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A B S T R A C T	   A R T I C L E   I N F O	

Genetic	 programming	 method	 for	 modelling	 of	 maximum	 height	 of	 deep	
drawn	high	 strength	 sheet	materials	 is	proposed	 in	 this	paper.	Genetic	pro‐
gramming	(GP)	is	an	evolutionary	computation	approach	which	uses	the	prin‐
ciples	of	Darwin’s	natural	selection	to	develop	effective	solutions	for	different	
problems.	The	aim	of	the	research	was	the	modelling	of	cylindrical	cup	height	
in	deep	drawing	process	and	analysis	of	the	impact	of	process	parameters	on	
material	 formability.	 High	 strength	 steel	 sheet	 materials	 (DP1180HD	 and	
DP780)	 were	 formed	 by	 deep	 drawing	 using	 different	 punch	 speeds	 and	
blank	 holder	 forces.	 The	 heights	 of	 specimens	 before	 cracks	 occur	 were	
measured.	 Therefore,	 four	 input	 parameters	 (yield	 stress,	 tensile	 strength,	
blank	holder	force,	punch	speed)	and	one	output	parameter	(cup	height)	were	
used	 in	 the	 research.	 The	 experimental	 data	 were	 the	 basis	 for	 obtaining	
various	 accurate	 prediction	models	 for	 the	 cup	 heights	 by	 the	 genetic	 pro‐
gramming	method.	Results	showed	that	proposed	genetic	modelling	method	
can	successfully	predict	fracture	problems	in	a	process	of	deep	drawing.	
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1. Introduction  

Deep‐drawing	processes	are	frequently	used	in	the	sheet	metal	forming	industry,	because	of	the	
achievable	formability.	In	deep	drawing	the	sheet	blank	is	deformed	by	tensile	and	compressive	
loads	in	different	directions	of	action.	The	sheet	thickness	should	remain	as	constant	as	possible.	
Many	parameters	influence	the	deep	drawing	process	and	should	be	carefully	selected	for	effec‐
tive	and	economical	production.	Among	them,	 the	 influence	of	punch	speed	and	blank	holding	
force	 are	 of	 great	 importance,	 since	 the	 shortened	 process	 duration	 leads	 to	 an	 increase	 in	
productivity.	Therefore,	gaining	knowledge	of	the	influence	of	these	parameters	is	of	great	inter‐
est	 when	 achieving	 the	 greatest	 possible	 productivity	 in	 producing	 fault‐free	 parts.	 Accurate	
models,	which	describe	the	influences	of	different	parameters	in	deep	drawing,	can	be	obtained	
by	many	different	modelling	methods,	and	serve	for	optimization	and	prediction	purposes	in	the	
process.		

