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Abstract 
This paper presents a method for reducing active power system losses and voltage level 
regulation by implementing adequate distributed generation capacity on the appropriate 
terminal in a distribution system. Active power losses are determined using an Artificial Neural 
Network (ANN) using simultaneous formulation for the determination process based on voltage 
level control and injected power. Adequate installed power of distributed generation and the 
appropriate terminal for distributed generation utilization are selected by means of a genetic 
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logical links between inputs and outputs, they can adopt various learning mechanisms and self-
organization or training concepts, pattern recognition, forecasting etc. 

ANN can be trained to generate control parameters for minimizing power losses and 
determining the optimal solution for DG implementation in the distribution network. This paper 
proposes an online real-time power flow optimization and voltage regulation method using 
ANN and a Genetic Algorithm (GA). ANN are highly robust and provide satisfactory solutions if 
provided with quality data and can dynamically determine the most appropriate DG solution by 
means of installed power and position in the system. The GA is used for solving constrained and 
constrained optimization problems and is based on a natural selection process that mimics 
biological evolution. The algorithm generates a population of individual solutions that are 
randomly selected from the population and used as parents for the next generation. Over 
several generations, the optimal population solution appears. 

 

2 THE PROBLEM FORMULATION 

Optimization problem can be generally shown with a model of the objective function and 
associated restrictions: 

),(  

So that   

 (2.1) 

  

Where vector u is a vector of control variables, x is a vector of state variables; scalar f(x) is the 
objective function, while restrictions are given by the system of equation g(x, u) and inequalities 
h(x,u). 

The main goal of the proposed method is to determine the best locations in the distributed 
system for distributed generation by minimizing different functions related to project goals 
which are: 

1. Reduction of active power losses 

2. Voltage profile improvement 

 

2.1 Objective function  

The main objective function could be described as: 

   (2.2) 

Where Plosses are losses of active power in a system. 

Minimization of active power losses is an essential requirement in a distribution system for 
efficient power system operation, [3]. Power losses can be calculated as: 
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algorithm (GA), performed in a distinct manner that fits the type of decision-making 
assignment. The training data for Artificial Neural Network (ANN) is obtained by means of load 
flow simulation performed in DIgSILENT PowerFactory software on a part of the Croatian 
distribution network. The active power losses and voltage conditions are simulated for various 
operation scenarios in which the back propagation artificial neural network model has been 
tested to predict the power losses and voltage levels for each system terminal, and GA is used 
to determine the optimal terminal for distributed generation placement. 

Povzetek 
V članku je predstavljena metoda za zmanjšanje izgub v sistemu in regulacijo napetostnih 
nivojev z implementacijo razpršenih proizvodnih kapacitet na primernih terminalih 
distribucijskega sistema. Izgube delovne moči so določene z uporabo Umetne Nevronske Mreže 
(UNM), kjer je uporabljena sočasna formulacija v procesu odločanja na osnovi nadzora 
napetostnih nivojev in injiciranih moči. Ustrezne inštalirane moči razpršene proizvodnje in 
primerni terminali za izkoriščanje razpršene proizvodnje so izbrani na osnovi Genetskih 
Algoritmov (GA) izvedenih na poseben način, ki ustreza nalogam v procesu odločanja. Podatki za 
Umetno Nevronsko Mrežo so pridobljeni na osnovi simulacije pretoka energij v programskem 
paketu ''DIgSILENT PowerFactory'' na delu Hrvaškega distibucijskega omrežja. Simulacije izgub 
delovne moči in napetostnih razmer so izvedene za različne obratovalne scenarije, v katerih je 
testiran model ''vzratnega učenja'' umetne nevronske mreže za predvidevanje izgub moči in 
napetostnih nivojev za vsak sistemski terminal. Genetski algoritem je uporabljen za določitev 
optimalnega terminala za umestitev razpršene proizvodnje. 

