16 Medical Imaging and Radiotherapy Journal (MIRTJ) 41 (Suppl. 1) Medical Imaging and Radiotherapy Journal (MIRTJ) 41 (Suppl. 1) NAČINI TESTIRANJA IN KONTROLA CELOVITOSTI OSEBNE VAROVALNE OPREME V DIAGNOSTIČNI RADIOLOGIJI TESTING METHODS AND VERIFYING THE INTEGRITY OF PERSONAL PROTECTIVE EQUIPMENT IN DIAGNOSTIC RADIOLOGY Manca Likar 1, Laura Dolenc 2, Nejc Mekiš 2 1 Radiološki oddelek, Splošna bolnišnica dr. Franca Derganca Nova Gorica, Ulica padlih borcev 13a, 5290 Šempeter pri Gorici, Slovenija / Department of radiology, General hospital dr. Franca Derganca Nova Gorica, Ulica padlih borcev 13a, 5290 Šempeter pri Gorici, Slovenia 2 Univerza v Ljubljani, Zdravstvena fakulteta, Oddelek za radiologijo, Zdravstvena pot 5, 1000 Ljubljana, Slovenija / University of Ljubljana, Faculty of Health Sciences, Department of Medical Imaging and Radiotherapy, Zdravstvena pot 5, 1000 Ljubljana, Slovenia Korespondenca / Corresponding author: manca.komel@gmail.com Prejeto/Recived: 25. 1. 2024 Sprejeto/Accepted: 11. 2. 2024 IZVLEČEK Uvod: Število radioloških preiskav se iz leta v leto povečuje, prav tako pa tudi poklicna izpostavljenost sevanju. Da bi bila doza, ki jo zaposleni prejme, najnižja možna, je nujna uporaba osebne varovalne opreme (OVO), ki mora biti celovita in nepoškodovana. Namen: Namen raziskave je bil ugotoviti, katera metoda iskanja poškodb na zaščiti je najučinkovitejša. Zanimalo nas je tudi, koliko se poveča prejeta doza za zaposlenega, če uporablja poškodovano OVO. Metode dela: Pregledali smo 64 zaščitnih plaščev z vsemi štirimi tehnikami pregledovanja, tj. vizualni in palpatorni pregled, pregled s svetlobo, pregled z računalniškim tomografom ter pregled z diaskopijo ali rentgenskim slikanjem, in ugotavljali, katera je najučinkovitejša. Nato smo izmerili dozo za nepoškodovanim in poškodovanim delom istega plašča v primarnem in sekundarnem snopu rentgenske svetlobe. Rezultati: Z rentgenskim ali diaskopskim pregledom smo odkrili 16 poškodb, eno manj s CT-jem, z vizualnim in palpatornim pregledom smo odkrili 11 poškodb, pri pregledu s svetlobo pa 6 poškodb. Pri meritvah v primarnem snopu smo ugotovili, da je povprečni delež prepustnosti rentgenskih žarkov za napakami najmanjši pri plašču 1 (0,5 %) in največji pri plašču 31 (316,6 %). Prav tako, so bile najmanjše vrednosti v sekundarnem snopu sevanja izmerjene pri plašču 1 (1,3 %), največje pa pri plašču 48 (1643 %). Razprava in zaključek: Iz dobljenih rezultatov lahko trdimo, da sta najučinkovitejši metodi odkrivanja napak tisti, pri katerih se uporablja rentgenska svetloba. Pri meritvah prepustnosti primarnega in sipanega sevanja smo ugotovili, da obstajajo statistično pomembne razlike med poškodovanim in nepoškodovanim delom. Prav tako smo ugotovili, da je treba določeno OVO umakniti iz nadaljnje uporabe. Ključne besede: osebna varovalna oprema, kontrola celovitosti, pregledovanje osebne varovalne opreme, poklicna izpostavljenost sevanju ABSTRACT Introduction: The number of radiological examinations is increasing from year to year, as is occupational exposure to radiation. The use of personal protective equipment (PPE) is essential to minimize the dose to the employee. PPE is expected to be complete and undamaged. Purpose: The purpose of the study was to determine which method is most eff ective for damage detection in shielding. We also wanted to determine how much the dose an employee receives is increased when using damaged PPE. Methods: 64 coats were fi rst examined using all four examination techniques: visual and palpatory examination, light examination, computed tomography examination and diascopy or X-ray examination, to determine which was most eff ective. We then measured the dose behind the intact and the damaged part of the same shield, in the primary and secondary X-ray beam. Results: 16 defects were detected by X-ray or diascopic examination, one less by CT, 11 defects were detected by visual and palpatory examination, while six defects were detected by light examination. In the primary beam measurements, we found that the average proportion of X-ray