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Abstract. We discuss the case of correlators in CFT made of pure contact terms, without a
corresponding bare part. We show two examples. The first is provided by the conformal
limits of a free massive fermion theory in 3d. We show that the (conserved) current correla-
tors are in one-to-one correspondence with the terms of the 3d gauge CS action. The second
is the Pontryagin trace anomaly. The corresponding 3-point correlator is nonvanishing even
though the corresponding untraced correlator vanishes.

Povzetek. Avtorja obravnavata korelatorje v konformni teoriji polja, ki vsebujejo le kontak-
tne člene, brez ustreznih ’golih’ členov. Obravnavata dva primera. Prvi je konformna limita
teorije masivnih prostih fermionov v 3d. Pokažeta, da so korelatorji (ohranjenih) tokov v bi-
jekciji s členi Chern-Simonsove akcije v 3d. Drugi primer je Pontrjaginova sledna anomalija.
Ustrezni 3-točkovni korelator je neničelen, čeprav je pridruženi nesledni korelator enak nič.

3.1 Introduction

Correlators in conformal field theories can be formulated both in configuration
space and, via Fourier transform, in momentum space. In the first form they may
happen to be singular at coincident insertion points and in need to be regularized.
In coordinate space they are therefore simply distributions. In the simplest cases
such distrubutions have been studied and can be found in textbooks. But in general
the correlators of CFT are very complicate expressions and their regularization
has to be carried out from scratch. This can be done directly in configuration
space, in which case a well known procedure is the differential regularization. An
alternative, and often more accessible, technique consists in formulating the same
problem in momentum space via Fourier transform and proceeding to regularize
the Fourier transform of the relevant correlators. This procedure produces various
types of terms, which we refer to as non-local, partially local and local terms. Local
terms are represented by polynomials of the external momenta in momentum
space, and by delta functions and derivatives of delta functions in configuration
space. The unregularized correlators will be referred to as bare correlators; they are
ordinary regular functions at non-coincident points and are classified as non-local
in the previous classification. While regularizing the latter one usually produces
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3 Pure Contact Term Correlators in CFT 23

not only local terms, but also intermediate ones, which are product of bare func-
tions and delta functions or derivatives thereof. These are referred to as partially
local.

¿From the above introduction one might be led to think that local terms
(i.e. polynomials of the external momenta, in momentum space representation)
can come only from regularizing bare correlators. This is not the case, there are
important cases of local correlators that do not have a bare counterpart. We can say
that they consist only of the quantum part. This is the main subject of this article.
We will discuss two examples. The first, in 3d, is the case of pure contact terms in
the parity-odd sector of the 2-point function of currents. There exist no bare terms
corresponding to them. An important implication of these contact terms is that
they give rise to a Chern-Simons term in the effective action.

The second example is that of the 3-point function of the energy-momentum
tensor in 4d, in which one of the entries is the trace of the em tensor. Classically,
the trace of the em tensor is zero in a Weyl invariant theory. At the quantum level
this fact becomes a set of Ward identities that relate n-point functions with one
insertion of the trace of the em tensor with (n − 1)-point functions. When the
theory possesses trace anomalies these Ward identities are complemented by a set
of contact terms which reproduces the anomalies. What we would like to stress
here is that such correlators containing one trace insertion can be nonvanishing
even if there is no bare correlator corresponding to it. This is what happens with
the Pontryagin trace anomaly. The latter is puzzling at first, but, in fact, when
properly understood, it would be surprising if it did not exist.

There are of course other examples, beside the two above ones. All these
examples are characterized by the fact that they break parity. We are not aware of
any example of parity-even pure contact correlators.

The paper is organized as follows. In the next section we introduce some basic
CFT formulas in momentum space. In section 3 we work out the 3d example of
pure contact term correlators and its connection with gauge CS. In section 4 we
review the 4d example, which corresponds to the Pontryagin trace anomaly. In
section 5 we add some new remarks concerning this anomaly.

