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Abstract

Let A be a hyperplane arrangement in A isomorphic to Rn. Let Vq be the q-Varchenko
matrix for the arrangement A with all hyperplane parameters equal to q. In this paper, we
consider three interesting cases of q-Varchenko matrices associated to hyperplane arrange-
ments. We show that they have a Smith normal form over Z[q].
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1 Introduction
Let M be an n × n matrix over a commutative unital ring R. We say that M has a Smith
normal form (SNF for short) over R if there are matrices P,Q ∈ Rn×n such that det(P )
and det(Q) are units in R and PMQ is a diagonal matrix diag(d1, d2, . . . , dn) where di
divides dj in R for all i < j.
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Recently, there is an interest in SNF in combinatorics. A survey of this topic was given
by Stanley in [11]. The SNF of a matrix of a differential operator was considered by Stanley
and the first author in [2], where they proved a special case of a conjecture given by Miller
and Reiner [7]. In [13], interesting results concerning the SNF of random integer matrix
were found.

It is well known that M has an SNF if R is a principal ideal domain (PID), but not
much is known for general rings. In this paper we are interested in the integer polynomial
ring Z[q]. Some matrices in Z[q]n×n do not have an SNF over R. For example, it is not
hard to show that

[
2 0
0 q

]
does not have an SNF over Z[q]. However, lots of matrices in

Z[q]n×n do have SNF over Z[q]. For example, it is asked whether every matrix of the form
A = (qaij ), where aij are nonnegative integers, has an SNF over Z[q]. There is not a
general solution to this question. But we could give a positive answer which arises from
some special cases of geometrical structures. The matrices we are interested in are called
Varchenko matrices (see [12]). These matrices are associated to a hyperplane arrangement
(see Definition 1.2). The Varchenko matrix was studied in the papers of Varchenko [12],
Schechtman and Varchenko [8], and Brylawski and Varchenko [1]. These matrices describe
the analogue of Serre’s relations for quantum Kac-Moody Lie algebras and are relevant to
the study of hypergeometric functions and the representation theory of quantum groups [6].
Entries appearing in the diagonal of a Smith normal form of a matrix are called invariant
factors. Applications of invariant factors of a q-matrix can be found in [3, 4, 9]. We are
going to prove that Varchenko matrices associated to some hyperplane arrangements do
have an SNF.

We use the notation and terminology on hyperplane arrangements in [10]. A finite
(real) hyperplane arrangementA is a finite set of affine hyperplanes in some affine space A
isomorphic to Rn.

For a hyperplane H in A, let

AH = {H ∩H ′ : H ′ ∈ A such that H ′ ∩H 6= ∅ and H ′ 6= H}.

This is a hyperplane arrangement in the affine space H . We also write A − {H} for the
arrangement from A with H removed.

LetA be a hyperplane arrangement in A. Then A is divided into some regions by these
hyperplanes. Explicitly, a region is a connected component of A−

⋃
H∈AH . We letR(A)

denote the set of regions of A.

Example 1.1. In the following picture, arrangement Ap is an example of the so-called
peelable arrangement, which is treated in Section 2. Here we see straight lines a, b, c form
a hyperplane arrangement in the plane R2. There are 7 regions of Ap which we denote by
1′, 2′, 3′, 1, 2, 3, 4. (We write it in this way for the example in Section 2.) The hyperplane
arrangement Ab

p contains two affine hyperplanes A = b ∩ a,B = b ∩ c (two points in b).
Arrangement Ap is also an example of the regular n-gon arrangement Gn, which is

treated in Section 4. It is a regular triangle arrangement. (Although in Figure 1 the cen-
tral triangle is not so much like a equilateral triangle. This does not matter, because the
Varchenko matrix that we are concerned with is a topological invariant.) As another ex-
ample for the n-gon arrangement, a picture of the pentagon arrangement G5 is given in
Section 4.

Arrangement C4 in Figure 1 is an example of arrangement Cn, which is treated in Sec-
tion 3.
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Figure 1: Arrangements Ap and C4.