 

1 INTRODUCTION 

The presence of distributed generation (DG) changes the load characteristics of the distribution 
network, which gradually becomes an active load network and implies changes in the power 
flow. Current-voltage conditions are now not only dependent on the current consumption but 
also on the production from DG. If sized and selected properly, DG can improve electrical 
conditions, such as improvement of voltage, loss reduction, relieved transmission and 
distribution congestion, improved utility system reliability and power quality in the distribution 
network, [1]. 

In order to determine the impact on the power system of each DG, it is necessary to perform 
the power flow analysis on a daily or hourly (or even 10-minute) basis. Due to the increased 
number of small DG, mostly from intermittent sources, it is necessary to implement an 
advanced management power distribution system to make the distribution network 
significantly automated. Accordingly, it is necessary to develop mathematical optimization 
models that can be implemented in the distribution network management system to enable 
optimal management. According to [2], an automated distribution network has to provide a fast 
and the accurate solution for power flow and current-voltage conditions control. 

As an ideal solution, artificial neural networks (ANN) are imposed due to their ability to solve 
nonlinear problems in a short period of time, and if quality organized and made, they are able 
to perform real-time calculations necessary for the optimization of the distribution network. 
ANN have considerable potential in control systems because they can learn and adapt, they can 
approximate nonlinear functions, they are suited for parallel and distributed processing and 
model multivariable systems naturally, [3]. Since they are based on human experience and on 
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 : mutual susceptance of nodes i and j 

 : self-conductance of node i  

 : self-susceptance of node i 

 
Reactive power restrictions are given by the expression: 

     


 sinsin   (2.6) 

Where: 

  : number of nodes in network 

 : reactive power production in node i 

 : reactive power consumption in node i 

 

Besides active and reactive power constraints, the apparent power that is transmitted through 
each branch has to be below the physical limit of the branch transformer in steady-state 
operation. The constraint of apparent power is given by: 

SS ii max,   (2.7) 

Where: 

Si  : apparent power in ith branch 

Si max,  : maximum allowed apparent power in ith branch 

 

2.2.2 Voltage levels constraints 

Voltage level restrictions are given by the expression: 

maxmin     (2.8) 

Where: 

  : number of nodes in network 

 min , max   : voltage limitations 

 : voltage level in node i  

 

2.2.3 Constraints of reactive power production in generator node  

The generator has the capability curve and the technical operational limits, so the reactive 
power production is given by the expression: 
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Where: 

,  : real power and reactive power injection at respected terminal 

 : terminal number 

 

 And ,  ,  are represented respectively: 

  


sin
,  

  


cos
 (2.4) 

  : line resistance between terminal  and terminal  

,  : voltage and load angle at the selected terminal 

 

2.2 Constraints 

The objective function of active power loss minimization is not sufficiently suitable without 
technical restrictions and correct formulation of optimization constraints. Optimal placement of 
distributed generation and the solution provided with the proposed method must be realistic 
and should not produce negative impacts on other system aspects. In order to achieve this goal, 
operational constraints should be properly evaluated and chosen, not only to enable proper 
operation of the proposed algorithm, but also to support the regular operation of the power 
system. 

 

2.2.1 Power constraints 

For the safe operation of the power system, the active power constraints are given by the 
expression: 

     


 sinsin   (2.5) 

Where: 

  : number of nodes in network 

 : active power production in node i 

 : active power consumption in node i 

  : angle of mutual admittance  of nodes i and j 

 : mutual  conductance of nodes i and j 
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 : input value 

 : weighting factor 

 : threshold value 

 : layer number 

 : nonlinear function 

 

When the network is created, the process of teaching has to be done in order to organize the 
neurons. This teaching makes usage of a learning rule, which is the variant of the Delta Rule, [3] 
The teaching starts with determining the error, which is the difference between the actual 
outputs and the desired outputs given in the training data. Based on this error, the weighting 
factor is changed in proportion to the error for the global accuracy. The algorithm for the 
weighting factor changing based on training data is, [6]: 

