

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 23 (2023) #P1.07 https://doi.org/10.26493/1855-3974.2144.9e3 (Also available at http://amc-journal.eu)

A note on the neighbour-distinguishing index of digraphs

Éric Sopena * 🕩

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

Mariusz Woźniak 🕩

AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Received 9 October 2019, accepted 30 January 2022, published online 20 October 2022

Abstract

In this note, we introduce and study a new version of neighbour-distinguishing arccolourings of digraphs. An arc-colouring γ of a digraph D is proper if no two arcs with the same head or with the same tail are assigned the same colour. For each vertex u of D, we denote by $S_{\gamma}^{-}(u)$ and $S_{\gamma}^{+}(u)$ the sets of colours that appear on the incoming arcs and on the outgoing arcs of u, respectively. An arc colouring γ of D is *neighbour-distinguishing* if, for every two adjacent vertices u and v of D, the ordered pairs $(S_{\gamma}^{-}(u), S_{\gamma}^{+}(u))$ and $(S_{\gamma}^{-}(v), S_{\gamma}^{+}(v))$ are distinct. The neighbour-distinguishing index of D is then the smallest number of colours needed for a neighbour-distinguishing arc-colouring of D.

We prove upper bounds on the neighbour-distinguishing index of various classes of digraphs.

Keywords: Digraph, arc-colouring, neighbour-distinguishing arc-colouring. Math. Subj. Class. (2020): 05C15, 05C20

1 Introduction

A proper edge-colouring of a graph G is *vertex-distinguishing* if, for every two vertices u and v of G, the sets of colours that appear on the edges incident with u and v are distinct. Vertex-distinguishing proper edge-colourings of graphs were independently introduced by Burris and Schelp [2], and by Černy, Horňák and Soták [5]. Requiring only adjacent vertices to be distinguished led to the notion of *neighbour-distinguishing* edge-colourings, considered in [1, 3, 7].

^{*}Corresponding author.

E-mail addresses: eric.sopena@u-bordeaux.fr (Éric Sopena), mwozniak@agh.edu.pl (Mariusz Woźniak)

Vertex-distinguishing arc-colourings of digraphs have been recently introduced and studied by Li, Bai, He and Sun [4]. An arc-colouring of a digraph is proper if no two arcs with the same head or with the same tail are assigned the same colour. Such an arc-colouring is *vertex-distinguishing* if, for every two vertices u and v of G,

- (i) the sets $S^{-}(u)$ and $S^{-}(v)$ of colours that appear on the incoming arcs of u and v, respectively, are distinct, and
- (ii) the sets $S^+(u)$ and $S^+(v)$ of colours that appear on the outgoing arcs of u and v, respectively, are distinct.

In this paper, we introduce and study a neighbour-distinguishing version of arc-colourings of digraphs, using a slightly different distinction criteria: two neighbours u and v are distinguished whenever $S^{-}(u) \neq S^{-}(v)$ or $S^{+}(u) \neq S^{+}(v)$.

Definitions and notation are introduced in the next section. We prove a general upper bound on the neighbour-distinguishing index of a digraph in Section 3, and study various classes of digraphs in Section 4. Concluding remarks are given in Section 5.

2 Definitions and notation

All digraphs we consider are without loops and multiple arcs. For a digraph D, we denote by V(D) and A(D) its sets of vertices and arcs, respectively. The *underlying graph* of D, denoted und(D), is the simple undirected graph obtained from D by replacing each arc uv(or each pair of arcs uv, vu) by the edge uv.

If uv is an arc of a digraph D, u is the *tail* and v is the *head* of uv. For every vertex u of D, we denote by $N_D^+(u)$ and $N_D^-(u)$ the sets of *out-neighbours* and *in-neighbours* of u, respectively. Moreover, we denote by $d_D^+(u) = |N_D^+(u)|$ and $d_D^-(u) = |N_D^-(u)|$ the *outdegree* and *indegree* of u, respectively, and by $d_D(u) = d_D^+(u) + d_D^-(u)$ the *degree* of u.

For a digraph D, we denote by $\delta^+(D)$, $\delta^-(D)$, $\Delta^+(D)$ and $\Delta^-(D)$ the minimum outdegree, minimum indegree, maximum outdegree and maximum indegree of D, respectively. Moreover, we let

$$\Delta^*(D) = \max\{\Delta^+(D), \ \Delta^-(D)\}.$$

A (proper) k-arc-colouring of a digraph D is a mapping γ from V(D) to a set of k colours (usually $\{1, \ldots, k\}$) such that, for every vertex u,

- (i) any two arcs with head u are assigned distinct colours, and
- (ii) any two arcs with tail u are assigned distinct colours.

Note here that two consecutive arcs vu and uw, v and w not necessarily distinct, may be assigned the same colour. The *chromatic index* $\chi'(D)$ of a digraph D is then the smallest number k for which D admits a k-arc-colouring.

The following fact is well-known (see e.g. [4, 6, 8]).

Proposition 2.1. For every digraph D, $\chi'(D) = \Delta^*(D)$.

For every vertex u of a digraph D, and every arc-colouring γ of D, we denote by $S_{\gamma}^+(u)$ and $S_{\gamma}^-(u)$ the sets of colours assigned by γ to the outgoing and incoming arcs

of u, respectively. From the definition of an arc-colouring, we get $d_D^+(u) = |S_{\gamma}^+(u)|$ and $d_D^-(u) = |S_{\gamma}^-(u)|$ for every vertex u.

We say that two vertices u and v of a digraph D are *distinguished* by an arc-colouring γ of D, if $(S_{\gamma}^+(u), S_{\gamma}^-(u)) \neq (S_{\gamma}^+(v), S_{\gamma}^-(v))$. Note that we consider here ordered pairs, so that $(A, B) \neq (B, A)$ whenever $A \neq B$. Note also that if u and v are such that $d_D^+(u) \neq d_D^+(v)$ or $d_D^-(u) \neq d_D^-(v)$, which happens in particular if $d_D(u) \neq d_D(v)$, then they are distinguished by every arc-colouring of D. We will write $u \approx_{\gamma} v$ if u and v are distinguished by γ and $u \sim_{\gamma} v$ otherwise.

A k-arc-colouring γ of a digraph D is *neighbour-distinguishing* if $u \approx_{\gamma} v$ for every arc $uv \in A(D)$. Such an arc-colouring will be called an *nd-arc-colouring* for short. The *neighbour-distinguishing index* ndi(D) of a digraph D is then the smallest number of colours required for an nd-arc-colouring of D.

The following lower bound is easy to establish.

Proposition 2.2. For every digraph D, $\operatorname{ndi}(D) \geq \chi'(D) = \Delta^*(D)$. Moreover, if there are two vertices u and v in D with $d_D^+(u) = d_D^+(v) = d_D^-(u) = d_D^-(v) = \Delta^*(D)$, then $\operatorname{ndi}(D) \geq \Delta^*(D) + 1$.

Proof. The first statement follows from the definitions. For the second statement, observe that $S^+_{\gamma}(u) = S^+_{\gamma}(v) = S^-_{\gamma}(u) = S^-_{\gamma}(v) = \{1, \dots, \Delta^*(D)\}$ for any two such vertices u and v and any $\Delta^*(D)$ -arc-colouring γ of D.

3 A general upper bound

If D is an oriented graph, that is, a digraph with no opposite arcs, then every proper edgecolouring φ of $\operatorname{und}(D)$ is an nd-arc-colouring of D since, for every arc uv in D, $\varphi(uv) \in S_{\varphi}^+(u)$ and $\varphi(uv) \notin S_{\varphi}^+(v)$, which implies $u \not\sim_{\varphi} v$. Hence, we get the following upper bound for oriented graphs, thanks to classical Vizing's bound.

