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Introduction to meteorology: Solved problems Preface

Preface

This booklet is an English translation of the Slovenian language booklet Rešene naloge

iz osnov meteorologije (ISBN: 978-961-6619-45-5). It is intended to supplement the In-

troduction to Meteorology course at the Faculty of Mathematics and Physics, University
of Ljubljana. An integral part of this course is problem-solving exercises. The booklet is
based on the problems initially collected by Prof. Zdravko Petkovšek, Prof. Jože Rakovec,
Asst. Prof. Tomaž Vrhovec, Neva Pristov, MS, and Gregor Gregorič, PhD. The initial set
of problems was a core that the authors later extended. Each problem in the booklet is
presented with a solution.

The booklet is organized into sections related to the book Osnove meteorologije za

naravoslovce in tehnike (ISBN: 978-961-6619-39-4)1, written by Prof. Jože Rakovec and
Asst. Prof. Tomaž Vrhovec.

The booklet is dedicated to our colleague Tomaž Vrhovec, who lost his life in an
avalanche in the Julian Alps. The authors also want to thank Prof. Jože Rakovec for
reviewing and providing useful advice and to Dr. Katarina Kosovelj and student Žiga
Valentič for help in finding errors in the original Slovenian language version of the book-
let. The authors also want to thank Veronika Hladnik, MS, for help with the English
translation of the booklet.

The Authors

1freely available at https://www.dlib.si/details/URN:NBN:SI:DOC-EXG6P2Z0
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Introduction to meteorology: Solved problems 1. Units

1 Units

1.1 Convert the following units for pressure: [Solution]

1000 mbar = Pa,

600 mbar = hPa,

500 mbar = bar.

1.2 Convert the following units for temperature: [Solution]

12.5 ◦C = K,

290 K = ◦C,

−14 ◦C = K.

1.3 Convert from one set of units to another: [Solution]

3 days = seconds,

20000 h = years,

900 m2 = km2,

3 litres = m3,

30 m/s = km/h,

100 km/h = m/s,

100 MW = W,

1400 W/m2 = W/km2,

0.005 K/s = ◦C/hour,

1.5 mbar/100 km = Pa/m.

100 MJ = kWh,

5 kWh = MJ.

5



Introduction to meteorology: Solved problems 2. Structure and layers of the . . .

2 Structure and layers of the atmosphere

2.1 Calculate the molar mass of the air, assuming that the mass fraction of oxygen in
the atmosphere is 24% and nitrogen 76%.

Solution:
MO2 = 32 kg/kmol, MN2 = 28 kg/kmol.

p =
mR∗T

VM
= pO2 + pN2 =

mO2R
∗T

VMO2

+
mN2R

∗T

VMN2

.

The mass fractions: mO2 = m · 0.24, mN2 = m · 0.76.
From here we obtain: 1

M
= 0.24

MO2
+ 0.76

MN2
,

M = 28.866 kg/kmol.

2.2 What is the mass of the air in a classroom with dimensions 10 m× 10 m× 3 m, if
the atmospheric pressure is 1013 mbar and the temperature 25 ◦C? [Solution]

2.3 What is the molar mass of moist air that has the partial water vapour pressure of
15 mbar and total atmospheric pressure (the sum of dry air and water vapour) of
1010 mbar? [Solution]

2.4 What is the density of dry air if the atmospheric pressure is 1000 mbar and the
temperature 30 ◦C (−16 ◦C)? [Solution]

2.5 How much does the air density change if we descend from an altitude of 1500 metres,
where the temperature is 20 ◦C and the atmospheric pressure is 855 mbar to an
altitude of 450 m, where the pressure is 960 mbar and the temperature 30 ◦C?
[Solution]

2.6 What is the mass of argon in the room in which the temperature is 15 ◦C, the
atmospheric pressure 1000 mbar, and the room volume 100 m3? The mass fraction
of argon is 1.28%. [Solution]

2.7 Estimate the mass of the atmosphere of the Earth. [Solution]
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3 Hydrostatics

3.1 At sea level the measured atmospheric pressure was 1005 mbar and the temperature
was 15 ◦C. Calculate the pressure at the altitude of 4000 m for the following two
cases:

a) atmosphere is isothermal (temperature does not change with height),

b) Temperature is linearly decreasing with height at a rate of 5 K/km.

Solution:
a) Because the atmosphere is isothermal, we can use the equation:

p = p0 · e−
g(z−z0)

RT ,

where p0 is the atmospheric pressure on the sea level – 1005 mbar and z0 the altitude
of the sea level – 0 m.

p = 625 mbar.

b) Because the temperature is linearly changing with height, we can use equation:

p = p0 ·
[

1 +

(

∂T

∂z

)

z − z0
T0

]

−
g

R( ∂T
∂z ) ,

where for
(

∂T
∂z

)

we insert −0.005 K/m, because the temperature is decreasing with
height. p0, z0 and T0 are atmospheric pressure, altitude (0 m) and temperature at
the sea level.

p = 614 mbar.

3.2 For the examples below, calculate the height at which the atmospheric pressure
equals 10 mbar. For all examples, take the default assumption that the atmospheric
pressure and the temperature at sea level are 1013 mbar and 273 K.

a) Homogeneous atmosphere (air density is constant with height).

b) Isothermal atmosphere.

c) Atmosphere in which the temperature linearly decreases with height at a rate of
6.5 K/km.

Solution: a)

∆z =
∆p

ρg
= 7908 m,

b)

∆z =
RT

g
ln

p0
p

= 36884 m,

c)

∆z =
T0
(

∂T
∂z

)







(

p1
p0

)

−

R( ∂T
∂z )
g

− 1






= 24548 m.
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3.3 Calculate the ratio between the atmospheric pressures at the following altitudes:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 km and the ground, if the temperature decreases with
height linearly at a rate of −0.01 K/m and the temperature at the ground is 10 ◦C?
[Solution]

3.4 Calculate the height of 10 mbar level for the atmosphere with the temperature and
atmospheric pressure at the ground at 15 ◦C and 1013 mbar. Between altitudes
of 0 m and 100 m, the temperature increases by 2 K, between 100 m and 1000 m
the temperature decreases by 7 K, above this height to the altitude of 3000 m
the temperature is constant and from there upward the temperature decreases for
6.5 K/km up to the tropopause at the height of 12 km. From there, upward, the
temperature is constant. [Solution]

3.5 At a height of 1500 m, the atmospheric pressure is 850 mbar. Calculate the pressure
at the ground for the following two cases: [Solution]

a) The temperature from the ground upward is decreasing at 5 K/km and reaches
−7 ◦C at the height of 1500 m,

b) Up to a height of 300 m above the ground lies cold air with the temperature of
−1 ◦C. Above this height, the temperature rapidly (discontinuously) increases to
4 ◦C and then decreases with height by 8 K/km.

3.6 A meteorological balloon measured a vertical profile of temperature that is shown
on the graph below. Independently, a meteorological station at an altitude of
2 km measures the temperature at −5 ◦C and the atmospheric pressure 850 mbar.
[Solution]

a) What is the atmospheric pressure at sea level?

b) What is the atmospheric pressure at the height of 4 km? What is the air density
at that height?

c) What is the atmospheric pressure at the height of 9 km?

d) At which altitude will the atmospheric pressure be 850 mbar, if conditions of
standard atmosphere are assumed?

8
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3.7 Determine the thickness of the air layer if the atmospheric pressure at the lower
boundary is 779 mbar and at the upper boundary 545 mbar, if the layer is isother-
mal with the temperature 273 K. [Solution]

3.8 Calculate the height at which the atmospheric pressure is equal to 700 mbar. The
atmospheric pressure at the ground is 1000 mbar, and the ground is located 207 m
above the sea level. In the intermediate layer, the temperature decreases linearly
with height with the gradient of 6.5 K/km, and the temperature at the ground is
22 ◦C. [Solution]

3.9 Calculate the height at which the atmospheric pressure is equal to 300 mbar if
standard atmospheric conditions are assumed. [Solution]

3.10 The aeroplane uses an altimeter, which works based on atmospheric pressure mea-
surements. The altimeter assumes conditions of ICAO standard atmosphere (p0 =
1013 mbar, T0 = 15 ◦C,

(

∂T
∂z

)

= −6.5 K/km) and shows an altitude of 9000 m.
What is the real altitude of the plane above the region if the atmospheric pressure
at sea level is 980 mbar, the temperature 0 ◦C, and the temperature decreases with
height by 8 K/km? [Solution]

3.11 When a mountaineer went from Aljažev dom in Vrata (the altitude of 1015 m),
where the atmospheric pressure was 880 mbar, he set his altimeter and looked at
the thermometer, which showed 15 ◦C. When he came to Kredarica, the temper-
ature was 5 ◦C, and a meteorological observer told him that the temperature was
essentially constant all day. His altimeter was showing 2500 m. By how much did
the atmospheric pressure change on Kredarica, which is at the altitude of 2515 m?
[Solution]

3.12 How thick and at which altitude is the air layer between 900 mbar and 800 mbar
in the atmosphere? Atmospheric pressure and the temperature at the sea level
are 1000 mbar and 10 ◦C, and from there upward, the temperature decreases by
5 K/1 km? [Solution]

3.13 A plane is circling above Portorož. The temperature and atmospheric pressure
are 5 ◦C and 1020 mbar. A zero value of the altimeter, which assumes an ICAO
standard atmosphere, is set to this pressure, and the altimeter shows that the plane
is at the altitude of 3000 m. Because the bora wind is blowing, the air in the lower
layer of the troposphere is well mixed so that the temperature decreases with the
altitude by 9 K/km. What is the true altitude of the plane? [Solution]

3.14 During the night, the layer of air between 1000 mbar and 950 mbar losses 1 MJ/m2

of energy due to emitted radiation. How much do the temperature and the thickness
of the layer decrease during the night? [Solution]

3.15 The layer at the ground, between 1013 mbar and 950 mbar, absorbs 6 kWh of solar
radiation energy on each square metre. What is the difference between the original
and new thickness of this layer? [Solution]
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3.16 What is the difference in height where the atmospheric pressure equals 925 mbar at
Ljubljana and Koper? The ground level atmospheric pressure and temperature at
Koper (which is at sea level) are 1009 mbar and 14 ◦C while at Ljubljana (300 m
above sea level) the temperature is the same as at Koper while the atmospheric
pressure is 975 mbar. Assume a temperature decrease with height of −6.5 K/km.
[Solution]

3.17 What is the atmospheric pressure if the height of the column of mercury on the
barometer is 732.5 mm and the temperature 15 ◦C? The density of mercury is
13.5 kg/l. [Solution]

3.18 How large is the error when performing the atmospheric pressure reduction at a
meteorological measuring station that is 300 m above the sea level if the measured
temperature is 288 K and the actual temperature between the station and sea level
is higher by 1 K? [Solution]

3.19 In Slovenia, the atmospheric pressure reduction uses the temperature measured
at the meteorological station. That kind of methodology leads to major errors
for the stations at high altitudes. This is the reason that high-altitude stations
use a different methodology for reduction. Thus, on Kredarica (altitude 2515 m),
they determine the height of the 700 mbar isobar. What was the true measured
atmospheric pressure on Kredarica if the temperature was 4 ◦C and the 700 mbar
level was calculated to be at the height of 3000 m? [Solution]

3.20 How does the temperature change with height in a homogeneous atmosphere?
[Solution]

3.21 During the winter, the formation of a cold-air lake in basins is a common phe-
nomenon. The temperature at the ground is −5 ◦C, and in the lower 300 m of the
atmosphere, an inversion exists with a vertical temperature increase of 0.001 K/m.
Above this altitude, the vertical temperature gradient is the same as in the stan-
dard atmosphere. How much influence does the inversion have on the calculation
of atmospheric pressure reduction? Assume that the bottom of the basin is 300 m
above the sea level. [Solution]

3.22 What is the geopotential of 500 mbar level in the standard atmosphere? [Solution]
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4 Basic laws

4.1 Calculate the size of the horizontal component of the Coriolis acceleration at differ-
ent latitudes (10◦, 30◦, 50◦, 80◦) for the movement with speed 10 m/s.

Solution:
Horizontal component of the Coriolis acceleration is written as fv, where v is the
wind speed and f the Coriolis parameter. f = 2Ω sinϕ, where Ω is the angular
velocity of the rotation of the Earth and ϕ is the latitude.

fv(ϕ = 10◦) = 2.52 · 10−4 m/s2,

fv(ϕ = 30◦) = 7.27 · 10−4 m/s2,

fv(ϕ = 50◦) = 1.11 · 10−3 m/s2,

fv(ϕ = 80◦) = 1.43 · 10−3 m/s2.

4.2 At what circling radius is the centrifugal force equal to 10% of the Coriolis force?
Assume a latitude of 30◦ N and velocity 15 m/s. [Solution]

4.3 The air is moving horizontally towards the northeast at the speed of 25 m/s. To
which direction does the horizontal component of the Coriolis force point, and how
big is the force at 60◦ N? [Solution]

4.4 How much lighter does the mountaineer feel if he climbs on Kilimanjaro, which is
5800 m high and is located at 2◦ N? Otherwise, the climber lives at the altitude of
300 m at 50◦ N? [Solution]

4.5 How much less weight is displayed on a scale if a man is weighed on a train that
is travelling through Slovenia at the speed of 120 m/s towards the west? And how
much if the train is travelling at the same speed along the equator? [Solution]

4.6 What is the ratio between the size of vertical and horizontal components of the
pressure gradient force at the ground if the atmosphere is standard and the atmo-
spheric pressure changes in the horizontal direction by 3 mbar at the distance of
180 km? [Solution]

4.7 What should be the volume of the hot air balloon, in which the temperature of
the air is 50 ◦C, to raise itself and the basket with a combined weight of 300 kg?
The temperature of the surrounding air is 10 ◦C and the atmospheric pressure
1020 mbar. [Solution]
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4.8 The two maps below show the height of the 700 mbar and 850 mbar levels. For the
three shown points (A, B and C), calculate:

a) compare the size of the specific horizontal pressure gradient force with the vertical
pressure gradient force.

b) specific centrifugal force.

A

B

C

A

B

C

The height of the 700-mbar (top) 850-mbar (bottom) levels in metres.

Meridians are spaced apart by 20◦ and parallels by 10◦. The temperatures are
known in the three points:

p (mbar) TA (K) TB (K) TC (K)
700 273 272 255
850 278 290 262

12
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Solution:
First, calculate the air density:

p (mbar) ρA (kg/m3) ρB (kg/m3) ρC (kg/m3)
700 0.9 0.8 0.96
850 1.06 1.02 1.13

Calculate the specific horizontal pressure gradient force using the distance between
the neighbouring contour lines of the height of the constant atmospheric pressure:

−1

ρ

∂p

∂n
= −∂Φ

∂n
.

Calculate vertical component using the hydrostatic equation:

−1

ρ

∂p

∂z
= g.

Calculate specific centrifugal force indirectly via the gradient wind.

a) 700 mbar

point R (km) f (s−1) V (m/s) −1
ρ

∂p

∂n
(m/s2) −1

ρ

∂p

∂z
(m/s2) V 2

R

A 1000 8.3 · 10−5 12.8 1.22 · 10−3 9.81 1.6 · 10−4

B −900 1.0 · 10−4 20.7 1.63 · 10−3 9.81 4.8 · 10−4

C 500 1.3 · 10−4 8.4 1.22 · 10−3 9.81 1.4 · 10−4

b) 850 mbar

point R (km) f (s−1) V (m/s) −1
ρ

∂p

∂n
(m/s2) −1

ρ

∂p

∂z
(m/s2) V 2

R

A 1000 7.3 · 10−5 14.1 1.22 · 10−3 9.81 2.0 · 10−4

B −1000 6.2 · 10−5 6.9 3.7 · 10−4 9.81 4.8 · 10−5

C 500 1.2 · 10−4 7.5 9.8 · 10−4 9.81 1.1 · 10−4
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5 Steady state horizontal winds

5.1 For a circular area of low pressure, draw the equilibrium of the forces and the
velocities that are valid over the ocean (while neglecting the friction). Write the
equation for determining the wind speed.

Solution:

p−∆p

p

p+∆p

N

~v

~Fpg

~Fcor

~Fcent

From the equilibrium of the three forces, the following equation is obtained:

~Fcent + ~Fcor + ~Fpg = 0,

v2

R
+ fv − 1

ρ
|∇p| = 0.

v can be expressed via a solution to a quadratic equation as (only the positive
solution is physically meaningful):

v =
1

2

(

−fR +

√

f 2R2 + 4
R

ρ
|∇p|

)

.
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5.2 By what angle does the wind deviate away from the isobars in a circular area of
low atmospheric pressure if the friction is not neglected? The friction coefficient is
0.00001 s−1, the radial component of the pressure gradient is 2 mbar/100 km and
the air density 1 kg/m3. The cyclone is located at 45◦ N. What is the wind speed
at a distance of 300 km from the centre?

Solution:
Due to friction, the wind in the cyclone deviates towards the centre. If we equalise
the force components in the two directions, we obtain:

fv +
v2

R
=

1

ρ
|∇p| cos β,

kv =
1

ρ
|∇p| sin β.

Assuming that β is small: cos β ≈ 1 and sin β ≈ β. The wind velocity can be
expressed from the first equation, which is the same as for the example without
friction. The velocity is 13.52 m/s. From the second equation, the deviation angle
can be expressed:

β =
kvρ

|∇p| = 0.068 radian = 4◦.

5.3 In a cyclone, at what radius does the wind equal to 8 m/s, if the gradient of the
atmospheric pressure in the radial direction is 1 mbar/100 km. The friction can
be neglected, and the air density is 1 kg/m3. Assume the cyclone is located at a
latitude of 45◦. [Solution]

5.4 Calculate the wind speed in the anticyclone at 45◦ N, if the gradient of the atmo-
spheric pressure is 2 mbar/400 km and the radius of the curvature of isobars is
400 km. Assume air density of 0.7 kg/m3. [Solution]

5.5 In the anticyclone, the air circulates at 45◦ N at radius of 1000 km. At the height at
which the atmospheric pressure equals 500 mbar, the wind speed is 20 m/s. What
is the size of the horizontal atmospheric pressure gradient that determines this
movement? [Solution]

5.6 How strong is the geostrophic wind at 30◦ N if the size of the atmospheric pressure
gradient is 2 mbar/100 km and the air density 0.5 kg/m3?

Solution:
The geostrophic equilibrium applies when the pressure gradient force is balanced
with the Coriolis force:

fvg =
1

ρ
|∇p| ,

vg =
1

ρf
|∇p| = 55 m/s.
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5.7 In the field of straight isobars at our latitudes (46◦ N, 15◦ E), the wind is blowing at
the speed of 30 km/h and deviates by 15◦ from the direction of the isobars. Under
the influence of which forces does the wind blow? What are the sizes of these forces?
How large is the gradient of the atmospheric pressure? The air density is 0.5 kg/m3.
[Solution]

5.8 Calculate the wind speed in a cyclone at 70◦ N, if the atmospheric pressure gradient
size is 4 mbar/450 km and the radius of the isobar curvature is 400 km. The air
density is 0.7 kg/m3. [Solution]

5.9 What is the ratio of the speeds between the gradient and the geostrophic wind in a
cyclone located at 50◦ N if the atmospheric pressure gradient size is 1 mbar/100 km
and the radius is 1500 km? The air density is 1 kg/m3. [Solution]

5.10 On a weather map in a scale 1 : 50 000 000 at 60◦ N, the distance between the two
nearby straight isobars is 1 cm. The atmospheric pressure interval between the
isobars is 4 mbar. What atmospheric pressure gradient size and what geostrophic
wind speed corresponds to this field? What is the wind speed at the same interval
between the isobars at 50◦ N? The wind direction in this example is not relevant.
The air density is 1 kg/m3. [Solution]

5.11 In the field of the straight isobars, the wind is blowing at 60◦ N over an extensive
plane. The atmospheric pressure gradient size is 2 mbar/150 km and the ground is
uniformly rough, such that the coefficient of the linear friction is 10−4 s−1. Draw
the balance of the forces, specify the size of the specific forces, and calculate the
wind speed. The air density is 1 kg/m3. [Solution]

5.12 Due to friction, the wind deviates by 30◦ to the left of the straight isobars. The
isobars are plotted every 5 mbar, and the distance between two nearby isobars is
200 km. The coefficient of the linear friction is 10−4 s−1. What is the wind speed,
and how large are the forces that hold the balance at that wind? The air density
is 0.7 kg/m3. [Solution]

5.13 What is the difference in atmospheric pressure between the point on the edge and
in the centre of the tropical cyclone, if on the edge, 500 km from the centre, the
wind is blowing at a speed of 200 km/h and the atmospheric pressure is decreasing
towards the centre linearly? What are the pressure differences, if you assume that
the frictional force exists that is proportional to the square of the speed? The
coefficient of the square friction is 10−7 m−1. The air density is in both cases
1 kg/m3. [Solution]

5.14 What is the atmospheric pressure at the centre of the tropical cyclone, if on its
edge, 400 km from the centre, the wind blows at the speed of 150 km/h and the
atmospheric pressure is 970 mbar? The pressure field in a hurricane is parabolic,
with the minimum in the centre. The air density is 1 kg/m3. [Solution]
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5.15 The undulating westerly wind is blowing at the height of 5500 m around the Earth.
At 30◦ N, there is a trough, where the air circulates through the part of the circle
with the radius of 1000 km and the wind blows at the speed of 20 m/s. What is
the radius of the rotation at the ridge, at 60◦ N, if the speed is the same there?
[Solution]

5.16 A tornado is rigidly rotating (the angular speed is independent of the radius). What
is the atmospheric pressure field around the tornado centre if the air density is the
same everywhere (horizontal and vertical homogeneity)? [Solution]

5.17 A tornado axis is tilted by 30 degrees from the vertical. What should be the speed
of the rotation 100 m from the axis of the rotation if the atmospheric pressure is
not changing with the height? [Solution]

17
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6 Local, individual and advective changes

6.1 The temperature in Ljubljana is 6 ◦C, while in Kranj, which lies 20 km northwest
of Ljubljana, the temperature is 3 ◦C. In Kamnik, which lies 20 km north of Ljubl-
jana, the temperature is 4 ◦C. The atmosphere is calm, and the temperature field
changes linearly everywhere (the temperature field can be written with the equation
T = T0 + ax + by). In which direction does the temperature gradient point, and
what is its value? Sketch the temperature field with the isotherms.

Solution:

Ljubljana (6 ◦C)

Kamnik (4 ◦C)

Kranj (3 ◦C)

∇T

∂T
∂x

∂T
∂y

45◦

T −∆T

T

T +∆T

To calculate the temperature gradient, the constants T0, a, and b need to be deter-
mined first. The three known temperatures can be inserted into the equation of the
temperature field (T = T0+ ax+ by), which produces three linear equations for the
three unknown variables.

If the origin of the coordinate system (x = 0, y = 0) is placed at Ljubljana
and temperature (TLJ = 6 ◦C) inserted into the equation, the T0 = 6 ◦C is ob-
tained. If the data for Kamnik is inserted (TKM = 4 ◦C, x = 0, y = 20 km) the
b = −0.10 K/km is obtained. Finally, from the data for Kranj (TKR = 3 ◦C,
x = −20 km cos 45◦, y = 20 km sin 45◦) the a = 0.11 K/km is obtained.

The temperature gradient is

∇T =

(

∂T

∂x
,
∂T

∂y

)

= (a, b) = (0.11 K/km,−0.1 K/km).
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6.2 The field of the atmospheric pressure can be described with the function

p = p0 + a · y,

where p0 = 1000 mbar and a = −2 mbar/100 km. Calculate the atmospheric
pressure gradient. Draw the pressure field using the isobars and draw the vectors of
the gradient into this field. What is the pressure at a point that has the coordinates
x = 100 km, y = 200 km? [Solution]

6.3 Over the ocean, the atmospheric pressure field can be described with the following
a function:

p = p0 + ay + bx2,

where p0 = 1000 mbar, a = −2 mbar/100 km and b = 3·10−4 mbar/km2. Calculate
the pressure gradient. Draw the pressure field using the isobars, and draw the
vectors of the gradient on this field. What is the pressure at the point with the
coordinates x = 100 km, y = 100 km? [Solution]

6.4 Over the ocean, the atmospheric pressure field can be described with the following
a function:

p = p0 + a(y − y0) + b(x− x0),

where x0 = 500 km, y0 = 300 km, a = 1 mbar/100 km, b = 0.5 mbar/100 km and
p0 = 1010 mbar. Draw the pressure field with the interval between 2 mbar isobars.
Calculate the pressure gradient. Draw the vector of the pressure gradient on the
atmospheric pressure field. Calculate the atmospheric pressure at the point with
the coordinates x = 300 km, y = −100 km? [Solution]

6.5 Over Slovenia, the temperature decreases from south to north at a rate of 3 K/100 km.
How much will the temperature change in three hours, if

a) there is a south-westerly wind with a speed of 10 m/s,

b) there is an easterly wind with a speed of 10 m/s,

Solution:
The temperature field, the temperature gradient (∇T ) and the wind vectors (va

and vb) are shown in the sketch below.

vb
va

T − 2∆T

T −∆T

T

T +∆T

T + 2∆T

∇T
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The temperature gradient always points in the direction of the maximum increase
of temperature and, in this case, only has the component in the y direction. It can
be written as ∇T = (0, −3 K/100 km).