Definition 1.2. Let A be a finite hyperplane arrangement andR(A) its set of regions, and
let aH for H ∈ A be indeterminates. The Varchenko matrix V = V (A) is indexed by
R(A) with the entries given by

VRR′ =
∏

H∈SepA(R,R′)

aH , (1.1)

where SepA(R,R′) is the set of hyperplanes in A which separate R and R′. We write
Vq = Vq(A) for V (A) when we set each aH = q, an indeterminate, and call Vq the
q-Varchenko matrix of A.

Thus (Vq)RR′ = q#Sep(R,R′). Also note that V (A) and Vq(A) are symmetric matrices
with 1’s on the main diagonal.

We are interested mostly in the q-Varchenko matrix Vq . We are going to prove that
Vq(A) has an SNF over the ring Z[q] for the peelable arrangements (in Section 2), arrange-
ment Cn (in Section 3) and regular n-gon arrangement Gn (in Section 4). (Since this ring
is not a PID, an SNF does not a priori exist.) In Section 5, we compute the SNF of the
Varchenko matrices for two arrangements which are not included in the previous sections.

2 Peelable hyperplane arrangements
Example 2.1. Let us look at the arrangement Ap in Example 1.1. Its Varchenko matrix
Vq = Vq(Ap) is

Vq =



1 q q2 q q2 q3 q2

q 1 q q2 q q2 q3

q2 q 1 q3 q2 q q2

q q2 q3 1 q q2 q

q2 q q2 q 1 q q2

q3 q2 q q2 q 1 q

q2 q3 q2 q q2 q 1


,

where the columns are indexed by the regions in the order 1′, 2′, 3′, 1, 2, 3, 4, and so are the
rows. We will briefly show that this matrix has an SNF. We write Vq as a block matrix the
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way it is partitioned:

Vq =

A1 B1 C1

A2 B2 C2

A3 B3 C3

 .
Notice that (B1, C1) = q(B2, C2) and A2 = qA1. (This is not a coincidence. We see
that [B1, C1] is the submatrix indexed by 1′, 2′, 3′ (rows) and 1, 2, 3, 4 (columns), while
[B2, C2] is the submatrix indexed by 1, 2, 3 (rows) and 1, 2, 3, 4 (columns). There is one
more line, line b, to separate regions i′ and j′ than regions i and j.) We can multiply by the
following matrix on the left to cancel B1:

P =

I3 −qI3 0
0 I3 0
0 0 1

 .
We have

PVq =

A1 − qA2 0 0
A2 B2 C2

A3 B3 C3

 .
As Vq is a symmetric matrix, so is PV P t. We thus have

PVqP
t =

A1 − qA2 0 0
0 B2 C2

0 B3 C3

 =

[
(1− q2)A1 0

0 M1

]
,

where we write

M1 =

(
B2 C2

B3 C3

)
,

and we use that A2 = qA1. The matrix A1 is the q-Varchenko matrix of Ab
p. (See Exam-

ple 1.1 for the notation Ab
p). The matrix M1 is the q-Varchenko matrix of Ap − {b}. We

can use induction to transform PVqP
t into an SNF.

This example motivates us to define a peelable hyperplane in an arrangement.

Definition 2.2. LetA be a finite hyperplane arrangement and H be a hyperplane inA. We
say that H is peelable (fromA) if there is one side Hf of H such that if R is a region of A
and R is in Hf , then R̄ ∩H is the closure of a region of AH .

For example, the hyperplane b is peelable from Ap in Example 1.1. Let us see why this
is. On the side above b there are three regions 1′, 2′ and 3′. For each one of these regions,
the intersection of its closure with b is actually a closure of a region of Ab

p. For instance,
the closure of region 2′ intersects b at a line section AB, and this line section is actually
a closure of a region of Ab

p. (In fact Ab
p has 3 regions: the part to the left of A, the part

between A and B, and the part to the right of B.)

Theorem 2.3. Assume that H is peelable from A. Then there is a matrix P with entries in
Z[q] such that det(P ) = 1 and

PVq(A)P t =

[
(1− q2)Vq(AH) 0

0 Vq(A− {H})

]
.