In	widely	used	deterministic	methods	 like	multi	 regression	method,	 the	 form	and	 size	of	 a	
model	 is	 determined	 in	 advance.	 These	 modelling	 methods	 have	 one	 common	 feature:	 all	 of	
them	optimize	a	given	model	of	a	problem.	That	is,	each	genotype	determines	a	particular	com‐
bination	of	values	of	free	variables	of	the	model,	and	the	interpretation	of	those	variables	within	
a	model	is	fixed.	When	applied	to	a	different	problem	instances,	they	often	turn	out	to	be	infea‐
sible	or	obtain	much	worse	fitness.	Much	better	results	are	often	achieved	by	non‐deterministic	
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modelling	methods,	such	as	genetic	programming	method	(GP).	In	GP	the	model	is	not	known	in	
advance,	and	only	the	constraints	of	the	model	are	given,	e.g.,	instruction	set,	the	maximum	size	
of	 organisms	 etc.	 [1].	 Hence	 GP	 creates	 and	 optimizes	 entire	model	 of	 the	 problem.	 In	 other	
words,	GP	evolves	an	executable	code	that	inputs	a	given	problem	instance	and	outputs	a	solu‐
tion	 to	 the	 instance.	 In	 this	 sense	GP’s	 solutions	are	active,	 i.e.	 adapt	 to	 the	given	problem	 in‐
stance	[2].		
	 Majority	 of	 papers	 dealing	with	modelling	methods	 in	metal	 forming	processes,	 describing	
neural	network	and	genetic	algorithms	(GA)	methods	while	only	a	 few	are	dealing	with	GP.	 In	
paper	[3]	authors	describe	prediction	and	optimization	of	sealing	cover	thinning	in	deep	draw‐
ing	process	by	using	GA	as	very	accurate	and	effective	method.	In	[4]	GA	have	been	used	to	de‐
velop	an	optimization	strategy	for	choosing	blank	holder	force	and	punch	force	for	enable	frac‐
ture	free	and	wrinkle‐free	production	of	deep	drawn	cups	while	in	[5]	optimum	blank	shape	and	
process	parameters	were	defined	and	calculated	for	deep	drawing	process	using	Taguchi	opti‐
mization	method	and	GA.	Pareto	optimal	solution	search	techniques	 in	GA	to	reduce	excessive	
thinning	and	wrinkling	occurrence	was	described	in	[6]	and	[7].	An	evolutionary	structural	op‐
timization	method	for	the	sheet	blank	shape	optimization	in	deep	drawing	process	was	present‐
ed	in	[8].	Many	authors	have	used	combination	of	neural	network	and	GA	approach	for	model‐
ling	and	predicting	deep	drawing	parameters	and	some	properties	of	drawn	products	[9,	10].	In	
[11],	 the	effect	of	hydro‐mechanical	deep	drawing	process	parameters	was	 investigated	by	FE	
simulations	and	neuro‐fuzzy	modelling	method	to	predict	the	maximum	thinning	of	sheet	mate‐
rial,	while	in	[12]	a	fuzzy	control	algorithm	for	optimization	of	loading	profiles	and	drawing	ratio	
was	proposed.		
	 An	overview	of	recent	applications	of	evolutionary	computing	in	manufacturing	industry	was	
presented	in	[13].	Very	few	papers	(and	especially	sheet	forming	processes)	dealing	with	model‐
ling	by	the	GP	modelling	method.	In	papers	[14,	15]	authors	compared	genetic	algorithm	models	
and	GP	models	for	the	distribution	of	effective	strain	and	stress	and	also	some	mechanical	prop‐
erties	in	forward	extruded	alloy.	GP	method	performed	well	in	developing	more	accurate	genetic	
models.	In	[16]	authors	described	the	application	of	bi‐objective	GP	modelling	for	prediction	of	
the	size	of	austenite	grain	as	a	function	of	heating	time.	GP	method	was	also	used	very	success‐
fully	for	modelling	of	bending	capability	of	titan‐zinc	sheet	in	[17].	Different	bending	parameters	
and	their	 impact	on	bending	capability	were	analysed	and	optimized	and	a	variety	of	accurate	
models	were	developed	by	GP.		
	 This	 paper	 proposed	 a	 GP	modelling	 of	maximum	height	 of	 cup	deep	drawn	high	 strength	
steel	specimens.	Maximum	height	achieved	in	deep	drawing	process	depends	on	many	parame‐
ters	and	is	excellent	indicator	for	formability	level	of	chosen	material.	Experimental	data	meas‐
ured	during	the	deep	drawing	processes	served	as	an	environment	for	evolution	process	in	ge‐
netic	programming.	Blank	holder	force,	punch	speed,	tensile	and	yield	stress	were	used	as	inde‐
pendent	 input	 variables,	while	maximum	height	 of	 deep	 drawn	 specimens	 before	 first	 cracks	
occur	was	a	dependent	output	variable.		

2. Materials and methods 

2.1 Genetic programming 

Genetic	programming	 is	a	sub	brunch	of	evolutionary	computation	(EC)	emulating	 the	natural	
evolution	of	species	and	is	probably	the	most	general	approach	among	EC	methods.	To	imitate	
the	evolutionary	process	in	GP,	certain	components	must	be	defined,	such	as	mathematical	func‐
tions,	problem	variables	and	genetic	operations	like	reproduction,	mutation	or	crossover	[1].		
	 The	GP	process	starts	with	random	generation	of	 initial	population	of	organisms	(computer	
programmes).	Terminal	genes,	such	as	variables	and	constants,	and	function	genes	(arithmetic	
operations)	compose	each	programme	and	must	be	carefully	selected.	After	that	the	fitness	func‐
tion	must	be	determined	 for	 evaluation	of	programme	adaptation	 to	 the	environment	 (e.g.,	 to	
the	 experimental	 data).	 Adaptation	 is	 a	 main	 force	 in	 natural	 selection.	 The	 change	 and	 im‐
provement	of	programmes	fitness	during	GP	process	 is	enabled	by	genetic	operations,	such	as	
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reproduction,	mutation	and	crossover.	The	right	selection	of	genetic	operations	and	their	proba‐
bility	is	of	vital	importance	for	successful	GP	process	(and	often	vary	regarding	the	problem	to	
be	 solved),	 because	 genetic	 operations	 provide	 an	 increasing	 diversity	 and	 genetic	 exchange	
among	computer	programmes.	The	mutation	also	 introduces	new	code	fragments	 into	popula‐
tion	 and	 is	 used	 as	 a	 common	workaround	 for	 loose	of	 diversity	 and	 stagnation,	 especially	 in	
small	populations.		
	 The	 last	 step	 of	 the	 process	 is	 the	 definition	 of	 termination	 criterion	which	 is	 usually	 pre‐
scribed	number	of	generations.	If	the	termination	criterion	is	fulfilled	the	evolution	is	then	ter‐
minated.	In	general,	many	independent	GP	runs	are	needed	for	successful	and	accurate	problem	
solutions.	

2.2 Experimental details 

The	main	goal	of	 the	experiments	was	determination	of	 the	 impact	of	punch	speed	and	blank	
holder	force	on	the	maximum	height	of	deep	drawn	sheet	metal	cups	before	crack	occurs.	The	
two	 chosen	 parameters	 are	 very	 important	 for	 efficient	 and	 quality	 process	 of	 deep	 drawing.	
Deep	drawn	cups	are	cylinders	that	are	closed	on	one	end	and	open	on	the	other,	with	or	with‐
out	a	flange	on	the	open	end.	Two	different	sheet	materials	were	used	(DP1180HD	and	DP780)	
which	are	new	advanced	high	strength	steels	with	good	cold	formability	developed	for	automo‐
tive	industry.	These	two	materials	are	also	suitable	for	welding	and	show	excellent	characteris‐
tics	by	crash	tests.	
	 With	the	help	of	tensile	tests	two	important	mechanical	characteristics	were	determined:	Rm	
(tensile	strength)	and	yield	stress	Rp0.2	for	DP1180HD	(Rp0.2	=	1077	N/mm2,	Rm	=	1269	N/mm2)	
and	for	DP780	(Rp0.2	=	490	N/mm2,	Rm	=	840	N/mm2).	Material	thickness	was	s	=	1.5	mm,	diame‐
ter	of	round	sheet	specimens	was	D	=	215	mm	and	punch	diameter	was	d	=	100	mm.	For	deep	
drawing	 process	 special	 experimental	 tool	with	 a	 cylinder	 shaped	 punch	 and	 hydraulic	 press	
SHC‐400	were	used	[18],	Fig.	1(a).	
	 The	process	starts	with	the	application	of	the	same	amount	of	Wisura	FMO	5020	lubricating	
oil	on	both	sides	of	the	specimens.	Because	of	cup	geometry,	anisotropy	doesn’t	have	any	influ‐
ence	so	position	of	the	blank	doesn’t	have	to	be	considered.	The	measurement	of	the	deep	drawn	
cup’s	height	was	executed	by	laser	and	acoustic	measurement	devices.	Laser	measures	drawing	
height	and	acoustic	sensor	device,	which	was	attached	 in	 the	 inner	side	of	 the	die,	detects	 the	
moment	when	crack	occurs.	With	the	interaction	of	these	two	devices	and	special	software	it	is	
possible	to	detect	exact	drawing	height	of	the	cup	just	before	first	crack	occurs.		
	 For	punch	speed	 the	experimental	 range	was	set	 from	50	mm/s	 to	maximum	speed	of	150	
mm/s.	The	latter	 is	usually	the	highest	punch	speed	tolerated	in	praxis	for	successful	and	eco‐
nomical	deep	drawing	process	of	high	strength	steel.	Blank	holder	force	was	set	to	200	kN	and	
600	kN	respectively.	

In	 order	 to	 provide	 reliable	 results,	 three	 experiments	 for	 the	 same	parameters	were	 per‐
formed	(60	experiments	for	both	materials)	and	then	average	value	of	the	height	was	calculated.	
The	 shape	 of	 deep	 drawn	 cups	 for	 both	materials	 after	 the	 experiment	 is	 shown	 in	 Fig.	 1(b).	
Therefore,	we	obtained	a	 total	of	20	combinations	of	experimental	data.	The	results	 for	meas‐
ured	cup’s	height	are	listed	in	Table	1.	
	

	
(a)	

	
(b)	

Fig.	1	(a)	Experimental	tool	for	deep	drawing,	(b)	deep	drawn	cups	(v	=	125	mm/s,	Fb	=	200	kN)	
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Table	1	Experimental	results	of	deep	drawing	process	
Experiment	

No.	
Yield	stress	
Rp0.2	(X1)	
	(N/mm2)	

Tensile	strength
Rm	(X2)	
(N/mm2)	

Blank	holder
force	Fb	(X3)	

(kN)	

Punch	speed
v	(X4)	
(mm/s)	

Cup	height
H		

(mm)	

1	 490	 840	 200	 50	 20.086	
2	 1077	 1269	 200	 50	 15.596	
3	 490	 840	 200	 75	 20.043	
4	 1077	 1269	 200	 75	 15.360	
5	 490	 840	 200	 100	 19.853	
6	 1077	 1269	 200	 100	 15.220	
7	 490	 840	 200	 125	 19.423	
8	 1077	 1269	 200	 125	 14.626	
9	 490	 840	 200	 150	 18.623	
10	 1077	 1269	 200	 150	 13.073	
11	 490	 840	 600	 50	 19.863	
12	 1077	 1269	 600	 50	 15.580	
13	 490	 840	 600	 75	 19.667	
14	 1077	 1269	 600	 75	 15.140	
15	 490	 840	 600	 100	 19.370	
16	 1077	 1269	 600	 100	 14.500	
17	 490	 840	 600	 125	 18.936	
18	 1077	 1269	 600	 125	 14.293	
19	 490	 840	 600	 150	 18.360	
20	 1077	 1269	 600	 150	 13.256	

	
Fig.	 2	 shows	 the	 influence	 of	 punch	 speed	 v	 and	 blank	 holder	 force	 Fb	 on	 maximum	 cup	

height.	 It	 is	 obvious	 that	 an	 increase	of	 the	punch	 speed	 leads	 to	 a	decrease	of	 the	maximum	
drawing	height,	i.e.	to	decrease	of	the	formability.	This	is	valid	for	both	examined	high	strength	
steels.	The	highest	difference	between	measured	height	when	blank	holder	 force	Fb	=	200	kN	
was	used	was	7.2	%	 for	DP780.	The	difference	was	much	higher	 for	DP1180HD,	 i.e.	16	%	de‐
crease	of	height	when	punch	speed	v	=	150	mm/s	was	used	compared	to	the	height	achieved	at	v	
=	50	mm/s.	
	 The	 increase	 of	 blank	 holder	 force	 also	 leads	 to	 a	 decreasing	 drawing	 height	 but	 to	 a	
smaller	extent.	A	change	of	the	blank	holder	force	does	not	affect	the	shape	or	tendency	of	the	
curve.	Since	increasing	punch	speed	has	confirmed	the	tendency	of	the	formability	to	decrease,	
but	high	speeds	are	needed	to	achieve	a	certain	level	of	productivity,	it	is	important	to	optimize	
the	process	parameters	with	the	goal	to	improve	the	efficiency	and	quality	of	the	deep	drawing	
process.		

	
Fig.	2	The	influence	of	punch	speed	v	and	blank	holder	force	Fb	on	maximum	cup	height		
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3. Results and discussion 

Evolutionary	parameters	that	were	used	for	GP	modelling	processes	were:	population	size	was	
400	 for	 all	 GP	 runs,	maximum	number	 of	 generations	 varied	 from	500	 to	 1000,	 reproduction	
probability	was	set	 to	0.1,	probability	of	crossover	varied	 from	0.1	 to	0.3,	while	probability	of	
mutation	varied	from	0.6	to	0.8.	Such	a	high	probability	of	mutation	has	been	chosen	because	of	
the	 relatively	 small	 allowable	maximal	 depth	 of	 organisms.	 In	 this	way,	 sufficient	 diversity	 of	
organisms	in	the	population	is	preserved.	Maximum	allowed	depth	for	organisms	created	in	the	
initial	generation	was	6	and	maximum	depth	after	crossover	was	10	(in	some	cases	only	8). Ex‐
perimental	results	from	Table	1	were	used	as	a	training	data	set	for	GP	process.	Additional	ex‐
periments	were	also	performed	for	testing	data	purpose	and	were	not	used	in	training	data	set.	

Three	different	function	sets	were	applied	for	GP	modelling.	Each	function	set	contained	func‐
tion	genes.	First	set	contained	three	operations	(function	genes):	addition,	subtraction	and	mul‐
tiplication,	i.e.	F	=	{+,	‐,	*},	while	division	operation	was	added	to	the	second	function	set,	i.e.	F	=	
{+,	 ‐,	*,	/}.	 In	third	function	set,	natural	exponential	 function	was	added	to	the	second	function	
set	 {+,	 ‐,	 *,	 /,	ZEXP}.	All	 function	genes	were	protected	against	extreme	values	 that	 can	be	oc‐
curred	during	simulated	evolution	process	[1].	

Terminal	 set	 comprised	of	 terminal	genes.	 In	our	case,	 the	 terminal	 consisted	of	 four	 input	
variables,	and	random	real	numbers,	i.e.	T	=	{X1,	X2,	X3,	X4,	Թ}.	X1	is	yield	strength	(Rp0.2),	X2	is	
tensile	strength	(Rm),	X3	is	blank	holder	force	(Fb),	X4	is	punch	speed	(v),	and	Թ	are	random	gen‐
erated	real	constants	from	the	interval	‐1	to	1.		
	 By	applying	 the	 first	 function	set	and	terminal	set,	 the	most	accurate	genetically	developed	
model	for	a	cup	height	H	developed	by	genetic	programming	was:		
	
	(+	(*	‐8.71014	‐2.13249)	(*	(+	(*	(+	(‐	(+	(‐	(*	‐9.70734	X1)	(*	X1	X4))	(*	(‐	X2	X1)	(+	X2	
9.80336)))	(+	(*	(+	9.80336	X4)	(+	X1	X1))	(*	X1	(+	X4	X1))))	(+	(‐	(‐	(*	‐9.70734	X1)	(*	X4	X3))	(+	
(*	X3	X4)	(*	X4	X4)))	(‐	(‐	(*	‐9.70734	X1)	(*	X4	X4))	(*	(+	9.80336	X4)	(+	X1	X3)))))	
(‐	‐2.07369	‐2.07544))	(‐	(+	(+	(‐	(‐	X2	1.62782)	(*	‐0.0546093	X4))	(+	9.76417	1.167))	(‐	(+	(‐	(‐	
X2	1.62782)	(*	‐0.0546093	X4))	(+	9.76417	1.167))	X1))	(‐	(‐	(‐	(+	X1	(*	‐0.0546093	X4))	
9.80336)	9.80336)	(‐	(‐	(‐	X2	1.62782)	(*	‐0.0546093	X4))	(+	X1	(+	(*	3.08974	‐6.87342)	
(‐	‐7.08458	4.51225)))))))	(‐	‐2.07369	‐2.07544))))	
	
The	above	model	is	presented	in	prefix	notation	of	programming	language	LISP.	After	simplify‐
ing,	the	above	model	for	a	cup	height	H	can	be	written	as	the	mathematical	expression	(please	
note	that	in	Eq.	1	instead	of	variable	names	X1,	X2,	X3,	X4	original	symbols	are	used):	
	
18.6958 െ 3.0625 ∗ 10ିܴ୮

ଶ  0.00528002 ܴ୫  3.0625 ∗ 10ିܴ୫
ଶ െ 	ୠܨ	0.0000300228

ܴ୮ሺെ0.00545928 െ 3.0625 ∗ 10ି	ܴ୫ െ 0.0000153125 ሻݒ  0.000382265 	ݒ
െ9.1875 ∗ 10ିܨୠݒ	 െ 6.125 ∗ 10ି	ݒଶ	