3.2 Conformal invariance in momentum space

In this section we will lay down some introductory material on conformal in-
variance and conformal field theories, which will be needed in the sequel. The
conformal group in d dimension encompasses the Poincaré transformations, the
dilatation and the special conformal transformations (SCTs). The latter is

x ′µ =
xµ + bµx2

1+ 2b·x+ b2x2 = xµ + bµx2 − 2b·x xµ +O(b2)

for infinitesimal bµ. In this paper we will mostly consider the effects of conformal
invariance in momentum space. If we Fourier transform the generators of the
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24 L. Bonora and B.L. de Souza

conformal algebra we get (a tilde represents the transformed generator and ∂̃ = ∂
∂k

)

P̃µ = −kµ,

D̃ = i(d+ kµ∂̃µ),

L̃µν = i(kµ∂̃ν − kν∂̃µ),

K̃µ = 2d ∂̃µ + 2kν∂̃
ν∂̃µ − kµ�̃.

Notice that P̃µ is a multiplication operator and K̃µ is a quadratic differential
operator. The Leibniz rule does not hold for K̃µ and P̃µ with respect to the ordinary
product. However it does hold for the convolution product:

K̃µ(f̃ ? g̃) = (K̃µf̃) ? g̃+ f̃ ? (K̃µ g̃)

where (f̃ ? g̃)(k) =
∫
dp f(k− p)g(p). Nevertheless these generators form a closed

algebra

[D̃, P̃µ] = iP̃µ,

[D̃, K̃µ] = iK̃µ,

[K̃µ, K̃ν] = 0,

[K̃µ, P̃ν] = 2i(ηµνD̃− L̃µν),

[K̃λ, L̃µν] = i(ηλµK̃ν − ηλνK̃µ),

[P̃λ, L̃µν] = i(ηλµP̃ν − ηλνP̃µ),

[L̃µν, L̃λρ] = i(ηνλL̃µρ + ηµρL̃νλ − ηµλL̃νρ − ηνρL̃µλ.

One should be aware that they do not generate infinitesimal transformation in
momentum space. This notwithstanding, in momentum space we can write down
the conformal Ward identities that the correlators must satisfy, see [3]. As an
example, let us consider the SCT for the 2-point function of a current Jµ and
the energy-momentum tensor Tµν in d dimensions. For the 2-point function of
currents we have the special conformal Ward identity

Kκ〈Jµ(k)Jν(−k)〉 = (2(∆− d)∂̃κ − 2k·∂̃ ∂̃κ + kκ�̃)〈Jµ(k)Jν(−k)〉
+ 2(ηκµ∂̃

α − δακ ∂̃µ)〈Jα(k)Jν(−k)〉 = 0, (3.1)

while for the 2-point function of the energy-momentum tensor we have

Kκ〈Tµν(k)Jρσ(−k)〉 = (2(∆− d)∂̃κ − 2k·∂̃ ∂̃κ + kκ�̃)〈Tµν(k)Tρσ(−k)〉
+ 2(ηκµ∂̃

α − δακ ∂̃µ)〈Tαν(k)Tρσ(−k)〉+ 2(ηκν∂̃α − δακ ∂̃ν)〈Tµα(k)Tρσ(−k)〉 = 0.
(3.2)

3.3 2- and 3-point functions and CS effective action

The first example announced in the introduction is mostly pedagogical. It arises
from a very simple model, a free massive fermion model in 3d coupled to a gauge
field, see [14–16]. The action is

S =

∫
d3x

(
iψ̄γµDµψ−mψ̄ψ

)
, Dµ = ∂µ +Aµ (3.3)
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3 Pure Contact Term Correlators in CFT 25

where Aµ = Aaµ(x)T
a and Ta are the generators of a gauge algebra in a given

representation determined by ψ. The generators are antihermitean, [Ta, Tb] =
fabcTc, with normalization tr(TaTb) = n δab.