T. W. Cai, Y. Chen and L. Mu: On the Smith normal form of the Varchenko matrix 355

Remark 2.4. Under the same assumption, a similar result can be given for the Varchenko
matrix V (A), and the proof is almost the same. Using this result, we can prove that the
Varchenko matrix V (A) associated to a peelable hyperplane arrangement (as defined be-
low) has a “diagonal form” in Z[aH : H ∈ A], that is, we can find matrices P,Q whose
determinants are units and PV (A)Q is a diagonal matrix. Let us mention that, subsequent
to our work, Gao and Zhang [5] gave a necessary and sufficient condition on an arrangment
A for V (A) to have a diagonal form.

The main idea of the proof of this theorem is in the previous example. We will give a
rigorous proof in a while, in order to make sure there is no gap that might have occurred
when we move from the more visualizable two-dimensional example.

Iteratively using this result, the Varchenko matrices of a special type of hyperplane
arrangement can be shown to have an SNF.

Definition 2.5. Let A = {H1, H2, . . . ,Hm} be a finite hyperplane arrangement. We
inductively define A to be peelable as follows.

1. If m = 1 then A = {H1} is peelable.

2. If there is one peelable hyperplane H in A such that both A − {H} and AH are
peelable, then we say that A is peelable.

Now it is easy to see that we have the following result.

Corollary 2.6. The q-Varchenko matrix Vq(A) of a peelable hyperplane arrangement A
has an SNF over Z[q]. Moreover, its SNF is of the form

diag((1− q2)n1 , (1− q2)n2 , . . . , (1− q2)nr ),

where 0 ≤ n1 ≤ n2 ≤ · · · ≤ nr is a sequence of nonnegative integers and r is the number
of regions of A.

We will need the following two results, which are not hard to prove.

Lemma 2.7. Let H be a hyperplane in A. Assume that R is a region such that R̄ ∩ H
contains a point which is an interior point of some region R1 in AH . Then R̄1 = R̄ ∩H .

Lemma 2.8. Let H be a hyperplane in A. Assume that R is a region such that R̄ ∩H is
the closure of some region of AH . Then there is a unique region R′ on the other side of H
such that R̄′ ∩H = R̄ ∩H .

To simplify the wording of the proof of Theorem 2.3, we introduce a new notation.

Definition 2.9. Let A be a hyperplane arrangement. Let R1,R2 be two subsets of R(A).
We denote by Vq(R1,R2) the submatrix of Vq(A) with rows indexed by R1 and column
indexed byR2.

Now let us prove Theorem 2.3. Assume that H is peelable from A and Hf is a side of
H with the properties as in Definition 2.2. Let R1, R2, . . . , Rs be the set of the regions in
Hf . Let H , A, Hf be as in the Definition 2.2. Let R′1 = {1′, 2′, . . . , r′} denote the set of
regions in Hf , and let R1 = {1, 2, . . . , r} denote the corresponding regions on the other
side ofHf as given by the previous lemma. LetR2 = {r+1, . . . , r+s} be the set of other
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regions. LetR′ = {1, 2, . . . , r+ t}, i.e.,R′ is the union ofR1 andR2. It is not difficult to
prove the following facts:

Vq(R′1,R′1) = Vq(AH)

Vq(R′,R′) = Vq(A− {H})
Vq(R′1,R′) = qVq(R1,R′)
Vq(R′1,R′1) = qVq(R1,R′1).

The q-Varchenko matrix V = V (A) has the following block matrix form:

Vq(A) =

Vq(R′1,R′1) Vq(R′1,R1) Vq(R′1,R2)
Vq(R1,R′1) Vq(R1,R1) Vq(R1,R2)
Vq(R2,R′1) Vq(R2,R1) Vq(R2,R2)

 .
Now an argument similar to Example 2.1 can be applied to prove the theorem.

