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Abstract

We give a necessary and sufficient condition for a cubic graph to be Hamiltonian by
analyzing Eulerian tours in certain spanning subgraphs of the quartic graph associated with
the cubic graph by 1-factor contraction. This correspondence is most useful in the case
when it induces a blue and red 2-factorization of the associated quartic graph. We use this
condition to characterize the Hamiltonian I-graphs, a further generalization of generalized
Petersen graphs. The characterization of Hamiltonian I-graphs follows from the fact that
one can choose a 1-factor in any I-graph in such a way that the corresponding associated
quartic graph is a graph bundle having a cycle graph as base graph and a fiber and the
fundamental factorization of graph bundles playing the role of blue and red factorization.
The techniques that we develop allow us to represent Cayley multigraphs of degree 4, that
are associated to abelian groups, as graph bundles. Moreover, we can find a family of con-
nected cubic (multi)graphs that contains the family of connected I-graphs as a subfamily.
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1 Introduction

A graph is Hamiltonian if it contains a spanning cycle (Hamiltonian cycle). To find a
Hamiltonian cycle in a graph is an NP–complete problem (see [12]). This fact implies that
a characterization result for Hamiltonian graphs is hard to find. For this reason, most graph
theorists have restricted their attention to particular classes of graphs.

In this paper we consider cubic graphs. In Section 2 we give a necessary and sufficient
condition for a cubic graph to be Hamiltonian. Using this condition we can completely
characterize the Hamiltonian I-graphs.

The family of I-graphs is a generalization of the family of generalized Petersen graphs.
In [5], the generalized Petersen graphs were further generalized to I-graphs. Let n, p, q be
positive integers, with n ≥ 3, 1 ≤ p, q ≤ n − 1 and p, q 6= n/2. An I-graph I(n, p, q)
has vertex-set V (I(n, p, q)) = {vi, ui : 0 ≤ i ≤ n − 1} and edge-set E(I(n, p, q)) =
{[vi, vi+p], [vi, ui], [ui, ui+q] : 0 ≤ i ≤ n− 1} (subscripts are read modulo n). The graph
I(n, p, q) is isomorphic to the graphs I(n, q, p), I(n, n − p, q) and I(n, p, n − q). It is
connected if and only if gcd(n, p, q) = 1 (see [3]).

For p = 1 the I-graph I(n, 1, q) is known as a generalized Petersen graph and is de-
noted by G(n, q). The Petersen graph is G(5, 2). It has been proved that I(n, p, q) is
isomorphic to a generalized Petersen graph if and only if gcd(n, p) = 1 or gcd(n, q) = 1
(see [3]). A connected I-graph which is not a generalized Petersen graph is called a proper
I-graph. Recently, the class of I-graphs has been generalized to the class of GI-graphs (see
[6]).

It is well known that the Petersen graph is not Hamiltonian. A characterization of
Hamiltonian generalized Petersen graphs was obtained by Alspach [2].

Theorem 1.1 (Alspach, [2]). A generalized Petersen graph G(n, q) is Hamiltonian if and
only if it is not isomorphic to G(n, 2) when n ≡ 5 (mod 6).

In this paper we develop a powerful theory that helps us to extend this result to all
I-graphs.

Theorem 1.2. A connected I-graph is Hamiltonian if and only if it is not isomorphic to
G(n, 2) when n ≡ 5 (mod 6).

For the proof of the above main theorem, we developed techniques that are of interest
by themselves and are presented in the following sections. In particular, we introduce good
Eulerian graphs that are similar to lattice diagrams that were originally used by Alspach
in his proof of Theorem 1.1.

Our theory also involves Cayley multigraphs. In Section 4 we show that Cayley multi-
graphs of degree 4, that are associated to abelian groups, can be represented as graph bun-
dles [19]. By the results concerning the isomorphisms between Cayley multigraphs (see
[7]), we can establish when two graph bundles are isomorphic or not (see Section 4.2).
Combining the definition of graph bundles with Theorem 3.3, we can find a family of con-
nected cubic (multi)graphs that contains the family of connected I-graphs as a subfamily
(see Section 5).
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2 Cubic graph with a 1-factor and the associated quartic graph with
transitions

A cubic Hamiltonian graph has a 1-factor. In fact, it has at least three (edge-disjoint) 1-
factors. Namely any Hamiltonian cycle is even and thus gives rise to two 1-factors and the
remaining chords constitute the third 1-factor. The converse is not true. There are cubic
graphs, like the Petersen graph, that have a 1-factor but are not Hamiltonian. Nevertheless,
we may restrict our search for Hamiltonian graphs among the cubic graphs to the ones
that possess a 1-factor. In this section, we give a necessary and sufficient condition for the
existence of a Hamiltonian cycle in a cubic graph G possessing a 1-factor F .

Let G be a connected simple cubic graph and let F be one of its 1-factors. Denote by
X = G/F the graph obtained from G by contracting the edges of F . The graph X is
connected, quartic, that is, regular of degree 4 and might have multiple edges (X has no
loop sinceG is simple). We say that the quartic graphX is associated withG and F . Since
X is even and connected, it is Eulerian. A path on three vertices with middle vertex v that
is a subgraph of X is called a transition at v. Since any pair of edges incident at v defines
a transition, there are

(
4
2

)
= 6 transitions at each vertex of X . For general graphs each

vertex of valence d gives rise to
(
d
2

)
transitions. In an Euler tour some transitions may be

used, others are not used. We are interested in some particular Eulerian spanning subgraphs
W . Note that any such graph is sub-quartic and the valence at any vertex of W is either
4 or 2. A vertex of valence 4 has therefore 6 transitions, while each vertex of valence 2
has

(
2
2

)
= 1 transition. Let Y be the complementary 2-factor of F in G. Note that the

edges of Y are in one-to-one correspondence with the edges of X , while the edges of F
are in one-to-one correspondence with the vertices of X . If a is an edge of Y , we denote
by a′ the corresponding edge in X . If e is an edge of F , the corresponding vertex of X
will be denoted by xe. Let u and v be the end-vertices of e and let a and b be the other
edges incident with u and similarly c and d the edges incident with v. After contraction of
e, the vertex xe is incident with four edges: a′, b′, c′, d′. By considering the pre-images
of the six transitions at xe, they fall into two disjoint classes. Transitions a′b′ and c′d′ are
non-traversing while the other four transitions are traversing transitions. In the latter case
the edge e has to be used to traverse from one edge of the pre-image transition to the other.

Let W be a spanning Eulerian subgraph of X . Transitions of X carry over to W . The
4-valent vertices of W keep the same six transitions, while each 2-valent vertex inherits a
single transition. We say that W is admissible if the transition at each 2-valent vertex of W
is traversing.

Let W be an admissible Eulerian subgraph of X . A closed walk in W that allows only
non-traversing transitions at each 4-valent vertex of W is said to be a closed walk with
allowed transitions. A closed walk with allowed transitions passing through a 4-valent
vertex xe of W might use both transitions a′b′, c′d′ or only one of the two non-traversing
transitions. If it passes through a 2-valent vertex of W , then it uses traversing transitions.
Hence, the underlying graph of a closed walk with allowed transitions might be a cycle. A
partition of the edge-set ofW into closed walks with allowed transitions is said to be a tour
with allowed transitions. Each closed walk in the tour is a component of the tour.

Lemma 2.1. Let G be a connected cubic graph with 1-factor F . There is a one-to-one
correspondence between 2-factors T of G and admissible Eulerian subgraphs W of X =
G/F in such a way that the number of cycles of T is the same as the number of components
of a tour with allowed transitions in W .
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Proof. Let T be a 2-factor of G and let e = uv be an edge of the 1-factor F . Let W be the
projection of T to X = G/F . We will use the notation introduced above. Hence the edge
e and its end-vertices u and v project to the same vertex xe of X . There are two cases:

Case 1: e belongs to T . In this case exactly one other edge, say a, incident with u and
another edge, say c, incident with v belong to T . The other two edges (b and d) do not
belong to T . This means that xe is a 2-valent vertex with traversing transition.

Case 2: e does not belong to T . In this case both edges a and b incident with u belong
to T and both edges c and d incident with v belong to T . In this case xe is a 4-valent vertex
with non-traversing transitions.

Clearly,W is an admissible Eulerian subgraph. Each component of the tour determined
by W with transitions gives back a cycle of T . The correspondence between T and W is
therefore established.

An Eulerian tour in W with allowed transitions is said to be good. An admissible
subgraph W of X possessing a good Eulerian tour is said to be a good Eulerian subgraph.
In a good Eulerian subgraph W there are two extreme cases:

1. each vertex of W is 4-valent: this means that W = X; in this case the complemen-
tary 2-factor Y = G− F is a Hamiltonian cycle and no edge of F is used;

2. each vertex of W is 2-valent: this means that W is a good Hamiltonian cycle in X .
In this case F together with the pre-images of edges of W in G form a Hamiltonian
cycle.

Theorem 2.2. Let G be a connected cubic graph with 1-factor F . Then G is Hamiltonian
if and only if X = G/F contains a good Eulerian subgraph W .

Proof. Clearly G is Hamiltonian if and only if it contains a 2-factor with a single cycle. By
Lemma 2.1, this is true if and only if W is an admissible Eulerian subgraph possessing an
Eulerian tour with allowed transitions. But this means W is good.

Corollary 2.3. LetG be a connected cubic graph with 1-factor F . Finding a good Eulerian
subgraph W of X = G/F is NP-complete.

Proof. Since finding a good Eulerian subgraph is equivalent to finding a Hamiltonian cycle
in a cubic graph, and the latter is NP-complete [12], the result follows readily.

Also in [11] Eulerian graphs are used to find a Hamiltonian cycle (and other graph
properties), but our method is different.

The results of this section may be applied to connected I-graphs. The obvious 1-
factor F of an I-graph I(n, p, q) consists of spokes. Let Q(n, p, q) denote the quotient
I(n, p, q)/F . We will call Q(n, p, q) the quartic graph associated with I(n, p, q).

Corollary 2.4. Let I(n, p, q) be a connected I-graph and let Q(n, p, q) be its associated
quartic graph. Then I(n, p, q) is Hamiltonian if and only if Q(n, p, q) contains a good
Eulerian subgraph W .
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3 Special 1-factors and their applications
Let G be a cubic graph, F a 1-factor and Y the complementary 2-factor of F in G. Define
an auxiliary graph Y (G,F ) having cycles of Y as vertices and having two vertices adjacent
if and only if the corresponding cycles of Y are joined by one or more edges of F . If an
edge of F is a chord in one of the cycles of Y , then the graph Y (G,F ) has a loop. We shall
say that the 1-factor F is special if the graph Y (G,F ) is bipartite. A cubic graph with a
special 1-factor will be called special. If F is a special 1-factor of G, then the edges of F
join vertices belonging to distinct cycles of Y since Y (G,F ) is loopless.

Theorem 3.1. Let G be a connected cubic graph with a 1-factor, and let F be one of its
1-factors and X = G/F its associated quartic graph. Then X admits a 2-factor whose
edges may be colored blue or red in such a way that the traversing transitions are exactly
color-switching and non-traversing transitions are color-preserving if and only if G and F
are special.

Proof. Assume that F is a special 1-factor ofG. Since Y (G,F ) is bipartite, we can bicolor
the vertices of Y (G,F ): let one set of the bipartition be blue and the other red. This
coloring induces a coloring on the edges of Y : for every blue vertex (respectively, red
vertex) of Y (G,F ) we color in blue (respectively, in red) the edges of the corresponding
cycle of Y . Since the edges of Y are in one-to-one correspondence with the edges ofX , we
obtain a 2-factorization of X into a blue 2-factor and red 2-factor. Since F is special, the
edges of F are incident with vertices of G belonging to cycles of Y with different colors
(a blue cycle and a red cycle). Therefore, a traversing transition is color-switching and a
non-traversing transition is color-preserving.

Conversely, assume that X has a blue and red 2-factorization such that the traversing
transitions are color-switching and non-traversing transitions are color-preserving. Since
the edges of X are in one-to-one correspondence with the edges of Y , we can partition
the cycles of Y into red cycles and blue cycles. Since the traversing transitions are color-
switching and non-traversing transitions are color-preserving, the edges of F are incident
with edges belonging to cycles of different colors. This means that the graph Y (G,F ) is
bipartite, hence F is special.

Proposition 3.2. LetG andF be special and letW be any Eulerian subgraph ofX = G/F
the associated quartic graph with a blue and red 2-factorization. Then W is admissible if
and only if each 2-valent vertex is incident with edges of different colors.

Proof. An Eulerian subgraph W is admissible if and only if each 2-valent vertex v in W
is incident with edges forming a traversing transition at v. By Theorem 3.1, a traversing
transition is color-switching. Hence, W is admissible if and only if the edges incident with
v have different colors.

Note that quartic graphs with a given 2-factorization can be put into one-to-one corre-
spondence with special cubic graphs.

Theorem 3.3. Any special cubic graph G with a special 1-factor F gives rise to the asso-
ciated quartic graph with a blue and red 2-factorization. However, any quartic graph with
a given 2-factorization determines back a unique special cubic graph by color-preserving
splitting vertices and inserting a special 1-factor.
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Proof. By Theorem 3.1, a special cubic graph G with a special 1-factor F gives rise to the
graph X = G/F admitting a blue and red 2-factorization.

Conversely, it is well known that every quartic graphX possesses a 2-factorization, that
is, the edges of X can be partitioned into a blue and red 2-factor. We use the blue and red
2-factors of X to construct a cubic graph G as follows: put in G a copy of the blue 2-factor
and a copy of the red 2-factor; construct a 1-factor of G by joining vertices belonging to
distinct copies. It is straightforward to see that G and F are special.

We will now apply this theory to the I-graphs. In Section 7 we will see that this theory
allows us to find a Hamiltonian cycle in a proper I-graph and also to find a family of special
cubic graphs that contains the family of I-graphs as a subfamily (see Section 5).

Let I(n, p, q) be an I-graph. A vertex vi (respectively, ui) is called an outer vertex
(respectively, an inner vertex). An edge of type [vi, vi+p] (respectively, of type [ui, ui+q])
is called an outer edge (respectively, an inner edge). An edge [vi, ui] is called a spoke. The
spokes of I(n, p, q) determine a 1-factor of I(n, p, q). The set of outer edges is called the
outer rim, the set of inner edges is called the inner rim. As a consequence of the results
proved in [3], the following holds.

Proposition 3.4. Let I(n, p, q), n ≥ 3, 1 ≤ p, q ≤ n − 1, p, q 6= n/2, be an I-graph.
Set t = gcd(n, q) and s = n/t. Then t < n/2 and 3 ≤ s ≤ n. Moreover, I(n, p, q) is
connected if an only if gcd(t, p) = 1 and gcd(s, p) is coprime with q. It is proper if and
only if t and gcd(s, p) are different from 1.

Proof. The integer t satisfies the inequality t < n/2, since t is a divisor of q and q ≤ n−1,
q 6= n/2; whence 3 ≤ s ≤ n. By the results proved in [3], I(n, p, q) is connected if and
only if gcd(n, p, q) = 1. Since n = st and q = t(q/t), the relation gcd(n, p, q) = 1 can be
written as gcd(st, p, t(q/t)) = 1, whence gcd(t, p) = 1 and gcd(s, p) is coprime with q.
Also the converse is true, and therefore I(n, p, q) is connected if and only if gcd(t, p) = 1
and gcd(s, p) is coprime with q. A connected I-graph I(n, p, q) is a generalized Pe-
tersen graph if and only if gcd(n, q) = 1 or gcd(n, p) = 1 (see [3]). By the previous
results, I(n, p, q) is a generalized Petersen graph if and only if 1 = gcd(n, q) = t or
1 = gcd(n, p)= gcd(st, p)= gcd(s, p). The assertion follows.

The smallest proper I-graphs are I(12, 2, 3) and I(12, 4, 3). It is straightforward to see
that the following result holds.

Lemma 3.5. Let F be the 1-factor determined by the spokes of I(n, p, q) and X =
Q(n, p, q) its associated quartic graph. Then F is special, the graph X is a circulant
multigraph Cir(n; p, q), the blue edges of X correspond to the inner rim and the red edges
to the outer rim of I(n, p, q).

In the next section we introduce a class of graphs X(s, t, r) and later show that it
contains Q(n, p, q) as its subclass.

4 Graphs X(s, t, r)

Let Γ be a group in additive notation with identity element 0Γ. Let S be a list of not neces-
sarily distinct elements of Γ satisfying the symmetry property S = −S = {−γ : γ ∈ S}.
The Cayley multigraph associated with Γ and S, denoted by Cay(Γ, S), is an undirected
multigraph having the elements of Γ as vertices and edges of the form [x, x + γ] with
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x ∈ Γ, γ ∈ S. If Γ is a cyclic group of order n, then Cay(Γ, S) is a circulant multigraph of
order n. A Cayley multigraph Cay(Γ, S) is regular of degree |S| (in determining |S|, each
element of S is considered according to its multiplicity in S). It is connected if and only
if S is a set of generators of Γ. If the elements of S are pairwise distinct, then Cay(Γ, S)
is a simple graph and we will use the term Cayley graph. We are interested in connected
Cayley multigraphs of degree 4. In this case we write S as the list S = {±γ1,±γ2}. A cir-
culant multigraph of order n will be denoted by Cir(n;±γ1,±γ2). If γi, with i ∈ {1, 2},
is an involution of Γ or the trivial element, then ±γi means that the element γi appears
twice in the list S. Consequently, the associated Cayley multigraph has multiple edges or
loops. We will denote by o(γi) the order of γi. We will show that the Cayley multigraphs
Cay(Γ, {±γ1,±γ2}) defined on a suitable abelian group Γ (and in particular the circulant
multigraphsCir(n;±γ1,±γ2)) can be given a different interpretation in terms ofX(s, t, r)
graphs (see Figure 1) defined as follows.

Definition 4.1. Let s, t ≥ 1, 0 ≤ r ≤ s − 1 be integers. Let X(s, t, r) be the graph with
vertex-set {xij : 0 ≤ i ≤ t−1, 0 ≤ j ≤ s−1} and edge-set {[xij , xij+1] : 0 ≤ i ≤ t−1, 0 ≤
j ≤ s− 1}∪ {[xij , x

i+1
j ] : 0 ≤ i ≤ t− 2, 0 ≤ j ≤ s− 1}∪ {[xt−1

j , x0
j+r] : 0 ≤ j ≤ s− 1}

(the superscripts are read modulo t, the subscripts are read modulo s).

The graphX(s, t, r) has edges of type [xij , x
i
j+1], [xij , x

i+1
j ] or [xt−1

j , x0
j+r]. An edge of

type [xij , x
i
j+1] will be called horizontal. An edge of type [xij , x

i+1
j ] will be called vertical,

an edge of type [xt−1
j , x0

j+r] will be called diagonal. For t = 1, we say that the edges are
horizontal and diagonal (a diagonal edge is an edge of type [x0

j , x
0
j+r]). For s = 1, the

horizontal edges are loops. For (t, r) = (1, 0), the diagonal edges are loops. For s = 2 or
s > 2 and (t, r)=(1, 1), (1, s/2), (2, 0) the graph has multiple edges. For the other values
of s, t, r, the graphX(s, t, r) is a simple graph. A simple graphX(s, t, r) is a graph bundle
with a cycle fiber Cs over a cycle base Ct; the parameter r represents an automorphism of
the cycle Cs that shifts the cycle r steps (see [19] for more details on graph bundles). In the
literature a simple graph X(s, t, r) is also called r-pseudo-cartesian product of two cycles
(see for instance [10]). The definition of X(s, t, r) suggests that the graph X(s, t, r) is
isomorphic to X(s, t, s− r). The existence of this isomorphism can be also obtained from
the following statement.

xt − 1
0 xt − 1

1

xt − 1
r − 1

xt − 1
r xt − 1

r +1

xt − 1
2r − 1

xt − 1
2r xt − 1

2r +1

xt − 1
s − r − 1

xt − 1
s − r x t − 1

s − 1

x0
0 x0

1 x0
r − 1 x0

r x0
r +1 x0

2r − 1 x0
2r x0

2r +1 x0
s − r − 1 x0

s − r x0
s − 1

x1
0 x1

1 x1
s − 1

Figure 1: The graph X(s, t, r) is embedded into torus with quadrilateral faces; it has a
blue and red 2-factorization: the vertical and diagonal edges form the blue 2-factor, the
horizontal edges form the red 2-factor.
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Proposition 4.2. Let Cay(Γ, {±γ1,±γ2}) be a connected Cayley multigraph of degree 4,
where Γ is an abelian group, o(γ1) = s and |Γ|/s = t. Then aγ2 = rγ1 for some integer r,
0 ≤ r ≤ s−1, if and only if a = t. Consequently, Cay(Γ, {±γ1,±γ2}) can be represented
as the graph X(s, t, r) or X(s, t, s− r).

Proof. We show that G1 = Cay(Γ, {±γ1,±γ2}) and G2 = X(s, t, r) are isomorphic.
Since γ1 and γ2 are generators of Γ, the elements of Γ can be written in the form iγ2 + jγ1,
where iγ2 ∈ 〈γ2〉, jγ1 ∈ 〈γ1〉. Hence we can describe the elements of Γ by the left cosets
of the subgroup 〈γ1〉 in Γ. By this representation, we can see that the endvertices of an
edge [x, x ± γ1] of Cay(Γ, {±γ1,±γ2}) belong to the same left coset of 〈γ1〉 in Γ; the
endvertices of an edge [x, x ± γ2] belong to distinct left cosets of 〈γ1〉 in Γ. Therefore,
aγ2 = rγ1 ∈ 〈γ1〉 if and only if a = t, since Cay(Γ, {±γ1,±γ2}) is connected and
|Γ/〈γ1〉| = t. Hence we can set V (G1) = {iγ2 + jγ1 : 0 ≤ i ≤ t− 1, 0 ≤ j ≤ s− 1} and
E(G1) = {[iγ2+jγ1, (i+1)γ2+jγ1], [iγ2+jγ1, iγ2+(j+1)γ1] : 0 ≤ i ≤ t−1, 0 ≤ j ≤
s−1}. The map ϕ : V (G1)→ V (G2) defined by ϕ(iγ2 +jγ1) = xij is a bijection between
V (G1) and V (G2). Moreover, if v1, v2 are adjacent vertices of G1, that is, v1 = iγ2 + jγ1

and v2 = (i + 1)γ2 + jγ1 (or v2 = iγ2 + (j + 1)γ1), then ϕ(v1) = xij , ϕ(v2) = xi+1
j

(or ϕ(v2) = xij+1) are adjacent vertices of G2. In particular, if v1 = (t − 1)γ2 + jγ1

and v2 = tγ2 + jγ1= rγ1 + jγ1= (r + j)γ1, then ϕ(v1) = xt−1
j , ϕ(v2) = x0

r+j are
adjacent vertices of G2. It is thus proved that ϕ is an isomorphism between G1 and G2. If
we replace the element γ1 by its inverse −γ1, then G1 is the graph X(s, t, s− r).

In what follows, we show that for s, t ≥ 1 there exists a Cayley multigraph on a suitable
abelian group that satisfies Proposition 4.2, that is, for every s, t ≥ 1 the graph X(s, t, r)
can be represented as a Cayley multigraph. The proof is particularly easy when t = 1;
r = 0; or s = 2. For these cases, the following holds.

Proposition 4.3. The graph X(s, 1, r), with s ≥ 1, 0 ≤ r ≤ s − 1, is the circulant
multigraph Cir(s; ±1,±r). The graph X(s, t, 0), with s, t ≥ 1, is the Cayley multigraph
Cay(Zs × Zt, {±(1, 0), ±(0, 1)}). The graph X(2, t, 1), with t ≥ 1, is the circulant
multigraph Cir(2t;±t,±1).

Proof. For the graph X(s, 1, r) we apply Proposition 4.2 with Γ = Zst, γ1 = 1, γ2 =
r. For the graph X(s, t, 0) we apply Proposition 4.2 with Γ = Zs × Zt, γ1 = (1, 0),
γ2 = (0, 1). For the graph X(2, t, 1) we apply Proposition 4.2 with Γ = Z2t, γ1 = t,
γ2 = 1.

The following lemmas concern the graph X(s, t, r) with s ≥ 3, t ≥ 2 and 0 < r ≤
s− 1. They will be used in the proof of Proposition 4.6.

Lemma 4.4. Let a > 1 be an integer and let b ≥ 1 be a divisor of a. Let {[c]b : 0 ≤ c ≤
b−1} be the residue classes modulo b. Every equivalence class [c]b whose representative c
is coprime with b contains at least one integer h, 1 ≤ h ≤ a− 1, such that gcd(a, h) = 1.

Proof. The assertion is true if b = a (we set h = c). We consider b < a. Let [c]b be an
equivalence class modulo b with 1 ≤ c ≤ b − 1 and gcd(c, b) = 1. If c is coprime with
a, then we set h = c and the assertion follows. We consider the case gcd(c, a) 6= 1. We
denote by P the set of distinct prime numbers dividing a. We denote by Pb (respectively,
by Pc) the subset of P containing the prime numbers dividing b (respectively, c). Since b
is a divisor of a (respectively, gcd(c, a) 6= 1), the set Pb (respectively, Pc) is non-empty.
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Since c and b are coprime, the subsets Pb, Pc are disjoint. We set P ′ = P r (Pb ∪ Pc).
The set P ′ might be empty. We denote by ω the product of the prime numbers in P ′ (if
P ′ is empty, then we set ω = 1) and consider the integer h = c + ωb ∈ [c]b. We show
that h < a. Note that ω ≤ a/(2b). More specifically, (a/b) ≥ (

∏
p∈Pc

p) · ω ≥ 2ω,
whence ω ≤ a/(2b). Hence h = c + ωb ≤ c + (a/2) < a, since c < b and b ≤ (a/2).
One can easily verify that gcd(h, a) = gcd(c + ωb, a) = 1, since no prime number in
P = P ′ ∪ Pb ∪ Pc can divide c+ ωb. The assertion follows.

Lemma 4.5. Let s ≥ 3, t ≥ 2 and Zst/d1
be the cyclic group of integers modulo st/d1,

where d1 ≥ 1 is a divisor of d = gcd(s, t). Let 〈t/d1〉 be the cyclic subgroup of Zst/d1

generated by the integer t/d1 and let x + 〈t/d1〉, y + 〈t/d1〉 be left cosets of 〈t/d1〉 in
Zst/d1

. If x, y ∈ Zst/d1
are congruent modulo d/d1, then t(x+ 〈t/d1〉) = {tx+ µt2/d1 :

0 ≤ µ ≤ s− 1} and t(y + 〈t/d1〉) = {ty + µ′t2/d1 : 0 ≤ µ′ ≤ s− 1} represent the same
subset of Zst/d1

.

Proof. Set x = y+λd/d1 with λ ∈ Z and t = sm′+m with m′ ∈ Z and 0 ≤ m ≤ s− 1.
Since gcd(s, t) = d, then also gcd(s,m) = d. Hence the integers dt/d1,mt/d1 ∈ Zst/d1

generate the same cyclic subgroup of 〈t/d1〉 of order s/d. Since t2/d1 = (sm′+m)t/d1 ≡
mt/d1 (mod st/d1), each set t(x+ 〈t/d1〉), t(y+ 〈t/d1〉) consists of exactly s/d distinct
elements of Zst/d1

, namely, t(x + 〈t/d1〉) = {tx + µmt/d1 : 1 ≤ µ ≤ s/d}, t(y +
〈t/d1〉) = {ty + µ′mt/d1 : 1 ≤ µ′ ≤ s/d}. Therefore, to prove that t(x + 〈t/d1〉) =
t(y + 〈t/d1〉), it suffices to show that every element of t(x+ 〈t/d1〉) is contained in t(y +
〈t/d1〉). Consider tx + µmt/d1 ∈ t(x + 〈t/d1〉). Since x = y + λd/d1, we can write
tx+µmt/d1 = t(y+λd/d1)+µmt/d1, whence tx+µmt/d1 = ty+λdt/d1 +µmt/d1.
Since 〈dt/d1〉 = 〈mt/d1〉, we can set λdt/d1 + µmt/d1 ≡ µ′mt/d1 (mod st/d1), with
0 ≤ µ′ ≤ s/d. Hence tx+µmt/d1 ≡ ty+µ′mt/d1 (mod st/d1), that is, tx+µmt/d1 ∈
t(y + 〈t/d1〉). The assertion follows.

Proposition 4.6. Let s ≥ 3, t ≥ 2, 0 < r ≤ s − 1, with gcd(s, t, r) = d1. The cyclic
group Zst/d1

of integers modulo st/d1 contains an integer k such that gcd(k, t) = 1 and
k ≡ r/d1 (mod s/d1). The graph X(s, t, r) can be represented as the Cayley graph
Cay(Zst/d1 × Zd1

, {±(t/d1, 1),±(k, 0)}). In particular, if d1 = 1 then X(s, t, r) can be
represented as the circulant graph Cir(st;±t,±k).

Proof. Set d = gcd(s, t). Since gcd(s, t, r) = d1, the integer r/d1 is coprime with
gcd(s/d1, t/d1) = d/d1. Hence, r/d1 belongs to an equivalence class [c]d/d1

whose
representative is coprime with d/d1. By Lemma 4.4, the class [c]d/d1

contains an inte-
ger h, 1 ≤ h < t, such that gcd(h, t) = 1. Consider the cyclic group Zst/d1

. Since
r/d1 < s, h < t, the integer r/d1 and h belong to Zst/d1

. Hence we can apply Lemma
4.5 with x = r/d1, y = h and find that t(r/d1 + 〈t/d1〉) = t(h + 〈t/d1〉), that is, there
exists an integer k ∈ h + 〈t/d1〉 such that tk ≡ rt/d1 (mod st/d1). The integer k is
coprime with t, since gcd(h, t) = 1. The assertion follows from Proposition 4.2, by setting
Γ = Zst/d1

× Zd1
, γ1 = (t/d1, 1), γ2 = (k, 0). Note: if d1 = 1, then Γ is the cyclic group

of order st, γ1 = t, γ2 = k and X(s, t, r) is the circulant graph Cir(st;±t,±k).

The result that follows is based on a well-known consequence of the Chinese Remain-
der Theorem. More specifically, it is known that if a, b, and n are positive integers, with
gcd(a, n) = c ≥ 1, then the equation ax ≡ b (mod n) admits a solution if and only if c is
a divisor of b and in this case x ≡ (a/c)−1(b/c) (mod n/c) is a solution to the equation.
The following holds.
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Proposition 4.7. Let s, t ≥ 1, 0 ≤ r ≤ s − 1 and d1 = gcd(s, t, r). If r 6= 0, then there
exists an integer k, 0 < k < st/d1, such that gcd(k, t) = 1 and k ≡ r/d1 (mod s/d1).
The graph X(s, t, r), with r 6= 0, is isomorphic to the graph X(st/ gcd(s, r), gcd(s, r),
r′), where r′ ≡ ±t(kd1/ gcd(s, r))−1 (mod st/ gcd(s, r)). The graph X(s, t, 0) is iso-
morphic to the graph X(t, s, 0).

Proof. We prove the assertion for s ≥ 3, t ≥ 2 and 0 < r ≤ s − 1. The existence of
the integer k follows from Proposition 4.6. By the same proposition, we can represent the
graph X(s, t, r) as Cay(Zst/d1 × Zd1

, {±(t/d1, 1),±(k, 0)}). We apply Proposition 4.2
by setting Γ = Zst/d1 × Zd1

, γ1 = (k, 0) and γ2 = (t/d1, 1). Note that gcd(st/d1, k) =
gcd(s/d1, k) = gcd(s, r)/d1, as k is coprime with t and k ≡ r/d1 (mod s/d1). Whence
the element (k, 0) has order

s′ = st/(d1 gcd(st/d1, k)) = st/ gcd(s, r) and t′ = |Γ/〈(k, 0)〉| = gcd(s, r).

By Proposition 4.2, gcd(s, r)(t/d1, 1) = r′(k, 0) for some integer r′, 1 ≤ r′ ≤ st/ gcd(s,
r). The integer r′ is a solution to the equation gcd(s, r)(t/d1) ≡ r′k (mod st/d1). By
the Chinese Remainder Theorem, r′ ≡ t(kd1/ gcd(s, r))−1 (mod st/ gcd(s, r)). An easy
calculation shows that s′− r′ ≡ −t(kd1/ gcd(s, r))−1 (mod st/ gcd(s, r)). It is straight-
forward to see that X(s, t, r) and X(s′, t′, r′), X(s′, t′, s′ − r′) are isomorphic. Hence the
assertion follows. For the remaining values of s, t, r, we represent the graph X(s, t, r) as
the Cayley multigraph in Proposition 4.3 and use Proposition 4.2. Note: if r 6= 0, then
k = r; if r = 0, then set γ1 = (0, 1), γ2 = (1, 0) and apply Proposition 4.2.

4.1 Fundamental 2-factorization of X(s, t, r)

From the definition of X(s, t, r) one can see that the horizontal edges form a 2-factor
(the red 2-factor) whose complementary 2-factor in X(s, t, r) is given by the vertical and
diagonal edges (the blue 2-factor). We say that the red and blue 2-factor constitute the fun-
damental 2-factorization of X(s, t, r). A graph X(s, t, r) can be represented as a Cayley
multigraph Cay(Γ, {±γ1,±γ2}), where Γ and {±γ1,±γ2} can be defined as in Proposi-
tion 4.3 or 4.6. From the proof of the propositions, one can see that the set of horizontal
edges of X(s, t, r) is the set {[x, x± γ1] : x ∈ Γ}, the set of vertical and diagonal edges is
the set {[x, x±γ2] : x ∈ Γ}. The edges in {[x, x±γ1] : x ∈ Γ} will be called the γ1-edges
and the edges in the set {[x, x ± γ2] : x ∈ Γ} will be called the γ2-edges. The following
result holds.

Proposition 4.8. The red 2-factor ofX(s, t, r) has exactly t cycles of length s consisting of
γ1-edges. The blue 2-factor ofX(s, t, r) has exactly gcd(s, r) cycles of length st/ gcd(s, r)
consisting of γ2-edges.

Proof. It is straightforward to see that the red 2-factor has t horizontal cycles of length s (if
s = 1, then each cycle is a loop; if s = 2, then each cycle is a dipole with 2 parallel edges).
By the previous remarks, each cycle consists of γ1-edges. The blue 2-factor of X(s, t, r)
corresponds to the red 2-factor of the graph X(st/ gcd(s, r), gcd(s, r), r′) in Proposition
4.7. Hence it has gcd(s, r) cycles of length st/ gcd(s, r) consisting of γ2-edges.

4.2 Isomorphisms between X(s, t, r) graphs

We now ask when two graphs X(s, t, r) and X(s′, t′, r′) are isomorphic. Our question
is connected to the following well-known problem [7, 14]. Given two isomorphic Cayley
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multigraphs Cay(Γ, S), Cay(Γ′, S′) or, equivalently, given two Cayley representations
(Γ, S), (Γ′, S′) of the same multigraph, determine whether (Γ, S) and (Γ′, S′) are equiva-
lent. We recall that two Cayley representations of the same multigraph are said to be equiva-
lent if there exists a permutation on the vertex-set of the multigraph that induces an isomor-
phism from the group Γ to the group Γ′ and sends S onto S′. Two Cayley representations
(Γ, S), (Γ, S′) are equivalent if and only if there exists an automorphism σ of the group Γ
that sends S onto S′ (see [14]). The automorphism σ is called a CI-isomorphism (CI stands
for Cayley Isomorphism). Ádám [1] considered this problem for circulant graphs and for-
mulated a well-known conjecture which was disproved in [9]. He conjectured that two
circulant graphs Cir(n;S), Cir(n;S′) are isomorphic if and only if there exists an integer
m′ ∈ Zn, gcd(m′, n) = 1, such that S′ = {m′x : x ∈ S}. Even though the conjecture was
disproved, there are some circulant graphs for which it holds (see for instance [16]). In [7]
the problem is studied for Cayley multigraphs of degree 4 which are associated to abelian
groups. The results in [7] are described in terms of Ádám isomorphisms. An Ádám isomor-
phism from Cay(Γ, S) to Cay(Γ′, S′) is an isomorphism obtained from a permutation on
the vertex-set of Cay(Γ, S), that makes (Γ, S), (Γ′, S′) equivalent, and an automorphism
of the graph Cay(Γ′, S′). By the definition of equivalent Cayley representations, the exis-
tence of an Ádám isomorphism means that the groups Γ, Γ′ are isomorphic and there exists
an isomorphism between the groups that sends S onto S′. An Ádám isomorphism between
Cay(Γ, S) and Cay(Γ, S′) is a CI-isomorphism. Since the graphs X(s, t, r) can be repre-
sented as Cayley multigraphs, we can extend the notion of Ádám isomorphism to the graphs
X(s, t, r). We will say that the graphs X(s, t, r), X(s′, t′, r′) are Ádám isomorphic if the
corresponding Cayley multigraphs Cay(Γ, {±γ1,±γ2}), Cay(Γ′, {±γ′1,±γ′2}), respec-
tively, are Ádám isomorphic (Cay(Γ, {±γ1,±γ2}), Cay(Γ′, {±γ′1,±γ′2}) are described
in Proposition 4.3 or 4.6). The following statements hold.

Proposition 4.9. Every Ádám isomorphism between the graphs X(s, t, r), X(s′, t′, r′)
sends the fundamental 2-factorization of X(s, t, r) onto the fundamental 2-factorization of
X(s′, t′, r′).

Proof. An Ádám isomorphism between the graphs Cay(Γ, {±γ1, ±γ2}), Cay(Γ′, {±γ′1,
±γ′2}) sends a γi-edge, i = 1, 2, of Cay(Γ, {±γ1,±γ2}) onto a τ(γi)-edge of Cay(Γ′,
{±γ′1, ±γ′2}), where τ(γi) ∈ {±γ′1,±γ′2}. Since Proposition 4.8 holds, every Ádám
isomorphism sends the red (respectively, the blue) 2-factor of X(s, t, r) onto the red (re-
spectively, the blue) 2-factor of X(s′, t′, r′) or vice versa.

Proposition 4.10. Let s, t ≥ 1, 0 ≤ r ≤ s− 1 and gcd(s, t, r) = d1. If r 6= 0, then there
exists an integer k, 0 < k < st/d1, such that gcd(k, t) = 1 and k ≡ r/d1 (mod s/d1).
The graphsX(s, t, r), with r 6= 0, andX(s′, t′, r′) are Ádám isomorphic if and only if s′ =
s, t′ = t, r′ = s− r or s′ = st/ gcd(s, r), t′ = gcd(s, r) and r′ ≡ ±t(kd1/ gcd(s, r))−1

(mod st/ gcd(s, r)). The graphs X(s, t, 0), and X(s′, t′, r′) are Ádám isomorphic if and
only if s′ = t, t′ = s and r′ ≡ 0 (mod t).

Proof. We prove the assertion for s ≥ 3, t ≥ 2 and r 6= 0. The graph X(s, t, r) is
the Cayley graph Cay(Zst/d1

× Zd1 , {±(t/d1, 1),±(k, 0)}), since Proposition 4.6 holds.
By Proposition 4.3 or 4.6, we can represent X(s′,t′,r′) as the Cayley multigraph Cay(Γ′,
{±γ′1, ±γ′2}). The graphs X(s, t, r), X(s′, t′, r′) are Ádám isomorphic if and only if
there exists an isomorphism τ between the groups Zst/d1

× Zd1
and Γ′ that sends the

set {±(t/d1, 1), ±(k, 0)} onto the set {±γ′1,±γ′2}. Without loss of generality, we can set
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{±γ′1} =
{±τ((t/d1, 1))} and {±γ′2}= {±τ((k, 0))}. By the existence of τ we can identify the
group Γ′ with the group Zst/d1

× Zd1
. Hence γ′1 and γ′2 are elements of Zst/d1

× Zd1

of order s and st/ gcd(s, r), respectively, since (t/d1, 1) and (k, 0) have order s and
st/ gcd(s, r), respectively (see the proof of Proposition 4.6 and 4.7). It is an easy mat-
ter to prove that an element (a, b) ∈ Zst/d1

× Zd1 has order o(a) · o(b)/ gcd(o(a), o(b)) =
st/(d1 gcd(st/d1, a)), since d1 is a divisor of s and t. Hence (a, b) has order s if and only
if gcd(st/d1, a) = t/d1, that is, (a, b) = (m′t/d1, b) where m′ ∈ Zst/d1

, gcd(m′, s) =
1, b is an arbitrary element of Zd1

. The element (a, b) has order st/ gcd(s, r) if and
only if gcd(st/d1, a) = gcd(s, r)/d1 = gcd(s/d1, k), since k is coprime with t and
k ≡ r/d1 (mod s/d1). Hence Cay(Γ′, {±γ′1,±γ′2}) is a graph of type Cay(Zst/d1

×
Zd1 , {±(m′t/d1, b),±(a, b′)}), where gcd(m′, s) = 1, gcd(st/d1, a) = gcd(s/d1, k), b
and b′ are suitable elements of Zd1

. Note that a is coprime with t and the relation ta ≡
rm′t/d1 (mod st/d1) holds, since τ is an isomorphism and tk ≡ rt/d1 (mod st/d1). If
we apply Proposition 4.2 to the graph G1 =Cay(Zst/d1

× Zd1
, {±(m′t/d1, b),±(a, b′)})

by setting γ1 = (m′t/d1, b) (or γ1 = −(m′t/d1, b)), then G1 can be represented as
the graph X(s, t, r) or X(s, t, s − r). The graph X(s, t, r) is isomorphic to the graph
G2 = X(s′, t′, r′), where s′ = st/ gcd(s, r), t′ = gcd(s, r), r′ ≡ ±t(kd1/ gcd(s, r))−1

(mod st/ gcd(s, r)), since Proposition 4.7 holds. Hence G1 is isomorphic to G2. The
isomorphism between G1 and G2 can be obtained also by applying Proposition 4.7 to the
graph G1. For the remaining values of s, t, r we represent the graph X(s, t, r) as the
Cayley multigraph in Proposition 4.3 and apply the previous method.

The results that follow are based on the following theorem of [7].

Theorem 4.11 ([7]). Any two finite isomorphic connected undirected Cayley multigraphs
of degree 4 coming from abelian groups are Ádám isomorphic, unless they are obtained
with the groups and sets Z4n, {±1,±(2n− 1)} and Z2n × Z2, {±(1, 0),±(1, 1)}.

By Theorem 4.11 the existence of an isomorphism between two Cayley multigraphs of
degree 4, that are associated to abelian groups, implies the existence of an Ádám isomor-
phism, unless they are the graphs Cir(4n;±1,±(2n − 1)) and Cay(Z2n × Z2, {±(1, 0),
±(1, 1)}). The following statements are consequences of Theorem 4.11.

Corollary 4.12. The graphs X(4n, 1, 2n− 1) and X(s′, t′, r′) are isomorphic if and only
if s′ = 4n, t′ = 1, r′ = 2n + 1 or s′ = 2n, t′ = 2, r′ ∈ {2, 2n − 2}. Moreover, there
is no isomorphism between X(4n, 1, 2n − 1) and X(2n, 2, 2) that sends the fundamental
2-factorization of X(4n, 1, 2n− 1) onto the fundamental 2-factorization of X(2n, 2, 2).

Proof. The graph X(4n, 1, 2n − 1) is the graph Cir(4n;±1,±(2n − 1)) (see Proposi-
tion 4.3). By Theorem 4.11, the graphs X(4n, 1, 2n − 1) and X(s′, t′, r′) could be Ádám
isomorphic or not. If they are Ádám isomorphic, then s′ = 4n, t′ = 1, r′ = 2n + 1,
since Proposition 4.10 holds. If they are not Ádám isomorphic, then X(s′, t′, r′) is the
graph Cay(Z2n × Z2, {±(1, 0), ±(1, 1)}) (see Theorem 4.11). Hence s′ = 2n, t′ = 2,
r′ ∈ {2, 2n − 2} (see Proposition 4.6 and 4.10). The fundamental 2-factorization of
X(4n, 1, 2n−1) consists of two Hamiltonian cycles, whereas the fundamental 2-factorization
of X(2n, 2, 2) consists of two 2-factors whose connected components are two 2n-cycles
(see Proposition 4.8). Therefore no isomorphism betweenX(4n, 1, 2n−1) andX(2n, 2, 2)
can send the fundamental 2-factorization of X(4n, 1, 2n − 1) onto the fundamental 2-
factorization of X(2n, 2, 2).
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Proposition 4.13. Let X(s, t, r), X(s′, t′, r′) be non-isomorphic to X(4n, 1, 2n − 1),
X(2n, 2, 2). Then X(s, t, r) and X(s′, t′, r′) are isomorphic if and only if they are Ádám
isomorphic, that is, if and only if the parameters s′, t′, r′ satisfy Proposition 4.10.

Proof. The assertion follows from Theorem 4.11, and Proposition 4.10.

5 Special cubic graphs arising from X(s, t, r) graphs
When we consider graphsX(s, t, r) we assume we are given a fundamental 2-factorization.
This, in turn, implies we may turn the graph X(s, t, r) into a cubic one by appropriately
splitting each vertex. We note in passing that the operation of vertex-splitting and its con-
verse were successfully used in a different context in [20].

There are two complementary possibilities. Either X(s, t, r) arises from an I-graph or
not. We consider each case separately.

5.1 I-graphs arising from X(s, t, r)

In Theorem 3.3 we remarked that any special cubic graph with a blue and red 2-factoriza-
tion gives rise to the associated quartic graph with a blue and red 2-factorization. In Lemma
3.5, we showed that a proper I-graph I(n, p, q) is special and gives rise to the associated
circulant graph Q(n, p, q). The following holds.

Lemma 5.1. The circulant graph Cir(n; p, q) = Q(n, p, q) arising from a connected I-
graph I(n, p, q) by contracting the spokes is the graph X(s, t, r) with t = gcd(n, q),
s = n/t ≥ 3 and r ≡ ±p(q/t)−1 (mod s).

Proof. The result follows from Proposition 4.2 by setting Γ = Zn, γ1 = q, γ2 = p.
Whence tp = rq for some integer r, 0 ≤ r ≤ s− 1, that is, r is a solution to the equation
r(q/t) ≡ p (mod s). By the Chinese Remainder Theorem, r ≡ p(q/t)−1 (mod s).

Theorem 5.2. The graph X(s, t, r) arises from a connected I-graph by contracting the
spokes if and only if gcd(s, t, r) = 1 and (t, r)6= (2, 0) for odd values of s. In this case, the
graph X(s, t, r) together with its fundamental 2-factorization, is in one-to-one correspon-
dence with the I-graph I(st, k, t), where 0 < k < st, gcd(k, t) = 1 and k ≡ r (mod s)
(in particular, k = s if r = 0). If at least one of the integers k, t, gcd(s, r) is 1, then
X(s, t, r) corresponds to a generalized Petersen graph.

Proof. Assume that X(s, t, r) arises from the connected I-graph I(n, p, q) by contracting
the spokes. By Lemma 5.1, t = gcd(n, q), s = n/t ≥ 3 and r(q/t) ≡ p (mod s).
Whence (t, r) 6= (2, 0) if s is odd, otherwise p = 0 (which is not possible). We show that
gcd(s, t, r) = 1. Suppose, on the contrary, that gcd(s, t, r) = d1 6= 1, then d1 is a divisor
of gcd(t, p) since r(q/t) ≡ p (mod s). That yields a contradiction, since gcd(t, p) = 1
(see Proposition 3.4). Hence gcd(s, t, r) = 1.

Assume that gcd(s, t, r) = 1. We show that X(s, t, r) arises from a connected I-graph
by contracting the spokes. Since gcd(s, t, r) = 1, the graphX(s, t, r) can be represented as
the circulant graph Cir(st;±t,±k), where 0 < k < st, gcd(t, k) = 1 and k ≡ r (mod s)
(see Proposition 4.6). If r = 0, then we can set k = s, since Proposition 4.3 holds. The
graph I(st, k, t) is connected and it gives rise to the graph X(s, t, r), since Lemma 5.1
holds. By Theorem 3.3, the graph X(s, t, r), together with its fundamental 2-factorization,
is in one-to-one correspondence with the I-graph I(st, k, t). If k = 1 or t = 1, then
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X(s, t, r) corresponds to a generalized Petersen graph (see [3]). If gcd(s, r) = 1 then
X(s, t, r) is isomorphic to X(st, 1, r′) (see Proposition 4.10. By the previous remarks, the
graph X(st, 1, r′) corresponds to a generalized Petersen graph. The assertion follows.

It is straightforward to see that isomorphic X(s, t, r) graphs give rise to isomorphic I-
graphs and also the converse is true. By Corollary 4.12 and Proposition 4.13, the circulant
graphs X(s, t, r), X(s′, t′, r′) are isomorphic if and only if they are Ádám-isomorphic,
that is, there exists an automorphism of the cyclic group of order st = s′t′ that sends the
defining set of the circulant graph X(s, t, r) onto the defining set of the circulant graph
X(s′, t′, r′). This fact is equivalent to the results proved in [13] about the isomorphism
between I-graphs.

5.2 Special Generalized I-graphs

In this section we consider the special cubic graphs that correspond to the graphsX(s, t, r)
with gcd(s, t, r) 6= 1, according to the correspondence described in Theorem 3.3. By
Proposition 5.2, these special cubic graphs do not belong to the family of connected I-
graphs. By Theorem 3.3 and Definition 4.1, we can define a family of special cubic graphs
containing the family of connected I-graphs as a subfamily. We call this family Special
Generalized I-graphs. This family is not contained in the family of GI-graphs [6].

Let s ≥ 1, t ≥ 1 and 0 ≤ r ≤ s − 1. We define a Special Generalized I-graph
SGI(st, s, t, r) as a cubic graph of order st with vertex-set V = {ui,j , u′i,j : 0 ≤ i ≤
t−1, 0 ≤ j ≤ s−1} and edge-set E = {[ui,j , ui,j+1], [ui,j , u

′
i,j ] : 0 ≤ i ≤ t−1, 0 ≤ j ≤

s− 1}∪{[u′i,j , u′i+1,j ] : 0 ≤ i ≤ t− 2, 0 ≤ j ≤ s− 1}∪{[u′t−1,j , u
′
0,j+r] : 0 ≤ j ≤ s− 1}

(the addition j+1 and j+r are considered modulo s). For s = 1 or (t, r) = (1, 0), a special
generalized I-graph has loops. For s = 2 or (t, r) = (2, 0), it has multiple edges. For the
other values of s, t, r, it is a simple cubic graph. We say that a vertex ui,j (respectively,
u′ij) is an outer vertex (respectively, an inner vertex). We say that an edge [ui,j , ui,j+1]
(respectively, [u′i,j , u

′
i+1,j ]) is an outer edge (respectively, an inner edge). We say that an

edge [ui,j , u
′
i,j ] is a spoke. The spokes constitute the special 1-factor. The graph arising

from SGI(st, s, t, r) by contracting the spokes is the graph X(s, t, r). The horizontal
edges of X(s, t, r) correspond to the outer edges of SGI(st, s, t, r), vertical and diagonal
edges of X(s, t, r) correspond to the inner edges of SGI(st, s, t, r). A generalization of
the proof of Proposition 5.2 gives the following statement.

Proposition 5.3. Let s ≥ 1, t ≥ 1, 0 ≤ r ≤ s − 1 and d1 = gcd(s, t, r). The graph
X(s, t, r), together with its fundamental 2-factorization, is in one-to-one correspondence
with the graph SGI(st, s, t, k) where k = s if r = 0, otherwise 0 < k < st/d1,
gcd(k, t) = 1 and k ≡ r/d1 (mod s/d1).

By Corollary 4.12, the graphs X(4n, 1, 2n − 1) and X(2n, 2, 2) are isomorphic, but
no isomorphism between them sends the fundamental 2-factorization of X(4n, 1, 2n − 1)
onto the fundamental 2-factorization ofX(2n, 2, 2). This fact means that the application of
Theorem 3.3 to the graphsX(4n, 1, 2n−1) andX(2n, 2, 2) yields non-isomorphic special
cubic graphs. As a matter of fact, Proposition 5.2 says that the graph X(4n, 1, 2n − 1)
is in one-to-one correspondence with a connected I-graph, whereas X(2n, 2, 2) does not
correspond to any I-graph. For instance, for n = 2 the graph X(8, 1, 3) is associated with
the Möbius-Kantor graph of girth 6, [15, 17], while X(4, 2, 2) arises from a graph of girth
4 (see Figure 2).
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Figure 2: The cubic split X(4, 2, 2) graph is SGI(8, 4, 2, 2). The thick edges represent the
special 1-factor.

6 Good Eulerian tours in X(s, t, r) graphs
In this section we construct good Eulerian subgraphs of X(s, t, r). For each X(s, t, r) we
denote by W (s, t, r) the constructed good Eulerian subgraph. By Proposition 3.2, a span-
ning Eulerian subgraph W of X(s, t, r) is admissible if and only if at each 2-valent vertex
exactly one edge is horizontal. We consider X(s, t, r) being embedded into the torus with
quadrilateral faces. Hence any of its subgraphs may be viewed embedded in the same sur-
face. A tour in W may be regarded as as a straight-ahead walk (or SAW) on the surface
[18]. A good Eulerian tour ofW is an Eulerian SAW that uses only allowed transitions, that
is, the tour cannot switch from a horizontal to a vertical (or diagonal) edge when it visits
a 4-valent vertex of W . For instance, the graph W in Figure 4(a) is an admissible sub-
graph of X(5, 4, 3); the tour E = (x0

0, x
1
0, x

1
1, x1

2, x
1
3, x

1
4, x0

4, x
3
1, x

2
1, x1

1, x
0
1, x

0
2,x1

2, x
2
2, x

3
2,

x3
1, x

3
0, x

2
0,x2

1, x
2
2, x

2
3, x2

4, x
3
4, x

3
3, x2

3, x
1
3, x

0
3, x0

4, x
0
1) is a good Eulerian SAW of W ; hence

W is a good Eulerian subgraph of X(5, 4, 3).
If we delete the diagonal edges in X(s, t, r), we obtain a spanning subgraph that we

denote by X ′(s, t, r). Clearly X ′(s, t, r) is the cartesian product of a cycle Cs with a path
Pt embedded in the torus or cylinder. If we further delete an edge in Cs we obtain a path
Ps. We denote the cartesian product of Ps and Pt byX ′′(s, t, r) and obtain a spanning sub-
graph of X ′(s, t, r) and X(s, t, r). In order to simplify the constructions, we will seek to
find good Eulerian subgraphs inX ′(s, t, r) or inX ′′(s, t, r). In this case the resulting good
Eulerian subgraph will be denoted by W ′(s, t, r) and W ′′(s, t, r), respectively. This sim-
plification makes sense, since neither X ′(s, t, r) nor X ′′(s, t, r) depend on the parameter
r. Hence any Eulerian subgraph W ′(s, t, r) or W ′′(s, t, r) is good for any r.

6.1 Method of construction

We give some lemmas that will be used in the construction of a good Eulerian subgraph
W (s, t, r). Given a graph X(s, t, r), for every row index i, 0 ≤ i ≤ t− 1, we denote by Vi
the set of vertical edges Vi = {[xij , x

i+1
j ] : 0 ≤ j ≤ s− 1}. For every column index j, 0 ≤

j ≤ s− 1, we denote by Hj the set of horizontal edges Hj = {[xij , xij+1] : 0 ≤ i ≤ t− 1}.
Let H be a subgraph of X(s, t, r). We say that H can be expanded vertically (from row
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i) if |E(H) ∩ Vi| = s − 1 or s − 2 > 0 (for s = 3 we require |E(H) ∩ Vi| = 2). We say
that H can be expanded horizontally (from column j) if |E(H)∩Hj | = t− 1 or t− 2 > 0
(for t = 3 we require |E(H) ∩Hj | = 2). The following statements hold.

Lemma 6.1. LetW (s, t1, r) be a good Eulerian subgraph that can be expanded vertically.
Then there exists a good Eulerian subgraph W (s, t, r) for every t ≥ t1, t ≡ t1 (mod 2).

Proof. We use the graph W1 = W (s, t1, r) to construct a good Eulerian subgraph
W (s, t, r). By the assumptions, |E(W1) ∩ Vi| = s − 1 or s − 2 for some row index i,
0 ≤ i ≤ t − 1. By the symmetry properties of the graph X(s, t1, r), we can cyclically
permute its rows so that we can assume 0 < i < t − 1. We treat separately the cases
|E(W1) ∩ Vi| = s − 1 and |E(W1) ∩ Vi| = s − 2. Consider |E(W1) ∩ Vi| = s − 1 and
denote by [xia, x

i+1
a ] the vertical edge of Vi which is missing in W1. We can cyclically

permute the columns of X(s, t1, r) and assume a = 0. We subdivide every vertical edge
[xij , x

i+1
j ], with 0 < j ≤ s−1, by inserting two new vertices, namely, yij and yi+1

j such that
yij is adjacent to xij and yi+1

j is adjacent to xi+1
j , and we add two new vertices yi+1

0 , yi0 be-
tween xi+1

0 and xi0 in column 0. We now delete the edge [yis−1, y
i+1
s−1] and replace it with the

path from yis−1 to yi+1
s−1 composed of the edges [yi+1

j , yi+1
j+1], [yij , y

i
j+1], 0 ≤ j ≤ s− 2, and

[yi0, y
i+1
0 ]. The resulting graph is a good Eulerian subgraph W (s, t1 + 2, r). We can iterate

the process and find a good Eulerian subgraphW (s, t, r) for every t ≥ t1, t ≡ t1 (mod 2).
The case |E(W1)∩Vi| = s−2 can be treated analogously to the case |E(W1)∩Vi| = s−1.
As an example, consider the graph W ′′(6, 5, r) in Figure 3. It can be expanded vertically
from row 1 and it yields a good Eulerian subgraph W ′′(6, 7, r).

vertical expansion

Figure 3: A vertical expansion of the good Eulerian subgraph W ′(6, 5, r) yields a good
Eulerian subgraph W (6, 7, r).

In the following lemma we consider horizontal expansions. In this case we have to pay
attention to the diagonal edges of W (s, t, r), if any exist. If [xt−1

j , x0
j+r], where j + r is

considered modulo s, is a diagonal edge ofW (s, t, r), then we can assume j < j+r, since
we can cyclically permute the columns of W (s, t, r). Therefore we can say that a diagonal
edge [xt−1

j , x0
j+r] crosses column ` if j ≤ ` < j + r.

Lemma 6.2. Let W (s1, t, r1) be a good Eulerian subgraph that can be expanded horizon-
tally from column `. If no diagonal edge of W (s1, t, r1) crosses column `, then there exists
a good Eulerian subgraphW (s, t, r1) for every s ≥ s1, s ≡ s1 (mod 2). If every diagonal
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edge crosses column `, then there exists a good Eulerian subgraph W (s1 + r− r1, t, r) for
every r ≥ r1, r ≡ r1 (mod 2).

Proof. We apply the method described in Lemma 6.1 to the edges in H`. If every diagonal
edge of W (s1, t, r1) crosses column `, then by subdividing the edges of H` we can shift of
r− r1 steps the diagonal edges of W (s1, t, r1). If no diagonal edge of W (s1, t, r1) crosses
column `, then no diagonal edge is shifted. As an example, consider the graph W (5, 4, 3)
in Figure 4. If we expand horizontally the graph from column ` = 0, then no diagonal
edge crosses column ` and we obtain a good Eulerian subgraph W (7, 4, 3). If we expand
horizontally the graph from column ` = 2, then every diagonal edge crosses column ` and
we obtain a good Eulerian subgraph W (7, 4, 5).

x0
0 x0

1 x0
2 x0

3
x0

4

x1
0 x1

1 x1
2 x1

3 x1
4

x2
4x2

3x2
2x2

1x2
0

x3
0 x3

1

x3
2

x3
2 x3

3

(a) (b) (c)

Figure 4: A good Eulerian subgraph: (a) W (5, 4, 3); (b) W (7, 4, 3); (c) W (7, 4, 5). The
graphs W (7, 4, 3) and W (7, 4, 5) are obtained from W (5, 4, 3) by an horizontal expansion
from column 0 and column 2, respectively.

6.2 Constructions of good Eulerian subgraphs.

We apply the lemmas described in Section 6.1 to construct a good Eulerian subgraph
W (s, t, r). It is straightforward to see that the existence of loops in X(s, t, r) excludes
the existence of a good Eulerian subgraph W (1, t, r) and W (s, 1, 0). Analogously, the ex-
istence of horizontal parallel edges in X(2, t, r) excludes the existence of a good Eulerian
subgraph W (2, t, r) with t odd and W (2, t, 1) with t even, t > 2, (see Case 2 in the proof
of Lemma 6.5 for a good Eulerian subgraph W (2, 2, 1) and W (2, t, 0) with t even). Hence
we can consider s ≥ 3 and (t, r)6= (1, 0). The following hold.

Proposition 6.3. The graphX(s, 1, r), r 6= 0, possesses a good Eulerian subgraph, unless
s = 6m+ 5, with m ≥ 0, and r ∈ {2, s− 2, (s+ 1)/2, (s− 1)/2}.

Proof. By Proposition 4.3, the graph X(s, 1, r) can be represented as the circulant multi-
graph Cir(st;±1,±r). By Proposition 5.2, the graph X(s, 1, r) corresponds to the gener-
alized Petersen graph I(s, r, 1) or G(s, r). In particular, the graph X(6m + 5, 1, 2) corre-
sponds to the generalized Petersen graph G(6m+ 5, 2). Hence X(s, 1, r) has a good Eule-
rian subgraph, unless it is isomorphic toX(6m+5, 1, 2), since Theorems 1.1 and 2.2 hold.
By Proposition 4.13, the graphs that are isomorphic toX(6m+5, 1, 2) areX(6m+5, 1, r′),
where r′ ∈ {2, 6m + 3} or r′ ≡ ±2−1 (mod 6m + 5), that is, r′ ∈ {3m + 3, 3m + 2},
since r′ < 6m+ 5.

We can construct a good Eulerian subgraph W (s, 1, r), r 6= 0, without using Theorem
1.1. More specifically, by Proposition 4.10 the graph X(s, 1, r), with r 6= 0, is isomorphic
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to the graph X(s/ gcd(s, r), gcd(s, r), r′), where r′ ≡ ±r−1 (mod s). For r 6= 0 and
gcd(s, r) > 1, a construction of a good Eulerian subgraph can be found in the proof of
Lemma 6.5. We can also provide an ad hoc construction for the case gcd(s, r) = 1,
but we prefer to omit this construction, since the existence of a good Eulerian subgraph
W (s, 1, r), r 6= 0, is known (see Proposition 6.3) and the construction is based on the
method of Lemma 6.5. We will show that the graph X(6m + 5, 1, 2), m ≥ 0, has no
good Eulerian subgraph, that is, the generalized Petersen graph is not Hamiltonian. The
following statement is a consequence of Proposition 6.3 and it will be used in the proof of
Lemma 6.5.

Proposition 6.4. The graph X(s, t, r), with s ≥ 3, t > 1 and gcd(s, r) = 1 has a good
Eulerian subgraph.

Proof. By Proposition 4.6, the graph X(s, t, r) can be represented as the circulant graph
Cir(st;±t,±k), where gcd(k, t) = 1 and k ≡ r (mod s). By Proposition 4.10, the graph
X(s, t, r) is isomorphic to the graph X(st, 1, r′), with r′ 6= 0, since gcd(s, r) = 1. If
st 6≡ 5 (mod 6), then the assertion follows from Proposition 6.3 (see Proposition 4.10).
Consider st ≡ 5 (mod 6). We show that X(s, t, r) is not isomorphic to X(6m+ 5, 1, 2),
m ≥ 0. Suppose, on the contrary, that X(s, t, r) is isomorphic to X(6m + 5, 1, 2). Then
X(st, 1, r′)= X(6m + 5, 1, r′), where r′ ∈ {2, st − 2, (st + 1)/2, (st − 1)/2} (see
Proposition 6.3). By Proposition 4.10, the integer r′ satisfies the relation r′ ≡ ±tk−1

(mod st). Whence t is a divisor of r′. That yields a contradiction, since r′ ∈ {2, st − 2,
(st + 1)/2, (st − 1)/2} and t is coprime with the integers in {2, st − 2, (st + 1)/2,
(st− 1)/2}.

Lemma 6.5. Let s ≥ 3, t ≥ 2 and 0 ≤ r ≤ s− 1. There exists a good Eulerian subgraph
W (s, t, r), unless s is odd and (t, r) = (2, 0).

Proof. We treat separately the cases: t = 3; s, t even; s even, t odd, t ≥ 5; s odd, t even;
s, t odd, t ≥ 5. When we will speak of “vertical” and “horizontal” expansion we refer
implicitly to Lemma 6.1 and 6.2, respectively.

Case 1: t = 3. This case is treated in Section 8, since it requires a lengthy description.

(c)(b)(a) (d)

Figure 5: A good Eulerian subgraph: (a) W ′(2, 2, r); (b) W ′′(4, 4, r); (c) W ′(6, 6, r); (d)
W ′′(6, 8, r).
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Case 2: s even, t even. The graph W ′′(6, 8, r) in Figure 5(d) can be expanded vertically
from row 1 and horizontally from column 2. It yields a good Eulerian subgraph
W ′′(s, t, r) for every s, t even s ≥ 6, t ≥ 8. It remains to construct a good Eulerian
subgraph W ′′(s, t, r) for s ≥ 6, t = 2, 4, 6 and W ′′(4, t, r) for t ≥ 2, t even.
The graph W ′(2, 2, r) in Figure 5(a) can be expanded horizontally from column 0
or 1. It yields a good Eulerian subgraph W ′(s, 2, r) for every s even, s ≥ 2. We
expand horizontally the graph W ′′(4, 4, r) in Figure 5(b) and obtain W ′′(s, 4, r) for
every s even, s ≥ 4. We rotate W ′′(s, 4, r) by 90 degrees clockwise (around a
vertex) and obtain a good Eulerian subgraph W ′′(4, t, r) for every t even, t ≥ 4. We
expand horizontally the graph W ′′(6, 6, r) in Figure 5(c) from column 3 and obtain
W ′′(s, 6, r) for every s even, s ≥ 6.

Case 3: s even, t odd, t ≥ 5. The graphW ′(6, 5, r) in Figure 3 can be expanded vertically
from row 2 and horizontally from column 3. It yields a good Eulerian subgraph
W ′(s, t, r) for every s even, s ≥ 6, t odd, t ≥ 5. It remains to construct W (4, t, r)
with t odd, t ≥ 5, 0 ≤ r ≤ 3. Since X(4, t, r) is isomorphic to X(4, t, 4 − r), we
can consider 0 ≤ r ≤ 2. A good Eulerian subgraph for W (4, t, 0), t odd, t ≥ 5, can
be obtained from W (4, 3, 0) in Figure 6(a) by a vertical expansion from row 1. The
existence of a good Eulerian subgraph W (4, t, 1) follows from Proposition 6.4. By
Proposition 4.10, the graph X(4, t, 2) is isomorphic to the graph X(2t, 2, r′). By the
results in Case 2, there exists a good Eulerian subgraph W (2t, 2, r′).

(b) (c)(a)

Figure 6: A good Eulerian subgraph: (a) W (3, 3, 0); (b) W (4, 3, 0); (c) W (6, 3, 0).

Case 4: s odd, t even. By Proposition 4.10, the graph X(s, t, r), with r 6= 0, is isomor-
phic to the graph X(st/ gcd(s, r), gcd(s, r), r′), with r′ 6= 0, or to X(t, s, 0) if
r = 0. If r 6= 0 and gcd(s, r) = 1 or 3, then the existence of a good Eulerian sub-
graph follows from Proposition 6.4 or from the results in Case 1, respectively. Note
that st/ gcd(s, r) ≥ 4, since t is even and 0 < r 6= s− 1. Hence, for gcd(s, r) ≥ 5,
the existence of a good Eulerian subgraph follows from Case 3. Consider r = 0.
There is no good Eulerian subgraph W (s, 2, 0), because of the existence of paral-
lel vertical edges. Consider t ≥ 4. As remarked, the graph X(s, t, 0) is isomor-
phic to the graph X(t, s, 0). For s ≥ 5 the existence of a good Eulerian subgraph
W (t, s, 0) follows from the results in Case 3. The existence of a good Eulerian sub-
graph W (t, 3, 0) follows from Case 1.

Case 5: s odd, t odd, t ≥ 5. A good Eulerian subgraph W (s, t, 0) can be obtained from
the graph W (3, 3, 0) in Figure 6(a). If r ∈ {1, 2}, then the existence of a good
Eulerian subgraph follows from Proposition 6.4. Consider 3 ≤ r ≤ s − 3 and
s ≥ 7. Since X(s, t, r) is isomorphic to X(s, t, s− r) and s is odd, we can construct
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a good Eulerian subgraph W (s, t, r) for every s, r odd, s ≥ 7, 3 ≤ r ≤ s − 4.
The graph W (7, 5, 3) in Figure 10(c) can be expanded horizontally from column 4
and vertically from row 1 (or 2). It yields a good Eulerian subgraph W (s, t, 3) for
every s, t odd, s ≥ 7, t ≥ 5. Since s − r + 3 ≥ 7, we can consider the graph
W (s− r + 3, t, 3) arising from W (7, 5, 3) in Figure 10(c). We expand horizontally
the graph W (s − r + 3, t, 3) from column 2 and obtain a good Eulerian subgraph
W (s, t, r) for every s, t, r odd, s ≥ 7, t ≥ 5 and 3 ≤ r ≤ s− 4.

Proposition 6.6. The graph X(6m + 5, 1, 2), m ≥ 0, has no good Eulerian subgraph.
Consequently, the generalized Petersen graph G(6m+ 5, 2) has no Hamiltonian cycle.

Proof. We give a sketch of the proof by showing that X(5, 1, 2) has no good Eulerian sub-
graph. Suppose, on the contrary, that W is a good Eulerian subgraph of X(6m + 5, 1, 2).
Since the unique horizontal layer of W has an odd number of vertices, the graph W con-
tains at least one path P2j+1 consisting of 2j horizontal edges. It is possible to prove that
2j = 2 (if 2j > 2, then W is not good). Without loss of generality we can set P2j+1 =
(x0

0, x
0
1, x

0
2). Whence [x0

3, x
0
4] ∈ E(W ) and no other horizontal edge of X(5, 1, 2) belongs

to E(W ). Moreover, [x0
1, x

0
3],[x0

1, x
0
4] are edges of W , since W is admissible and x0

1 is
4-valent in W . Whence [x0

0, x
0
2] ∈ E(W ) and each admissible tour of W contains the

component A = (x0
3, x

0
4, x0

4, x0
3). That yields a contradiction, since A is not a spanning

subgraph of X(6m+ 5, 1, 2). Hence X(5, 1, 2) has no good Eulerian subgraph. By Theo-
rem 2.2, the graph G(5, 2) has no Hamiltonian cycle. The proof can be generalized to the
case G(6m+ 5, 2) with m > 0.

7 Characterization of Hamiltonian I-graphs
Now we are ready to prove the main theorem.

Proof of Theorem 1.2. By Theorem 1.1, a generalized Petersen graph is Hamiltonian if
and only if it is not isomorphic to G(6m + 5, 2), m ≥ 0. We prove that a proper I-graph
is Hamiltonian. By Lemma 3.5, a proper I-graph I(n, p, q) is special and its associated
quartic graph X is the circulant graph Cir(n; p, q). By Lemma 5.1, the graph Cir(n; p, q)
can be represented as the graph X(s, t, r), where t = gcd(n, q), s = n/t ≥ 3, r ≡
±p(q/t)−1 (mod s) and (t, r) 6= (2, 0) for odd values of s. By Lemma 6.5, the graph
X(s, t, r) has a good Eulerian subgraph. The assertion follows from Theorem 2.2.

By Theorem 2.2 and Lemma 6.5, we can extend the result of Theorem 1.2, about the
existence of a Hamiltonian cycle, to the special generalized I-graphs.

As a consequence of Theorem 1.2, a proper I-graph is 3-edge-colorable or, equiva-
lently, 1-factorizable (because it is cubic and Hamiltonian). A widely studied property
for 1-factorizable graphs is the property of admitting a perfect 1-factorization. We recall
that a 1-factorization is perfect if the union of any pair of distinct 1-factors is a Hamil-
tonian cycle. Partial results are known for generalized Petersen graphs: G(n, k) admits
a perfect 1-factorization when (n, k) = (3, 1); (n, k) = (n, 2) with n ≡ 3, 4 (mod 6);
(n, k) = (9, 3); (n, k) = (3d, d) with d odd; (n, k) = (3d, k) with k > 1, d odd, 3d and k
coprime (see [4]). So, it is quite natural to extend the same problem to proper I-graphs.
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Some further problems can be considered: the generalization of the existence of good
Eulerian tour to other graph bundles of a cycle over a cycle, the characterization of Hamilto-
nianGI-graphs or of Hamilton-laceable I-graphs. In [8], the authors proved by a computer
search that all bipartite connected I-graphs on 2n ≤ 200 vertices are Hamilton-laceable.

8 Appendix. Proof of Lemma 6.5
Case 1, t = 3. We expand horizontally the graph W (3, 3, 0) in Figure 6(a) from column 0
and obtain a good Eulerian subgraph W (s, 3, 0) for every s odd, s ≥ 3. A good Eulerian
subgraphW (s, 3, 0) with s even can be obtained from the graphsW (4, 3, 0) andW (6, 3, 0)
in Figure 6(b)-(c). As an example, the graph W (8, 3, 0) in Figure 7(a) has been obtained
by connecting two copies of the graph W (4, 3, 0). The graph W (10, 3, 0) in Figure 7(b)
has been obtained by connecting the graphs W (4, 3, 0) and W (6, 3, 0). For r = 1 the
existence of a good Eulerian subgraph W (s, 3, 1) follows from Proposition 6.4. Hence
we can consider 2 ≤ r ≤ s/2, since X(s, 3, r) is isomorphic to X(s, 3, s − r). The
graph W (4, 3, 2) in Figure 7(c) can be expanded horizontally from column 3. It yields
a good Eulerian subgraph W (s, 3, 2) for every s even, s ≥ 4. Since s − r + 2 ≥ 4,
we can consider the graph W (s− r+ 2, 3, 2) obtained from W (4, 3, 2) in Figure 7(c). We
expand horizontallyW (s−r+2, 3, r) from column 1 and obtain a good Eulerian subgraph
W (s, 3, r) for every s, r even, s ≥ 4, 2 ≤ r ≤ s/2. Analogously, the graphs W (6, 3, 3),
W (8, 3, 3) andW (10, 3, 5) in Figure 8 yield a good Eulerian subgraphW (s, 3, r) for every
s even, r odd, 3 ≤ r ≤ s/2. More specifically, we expand horizontally the graphW (8, 3, 3)
from column 7 and obtain a good Eulerian subgraph W (s, 3, 3) for every even integer
s ≥ 8. The graph W (10, 3, 5) can be expanded horizontally from column 9 (or 0). It yields
a good Eulerian subgraphW (s, 3, 5) for every even integer s, s ≥ 10. Since s−r+5 ≥ 10,
we can consider the graphW (s−r+5, 3, 5) obtained fromW (10, 3, 5) in Figure 8(c). We
expand W (s− r+ 5, 3, 5) from column 4 and obtain a good Eulerian subgraph W (s, 3, r)
for every s even, s ≥ 10, r odd, 5 ≤ r ≤ s/2.

(a) (b) (c)

Figure 7: A good Eulerian subgraph: (a) W (8, 3, 0); (b) W (10, 3, 0); (c) W (4, 3, 2).

(a) (b) (c)

Figure 8: A good Eulerian subgraph: (a) W (6, 3, 3); (b) W (8, 3, 3); (c) W (10, 3, 5).

Consider s odd, s ≥ 5. The graph W (5, 3, 2) in Figure 9(a) can be expanded hori-
zontally from column 4. It yields a good Eulerian subgraph W (s, 3, 2) for every s odd,
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s ≥ 5. Analogously, the graph W (9, 3, 4) in Figure 9(b) yields a good Eulerian sub-
graph W (s, 3, 4) for every s odd, s ≥ 9. The graph W (13, 3, 6) in Figure 9(c) can be
expanded horizontally from column 2 and column 10. It yields a good Eulerian subgraph
W (2r + 1, 3, r) with r even, 6 ≤ r ≤ s/2. Since s − 2r + 1 ≥ 0, we can expand
W (2r + 1, 3, r) from column 2r and find a good Eulerian subgraph W (s, 3, r) for every s
odd, s ≥ 13, r even, r ≥ 6. It remains to construct a good Eulerian subgraph W (s, 3, r)
with s, r odd, s ≥ 7, 3 ≤ r ≤ s/2. We use the graph W (7, 3, 3) in Figure 10(a) to con-
struct a good Eulerian subgraph W (2r + 1, 3, r) with r odd, r ≥ 3. As an example, the
graph W (11, 3, 5) in Figure 10(b) has been obtained by expanding horizontally the graph
W (7, 3, 3) from column r = 3 and s−1 = 6 and by adding new diagonal edges. If we iter-
ate the process, then we obtain a good Eulerian subgraphW (2r+1, 3, r) with r odd, r ≥ 3.
The graph W (2r + 1, 3, r) thus obtained can be expanded horizontally from column 2r. It
yields a good Eulerian subgraph W (s, 3, r) for every s, r odd, s ≥ 7, 3 ≤ r ≤ s/2.

(a) (b)

(c)

Figure 9: A good Eulerian subgraph: (a) W (5, 3, 2); (b) W (9, 3, 4); (c) W (13, 3, 6)

(a) (b) (c)

Figure 10: A good Eulerian subgraph: (a) W (7, 3, 3); (b) W (11, 3, 5); (c) W (7, 5, 3). To
obtain the graph W (11, 3, 5) we expanded horizontally the graph W (7, 3, 3) from column
r = 3 and column s− 1 = 6, then we added new diagonal edges (see the bold edges).

9 Acknowledgements
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[16] M. Muzychuk, Ádám’s conjecture is true in the square-free case, J. Combin. Theory Ser. A 72
(1995), 118–134, doi:10.1016/0097-3165(95)90031-4, http://dx.doi.org/10.1016/
0097-3165(95)90031-4.



24 Ars Math. Contemp. 12 (2017) 1–24

[17] T. Pisanski and B. Servatius, Configurations from a graphical viewpoint, Birkhäuser
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