     (3.2) 

Where: 

 : learning rate 

 : j component of pth target output 

 : j component of pth computed output 

 : i component of pth input pattern 

  : error of target and computed output 

 

If well trained, an ANN can provide reasonable outputs for a new set of inputs enabling network 
training on a representative set of inputs with output correction. The training should be done 
on the largest possible set. Generally, the precision of ANN is increased by the larger training set 
with more input variables.  
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 ,maxmin     (2.9) 

Where: 

min , max  : reactive power production limits in node i 

  : number of PV node 

 : node of DG 

 

The objective function including the reduction of active power losses only could provide the 
solution without predicting a sufficient amount of reactive power reserves in case of the failure 
of one or more components in a power system. The appropriate optimization solution has to 
provide the optimization of voltage levels, voltage reduction, loss of stability risk and the 
reduction of power losses. 

 

3 ARTIFICIAL NEURAL NETWORK DESIGN AND 
IMPLEMENTATION 

Bearing in mind all restrictions and the objective of the optimization, a useful algorithm has to 
be developed. Because of the complexity and nonlinear interdependence of controlled 
variables, it is difficult to provide a fast and correct solution using classic (exact) optimization 
techniques, such as linear programming, the interior point method or mixed integer 
programming, [5]. ANN can be appropriate for solving such non-linear problems. There are 
several different types of ANN, including feed-forward neural network, radial basis function 
(RBF) network, Kohonen self-organizing network, recurrent neural network (RNN), bi-directional 
RNN, stochastic neural networks, etc. The appropriate neural network has to be properly 
selected since not every type of neural network will give the best solution for a certain problem. 
Back-propagation (BP) ANN can be used for the optimization problems since it meets the 
specific criteria: a flow chart of the problem can be described; there is a relatively easy way to 
generate a significant or at least necessary number of input and output examples; the problem 
appears to have considerable complexity but there is a clear solution; outputs may be 
unambiguous in some extreme cases.  

The typical back-propagation network has an input layer, an output layer, and at least one 
hidden layer. The numbers of hidden layers are theoretically infinite but usually one to four 
layers is adequate to solve any kind of complex problems.  

Each layer has to be fully connected to the vicinal layer by every neuron, as shown in Figure 1.  

The relationship between input and output values of multi-layer ANN can be represented as [6]: 

  





 




  (3.1) 

Where: 

 : output value 
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The results of each operation scenario are introduced into tables. The power losses in the 
electrical network can be computed by means of load flow simulation generated in the 
DIgSILENT PowerFactory software. Quantification and determination of power losses is essential 
due to the impact on the power system economic operation and the lifetime of the included 
equipment, [9]. Performance of ANN training is shown in Figure 2.  
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Figure 2: Performance of ANN training 

For the purpose of electrical network modelling, data is obtained from the Croatian grid 
company HEP-ODS Elektroslavonija for a part of distribution network with a nominal voltage 
35(20)kV and 0.4 kV with 48 terminals, 23 transformers and 25 different low-voltage loads. The 
distribution network is connected to the transmission network on two sides, but it is never 
doubly-fed due to operator technical conditions. If fully loaded, the voltage drops under 0.89 
p.u. 
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Figure 1: Structure of Artificial Neural Network 

 

3.1 Neural network training  

For the purpose of ANN training, a training data set has to be generated. Selecting the amount 
and type of training data is extremely important since the wrong selection could reduce the 
learning ability of the ANN or even provide an incorrect solution. For better accuracy, all 
dependent parameters have to be taken into account. The training data for the ANN consists of: 
DG active power production changed by operation scenarios from 0 kW (no production) to 
1.350kW (excessive production) in 10kW increments, injected current from DG production given 
in kA, and the voltage level on the low-voltage side and the voltage level on the medium-
voltage side, given in per-unit (p.u.) values. Targeted data for the ANN training are total feeder 
losses for each operation scenario. Accordingly, ANN has four input units and one output unit 
connected with nine hidden layer units.  