3 The case that all lines go through the same point
From now on, we consider hyperplane arrangements in R2. Define Cn to be the arrange-
ment consisting of n lines intersecting in a common point in R2. We prove that the q-
Varchenko matrix V (n) associated to Cn has a Smith normal form (over Z[q], as usual).
This matrix has the form

V (n) =


1 q q2 q3 · · · qn qn−1 · · · q
q 1 q q2 · · · qn−1 qn · · · q2

...
...

q q2 q3 q4 · · · qn−1 qn−2 · · · 1

 .
Remark 3.1. This matrix is an example of circulant matrices C(c1, c2, . . . , cn) which is
defined by

C(c1, c2, . . . , cn) =


c1 c2 c3 . . . cn−1 cn
cn c1 c2 . . . cn−2 cn−1

cn−1 cn c1 . . . cn−3 cn−2

...
...

...
...

...
...

c2 c3 c4 . . . cn c1

 . (3.1)

We see that V (n) is circulant because the regions of Cn are in a circular mode. Similar but
more complicated situations occur in the regular n-gon arrangement, which is considered
in the next section.

Proposition 3.2. Let n be a positive integer. Then the Varchenko matrix V (n) has the
following Smith normal form over Z[q]:

diag(1, 1− q2, . . . , 1− q2︸ ︷︷ ︸
n

, (1− q2)2, (1− q2)(1− q2n), . . . , (1− q2)(1− q2n)︸ ︷︷ ︸
n−2

). (3.2)

Proof. First successively apply the row operations ri − qri−1 (i = n, n − 1, . . . , 2),
rn+i − qrn+i+1 (i = 1, 2, . . . , n − 1), r2n − qr1. This transforms V (n) into the block



T. W. Cai, Y. Chen and L. Mu: On the Smith normal form of the Varchenko matrix 357

matrix 1 α q
O M O
0 β 1− q2

 ,
where M is a 2(n− 1)× 2(n− 1) matrix, α, β are row vectors, O is a zero column vector
and β’s components are all multiples of 1 − q2. It’s easy to see that we only need to find
the Smith normal form of M . Factoring 1− q2 out of M , one finds that

M = (1− q2)

[
A B
Bt At

]
,

where

A =

n−2∑
k=0

qkT k, B =

n−2∑
k=0

qn−1−k(T t)k

and T = (tij) with ti,j = δi+1,j . Note that A is a unitriangular matrix; in particular, it is
invertible in Z[q]. Multiplying M on the left by

P =

[
I O

−BtA−1 I

]
,

we transform M into

(1− q2)

[
A B
O At −BtA−1B

]
.

We see that we only need to find the Smith normal form of At − BtA−1B, but it can be
seen from the following lemma that its SNF is

diag(1− q2, 1− q2n, . . . , 1− q2n︸ ︷︷ ︸
n−2

). (3.3)

Now the SNF of V (n) follows.

Lemma 3.3. Let m×m matrix T = (tij) with ti,j = δi+1,j . Let

A =

m−1∑
k=0

qkT k, B =

m−1∑
k=0

qm−k(T t)k.

Then the matrix
C = (Im − qT t)(At −BtA−1B)

is equal to a matrix with first row

(1− q2, q3 − q2m+1, q4 − q2m, q5 − q2m−1, . . . , qm+1 − qm+3),

the other diagonal entries all equal to 1− q2m+2, and all other entries zero.

Proof. First A−1 = Im − qT , so

BtA−1 = qmIm +

m−1∑
k=1

(qm−k − qm+2−k)T k.
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Then one computes BtA−1B and finds it is equal to

M =



q2 q3 − q2m+1 q4 − q2m . . . qm+1 − qm+3

q3 q4 q5 − q2m+1 . . . qm+2 − qm+4

q4 q5 q6 . . . qm+3 − qm+5

...
...

...
...

...
qm qm+1 qm+2 . . . q2m−1 − q2m+1

qm+1 qm+2 qm+3 . . . q2m


.

Now let N = (Im − qT t)M . We find that the first row of N is the same as that of M , the
other diagonal entries of N are all equal to q2m+2 and all other entries are zero. Now we
see that C is as claimed in the lemma since

C = (Im − qT t)At − (Im − qT t)M = Im − (Im − qT t)M = Im −N.

4 The case of regular n-gon arrangement Gn

Let Gn be the arrangement in R2 obtained by extending the sides of a regular n-gon. Let
Vq(Gn) be the Varchenko matrix associated to Gn. We are going to prove the following

Theorem 4.1. Let Vq(Gn) be the Varchenko matrix associated to the regular n-gon ar-
rangement Gn. A Smith normal form of Vq(Gn) over Z[q] is

diag(1, 1− q2, . . . , 1− q2︸ ︷︷ ︸
n

, (1− q2)2, . . . , (1− q2)2︸ ︷︷ ︸
(p−1)n

), (4.1)

where p is the integer part of (n+ 1)/2.

The above result can be proved by using some results and tools in [3, 12]. But we want
to prove it directly. First, it is easy to calculate the number of regions of the arrangement
Gn. For instance, one uses the formula that the number of regions is one more than the sum
of the number of the lines and the number of intersection points.

Lemma 4.2. The number of the regions associated to the regular n-gon arrangement Pn

is np+ 1, where p is the integer part of (n+ 1)/2.

The main idea of the proof of Theorem 4.1 is to group the regions by their shapes. We
then write the Varchenko matrix as a block matrix. The columns of each block are labeled
by regions of a same shape and so are the rows of a block. For regions of the same shape,
we order them clockwise. The key property of this treatment is that each block is a circulant
matrix. Once we write the block matrix down, it will be relatively easy to do cancelations
and turn it into an SNF, although it takes some space to write the process down. To show
how to write the block matrix, we consider the example of G5. Then in the proof we write
the block matrix for general n and then do the cancelation.

Example 4.3. We mark the regions of G5 (see Figure 2) as in the following.
They are regions ∆

(j)
i (i = 1, 2, . . . , 5; j = 1, 2, 3) together with a unmarked central

region. Note that we mark the regions according to their shape. Precisely, for each j, the
shape of the ∆

(j)
i for i = 1, 2, . . . , 5 are the same. Let us call them the regions of type
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Figure 2: Arrangement G5.

j. For regions of the same type, we label them clockwise as ∆
(j)
1 ,∆

(j)
2 , . . . ,∆

(j)
5 . We

call ∆
(j)
1 the leading region of the type j regions. The union of the three leading regions

∆
(1)
1 ,∆

(2)
1 ,∆

(3)
1 is the region inside an exterior angle of the pentagon. (So is the union of

three region ∆
(1)
i ,∆

(2)
i ,∆

(3)
i .) We obtain the Varchenko matrix

Vq(G5) =


1 Q1 Q2 Q3

Q t
1 E11 E12 E13

Q t
2 E21 E22 E23

Q t
3 E31 E32 E33

 ,

where the first (block) column is indexed by the central non-marked region. For j = 2, 3, 4,
the jth block column is indexed by the type j regions. The block rows are indexed in the
same way. For example, the rows of the matrix E12 are indexed by the type 1 regions
and the columns of it are indexed by type 2 regions. Because regions of the same type are
ordered in a circular mode, the blocksEij should all be circulant matrices (see Remark 3.1).
In fact, it can be checked that the blocks are as follows

Qk = (qk, qk, qk, qk, qk) for k = 1, 2, 3,

E11 = C(1, q2, q2, q2, q2) E12 = C(q, q3, q3, q3, q) E13 = C(q2, q4, q4, q2, q2),

E22 = C(1, q2, q4, q4, q2) E23 = C(q, q3, q5, q3, q) E33 = C(1, q2, q4, q4, q2).

We then use Gaussian elimination (in blocks) to turn the matrix into an SNF. For in-
stance, at the beginning, we subtract the q times of the third block row (Q t

2 E21 E22 E23)
from the fourth block row (Q t

3 E31 E32 E33).
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Proof. We write the Varchenko matrix of Gn in the following form of block matrix:

Vq(Gn) =


1 Q1 Q2 . . . Qp

Q t
1 E11 E12 . . . E1p

Q t
2 E21 E22 . . . E2p

...
...

...
...

...
Q t

p Ep1 Ep2 . . . Epp


where Ekl = E t

lk, Qk is the row vector

Qk = (qk, qk, . . . , qk)︸ ︷︷ ︸
n

(4.2)

and Eij (i ≤ j) is a circulant matrix:

Eij = C
(
qj−i, qj−i+2, qj−i+4, . . . , qj−i+2(i−1), qi+j , . . . , qi+j︸ ︷︷ ︸

n+1−i−j

,

qj+i−2, qj+i−4, . . . , qj+i−2(i−1), qj−i, . . . , qj−i︸ ︷︷ ︸
j−i

)
.

Now we apply Gaussian elimination to Vq(Gn) and transform it into the desired diag-
onal form. We do this in blocks and we will use the multiplication of elementary block
matrices to realize the elimination. We proceed in four steps.

Step 1: We first apply some row eliminations. Let

R1 =


1

−qIn×1 In
In

. . .
In

 and Rk =


1
In

. . .
−qIn In

. . .
In


for k ≥ 2, where In×1 is a column of n 1’s and Rk comes from the (block) identity matrix
by adding the −q times of its (k − 1)th block row to it’s kth block row. Now compute the
matrix M1 = R1R2 · · ·RpVq(Pn).

Step 2: We apply some column eliminations. Let

S1 =


1 −qI1×n

In
In

. . .
In

 and Sk =


1
In

. . .
In −qIn

. . .
In


for k ≥ 2, where I1×n is a row of n 1’s and Sk comes from the (block) identity matrix by
adding the −q times of its (k − 1)th block column to its kth block column. (So Sk = T t

k .)
Now compute the matrix M2 = M1Sp · · ·S2S1.
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Step 3: We apply some more row eliminations. Let

Tk =


1
In

. . .
−qJ In

. . .
In

 with J =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 1
1 0 0 · · · 0 0

 ,

where Tk come from the (block) identify matrix by adding the−qJ times the kth block row
to the (k + 1)th block row. Now compute M3 = T1 · · ·Tp−1M2. We find the Varchenko
matrix is now transformed to

M3 =



1 0 0 0 . . . 0 0
0 D N12 N13 . . . N1p−1 N1p

0 0 D′ N23 . . . N2p−1 N2p

...
...

...
...

...
...

...
0 0 0 0 . . . D′ Np−1p

0 0 0 0 . . . 0 D′


,

where D = (1− q2)In, D
′ = (1− q2)2In and all non-diagonal entries are the multiple of

the diagonal entry on the same row. This ensures that we can do the following:

Step 4: We apply more column eliminations to cancel the non-diagonal entries. This does
not change the diagonal entries of M3. We finish the proof as the diagonal of M3 is the
same as that of (4.1).

5 Two more examples
We now simply say that a hyperplane arrangement A has SNF if its Varchenko matrix
Vq(A) has an SNF over Z[q]. We can use Theorem 2.3 to give more examples of hyperplane
arrangements who have SNF. For example, starting from an arrangement which has SNF,
for instance Cn, we can keep adding straight lines to it. As long as every time the line
added does not separate the set of intersection points of the previous arrangement, the
new arrangement will have SNF. This helps us to construct lots of examples of hyperplane
arrangements having SNF. We now give two examples which can not be constructed this
way. We found that they both have SNF.

1. The Shi arrangement S3 with hyperplanes xi − xj = 0, 1 for 1 ≤ i < j ≤ 3.
We write the multiplicity of a diagonal element in brackets following that entry. For
instance, 1− q2 [3] indicates that 1− q2 occurs three times as a diagonal element of
the SNF. The diagonal elements of the SNF of Vq(S3) are 1 [1], 1− q2 [6], (1− q2)2

[6], and (1− q2)(1− q6) [3].

2. Define a hyperplane arrangement A in R3 by the equations x = 0, y = 0, z = 0,
x − y − z = 0. We verified that its q-Varchenko matrix has an SNF over Z[q], with
diagonal entries 1 [1], 1−q2 [4], (1−q2)2 [6], (1−q2)3 [2], and (1−q2)2(1−q8) [1].

Based on the previous examples, it is natural to consider the following problem.

Problem 5.1. Do all hyperplane arrangements have SNF?
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