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Abstract

For every probability p ∈ [0, 1] we define a distance-based graph property, the pTS-
distance-balancedness, that in the case p = 0 coincides with the standard property of
distance-balancedness, and in the case p = 1 is related to the Hamiltonian-connectedness.
In analogy with the classical case, where the distance-balancedness of a graph is equivalent
to the property of being self-median, we characterize the class of pTS-distance-balanced
graphs in terms of their equity with respect to certain probabilistic centrality measures,
inspired by the Travelling Salesman Problem. We prove that it is possible to detect this
property looking at the classical distance-balancedness (and therefore looking at the clas-
sical centrality problems) of a suitable graph composition, namely the wreath product of
graphs. More precisely, we characterize the distance-balancedness of a wreath product of
two graphs in terms of the pTS-distance-balancedness of the factors.

Keywords: Distance-balanced graph, pTS-distance-balanced graph, total distance, wreath product
of graphs.
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1 Introduction
The investigation of distance-balanced graphs began in [13], though an explicit definition
was provided later in [15, 18]. Such graphs generated a certain degree of interest also
by virtue of their connection with centrality measures [2, 8] and with some well known
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and largely studied distance-based invariants, such as the Wiener and the Szeged index
[2, 14, 15, 16]. For instance, it was proven in [14] that, in the bipartite case, distance-
balanced graphs maximize the Szeged index.

Throughout the paper we will denote byG = (VG, EG) a simple connected finite graph
G with vertex set VG and edge set EG. We say that such a graph has order n if |VG| = n.
For a pair of adjacent vertices u, v ∈ VG (we say u ∼ v in G) we define

WG
uv = {z ∈ VG : dG(z, u) < dG(z, v)}, (1.1)

where dG(u, v) denotes the geodesic distance in G. In other words, WG
uv is the set of

vertices of G which are closer to u than to v.

Definition 1.1. A graph G = (VG, EG) is distance-balanced if |WG
uv| = |WG

vu|, for every
pair of adjacent vertices u, v ∈ VG.

Cyclic graphs and complete graphs are simple examples of distance-balanced graphs.
More generally, it is known that the class of distance-balanced graphs contains vertex-
transitive graphs [18], which are graphs G = (VG, EG) whose group of automorphisms
Aut(G) acts transitively on the vertex set. On the other hand, the Handa graph H24, intro-
duced in [13], is an example of a non-vertex-transitive distance-balanced graph.

Recall that semisymmetric graphs are regular graphs which are edge-transitive (the
group Aut(G) acts transitively on the edge set) but not vertex-transitive graphs. In particu-
lar, a semisymmetric graph is bipartite, and the two sets of the bipartition coincide with the
orbits of Aut(G). As for such graphs there exists no automorphism switching two adjacent
vertices, they appear as good candidates to be not distance-balanced. However, in [18] it
is explicitly proven that there exist infinitely many semisymmetric graphs which are not
distance-balanced, as well as infinitely many semisymmetric graphs which are distance-
balanced.

In [15], the behaviour of the four classical graph compositions with respect to the
distance-balanced property is investigated. More precisely, it is shown that the Carte-
sian product G�H of two connected graphs is distance-balanced if and only if both G
and H are distance-balanced; the lexicographic product G ◦ H of two connected graphs
is distance-balanced if and only if G is distance-balanced and H is regular; on the other
hand, it is shown there, by explicit counterexamples, that the direct product G × H and
the strong product G � H do not preserve the property of being distance-balanced. A
generalization of the distance-balancedness, called `-distance-balancedness, is studied in
[19]. In [12], Cartesian and lexicographic graph products which are 2-distance-balanced
are characterized.

In [3], in order to construct an algorithm that recognizes whether a given graph is
distance-balanced or not, the authors establish a connection with some graph centrality
measures; more precisely, they characterize the distance-balancedness of a graph in terms
of its median vertices, and therefore in terms of their total distance (also known as trans-
mission in the literature).

We denote the normalized total distance of a vertex u ∈ VG as

dG(u) :=
1

|VG|
∑
v∈VG

dG(u, v),

which is the average of the distances of u from each vertex of G. A vertex u ∈ VG is said
to be median if dG(u) = minv∈VG

dG(v). The graph G is said to be self-median if every
vertex u ∈ VG is median.
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Theorem 1.2 ([3, Theorem 3.1]). A graph G = (VG, EG) is distance-balanced if and only
if it is self-median.

Using this characterization, Cabello and Lukšič studied in [6] the complexity of the
problem of finding the minimum number of edges that can be added to a given graph to
obtain a distance-balanced graph.

According to Theorem 1.2, distance-balanced graphs are graphs where all vertices have
the same relevance in some sense, but they are not necessarily indistinguishable (notice that
there are even examples of distance-balanced graphs with a trivial automorphism group
[17]). Therefore, distance-balanced graphs are of special interest in the study of social
networks, as all people in such graphs are equal with respect to the total distance. A related
measure of this equality is given by the opportunity index, which is defined as follows.
Given a graph G = (VG, EG) with |VG| = 2n, and two subsets V1 and V2 of VG such that
|V1| = |V2| = n and V1 ∪ V2 = VG (called a half-partition of G), the opportunity index of
G is defined as opp(G) = max{|WV1

(G) −WV2
(G)| : {V1, V2} is a half-partition of G}

where, for a given U ⊆ VG, WU (G) denotes the sum of the distances between all pairs
of vertices in U . In particular, distance-balanced graphs are characterized as those graphs
whose opportunity index is zero [2].

In the present paper, aimed at generalizing distance-balancedness in a probabilistic di-
rection, we start exactly from this point of view, and we interpret the set of median vertices
of a graph, and the whole class of distance-balanced graphs itself, as solutions of partic-
ular facility location problems, very typical in graph centrality investigations. In order to
deeper understand this correspondence, let us suppose that G = (VG, EG) represents a
city; its vertex set is the set of the buildings/locations, the edges are connections between
the buildings and then, for any u, v ∈ VG, the geodesic distance dG(u, v) represents the
distance between buildings u and v, or the cost of reaching the vertex v from the vertex
u. In these terms, the quantity dG(u) is the average distance of the location u from all
locations, and the median vertices are those vertices solving the following problem.

Problem 1.3. Find the location for a facility in order to minimize its average distance from
all the buildings of the city.

Consequently, distance-balanced graphs are those graphs whose vertices are all equal
with respect to Problem 1.3. That is, they solve this second problem.

Problem 1.4. Find a city where Problem 1.3 is solved by any location.

From another point of view, that we will develop in the last part of the paper, our work
can be interpreted as the investigation of the distance-balancedness in a wreath product of
graphs. In this sense, it is the natural continuation of [8]. The wreath product of graphs
represents the graph analogue of the classical wreath product of groups, as it is true that
the wreath product of the Cayley graphs of two finite groups is the Cayley graph of the
wreath product of the groups. In [10], this correspondence is proven in the more general
context of generalized wreath products of graphs, inspired by the construction introduced
in [1] for permutation groups. Also, observe that in [9] the wreath product of matrices
has been defined, in order to describe the adjacency matrix of the wreath product of two
graphs: spectral computations using this matrix representation have been developed for
some infinite families of wreath products in [5, 4, 11].
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The paper is organized as follows. In Section 2, we consider two optimization prob-
lems, namely Problem 2.5 and Problem 2.6, that are the analogue, respectively, of Prob-
lem 1.3 and Problem 1.4, where the centrality measure at the vertex u is not yet the normal-
ized total distance, but the quantity dpG(u), that is, the expectation of the length of a shortest
path starting from u that satisfies some random requirements depending on the probability
p. In particular, these new problems collapse to the classical ones in the case p = 0.

Problems 2.5 and 2.6 are of some interest on their own, given their connection with
the Travelling Salesman Problem, which is among the most studied optimization problems,
largely investigated in literature also in its several probabilistic versions.

Then we extend the classical definition of distance-balanced graph by introducing the
notion of pTS-distance-balanced graph in Definition 2.9, and we prove in Theorem 2.10 a
pTS analogue of Theorem 1.2: pTS-distance-balanced graphs are exactly the graphs that
solve Problem 2.6 (that is, the TS-version of Problem 1.4). We present examples and non-
examples of pTS-distance-balanced graphs.

In Section 3, we recall the definition of the wreath product G oH of two graphs G and
H (Definition 3.1). It turns out that, when the order of H is m, the uniform probability dis-
tribution on the vertices of G oH is compatible, in a precise sense explained in Lemma 3.3,
with the model introduced in Section 2 for G, when p = m−1

m .
It follows that the TS-problems considered on the graphG are equivalent to the classical

problems on the wreath productG oH , for a suitable choice of the graphH . More precisely
we characterize, in Theorem 3.4, the distance-balancedness of a wreath product in terms
of pTS-distance-balancedness of its factors. Finally, we investigate the class of graphs that
are pTS-distance-balanced for every p ∈ [0, 1], giving several equivalent characterizations
in Theorem 3.11. We conclude the paper by asking if this class actually coincides with the
class of vertex-transitive graphs (Question 4.1).

2 pTS centrality
As a natural generalization of Problem 1.3, suppose that every day each building (vertex)
of the city (graph) G = (VG, EG), independently, with the same probability p ∈ [0, 1],
requires a visit from the facility and with probability 1− p does not. An example could be
a postoffice with a postman delivering parcels. We want to find a location for the postoffice
in order to minimize the expectation of the length of a shortest walk starting from the
postoffice, visiting at least once each building waiting for a parcel, and finally arriving at
the postman’s house, that can be on each vertex with the same probability 1

n (observe that
the postoffice and the postman’s house locations may coincide). This set-up is justified if,
for example, we have to decide the postoffice location prior to be aware of the location
of the postman’s house, or for example if every day the postman can be different. We are
going to formalize this model in what follows.

Definition 2.1. Let G = (VG, EG) be a graph and let A ⊆ VG. We define a map ρA on
VG×VG such that, for any pair of vertices u and v in VG, the number ρA(u, v) is the length
of a shortest walk joining u and v, visiting at least once all vertices in A.

Remark 2.2. Let G = (VG, EG) be a graph of order n, and let u, v, z ∈ VG and A ⊆ VG.
We list some properties of the map ρA; see [7] for more details.

• ρ∅(u, v) = dG(u, v).

• ρA(u, v) = ρA(v, u). (Symmetry)
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• ρA∪B(u, v) ≤ ρA(u, z) + ρB(z, v). (Triangle inequality)

• B ⊆ A =⇒ ρB(u, v) ≤ ρA(u, v). (Monotonicity)

• ρA(u, v) < n2.

Combining the first with the third property we have

|ρA(u, z)− ρA(v, z)| ≤ dG(u, v). (2.1)

Let G = (VG, EG) be a graph of order n, and let u, v ∈ VG. A Hamiltonian path from
u to v in G is a path from u to v visiting each vertex of G exactly once. A Hamiltonian
cycle is a Hamiltonian path between adjacent vertices u and v. A graph is Hamiltonian
if it admits a Hamiltonian cycle, that is equivalent to say that ρVG

(u, u) = n for some,
or equivalently, for every u ∈ VG. A graph G is Hamilton-connected if, for every pair
u, v ∈ VG, there exists a Hamiltonian path from u to v. It is easy to observe that

∀u, v ∈ VG, ρVG
(u, v) =

{
n− 1 if u 6= v

n if u = v
⇐⇒ G is Hamilton-connected. (2.2)

The computation of ρVG
for Hamilton-connected graphs is rather easy; however, to deter-

mine ρA is in general very hard. This is not the case for the easiest example of Hamilton-
connected graph, that is, the complete graph Kn.

Example 2.3. Let Kn = (VKn , EKn) be the complete graph on n vertices. For every
nonempty A ⊆ VKn and every u, v ∈ VKn we have

ρA(u, v) =



|A|+ 1 if u, v /∈ A
|A| if u /∈ A, v ∈ A or viceversa
|A| − 1 if u, v ∈ A, u 6= v

|A| if u = v ∈ A, |A| > 1

0 if u = v ∈ A, |A| = 1.

The hypothesis that each vertex independently with probability p requires a visit implies
that the probability for a given subset A ⊆ VG to be the random subset waiting for the
parcels is

pA := p|A|(1− p)n−|A|. (2.3)

Then we define the quantity dpG(u), that is, the expected length of a walk from u,
visiting the random set A and arriving to the random vertex v (uniformly distributed on
VG), as follows:

dpG(u) :=
1

n

∑
v∈VG

∑
A⊆VG

pA ρA(u, v). (2.4)

Remark 2.4.

• If p = 0 we have pA =

{
1 if A = ∅
0 otherwise

and dpG(u) = dG(u).

• If p = 1
2 we have pA = 1

2n and dpG(u) = 1
2nn

∑
v∈VG

∑
A⊆VG

ρA(u, v).
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• If p = 1 we have pA =

{
1 if A = VG

0 otherwise
and dpG(u) = 1

n

∑
v∈VG

ρVG
(u, v).

We are now in position to formulate the pTS versions of Problem 1.3 and Problem 1.4,
respectively.

Problem 2.5. Find a vertex u ∈ VG such that dpG(u) = minv∈VG
dpG(v).

Problem 2.6. Find a graph such that Problem 2.5 is solved by any vertex.

This leads us to introduce a notion of medianity in this setting, as a solution of the above
mentioned problems.

Definition 2.7. In a graph G = (VG, EG) a vertex u ∈ VG is pTS-median if it solves
Problem 2.5. The graph G is self-pTS-median if it solves Problem 2.6.

Remark 2.8. Notice that, as a consequence of Remark 2.4, when p = 0 the Problem 1.3
and Problem 1.4 and their pTS versions, Problem 2.5 and Problem 2.6 respectively, are
equivalent.

In analogy with Equation (1.1), for any subsetA ⊆ VG and any pair of adjacent vertices
u, v ∈ VG, we define the vertex subsets

WA
uv := {z ∈ VG : ρA(z, u) < ρA(z, v)},

and the expectation of their cardinality is

wpuv :=
∑
A⊆VG

pA|WA
uv|. (2.5)

A natural generalization of the distance-balancedness is given in the following definition.

Definition 2.9. A graph G = (VG, EG) is pTS-distance-balanced if wpuv = wpvu, for
every pair of adjacent vertices u, v ∈ VG. A graph G is TS-distance-balanced if it is
pTS-distance-balanced for each p ∈ [0, 1].

The following is the pTS-version of Theorem 1.2.

Theorem 2.10. A graph G = (VG, EG) is pTS-distance-balanced if and only if it is self-
pTS-median.

Proof. Observe that, as the graph G = (VG, EG) is connected, the statement is proved if
we show that, for every pair of adjacent vertices u, v ∈ VG, one has:

dpG(u)− dpG(v) =
1

n
(wpvu − wpuv). (2.6)

Now, by the definition of dpG(u) in Equation (2.4), we get

dpG(u)− dpG(v) =
1

n

∑
z∈VG

∑
A⊆VG

pA(ρA(u, z)− ρA(v, z))

=
1

n

∑
A⊆VG

pA
∑
z∈VG

(ρA(u, z)− ρA(v, z)) =
1

n

∑
A⊆VG

pA(|WA
vu| − |WA

uv|)
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since, being u and v adjacent, by virtue of Equation (2.1), we have

ρA(u, z)− ρA(v, z) =


1 if z ∈ WA

vu

−1 if z ∈ WA
uv

0 otherwise.

Finally, by Equation (2.5), we have

dpG(u)− dpG(v) =
1

n

∑
A⊆VG

pA(|WA
vu| − |WA

uv|) =
1

n
(wpvu − wpuv),

that proves Equation (2.6).

Remark 2.11. As we have already observed,

G is distance-balanced ⇐⇒ G is 0TS-distance-balanced.

Moreover, if, for two given vertices u, v ∈ VG, there exists ϕ ∈ Aut(G) such that ϕ(u) =
v, one has dpG(u) = dpG(v), for every p ∈ [0, 1]. This implies

G is vertex-transitive =⇒ G is TS-distance-balanced.

On the other hand, when p = 1, Hamilton-connected graphs satisfy d1G(u) = n− 1 + 1
n by

Equation (2.2) and Remark 2.4 for every vertex u ∈ VG, and then:

G is Hamilton-connected =⇒ G is 1TS-distance-balanced.

Notice that the converse of the last implication is not true, since there exist graphs which
are vertex-transitive but not Hamilton-connected (e.g., cyclic graphs).

Example 2.12. The graphW7 depicted in Figure 1 is the Wheel graph on 7 vertices. Being
Hamilton-connected, the graph W7 is 1TS-distance-balanced. Clearly, it is not distance-
balanced and then it is not 0TS-distance-balanced.

By an explicit computation (brute-force) we computed d1/2W7
(u) = 1

7·27 · 3842, whether
u is the central vertex or it belongs to the external cycle. As a consequence, the graph
W7 is 1

2TS-distance-balanced. We found quite surprising that this graph, that has a so
recognizable central vertex, presents such an equality property.

Figure 1: The Wheel graph W7 on 7 vertices.
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Example 2.13. Let H9 be the graph on 9 vertices depicted in Figure 2. This graph has
been introduced in [14] as the smallest example of a non-regular distance-balanced graph.
In particular, it is 0TS-distance-balanced, but an explicit computation gives d1/2H9

(v1) =
1

9·29 · 26688 and d1/2H9
(v2) = 1

9·29 · 26656. By virtue of Theorem 2.10, it is not 1
2TS-

distance-balanced.

v1 v2

Figure 2: The graph H9.

3 pTS-distance-balancedness and wreath product of graphs
We start this section by recalling the definition of the wreath product of two graphs.

Definition 3.1. Let G = (VG, EG) and H = (VH , EH) be two graphs. Let us fix an
enumeration of the vertices of G so that VG = {x1, . . . , xn}. The wreath product G o H
is the graph with vertex set V VG

H × VG = {(y1, . . . , yn)xi : xi ∈ VG, yj ∈ VH , j ∈
{1, . . . , n}}, where two vertices u = (y1, . . . , yn)xi and v = (y′1, . . . , y

′
n)xk are connected

by an edge if:

• (edges of type I) either i = k and yj = y′j for every j 6= i, and yi ∼ y′i in H;

• (edges of type II) or yj = y′j , for every j ∈ {1, . . . , n}, and xi ∼ xk in G.

It follows that if |VG| = n and |VH | = m, the graph G o H has nmn vertices. It is
proved that G oH is connected, bipartite or vertex-transitive, if and only if both G and H
are, respectively, connected, bipartite or vertex-transitive [7]. Moreover, if G is a regular
graph of degree rG and H is a regular graph of degree rH , then the graph G o H is an
(rG + rH)-regular graph.

There exists a practical and clarifying interpretation of the graph wreath product, given
by the Lamplighter random walk [20]. Suppose that a lamplighter moves along G, so that
each vertex of G represents a possible position of the lamplighter: at each vertex of G,
there is a lamp. The vertices of the graph H represent the possible colors of each lamp.
Therefore, a vertex (y1, . . . , yn)xi in G o H can be regarded as a configuration of colors
(y1, . . . , yn) (each yj is from VH ) together with a particular position xi (from VG) of the
lamplighter: the lamp at the position xj ∈ VG has the color yj ∈ VH . Two vertices of
G oH are adjacent if either they share the same configuration of colors and have adjacent
positions for the lamplighter in G (such an edge of type II corresponds to the situation of
the lamplighter moving to a neighbor vertex in G but leaving all lamps unchanged); or
they share the same position but the configuration of colors differ, by two adjacent colors,
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exactly for the lamp associated at that position (such an edge of type I corresponds to the
situation of the lamplighter changing the color of the lamp, to an adjacent color in H , in
the position where he stays). For this reason, the wreath product G o H is also called the
Lamplighter graph, with base graph G and color graph H .

The Lamplighter interpretation allows us to highlight the relationship between the
wreath product of graphs and Problems 2.5 and 2.6. We explicit this connection in the
two following lemmas, where the distance and the normalized total distance in G o H are
expressed in terms of distance and normalized total distance in H , and of their TS-version
in G.

Lemma 3.2 ([7]). Let G = (VG, EG) and H = (VH , EH) be two graphs of order n and
m, respectively. For any vertices u = (y1, . . . , yn)x, v = (y′1, . . . , y

′
n)x′ ∈ VGoH , we

have:

dGoH(u, v) = ρδ(u,v)(x, x
′) +

n∑
i=1

dH(yi, y
′
i),

where δ(u, v) := {xi ∈ VG : yi 6= y′i}.

Observe that the sum
∑n
i=1 dH(yi, y

′
i) can be interpreted as the geodesic distance in

the n-th iterated Cartesian product of H with itself. Moreover, in the Lamplighter interpre-
tation, the subset δ(u, v) consists of those vertices xi of the base graph G where the color
of the associated lamps yi and y′i does not coincide. In other words, δ(u, v) is the set of the
vertices of G that the lamplighter has to visit in order to move from the lamp configuration
of u to that of v.

Notice that fixing a vertex u in the graph G oH and considering a random vertex v =
(y′1, . . . , y

′
n)x′, with uniform probability 1

nmn in VGoH , induces a random subset δ(u, v)
of VG and a random vertex x′ in VG. More precisely, for a given subset A ⊆ VG, the
probability that the random set δ(u, v) is equal to A is exactly n(m− 1)|A|/nmn, because
the Lamplighter may be in any position, and there are |A| vertices where the lamps may
takem−1 distinct colors, whereas the colors of the lamps at the remaining n−|A| vertices
are fixed. This probability is exactly pA of Equation (2.3) for p = m−1

m . This means that
the model considered in Section 2 can be simply derived by assigning a uniform probability
distribution to the vertices of the wreath product. This is formally proved in Lemma 3.3.

Lemma 3.3. Let G = (VG, EG) and H = (VH , EH) be two graphs of order n and m,
respectively. Let u = (y1, . . . yn)x ∈ VGoH and p = m−1

m . Then:

dGoH(u) = dpG(x) +

n∑
i=1

dH(yi).

Proof. From Theorem 17 in [8], where the focus is on the non-normalized total distance,
we have:

nmndGoH(u) = nmn−1
n∑
i=1

mdH(yi) +
∑
A⊆VG

(m− 1)|A|
∑
x′∈VG

ρA(x, x′).
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Taking into account that p = m−1
m , we obtain:

dGoH(u) =

n∑
i=1

dH(yi) +
1

n

∑
A⊆VG

∑
x′∈VG

(m− 1)|A|

mn
ρA(x, x′)

=

n∑
i=1

dH(yi) +
1

n

∑
A⊆VG

∑
x′∈VG

p|A|(1− p)n−|A|ρA(x, x′).

The claim follows by using Equations (2.3) and (2.4).

In the following theorem we give necessary and sufficient conditions for a vertex of a
wreath product to be median and for the wreath product itself to be distance-balanced.

Theorem 3.4. Let G = (VG, EG) and H = (VH , EH) be two graphs with |VG| = n,
|VH | = m. Let u = (y1, . . . , yn)x ∈ VGoH , and p = m−1

m . Then u is median in G oH if
and only if y1, . . . , yn are median in H and x is pTS-median in G. In particular:

G is pTS-distance-balanced
H is distance-balanced ⇐⇒ G oH is distance-balanced .

Proof. Suppose that yi∗ is not median in H , so that there exists ȳ ∈ VH such that dH(ȳ) <
dH(yi∗). Denoting by u′ the vertex (y1, . . . , yi∗−1, ȳ, yi∗+1, . . . , yn)x ∈ VGoH , by Lem-
ma 3.3 we have dGoH(u′) < dGoH(u), and then u is not median in G oH .

Similarly, suppose that x is not pTS-median in G, so that there exists x̄ ∈ VG such that
dpG(x̄) < dpG(x). Denoting by u′′ the vertex (y1, . . . , yn)x̄ ∈ VGoH , by Lemma 3.3 again
we have dGoH(u′′) < dGoH(u), and then u is not median in G oH .

Viceversa, suppose that u is not median inG oH and then dGoH(u) is not minimal, then
one among {dH(yi)}i=1,...,n or dpG(x) cannot be minimal, and the statement follows.

Corollary 3.5. If H and H ′ are two distance-balanced graphs of the same order, then
G oH is distance-balanced if and only if G oH ′ is distance-balanced.

Remark 3.6. Another consequence of Theorem 3.4 is the equivalence of the TS-problems
forG with the classical problems forG oH , whereH is any distance-balanced graph. More
precisely, letH = (VH , EH) be a distance-balanced graph of orderm, and p = m−1

m . Then
we have:

x ∈ VG
is solution of Problem 2.5 ⇐⇒ (y1, . . ., yn)x ∈ VGoH

is solution of Problem 1.3

G
is solution of Problem 2.6 ⇐⇒ G oH

is solution of Problem 1.4.

Example 3.7. We know from Example 2.12 that the graph W7 is 1
2TS-distance-balanced.

By virtue of Theorem 3.4, the graph W7 o K2 is distance-balanced. Moreover, the graph
W7 o K2 has order 896, it is non-regular (since W7 is non-regular), and it is not bipartite
(since W7 is not bipartite).

Example 3.8. We know from Example 2.13 that the distance-balanced graph H9 is not
1
2TS-distance-balanced. As a consequence, the graph H9 oK2 is not distance-balanced.
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In the light of Example 2.12 and Example 3.7, we deduce that the distance-balancedness
of the wreath product G oH does not imply the distance-balancedness of the first factor G.
Moreover, in the light of Example 2.13 and Example 3.8, we deduce that the distance-
balancedness of the graphs G and H does not imply the distance-balancedness of their
wreath product.

We conclude this section by investigating the class of graphs G such that G o H is
distance-balanced whenever H is distance-balanced. By virtue of Theorem 3.4, this class
must contain the class of TS-distance-balanced graphs. The two classes actually coincide,
as we will prove in Theorem 3.11. We need a preliminary definition and lemma.

Definition 3.9. The total distance vector of the vertex u ∈ VG is the (n+ 1)-vector

Wρ(u,G) = (Wρ0(u,G),Wρ1(u,G), . . . ,Wρn(u,G)),

where, for each k ∈ {0, 1, . . . , n}, we set

Wρk(u,G) :=
∑

A⊆VG, |A|=k

∑
v∈VG

ρA(u, v).

In particular, observe that Wρ0(u,G) is the non-normalized total distance of the vertex u
in G.

Lemma 3.10. For every u ∈ VG and for every p ∈ [0, 1], we have:

dpG(u) =
1

n

n∑
k=0

pk(1− p)n−kWρk(u,G). (3.1)

Proof. The claim follows by combining Equation (2.4) with Definition 3.9, since the ex-
pression of pA in Equation (2.3) only depends on the cardinality of A.

Theorem 3.11. Let G = (VG, EG) be a graph of order n. The following are equivalent.

(1) G is TS-distance-balanced;

(2) G oH is distance-balanced for every distance-balanced graph H;

(3) G oKn32n is distance-balanced;

(4) G is pTS-distance-balanced for more than n distinct values of p ∈ [0, 1];

(5) the total distance vector Wρ(u,G) does not depend on the particular vertex u ∈ VG.

Proof. (1) =⇒ (2): It is a consequence of Theorem 3.4.
(2) =⇒ (4): If G o H is distance-balanced for every distance-balanced graph H , in

particular G oKm is distance-balanced for m = 2, . . . , n + 2, and then, by Theorem 3.4,
the graph G is pTS-distance-balanced for each p ∈

{
1
2 ,

2
3 , . . . ,

n+1
n+2

}
.

(4) =⇒ (5): For a given vertex u ∈ VG, we define the following polynomial of degree
n in the variable x

Pu(x) :=

n∑
k=0

xk(1− x)n−kWρk(u,G).
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By Lemma 3.10, we have Pu(p) = ndpG(u). Combining with hypothesis (4), for any pair
u, v ∈ VG, the polynomials Pu and Pv share more than n evaluations, and so Pu = Pv .
It is an easy exercise to prove that this implies that Wρk(u,G) = Wρk(v,G), for each
k ∈ {0, 1, . . . , n}, and so Wρ(u,G) = Wρ(v,G).

(5) =⇒ (1): It is a consequence of Lemma 3.10 and Theorem 2.10.
(2) =⇒ (3): It is true since the graph Kn32n is distance-balanced.
(3) =⇒ (5): As we already observed in Remark 2.2, for every A ⊆ VG, for every

u, v ∈ VG we have ρA(u, v) < n2. Since the number of subsets of VG having cardinality k
is clearly less than 2n, this implies

0 < Wρk(u,G) =
∑

A⊆VG, |A|=k

∑
v∈VG

ρA(u, v) < 2nn3. (3.2)

We set m := 2nn3 and p := m−1
m . Since, by hypothesis, G oKm is distance-balanced, it

follows that, for every u, v ∈ VG:

dpG(u)nmn = dpG(v)nmn,

and then, by Lemma 3.10:
n∑
k=0

(m− 1)kWρk(u,G) =

n∑
k=0

(m− 1)kWρk(v,G). (3.3)

By virtue of Equation (3.2) we can regard the quantities Wρk(u,G) (resp. Wρk(v,G)) as
the digits of dpG(u)nmn (resp. dpG(v)nmn) in base (m − 1); therefore, Equation (3.3)
implies that Wρk(u,G) = Wρk(v,G), for each k ∈ {0, 1, . . . , n}, and so Wρ(u,G) =
Wρ(v,G).

Example 3.12. Lemma 3.10 and the characterization (5) in Theorem 3.11 make us able to
investigate distance-balancedness (at least in those cases for which the total distance vector
is known) simply by studying roots of polynomials. For the graph H9 from Example 2.13,
we first computed the total distance vectors, which are given by

Wρ(v1, H9) = (14, 252, 1345, 3711, 6279, 6941, 5065, 2363, 641, 77)

Wρ(v2, H9) = (14, 252, 1360, 3762, 6333, 6933, 5001, 2307, 620, 74).

By using Equation (3.1) we were able to determine dpG(v1) and dpG(v2) for a general p.
In particular, the graph H9 is pTS-distance-balanced exactly for all values of p ∈ [0, 1]
satisfying the equation dpG(v1) = dpG(v2). It turns out that these values are p = 0 and
p ≈ 0.48219, which is the unique real root of the polynomial 2x5−13x4 + 38x3−63x2 +
54x− 15.

As we already observed in Remark 2.11, vertex-transitive graphs satisfy the equivalent
properties of Theorem 3.11. Moreover, we recall that regularity, vertex-transitivity and
bipartiteness are all properties preserved by the wreath product. This yields the following
infinite families of examples.

Example 3.13. Let H9 be the non-regular non-bipartite distance-balanced graph from Ex-
ample 2.13. Let H24 be the Handa graph which is non-regular, bipartite and distance-
balanced [13]. Consider the Generalized Petersen Graph P (7, 3), that is regular, distance-
balanced but not vertex-transitive [15]. Then:
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• {Kn oH9}n∈N is a family of non-regular, non-bipartite, distance-balanced graphs;

• {Kn o P (7, 3)}n∈N is a family of regular, non-vertex transitive, distance-balanced
graphs;

• {Kn,n oH24}n∈N is a family of non-regular, bipartite, distance-balanced graphs.

It is clear that, in order to obtain other infinite families with the same properties, one can
replace Kn,n or Kn with any (bipartite or not) vertex-transitive graph, and the second
factor with any distance-balanced graph sharing the same properties of regularity, vertex-
transitivity, bipartiteness.

4 Conclusions
Vertex-transitive graphs are TS-distance-balanced. More generally, if u and v are vertices
of a graph G = (VG, EG) for which there exists ϕ ∈ Aut(G) such that ϕ(u) = v, one has
Wρ(u,G) = Wρ(v,G). In other words, the total distance vector is constant on the orbits
of VG under the action of Aut(G). This suggests that it is possible to use it as an invariant
in order to distinguish vertices: it is a finer invariant than the standard total distance (see
Example 3.12). Therefore, it is natural to ask whether this invariant is complete on the orbit
partition of vertices. The following question is a total-distance-analogue of Question 1 in
[7] about the Wiener vector and the isomorphism problem.

Question 4.1. Does there exist a graph G = (VG, EG) with two vertices u, v ∈ VG for
which there exists no automorphism ϕ such that ϕ(u) = v, but Wρ(u,G) = Wρ(v,G)?

A negative answer would imply that the equivalent conditions of Theorem 3.11 are also
equivalent to the vertex-transitivity property.

A last remark is that, regardless of the answer to our Question 4.1, the wreath product
construction produces new infinite families of distance-balanced graphs, which cannot be
obtained via the classical graph products. Moreover, the graphs in these families possibly
inherit good properties from their factors (see Example 3.13). We believe that this new
approach may provide different examples and counterexamples in the field of distance-
balancedness and its generalizations, and for this reason it deserves to be further investi-
gated and exploited.
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