The training is performed by the Levenberg-Marquardt algorithm for nonlinear least square 
problems, [7]. Calculations of each operation scenario for the training data generation are 
performed using DIgSILENT PowerFactory software, a leading power system analysis tool for 
applications in generation, transmission, distribution and industrial systems, [8]. The ANN is first 
trained on sample values for one terminal, and later it is tested on all proposed terminals.  
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Figure 2: Performance of ANN training 

For the purpose of electrical network modelling, data is obtained from the Croatian grid 
company HEP-ODS Elektroslavonija for a part of distribution network with a nominal voltage 
35(20)kV and 0.4 kV with 48 terminals, 23 transformers and 25 different low-voltage loads. The 
distribution network is connected to the transmission network on two sides, but it is never 
doubly-fed due to operator technical conditions. If fully loaded, the voltage drops under 0.89 
p.u. 
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For the purpose of ANN training, a training data set has to be generated. Selecting the amount 
and type of training data is extremely important since the wrong selection could reduce the 
learning ability of the ANN or even provide an incorrect solution. For better accuracy, all 
dependent parameters have to be taken into account. The training data for the ANN consists of: 
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1.350kW (excessive production) in 10kW increments, injected current from DG production given 
in kA, and the voltage level on the low-voltage side and the voltage level on the medium-
voltage side, given in per-unit (p.u.) values. Targeted data for the ANN training are total feeder 
losses for each operation scenario. Accordingly, ANN has four input units and one output unit 
connected with nine hidden layer units.  

The training is performed by the Levenberg-Marquardt algorithm for nonlinear least square 
problems, [7]. Calculations of each operation scenario for the training data generation are 
performed using DIgSILENT PowerFactory software, a leading power system analysis tool for 
applications in generation, transmission, distribution and industrial systems, [8]. The ANN is first 
trained on sample values for one terminal, and later it is tested on all proposed terminals.  



20 JET

 
Optimization method for control of voltage level and active power losses based 
on optimal distributed generation placement using Artificial Neural Networks 

and Genetic Algorithms 
 

   

---------- 

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
Function Fit for Output Element 1

O
u

tp
u

t a
n

d
 T

ar
g

et

 

 

-15

-10

-5

0

5
x 10

-3

E
rr

o
r

Input
 

 

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors
Fit

Targets - Outputs

 
Figure 4: Fitting of the ANN 

The ANN is first tested on one terminal, randomly selected for DG implementation. The output 
of the ANN estimation is precise and accurate, regardless of on which number of 
implementation terminals and DG power it is tested. 

By running the ANN on a set of variables for a selected terminal and running the power flow 
calculation in DIgSILENT PowerFactory software with same DG values, results can be compared 
and evaluated. The performance of the ANN is acceptable; the comparison of results given by 
DIgSILENT PowerFactory and by ANN after proper training shows that ANN manages to 
determine the valid value of power losses. The results of ANN are generally matching results 
provided by DIgSILENT PowerFactory. If the results should significantly deviate, the ANN has to 
be improved by managing the weight factors, biases and number of the hidden neurons. 
Furthermore, additional training data could be useful if improved precision would be a goal.  

How the neural network response to input parameters can be shown by regression 
performance, as shown in Figure 5. 

How the ANN estimates the influence on power losses and voltage control is shown in Table 1, 
where are shown compatible results of the calculation for one low voltage terminal, 
simultaneously made by ANN estimation and DIgSILENT calculation. 
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Figure 3: Voltage values on terminals in fully loaded distribution network 

Of course, the normal operating conditions for this distribution network are not fully loaded 
terminals, and it is never doubly-fed, but it is necessary to observe what happens to voltage 
values. One possible solution for the increase of voltage values is planning for an adequate 
distributed generation on the convenient terminal in the system. In this case, the continuous 
electric power production would be as adequate a type as the stable source the network 
operator could rely on.  