transmission behind the defects was lowest in shield 1 (0.5 %) and highest in shield 31 (316.6 %). Similarly, the lowest values in the secondary beam were measured in shield 1 (1.3 %) and the highest in shield 48 (1643 %). Discussion and conclusion: It was determined that the best detection method for evaluating damage to PPE is the method where ionizing radiation was used. When measuring the transmittance of primary and scattered radiation, we found that there were statistically signifi cant diff erences between damaged and undamaged parts. We also concluded that certain PPE should not be used further. Keywords: personal protective equipment, integrity check, inspection of personal protective equipment, occupational exposure to radiation Medical Imaging and Radiotherapy Journal (MIRTJ) 41 (Suppl. 1) 17 Medical Imaging and Radiotherapy Journal (MIRTJ) 41 (Suppl. 1) LITERATURA / REFERENCES Bartal, G., Sailer, A. M. & Vano, E. (2018). Should we keep the lead in the aprons?. Techniques in Vascular & Interventional Radiology, 21(1), 2-6. https://www.techvir.com/article/S1089-2516(17)30083-5/ fulltext Bawazeer, O. (2021). Quality assurance of personal radiation shield for kilovoltage photon: A multicenter experience. Risk Management and Healthcare Policy, 14, 1263-1270. https://www.dovepress.com/getfi le.php?fi leID=67939 Bjorkas, L. W., Blo, S., Rekdal, M. K. & Rusandu, A. (2020). Quality of radiation protection aprons and control routines at diff erent diagnostic imaging modalities. Radiography Open, 6(1), 64-74. https://doi.org/10.7577/radopen.4050 DIN 6857-2 (2020). Strahlenschutzzubehör bei medizinischer Anwendung von Röntgenstrahlung- Teil 2: Qualitätsprüfung von in Gebrauch befi ndlicher Schutzkleidung.Deutsches Institut Fur Normung E.V. Department od Health & Human Services. (21.12.2011). Testing lead aprons used in diagnostic radiology departments. https://www.health.vic.gov.au/publications/testing-lead- aprons-used-in-diagnostic-radiology-departments ICRP. (2018). ICRP publication 139: Occupationa radiological protection in interventional procedures. https://journals.sagepub.com/doi/pdf/10.1177/ANIB_47_2 Klein, L.W., Miller, D.L., Balter, S., Laskey, W., Haines, D., Norbash, A., Mauro, M.A. & Mauro, M.A. (2009). Occupational health hazards in the interventional laboratory: time for a safer environment. Journal of Radiology Nursing, 29(3), 75–82. Lambert, K. & McKeon, T. (2001). Inspection of lead aprons: Criteria for rejection. Health Physics Society, 80(5), 67–69. h t t p s : / / w w w . m p c p h y s i c s . c o m / d o c u m e n t s / ApronInspectionCriteria_for_Rejection.8.pdf Le Heron, J., Padovani, R., Smith, I. & Czarwinski, R. (2010). Radiation protection of medical staff . European Journal of Radiology, 76(1), 20-23. h t t p s : / / w w w. e j r a d i o l o g y. c o m / a r t i c l e / S 0 7 2 0 - 048X(10)00309-8/fulltext Practical radiation technical manual: Personal protective equipment. (2004). International atomic energy agency. h t t p s : / / w w w . i a e a . o r g / p u b l i c a t i o n s / 6 7 7 5 / personal-protective-equipment https://www.iaea.org/publications/6775/personal- protective-equipment Radiation Guideline 4: Compliance requirements for x-ray protective clothing. (2018). NWS Environment Protection Authority. https://www.epa.nsw.gov.au/-/media/epa/corporate-site/ resources/radiation/18p0695-radiation-guideline4-xray- clothing.pdf Smith, S., Zhang, J., Anaskevich, L., Lemieux, B.P. & Oates, M.E. (2016). Personal protective apparel integrity inspection: Where we are and what we need. Journal of the American College of Radiology, 13(10), 1223–1226. Stam, W. & Pillay, M. (2008). Inspection of lead aprons: A practical rejection model. Health Physics Society, 2(2), 133-136. https://www.infabcorp.com/downloads/lead-apron- inspection.pdf Vano, E. (2015). Occupational radiation protection of health workers imaging. Radiation protection Dosimetry, 164 (1-2), 126–129. Yu, C. (2020). Don’t be Caught Half-dressed When Working with Radiation. Cardiovascular and Interventional Radiology, 43(3), 369–375.