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Abstract

The distinguishing index D′(G) of a graph G is the least cardinal d such that G has an
edge colouring with d colours that is preserved only by the trivial automorphism.

We derive some bounds for this parameter for infinite graphs. In particular, we investi-
gate the distinguishing index of the Cartesian product of countable graphs.

Finally, we prove that D′(Kℵ02 ) = 2, where Kℵ02 is the infinite dimensional hypercube.
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1 Introduction
Albertson and Collins [1] introduced the (vertex-)distinguishing number D(G) of a graph
G as the least cardinal d such that G has a labelling with d labels that is only preserved
by the trivial automorphism. This concept has spawned numerous papers, mostly on finite
graphs. But countable infinite graphs have also been investigated with respect to the dis-
tinguishing number; see [12], [13], and [14]. For graphs of higher cardinality, see [8]. The
corresponding notion for endomorphisms instead of automorphisms is investigated in [5].

Let us consider now any edge colouring of a graph G; it is merely a function f :
E(G) → C which labels each edge of G with a colour from some set C. Given a graph
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G with an edge colouring f , we say that a graph automorphism ϕ : V (G) → V (G) of G
preserves the edge colouring f if f(xy) = f(ϕ(x)ϕ(y)) for every edge xy ∈ E(G); if, on
the other hand, there is an edge xy such that f(xy) 6= f(ϕ(x)ϕ(y)), then we say that ϕ is
broken by xy. It is easy to see that there is, for every connected graph G 6= K2, an edge
colouring of G which is preserved only by the trivial automorphism of G, i.e., only by the
identity idG : V (G) → V (G): Merely choose different colours for different edges. The
distinguishing index D′(G) of a graph G is the least cardinal d such that G has an edge
colouring with d colours that is only preserved by the trivial automorphism. Obviously for
K2 the distinguishing index is not defined and it is the only such connected graph.

For finite graphs this concept is investigated by Kalinowski and Pilśniak in [9] and by
Pilśniak in [11]. In [2], the following general upper bound was proved.

Theorem 1.1. Let G be a connected, infinite graph such that the degree of every vertex of
G is not greater than ∆. Then D′(G) ≤ ∆.

A graph G is said to be prime with respect to the Cartesian product if whenever G ∼=
G12G2, then either G1 or G2 is the graph consisting of a single vertex. It is well known
(see [6]) that if G is connected, then G has a unique prime factorization, i.e.,

G ∼= G12G22 · · ·2Gt

such that for 1 ≤ i ≤ t, Gi is prime. Two graphs G and H are called relatively prime if
K1 is the only common factor of G and H . About forty-five years ago Imrich and Miller
independently proved the following theorem – see Thm. 6.10 in [6].

Theorem 1.2. If G is connected and G = G12G22 · · ·2Gr is its prime decomposition,
then every automorphism of G is generated by the automorphisms of the factors and the
transpositions of isomorphic factors.

A basic fact, which is a reformulation of the above theorem for r = 2 and which is used
frequently in this paper, is:

If ϕ is an automorphism of the Cartesian product G12G2 of two connected relatively
prime graphs, then there are automorphisms ϕi of Gi, i = 1, 2, such that ϕ(v1, v2) =
(ϕ1(v1), ϕ2(v2)) for all (v1, v2) ∈ V (G12G2) .
In this case we write ϕ = (ϕ1, ϕ2) for short and we note that ϕ is non-trivial if and only if
at least one of ϕ1 and ϕ2 is non-trivial.

An asymmetric graph has only one automorphism, the trivial automorphism. We now
state an easy corollary of these properties and definitions for product graphs with distin-
guishing index 1.

Proposition 1.3. Let G be the Cartesian product of two graphs G1 and G2. Then

D′(G12G2) = 1

if and only if G1 and G2 are relatively prime and both are asymmetric graphs.

The aim of this paper is to present new results for the distinguishing index of the Carte-
sian product of infinite graphs. Most graphs in this document are countable, i.e., finite or
denumerable; numbers used are either finite or ℵ0.

Subgraphs of the Cartesian product G12G2 of the form G12{v} (for any v ∈ V (G2))
are isomorphic to G1 and are called G1-layers of G12G2. The G2-layers of G12G2 are
defined similarly.
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The distinguishing index of the Cartesian product of finite graphs is investigated in [4]
where the authors prove, amongst others, a result which will be useful in the next section
and which we now record as

Theorem 1.4. Let G be a connected finite graph and k ≥ 2. Then D′(Gk) = 2 with the
only exception: D′(K2

2 ) = 3.

2 The distinguishing index of the Cartesian product
First we consider the Cartesian product of two denumerable graphs with infinite edge sets.

Lemma 2.1. Let G1 and G2 be two connected relatively prime denumerable graphs. Then
D′(G12G2) ≤ 2.

