 3.59% 4.67%
8 7.15 3.67% 3.64% 4.61%
9 8.22 2.35% 2.34% 3.20%

10 8.85 6.35% 6.32% 7.15%
20 18.07 7.45% 7.44% 7.88%
30 27.63 6.47% 6.47% 6.77%
50 45.73 8.07% 8.06% 8.25%
100 91.23 8.97% 8.97% 9.06%
200 182.72 9.14% 9.14% 9.18%
300 274.71 8.99% 8.99% 9.02%
500 457.71 9.11% 9.11% 9.13%

Table 2: s∗0.5(G) and relative errors for Trees T .

The analysis has been further developed considering a value of α equal to 1.5. Generat-
ing a similar sample of graphs, both s∗1.5(G) and the relative bounds have been derived. For
sake of simplicity we report only the results for ER(n, 0.5) observing that the additional
information on the localization of λ1 and λ2 lead to the tighter lower bound (2.3QR). Anal-
ogous results have been obtained by considering both ER graphs with alternative values of
q and bipartite graphs.

n d1 m s∗α(G) bound (2.1Q) bound (2.3QR) bound (2.1P ) r(2.1Q) r(2.3QR) r(2.1P )

4 3 4 4.79 4.66 4.67 4.62 2.69% 2.39% 3.49%
5 2 4 6.22 5.65 5.69 5.60 9.07% 8.51% 9.95%
6 4 9 6.85 6.59 6.60 6.57 3.78% 3.63% 4.00%
7 6 13 7.77 7.57 7.57 7.56 2.56% 2.49% 2.65%
8 7 18 8.75 8.56 8.56 8.55 2.15% 2.10% 2.20%
9 4 12 10.28 9.58 9.59 9.55 6.88% 6.79% 7.15%
10 7 26 10.83 10.52 10.55 10.51 2.90% 2.60% 2.94%
20 13 98 20.88 20.50 20.52 20.50 1.81% 1.71% 1.81%
30 19 222 30.88 30.50 30.51 30.50 1.21% 1.18% 1.21%
50 31 644 50.85 50.50 50.51 50.50 0.68% 0.67% 0.68%

100 62 2512 100.87 100.50 100.50 100.50 0.37% 0.36% 0.37%
200 117 9918 200.88 200.50 200.50 200.50 0.19% 0.19% 0.19%
300 179 22540 300.87 300.50 300.50 300.50 0.12% 0.12% 0.12%
500 279 62063 500.88 500.50 500.50 500.50 0.08% 0.08% 0.08%

Table 3: Lower bounds for s∗1.5(G) and absolute value of relative errors.

6 Conclusions
In this paper we provide tighter bounds for the sum of the α-power of the non-zero normal-
ized Laplacian eigenvalues taking into account additional information on the localization of
the eigenvalues of the normalized Laplacian matrix of the graph, L(G). To this aim lower
bounds of the eigenvalues are derived by means of the solution of a class of suitable non-
linear optimization problems based on majorization techniques. We provide indeed closed

2Tree has been generated by using Prüfer code. The Prüfer sequence of a labeled tree is a unique sequence
associated to the tree. The sequence for a tree on n vertices has length n− 2 and it can be generated by a simple
iterative algorithm. It is a way to map bijectively trees on n vertices into n− 2 long sequences of integers drawn
from n.
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formulae that allow to compute upper and lower bounds of s∗α(G) by using the additional
information on the first and the second eigenvalue of L(G). It is noteworthy that even
only considering the limitation on the first normalized Laplacian eigenvalue we improve
existing bounds of s∗α(G) for non-complete graphs. Numerical comparisons confirm how
bounds based also on the second normalized Laplacian eigenvalue are former than those
presented in literature. In particular, the analysis has been developed randomly generating
both bipartite and non-bipartite graphs with a different number of vertices.
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