 

4 LOSSES ESTIMATION BY ANN 

The ANN is modelled in MATLAB, which is a high-level language and interactive environment for 
numerical computation, visualization, and programming. After the ANN training, the fitting 
function and associated graph that shows how the results given by the ANN correspond to the 
control variables and results provided by DIgSILENT PowerFactory could be realized, as shown in 
Figure 4. The results provided by DIgSILENT PowerFactory power flow calculation are taken as 
correct real-life values since this software has previously and frequently proven its reliability 
and precision. 
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The ANN is first tested on one terminal, randomly selected for DG implementation. The output 
of the ANN estimation is precise and accurate, regardless of on which number of 
implementation terminals and DG power it is tested. 

By running the ANN on a set of variables for a selected terminal and running the power flow 
calculation in DIgSILENT PowerFactory software with same DG values, results can be compared 
and evaluated. The performance of the ANN is acceptable; the comparison of results given by 
DIgSILENT PowerFactory and by ANN after proper training shows that ANN manages to 
determine the valid value of power losses. The results of ANN are generally matching results 
provided by DIgSILENT PowerFactory. If the results should significantly deviate, the ANN has to 
be improved by managing the weight factors, biases and number of the hidden neurons. 
Furthermore, additional training data could be useful if improved precision would be a goal.  

How the neural network response to input parameters can be shown by regression 
performance, as shown in Figure 5. 

How the ANN estimates the influence on power losses and voltage control is shown in Table 1, 
where are shown compatible results of the calculation for one low voltage terminal, 
simultaneously made by ANN estimation and DIgSILENT calculation. 
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Of course, the normal operating conditions for this distribution network are not fully loaded 
terminals, and it is never doubly-fed, but it is necessary to observe what happens to voltage 
values. One possible solution for the increase of voltage values is planning for an adequate 
distributed generation on the convenient terminal in the system. In this case, the continuous 
electric power production would be as adequate a type as the stable source the network 
operator could rely on.  

 

4 LOSSES ESTIMATION BY ANN 

The ANN is modelled in MATLAB, which is a high-level language and interactive environment for 
numerical computation, visualization, and programming. After the ANN training, the fitting 
function and associated graph that shows how the results given by the ANN correspond to the 
control variables and results provided by DIgSILENT PowerFactory could be realized, as shown in 
Figure 4. The results provided by DIgSILENT PowerFactory power flow calculation are taken as 
correct real-life values since this software has previously and frequently proven its reliability 
and precision. 
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150,000 1.424 1.000 0.976 0.398 0.398002 

200,000 1.374 1.000 0.977 0.386 0.385997 

250,000 1.329 1.000 0.978 0.374 0.375231 

300,000 1.291 1.000 0.978 0.363 0.36217 

350,000 1.261 1.000 0.979 0.352 0.352026 

400,000 1.238 1.000 0.980 0.343 0.342537 

450,000 1.222 1.000 0.981 0.334 0.335857 

500,000 1.214 1.000 0.982 0.325 0.324879 

550,000 1.215 1.000 0.983 0.318 0.321286 

600,000 1.222 1.000 0.984 0.311 0.31163 

650,000 1.238 1.000 0.985 0.305 0.303296 

700,000 1.260 1.000 0.986 0.299 0.299777 

750,000 1.288 1.000 0.986 0.294 0.295214 

800,000 1.323 1.000 0.987 0.289 0.287773 

850,000 1.363 1.000 0.988 0.286 0.284287 

900,000 1.408 1.000 0.989 0.282 0.281378 

950,000 1.457 1.000 0.989 0.28 0.280029 

1000,000 1.444 1.000 0.990 0.277 0.277324 

1050,000 1.566 1.000 0.991 0.276 0.276195 

1100,000 1.625 1.000 0.992 0.275 0.27499 

1150,000 1.687 1.000 0.992 0.274 0.273763 

1200,000 1.750 1.000 0.993 0.275 0.27499 

1250,000 1.816 1.000 0.994 0.275 0.27499 

1300,000 1.833 1.000 0.994 0.276 0.276195 

1350,000 1.952 1.000 0.995 0.278 0.278344 

 