Proof. We start by labelling the edges ofG1 with e1, e2, . . . and those ofG2 with f1, f2, . . .
This is possible since both edge sets have to be denumerable. Note that these labellings
effectively order the edges of these graphs. We can now easily describe the required edge
distinguishing colouring in colours 1 and 2:
Colour the first (in terms of the above ordering) k edges of the k’th layer of G1 and the
first k edges of the k’th layer of G2 with 1; colour all other edges with 2. Recall that
every edge in G12G2 lies in a G1-layer or a G2-layer; hence this process colours indeed
all edges of G12G2. Using the labels, this means that the edges corresponding to the
edges {e1, e2, . . . , ek} of G1 in the k’th G1-layer and the edges corresponding to the edges
{f1, f2, . . . , fk} of G2 in the k’th G2-layer, for all k = 1, 2, . . ., are coloured 1 and all
other edges are coloured 2.

Now consider, if possible, any non-trivial automorphism ϕ = (ϕ1, ϕ2) of G12G2

which preserves the above edge colouring of G12G2. Since every two different G1-layers
have different numbers of edges coloured with 1, the automorphism ϕ2 of G2 must be
trivial. Similarly, ϕ1 must be trivial. Hence ϕ is the trivial automorphism, proving that for
every non-trivial automorphism ϕ of G12G2 there is an edge e of G12G2 for which e and
ϕ(e) are coloured differently.

The same result was obtained for the distinguishing number of two connected relatively
prime denumerable graphs by Imrich and Klavz̆ar in [7]. Recently it was shown by Estaji,
Imrich, Kalinowski, Pilśniak and Tucker in [3] that the condition that the two graphs are
relatively prime can be omitted.

Note that Lemma 2.1 assures us that D′(G12G2) is at most two irrespective of the
values of D′(G1) and D′(G2). Next we consider the case in which both G1 and G2 of
orders being any cardinals and with finite values for the distinguishing index.

Lemma 2.2. Suppose G1 and G2 are connected relatively prime graphs with finite distin-
guishing indexes. If D′(Gi) ≤ ki, i = 1, 2, then D′(G12G2) ≤ max{k1, k2}.

Proof. Since D′(Gi) ≤ ki, i = 1, 2, there are, with k = max{k1, k2}, edge colourings f1
of G1 and f2 of G2 using the colours 1, 2, . . . , k which are distinguishing colourings of G1

and G2 respectively. In order to prove now that D′(G12G2) ≤ k, we again use the notion
of a “first” layer through a labelling of the vertices (which here is not explicitly chosen or
named). Hence consider the function f : E(G12G2)→ {1, 2, . . . , k} defined by
1) f((v1, w)(v2, w)) = f1(v1v2) for edges of the first G1-layer and
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2) f((v, w1)(v, w2)) = f2(w1w2) for edges of the first G2-layer and
3) f(e) = 1 for all remaining edges.

Consider any non-trivial automorphism α = (α1, α2) of G12G2 with α1 a non-trivial
automorphism of G1 or α2 a non-trivial automorphism of G2. Assume that the first is true
(for G1): Then, since f1 is a distinguishing colouring of the first G1-layer, there is an edge
e of G1 such that f1(e) 6= f1(α1(e)). Now, if α2 does not move the first layer, then this
edge (considered as an edge ofG12G2) is an edge of the required kind in the firstG1-layer.
On the other hand, if α2 does move the first layer to another layer, we can remark, since
f1(e) 6= f1(α1(e)), that at least one of f1(e) and f1(α1(e)) is different from 1 so that this
edge is moved by α2 to an edge in another layer which has colour 1 by 3) above.

A similarly argument holds if the second is true (for G2) – merely interchange the roles
of G1 and G2 (and their colourings and automorphisms) in the above argument.

Hence we are assured that all non-trivial automorphisms of G12G2 are broken by the
colouring f .

Observe, that D′(G12G2) can be arbitrary large, for instance if G1 is isomorphic to
P3 and G2 is isomorphic to an infinite ray with many (but finitely many) leaves adjacent to
its first vertex.

In our next result we prove that if G1 satisfies D′(G1) = ℵ0 and the graph G2 is finite
(so that, in particular D′(G2) is finite), then D′(G12G2) = ℵ0.

Lemma 2.3. SupposeG1 andG2 are connected relatively prime graphs withD′(G1) = ℵ0
and G2 is finite. Then D′(G12G2) = ℵ0.

Proof. Suppose, for a proof by contradiction, that D′(G12G2) is finite. Since G2 is a
finite graph, there are finite values for ||G2||, the number of edges of G2, and D′(G2) too.
Hence we can choose a positive integer k such that each of these three numbers is at most
k.

Since D′(G12G2) ≤ k, there is a k-distinguishing edge colouring f of the edges of
G12G2. Furthermore, since D′(G1) = ℵ0, there exists, for every positive integer t, a non-
trivial automorphism αt of G1 which needs at least t + 1 colours to break it. So if t ≥ k,
the colouring by f of any layer of G1 induces a colouring on G1 which cannot be broken
by the automorphism αt of G1. Since there are infinitely many such automorphisms, we
may assume without loss of generality that αs 6= αt when s 6= t.

Now consider non-trivial automorphisms of G12G2 of the form α = (αt, idG2
) (for

some t ≥ k). For each such t, and each edge vw of G1 (which we can consider as an edge
of any G1-layer of G12G2), we have that f(vw) = f(αt(v)αt(w)), i.e., these automor-
phisms of G12G2 are not broken by edges in layers of G1.

The automorphisms α of the above form should therefore be broken by edges of layers
of G2. But this means that, for each t ≥ k, for at least one edge xy of the G2-layer
determined by a vertex v ∈ V (G1), we have that f(xy) in this layer is different from
f(αt(x)αt(y)) in the G2-layer determined by αt(v) ∈ V (G1). Since there are infinitely
many G2-layers, this requires infinitely many different colourings of G2. However, there
are at most k||G2|| different colourings of G2-layers. Hence the colouring f cannot break
all the infinitely many automorphisms described above.

As a consequence of the above three lemmas we immediately obtain the following
characterisation.
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Theorem 2.4. If G1 and G2 are connected relatively prime countable graphs, then
D′(G12G2) is infinite if and only if for some i ∈ {1, 2} we have that D′(Gi) is infinite
while for j 6= i we have that Gj is finite.

Now we consider a graph which is the Cartesian power Gk of a denumerable graph G.
For a finite graph G, the distinguishing number of the Cartesian power of G is considered
in [4]. Here we prove a result for graphs G with a finite number of prime factors (counted
with their multiplicities). We begin with a result for prime graphs.

Lemma 2.5. Let k ≥ 2 be an integer. If a connected denumerable graph G is prime with
respect to the Cartesian product, then D′(Gk) = 2.

Proof. If k = 2, the proof is similar to the proof of Lemma 2.1. Indeed, denote G2 =
G12G2, where G1, G2 are isomorphic to G. Using an analogous proof technique but
colouring distinct even numbers of edges of each G1-layer with red and distinct odd num-
bers of edges of eachG2-layer with red will also take care of the additional automorphisms
generated by the isomorphism between G1 and G2.

Now we show that D′(G2H) = 2 if D′(H) = 2 and G is prime. In particular, if
we consider H = Gk−1 then we obtain the thesis by induction. Namely, let f be a dis-
tinguishing colouring of H with two colours. We define a colouring of G2H as follows:
One H-layer is given the colouring f , hence all automorphisms of this H-layer are bro-
ken. We colour another H-layer completely blue and all remaining H-layers we colour
with distinct numbers of red edges different from the number of red edges in f . Hence all
automorphisms of G are broken. If G′ isomorphic with G is a factor of H , then we have
additional automorphisms, generated by interchanging of G and G′. To break them, we
colour each G-layer red. Then every G′-layer contained in a blue H-layer is completely
blue, so it cannot be interchanged with G. In this way we break all nontrivial automor-
phisms of G2H with two colours if D′(H) = 2 and G is prime.

The above proof is analogous to the proof of a similar result in [7]. Observe that
D′(G2H) = 2 if D′(H) = 2 and G is prime, also if G is finite.

Theorem 2.6. Let k ≥ 2 be an integer and G be a connected denumerable graph with
the prime factor decomposition G = G12...2Gr, where G1, ..., Gr are not necessarily
distinct. Then D′(Gk) = 2.

Proof. If G is prime, the claim follows from Lemma 2.5. If G is not prime, we consider
the prime factorization G = G12...2Gr and apply Lemma 2.5 to every infinite factor (G
has at least one infinite prime factor). Moreover, we can use Theorem 1.4 for every finite
factor. The result then follows from Lemma 2.2 unless G = K22H and k = 2, where
H is an infinite graph relatively prime with K2. But we already know that D′(H2) = 2
due to the above arguments, so let f be a distinguishing colouring of H2 with two colours.
We then define a colouring of G2 in terms of its four H2-layers as follows: One H2-layer
is given the colouring f , hence all automorphisms of this H2-layer are broken. The three
remaining H2-layers are coloured with distinct numbers of red edges (while all remaining
edges are blue), hence all automorphisms of G2 are broken.

We say the G has infinite diameter if there are vertices of arbitrarily large distance.
Such a situation occurs in particular in any weak Cartesian product G of infinitely many
non-trivial factors (finite or infinite). Hence the above theorem immediately implies the
following.



20 Ars Math. Contemp. 13 (2017) 15–21

Corollary 2.7. Let k ≥ 2 be an integer and let G be a connected denumerable graph with
finite diameter. Then D′(Gk) = 2.

3 The distinguishing index of the infinite hypercube
The situation is quite different when we have infinitely many factors in the Cartesian power
– consider for example the infinite dimensional hypercube Kℵ02 . This (uncountable) graph
has vertices represented by (denumerable) sequences of 0’s and 1’s and two vertices are
adjacent whenever their binary sequences differ in exactly one entry. This graph also has
uncountably many connected components, each a countable graph, which are pairwise iso-
morphic. The automorphism group of Kℵ02 is well described (see [10]). Using this infor-
mation, we are now ready to prove

Theorem 3.1. Let Kℵ02 be the infinite dimensional hypercube. Then D′(Kℵ02 ) = 2.

Proof. We first construct an asymmetric spanning tree and then show how it can be used to
prove the existence of an asymmetric spanning subgraph in every component ofKℵ02 ; these
subgraphs will be constructed in such a way that different components have non-isomorphic
subgraphs. Towards the end of the proof, we shall show how they can be exploited to break
all non-trivial automorphisms of the hypercube Kℵ02 .

It is convenient to describe the required asymmetric subgraphs by first handling the
connected component C0 in which all sequences have only finitely many 1’s (and therefore
an infinite tail of 0’s). First we build an asymmetric tree T , which is a spanning subgraph
of C0, as follows:

Take (0, 0, 0, 0, . . .) and let it be the central vertex. Then add (1, 0, 0, 0, . . .), and the
edge between it and the central vertex, to form the first branch of the tree. Next take
(0, 1, 0, 0, 0, . . .) and (1, 1, 0, 0, 0, . . .) and the path between them and the central vertex to
form the second branch of the tree. The i’th branch of this tree will therefore be the path on
the central vertex and (0i−1, 1, 0, 0, 0, . . .), (0i−2, 1, 1, 0, 0, 0, . . .), . . . and will have length
2i−1. All these binary sequences have 1 on the i’th entry and if we restricted them to the
first i− 1 entries, then we obtain the binary-reflected Gray code list with i− 1 bits. It can
be generated recursively from the list for i − 2 bits by reflecting the list (i.e. listing the
entries in reverse order), concatenating the original list with the reversed list, prefixing the
entries in the original list with 0, and then prefixing the entries in the reflected list with 1.
In particular, the last vertex of the i’th branch has the code (1, 0i−2, 1, 0, 0, 0, . . .), and the
last but one has the code (1, 0i−3, 1, 1, 0, 0, 0, . . .).

Note that all branches of T are of different length, which ensures us that T is asym-
metric, and note that it is a spanning tree of the component C0. So it means that we can
easily distinguish the weak Cartesian product of ℵ0 copies of K2 by two colors: Namely
we colour all the edges of T with one colour and the remaining edges with the second
colour.

Now we would like to distinguish the Cartesian product of ℵ0 copies of K2 by two
colours. Consider any sequence x = (x1, x2, . . .) of 0’s and 1’s and suppose it is in the
connected component C of the hypercube Kℵ02 . Since C is isomorphic to C0, we can find
a copy of T , say TC , in C. Now we use x and TC to create a spanning subgraph TC

x of C
by adding edges to TC as follows:

For every positive integer i we add the edge of Kℵ02 between the endvertex of the i’th
branch and the last but one vertex of the (i + 1)’th branch of TC to this tree if and only if
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xi = 1. We remark that this edge is indeed in Kℵ02 since the binary sequences representing
these vertices inC0 differ in exactly one entry, namely the (i+1)’th entry, and therefore the
same is true in the isomorphic copy TC of T . Note also that the choice of the added edges
ensures us that Tx is not isomorphic to Tx′ whenever x 6= x′. Since there are uncountably
many sequences x, we thus have uncountably many pairwise non-isomorphic subgraphs all
of which are asymmetric.

Finally we prove, using these subgraphs of the components of Kℵ02 , that the infinite
hypercube is 2-distinguishable. Consider the following colouring f of the edges of Kℵ02 :
Colour, for each component C of Kℵ02 and some fixed choice of a vertex x of C, all the
edges of the spanning subgraph TC

x with 1; colour all the other edges of Kℵ02 with 2.
Then consider any automorphism α of Kℵ02 . Since isomorphisms, and thus α, preserve
connectivity, α has to take every component C of Kℵ02 to a component C ′ of Kℵ02 . But,
if C 6= C ′, then the asymmetric spanning subgraphs TC

x and TC′

x′ of C and C ′ are not
isomorphic (because x 6= x′), hence the colouring f breaks α.
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