(1)

	 	

	 	
Fig.	3	Deviation	of	best	GP	model	using	first	function	set	
{+,	‐,	*}	and	training	data	

	
Fig.	4	Deviation	of	best	GP	model	using	second	function	
set	{+,	‐,	*,	/}	and	training	data	
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The	model	 in	Eq.	1	was	generated	 in	generation	500.	 It	has	a	total	of	127	genes,	63	 functional	
genes	and	the	depth	of	this	model	is	10.	Probability	of	reproduction	was	0.1,	probability	of	muta‐
tion	0.6,	 and	probability	of	 crossover	0.3.	Maximal	allowed	depth	after	 crossover	was	10.	The	
average	difference	between	experimental	results	and	the	results	predicted	by	the	genetic	devel‐
oped	model	in	Eq.	1	was	δ	=	1.14	%	and	δ	=	1.18	%	for	training	data	set	and	testing	data	set,	re‐
spectively.	 	

Fig.	3	presents	the	average	deviation	(error)	of	best	GP	models	when	applying	first	function	
set.	 In	 first	 few	generations	there	 is	a	 large	deviation	between	the	prediction	results	of	 the	GP	
developed	model	and	experimental	data	but	after	several	generations	natural	selection	random‐
ly	 added	new	genes.	 Thus,	 diversity	 get	 bigger	 and	deviation	becomes	better,	 i.e.	 lower.	After	
generation	250,	 the	deviation	of	best	models	 improves	very	slowly	and	does	not	change	much	
until	final	generation.	
	 The	most	accurate	GP	model	of	all	experiments	for	modelling	of	cup	height	was	developed	by	
applying	the	second	function	set	(+,	‐,	*,	/).	In	the	prefix	LISP	form	it	can	be	expressed	as:	
		
(+	 (/	 (+	 (‐	 (/	 (‐	 (*	 9.40782	X2)	 (*	X2	 ‐5.06327))	 (+	 (‐	X3	 9.69337)	 (*	 ‐0.346372	X3)))	 (+	 (+	 (‐	
3.49304	5.8424)	‐8.94781)	(+	(‐	X1	0.583014)	‐8.27698)))	(‐	(/	(‐	(‐	X2	‐5.60735)	(‐	X3	9.69337))	
4.48845)	(+	(/	(*	X3	3.73772)	(‐	X2	X1))	(+	(‐	‐9.68001	3.38485)	(‐	X4	‐0.0676581)))))	(+	(+	(/	(+	
(*	X1	3.13824)	(*	X1	3.13824))	(‐	(+	7.6819	5.58638)	(‐	X3	X4)))	(+	(/	(+	X2	X3)	(‐	X1	X2))	
(+	‐1.18787	X2)))	(/	(+	(‐	(*	X1	‐8.97815)	(*	X1	X4))	(*	(‐	X4	‐8.75927)	(*	X1	‐2.32527)))	(‐	(*	(‐	
X2	8.5169)	0.560745)	(+	(/	X1	X4)	(/	X1	X4))))))	(+	(/	5.35335	(/	(+	(‐	(+	X1	‐8.27698)	(/	X2	X4))	
(/	(+	X2	5.21486)	‐9.66085))	(+	X2	(/	(*	X1	8.08171)	(+	‐6.90552	X3)))))	8.66904)))	
	
The	above	model	can	be	written	in	the	infix	mathematical	expression	as:	
	

8.66904 	
5.35335	 ൬ܴ୫+

8.08171	ܴ୮
െ6.90553  ୠܨ

൰

െ8.81677  ܴ୮ െ 0.103511	ܴ୫ െ
ܴ୮
ݒ

	
൬36.5633 െ ܴ୮  ܴ୮ ൬0.222794 െ

14.4711
9.69337 െ ୠܨ	0.653628

൰ െ ୠܨ	0.222794 
ୠܨ	3.73772
ܴ୮ െ ܴ୫

െ ൰ݒ

െ1.18787  ܴ୫ 
ܴ୮  ୠܨ
ܴ୮ െ ܴ୫


6.27648 ܴ୮

13.2683 െ ୠܨ  ݒ 
ܴ୮ሺെ29.3458 െ ݒ	ሻݒ	3.32527

െ2ܴ୮ െ 4.77581 ݒ  0.560745	ܴ୫	ݒ

	

(2)

	
	 In	 this	process	we	 increased	 the	highest	allowed	number	of	generations	 from	500	 to	1000.	
Also	 the	values	of	probability	 for	 some	genetic	operations	were	 changed.	The	obtained	model	
(Eq.	2)	has	an	average	error	of	δ	=	0.65	%	(δ	=	0.68	%	for	testing	set)	and	was	generated	in	gen‐
eration	1000,	has	a	total	of	139	genes,	69	functional	genes	and	the	depth	of	this	model	is	8	which	
was	also	the	highest	allowed	depth	after	crossover.	In	this	case	the	values	of	main	evolutionary	
parameters	were:	probability	of	reproduction	was	0.1,	probability	of	crossover	0.1	while	muta‐
tion	probability	was	set	to	0.8.	This	model	is	more	complicated	compared	to	GP	model	in	Eq.	1	
but	it	is	also	much	more	accurate.	
	 Fig.	4	presents	the	average	deviation	(error)	of	the	best	GP	model	when	second	function	data	
set	was	applied	for	GP	process.	It	can	be	seen	that	after	generation	50	all	calculated	average	er‐
rors	of	best	GP	models	are	smaller	 than	3	%	and	after	generation	360	they	are	all	under	1	%.	
From	 that	 point	 and	up	 to	 final	 generation	 the	percentage	deviation	decreases	 very	 slowly.	 If	
more	generations	would	be	used	in	genetic	programming	the	accuracy	of	the	models	would	not	
increase	significantly,	but	processing	time	would	be	much	longer.		
	 Some	very	simple	genetic	models	were	also	obtained	by	GP	process.	One	of	the	best	simple	
model	with	average	error	of	1.31	%	was	developed	with	first	function	set	(+,	‐,	*)	and	is	present‐
ed	in	Eq.	3.	

െ0.30418 െ 0.0469128	ܴp  0.0532937 ܴm െ 0.000797616 bܨ െ 	ݒ	0.0170231 (3)

	



Gusel, Boskovic, Domitner, Ficko, Brezocnik 
 

 The above model is the evidence that GP process is capable of developing not only complex 
genetic models, but also very simple models with satisfactory accuracy. Simple models are easy 
to use, but when accuracy of the model is priority, such as in our research, the more complex and 
more accurate models should be used for prediction and simulation purposes.  
 We have also performed a few runs of GP modelling with third function set by adding natural 
exponential function (ZEXP) to four basic math functions. The best obtained genetic models 
were complex but not so accurate. It was obvious that adding ZEXP function does not results in 
getting better genetic models, in some cases natural selection in GP even eliminates exponential 
function and so the best developed models were without ZEXP function. The reason for this 
happening could be in relatively simplicity of the studied problem. 

4. Conclusion 
In the paper a GP modelling method for maximum height of cup deep drawn high strength steel 
specimens, which is an indicator for cold formability level of the material, was presented. The 
research showed that an increase of the punch speed and blank holder force leads to a decrease 
of the maximum drawn height. By GP modelling it was possible to develop many different and 
very accurate genetic models. By using and combining different values for evolution parameters 
the optimal and most suitable GP models were developed. In our case, a high probability of mu-
tation was vital for good convergence of the algorithms, because it preserves high diversity of a 
population. With lower value of probability of mutation, the convergence becomes either very 
slow due to low diversity of organisms in a population or organisms do not even converge to a 
sufficiently good solution. In the paper only three of the best developed genetic models were 
presented. The most accurate GP model was also very complex, but this is not an obstacle be-
cause modern production processes are all supported by high performance computers, so it is 
easy to use even the most complex models for accurate prediction of chosen parameters. 
 In mass production processes, such as deep drawing, sometimes even the tiny improvement 
in optimization of process parameters can lead to massive reduction of production costs and 
consequently highly accurate models are desired. In our future work we intend to perform ex-
periments with much more different materials and also additional parameters with the goal to 
optimize the input parameters for achieving better formability in deep drawing process. 
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