4.1 Optimal solution finding 

Once all the data for every desired terminal in the system is generated, the optimal solution 
must be found; doing so is a decision-making process that has to be properly designed. In recent 
years, increasing research efforts have been directed at applying ANN to decision-making tasks 
and mixed opinions about the value and performance of this technique have emerged: from 
considering ANN effective for unstructured decision making to categorically expressing 
reservations towards decisions made by artificial intelligence. The ANN for decision making and 
optimal solution finding is not used in this paper. 
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Figure 5: Regression of the ANN 

The next step of determining the correct solution for minimizing active power losses and 
voltage level control is choosing the appropriate terminal and size of DG for implementation. 
This could be done analytically by comparing the results, by developing an additional ANN for 
decision making and choosing the correct terminal, or by developing a combined method that 
utilizes a genetic algorithm (GA) along with the ANN. In that case, the ANN is used for the 
assessment of the level of losses of the system, depending on the power of distributed 
generation and the terminal to which is it connected, and the GA is used to find the minimum 
solution. 

Table 1: Results of simulation in DIgSILENT and by ANN for one distributed generation terminal 

DG power 
productio

n [kW] 

Injected 
Current 

[kA] 

Low 
Voltage 

Terminal 

[p.u.] 

High 
Voltage 
Termin

al 

[p.u.] 

Active 
Power 
Losses  

[MW] 

DIgSILENT 

Active Power 
Losses  

[MW] 

ANN 

0,000 0.000 0.890 0.890 0.426 0.436788 

100,000 1.481 1.000 0.975 0.412 0.411999 
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4.1 Optimal solution finding 

Once all the data for every desired terminal in the system is generated, the optimal solution 
must be found; doing so is a decision-making process that has to be properly designed. In recent 
years, increasing research efforts have been directed at applying ANN to decision-making tasks 
and mixed opinions about the value and performance of this technique have emerged: from 
considering ANN effective for unstructured decision making to categorically expressing 
reservations towards decisions made by artificial intelligence. The ANN for decision making and 
optimal solution finding is not used in this paper. 
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Figure 5: Regression of the ANN 

The next step of determining the correct solution for minimizing active power losses and 
voltage level control is choosing the appropriate terminal and size of DG for implementation. 
This could be done analytically by comparing the results, by developing an additional ANN for 
decision making and choosing the correct terminal, or by developing a combined method that 
utilizes a genetic algorithm (GA) along with the ANN. In that case, the ANN is used for the 
assessment of the level of losses of the system, depending on the power of distributed 
generation and the terminal to which is it connected, and the GA is used to find the minimum 
solution. 

Table 1: Results of simulation in DIgSILENT and by ANN for one distributed generation terminal 

DG power 
productio

n [kW] 

Injected 
Current 

[kA] 

Low 
Voltage 

Terminal 

[p.u.] 

High 
Voltage 
Termin

al 

[p.u.] 

Active 
Power 
Losses  

[MW] 

DIgSILENT 

Active Power 
Losses  

[MW] 

ANN 

0,000 0.000 0.890 0.890 0.426 0.436788 

100,000 1.481 1.000 0.975 0.412 0.411999 
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Figure 7: Algorithm of proposed method 
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The genetic algorithm is becoming increasingly represented in optimization with non-linear 
dependences; it is an adaptive heuristic search algorithm introduced on the evolutionary 
themes of natural selection, [3]. In this case, the starting population could be that of potential 
(or all) terminals on which the selection would be performed. In such cases, the main condition 
that would need to be met is the well-defined fitness function of each terminal. [9] 

Along with the GA, there are other types of soft-computing methods that could be used to find 
the best solution. Methods proven to be exceptionally good include Swarm Intelligence or 
Particle Swarm Optimization and Ant Colony Optimization, since they are efficient in the 
optimization of problems in a search space, [2]. Finally, the well-known Fuzzy Controller could 
be implemented, which could, if designed correctly, prove to be the most robust yet still simple 
design.  