Proposition 3.1. If D is an oriented graph, then

$$\mathrm{ndi}(D) \le \chi'(\mathrm{und}(D)) \le \Delta(\mathrm{und}(D)) + 1 \le 2\Delta^*(D) + 2.$$

However, a proper edge-colouring of $\operatorname{und}(D)$ may produce an arc-colouring of D which is not neighbour-distinguishing when D contains opposite arcs. Consider for instance the digraph D given by $V(D) = \{a, b, c, d\}$ and $A(D) = \{ab, bc, cb, dc\}$. We then have $\operatorname{und}(D) = P_4$, the path of order 4, and thus $\chi'(\operatorname{und}(D)) = 2$. It is then not difficult to check that for any 2-edge-colouring φ of $\operatorname{und}(D)$, $S_{\varphi}^+(b) = S_{\varphi}^+(c)$ and $S_{\varphi}^-(b) = S_{\varphi}^-(c)$.

We will prove that the upper bound given in Proposition 3.1 can be decreased to $2\Delta^*(D)$, even when D contains opposite arcs. Recall that a digraph D is *k*-regular if $d_D^+(v) = d_D^-(v) = k$ for every vertex v of D. A *k*-factor in a digraph D is a spanning *k*-regular subdigraph of D. The following result is folklore.

Theorem 3.2. Every k-regular digraph can be decomposed into k arc-disjoint 1-factors.

We first determine the neighbour-distinguishing index of a 1-factor.

Proposition 3.3. If D is a digraph with $d_D^+(u) = d_D^-(u) = 1$ for every vertex u of D, then ndi(D) = 2.

Proof. Such a digraph D is a disjoint union of directed cycles and any such cycle needs at least two colours to be neighbour-distinguished. An nd-arc-colouring of D using two colours can be obtained as follows. For a directed cycle of even length, use alternately colours 1 and 2. For a directed cycle of odd length, use the colour 2 on any two consecutive arcs, and then use alternately colours 1 and 2. The so-obtained 2-arc-colouring is clearly neighbour-distinguishing, so that ndi(D) = 2.

We are now able to prove the following general upper bound on the neighbour-distinguishing index of a digraph.

Theorem 3.4. For every digraph D, $ndi(D) \le 2\Delta^*(D)$.

Proof. Let D' be any $\Delta^*(D)$ -regular digraph containing D as a subdigraph. If D is not already regular, such a digraph can be obtained from D by adding new arcs, and maybe new vertices.

By Theorem 3.2, the digraph D' can be decomposed into $\Delta^*(D') = \Delta^*(D)$ arcdisjoint 1-factors, say $F_1, \ldots, F_{\Delta^*(D)}$. By Proposition 3.3, we know that D' admits an nd-arc-colouring γ' using $2\Delta^*(D') = 2\Delta^*(D)$ colours. We claim that the restriction γ of γ' to A(D) is also neighbour-distinguishing.

To see that, let uv be any arc of D, and let t and w be the two vertices such that the directed walk tuvw belongs to a 1-factor F_i of D' for some $i, 1 \le i \le \Delta^*(D)$. Note here that we may have t = w, or w = u and t = v. If $\gamma(uv) \ne \gamma'(vw)$, then $\gamma(uv) \in S^+_{\gamma}(u)$ and $\gamma(uv) \notin S^+_{\gamma}(v)$. Similarly, if $\gamma'(tu) \ne \gamma(uv)$, then $\gamma(uv) \in S^-_{\gamma}(v)$ and $\gamma(uv) \notin S^-_{\gamma}(u)$. Since neither three consecutive arcs nor two opposite arcs in a walk of a 1-factor of D' are assigned the same colour by γ' , we get that $u \nsim_{\gamma} v$ for every arc uv of D, as required.

This completes the proof.

4 Neighbour-distinguishing index of some classes of digraphs

We study in this section the neighbour-distinguishing index of several classes of digraphs, namely complete symmetric digraphs, bipartite digraphs and digraphs whose underlying graph is k-chromatic, $k \ge 3$.

4.1 Complete symmetric digraphs

We denote by K_n^* the complete symmetric digraph of order n. Observe first that any proper edge-colouring ϵ of K_n induces an arc-colouring γ of K_n^* defined by $\gamma(uv) = \gamma(vu) = \epsilon(uv)$ for every edge uv of K_n . Moreover, since $S_{\gamma}^+(u) = S_{\gamma}^-(u) = S_{\epsilon}(u)$ for every vertex u, γ is neighbour-distinguishing whenever ϵ is neighbour-distinguishing. Using a result of Zhang, Liu and Wang (see Theorem 6 in [7]), we get that $\operatorname{ndi}(K_n^*) = \Delta^*(K_n^*) + 1 = n$ if n is odd, and $\operatorname{ndi}(K_n^*) \leq \Delta^*(K_n^*) + 2 = n + 1$ if n is even.

We prove that the bound in the even case can be decreased by one (we recall the proof of the odd case to be complete).

Theorem 4.1. For every integer $n \ge 2$, $ndi(K_n^*) = \Delta^*(K_n^*) + 1 = n$.

Proof. Note first that we necessarily have $\operatorname{ndi}(K_n^*) \ge n$ for every $n \ge 2$ by Proposition 2.2. Let $V(K_n^*) = \{v_0, \ldots, v_{n-1}\}$. If n = 2, we obviously have $\operatorname{ndi}(K_2^*) = |A(K_2^*)| = 2$ and the result follows. We can thus assume $n \ge 3$. We consider two cases, depending on the parity of n.

Suppose first that n is odd, and consider a partition of the set of edges of K_n into n disjoint maximal matchings, say M_0, \ldots, M_{n-1} , such that for each $i, 0 \le i \le n-1$, the matching M_i does not cover the vertex v_i . We define an n-arc-colouring γ of K_n^* (using the set of colours $\{0, \ldots, n-1\}$) as follows. For every i and $j, 0 \le i < j \le n-1$, we set $\gamma(v_iv_j) = \gamma(v_jv_i) = k$ if and only if the edge v_iv_j belongs to M_k . Observe now that for every vertex $v_i, 0 \le i \le n-1$, the colour i is the unique colour that does not belong to $S_{\gamma}^+(v_i) \cup S_{\gamma}^-(v_i)$, since v_i is not covered by the matching M_i . This implies that γ is an nd-arc-colouring of K_n^* , and thus $\operatorname{ndi}(K_n^*) = n$, as required.

Suppose now that *n* is even. Let K' be the subgraph of K_n^* induced by the set of vertices $\{v_0, \ldots, v_{n-2}\}$ and γ' be the (n-1)-arc-colouring of K' defined as above. We define an *n*-arc-colouring γ of K_n^* (using the set of colours $\{0, \ldots, n-1\}$) as follows:

- 1. for every i and j, $0 \le i < j \le n-2$, $j \ne i+1 \pmod{n-1}$, we set $\gamma(v_i v_j) = \gamma'(v_i v_j)$,
- 2. for every $i, 0 \le i \le n-2$, we set $\gamma(v_i v_{i+1}) = n-1$ and $\gamma(v_{i+1}v_i) = \gamma'(v_{i+1}v_i)$ (subscripts are taken modulo n-1),
- 3. for every $i, 0 \leq i \leq n-2$, we set $\gamma(v_{n-1}v_i) = \gamma'(v_{i-1}v_i)$ and $\gamma(v_iv_{n-1}) = \gamma'(v_{i+1}v_i)$.

Since the colour n-1 belongs to $S_{\gamma}^+(v_i) \cap S_{\gamma}^-(v_i)$ for every $i, 0 \le i \le n-2$, and does not belong to $S_{\gamma}^+(v_{n-1}) \cup S_{\gamma}^-(v_{n-1})$, the vertex v_{n-1} is distinguished from every other vertex in K_n^* . Moreover, for every vertex $v_i, 0 \le i \le n-2$,

$$S^+_{\gamma}(v_i) = S^+_{\gamma'}(v_i) \cup \{n-1\} \text{ and } S^-_{\gamma}(v_i) = S^-_{\gamma'}(v_i) \cup \{n-1\},$$

which implies that any two vertices v_i and v_j , $0 \le i < j \le n-2$, are distinguished since γ' is an nd-arc-colouring of K'. We thus get that γ is an nd-arc-colouring of K_n^* , and thus $ndi(K_n^*) \le n$, as required.

This completes the proof.

4.2 Bipartite digraphs

A digraph D is *bipartite* if its underlying graph is bipartite. In that case, $V(D) = X \cup Y$ with $X \cap Y = \emptyset$ and $A(D) \subseteq X \times Y \cup Y \times X$. We then have the following result.

Theorem 4.2. If D is a bipartite digraph, then $ndi(D) \leq \Delta^*(D) + 2$.

Proof. Let $V(D) = X \cup Y$ be the bipartition of V(D) and γ be any (not necessarily neighbour-distinguishing) optimal arc-colouring of D using $\Delta^*(D)$ colours (such an arc-colouring exists by Proposition 2.1).

If γ is an nd-arc-colouring we are done. Otherwise, let $M_1 \subseteq A(D) \cap (X \times Y)$ be a maximal matching from X to Y. We define the arc-colouring γ_1 as follows:

$$\gamma_1(uv) = \Delta^*(D) + 1$$
 if $uv \in M_1$, $\gamma_1(uv) = \gamma(uv)$ otherwise.

Note that if uv is an arc such that u or v is (or both are) covered by M_1 , then $u \approx_{\gamma_1} v$ since the colour $\Delta^*(D) + 1$ appears in exactly one of the sets $S^+_{\gamma_1}(u)$ and $S^+_{\gamma_1}(v)$, or in exactly one of the sets $S^-_{\gamma_1}(u)$ and $S^-_{\gamma_1}(v)$.

If γ_1 is an nd-arc-colouring we are done. Otherwise, let A^{\sim} be the set of arcs $uv \in A(D)$ with $u \sim_{\gamma_1} v$ and $M_2 \subseteq A^{\sim} \cap (Y \times X)$ be a maximal matching from Y to X of A^{\sim} . We define the arc-colouring γ_2 as follows:

$$\gamma_2(uv) = \Delta^*(D) + 2$$
 if $uv \in M_2$, $\gamma_2(uv) = \gamma_1(uv)$ otherwise.

Again, note that if uv is an arc such that u or v is (or both are) covered by M_2 , then $u \approx_{\gamma_2} v$. Moreover, since M_2 is a matching of A^{\sim} , pairs of vertices that were distinguished by γ_1 are still distinguished by γ_2 .

Hence, every arc uv such that u and v were not distinguished by γ_1 are now distinguished by γ_2 which is thus an nd-arc-colouring of D using $\Delta^*(D) + 2$ colours. This concludes the proof.

The upper bound given in Theorem 4.2 can be decreased when the underlying graph of D is a tree.

Theorem 4.3. If D is a digraph whose underlying graph is a tree, then $ndi(D) \le \Delta^*(D) + 1$.

Proof. The proof is by induction on the order n of D. The result clearly holds if $n \leq 2$. Let now D be a digraph of order $n \geq 3$, such that the underlying graph und(D) of D is a tree, and $P = v_1 \dots v_k$, $k \leq n$, be a path in und(D) with maximal length. By the induction hypothesis, there exists an nd-arc-colouring γ of $D - v_k$ using at most $\Delta^*(D - v_k) + 1$ colours. We will extend γ to an nd-arc-colouring of D using at most $\Delta^*(D) + 1$ colours.

If $\Delta^*(D) = \Delta^*(D - v_k) + 1$, we assign the new colour $\Delta^*(D) + 1$ to the at most two arcs incident with v_k so that the so-obtained arc-colouring is clearly neighbour-distinguishing.

Suppose now that $\Delta^*(D) = \Delta^*(D - v_k)$. If all neighbours of v_{k-1} are leaves, the underlying graph of D is a star. In that case, there is at most one arc linking v_{k-1} and v_k , and colouring this arc with any admissible colour produces an nd-arc-colouring of D. If the underlying graph of D is not a star, then, by the maximality of P, we get that v_{k-1} has exactly one neighbour which is not a leaf, namely v_{k-2} . This implies that the only conflict that might appear when colouring the arcs linking v_k and v_{k-1} is between v_{k-2} and v_{k-1} (recall that two neighbours with distinct indegree or outdegree are necessarily distinguished).

Since $d_D^+(v_{k-2}) \leq \Delta^*(D)$ and $d_D^-(v_{k-2}) \leq \Delta^*(D)$, there necessarily exist a colour *a* such that $S_{\gamma}^+(v_{k-2}) \neq S_{\gamma}^+(v_{k-1}) \cup \{a\}$, and a colour *b* such that $S_{\gamma}^-(v_{k-2}) \neq S_{\gamma}^-(v_{k-1}) \cup \{b\}$. Therefore, the at most two arcs incident with v_k can be coloured, using *a* and/or *b*, in such a way that the so-obtained arc-colouring is neighbour-distinguishing.

This completes the proof.

4.3 Digraphs whose underlying graph is k-chromatic

Since the set of edges of every k-colourable graph can be partitionned in $\lceil \log k \rceil$ parts each inducing a bipartite graph (see e.g. Lemma 4.1 in [1]), Theorem 4.2 leads to the following general upper bound:

Corollary 4.4. If D is a digraph whose underlying graph has chromatic number $k \ge 3$, then $ndi(D) \le \Delta^*(D) + 2\lceil \log k \rceil$.

Proof. Starting from an optimal arc-colouring of D with $\Delta^*(D)$ colours, it suffices to use two new colours for each of the $\lceil \log k \rceil$ bipartite parts (obtained from any optimal vertex-colouring of the underlying graph of D), as shown in the proof of Theorem 4.2, in order to get an nd-arc-colouring of D.

5 Discussion

In this note, we have introduced and studied a new version of neighbour-distinguishing arccolourings of digraphs. Pursuing this line of research, we propose the following questions.

- 1. Is there any general upper bound on the neighbour-distinguishing index of symmetric digraphs?
- 2. Is there any general upper bound on the neighbour-distinguishing index of not necessarily symmetric complete digraphs?
- 3. Is there any general upper bound on the neighbour-distinguishing index of directed acyclic graphs?
- 4. The general bound given in Corollary 4.4 is certainly not optimal. In particular, is it possible to improve this bound for digraphs whose underlying graph is 3-colourable?

We finally propose the following conjecture.

Conjecture 5.1. For every digraph D, $ndi(D) \le \Delta^*(D) + 1$.

ORCID iDs

Eric Sopena D https://orcid.org/0000-0002-9570-1840 Mariusz Woźniak D https://orcid.org/0000-0003-4769-0056

References

- P. N. Balister, E. Győri, J. Lehel and R. H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007), 237–250, doi:10.1137/S0895480102414107, https:// doi.org/10.1137/S0895480102414107.
- [2] A. C. Burris and R. H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997), 73-82, doi:10.1002/(SICI)1097-0118(199710)26:2(73::AID-JGT2)3.
 0.CO;2-C, https://doi.org/10.1002/(SICI)1097-0118(199710)26:2<73:: AID-JGT2>3.0.CO;2-C.
- [3] K. Edwards, M. Horňák and M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Comb. 22 (2006), 341–350, doi:10.1007/s00373-006-0671-2, https://doi.org/ 10.1007/s00373-006-0671-2.
- [4] H. Li, Y. Bai, W. He and Q. Sun, Vertex-distinguishing proper arc colorings of digraphs, *Discrete Appl. Math.* 209 (2016), 276–286, doi:10.1016/j.dam.2015.10.039, https://doi.org/10.1016/j.dam.2015.10.039.
- [5] J. Černý, M. Horňák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996), 21-31.
- [6] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
- Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, *Appl. Math. Lett.* 15 (2002), 623–626, doi:10.1016/S0893-9659(02)80015-5, https://doi.org/10.1016/S0893-9659(02)80015-5.
- [8] M. Zwonek, On arc-coloring of digraphs, Opuscula Math. 26 (2006), 185–195.

7