Similarly, the wind vector for case a can be determined:

va = (10 · cos 45◦ m/s, 10 · sin 45◦ m/s) = (5
√
2 m/s, 5

√
2 m/s).

The equation that connects the local, individual, and advective changes can be
used. In this case, the individual change (dT

dt
) is equal to zero because the air is not

heating or cooling.

∂T

∂t
=

dT

dt
− va∇T = −va∇T

= −(5
√
2 m/s, 5

√
2 m/s) · (0, − 3 K/100 km)

= −5
√
2 m/s · 0− 5

√
2 m/s · (−3 K/100 km)

= 0.764 K/h.

In three hours, the temperature will change by

∆T =
∂T

∂t
∆t = 0.764 K/h · 3 h = 2.3 K

For the second case (the easterly wind), the wind vector can be composed in a
similar way vb = (−10, 0) m/s. Since the wind and the temperature gradient are
perpendicular, the ∂T

∂t
will be equal to zero, and the temperature will not change.

6.6 Over an area, the temperature is decreasing northwards at the rate of 1 K/100 km
and the wind is blowing from a southwest direction at the speed of 10 m/s. How
does the temperature change if there are no individual changes in temperature?
How fast should the wind blow from the south so that the temperature will change
at the same rate as before? [Solution]

6.7 Determine the temperature change rate on the meteorological station if there is
cloudy weather, the south-westerly wind is blowing at the speed of 12 km/h, and the
temperature in the atmosphere is decreasing from south to north: 100 km towards
the south the temperature is 12 ◦C and 50 km towards the north the temperature
is 6 ◦C. [Solution]

6.8 A ship is sailing straight from one island to a second island. The first island lies at
14◦ E and 38◦ N and the second at 15◦ E and 39◦ N. On the ship, it was recorded
that the temperature increased for 1 K in three hours. The ship sails at the speed of
12 knots (6 m/s). What is the temperature at the second island if the temperature is
22 ◦C at the first island? The temperature between the islands is changing linearly,
and the atmosphere is calm. [Solution]
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6.9 Over Slovenia, the temperature increases from the northeast to the southwest at a
rate of 5 K/100 km. The air is becoming warmer because of the received energy
of the solar radiation, and its temperature increases by 3 K/h. What will be the
temperature after 2 hours, if now the temperature is 15 ◦C and the southerly wind
is blowing at a speed of 10 m/s? [Solution]

6.10 Over Europe, the temperature field can be described with the equation

T = T0(ax
2 + bxy2 + c).

The temperature was measured at three locations: T (x = 20 km, y = 100 km) =
10 ◦C, T (x = −200 km, y = 100 km) = 5 ◦C and T (x = 100 km, y = −150 km) =
−7 ◦C. What is the rate of temperature change at location x = 100 km, y = 100 km,
if a north-westerly wind is blowing with speed of 15 m/s? [Solution]

6.11 An aeroplane is flying at the height of 12 km, and its path intersects a medium sized
cyclone. The closest distance to the centre of the cyclone that the aeroplane reaches
is 1500 km. In the cyclone’s centre, the air is colder, while in the surrounding area,
the air is warmer. When the aeroplane is 2000 km from the centre, it measures the
temperature as being −55 ◦C; when it is closest to the centre, it measures −58 ◦C.
What is the temperature gradient in the radial direction if we assume that the
cyclone is circularly symmetric? [Solution]
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7 Humidity

7.1 The relative humidity in the room is 70% and the temperature 18 ◦C. The atmo-
spheric pressure is 1000 mbar. What are the values of a) the vapour pressure, b)
the absolute humidity, c) the specific humidity, d) the mixing ratio and e) the dew
point temperature?

Solution:
a) To determine the vapour pressure, the saturated vapour pressure first needs to be
calculated (it is a function of the temperature only) using the Claussius-Clapeyron
equation:

es(T ) = es0 e
hi
Rv

(

1
T0

−
1
T

)

= 20.84 mbar,

where es0 = 6.1 mbar and T0 = 273 K. hi and Rv are the latent heat of vapori-
sation and the meteorological gas constant for the water vapour (2.5 MJ/kg and
461 J/kgK).

Since relative humidity is f = 70%, the vapour pressure is 70% of the saturated
vapour pressure.

e = es · f = 14.59 mbar.

b) The absolute humidity is the density of the water vapour ρv for which the ideal
gas equation can be used e = ρvRvT

ρv =
e

RvT
= 0.0108 kg/m3.

c) The specific humidity q is the mass concentration of the water vapour in the air

q =
mv

m
=

ρv
ρ

=
e

p

R

Rv

= 9.08 g/kg.

d) The mixing ratio is defined as the ratio between the mass of the water vapour
and the mass of dry air

r =
mv

mz

=
ρv
ρz

=
e

p− e

R

Rv

= 9.21 g/kg.
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e) The dew point temperature Td is defined as the temperature by which the cur-
rent vapour pressure (e = 14.59 mbar) becomes saturated. Again, the Claussius-
Clapeyron equation can be used so that T is expressed and for es the current vapour
pressure (e = 14.59 mbar) is used.

Td =

(

1

T0

− Rv

hi

ln
e

es0

)

−1

= 285.5 K.

7.2 Determine the relative humidity, if the temperature is 5 ◦C and the dew point
temperature is −5 ◦C. The atmospheric pressure is 1000 mbar. [Solution]

7.3 Calculate the dew point temperature under the following conditions: the temper-
ature is 18 ◦C, the atmospheric pressure is 990 mbar, and the relative humidity is
65%. [Solution]

7.4 Determine the dew point temperature, if the relative humidity is 60%, the temper-
ature −15 ◦C and the atmospheric pressure 1000 mbar? [Solution]

7.5 How much lighter is one cubic metre of moist air with 90% relative humidity from
the air in which the relative humidity is only 10%? The temperature is in both
cases 20 ◦C, and the atmospheric pressure is 1000 mbar. [Solution]

7.6 What is the mass of the water vapour in the classroom that is high 3 m, long 6 m
and wide 5 m. The temperature is 22 ◦C, atmospheric pressure is 990 mbar and
vapour pressure is 13 mbar? [Solution]

7.7 What is the air density at the ground if the atmospheric pressure is 1020 mbar and
the temperature is 13 ◦C? What is its density if the relative humidity of the air is
70%? [Solution]

7.8 What is the specific humidity of the air if the vapour pressure is 5 mbar, the air
density 1.1 kg/m3 and the air temperature 10 ◦C? [Solution]

7.9 What is the saturated specific humidity at 1000 mbar and the temperatures 30 ◦C
and −15 ◦C? [Solution]

7.10 How much does the relative humidity relatively change, if at the normal conditions:
[Solution]

a) the air temperature changes for 3 K and the vapour pressure does not change?

b) the vapour pressure of the water vapour changes for 1% (0.1 mbar), and the
temperature stays the same?
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7.11 We are cooling the moist air, which has a temperature of 30 ◦C and vapour pressure
of 10 mbar. At which temperature will saturation occur? How much of water is
condensed, per unit of the air volume, when the air is cooled to the final temperature
of −16 ◦C? [Solution]

7.12 The relative humidity of the air is 65% and the temperature is 15 ◦C. What will
the new relative humidity be if the air would isobarically heat up due to receiving
5000 J of the solar energy per kilogram? The process takes place at the ground
where the air has the density of 1 kg/m3. [Solution]

7.13 In the evening the measured air temperature is 20 ◦C and the relative humidity is
80%. Over the night, the air temperature near the ground will decrease by 7 K.
Will dew form during the night on the ground? [Solution]

7.14 The temperature and dew point temperature of the 20-m thick air layer at the
ground are 20 ◦C and 10 ◦C. The ground is moist, and the water evaporates into
the air. What is the mass of the evaporated water in every quadratic metre of
the ground if you assume that the ground-level air becomes saturated and that
there is no mixing with its surroundings? The atmospheric pressure is 1000 mbar.
[Solution]

7.15 During the winter, we sometimes ventilate our apartment. Into the room in which
the temperature is 20 ◦C and 50% relative humidity, we let in the outside air,
which has the temperature −5 ◦C and 90% relative humidity. The cold air replaces
half of the volume of the warm air in the room. The air is then mixed, and the
mixture is again heated to 20 ◦C while the atmospheric pressure remains constant
at 1000 mbar. What is the final relative humidity? [Solution]

7.16 How much of the water has to evaporate from the evaporator if we want to achieve
a 70% humidity in the room, which is 4 m× 3 m× 2.5 m large and has a constant
temperature of 25 ◦C and the initial relative humidity of 45%. Assume a constant
atmospheric pressure of 1000 mbar. [Solution]

7.17 At sunset, the temperature is 15 ◦C and the relative humidity is 80%. On a clear
night, the air is cooling by 1 K per hour. If the night lasts for ten hours, will there
be dew and fog in the morning? [Solution]

7.18 Two air masses are uniformly mixed so that in every kilogram of air, there is
exactly half a kilogram of air from one and half kilogram of air from the second
air mass. Mixing takes place at the constant atmospheric pressure of 1000 mbar.
The temperature of the warm air is 21 ◦C, and the temperature of the cool air is
5 ◦C. The warm air is saturated, and in the cool air, the relative humidity is 80%.
Determine the temperature after the mixing. Did condensation occur, and if it did,
how much water did condense? [Solution]
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7.19 The air has the temperature 10 ◦C and the atmospheric pressure is 1000 mbar. How
much of the water is condensed from each cubic metre of the saturated air if the
air cools by 1 K? [Solution]

7.21 Calculate the saturated vapour pressure at−12 ◦C over water and over ice? [Solution]

7.22 What is the ratio of the relative humidity over the water and over the ice at a
temperature of −5 ◦C? [Solution]

7.23 How is the relative humidity changing if the temperature at the ground is changing
sinusoidally with an amplitude of 10 K, has the maximum at 14:00 and the mini-
mum at 8:00 and the average temperature is 15 ◦C. The specific humidity and the
atmospheric pressure are constant at 3 g/kg and 1020 mbar, respectively. What
will be the relative humidity at 10:00? [Solution]

7.24 Calculate the relative humidity if the temperature of the dry bulb thermometer
is 12 ◦C and the temperature of the wet bulb thermometer is 10 ◦C. Assume an
atmospheric pressure of 960 mbar. [Solution]

7.25 Calculate the dew point temperature if you know the temperature of the dry bulb
thermometer is 20 ◦C and the temperature of the wet bulb thermometer is 12 ◦C
and the atmospheric pressure is 1020 mbar. [Solution]

7.26 Calculate the temperature of the wet bulb thermometer at the atmospheric pressure
of 1000 mbar, when the temperature is 18 ◦C and the relative humidity is 65%.
[Solution]

7.27 When the temperature is 10 ◦C, it starts raining with an intensity of 5 mm/h. At
the beginning of the rain, a bridge has a temperature of −2 ◦C, so icing starts
forming on it. The bridge is 20 cm thick. The specific heat capacity of the bridge
is 800 J/kgK and the density 2500 kg/m3. The drops have the same temperature
as the air. [Solution]

a) How long should the rain fall before the bridge heats up by 1 ◦C?

b) How long should the rain fall before no more ice is on the bridge?

7.28 What is the mass of the precipitation that is intercepted by the rain gauge over a
time of three hours? Assume the horizontal wind speed is 10 m/s, the falling speed
of the raindrops is 18 m/s and that in each cubic metre of the air, there is 1 g of
water in liquid state. The surface area of an ombrometer is 4 dm2. What is the
mass of the precipitation if, instead of raindrops, snowflakes are falling at the speed
of 5 m/s? [Solution]

7.29 Calculate the virtual temperature of the air (Tv) at 30
◦C, if the specific humidity

is 20 · 10−3. The virtual temperature is the temperature that dry air would have, if
its density were the same as for moist air. [Solution]
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8 Adiabatic changes

8.1 At which height will a cloud base form if the air is rising from the ground upwards?
At the ground, the air temperature and dew point temperature are 15 ◦C and
11.6 ◦C?

Solution:
The rising air is cooling at 10 K/km (Γa = 10 K/km). Γa is, by definition, always
positive, although the temperature of the rising air decreases with height. When
using Γa, one needs to be careful to prevent errors due to incorrect usage of a
positive or negative sign.

Besides the temperature, the dew point temperature decreases in the rising air. The
decrease is approximately equal to 1

6
Γa.

The cloud base is at a height where the temperature of the rising air is equal to the
dew point temperature of this air.

T − Γa · zB = Td −
1

6
Γa · zB

zB = 0.4 km

8.2 Part of the air, which is close to the ground, is overheated by 10 K above the ambient
temperature and is rising in the standard atmosphere. What is the hydrostatically
unbalanced part of the specific buoyancy force 500 m above the ground?

Solution:
The air temperature at the ground in the standard atmosphere is T00 = 288.15 K
and is decreasing with height at a rate of 6.5 K/km (∂T

∂z
= −0.0065 K/m).

The temperatures of the rising and surrounding air at 500 m above the ground are:

Tok = T0 +

(

∂T

∂z

)

∆z = 284.9 K,

T = T0 − Γa∆z = 293.15 K.

The hydrostatically unbalanced part of the specific buoyancy force is:

dw

dt
= g

T − Tok

Tok

= 0.28 m/s2.

8.3 The air, which has the temperature of 15 ◦C and the specific humidity 1.1 g/kg at
the ground, is rising to the height of 6000 m because of the unbalanced buoyancy.
What will the temperature of air at this height be and at which height will the air
become saturated? The altitude of the ground is 0 m and the atmospheric pressure
at the ground is 1000 mbar; the moist adiabatic lapse rate is 7 K/km. [Solution]
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8.4 From Radovljica, one can see that the base of the orographic cloud is at the height
of 1700 metres on the slope of mountain Stol. A light southerly wind is blowing, and
air from Radovljica is climbing along the slope of Stol. What is the relative humidity
in Radovljica if the air temperature there is 15 ◦C? The altitude of Radovljica is
450 m. [Solution]

8.5 The wind is blowing at the speed of 8 m/s along an extensive slope, that has a
tilt of 4 ◦C. Dry air travels from the bottom to the top of the hill in 26 minutes.
How much does the temperature change on the top of the slope after the wind
starts to blow, if the horizontal temperature gradient is negligible and the vertical
component of the gradient is 5 K/1000 m? Evaluate the temperature change, if the
air is saturated. Take into account the approximate value of the moist adiabatic
lapse rate Γs = 6 K/km. [Solution]

8.6 The wind is blowing from the valley up to the hill. In the valley, the temperature
is 15 ◦C and the relative humidity is 80%. What is the relative humidity 500 m
above the bottom of the valley? [Solution]

8.7 A part of the air with temperature 17 ◦C and absolute humidity 7 g/m3 is rising adi-
abatically. How much will the absolute humidity decrease if the air rises by 1000 m
without exchanging the heat or the humidity with the surroundings? [Solution]

8.8 How much does the relative humidity of the air change if the air rises by 500 m
at the constant specific humidity of 5 g/kg? The temperature at the ground is
20 ◦C, and the atmospheric pressure is 1000 mbar. Calculate the height of the
condensation level. [Solution]

8.9 The air is raised adiabatically from 1000 mbar and 28 ◦C, to 850 mbar, where
it becomes saturated. What is the relative humidity of air at the ground? At
200 metres above the level of condensation, the temperature decreases by 1 K and
the atmospheric pressure by 18 mbar. How many grams of the water is condensed
per unit of the air mass if the air rises by an additional 200 m? [Solution]

8.10 Calculate the height of the free convection of the unsaturated air if the vertical
temperature gradient is 6.5 K/km and the air near the ground warms up by 5 ◦C.
[Solution]

8.11 In the morning, the atmosphere above the airport is stable, with a temperature
decrease of 3 K per 1000 m. The temperature at the ground was 10 ◦C, and the
dew point temperature was 2 ◦C. During the day, the air near the ground becomes
warmer, and at 11:00, the temperature is 18 ◦C. To which height did the convection
extend? Did cumulus clouds form? If they did, where was their base? [Solution]

8.12 Dry air is rising from 1000 mbar to 700 mbar without mixing or exchanging the
heat with its surroundings. At the beginning, it has a temperature of 10 ◦C. What
is the initial density of the air? What are the final temperature and the density of
the air? [Solution]
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8.13 The wind blows towards a 800-m high ridge, and the air, which has a temperature
of 15 ◦C and 70% relative humidity, has to forcibly lift along the slope of the ridge.
Does an orographic cloud form at the ridge? At which height will the cloud base
be in case of 90% relative humidity? [Solution]

8.14 In the morning, over the sea, the air temperature is 20 ◦C with a 3 K/km decrease
to the height of 2 km. From there, upward, a strong inversion exists, and the
temperature is increasing by 2 K/km. To which height will the convection extend
if the air at the ground warms up to 27 ◦C during the day? Do the clouds appear
if the relative humidity at the ground is 60% in the morning? [Solution]

8.15 The air with the initial temperature 294 K and specific humidity 10 g/kg is ris-
ing at the hill from 1000 mbar to 700 mbar. What is the dew point temperature
at 1000 mbar? At which atmospheric pressure is the lifted condensation level?
[Solution]

8.16 The air with a temperature of 18 ◦C and a relative humidity of 85% is flowing over
the Alps. On the south side, it rises from the level of the Adriatic Sea to the top
of the ridge (3000 m), and on the north side, it sinks to Bavaria (700 m) without
precipitation fall out. What are the temperature and the relative humidity north
of the Alps? Assume a moist adiabatic lapse rate of Γs ∼ 7 K/km. [Solution]

8.17 Over the mountains blows the Foehn wind, which has the temperature of 38 ◦C
and the mixing ratio of 4 g/kg at 1000 mbar. Can this be the same air as on the
windward side of the mountain, where the temperature is 21.5 ◦C and the mixing
ratio 10 g/kg at 1000 mbar? [Solution]

8.18 The air at 20 ◦C and mixing ratio 8 g/kg is raised from 1000 mbar along the hill
to 700 mbar. What was the dew point temperature before the rise? What is
the temperature on the other side of the hill at 900 mbar, if 80% of the mass of
condensed water falls from the cloud and the precipitation water does not evaporate
into the air? [Solution]

8.19 The air flows over the Alps (altitude 3000 m). On the southern side at the bottom,
the air has a temperature of 18 ◦C and a relative humidity of 85%. On the northern
side at the bottom, the southerly Foehn is blowing with the temperature of 25 ◦C
and the relative humidity of 36%. How much precipitation falls when crossing the
Alps? [Solution]

8.20 In the lower troposphere, during peaceful dry weather, at night, we measure at the
ground the temperature of 16 ◦C. The temperature decreases with height by 7 K
on km to the height of 3 km and by 5 K on km to the height of 5 km. During the
day, the air at the ground warms up to 28 ◦C. To which height does the air mix
due to convection? [Solution]
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8.21 What is the frequency of vertical oscillation of vertically displaced unsaturated air
in a stable atmosphere (∂T/∂z = −5 K/km, the temperature is 15 ◦C)? What
happens, if ∂T/∂z = −11 K/km? [Solution]

8.22 The saturated air with the temperature of 20 ◦C and the atmospheric pressure of
1000 mbar blows at the speed of 10 m/s towards a slope with the tilt of 20◦. What
is the maximum possible intensity of the precipitation that falls from the rising air
if the cloud top is at the pressure 500 mbar? Assume moist adiabatic lapse rate of
Γs = β(p)Γa: [Solution]

atmospheric pressure (mbar) β
1000 0.38
850 0.45
700 0.50
500 0.62
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9 Emagrams

9.3 The meteorological balloon measured the following temperatures at different heights:

atmospheric pressure temperature dew point temperature
1000 mbar 20 ◦C 10 ◦C
950 mbar 20 ◦C 10 ◦C
600 mbar −14 ◦C −40 ◦C
300 mbar −45 ◦C −60 ◦C

above 300 mbar −45 ◦C no data

a) Draw the vertical temperature profile on the Skew-T Log-P emagram (between
the measurements, you can draw the straight lines).

b) Draw the vertical profile of the dew point temperature on the emagram.

c) What are the temperature and the dew point temperature at the height, where
the atmospheric pressure equals 450 mbar?

d) Determine the lower limit of the tropopause.

e) At which height will cloudiness appear if the air is forced up along the slope?
Draw the vertical profile of the temperature during the rising on the emagram.

f) To which height would the air have to be additionally raised so that the free
convection will occur? Where will the cloud top be in this case? (Mark on the
emagram.)

g) Mark the CAPE (Convective Available Potential Energy).

30



Introduction to meteorology: Solved problems 9. Emagrams

Solution:
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a),b) On a Skew-T Log-P emagram the atmospheric pressure is on the ordinate axis
(marked on the left side and goes from 1000 mbar to 100 mbar). The abscissa axis
shows the temperature and is rotated by 45◦ in the clockwise direction (solid black
lines inclined to the right). The temperature values are labelled at the right and
top sides and go from 40 ◦C to −100 ◦C. The vertical profiles of the temperatures
with the height (atmospheric pressure) that are given in the example are shown
with thick lines. The right line represents the temperature, and the left is the dew
point temperature.

c) You have to read the temperature from the graph (points 1 and 2). The temper-
atures are approximately −27 ◦C (air) and −48 ◦C (dew point).

d) The tropopause is the isothermal layer, which is located approximately 10 km
above the troposphere. To accurately determine its lower limit, you have to deter-
mine the height where the temperature becomes constant from the graph. In our
case, that is at point 3 (300 mbar). At this point, the vertical profile of the air
temperature becomes parallel to the inclined temperature axis.
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e) If an air parcel is rising, its temperature and the dew point temperature are
changing. The temperature of the rising air with the height decreases parallel
with the dotted lines that are inclined to the left. When the air rises from the
ground, the temperature parallelly follows these lines (marked with 4). At the
same time, the dew point temperature is decreasing. It is decreasing in parallel
with the shorter grey dashed lines inclined to the right (marked with 5). When
the air temperature and the dew point temperature become equal, the air becomes
saturated (the relative humidity becomes 100%). This is labelled with 6. At that
height, the cloud droplets will start to form and cloudiness appears. This height is
also known as the rising condensation level.

f) From the rising condensation level, the air is rising parallel to the black dashed
curve that is inclined to the left (labelled with 7). The dew point temperature is
equal to the air temperature (the relative humidity is 100%). The rising air is still
cooling, but somewhat more slowly than before the rising condensation level. If, at
some point, the temperature of the rising air becomes higher than the temperature
of the surrounding air at the current height, the unbalanced buoyancy force starts
to point upwards, and free convection occurs. In our case, this happens at the
atmospheric pressure around 750 mbar (labelled with 8). From here on, the air will,
due to the buoyancy, raise itself (it does not need to forcibly raise itself along the
hill) until it becomes colder from the surroundings. It will become colder than the
surroundings at the atmospheric pressure around 360 mbar (labelled with 9). In
this case, the cloud will extend from the rising condensation level (point 6) to the
upper level of the free convection (point 9).

g) Convective Available Potential Energy (CAPE) is defined as the surface area
between the curves of the temperature of the rising and the surrounding air, where
the first is warmer than the second (greyness labelled with 10). It is difficult to
evaluate the CAPE from the emagram qualitatively, but it is generally true that
the larger the CAPE surface area is, the more intense the convection will be (if the
convection does occur – do not forget that the air first has to be forcibly raised
at the slope of the hill to the height of 750 mbar. If there is no forced rising, the
convection will not occur).
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9.4 The meteorological balloon measured the following temperatures at different heights:
[Solution]

atmospheric pressure temperature dew point temperature
1000 mbar 34 ◦C 23 ◦C
950 mbar 30 ◦C 22 ◦C
900 mbar 25 ◦C 20 ◦C
850 mbar 22 ◦C 17 ◦C
800 mbar 21 ◦C 13 ◦C
750 mbar 18 ◦C 5 ◦C
700 mbar 12 ◦C −1 ◦C
650 mbar 6 ◦C −10 ◦C
600 mbar 2 ◦C −12 ◦C
550 mbar −3 ◦C −21 ◦C
500 mbar −7 ◦C −25 ◦C
450 mbar −12 ◦C −30 ◦C
400 mbar −17 ◦C −36 ◦C
350 mbar −25 ◦C −39 ◦C
300 mbar −32 ◦C −42 ◦C
250 mbar −42 ◦C −51 ◦C
200 mbar −52 ◦C −60 ◦C
150 mbar −51 ◦C no data
100 mbar −46 ◦C no data

a) Draw the vertical temperatures profile on the blank Skew-T Log-P emagram.

b) What is the relative humidity of the surrounding air at the ground and at
700 mbar?

c) Determine the lower limit of the tropopause.

d) Did any cloud layers exist at the time of the measurement?

e) Determine the lifted condensation level.

f) Determine the height of the cloud base.

g) Determine the level of free convection. h) In the case of free convection, to what
height will the cloud reach?

i) How much would the air at the ground have to warm up so that free convection
with condensation would occur?
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9.5 Using the provided Skew-T Log-P emagram determine the following: [Solution]

2012853210.4

4
0

3
0

2
0

1
0

0
−
1
0

−
2
0

−
3
0

−
4
0

−
5
0

−
6
0

−
7
0

−
8
0

−
9
0

−
1
0
0

8 12 16 20 24 28 32

440430420410400390380370360350340330320

310

300

290

280

270

260

250

100

200

300

400

500

600

700

800

900

1000

a) For how many degrees does the temperature decrease in the layer between
800 mbar and 500 mbar?

b) Mark on the emagram where the cloud layers were located at the time of the
measurement.

c) On the emagram, mark the lower limit of the tropopause.

d) On the emagram, mark and evaluate the lifted condensation level.

e) On the emagram mark to which height the air would additionally need to be
raised so that the free convection would occur?

f) For how many degrees should the air at the ground warm up, so that the free
convection with the condensation will occur?

g) On the emagram mark, to which height would the cloud extend in this case.
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9.6 Using the provided Skew-T Log-P emagram determine the following: [Solution]
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a) What is the temperature at the height of 700 mbar?

b) Did any cloud layers exist at the time of the measurement?

c) On the emagram, mark and determine the height of the lifted condensation level.

d) The air is forcibly rising at the slope of the hill that has the top at 850 mbar.
Will the free convection occur?

e) To which height will the cloud extend in this case?

f) By how many degrees should the air at the ground warm up, so that the free
convection with the condensation will occur?

g) To which height will the cloud extend in this case?
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9.7 Using the provided Skew-T Log-P emagram, determine the following: [Solution]
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a) What is the temperature at the height of 450 mbar?

b) Did any cloud layers exist at the time of the measurement?

c) On the emagram, mark and determine the height of the lifted condensation level.

d) On the emagram, mark to which height the air would additionally need to be
raised so that the free convection would occur.

e) At least for how many degrees should the air at the ground warm up so that the
free convection that will take place to the height of 200 mbar will occur?

f) To which height will the cloud extend in this case?
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10 Radiation

10.1 Calculate the ratio between the incoming power of solar radiation for sunny and
shady parts of a roof with a tilt of 30◦. The ridge of the roof is in the east-west
direction, the sun is positioned in the south at the elevation of 45◦ above the horizon.
The flux density of the incoming direct solar radiation is 800 W/m2, and the flux
density of the diffuse radiation is 44 W/m2.

Solution:

γγ

α

jdir jdir

The sunny and the shady sides are receiving power:

Psunny = jdir · cos
(π

2
− (α + γ)

)

· S + jdif · S

Pshady = jdir · cos
(π

2
− (α− γ)

)

· S + jdif · S

The ratio of the energy fluxes is: Psunny/Pshady = 4.4.

10.2 The temperature of all walls in a prison cell is 10 ◦C. In the cell is a naked prisoner,
and the temperature of the human skin is 30 ◦C. What is the net radiative energy
loss by the prisoner if you assume that the surface area of the human body is 1 m2

and the walls and the human body radiate as a black body? [Solution]

10.3 Fog has risen from the ground to a height of a few tens of metres. The emissivity of
the fog is 0.8 and temperature 282 K. What is the power of the incoming radiation
that is received by a flat surface on the ground? The area of the surface is 1 m2.
No IR radiation is absorbed between the fog and the ground. [Solution]

10.4 The estimate of the average evaporation of the water for the whole Earth is 2.7 mm/day.
This corresponds to the average precipitation. What portion of the incoming aver-
age solar radiation the Earth receives is needed for the evaporation of the water?
Assume the average albedo of the Earth a = 0.35. [Solution]
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10.5 How many days would the sun have to irradiate the horizontal plane on the Earth’s
surface that 1200 mm of water would evaporate from it? Assume the average length
of the day is 12 h and the height of the Sun at noon is 60◦ above the horizon. Assume
a linear function for the sun’s elevation during the day. [Solution]

10.7 A nuclear power station uses a nearby lake for cooling and is dumping waste heat
with the power of 500 MW. The lake has a surface area of 100 km2 and an average
depth of 10 m. Assume that the waste heat is evenly distributed over the entire
lake. [Solution]

a) How fast would the lake warm up if it did not emit the energy to the surrounding
area?

b) If the lake has a natural temperature of 10 ◦C, how will its temperature change
if the surplus of the heat is emitted only via radiation?

c) How much evaporation should occur from the lake in order to carry away all the
additional heat from the power plant so that the temperature of the lake does not
change?

10.8 A meadow with the surface area of 1.2 ha, absorbs 18000 MJ of the energy from
solar radiation and evaporates 1000 kg of water in one hour. If the emissivity of
the meadow ground is 0.95, what is the temperature of the ground on the meadow?
[Solution]

10.9 In Greenland, a circular lake with the radius of 1 km and the depth of 0.5 m exists.
On a polar day, the Sun is at elevation 25◦ above the horizon all the time, and
the flux density of direct solar radiation is 800 W/m2. 80% of the incoming solar
radiation is absorbed in the water. All the absorbed energy is used only for the
evaporation of the water. [Solution]

a) How long would it take the lake to dry out if the situation stays unchanged and
there is no precipitation?

b) How many days would pass before the lake would dry out if it has a constant
river inflow with the capacity of 500 m3/h?
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10.10 In Greenland, a circular lake with a cross-sectional profile, as shown in the figure
below, exists. On a polar day, the Sun is at elevation 25◦ above the horizon all
the time, and the flux density of direct solar radiation is 800 W/m2; 80% of the
incoming solar radiation is absorbed in the water. All the absorbed energy is used
only for the evaporation of the water. [Solution]

1 km 1 km1 km

0.5 m

a) How long would it take for the lake to dry out?

b) What would be the equilibrium depth of the lake if the lake had a constant river
inflow with the capacity of 1000 m3/h?

c) How long would it take for the lake to dry out if the lake would have constant
river inflow with the capacity of 200 m3/h?

10.11 On a 15-m high pillar, there is a solar collector with a surface area of 1 m2. The
collector is tilted at 45◦ with respect to the horizon. Between the collector and the
Sun is a triangular or a half-circular hill (see figure). What is the power of the
incoming solar radiation that falls on the collector in the morning when the Sun
shines on it? Assume that the flux density of direct solar radiation is 800 W/m2.
[Solution]

15
m

15
m

30 m

40
m

40
m

40 m 10 m 70 m
a) b)

10.12 During the day, the temperature of the soil surface changes sinusoidally with the
amplitude of 10 K, with a maximum at 14:00 and a minimum at 8:00. The average
temperature of the soil surface is 15 ◦C. What is the temperature amplitude at the
depth of 15 cm in the soil? Assume thermal conductivity of soil λ = 100 W/m2,
soil density 2000 kg/m3 and specific heat capacity of soil of 2000 J/kgK? [Solution]
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10.13 The albedo of Earth together with the atmosphere for shortwave radiation is 0.3,
and the absorptivity of the atmosphere is 0.1 for the shortwave and 0.7 for the
longwave radiation. What are the equilibrium temperatures of the ground and the
atmosphere if the solar constant j0 is known? [Solution]

10.14 Assume that some area on the Earth is isolated from its surroundings so that
the energy fluxes between this area and the surroundings can be neglected. This
area is irradiated by the Sun; near the ground, the flux density of solar radiation
is 600 W/m2. The albedo of the soil is 0.36. The atmosphere consists of three
layers, which do not mix with each other. We neglect the transfer of energy with
the conduction between the nearby layers. The transmissivity of the three layers is
0.70, and the reflectivity is 0. What will the ground temperature be if the layers and
the ground are in the radiative balance? Assume, that the layers and the ground
affect only the neighbouring layers. [Solution]

10.15 How much energy of solar radiation is received by a black horizontally oriented
plate of the radiometer, with surface 6 cm2 at the time between 11:30 and 12:30
on the local solar time, when the Sun is at 60◦ above the horizon? What is its
equilibrium temperature at noon? What is the total daily received energy if the
Sun rises at 5:45 and the elevation angle of the Sun changes linearly with time from
0◦ to 60◦ at noon and then back to 0◦? Assume that the solar radiation flux density
near the ground is 800 W/m2. [Solution]

10.16 A thermometer is placed in direct sunlight and shows the temperature of 39 ◦C.
The true air temperature is 25 ◦C, while the emissivity of air is 0.7 and the ther-
mometer radiates as a black body. What is the albedo of a thermometer bulb
for solar radiation if it is exposed to a solar radiation flux density of 1000 W/m2?
Assume the bulb is spherical in shape. [Solution]
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11 Fronts

11.1 What is the tilt of the cold front if the difference in the temperature between the
air masses is 3 K, a south-westerly wind is blowing before the front at the speed of
13 m/s, and after the front, a north-westerly wind is blowing at the speed of 10 m/s?
The front is oriented in the north-south direction. The warm air temperature is
16.5 ◦C. The front is located at 45◦ N.

Solution:
We use the equation for the tilt of the front:

tanα =
fT

g

(

vT − vH
TH − TT

)

,

where vT and vH are the tangential components of the wind, which blows along the
front. tanα is defined as positive in the cold front and negative in the warm front.
In the example, we first need to determine the tangential components of the wind,
that are vT = −13 m/s · sin 45◦ and vH = 10 m/s · sin 45◦.

tanα = 0.0164.

11.2 How fast will the cold front move from Koper towards central Slovenia if in the
warm air the wind blows from the azimuthal direction 210◦ at the speed of 25 m/s
and in the cold air the atmospheric pressure increases towards the southwest by
1.3 mbar/100 km? The air density is 1 kg/m3. [Solution]

11.3 The front is located in the northern hemisphere in the east-west direction and is
vertically tilted by 1◦. In the warm air, the temperature is 6 ◦C and in the cold air,
−2 ◦C. In the cold air, the wind blows from the northeast at the speed of 40 m/s.
Determine the wind blowing in the warm air. [Solution]

11.4 What is the orientation of the front and how fast is it moving if in cold air northerly
wind at the speed of 10 m/s is blowing while in warm air north-westerly wind at
the speed of 7.1 m/s is blowing? [Solution]

11.5 At the cold front with a tilt of 1/200 and orientation in the SW-NE direction, the
cold air is advancing at the speed of 50 km/h. The cold air is 5 K colder than the
warm air. In the warm air, where the temperature is 15 ◦C, a westerly wind blows.
What are the wind’s speed and direction in the cold air? [Solution]

11.7 An isothermal lake of cold air (T1 = 5 ◦C) lies in the basin where the weather is
calm. Above the inversion that separates the lower air mass from the upper air
mass, the air is warmer (T2 = 15 ◦C) and westerly geostrophic wind at the speed of
15 m/s is blowing. At the side of the basin, where the inversion level is the lowest,
the inversion is 100 m high. At which height is the inversion on the opposite side of
the basin, which is 40 km away. In which direction is the opposite side? [Solution]
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11.8 What is the slope of the upper limit of the calm lake of the cold air, in which
the temperature is −8 ◦C if above it wind speed is 10 m/s and temperature 5 ◦C?
[Solution]

11.9 Determine the tilt of a stationary front, which separates the two air masses at the
latitude of 45◦. Characteristics of the air masses: the atmospheric pressure at the
ground is 1000 mbar, the temperature in the cold air is 263 K, and in the warm air
273 K. The horizontal gradient of the atmospheric pressure, perpendicular to the
front in the cold air, is 1 hpa/100 km. In the warm air, the geostrophic wind blows
at the speed of 15 m/s. How much would the tilt change if the warm air would stop
moving? [Solution]

11.10 How far ahead of the warm front at the ground is the warm air at the height
of 8 km (usually, we see it via cirrus clouds)? Assume the incoming air is 10 K
warmer than the cold air, that its temperature is 5 ◦C and that at the front, the
wind turns by 45◦ and strengthens by 5 m/s? How far away on the horizon can this
cloudiness be seen if we stand on the hill 1000 metres high? Before the front, the
wind is blowing at the speed of 10 m/s perpendicular to the direction of the front
movement. [Solution]
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12 Solutions

Solutions: Units

1.1: 100000 Pa, 600 mbar, 0.5 bar.

1.2: 285.5 K, 17 ◦C, 259 K.

1.3: 259200 s, 2.3 years, 0.0009 km2, 0.003 m3, 108 km/h, 27.7 m/s, 108 W, 1.4·109 W/km2,
18 °C/hour, 0.0015 Pa/m, 27.8 kWh, 18 MJ.

Solutions: Structure and atmospheric layers

2.2: 355 kg.

2.3:

M =
Σmi

Σni

=
Σmi

Σmi

Mi

=
Σ V

R∗T
piMi

Σ V
R∗T

pi
=

ΣpiMi

Σpi
= 28.8 g/mol.

2.4: a) 1.1 kg/m3, b) 1.4 kg/m3.

2.5: Air density increases from 1.02 kg/m3 to 1.10 kg/m3.

2.6: From the ideal gas equation for air, we calculate the mass of air in the room to be
121 kg. Considering the mass fraction of argon, we obtain the mass of argon to be
1.6 kg.

2.7: The average atmospheric pressure at sea level is 1013 mbar. The radius of the Earth
is 6370 km.

p =
F

S
=

mg

4πR2
z

,

m = 5.3 · 1018 kg.
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Solutions: Hydrostatics

3.3:
z 1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10 km
p(z)/p0 0.88 0.78 0.68 0.59 0.51 0.44 0.38 0.32 0.27 0.22

3.4: The problem is solved progressively from the lower layer upwards.

height (m) atmospheric pressure (mbar) temperature (K)
0 1013 288

100 1001.1 290
1000 899.2 283
3000 706.2 283
12000 208.0 224.5
31964 10 224.5

3.5: a) 1028.8 mbar, b) 1026.2 mbar.

3.6: a) 1098.0 mbar, b) 663.2 mbar, 0.82 kg/m3 c) 352.4 mbar, d) 1454 m.

3.7: 2853 m.

3.8: 3187 m.

3.9: 9153 m.

3.10: Using the parameters of standard atmosphere, the atmospheric pressure at the
height of the plane can be calculated (306.8 mbar). Then, the actual data can be
used to calculate the real height of the plane (8119 m).

3.11: We can calculate the pressure on Kredarica in two ways: first with
(

∂T
∂z

)

for the
standard atmosphere, where for the height of Kredarica we use the value shown by
the altimeter, and second with the use of true temperature and height data from
the temperature profile. The pressure increases for 1.5 mbar.

3.12: The layer is located between 866 m and 1818 m.

3.13: 2863 m.

3.14:

dQ = mcpdT = ρShcpdT,

∆z = z1 − z0 =
R

g
T

∫

d ln p,

d∆z =
R

g
ln

p0
p1

dT =
R

g
ln

p0
p1

1

ρhcp

dQ

S
=

R

∆p
ln

p0
p1

1

cp

dQ

S
= 2.9 m.
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3.15:

d∆z =
R

∆p
ln

p0
p1

1

cp

dQ

S
= 63 m.

3.16: 16 m.

3.17:

p = ρHg · g · h = 970,1 mbar .

3.18: By calculating the atmospheric pressure at the sea level it is assumed that the
atmosphere is isothermal with the temperature measured at the station:

∆p

p0
= e

g∆z
RT − e

g∆z
R(T+1 K) = 1.2 · 10−4.

3.19: 743.4 mbar.

3.20: In the case of homogeneous atmosphere, the density is constant and dp = ρRdT .
We can use the hydrostatic equation and use it to express the change of the tem-
perature with the height:

∂p

∂z
= −ρg,

∂T

∂z
= − g

R
= −0.03 K/m.

3.21: When there is no inversion in the layer above the ground, the temperature at the
ground is −2.8 ◦C. The ratio of the calculated values of the atmospheric pressure
is

p0
p′0

= e
gh
R (

1
T
−

1
T
) = 1.0003.

3.22: First, we calculate the height of the 500-mbar layer, by assuming the standard
atmosphere: p0 = 1013 mbar, T0 = 288 K,

(

∂T
∂z

)

= −6.5 K/km.

z =
T0
(

∂T
∂z

)







(

p1
p0

)

−

R( ∂T
∂z )
g

− 1






= 5567 m.

When calculating the geopotential, we assume that g is not changing with height

Φ =

∫ H

0

g dz = 54612 m2/s2.
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Solutions: Basic laws

4.2:

ω2R = 0.1fu,

R = 20.7 km.

4.3: It points towards the southeast. The force is 3.1 · 10−3 m/s2.

4.4: One must consider the difference in acceleration of gravity, which results from the

change in gravitational force acceleration with altitude (g(z) = g0

(

r0
r0+z

)2

, where

g0 is the gravitational force acceleration at sea level and r0 is the Earth’s radius
and z is the altitude) and the change in the radial component of the centrifugal
force acceleration (fcent = ω2(r0 + z) cosϕ, where ω is the angular velocity of the
Earth’s rotation and ϕ is the latitude). The acceleration of gravity on Kiliman-
jaro is 9.76 m/s2, and at the other location, it is 9.79 m/s2. A mountaineer feels
approximately 0.3% lighter.

4.5: The difference is due to the radial component of the Coriolis acceleration, which
points in the opposite direction as the gravitational acceleration. In Slovenia
(ϕ = 45◦), this difference is 0.0123 m/s2 and on the equator 0.017 m/s2. For a
human with the mass of 75 kg, this means 0.92 kg or 1.3 kg less.

4.6:
| − ρg|
| ∂p
∂n
|

= 7240.

4.7: The balloon will not be moving in the vertical direction if the sum of the forces
that act upon it in the vertical direction is equal to zero. The gravitational force
and the buoyancy force are balanced:

0 = −mbg −mkg + Vbρokg =

(

ρok
ρzr

− 1

)

− mk

ρzrVb

.

Vb =
Rsmk

p(T−1
ok − T−1

zr )
= 1928 m3.
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Solutions: Steady state horizontal winds

5.3: 320 km.

5.4: 8.9 m/s.

5.5: First, we have to calculate the air density for standard atmosphere at 500 mbar
(0.7 kg/m3). The horizontal pressure gradient is 1.15 mbar/100 km.

5.7: It blows under the influence of the Coriolis force (8.7 · 10−4 m/s2),
the friction force (2.3 · 10−4 m/s2) and the pressure gradient force (9.0 · 10−4 m/s2).
k = tan β f = 10−5 s−1. |∇p| = 0.45 mbar/100 km.

5.8: 8.1 m/s.

5.9:
vgrad
vgeo

= 0.95.

5.10: a) |∇p| = 4 mbar/500 km. vg = 6.4 m/s. b) vg = 7.2 m/s.

5.11: vg = 8.3 m/s, Fcor = 1.0 · 10−3 m/s2, Ffr = 0.83 · 10−3 m/s2, Fgra = 1.3 · 10−3 m/s2.

5.12: vg = 17.9 m/s, Fcor = 3.1 · 10−3 m/s2, Ffr = 1.7 · 10−3 m/s2, Fgra = 3.6 · 10−3 m/s2.

5.13: a) We assume that in a tropical cyclone, the centrifugal and the pressure gradi-
ent force are equal (we neglect the Coriolis force). ∆p = 30.86 mbar. b) ∆p =
30.90 mbar.

5.14: The parabolic pressure field can be expressed as p(r) = p0 + kr2, where r is the
distance from the center of the cyclone, where the pressure is equal to p0. The
coefficient k is obtained from the balance of forces on the periphery of the cyclone,
where ∂p

∂n
= ∂p(r)

∂r
= 2kr, resulting in k = 5.43 · 10−9 Pa/m2, through which the

pressure at the center is determined to be p0 = 961 mbar.

5.15: 602 km.

5.16: Assuming that the centrifugal force and the gradient force are balanced in the
tornado, we obtain p(r) = p0 +

ρω2r2

2
.

5.17: The pressure is preserved, if we move from the starting point up along the axis
that is tilted for 30 degrees:

∆p =

(

∂p

∂r

)

R− ρg∆z = 0,

(

∂p

∂r

)

=
ρg∆z

R
=

ρg

tanα
,

v =

√

R

ρ

(

∂p

∂r

)

=

√

Rg

tanα
= 41.2 m/s.
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Solutions: Local, individual and advective changes

6.2: a) ∇p = (0, a), b) 996 mbar.

∇p

p−∆p

p

p+∆p

6.3: a) ∇p = (2bx, a), b) 1001 mbar.

−200−150−100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

6.4: a) ∇p = (b, a), b) 1005 mbar.

100 200 300 400 500 600
−100

0

100

200

300

400

6.6: a) 0.25 °C/h b) 7.1 m/s.

6.7: 0.34 °C/h.

6.8: 24.4 ◦C.
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6.9: 23.6 ◦C.

6.10: 1.2 °C/h.

6.11: ∂T
∂r

= 3 K
500 km

.

Solutions: Humidity

7.2:

f = e/es = 0.48.

7.3: 284.4 K.

7.4: 255.3 K (if we take into account the latent heat of vaporisation of water instead of
the latent heat of sublimation).

7.5:

e(f = 90%) = 21.3 mbar, e(f = 10%) = 2.4 mbar,

∆m = m(f = 90%)−m(f = 10%) = −8.5 g.

7.6:

mv = ρv · V =
eV

RvT
= 0.86 kg.

7.7: a) 1.242 kg/m3, b) 1.238 kg/m3.

7.8: One can first calculate the atmospheric pressure and then the specific humidity,
which is 3.5 · 10−3.

7.9: a) es(T = 30 ◦C) = 43.6 mbar, qs = 0.027, b) es(T = −15 ◦C) = 1.9 mbar,
qs = 0.0012 (if we take into account the latent heat of vaporisation of water in-
stead of the latent heat of sublimation).

7.10:

f =
e

es
,

df

f
=

de

e
− des

es
=

de

e
− hi

Rv

dT

T 2
.

a) Increasing (decreasing) the temperature for 3 K causes the relative decrease
(increase) of the relative humidity by 0.22.

b) Increasing (decreasing) the vapour pressure for 1% causes the relative increase
(decrease) of the relative humidity by 0.01.
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7.11: a) 279.9 K.

b) In case of saturation, the absolute humidity is ρ(Td) =
es(Td)
RvTd

= 7.7 g/m3. The

final absolute humidity is ρ2 =
es(T2)
RvT2

= 1.5 g/m3. The difference of condensed water
per unit volume is 6.2 g (if we take into account the latent heat of vaporisation of
water instead of the latent heat of sublimation).

7.12: We assume that the water vapour does not affect the energy balance. The received
energy is spent for two things: expansion of the air (p∆V ) and heating of the air
(mcv∆T ). Using the gas equation and a little rearrangement, we find the equation
A = m(cv + R)∆T = mcp∆T . We obtain the temperature change ∆T = 5 K from
this equation. We calculate the initial and the new saturated vapour pressure to
get the relative humidity. The new relative humidity is 47%.

7.13: The actual partial pressure of water vapor is e = 18.9 mbar, from which we find
that the dew point temperature is 16.5◦C. Since the morning temperature will be
lower than the dew point temperature, dew will form.

7.14: The amount of the evaporated water per square metre of the soil is proportional
to the difference between the actual and the saturated vapour pressure in the layer
of the air at the ground:

m/S =
∆e · h
RvT

= 0.17 kg/m2.

7.15: In the warm air (T2), the actual vapour pressure is 11.8 mbar and in the cold air
(T1) 3.8 mbar. From here on, we calculate the absolute humidity of the mixture:

ρ(mixture) =
1

2

(

e1
RvT1

+
e2

RvT2

)

,

then the partial pressure of the water vapour of the mixture:

e(mixture) = ρ(mixture)RvT2,

and finally the new relative humidity:

f = 0.34.

7.16:

m =
∆eV

RvT
= 0.176 kg.

7.17: At sunset, the partial pressure of water vapor is e = 13.7 mbar, from which we
find that the dew point temperature is 11.6 ◦C. Both dew and fog will form since
the morning temperature will be lower than the dew point temperature.
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7.18: First, we determine the specific humidity of the mixture, which is 0.0100. If the
saturation is not reached, the final temperature will be the average temperature
between 21 ◦C and 5 ◦C (because the air masses are mixing in the same proportions),
which is 13 ◦C. The air will become saturated because the saturated vapour pressure
at this temperature is lower than the vapour pressure of the mixture. We can write
the energy equation

mcpz(T − TH) = mahi +mcpz(TT − T ),

where the indexes H and T are the temperature of the warm and the cold air and
ma the mass of the condensed water. We can write this as the difference in the
masses of the water vapour before and after the condensation

ma = mv1 −mv2 = mq −mqs(T ) = mq − mR

pRv

es(T ),

where q is the specific humidity of the mixture. From there, we obtain

cpz(T − TH) = qhi −
Rhi

pRv

es(T ) + cpz(TT − T ).

We need to solve the equation numerically because we cannot analytically express
the temperature from this equation (es(T ) appears in the exponent). The result is
286.4 K. From here, we determine that ma = 0.35 g of the water condensed per
kilogram of the air.

7.19: The saturated vapour pressures are 12.3 mbar and 11.5 mbar. From every cubic
metre, 0.59 g of water is eliminated.

7.21: Above the water, the saturated vapour pressure is 2.4 mbar. Above the ice, we
use the same Claussius-Clapeyron equation in which the specific latent heat of
evaporation hi is replaced with the specific heat of sublimation hs. The result is
2.2 mbar.

7.22:
fwater
fice

=
es,ice
es,water

= 1.05.
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7.23: We want to write the temperature profile with the sinusoidal function of time (t).
Therefore

T (t) = TA + T ′ · sin[a · t+ b],

where TA = 288 K and T ′ = 10 K. We have to determine the constants a and b
so that the temperature at 14:00 will be maximal and at 8:00 minimal. This is
completed when the argument in the sinus is at 14:00, equal to π/2, and at 8:00 to
−π/2. Therefore, for a, b we obtain the system of the two equations, which yield
a = π

6
h−1 and b = −11π

6
.

The relative humidity is dependent on the temperature:

f =
e

es(T )
=

qpRv

R

1

es(T )
=

qpRv

Res0
e
−

hi
Rv

(

1
T0

−
1
T

)

=
qpRv

Res0
e
−

hi
Rv

(

1
T0

−
1

TA+T ′
·sin[a·t+b]

)

.

At 10:00, the relative humidity will be 40%.

7.24: The saturated vapour pressures at the temperature of the dry and the wet bulb
thermometers are es(T ) = 14.08 mbar and es(Tm) = 12.13 mbar. We calculate the
vapour pressure with the psychometric equation:

e = es(Tm)−
cpzpRv

hiR
(T − Tm) = 11.1 mbar.

The relative humidity is 79%.

7.25: From the psychometric equation, we calculate the partial pressure of the water
vapour 8.8 mbar. The dew point temperature is 278.1 K.

7.26: With the use of the psychometric equation, we arrive at the following equation:

f · es(T ) = es(Tm)−
cpzpRv

hiR
(T − Tm).

The equation is implicit because we cannot express Tm analytically. The numerical
solution is Tm = 14 ◦C.
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7.27: a) We assume that all the droplets that fall on the bridge immediately cool down
and freeze to the bridge’s temperature. The energy released during the cooling
and freezing of the water droplets, as well as the cooling of the frozen droplets,
is used to heat the bridge. The energy for heating the bridge can be written as
mMcM∆T ′ = ρMSdcM∆T ′. Here, S and d are the surface area and thickness of the
bridge, cM is the specific heat capacity of the bridge, and ∆T ′ is 1 K.

The energy released by cooling the droplets to the freezing point can similarly be
written as ρaSRRtcpa∆T ′′, where RR is the precipitation rate (5 mm/h), t is the
time, ca is the specific heat capacity of water, and ∆T ′′ is 10 K. Similarly, for
cooling the frozen droplets by one degree, we use the specific heat capacity for ice
cpl instead of cpa. The energy released by freezing the droplets is ρaSRRtht, where
ρa is the density of water and ht is the specific latent heat of fusion for water. The
result is approximately 0.2 h.

b) The energy for heating the bridge is written in the same way as before, but for
the droplets, we only consider the heat released during cooling to the freezing point
(we do not need to consider the heat released during freezing and further cooling of
the droplets below the freezing point, as the same amount of heat will be used later
to warm them back up to the freezing point and melt them). The result is 3.8 h.

7.28: The total rainfall accumulated in the rain gauge is independent of the horizontal
wind (if the rain gauge is placed horizontally). It is dependent only on the vertical
velocity of the droplets. In three hours, the mass is:

m = ρk∆twS0 = 7.8 kg.

If the snowflakes are falling, the accumulated mass is 2.2 kg.

7.29:

Tv = T (1 +
Rv −R

R
q) = 306.7 K.

Solutions: Adiabatic changes

8.3: We calculate the dew point temperature at the ground. Starting from the equation
for the specific humidity q = e

p
R
Rv

, we calculate the vapour pressure e = 176.7 Pa,
which determines the dew point temperature Td = −16 ◦C. The air first rises from
the ground along the dry adiabat, until the air becomes saturated at the height of
zB = 3.72 km. Then it rises along the moist adiabat to the final height of 6 km,
where it has the temperature T = −38.2 ◦C.
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8.4: From the height of the cloud base, we calculate the dew point temperature of the air
at the ground: Td = 4.6 ◦C. The relative humidity is the ratio between the saturated
pressure of the water vapour at the dew point temperature
(es(4.6

◦C) = 848.1 Pa) and the saturated pressure of the water vapour at the
temperature 15 ◦C, (es(15

◦C) = 1704.1 Pa); therefore, f = 50%.

8.5: The height of the slope is h = vt ·sinα = 870 m. a) ∆T = −Γah−
(

∂T
∂z

)

h = −4.4 K.
b) ∆T = −Γsh−

(

∂T
∂z

)

h = 0.9 K.

8.6: The dew point temperature at the ground is Td = 11.6 ◦C. The height of the cloud
base is h = 0.4 km, and above, the air is saturated. The relative humidity at 500 m
is therefore 100%.

8.7: When rising, the air temperature decreases to T2 = 7 ◦C. The partial pressure of
the water vapour before the rising is e1 = ρv1R1T1 = 935.8 Pa; at the height of
1000 m, the partial pressure of water vapour and the absolute humidity are:

e2 = e1

(

T2

T1

)

cp
R

= 827.7 Pa

ρv2 =
e2

RvT2

= 6.4 g/m3

8.8: From the specific humidity, we calculate the partial pressure of the water vapour
at the ground e1 = 803 Pa and then the relative humidity of the air at the ground
f1 = 33.9%. At the height of 500 m, the rising air has the temperature of 15 ◦C,
the partial pressure of the water vapour during the rising is changing depending on
the temperature:

e2 = e1

(

T2

T1

)

cp
R

= 756 Pa

The relative humidity at the height of 500 m is f2 = e2/es2 = 44.0%. The conden-
sation level is at the height of 1.94 km.

8.9: a) We calculate the air temperature (T2) and the saturated vapour pressure (e2) at
that temperature. Then we calculate the partial pressure of the water vapour at
the height of 1000 mbar and the final humidity f1 at the ground:

T2 = T1

(

p2
p1

)
R
cp

= 287.3 K

e2 = es(T2) = 1628.75 Pa

e1 = e2

(

T1

T2

)

cp
R

= 1917.0 Pa

f1 =
e1

es(T1)
= 50.7%
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b) The changes are small and happening fast; we can use the differential form of
the energy equation:

mcp∆T − V∆p+ hi∆mv = 0

cp∆T − ∆p

ρ
+ hi∆q = 0

The quantity of the condensed water vapour that is expressed as the change of the
specific humidity:

∆q =
∆p

ρhi

− cp
hi

∆T = 0.3 g/kg

8.10: z = 1.4 km

8.11: The height, at which the cumulus clouds will occur (if the convection extends to
this height) is z = 2 km. In reality, the free convection extends only to the height
of 1.1 km. Therefore, clouds did not form.

8.12: ρ1 = 1.2 kg/m3, T2 = 255.6 K, ρ = 0.95 kg/m3.

8.13: a) The dew point temperature at the ground is Td = 9.6 ◦C. The cloud base is
at the height of zB = 648 m. Yes, the hill has orographic clouds. b) Td = 13.4 ◦C,
zB = 192 m.

8.14: a) The air is mixed to the height of 1 km. b) No, cloudiness did not appear.

8.15: a) Td = 14.1 ◦C.

b) The condensation level is at the height of z = 846 m, where the air temperature
is T = T0 − Γa∆z = 12.5 ◦C, and the atmospheric pressure is

p2 = p1 ·
(

T2

T1

)

cp
R

= 903 mbar

8.16: The dew point temperature at the ground is Td = 15.45 ◦C. The condensation
occurs at the height of z1 = 300 m above the sea level. z = 700 m above the sea
the relative humidity is 100% and the air temperature T = T0−Γaz1−Γs(z−z1) =
12.2 ◦C.

8.17: Yes. Solve with the help of the rotated (T, ln p) diagram.

8.18: a) e = 1274.8 Pa, Td = 10.6 ◦C.

b) Solve with the help with the rotated (T, ln p) diagram. T = 18 ◦C.

8.19: Calculate the partial pressure of the water vapour on both sides of the hill. We
assume that the atmospheric pressure is 1000 mbar and then calculate the specific
humidity on both sides. From the air, ∆q = 4 g/kg of precipitation is removed.
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8.20: The air mixes to the height of 3.6 km. We can solve the example by calculation or
with the help of a (T, z) diagram.

8.21:

ω =

√

g
Γa +

(

∂T
∂z

)

Tok

= 0.01 s−1

In a non-stable atmosphere, it does not come to the fluctuations, but the air dis-
placed from the equilibrium position keeps on accelerating.

8.22: We assume that the vertical speed of the wind w = v · sinα = 3.4 m/s is not
changing with the height. The maximum amount of the precipitation is equal to
the total amount of the condensed water vapour:

RR =

∫ top

base

cp
hi

(Γa − Γs(z))w(z)ρ(z) dz =
cp
ghi

∫ 500 mbar

1000 mbar

(Γa − Γs(p))w(p) dp

.
=

wcp
ghi

∑

i

(Γa − Γs(p))∆pi
.
= 347.5 mm

Solutions: Emagrams

9.4: The solution is not drawn, b) the example is solved similarly as the examples
from the caption about the humidity: 52% (1000 mbar) and 40% (700 mbar),
c) 200 mbar, d) Nowhere. The dew point temperature is nowhere equal to the
air temperature e) around 890 mbar, f) around 890 mbar, g) around 770 mbar,
h) around 170 mbar. i) The ground warms up during the day when the Sun shines
on them. At the same time as the ground warms up, the air at the ground also
warms up, while the air temperature higher up does not change. This warming at
the ground can cause the air at the ground to become warmer than the surround-
ings (the convection begins). In this case, forced rising is not needed. Meanwhile,
the amount of water vapour in the air near the ground stays constant (assuming
there is no evaporation from the ground). That means that the dew point temper-
ature near the ground does not change. The problem seeks to determine how much
the air on the ground will need to warm up. It needs to be warmer than the sur-
rounding air when it reaches the lifting condensation level. This is determined by
following the curve of the dew point temperature to the height at which it crosses
the temperature of the surrounding air (around the height of 750 mbar). The lifted
condensation level has to be at this height (or higher). From this height, we simply
follow the dry adaiabat line downwards to the ground. Where the line crosses the
ground, we can read the temperature (around 43 ◦C). The air at the ground should
thus have warmed up by 9 ◦C (from 34 ◦C to 43 ◦C).
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9.5: a) decreases from 12 ◦C (800 mbar) to −20 ◦C (500 mbar), therefore the tempera-
ture decreases by approximately 32 ◦C, b) Two cloudy layers: 500–400 mbar and
300–250 mbar, c) 250 mbar, d) around 850 mbar, e) around 610 mbar, f) by ap-
proximately 12 ◦C (to approximately 32 ◦C), g) to the height around 240 mbar.

9.6: a) around 5 ◦C (700 mbar) and −40 ◦C (500 mbar), b) There are no cloudy layers,
c) 900 mbar, d) No. For free convection, the hill needs to reach 800 mbar, e) to
the top of the hill (850 mbar), f) for approximately 6 ◦C (to approximately 31 ◦C),
g) to the height around 200 mbar.

9.7: a) around −23 ◦C, b) One cloudy layer is around 700 mbar, c) 930 mbar, d) the free
convection almost does not occur. There is just a small region of free convection
below the height of 700 mbar, e) The example is a bit reversed from the previous
cases, but the logic is similar. From the temperature of the surrounding air at the
height of 200 mbar, we descend along the moist adiabat line to where it intersects
the line, which describes the change of the dew point temperature. At this height
(around 580 mbar), the lifted condensation level is located. From this height, you
follow the dry adiabat line downward to the ground. In our case, the line intersects
the ground around the temperature of 50 ◦C. The air at the ground has to warm up
by 35 ◦C (from 15 ◦C to 50 ◦C), f) the cloud will extend from the lifted condensation
level (around 580 mbar) to the height of 200 mbar.

Solutions: Radiation

10.2: P = εσS(T 4
wals − T 4

skin) = 114 J/s.

10.3: P = εσT 4S = 286.9 W.

10.4: The energy that the Earth receives from the Sun in one day is:
Es = (1 − a)j0t · πR2

z · (1 − a). The energy that is consumed by the evaporation:
Ei = mhi = RR · tρvhi · 4πR2

z, where RR = 2, 7 mm/day. The energy portion, that
is used for the evaporation: Ei/Es = 0, 34.

10.5: We assume a linear profile of the Sun’s elevation during the day and obtain a
sinusoidal changing of the flux density. The energy the area receives in one day is:

Ed =

∫ t0

0

j0S sin

(

π

3

t

t0

)

dt+

∫ 2t0

t0

j0S sin

(

2π

3
− π

3

t

t0

)

dt = j0S
3t0
π

,

where t0 is 6 h. For the evaporation of h = 1200 mm of precipitation the energy
of Ei = qmv = qShρv is needed. The number of days that are needed for the
evaporation of all water is: N = Ei/Ed = 106.
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10.7: a) All received power is used for heating the lake: Pet = mcv∆T . We can calculate
that ∆T

t
= Pe

mcv
= 0.01 K/day.

b) When the new equilibrium is established, the power from the power plant is equal
to the power by radiation: εT 4

newS = εT 4S+Pe. The new equilibrium temperature:

Tnew =
4

√

T 4 +
Pe

εσS
= 284 K.

The lake warms up by 1 K.

c) In this case, the heat required for evaporation must equal the waste heat from
the power plant, and we get the evaporation rate (change in the lake’s water height
over time) as dh

dt
= Pe

hiρaS
= 0.17 mm/day

10.8: From the equation for the energy equilibrium: E = mvqi + εσT 4St, we calculate
the temperature T = 12.7 ◦C.

10.9: a) 53.5 days, b) 90.5 days.

10.10: a) Considering that the absorbed solar radiation energy is used solely for water
evaporation, the rate of change of the water column height due to evaporation can
be expressed as dzi

dt
= ki = jt sin 25◦β

ρahi
, where jt is the solar radiation energy flux

density, β is the fraction of radiation absorbed, ρa is the density of water, and hi is
the specific latent heat of water evaporation. We find ki = 1.08 · 10−7 m/s, which
means that a water column 0.5 m high would evaporate in 53.5 days.

b) In equilibrium, the volume of water evaporating will equal the volume of water
flowing into the lake. Given that the evaporation rate ki is constant, the total vol-
ume of evaporating water depends only on the current lake surface area S, which
can be expressed as dVi

dt
= kiS. In equilibrium, evaporation must equal the volumet-

ric inflow of 1000 m3/h, from which we obtain S = 2.57 · 106 m2. Due to the shape
of the lake’s basin, its surface area depends on its depth h and can be expressed as

S = π
(

r0
2
+ h

h0
r0

)2

, where r0 = 1000 m and h0 = 0.5 m. From this, we find that

the previously calculated lake surface area corresponds to a depth of h = 0.20 m.

c) The change in the volume of the lake can be expressed as the difference be-
tween the volumetric inflow φ and evaporation: dV

dt
= φ − kiS(h). Considering

dV = S(h)dh, we obtain the differential equation dh
dt

= φ

S(h)
− ki in which h and t

are the independent variables. By inserting the expression for S(h) into the equa-
tion and solving it through integration, we can express the time required for the
entire lake to evaporate, which gives us a result of 71.8 days.

10.11: a) 733 W, b) 769 W.
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10.12: We solve the diffusion equation:

λ

ρcp

∂2T

∂t2
=

∂T

∂t

with the initial condition T = T0+(Tmax−T0) sin((t−t0)
π

12 h
). We get the equation,

that describes the changing of the temperature with the time at the different heights:
T = T0 + (Tmax − T0) e

−k1z sin((t − t0)
π

12 h
k1z), where k1 = π/(2D · 12 h) where

D = λ/ρcp. At a depth of 15 cm, the amplitude of the temperature fluctuation is
8 K.

10.13: Tground = 276 K.

10.14: For the ground and for every atmosphere layer the sum of the energy fluxes is 0.

ground

1. layer

2. layer

3. layer

js tjground

j1

tj1 tj2

tj2

j3

tj3

ajs

ground: jground = (1− a)js + j1 + tj2 + tj3

1. layer: 2j1 = (1− t)jground + (1− t)j2

2. layer: 2j2 = (1− t)j1 + (1− t)j3

3. layer: 2j3 = (1− t)j2

The ground temperature is 300 K.
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10.15: a) We assume that the elevation of the sun between 11:30 and 12:30 is not chang-
ing.

Q = jgS0 sinϕ0t = 1497 J

b) We calculate the equilibrium temperature at noon using the radiation balance
for the black body, where we assume that the pad radiates only upwards:

T =
4

√

j0 sinϕ0

σ
= 332.5 K.

c) The change in the angle of the sun’s elevation over time from sunrise (t = 0) to
noon (t = t0) can be described by the equation:

ϕ(t) = ϕ0
t

t0

Since the panel will receive the same amount of energy in the afternoon as in the
morning, the total energy received can be obtained as:

Qs = 2

t0
∫

0

P (t)dt = 2

t0
∫

0

jgS0 sin (ϕ(t)) dt =
2jgS0t0(1− cosϕ0)

ϕ0

= 10313 J

10.16: We assume that the thermometer bulb is spherical. The received power of the
solar radiation and the radiation of the surrounding air is equal to the radiated
power of the bulb:

(1− ather)jgS0 + εairσT
4
air4S0 = εtherσT

4
ther4S0,

where S0 is the surface area of the spherical bulb. From this, we obtain

ather = 1− 4σ(εtherT
4
ther − εairT

4
air)

jg
= 0.1

Solutions: Fronts

11.2: The movement speed of the front is defined by the wind component, which is
perpendicular to the front. This component has to be the same in the warm and
cold sectors. If β is the angle between the front and the wind vector in the warm
sector, the equation: vt sin β = vh sin(π/4 + π/6− β) has to be true. We calculate
the angle β = 29.2◦. The speed of the front is then u = vt sin β = 12.5 m/s.

11.3: From the tilt of the front, we calculate the wind shear at the front and the wind
in the warm sector. The latter blows at the speed of 35 m/s from the direction of
129.2◦.
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11.4: The front orientation is SW-NE and travels at the speed of 7.1 m/s.

11.5: Speed: 14.9 m/s, direction: 294.1◦.

11.7: We use the equations that are also valid for the front. The tilt of the upper limit
of the cold-air lake is tanα = 1/231. The inversion level on the other side of the
basin is 273 m, which is at the southern part of the basin.

11.8: tanα = 1/456.

11.9: The tilt of the front is tanα = 1/159. After the winds in the warm air calm down,
the tilt of the surface will be tanα = 1/484.

11.10: The tilt of the front is 1/326. The cirrus cloud appears approximately 2600 km
before the front. From the 1000-m high hill, we can see the cirrus clouds that at
approximately 400 km away (we take into account that the radius of the Earth is
Rz = 6378 km).
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Appendix

A list of used symbols and codes

cpa specific heat of water at constant pressure, cpa = 4181 J/kgK
cpl specific heat of ice at constant pressure, cpl = 2114 J/kgK
cpv specific heat of water vapour at constant pressure, cpv = 1847 J/kgK
cpz specific heat of dry air at constant pressure, cpz = 1004 J/kgK
g0 standard value of gravitational acceleration, g0 = 9.81 m/s2

hi specific latent heat of water evaporation, hi = 2.50 MJ/kg
hs specific latent heat of water sublimation, hs = 2.83 MJ/kg
ht specific heat of fusion for water, ht = 0.33 MJ/kg
j0 solar constant, energy flux density of solar radiation at the top of the

Earth’s atmosphere, j0 ≈ 1400 W/m2

R∗ specific gas constant, R∗ = 8317 J/kmolK
R specific gas constant for air, R = 287 J/kgK
Rv specific gas constant for water vapour, Rv = 461.5 J/kgK
Γa (negative) individual change of temperature at adiabatic displacement of

unsaturated air in vertical direction, Γa = −dT
dz

= 10 K/km
Γs (negative) individual change of temperature at adiabatic displacement of

saturated air in vertical direction, Γs = −dT
dz
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Table of the saturated vapour pressure

Table of the saturated vapour pressure over water in Pa. The following equation was
used (Rogers & Yau: A Short Course in Cloud Physics, Pergamon Press, page 16):

es(T ) = 611.2 Pa · exp
(

17.67 · T
T + 243.5

)

,

where the temperature T is in ◦C. Example: es(−3.2 ◦C) = 483.05 Pa,
es(3.2

◦C) = 768.64 Pa.

T [◦C] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−20 125.74 124.66 123.59 122.53 121.47 120.43 119.39 118.36 117.34 116.32
−19 137.00 135.83 134.68 133.53 132.39 131.26 130.14 129.03 127.92 126.83
−18 149.15 147.89 146.65 145.41 144.18 142.96 141.75 140.55 139.36 138.17
−17 162.26 160.90 159.56 158.22 156.90 155.58 154.28 152.98 151.69 150.42
−16 176.39 174.93 173.48 172.04 170.61 169.19 167.79 166.39 165.00 163.63
−15 191.61 190.04 188.48 186.93 185.39 183.86 182.34 180.84 179.34 177.86
−14 208.00 206.30 204.62 202.95 201.30 199.65 198.02 196.40 194.79 193.20
−13 225.62 223.80 221.99 220.20 218.42 216.65 214.89 213.15 211.42 209.70
−12 244.57 242.61 240.67 238.74 236.82 234.92 233.03 231.16 229.30 227.45
−11 264.92 262.82 260.73 258.66 256.60 254.56 252.53 250.52 248.52 246.54
−10 286.77 284.51 282.28 280.05 277.84 275.65 273.47 271.31 269.17 267.04
−9 310.21 307.79 305.39 303.01 300.64 298.29 295.95 293.63 291.33 289.04
−8 335.35 332.76 330.18 327.62 325.08 322.56 320.06 317.57 315.10 312.65
−7 362.28 359.50 356.75 354.01 351.29 348.58 345.90 343.23 340.59 337.96
−6 391.12 388.15 385.20 382.26 379.35 376.46 373.58 370.73 367.89 365.08
−5 421.99 418.81 415.65 412.51 409.39 406.30 403.22 400.17 397.13 394.12
−4 455.01 451.60 448.22 444.87 441.53 438.22 434.93 431.66 428.42 425.19
−3 490.30 486.66 483.05 479.46 475.90 472.36 468.84 465.35 461.88 458.43
−2 528.00 524.11 520.26 516.42 512.62 508.84 505.08 501.35 497.64 493.95
−1 568.25 564.10 559.99 555.90 551.83 547.79 543.78 539.80 535.84 531.90
−0 611.20 606.78 602.39 598.02 593.69 589.38 585.10 580.84 576.62 572.42
0 611.20 615.65 620.13 624.64 629.17 633.74 638.33 642.96 647.61 652.29
1 657.01 661.75 666.52 671.33 676.16 681.03 685.93 690.86 695.82 700.81
2 705.83 710.89 715.97 721.09 726.24 731.43 736.64 741.89 747.18 752.49
3 757.84 763.23 768.64 774.09 779.58 785.10 790.65 796.24 801.87 807.52
4 813.22 818.95 824.71 830.52 836.35 842.23 848.14 854.08 860.07 866.09
5 872.15 878.24 884.38 890.55 896.76 903.00 909.29 915.61 921.98 928.38
6 934.82 941.30 947.82 954.38 960.98 967.62 974.31 981.03 987.79 994.60
7 1001.44 1008.33 1015.26 1022.23 1029.24 1036.30 1043.40 1050.54 1057.73 1064.95
8 1072.23 1079.54 1086.90 1094.30 1101.75 1109.25 1116.78 1124.37 1132.00 1139.67
9 1147.39 1155.16 1162.97 1170.83 1178.74 1186.69 1194.69 1202.74 1210.83 1218.98

10 1227.17 1235.41 1243.70 1252.04 1260.43 1268.86 1277.35 1285.89 1294.48 1303.11
11 1311.80 1320.54 1329.33 1338.18 1347.07 1356.02 1365.02 1374.07 1383.17 1392.33
12 1401.54 1410.80 1420.12 1429.49 1438.92 1448.40 1457.94 1467.53 1477.18 1486.88
13 1496.64 1506.46 1516.33 1526.26 1536.25 1546.29 1556.39 1566.55 1576.77 1587.05
14 1597.39 1607.78 1618.23 1628.75 1639.32 1649.96 1660.65 1671.41 1682.23 1693.11
15 1704.05 1715.05 1726.12 1737.25 1748.44 1759.69 1771.01 1782.40 1793.84 1805.35
16 1816.93 1828.57 1840.28 1852.05 1863.89 1875.80 1887.77 1899.81 1911.92 1924.09
17 1936.34 1948.65 1961.03 1973.48 1986.00 1998.58 2011.24 2023.97 2036.77 2049.64
18 2062.58 2075.60 2088.68 2101.84 2115.07 2128.38 2141.75 2155.21 2168.73 2182.33
19 2196.01 2209.76 2223.58 2237.48 2251.46 2265.51 2279.65 2293.85 2308.14 2322.50
20 2336.95 2351.47 2366.07 2380.75 2395.51 2410.35 2425.27 2440.27 2455.35 2470.52
21 2485.76 2501.09 2516.51 2532.00 2547.58 2563.24 2578.99 2594.82 2610.74 2626.74
22 2642.83 2659.00 2675.26 2691.61 2708.05 2724.57 2741.19 2757.89 2774.68 2791.56
23 2808.53 2825.59 2842.74 2859.98 2877.31 2894.74 2912.25 2929.86 2947.57 2965.36
24 2983.25 3001.24 3019.32 3037.50 3055.77 3074.13 3092.60 3111.16 3129.82 3148.57
25 3167.43 3186.38 3205.44 3224.59 3243.84 3263.19 3282.65 3302.20 3321.86 3341.62
26 3361.48 3381.45 3401.51 3421.69 3441.96 3462.35 3482.84 3503.43 3524.13 3544.94
27 3565.85 3586.87 3608.00 3629.24 3650.59 3672.05 3693.62 3715.30 3737.09 3758.99
28 3781.00 3803.13 3825.37 3847.72 3870.19 3892.77 3915.47 3938.28 3961.21 3984.25
29 4007.41 4030.69 4054.09 4077.61 4101.24 4124.99 4148.87 4172.86 4196.98 4221.22
30 4245.58 4270.06 4294.66 4319.39 4344.24 4369.22 4394.33 4419.55 4444.91 4470.39
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Empty Skew-T Log-P emagram
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