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1 Introduction

A green or an eco/ecological composite may con-
tain natural � bres and natural polymers, or it can be 
a combination of natural � bres and a biodegradable 
polymer matrix [1]. Actually, natural raw materials 
have been used in composites since 1850. By com-
bining shellac-resin and sawdust little boxes for 
photographs were produced until 1870. According 
to Müssig, in the 1920s and 1930s, the � rst natural 
� bre composites were manufactured in aircra�  con-
struction with the aim of creating lighter parts for 
primary structures. In the late 1930s, Henry Ford 
promoted their application in the automotive sec-
tor [2]. Automotive and aerospace industries still 
demonstrate an interest in using more natural � bre 
reinforced composites [3].
� e reasons for this great interest are of course the 
environmental advantages and biological degrada-
bility of natural � bres. For example, if � ax is burnt 
a� er having been used, no residues remain [4]. Nat-
ural materials like wood chips and � our are also 

widely used because of their eco-friendly character-
istics as � llers within thermoplastics in automotive 
and building applications [5]. Even though wooden 
materials are cheaper than natural � bres, it is expect-
ed that in the near future, due to extensive native 
forest destruction, their price will increase to a point 
at which they will be no longer able to compete with 
natural � bre composites. � is is already the case for 
some native forest–depleted countries [6].
Other advantages of natural � bres in composite re-
inforcement are:

natural � bres are abundant and renewable [7]; –
production of natural � bres results in lower envi- –
ronmental impacts compared to glass � bre pro-
duction [8];
lower weight of natural � bre composites im- –
proves fuel e�  ciency and reduces emissions dur-
ing the use phase of the component [9]. � e 
weight reduction when conventional composite 
materials are replaced with natural � bre compos-
ites can reach even 26%. More � ax � bres have 
been progressively incorporated into natural � bre 
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automotive components that require 83% less en-
ergy and are 40% less expensive than glass � bre 
components [10];
end of life incineration of natural � bres results in  –
energy and carbon credits;
reduced tool wear [11]; –
they are safer especially in automobile interiors  –
as the fractures of natural � bre composites are 
not as sharp as the fractures of glass � bre com-
posites [12].

Natural � bres used in composite reinforcement are 
split into four categories; seed, bast, leaf and fruit. 
Cotton is a seed � bre. � e bast � bre group includes 
kenaf, hemp and � ax, while sisal may be considered 
a leaf � bre. On the other hand, coir and banana are 
vegetable � bres [13]. According to Zampaloni 2007, 
bast � bres exhibit superior � exural strength and 
modulus of elasticity (MOE), whereas leaf � bres 
show superior impact properties [3]. Tensile 
strength and elastic modulus values of these � bres 
are given in Table 1.

Table 1: Tensile strength and modulus of elasticity of 

natural � bres used in composite reinforcement

Fibre Type
Tensile 

Strength (MPa)

Modulus of 

Elasticity 

(GPa)

Flax [10] 1100 100

Cotton [10] 287‒597 5.5‒12.6

Jute [6] 550‒900 17‒26

Sisal [6] 400‒700 9‒20

Ramie [6] 870 128

Coir [6] 106‒270 3‒6

Banana [6] 529‒800 7.7‒32

Beyond the advantages mentioned below, natural � -
bres have some limitations and drawbacks, when 
they are used as reinforcements in composite mate-
rials, such as:

the � bres are hydrophilic; –
the compatibility between hydrophilic � bres and  –
hydrophobic matrices is low;
the � bres are not resistant to high temperatures  –
(>200 °C);
the � bres are short; –
the quality and consistency of properties is a# ect- –
ed by factors which are hard to control such as cli-
mate impacts during growth and harvesting [14].

2 Modifi cation of natural fi bres in 
composite materials

� e characteristics of composites depend on:
the properties of � bre, –
the properties of matrix material, –
interfacial compatibility of � bre and matrix. –

Natural � bres contain hydroxyl and other polar 
groups in their constituents [7]. � is feature be-
comes a disadvantage when these � bres are used in 
composite materials since they meet with non-polar 
polymers. Polar groups are hydrophilic which caus-
es the absorption of water in natural � bres. � is na-
ture leads to incompatibility and poor wettability in 
a hydrophobic polymer matrix and weak bonding 
in the � bre/matrix interface [11].
� e surface adhesion between the � bre and the poly-
mer plays an important role in the transmission of 
stress from the matrix to the � bre. If bonding be-
tween the � bre and the polymer matrix material is 
weak, then failure is inevitable in ultimate compos-
ite. � e absorption of water in the pores and amor-
phous regions of natural � bres serves to reduce inter-
� brillar cohesion and to relieve internal � bre stresses 
[15]. Furthermore, the high moisture absorption 
property of natural � bres makes them less attractive 
for exterior applications [7], decreases their dimen-
sional stability [6] and tends to rotting [16].
� ere are several methods existing which intend to 
improve surface adhesion between natural � bre and 
polymer matrix material. � e basic objective, how-
ever, remains the same: to remove surface contami-
nation and to provide an intimate contact between 
the surfaces. � e simplest way is to roughen the sur-
face so as to enhance the contact area and facilitate 
mechanical interlocking [11]. Modi� cation meth-
ods are classi� ed as physical and chemical.

2.1 Physical methods of modifi cation
Physical treatments change structural and surface 
properties of natural � bres and thereby in� uence 
their mechanical bonding with the matrix [6]. Phys-
ical methods involve surface � brillation, plasma, co-
rona, dielectric barrier techniques etc.
Plasma can be de� ned as a partially ionized quasineu-
tral gas. In this ionized gas there is the balance be-
tween the densities of negative and positive parti-
cles in macroscopic volumes and time. Plasma 
components include ions, electrons, UV and vacuum 
UV radiation. Plasma is thought to bring physical 
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modi� cation on the surface through roughening the 
� bre by the sputtering e# ect, producing thus an en-
largement of the contact area that increases the fric-
tion between the � bre and the polymer.
Corona and dielectric barrier techniques are non-
thermal plasma treatments. Corona discharges are 
relatively low power electrical discharges that take 
place at or near atmospheric pressure. � e corona is 
generated by strong electric � elds associated with 
small diameter wires, needles, or sharp edges on an 
electrode. Corona treatment is a di�  cult technique 
to be used on 3D objects. � is limitation has high-
lighted the need for alternative, more 3D ‘compliant’ 
surface modi� cation techniques such as the ozone 
and/or ultraviolet radiation (e.g. UV) light [11].

2.2 Chemical methods of modifi cation
� e compatibility and dispersability of � bre and 
matrix can be improved by developing a hydropho-
bic coating of a compatible polymer on the surface 
of a � ller before being mixed with polymer matrix. 
Generally, coupling agents facilitate the optimum 
stress transfer at the interface between the � bre and 
the matrix. Coupling agents are molecules having 
two functions. � e � rst is to react with OH groups 
of cellulose and the second is to react with function-
al groups of the matrix [7].
� ere are many types of coupling agents including 
surface-active agents and reactive chemistries, at 
times referred to as functional modi� ers. Surface-
active agents are materials that increase interfacial 
adhesion by acting as a solid surfactant and that do 
not form covalent bonds to the polymer matrix. 
Materials that form covalent bonds to either the � -
bre or the polymer matrix can be reacted in-situ 
during processing [17].
� e selection of a coupling agent that can combine 
both strength and toughness to a considerable de-
gree is important for a composite material. � e most 
common coupling agents are silane, isocyanate and 
titanate based compounds, the chemical composi-
tion of which allows them to react with the � bre 
surface, which forms a bridge of chemical bonds be-
tween the � bre and the matrix [7].