 

5 GENETIC ALGORITHM AND ANN HYBRID METHOD 

Representation of results has to be a fixed-length bit string in order for GA to function. Each 
position in a string is assumed to represent a particular feature of an individual solution. The 
value stored in that particular position shows how one feature is evaluated in solution. In the 
specific requirements for the purpose of this paper, operation scenarios are divided by the 
power of implemented DG and by the number of connected terminals. The arrangement of 
operation scenarios in the number of the population can be determined in several ways. The 
authors of this paper used DG power as a difference from each population. Individuals in each 
population differ from each other by connected terminal.  

The arrangement of the population and individual coding is shown on Figure 6. 

0

P1k

P1max

...

...

...

Pik

0

...

Pimax

...

...

...

...

...

...

...

...

...

...

Pnk

0

...

Pnmax

...

Individual on i-th terminal

Power of DG

 
Figure 6: Arrangement of population and individual coding 

For the purpose of future research, the task of developing a method that could utilize each 
terminal as a population, where individuals of that population are represented with different 
DG power, remains to be completed. The proposed method is represented by the algorithm 
shown on Figure 7; it uses GA and ANN to find the best solution. 
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specific requirements for the purpose of this paper, operation scenarios are divided by the 
power of implemented DG and by the number of connected terminals. The arrangement of 
operation scenarios in the number of the population can be determined in several ways. The 
authors of this paper used DG power as a difference from each population. Individuals in each 
population differ from each other by connected terminal.  

The arrangement of the population and individual coding is shown on Figure 6. 
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Figure 6: Arrangement of population and individual coding 

For the purpose of future research, the task of developing a method that could utilize each 
terminal as a population, where individuals of that population are represented with different 
DG power, remains to be completed. The proposed method is represented by the algorithm 
shown on Figure 7; it uses GA and ANN to find the best solution. 
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model, the Stamford generator with nominal power of 1350kW, 1500 min-1 is chosen, as a part 
of a GE Gas Engine solution. 

 

6.4 Performance evaluation and results 

Resulting simulations and all implemented calculations designed in the proposed algorithm can 
be represented with surface diagram shown in Figure 9.  
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Figure 9: Surface diagram of scenarios analysed by GA 

The surface diagram of results obtained via GA clearly indicates the global minimum of the 
values set. The dark area represents the set of optimal solutions according to the optimization 
formulation defined earlier in this paper. The power of DG from 1100kW to 1250kW causes the 
lowest level of total active power losses in the analysed system and the best result of DG 
placement and power selection. This indicates the result with the lowest system losses, 1150kW 
DG on Terminal 8 located in the middle of the distribution feeder, on the fifth set of low voltage 
terminals from 10 sets. A GE Gas Engine with Stamford generator is entirely capable of 
providing such a power level. Total active power losses before installing DG in the distribution 
system were 468kW; after implementing the DG on designated terminal, total system losses 
were 274kW, or 41.4% lower.  

The proposed solution provided by the GA and ANN method is evaluated with DIgSILENT 
PowerFactory software in order to check the accuracy of results. In accordance with these 
requirements, the generator is modelled in DIgSILENT PowerFactory on Terminal 8, with 
1150kW installed power. Power flow calculation is performed for that operation scenario, and a 
significant improvement in active power losses reduction and regulation of voltage values on 
each terminal are observed and confirmed.  