The current

Jaµ(x) = ψ̄γµT
aψ (3.4)

is (classically) covariantly conserved on shell

(DJ)a = (∂µδac + fabcAbµ)Jcµ = 0 (3.5)

The generating functional of the connected Green functions is given by

W[A] =

∞∑
n=1

in+1

n!

∫ n∏
i=1

d3xiA
a1µ1(x1) . . . A

anµn(xn)〈0|T Ja1µ1(x1) . . . Janµn(xn)|0〉

(3.6)

The full 1-point function of Jaµ in the presence of the source Aaµ is

〈〈Jaµ(x)〉〉 =
δW[A]

δAaµ(x)
= −

∞∑
n=1

in

n!

∫ n∏
i=1

d3xiA
a1µ1(x1) . . . A

anµn(xn)

〈0|T Jaµ(x)Ja1µ1(x1) . . . Janµn(xn)|0〉 (3.7)

The 1-loop conservation is

(Dµ〈〈Jµ(x)〉〉)a = ∂µ〈〈Jaµ(x)〉〉+ fabcAbµ(x)〈〈Jµc(x)〉〉 = 0 (3.8)

if there are no anomalies. By deriving this relation with respect to Awe find the
implications of conservation for the 2-point and 3-point correlators

kµJ̃abµν(k) = 0 (3.9)

−iqµJ̃abcµνλ(k1, k2) + f
abdJ̃dcνλ(k2) + f

acdJ̃dbλν(k1) = 0 (3.10)

where q = k1+ k2 and J̃abµν(k) and J̃abcµνλ(k1, k2) are Fourier transform of the 2- and
3-point functions, respectively.

The Feynman rules are easily extracted from the action. The propagator is
i

/p−m
and the gauge-fermion-fermion vertex is simply γµTa, where µ, a are the

labels of Aaµ Our next task will be to calculate the odd-parity 2- and 3-point
correlators in this model and study their behaviour in the IR and UV limit.

3.3.1 The 2-point current correlator

The relevant diagram is the bubble one, with external momentum k. Its Fourier
transform is

J̃abµν(k) = −

∫
d3p

(2π)3
Tr
(
γµT

a 1

/p−m
γνT

b 1

/p− /k−m

)
= −2n δab (3.11)

·
∫
d3p

(2π)3
pν(p− k)µ − p·(p− k)ηµν + pµ(p− k)ν + imεµνσk

σ +m2ηµν
(p2 −m2)((p− k)2 −m2)
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Let us focus from now on on the odd-parity part. After a Wick rotation and
integration we get

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ m

k
arctan

k

2m
(3.12)

where k =
√
k2. The conservation law (3.9) is readily seen to be satisfied.

We are interested in the IR and UV limits of this expression. To this end we
notice that k is the total energy E of the process. Therefore the IR and UV limit
correspond to m

E
→∞ and 0, respectively. Therefore near the IR (3.12) becomes

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ

(
1

2
−
1

24

(
k

m

)2
+

1

160

(
k

m

)4
+ . . .

)
(3.13)

and near the UV

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ

(
π

2

m

k
− 2

(m
k

)2
+
8

3

(m
k

)4
+ . . .

)
(3.14)

In particular in the two limits we have

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ

{
1
2

IR
π
2
m
k

UV
(3.15)

We notice that the UV limit is actually vanishing. However we could consider a
model made ofN identical copies of free fermions coupled to the same gauge field.
Then the result (3.15) would be

J̃ab(odd)µν (k) =
nN
4
δabεµνσk

σm

k
(3.16)

In this case we can consider the scaling limit m
k
→ 0 and N → ∞ in such a way

that Nm
k

is fixed. Then the UV limit (3.16) becomes nonvanishing.
Before discussing the implications of the previous results let us consider also

the 3-current correlator.

3.3.2 The 3-point current correlator

The 3-point correlator for currents is given by the triangle diagram. The three
external momenta are q, k1, k2. q is ingoing, while k1, k2 are outgoing and, of
course, momentum conservation implies q = k1 + k2. The Fourier transform is

J̃1,abcµνλ (k1, k2) = i

∫
d3p

(2π)3
Tr
(
γµT

a 1

/p−m
γνT

b 1

/p− /k1 −m
γλT

c 1

/p− /q−m

)

(3.17)

to which we have to add the cross graph corresponding to the exchange b ↔
c, ν↔ λ, 1↔ 2.
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3 Pure Contact Term Correlators in CFT 27

We will not go through all the calculation, which is rather more complicated
than in 2-point case. For instance, near the IR fixed point we obtain a series
expansion of the type

J̃
1,abc(odd)
µνλ (k1, k2) ≈ i

n
32π

∞∑
n=0

(
E

m

)2n
fabcĨ

(2n)
µνλ (k1, k2) (3.18)

and, in particular,

I
(0)
µνλ(k1, k2) = −6εµνλ (3.19)

Let us pause to comment on this result. We expect the current (3.4) to be
conserved also at the quantum level, because no anomaly is expected in this case.
This should be true also in the IR limit. It would seem that conservation, if any,
should hold order by order in the expansions we have considered in (3.18). In order
to check conservation we have to verify (3.10). Conservation has a contribution
from the 2-point function, so the LHS of equation (3.10) reads

−
3

16π
nfabcqµεµνλ +

1

4π
fabcενλσk

σ
2 +

1

4π
fabcενλσk

σ
1 6= 0. (3.20)

Conservation is violated unless we add to I(0)µνλ(k1, k2) a term −2εµνλ. In order to
understand what is at stake here let us turn to the Chern-Simons action for the
gauge field A in 3d.

3.3.3 The CS action

The CS action for the gauge field A is

CS =
κ

4π

∫
d3xTr

(
A∧ dA+

2

3
A∧A∧A

)
(3.21)

=
nκ
4π

∫
d3xεµνλ

(
Aaµ∂νA

a
λ +

1

3
fabcAaµA

b
νA

c
λ

)

Now let us return to the 2- and 3-point functions obtained above. The Fourier
anti-transform of the 2-point function ∼ εµνσk

σ is

F−1[εµνσk
σ](x) = iεµνσ∂

σδ(x) (3.22)

The Fourier anti-transform of the 3-point function ∼ εµνλ is

F−1[εµνσ](x, y, z)

=

∫
d3q

(2π)3
e−iqx

∫
d3k1

(2π)3
e−ik1y

∫
d3k2

(2π)3
eik2zδ(q− k1 − k2)εµνλ

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3
eik1(y−x)eik2(y−z)εµνλ = δ(y− x)δ(z− x)εµνλ (3.23)

Inserting this into the functional generatorW[A] and integrating with respect to
space time we obtain the two terms of the action (3.21). Therefore if we add to
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I
(0)
µνλ(k1, k2) a term −2εµνλ the effective action of our model in the IR gives back

the CS action with coupling κ = 1.
This corresponds to correcting the effective action by adding a counterterm

−2

∫
dxεµνλfabcAaµA

b
νA

c
λ (3.24)

This counterterm simultaneously guarantees conservation, see (3.20), and recon-
structs the correct CS action. We remark that for the effective action in the IR limit
the CS coupling κ = 1, see (3.15). This guarantees invariance of the action also
under large gauge transformations, [1].

Something similar can be done also for the UV limit. However in the UV
limit the resulting effective action has a vanishing coupling, unless we consider an
N → ∞ limit theory, as outlined above. In order to guarantee invariance under
large gauge transformations we have also to fine tune the limit in such a way that
the κ coupling be an integer.

Free fermions in 3d can be coupled also to a background metric. In this case
the relevant correlators are those of the energy-momentum tensor and the resulting
effective action in the UV and IR is the gravitational CS action, see [2].

A few remarks We would like to stress a few points of the above construction.
The first is the problem of non-conservation for the 3-point function we have met.
This is a consequence of the particular regularization procedure we have used, that
is of the fact the we have first computed the 3-point function of three currents and
then contracted the correlator with the external momentum qµ. We could have
proceeded in another way, that is we could have contracted the 3-point correlator
with qµ = kµ1 + kµ2 before doing the integration over p. The triangle diagram
contracted with qµ is:

qµJ̃abcµνλ(k1, k2) = −i

∫
d3p

(2π)3
Tr
(
/qT
a 1

/p−m
γνT

b 1

/p− /k1 −m
γλT

c 1

/p− /q−m

)
.

(3.25)

Replacing /q = (/p−m) − (/p− /q−m) considerably simplifies the calculation. The
final result for the odd parity part (after adding the cross diagram contribution,
1↔ 2, b→ c, ν↔ λ ) is

qµJ̃abcµνλ(k1, k2) = −
i

4π
fabcελνσk

σ
1

2m

k1
arcot

(
2m

k1

)

−
i

4π
fabcελνσk

σ
2

2m

k2
arcot

(
2m

k2

)
.

(3.26)

Therefore, as far as the odd part is concerned, the 3-point conservation (3.10) reads

− iqµJ̃
(odd)abc
µνλ (k1, k2) + f

abdJ̃
(odd)dc
νλ (k2) + f

acdJ̃
(odd)db
λν (k1)

= −
1

4π
fabcελνσ

(
kσ1
2m

k1
arcot

(
2m

k1

)
+ kσ2

2m

k2
arcot

(
2m

k2

))

+
1

4π
fabcελνσ

(
kσ1
2m

k1
arcot

(
2m

k1

)
+ kσ2

2m

k2
arcot

(
2m

k2

))
= 0. (3.27)
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3 Pure Contact Term Correlators in CFT 29

Thus conservation is secured for any value of the parameter m. The fact that
in the UV or IR limit we find a violation of the conservation is an artefact of
the procedure we have used and we have to remedy by subtracting suitable
counterterms from the effective action. These subtractions are to be understood as
(part of) the definition of our regularization procedure.

The second remark concerns the odd-parity correlators we have obtained
above in the IR limit, the 2-point function ∼ δabεµνσk

σ and the 3-point function
∼ fabcεµνλ. As expected from the fact that they are correlators at a RG fixed point,
both satisfy the Ward identities of CFT, in particular the SCT one. They are both
purely local and at least the 2-point one does not come from the regularization
of any bare correlator. Ref.[4] provides a classification of all bare correlators in
3d CFT, both odd- and even-parity ones. These satisfy the simplest conservation
law, in which lower order correlators are not involved. It is clear that, a complete
classification of CFT correlators requires that we add also those considered above,
which satisfy the conservation law (3.10).

Another remark is that in many cases correlators can be constructed directly
from free field theory via the Wick theorem. It is evident that there is no conformal
free field theory in 3d that can give rise to the parity odd 2- and 3-point correlators
found above.

Finally let us remark that similar results are expected in other odd dimensional
spacetimes. Interesting cases will be 7d for free fermions coupled to gravity, and
5d and 7d for fermions coupled to a gauge field alone or to both gravity and gauge
fields.

3.4 The Pontryagin trace anomaly

The second example of a correlator made only of contact terms is in even di-
mension, specifically in 4d. It is provided by the parity-odd 3-point function of
the energy-momentum tensor in which one of the entries is the trace of the e.-
m. tensor. This 3-point function is the basic (but not exclusive) ingredient of the
trace anomaly. It is well-known that in 4d a theory coupled to external gravity
is generically endowed with an energy-momentum tensor whose trace takes the
form

Tµ
µ = aE+ cW2 + eP, (3.28)

where E is the Euler density,W2 the square Weyl density and P the density of the
Pontryagin class

P =
1

2

(
εnmlk√

|g|
RnmpqRlk

pq

)
(3.29)

where εnmlk is the numerical Levi-Civita symbol. Our interest here focus on this
term1. The obvious question is whether there are models where this term appears

1 Of course also the other anomalies, E andW2, are local terms, but they come from the
regularization of nonvanishing bare correlators.
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in the trace of the e.m. tensor, that is if there are models in 4d where the coefficient
e does not vanish. The natural candidates are models involving chiral fermions,
where the ε tensor may appear in the trace of γ matrices. The coefficient e has
been recently calculated [5,6], following an early work [10], (see also [9,7,8]) in a
model of free chiral fermions coupled to a background metric.

The model is the simplest possible one: a right-handed spinor coupled to
external gravity in 4d. The action is

S =

∫
d4x

√
|g| iψ̄Rγ

m

(
∇m +

1

2
ωm

)
ψR (3.30)

where γm = ema γ
a, ∇ (m,n, ... are world indices, a, b, ... are flat indices) is the co-

variant derivative with respect to the world indices andωm is the spin connection:

ωm = ωabm Σab

where Σab = 1
4
[γa, γb] are the Lorentz generators. Finally ψR = 1+γ5

2
ψ. Classi-

cally the energy-momentum tensor

Tµν =
i

2
ψ̄Rγµ

↔
∇νψR (3.31)

is both conserved and traceless on shell. At one loop, to make sense of the calcu-
lations one must introduce regulators. The latter generally break both diffeomor-
phism and conformal invariance. A careful choice of the regularization procedure
may preserve diff invariance, but anyhow breaks conformal invariance, so that the
trace of the e.m. tensor takes the form (3.28), with specific nonvanishing coefficients
a, c and e. There are various techniques to calculate the latter: cutoff, point split-
ting, dimensional regularization, and a few others. Here, for simplicity we limit
ourselves to a short summary of dimensional regularization. First one expands
the metric around a flat background: gµν ≈ ηµν + hµν, where hµν represent the
gravity fluctuation. Then one extracts from the action propagator and vertices. The
essential ones are the fermion propagator i

/p+iε and the two-fermion-one-graviton
vertex (Vffg)

−
i

8
[(p− p ′)µγν + (p− p ′)νγµ]

1+ γ5
2

(3.32)

where p, p ′ are the fermion momenta. The only contributing diagrams are the
triangle diagram together with the crossed one. The triangle diagram is constructed
by joining three vertices Vffg with three fermion lines. The external momenta are
q (ingoing) with labels σ and τ, and k1, k2 (outgoing), with labels µ, ν and µ ′, ν ′

respectively. Of course q = k1 + k2. The internal momenta are p, p − k1 and
p − k1 − k2, respectively. After contracting σ and τ the total contribution to the
3-point e.m. tensor correlator, in which one of the entries is the trace, is

−
1

256

∫
d4p

(2π)4
tr
[(
1

/p
((2p− k1)µγν + (µ↔ ν))

1

/p− /k1
(3.33)

· ((2p− 2k1 − k2)µ ′γν ′ + (µ ′ ↔ ν ′))
1

/p− /k1 − /k2
(2/p− /k1 − /k2)

)
1+ γ5
2

]
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to which we have to add the cross diagram where k1, µ, ν is exchanged with
k2, µ

′, ν ′. This integral is divergent. To regularize it we use dimensional regular-
ization, which consists in introducing additional components of the momentum
running in the loop: p→ p+ l, l = (l4, . . . , ln−4). This regulates the integral, and
one can now proceed to the integration. Full details of the calculation can be found
in [5,6]. The result is as follows. Calling T̃ (tot)µνµ ′ν ′(k1, k2) the overall contribution of
the two diagrams, with k21 = k

2
2 = 0, one has

T̃
(tot)
µνµ ′ν ′(k1, k2) =

1

3072π2

(
k1 · k2 tµνµ ′ν ′λρ − t

(21)
µνµ ′ν ′λρ

)
kλ1k

ρ
2 (3.34)

where

tµνµ ′ν ′κλ = ηµµ ′ενν ′κλ + ηνν ′εµµ ′κλ + ηµν ′ενµ ′κλ + ηνµ ′εµν ′κλ,

t
(21)
µνµ ′ν ′κλ = k2µk1µ ′ενν ′κλ + k2νk1ν ′εµµ ′κλ + k2µk1ν ′ενµ ′κλ + k2νk1µ ′εµν ′κλ.

Fourier transforming (3.34) and plugging the result in the full 1-point correlator of
the e.m. tensor trace

〈〈Tµµ (x)〉〉 = 2
∞∑
n=1

in+1

(n− 1)!

∫ n∏
i=2

dxi hµiνi(xi) 〈0|T Tµµ (x) . . . Tµnνn(xn)|0〉(3.35)

one obtains

〈〈Tµµ (x)〉〉 =
i

768π2
εµνλρ

(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σh

τ
ν ∂λ∂

σhτρ
)
+O(h3),(3.36)

which is the lowest order expansion in hµν of

〈〈Tµµ (x)〉〉 =
i

768π2
1

2
εµνλρRµν

στRλρστ, (3.37)

i.e. the Pontryagin trace anomaly. Changing chirality in (3.30) leads to a change of
sign in the RHS of (3.37). Therefore, in left-right symmetric models this anomaly
is absent. The surprising aspect of (3.37) is the i in the RHS. In other words the
coefficient e in (3.28) is imaginary. Before entering the discussion of this point
in the next section, let us recall that the odd-parity 3-point correlator, with three
(untraced) e.m. tensor insertions, in the model (3.30), calculated by means of the
Wick theorem, identically vanishes in configuration space, [6]. An unsurprising
result, because on the basis of a general theorem we know that the odd-parity
conformal covariant 3-point e.m. tensor bare correlator in 4d vanishes identically,
[11,12].

Finally let us remark that the one described in this section is not an isolated
case. Similar pure contact terms correlators (and similar anomalies) exist in 4k
dimensions, and mixed gauge-gravity pure contact terms correlators may exist
also in other even dimensions.

3.4.1 Comments on the Pontryagin anomaly

The Pontryagin anomaly is puzzling at first because it looks like a challenge for
many commonplaces. Several points have been already discussed in section 4 of
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[5] and in section 7 of [6]. We would like to add here a few additional remarks. One
surprising aspect of this anomaly is the appearance of an imaginary coefficient in
front of it, with the consequence that the energy-momentum tensor at one loop
becomes complex and may endanger unitarity, see [5]. The surprise is due to the
fact that the action of the model (3.30) is hermitean and one would not expect the
e.m. tensor to become complex at one loop. However this is a simple consequence
of the regularization. For regularizing an expression may require to trespass on
the complex plane, much in the same way as when one looks for solutions of a
real algebraic equation. The simplest example of this effect is the regularization of
the real function 1

x
in one dimension given by P 1

x
+ πiδ(x) (the first term is the

principal value). Something similar happens in our regularization of (3.33) and
leads to the imaginary coefficient of eq.(3.37). Therefore, finally, this result is not at
all surprising.

An important aspect of the anomaly we are considering, which was only
sketched in [6], is the following: if instead of regularizing (3.33) (let’s call it proce-
dure (a)), as we have done above, we first regularize the 3-point function of the
untraced e.m. tensor and then take the trace of one of the insertions (procedure
(b)), we get a vanishing result. It was pointed out in [6] that the latter is not the
correct way to proceed. However, although this statement was supported by ex-
plicit examples in 2d, it may leave the impression that our result in [6] and in the
previous section is scheme dependent. This is not the case and we would like now
to explain why. The point is that procedure (b), as just outlined, is incomplete. As
we have pointed out above regularizing may break not only Weyl symmetry but
also diffeomorphism covariance. This is in fact what happens with both procedure
(a) and (b). But while, as was shown in [6], this breaking in case (a) is innocuous
(one subtracts counterterms which restore covariance without modifying the trace
anomaly), in case (b) the breaking of covariance is more substantial. In order to
restore it one has to modify the (previously vanishing) trace anomaly. The explicit
calculation in scheme (b), which is very challenging, has not been done yet, but
we conjecture that the result will restore the Pontryagin anomaly with the same
coefficient as in (3.37). If this is true, as we believe, choosing scheme (a) instead of
(b) is only a matter of opportunity.

We would like to add also a few words on a frequent source of misunder-
standing, which stems from a reckless identification of Majorana and Weyl spinors
in 4d. In 4d they transform according to two different irreducible representations
of the Lorentz group. The first belong to a real representation and the second to a
complex one. Moreover, Weyl fermions have definite chirality while for Majorana
fermions chirality is not defined. Majorana fermion admit a massive term in the
action, whereas Weyl fermions are rigorously massless. The corresponding Dirac
operators are different, even in the massless case. So in no way can one confuse
Majorana and Weyl spinors, even when massless. However misnaming is very
frequent and not always innocuous, especially when anomalies are involved.

For instance, given a Weyl spinor χ, one can construct a Majorana spinor ψ as
follows

ψ = χ+ γ0Cχ
∗ (3.38)
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where C is the charge conjugation matrix (for notation, see [5]). If χ is left-handed,
the conjugate spinor γ0Cχ∗ is right-handed. Thus we can see the reason why for
Majorana fermions there is no Pontryagin anomaly. But, apart from this, (3.38) is
not much more than saying that the sum of a complex number and its conjugate is
real. In any case it is not a good reason to confuse Weyl and Majorana fermions.

On the other hand many theories, in particular the supersymmetric ones, are
conveniently formulated in terms of the two-component formalism, i.e. on the basis
of two-component spinors ξα and ξα̇ (α, α̇ = 1, 2). These two-component fields are
the building blocks of the theory and, a priori, they can be the components of either
a Weyl, Majorana or Dirac fermion. When the two-component formalism is used
one must know the full content of the theory in order to decide that2. However the
two-component formalism has many advantages, it serves well for many purposes
and there is no reason not to use it. However the problem of anomalies must be
dealt with carefully, anomalies come from a (regularized) variation of the fermion
determinant, i.e. the determinant of the relevant Dirac operator, which is different
in the different cases. So when anomalies are involved it is of course irrelevant
what formalism we use, provided we unambiguously distinguish the true chiral
nature of the fermions in the theory. For instance, it is a well known and important
fact that consistent gravitational (Einstein) and Lorentz anomalies in 4d vanish.
But this is not due to Weyl fermions being exchangeable with Majorana ones, but
rather because the third order symmetric invariant tensor of the Lorentz algebra
vanishes identically. If one understand this it is not difficult to understand the
origin of the Pontryagin anomaly. In particular what is decisive for the latter is the
overall balance of chirality.

3.5 Conclusion

Our purpose in this article was to show that in field theories, and in particular in
conformal field theories, there are correlators made of pure contact terms, without
a corresponding bare part. We have exhibited two examples. The first obtained
by considering the conformal limits of a free massive fermion theory in 3d and
the current correlators thereof; we have shown that such correlators are in one-
to-one correspondence with the terms of the 3d gauge CS action. The second
corresponds to the case of the Pontryagin trace anomaly. Such an anomaly appears
in e.m. tensor correlators containing one trace insertion. We have shown that the
corresponding 3-point correlator is nonvanishing even though the corresponding
untraced correlator vanishes (that is, there is no bare correlator underlying it). In
other words pure contact term correlators may live of their own.
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