� ose options (physical and chemical modi� cations) 
are not attractive, even in terms of cost-bene� t ratio, 
when the composites are designed for low strength–
low cost applications such as transit panels, because 
of the signi� cant cost increase that might result from 
the use of chemicals or treatment apparatus [6].

3 Matrix materials

Matrix materials are divided into two categories as 
thermosets and thermoplastics. � ermosets can-
not be melted once they have been cured since 
they are chemically crosslinked. But these matri-
ces generally have quite good mechanical proper-
ties. Most common thermoplastics have low tran-
sition temperature, giving them quite low sti# ness 
at room temperature and above. � e low Tg also 
makes them very brittle at low temperatures, how-
ever, the lack of cross-linking is one of the big ad-
vantages of thermoplastics which makes them re-
shapeable and re-meltable [14]. � ermoplastics 
also o# er many advantages. One of the advantages 
of thermoplastic matrix composites is their low 
processing costs. Other advantages are the design 
� exibility and the ease of moulding complex parts. 
Simple methods such as extrusion and injection 
moulding are used for the processing of these 
composites [18].
Most commonly used thermoset polymers in natu-
ral � bre reinforced composites are polyester, epox-
ies and vinylester. While natural � bres have been 
traditionally used to � ll and reinforce thermosets, 
natural � bre reinforced thermoplastics, especially 
polypropylene composites, have attracted greater at-
tention due to their added advantage of recyclability 
[8]. Other thermoplastics like polyethylene (PE) 
and polystyrene (PSI) have also been used in eco-
logical composites.
No matter which polymer is used, high tempera-
tures must be avoided due to the possibility of � bre 
degradation. When working with natural � bres, the 
processing temperature must be below 200°C [18]. 
� is also restricts natural � bre composites to rela-
tively low temperature applications [19].
Low twisted yarns display a very low strength when 
tested dry in the air and, therefore, they cannot be 
used in processes such as pultrusion or textile man-
ufacturing routes. On the other hand, by increasing 
the level of twist, a degradation of the mechanical 
properties is observed in impregnated yarns (e.g. 
unidirectional composites) similar to o# -axis com-
posites. � erefore, an optimum twist should be used 
to balance processability and mechanical properties 
[20]. On the other hand, strands of natural � bres are 
usually heavily twisted, and that can hinder in� ltra-
tion or impregnation of the resin matrix into the � -
bre strands [21].
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3.1 Biodegradable polymers
There are many different polymers of renewable 
materials. Biodegradable plastics can be based on 
natural or synthetic resins. Natural biodegradable 
plastics are based primarily on renewable re-
sources (such as starch) and can be either natu-
rally produced or synthesized from renewable re-
sources [22].
PLA is a good example of thermoplastic biopoly-
mer that is used today. Its basic monomer is lactic 
acid, which is derived from starch by fermenta-
tion. PLA is and was frequently used for biode-
gradable packing materials. However, numerous 
tests have shown that PLA is also suitable as a ma-
trix for embedding � bres in composites [23]. Oth-
er studied biopolymers have been soy-oil based 
epoxy, starch, polycaprolactone (PCL), polyhy-
droxybutyrate (PHB), modi� ed cellulose, acetic 
acid, polyester amide, natural rubber and gluten 
[22, 24].
Polyesters play a predominant role as biodegradable 
plastics due to their potentially hydrolysable ester 
bonds. Biodegradable polyesters which have been de-
veloped commercially and are in commercial devel-
opment are PHA – polyhydroxyalkanoates, PHH – 
polyhydroxyhexanoate, PHB – polyhydroxybutyrate, 
PHV – polyhydroxyvalerate, PLA – polylactic acid, 
PCL – polycaprolactone, PBS – polybutylene succi-
nate, PBSA – polybutylene succinate adipate, AAC – 
aliphatic–aromatic copolyesters, PET – polyethylene 
terephthalate, PBAT – polybutylene adipate/tereph-
thalate and PTMAT – polymethylene adipate/tereph-
thalate [22].

� e problems  with most of these polymers have 
been poor commercial availability, poor processa-
bility, low toughness, high price and low moisture 
stability [25].

4 Preforms

Natural � bres such as � ax are usually avialable as 
short � bres. � ese short � bres are suitable for injec-
tion moulding process and for producing non woven 
mats. In both processes, short � bres are randomly 
orginised which causes relatively poor mechanical 
properties in resulting composites [20].
� ere are several studies available concerning the me-
chanical properties of green composites. A brief sur-
vey of the research work published in the � eld of nat-
ural � bre reinforced composites is given in Table 2. 
According to the literature, preform types have been 
generally used in the form of nonwoven/� bre mat.

5 Conclusion

� e aim of this article is to give a short overview of 
the reasons for the usage of green composites, dis-
advantages of natural � bres and their modi� cation 
methods, matrix materials and research activities 
associated with these composite materials.
� e research showed that there are many types of 
natural � bres and biopolymers available for green 
composites all of which have di# erent characteris-
tics and bene� ts. Although modi� cations and bi-
opolymers increase the cost of ultimate composite, 
their environmental returns are undeniable.

Table 2: Literature survey of green composites

Reference Fibre type Preform type
Matrix material 

type

Tensile 

strength 

(MPa)

Impact 

strength 

(kJ/m2)

[7] 100 % � ax nonwoven mat epoxy 57.79 13.69

[26] 100 % � ax nonwoven mat modi� ed soy oil 40

[6]
100 % jute � bre mat PES 43.0

100 % sisal � bre mat PES 34.6

[27] 100 % � ax

� bre mat Palatal E240-02 47.9

� bre mat Norpol 200-510 71.6

� bre mat epoxy 88.3

� bre mat Norpol 420-100 79.2

� bre mat vinylester 91.2



241Natural Fibres Reinforced Green Composites

Tekstilec, 2016, 59(3), 237-243

[28] 100 % jute nonwoven mat PLA 72.7 14.3

[29]

100 % kenaf � bre mat PP 28 14

100 % coir � bre mat PP 10 24

100 % sisal � bre mat PP 35 28

100 % hemp � bre mat PP 52 26

100 % jute � bre mat PP 26 17

[30] 100 % � ax nonwoven mat
cellulose acetate 
propionate

10

[31] 100 % jute
plain weave PES 23.1

� at knit PES 17.8

[32] � ax 50 %, cotton 50 % denim fabric HDPE 35.8

[20] � ax plain weave vinylester 129

[33] 100 % � ax � bre mat

PPMA 75

PLLA 100

PLA 100

PHB 40

PBS 50

PBAT 30

[21] jute 45 %, cotton 55 % plain weave PES 62.5

jute 39 %, cotton 61 % plain weave PES 72.1

jute 43 %, cotton 57 % plain weave PES 73.1

100 % jute plain knit PES 19.8

100 % jute plain weave PES 40

[34] sisal and silk
hand lay up
hand lay up

PES
PES

18.95
23.61

[3]

kenaf
kenaf
kenaf
hemp
coir

hand lay up
hand lay up
hand lay up
hand lay up
hand lay up

PP
PP
PP
PP
PP

45
43
51
52
10

[2]
cotton
ramie

multilayer web
multilayer web

epoxy
epoxy

28
100

82
38

[35]
sisal
sisal

plain weave
twill weave

PES
PES

28
33

[36]
abaca
man-made cellulose

PLA
74
92

5.3
7.9

[1] cotton
spacer fabric 
with we�  inlay

PLA 30.31 11.18

[37]

� ax
spacer fabric 
with we�  in-lay

epoxy 41.45 53.80

� ax
spacer fabric 
with we�  in-lay

vinylester 54.70 49.23

cotton
spacer fabric 
with we�  in-lay

epoxy 49 19.26

cotton
spacer fabric 
with we�  in-lay

vinylester 42.41 17.27
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