The voltage values in the modelled network have been improved significantly; the lowest 
voltage level for this operation scenario was 0.95 p.u, (Figure 10), but before DG 
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6 THE METHOD APPLICATION IN DISTRIBUTION SYSTEM 

6.1 System description 

Figure 8 shows a 48-terminal system used for the purpose of modelling and testing of proposed 
methods. The network has the possibility of being doubly-fed, but the real operation conditions 
are usually two single-fed feeders. For the purpose of this paper, the worst case operation 
scenario is provided: a doubly-fed, fully-loaded distribution network. The constraints given in 
the previous chapter are fully satisfied in power flow calculation by DIgSILENT PowerFactory for 
every level of DG power. 
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Figure 8: Single line diagram of the 48-terminal distribution system considered 

 

6.2 Load model 

The total installed peak power demand in the system is 2.59MVA with an average power factor 
of 0.9. The conditions considered by the research of this paper are peak loaded network with 
load diversity factor of one. The simulation and performance evaluation of the proposed 
method has been conducted for time-independent loads and time-independent generation.   

 

6.3 Distributed generation 

There are different types of DG, differed by their energy source and time-dependent 
production, [10]. In this paper, DG is modelled as a PQ node, with a power factor of cos φ = 1, 
and power that can vary from 100kW to 1350kW. The selected type of DG is based on a real 
type of generator widely used in distributed production worldwide. For the purpose of this 
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values set. The dark area represents the set of optimal solutions according to the optimization 
formulation defined earlier in this paper. The power of DG from 1100kW to 1250kW causes the 
lowest level of total active power losses in the analysed system and the best result of DG 
placement and power selection. This indicates the result with the lowest system losses, 1150kW 
DG on Terminal 8 located in the middle of the distribution feeder, on the fifth set of low voltage 
terminals from 10 sets. A GE Gas Engine with Stamford generator is entirely capable of 
providing such a power level. Total active power losses before installing DG in the distribution 
system were 468kW; after implementing the DG on designated terminal, total system losses 
were 274kW, or 41.4% lower.  

The proposed solution provided by the GA and ANN method is evaluated with DIgSILENT 
PowerFactory software in order to check the accuracy of results. In accordance with these 
requirements, the generator is modelled in DIgSILENT PowerFactory on Terminal 8, with 
1150kW installed power. Power flow calculation is performed for that operation scenario, and a 
significant improvement in active power losses reduction and regulation of voltage values on 
each terminal are observed and confirmed.  

The voltage values in the modelled network have been improved significantly; the lowest 
voltage level for this operation scenario was 0.95 p.u, (Figure 10), but before DG 
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6.2 Load model 

The total installed peak power demand in the system is 2.59MVA with an average power factor 
of 0.9. The conditions considered by the research of this paper are peak loaded network with 
load diversity factor of one. The simulation and performance evaluation of the proposed 
method has been conducted for time-independent loads and time-independent generation.   

 

6.3 Distributed generation 

There are different types of DG, differed by their energy source and time-dependent 
production, [10]. In this paper, DG is modelled as a PQ node, with a power factor of cos φ = 1, 
and power that can vary from 100kW to 1350kW. The selected type of DG is based on a real 
type of generator widely used in distributed production worldwide. For the purpose of this 
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Improvements in voltage profiles and active power losses reduction made by the proposed 
method confirm the usefulness of the combination of ANN and GA for radial and networked 
distribution systems. 

 

References 
[1] S. Biswas, S.K. Goswami, A. Chatterjee: Optimum distributed generation placement with 

voltage sag effect minimization, Energy Conversion and Management, Elsevier, 2012. 
[2] K.S. Swarup, P.S. Subash: Neural network approach to voltage and reactive power control 

in power systems, Intelligent Sensing and Information Processing, International 
conference, 2005,  

[3] S. Sumathi, P. Surekha: Computational Intelligence Paradigm – Theory and applications 
using Matlab®, CRC Press, Taylor & Francis Group, 2010. 

[4] A.A. Abour El-Ela, Sm. M. