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A B S T R A C T  A R T I C L E   I N F O 
Recently, besides regression analysis, artificial neural networks (ANNs) are 
increasingly used to predict the state of tools. Nevertheless, simulations 
trained by cutting modes, material type and the method of sharpening twist 
drills (TD) and the drilling length from sharp to blunt as input parameters and 
axial drilling force and torque as output ANN parameters did not achieve the 
expected results. Therefore, in this paper a family of artificial neural networks 
(FANN) was developed to predict the axial force and drilling torque as a func-
tion of a number of influencing factors. The formation of the FANN took place 
in three phases, in each phase the neural networks formed were trained by 
drilling lengths until the drill bit was worn out and by a variable parameter, 
while the combinations of the other influencing parameters were taken as 
constant values. The results of the prediction obtained by applying the FANN 
were compared with the results obtained by regression analysis at the points 
of experimental results. The comparison confirmed that the FANN can be used 
as a very reliable method for predicting tool condition. 
© 2020 CPE, University of Maribor. All rights reserved. 
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1. Introduction 
The prediction of the tool condition, i.e. the determination of correlations between the target 
function and the influencing parameters, is of high importance, since the technological and eco-
nomic effects of the machining process depend directly on the tool life. However, due to the 
highly complex phenomena that develop within the cutting zone and are caused by the influence 
of a number of mutually collinear factors, modeling the cutting process is difficult. One of the 
most accurate and reliable methods for predicting the tool condition is the experimental-
analytical method, in which a regression model for predicting the tool condition is created on the 
basis of the determined dependence of the target function on the influencing parameters [1]. 
Nevertheless, regression analysis does not provide satisfactory results when the relationship 
between the target function and the influencing parameters is non-linear, as is usually the case 
in cutting, and requires additional experiments. For this reason, many researchers have recently 
started to apply the principles of ANNs to the modeling of the cutting process. 

Krivokapić et al. [2], explored the possibility of using ANN to predict the wear of S390 high 
speed steel twist drills (TD) produced by powder metallurgy (PM), when drilling hardened steel. 
TD nominal diameter, sharpening mode, number of revolutions, feed rate and drilling length 
were used as input parameters and the mean value of the wear band width of the back surface 
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was used as output parameter. Kaya et al. [3] presented an effective and efficient model for as-
sessing cutting tool wear when milling the Inconel 718 superalloy, based on ANN. The model 
trained with components of cutting force in three axes, torque, conditions and cutting time 
showed a very good correlation between actual and predicted values of tool wear. Also in milling 
operations, Wu et al. [4] compared three machine learning algorithms, including ANNs, SVR, and 
RFs in predicting tool wear. Performance measures include mean square error, R square, and 
training time. A number of statistical characteristics have been extracted from cutting forces, 
vibrations, and acoustic emissions. A similar study using a Response Surface Methodology 
(RSM), a genetic algorithm (GA) and a Grey Wolf Optimizer (GWO) algorithm to predict surface 
roughness in ball-end nose milling of hardened steel was conducted by Sekulic et al. [5]. Two 
modeling techniques, RSM and ANN, have been used to develop Ra and VB predictive models in 
turning and their predictive capabilities have been compared in a study by Tamang et al. [6]. 
Netoa et al. [7] used two types of ANN to assess the diameter of precision drilled holes in alumi-
num and titanium alloys. The input parameters were signals of acoustic emission, power and 
cutting force and vibration. Rao et al. [8] used ANN to predict the surface roughness, the tool 
wear and the workpiece vibration amplitude drilling AISI 316 steel, and their input parameters 
were tool tip radius, cutting speed, feed rate and the amount of material removed. The applica-
tion of ANN [9] resulted in a model for monitoring the wear condition depending on the acoustic 
emission signal. By applying ANN, Kannan et al. [10] have monitored the roughness of the ma-
chined surface as a function of the influencing parameters when drilling brass plates and have 
developed a model for monitoring drill wear with optimisation of feed rate, cutting speed, thrust 
and torque. Benkedjouh et al. [11] formed a model for assessing tool condition and predicting its 
lifetime, based on the properties obtained from the control signals and the support of vector 
regression to assess and predict tool wear. Drouillet et al. [12] developed an ANN-based model 
for predicting the remaining tool life based on the value of the measured power of the spindle 
when milling stainless steel workpieces at different cutting speeds. D'Addona et al. [13] showed 
that ANN is a reliable method for monitoring the wear of drill based on the analysis of vibration 
signals. Patra et al. [14] developed an ANN model to predict the number of drill holes based on 
axial force, cutting speed, drill spindle speed and feed rate. Khorasani and Yazdi [15] developed 
a general dynamic ANN system for monitoring surface roughness when milling Al 7075 and St 
52 using cutting speed, feed rate, material type, coolant, vibration and noise as input parameters. 
Mikołajczyk et al. [16] confirmed that a useful industrial tool for assessing tool life in turning by 
combining image recognition software and ANN. Wang and Jia [17] developed ANN to express 
thrust force and delamination factor as a function of drilling parameters. Multi-objective optimi-
zation of drilling parameters is than performed based on NSGA-II. In the research of Kumar and 
Hynes [18] the ANFIS model has been used for predicting surface roughness of drilled galva-
nized steel, while optimization was performed using the GA method. In Mondal et al. [19] the 
minization of burr formation in drilling process was performed with the application of regres-
sion modeling and ANN. In the work of Schorr et al. [20] an approach to predict the quality of 
drilled and reamed bores was presented. The machine learning method of random forest was 
used to predict the concentricity and the diameter of the bores on the basis of the torque meas-
urements. Yin et al. [21] have established the model by backpropagation ANN for the prediction 
of microhole diameters and hole roundness in laser drilling. 

The importance of predicting tool wear at different cutting conditions, possible limitations of 
regression analysis and the increasing use of ANN in tool condition prediction were the chal-
lenges for this research. The aim of the research was to develop a model for a comprehensive 
prediction of tool wear of TDs as a function of a number of influencing parameters for drill 
lengths up to the point when TD became worn. Axial force and torque by drilling were chosen as 
a target function. Both provide the most reliable information about tool wear that can be meas-
ured during the cutting process. The input parameters for ANNs were: the material of the TD, 
sharpening mode and nominal diameter d, number of revolutions n, feed rate s and achieved 
drilling length Lmax. The attempt to create the desired model by applying a complex ANN did not 
lead to a satisfactory result; therefore the idea was to form a family of simple ANNs (FANN). 
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2. Materials and methods 
In order to create a model for predicting the TD condition, backpropagation was performed us-
ing ANNs. The modeling was based on the determined correlations between the target functions 
(drilling force and torque) and the influencing parameters by drilling of quenched and tempered 
alloy steel 42CrMo4 (43-45 HRC). In the experiments, twist drill bits (DIN 338) made of high-
speed steel with increased Co content were used, which were produced in the conventional met-
allurgical process (C) or in the powder metallurgical process (PM), regularly sharpened with a 
corrected main cutting blade (CMB) or ground crosswise (CL), see Table 1. 

The workpiece dimensions (thickness) were adjusted so that the bore length of L = 3d mm is 
maintained with uniform distribution of the workpiece hardness over the longitudinal and cross 
section. The cutting conditions were adjusted to the recommendations for drilling hardened 
steel. 

For cooling and lubrication the 8 % solution of Teolin H/VR in the amount of 1 l/min was 
used. Axial force and torque were measured with the three-component dynamometer "Kistler", 
TYP 8152B2, in the range from 100 to 900 kHZ, integrated in the conventional drilling machine 
TYP FGU-32 and connected to a Global Lab software for data acquisition, as illustrated in Fig. 1. 
The initial experiment was conducted with four repetitions of drilling tests in the central point 
according to the matrix plan for three-factor experiment shown in Table 2. 

 

Table 1 Tool material and sharpening modes for TDs 
Influential parameters 

 Cutting 
tool material 

High-speed steel with 8 % Co, produced in conventional metallurgy process, S2-9-1-8, (C) 
High-speed steel with 8 % Co, produced in powder metallurgy, S390 MICROCLEAN, (PM) 

Sharpening mode of 
drills 

Regular with corrected main blade (CMB) 
Cross-like (CL) 

 

 
Fig. 1 Set-up for measurement of axial force and torque in drilling [1] 

 
Table 2 Matrix plan of three-factor experiment [1] 

Experimental 
points 

Coded values Real values Output vectors 
 Fa, M x1 x2 x3 d [mm] n [rpm] s [mm/rev] 

1 -1 -1  -1 6.0 250 0.027 F1, M1 
2 +1 -1  -1 10.0 250 0.027 F2, M2 
3 -1 +1  -1 6.0 500 0.027 F3, M3 
4 +1 +1  -1 10.0 500 0.027 F4, M4 
5 -1 -1 +1 6.0 250 0.107 F5, M5 
6 +1 -1 +1 10.0 250 0.107 F6, M6 
7 -1 +1 +1 6.0 500 0.107 F7, M7 
8 +1 +1 +1 10.0 500 0.107 F8, M8 
9 0 0 0 7.75 355 0.053 F9, M9 

10 0 0 0 7.75 355 0.053 F10, M10 

11 0 0 0 7.75 355 0.053 F11, M11 

12 0 0 0 7.75 355 0.053 F12, M12 

 
Based on the matrix plan, measurement of the axial force and the torque for the particular ex-
periment was performed at five measuring points for both tool materials and both sharpening 
modes. The first measurement was performed while drilling L = 3d mm deep holes with sharp 
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TD, while the fifth measurement was performed when the drilling lengths were reached, where-
by the following predefined maximum allowed flank wear values (hmax) for different TD were 
reached: 

• for TD Ø6.0 mm – hmax = 0.25 mm, 
• for TD Ø7.75 mm – hmax = 0.30 mm, 
• for TD Ø10.0 mm – hmax = 0.35 mm. 
The other three measurements were performed upon achievement of the drilling lengths 

whereat the flank wear of TD remained within the interval 0 < hi < hmax, and i = 2, 3, 4.  
Under different experimental conditions (material of TD, sharpening mode, nominal diame-

ter, number of revolutions and feed rate), TD reached the maximum allowed flank wear at dif-
ferent drilling lengths, as shown in Table 3. 

Based on the measurement results of all the TD used in the experiments, diagrams for the axi-
al force and the torque as a function of the drilling length and the cutting regime were generated. 
 

Table 3 Drilling lengths at which drills achieved maximum allowable wear 
No. Drills 

mate-
rial 

Sharpe-
ning 

mode 

d 
[mm] 

n 
[rpm] 

s 
[mm/ 
rev] 

Lmax  
[mm] 

No. Drills 
mate-

rial 

Sharpe-
ning 

mode 

d 
[mm] 

n 
[rpm] 

s 
[mm/ 
rev] 

Lmax  
[mm] 

1 

S3
90

 

CM
B 

6.0 250 0.027 560 25 

S 
2-

9-
1-

8 

CM
B 

6.0 250 0.027 630 
2 10.0 250 0.027 750 26 10.0 250 0.027 1420 
3 6.0 500 0.027 1325 27 6.0 500 0.027 3050 
4 10.0 500 0.027 3250 28 10.0 500 0.027 3020 
5 6.0 250 0.107 1330 29 6.0 250 0.107 1550 
6 10.0 250 0.107 1050 30 10.0 250 0.107 2400 
7 6.0 500 0.107 3000 31 6.0 500 0.107 4650 
8 10.0 500 0.107 800 32 10.0 500 0.107 720 
9 7.75 355 0.053 1730 33 7.75 355 0.053 1755 

10 7.75 355 0.053 2370 34 7.75 355 0.053 1220 
11 7.75 355 0.053 1920 35 7.75 355 0.053 1520 
12 7.75 355 0.053 1870 36 7.75 355 0.053 1480 
13 

CL
 

6.0 250 0.027 1300 37 

CL
 

6.0 250 0.027 610 
14 10.0 250 0.027 1000 38 10.0 250 0.027 1100 
15 6.0 500 0.027 2700 39 6.0 500 0.027 3690 
16 10.0 500 0.027 5075 40 10.0 500 0.027 5800 
17 6.0 250 0.107 1400 41 6.0 250 0.107 4200 
18 10.0 250 0.107 2000 42 10.0 250 0.107 3820 
19 6.0 500 0.107 2260 43 6.0 500 0.107 5850 
20 10.0 500 0.107 900 44 10.0 500 0.107 800 
21 7.75 355 0.053 2650 45 7.75 355 0.053 2750 
22 7.75 355 0.053 2530 46 7.75 355 0.053 2340 
23 7.75 355 0.053 2650 47 7.75 355 0.053 2400 
24 7.75 355 0.053 2850 48 7.75 355 0.053 2440 
 

 
    Fig. 2 Axial force vs. drilling length and cutting 
    regime for TD S390, CMB, Ø6.0 

    Fig. 3 Axial force vs. drilling length for 4 repeated 
    experiments in central plan point (d4 = 7.75 mm, 
    n5 = 355 rpm, s5 = 0.053 mm/rev) for TD S390, CMB 
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The axial force Fa as a function of the drilling length L for TD Ø6.0 mm, made of S390 PM steel, 
regularly sharpened (CMB), is shown in Fig. 2 and for TD in the central plan point (d4 = 7.75 mm, 
n5 = 355 rpm, s5 = 0.053 mm/rev) in Fig. 3. The diagrams show that all the different factors (ma-
terial of twist drill bits, sharpening mode and cutting regime) had a significant influence on the 
axial force Fa. 

3. Results and discussion 
As far as the defined correlation curves are concerned, the trend curves and polynomial equa-
tions were defined for their interpretation, thus providing sufficient data sets for the ANN out-
put parameters. After the data research in ANN the tool condition prediction application, a feed-
forward back propagation ANN training was conducted in the MATLAB 6.0 software package. 
The training was performed with six input parameters, three of which were parameters of the 
cutting regime (nominal diameter d, number of revolutions n, and feed rate s), material type of 
TD, sharpening mode and drilling length l, and two output parameters – axial drilling force Fa 
and torque M, as shown in Fig. 4. 

What follows is a selection of parameters amongst those offered in back propagation ANN 
training within MATLAB software package: 

1. Training function 
2. Adaption learning function 
3. Performance function 
4. Number of epochs 
5. Number of neuron layers, and for each neuron layer 

5.1 Number of neurons in a layer 
5.2 Transfer function 

 

 
Fig. 4 Complex ANN training scheme [22] 

 
As one of the ways to improve generalization during ANN training, it is suggested to surround 

each element of the trained family with a low noise level. By applying the above mentioned 
method, the ANN trainees approached a training error of less than 10-10. After ANN training, it 
was checked (simulated) with the data relevant to the experiment, but was not used in the train-
ing process. However, the simulation of the trainees ANN did not yield the expected results, 
which indicates that it is impossible to efficiently process a large amount of data for the cutting 
process using the usual approach with ANN multiple inputs and outputs. This again confirms the 
fact that predicting the tool condition, which depends on numerous influential parameters, is a 
delicate matter. The trained ANN had a poor generalization due to the occurrence of the follow-
ing phenomena: 

• depending on the type of TD material, the sharpening mode and the cutting regime (nomi-
nal diameter, number of revolutions and feed rate), TD reached the maximum wear at dif-
ferent drilling lengths, as shown in Fig. 2 and Table 3; 

• wide dispersion of axial drilling force and torque depending on the type of TD material, 
sharpening mode and cutting regime; and 
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• the same type of TD material, the same sharpening mode and the same cutting conditions 
(nominal diameter, number of revolutions and feed rate ) together with different drilling 
lengths (changing only one of the input parameters while keeping the others constant) are 
an additional disadvantage for ANN. 

3.1 Formation of the family of neural networks (FANN) 

Since the trained ANN did not achieve the research goal set for the reasons worked out, the fol-
lowing idea came up: Instead of training a complex ANN with 6 input parameters and axial drill-
ing force Fa and torque M as output parameters, the training of a family of simple ANNs should 
be carried out with two variable parameters, one of which would always be the drilling length L, 
while the axial drilling force Fa would be the output parameter. 

The formation of a FANN was performed for TD material – PM (high-speed steel produced in 
powder metallurgy process) and sharpening mode – CBM (regular with corrected main cutting 
edge), where one of the parameters of the cutting regime (d, n and s) and the drilling length L 
were variable values, while the combination of the other two parameters was assumed to be 
constant. As shown in Fig. 5, the formation of FANN (ANNs training) was organised in several 
phases. In Phase I, the nominal diameter of the TD involved in the experiment (d1 = 6.0 mm and 
d2 = 10.0 mm) and drilling length L were taken as variables, while the combinations of the fol-
lowing parameters involved in the experiment: type of TD material, sharpening mode, number of 
revolutions and feed rate, were taken as constant values. Over the course of Phase I, simulation 
of the trained ANN was performed for nominal TD diameters of 6.0 < dn < 10.0 mm (d3 = 7.0, d4 = 
7.75 and d5 = 9.0 mm) and drilling length of L = 0-2.000 mm. 

 

TRAINING 

PH
A

SE
 I

n/m 
d

TA
R

G
ET

SIMULATION

di = 6, 10
lj

6 < dn < 10
lj= 0 - 2000

TRAINING 

PH
A

SE
 II

n/m 
n

TA
R

G
ET

SIMULATION

np = 250, 500
lj

250 < nq < 500
lj= 0 - 2000

Fsj  

TRAINING 

PH
A

SE
 II

I

TA
R

G
ET

SIMULATION

sk = 0.027, 0.107
lj

027 < st < 0.107
lj= 0 - 2000

M=P
N=1

np = 250, 500
sk =0 .027, 0.107

M=P
N=1

6.0 ≤ d ≤ 10.0
s = 0 .027, 0.107

Fdj  

M=P
N=1

6 ≤ d ≤ 10
250 ≤ n ≤ 500

Fnj  

n/m 
s

Fnj

EXPERIMENT
Outer plan points

d4 =7.75
n5 = 355

   s5 = 0.053
Fj 

Central plan point

EXPERIMENT

M =  P, K
N = 1, 2
di = 6.0, 10.0
np = 250, 500
sk = 0.027, 0.107

EXPERIMENT
Outer plan points

M =  P, K
N = 1, 2
di = 6.0, 10.0
np = 250, 500
sk = 0.027, 0.107

Fdj,  

 Fsj

EXPERIMENT
Outer plan points

M =  P, K
N = 1, 2
di = 6.0, 10.0
np = 250, 500
sk = 0.027, 0.107

 
Fig. 5 Development of a family of simple ANNs 
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During Phase II of ANN formation, values for the number of revolutions n involved in the ex-
periment (n1 = 250 and n2 = 500 rpm) and the drilling length L were taken as the variable pa-
rameters, while the constant values contained combinations of the following parameters: TD 
material, sharpening mode and feed rate (s1 = 0.027 and s2 = 0.107 mm/rev), and the TD diame-
ters for which the values of the axial forces had been obtained by experimenting and simulating 
the ANN formed in Phase I (6.0 ≤ d ≤ 10.0 mm). The simulation of ANN in Phase II was per-
formed with the standard number of revolutions within the range 250 < nq < 500 (n3 = 280, n4 = 
315, n5 = 355, n6 = 400 and n7 = 450 rpm) and the drilling length L expressed in mm. 

In Phase III, values of the feed rate (s1 = 0.027 and s2 = 0.107 mm/rev) and the drilling length 
L were taken as variable parameters, while the constant values comprised combinations of the 
following parameters: TD material, sharpening mode, diameters within the range of 6.0 ≤ d ≤ 
10.0 mm (for which the values of axial force Fa had been obtained by experimenting and simula-
tion of the ANN in Phase I), and standard number of revolutions within the range of 250 ≤ n ≤ 
500 rpm (for which the values of axial force Fa had been obtained by experimenting and simula-
tion of the ANN in Phase II). The simulation of a trained ANN in Phase III was performed with the 
standard feed rate within the interval of 0.027 < st < 0.107 (s3 = 0.033, s4 = 0.042, s5 = 0.053, s6 = 
0.067 and s7 = 0.084 mm/rev) and the drilling length L. The axial drilling force Fa, expressed in N, 
was chosen as the output parameter of all ANNs. 

In Phase I of the FANN formation, only those ANNs were trained which were involved in the 
experiment with the factor values di, np and sk,, i.e. the ANN: n11, n21, n12 and n22. 
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Fig. 6 First model of Phase II of FANN formation 
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In Phase II, besides the ANN trained with the values of parameters involved in the experiment 
(n11, n21, n12 and n22), the following ANNs were formed: n41 (n1 = 250 and n2 = 500 rpm; d4 = 
7.75 mm; s1 = 0.027 mm/rev) and n42 (n1 = 250 and n2 = 500 rpm; d4 = 7.75 mm; s2 = 0.107 
mm/rev), as well as control ANNs d51 (d1 = 6.0 and d2 = 10.0 mm; n5 = 355 rpm; s1 = 0.027 
mm/rev) and d52 (d1 = 6.0 and d2 = 10.0 mm; n5 = 355 rpm; s2 = 0.107 mm/rev), as shown in Fig. 
6. The values of the axial force Fa for combinations of influencing parameters of the mentioned 
ANN were obtained by simulation of ANN in Phase I or by ANN from Phase II, which was trained 
with the factor values involved in the experiment.  

The results of the simulation of ANN n41 for n5 = 355 rpm (d4 = 7.75 mm and s1 = 0.027 
mm/rev) shall be consistent with the results of the simulation of control ANN d51 for d4 = 7.75 
mm (n5 = 355 rpm and s1 = 0.027 mm/rev), while the results of simulation of ANN n42 for n5 = 
355 rpm shall be consistent with the results of the simulation of the control ANN d52 for d4 = 
7.75 mm. 

In Phase III, in addition to the ANNs trained with the factor values involved in the experiment 
(s11, s21, s12 and s22), the following ANNs were formed: s41 (s1 = 0.027 and s2 = 0.107 mm/rev; 
d4= 7.75 mm; n1 = 250 rpm) and s42 (s1 = 0.027 and s2 = 0.107 mm/rev; d4 = 7.75 mm; n2 = 500 
rpm), and the control ANNs d15 (d1 = 6.0 and d2 = 10.0 mm; n1 = 250 rpm; s5 = 0.053 mm/rev) 
and d25 (d1 = 6.0 and d2 = 10.0 mm; n2 = 500 rpm; s5 = 0.053 mm/rev). The values of the axial 
force Fa for combinations of influencing parameters from the above stated ANNs were obtained 
by simulating the ANNs from the Phase II, i.e. ANNs of the Phase III which had been trained with 
the factor values involved in the experiment (s11, s21, s12 and s22). The results of the simula-
tion of ANN s41 for s5 = 0.053 mm/rev (d4 = 7.75 mm and n1 = 250 rpm) must correspond to the 
results of the simulation of ANN d15 for d4 = 7.75 mm (n1 = 250 rpm and s5 = 0.053 mm/rev), 
while the results of the simulation of ANN s42 for s5 = 0.053 mm/rev (d4 = 7.75 mm and n2 = 500 
rpm) must correspond to those of the simulation of ANN d25 for d4 = 7.75 mm. 

In addition to those ANNs specified in the fifth model in Phase III, the following ANNs were 
also formed: s15 (s1 = 0.027 and s2 = 0.107 mm/rev, d1 = 6.0 mm and n5 = 355 rpm), s25 (s1 = 
0.027 and s2 = 0.107 mm/rev, d2 = 10.0 mm and n5 = 355 rpm), s45 (s1 = 0.027 and s2 = 0.107 
mm/rev; d4 = 7.75 mm and n5 = 355 rpm) and control ANNs d55 (d1 = 6.0 and d2 = 10.0 mm; n5 = 
355 rpm and s5 = 0.053 mm/rev) and in the control model also n45 (n1 = 250 and n2 = 500 rpm; 
d4 = 7.75 mm; s5 = 0.053 mm/rev), for which the values of the axial force Fa have been obtained 
by simulating the ANNs from previous phases, as shown in Fig. 7. 
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Fig. 7 Control model of FANN formation 
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Results of the simulation of ANN d55 for d4 = 7.75 mm (n5 = 355 rpm, s5 = 0.053 mm/rev); 
s45 for s5 = 0.053 mm/rev (d4 = 7.75 mm, n5 =355 355 rpm) and n45 for n5 = 355 rpm (d4 = 7.75 
mm, s5 = 0.053 mm/rev) must correspond both to each other and to the results of the experi-
ment in the central plan point (d4 = 7.75 mm; n5 = 355 rpm and s5 = 0.053 mm/rev). 

The first training of the ANNs was performed at the outer points of the experiment, using the 
values of axial force obtained by the experiment as input parameters. The formation of the se-
quence of ANNs was continued towards the central point of the plan, as shown in Fig. 8, so that 
the final training was performed in the central point of the plan. As output parameters the values 
of axial force Fa obtained by the simulation of the ANNs in the previous phases were used. 

The values of the axial drilling force Fa as a function of the drilling length and the influencing 
parameters (type of TD material, sharpening mode, nominal diameter, number of revolutions 
and feed rate), which were obtained by the simulation of trained ANNs can be graphically dis-
played, as shown in Figs 9. and 10. Fig. 9. shows the values of the axial force Fa as a function the 
drilling length obtained by the simulation of ANN d11 (M = PM, SM = CMB, n1 = 250 rpm, s1 = 
0.027 mm/rev) at the nominal diameters of drills d3 = 7.0; d4 = 7.75 and d5 = 9.0 mm in relation 
to the values of the axial force determined in the experiment for drills with nominal diameter d1 
= 6.0 and d2 = 10.0 mm. 

 

 
 

 

 

 

 

 

 

 
 

 
 

  
 

Fig. 10 shows the values of the axial force Fa as a function of the drilling length obtained by 
simulating ANN n12 (M = PM, SM = CMB, d1 = 6.0 rpm, s2 = 0.107 mm/rev) for the number of 
revolutions n3 = 280; n4 = 315, n5 = 355, n6 = 400 and n7 = 450 rpm, in relation to the value of the 
axial force at the number of revolutions n1 = 250 and n2 = 500 rpm obtained in the experiment. 
The same principle can be applied to represent the values of axial force as a function of drilling 
length obtained by simulating others ANNs within the family formed. 
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Fig. 9 Results of simulation of ANN d 11 
(n1 = 250 rev/min, s1 = 0.027 mm/rev) 

 

          Fig. 10 Results of simulation of ANN n 12 
          (d1 = 6.0 mm, s2 = 0.107 mm/rev) 
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Comparison values of the axial drilling force, which were obtained by simulating ANN n41 for 
n5 = 355 rpm (d4 = 7.75 mm, s1 = 0.027 mm/rev) and control ANN d51 for d4 = 7.75 mm (n5 = 355 
rpm, s1 = 0.027 mm/rev) are shown in Fig. 11, while those for ANN s42 for s5 = 0.053 mm/rev (d4 
= 7.75 mm, n2 = 500 rpm) and control ANN d25 for d4 = 7.75 mm (n2 = 500 rpm, s5 = 0.053 
mm/rev) are shown in Fig. 12. The diagrams show that the results of simulation of control ANN 
d51 correspond to the results of simulation of ANN n41 with a maximum deviation of 3.14 % for 
L = 500 mm (Fig. 11), while the results of simulation of control ANN d25 correspond to the re-
sults of simulation of ANN s42 with a maximum deviation of 3.95 % for L = 2000 mm (Fig. 12). 

The same principle can be used to represent comparative values of axial force obtained by 
simulation of ANN n42 and control ANN d52 as well as ANN s41 and control ANN d15. 

 

 
      Fig. 11 Comparative results of simulation of ANN 
      n 41 (for n5 = 355 rpm) and d 51 – n 1 controlling 
      (for d4 = 7.75 mm) 

Fig. 12 Comparative results of simulation of ANN 
s 42 (for s5 = 0.053 mm/rev) and d 25 – s 2 controlling 
(for d4 = 7.75 mm) 

 
The values of the axial drilling force Fa for four repeated experiments in the central plan point 

and their mean value are shown in Fig. 13. Comparative values of axial drilling force obtained by 
simulation of ANN s45 for s5 = 0.053 mm/rev, the control ANN d55 for d4 = 7.75 mm and n45 for 
n5 = 355 rpm, and mean values of the experiments in the central plan point are shown in Fig. 14. 
The diagrams in Figs 13 and 14 show that the results of the simulation of ANN s45 for s5 = 0.053 
mm/rev and the control ANN d55 for d4 = 7.75 mm, and n45 for n5 = 355 rpm correspond to 
each other and lie within the interval comprising the values of three repeated experimental re-
sults in the central plan point. 

The results of the fourth repeated experiment deviate both from the results of the other three 
repeated experiments and from the results obtained by simulating ANN. The comparison of the 
results of the simulation with the mean value of four experiment results in the central planning 
point reveals the following: 

• the deviation of the results of the simulation of ANN s45 from the mean value of the exper-
imental results is at most 6.598 % for L = 1000 mm; 

• the deviation of the results of the simulation of the control ANN d55 from the results of the 
simulation of ANN s45 is at most 7.89 % for L = 0 mm and from the mean value of the ex-
perimental results for four repeated experiments is at most 9.7 % for L = 2000 mm, and 

• the deviation of the results of the simulation of the control ANN n45 from the results of the 
simulation of ANN s45 is maximum 5.596 % and from average of four repeated experi-
ments results maximum of 10.74 % for L = 1000 mm. 

The results of the simulation of the ANN central plan point come even closer to the experi-
mental results when compared with the mean value of three instead of all four repeated experi-
ments. 
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                Fig. 13 Value of axial force for four repeated 
                experiments in the central plan point 

   Fig. 14 Comparative values of axial force obtained by 
   simulation of ANN s 45 (for s5 = 0.053 mm/rev), d 55 
   (for d4 =7.75 mm) and n 45 (for n5 = 355 rev/min) as well 
   as mean values of four, that is to say, three central point 

3.2 Comparative analysis of the axial drilling force obtained by ANN and regression analysis  

The comparative analysis of the values of the axial drilling force Fa obtained by ANN and regres-
sion analysis was performed for the following drilling lengths L = 100, 500 and 1000 mm. 

The experimental values of the axial drilling force for the drilling lengths L = 100 mm, L = 500 
mm and L = 1000 mm are shown in Table 4. 

The axial drilling force Fa, as a target function, can be represented in the form of the complex 
exponentiation, shown by the Eq. 1.  

 

𝐹𝐹𝑎𝑎  = 𝐶𝐶𝐹𝐹𝑑𝑑𝑏𝑏1𝑛𝑛𝑏𝑏2𝑠𝑠𝑏𝑏3  (1) 
 

In order to obtain a regression model that describes which will describe the target function as 
accurately as possible with respect to Eq. 1, the incomplete second-order three-factor model 
(incomplete quadratic model) with constant coefficients was applied after completion of the 
linearization, as shown in Eq. 2. 

 
Table 4 The experimental values of the axial drilling force 

EX
PE

RI
-

M
EN

TA
L 

 
PO

IN
TS

 

P L A N - M A T R I X  
Coded values Actual values 

Experimental Fa values [N] 
x1 

 
x2 

 
x3 

 
x1 x2 

 
x1 x3 

 
x2 x3 

 
x1 x2 x3 

 
d 

[mm] 
n  

[rpm] 

s  
[mm/ 
rev] L=100 mm L=500 mm L=1000 mm 

1 -1 -1 -1 1 1 1 -1 6.0 250 0,027 544,85 649,96 686.90 
2 1 -1 -1 -1 -1 1 1 10.0 250 0,027 700,86 996,71 1325.30 
3 -1 1 -1 -1 1 -1 1 6.0 500 0,027 401,11 464,31 564.24 
4 1 1 -1 1 -1 -1 -1 10 500 0,027 654,23 717,83 768.65 
5 -1 -1 1 1 -1 -1 1 6.0 250 0,107 740,32 909,58 959.71 
6 1 -1 1 -1 1 -1 -1 10.0 250 0,107 1339,03 1716,27   1907.70 
7 -1 1 1 -1 -1 1 -1 6.0 500 0,107 931,98 962,00 989.67 
8 1 1 1 1 1 1 1 10.0 500 0,107 1329,16 1531,00 1727.44 
9 0 0 0 0 0 0 0 7.75 355 0,053 720,56 838,55 950.36 

10 0 0 0 0 0 0 0 7.75 355 0,053 615.73 736.10 870.26 
11 0 0 0 0 0 0 0 7.75 355 0,053 633.70 784.84 873.20 
12 0 0 0 0 0 0 0 7.75 355 0,053 667,50 703,69 736.60 
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𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + 𝑏𝑏3𝑥𝑥3 + 𝑏𝑏12𝑥𝑥1𝑥𝑥2 + 𝑏𝑏13𝑥𝑥1𝑥𝑥3 + 𝑏𝑏23𝑥𝑥2𝑥𝑥3 + 𝑏𝑏123𝑥𝑥1𝑥𝑥2𝑥𝑥3 (2) 
The coding has been performed by the transformation Eq. 3: 

𝑥𝑥1 = 2 ln(𝐷𝐷)−ln(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚)
ln(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚)−ln(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) + 1 , 𝑥𝑥2 = 2 ln(𝑛𝑛)−ln(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚)

ln(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚)−ln(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚) + 1 and  𝑥𝑥3 = 2 ln(𝑠𝑠)−ln(𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚)
ln(𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚)−ln(𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) + 1 (3) 

By applying the regression analysis, the coefficients of models for drilling lengths L =100, 500 
and 1000 mm, have been obtained and shown in Table 5. 

Based on the coefficients shown in Table 5 and the return to the original coordinates, the re-
gression models of the target function (axial drilling force Fa) were obtained through the trans-
formation Eq. 3. To obtain more accurate results, no verification of the significance of the pa-
rameters was performed, and no insignificant parameters were omitted, they were all retained 
in the model. The equation obtained in this way was used to calculate the values of the axial 
drilling force Fa. The comparison between results obtained by the ANN simulation and the re-
gression model is shown in Table 6. 

 
Table 5 Coefficients of the regression model  

Drilling length  
Coefficients of the model  

b0 b1 b2 b3 b12 b13 b23 b123 
L = 100 6.5943 0.2111 -0.0190 0.3132 -2.52E-05 0.0258235 0.074737 0.0747443 
L = 500 6.7604 0.2454 -0.0903 0.2957 -0.02027 0.029545 0.075798 -0.0223 

 L = 1000 6.8742 0.2763 -0.1012 0.2588 -0.05976 0.034711 0.084119 0.027256 
 

Table 6 Comparative values of the axial drilling force  

Drilling 
length 
L [mm] 

Cutting modes Results of the 
experiment 

Feksp [N] 

Results of  
ANN simulation  

Results of  
Regression  

analysis 
Deviation 
FANN from 

Fra [%] d 
[mm] n [rpm] s 

[mm/rev] 
FANN 
[N] 

Error 
[%] ANN Fra 

[N] 
Error 
[%] 

L 
= 

10
0 

m
m

 

6.00 500 0.027 401.11 401.06 -0.012 d 21 380.97 -5.021 5.27 
7.75 250 0.027   590.19   d 11 587.07  0.53 

10.00 250 0.107 1339.03 1338.92 -0.008 d 12 1271.80 -5.021 5.28 
6.00 355 0.027   470.51   n 11 443.21  6.16 

7.75 355 0.027   
  

555.65   n 41 533.99  4.06 
560.25   d 51    

10.00 250 0.053   863.30   s 21 914.04  -5.55 

7.75 355 0.053 659.37 
(middle) 

646.89 -1.893 s 45 726.43 10.170 -10.95 
690.34 4.697 d 55    
675.58 2.458 n 45    

L 
= 

50
0 

m
m

 

10.00 500 0.027 717.83 717.86 0.004 d 21 676.18 -5.802 6.16 
10.00 355 0.027  868.87  n 21 795.24   9.26 

6.00 250 0.107 909.58 909.48 -0.011 d 12 856.81 -5.802 6.15 
7.75 250 0.107  1204.08  d 12 1177.71   2.24 
6.00 355 0.107  938.19  n 12 881.44   6.44 

7.75 500 0.053  768.35  s 42 782.88   -1.86 
770.99  d 25       

7.75 355 0.053 765.80 
(middle) 

794.40 3.735 s 45 857.34 11.954 -7.34 
808.72 5.605 d 55       
819.35 6.993 n 45       

L 
= 

10
00

 m
m

 

10.00 250 0.027 1325.30 1325.28 -0.002 d 11 1248.09 -5.826 6.18 
7.75 500 0.027   680.79   d 21 620.39   9.74 

7.75 355 0.027   
  

813.38   n 41 745.24   9.14 
806.83   d 51       

6.00 500 0.107 989.67 989.78 0.011 d 22 932.01 -5.826 6.20 
6.00 250 0.053   795.76   s 11 762.02   4.43 

10.00 500 0.053   1101.65   s 22 1076.25   2.36 

7.75 355 0.053 
857.61 

(middle)  
  

914.19 6.598 s 45 961.28 12.089 -4.90 
905.26 5.557 d 55       
949.72 10.741 n 45       
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The comparison made revealed the following: 

• The results obtained by simulation of the ANN at the points of experiment for all drilling 
lengths are fully are fully consistent with the experimental results with a maximum 
deviation of less than 0.025 %. 

• For controlled drilling lengths (L = 100, 500 and 1000 mm), the maximum deviations of 
the results obtained by simulation of the ANN in the central plan point, if compared to the 
experimental results, are: 
­ for ANN s45 - 6,598 % at drilling length L = 1000 mm; 
­ for ANN d55 - 5.557 % at drilling length L = 1000 mm, and 
­ for ANN n45 - 10.741 % at drilling length L = 1000 mm. 

• For drilling lengths L = 100, 500 and 1000 mm, the values of the axial force obtained by 
regression analysis deviate from the experimental results as follows: 
In the points of experiment: 
­ 5.022 % for L = 100 mm,  
­ 5.802 % for L = 500 mm, and 
­ 5.826 % for L = 1000 mm, 
and in the central plan point:  
­ 10.17 % for L = 100 mm,  
­ 11.954 % for L = 500 mm, and 
­ 12.089 % for L = 1000 mm,  
which is significantly less favourable compared to the results obtained by the simulation 
of ANN. 

• The results obtained by simulation of neural networks in the plan points which were not 
included in the experiment also correspond to the results obtained by regression analysis 
maximum deviation of less than 9.75 %.  

The performed analyses of the results obtained by application of a family of ANNs and their 
comparison with the experimental results and the results obtained by mathematical modelling 
of multifactor plans show that prediction of tool condition, in conditions of non-linear 
dependency of the target function and influential parameters, can be additionally enhanced by 
application of a family of ANNs. Therefore, a family of ANNs can be applied very successfully in 
prediction of tool condition, in particular in cases of non-linear dependency of the target 
function and influential parameters when the regression analysis method fails to render 
satisfactory results and calls for further experimental research. 

4. Conclusion 
The prediction of tool condition is of high practical importance, since the (technological and 
economic) effects of the machining process depend directly on the tool life. However, 
considering that the machining process is a highly complex physico-chemical mechanism of 
interaction between tool and workpiece under the conditions of scatter of characteristics and 
properties of the elements of the technological system, modelling this process seems to be very 
difficult. The application of modern technologies aimed at solving the problems related to 
modeling, simulation and monitoring of the machining process has recently begun, and the most 
commonly used ANNs allow to predict changes in the parameters of interest as a function of 
changes in the input value.  

In this paper the axial cutting force Fa was chosen as a target function, i.e. as a source of 
information about the amount of cutting tool wear. The influencing factors selected included the 
material of the tool (twist drill), the sharpening mode, the nominal diameter, the number of 
revolutions, the feed rate and the drilling length until the twist drills are worn out. Based on the 
established correlations between the target function and the influencing parameters for 
predicting the wear size of twist drills, a FANN was developed. The results of the prediction 
obtained by applying a FANN were compared with the results obtained by regression analysis in 
the experimental points. The comparison showed that the prediction results were consistent. 
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Furthermore, the prediction results obtained by applying a FANN deviate significantly less from 
the experimental results. Therefore, the developed model of FANN can be used as a very reliable 
method for predicting the state of the tool, especially in case of a nonlinear relationship between 
the target function and the parameters involved, and in cases where the regression analysis does 
not give satisfactory results and requires additional experimental research. 
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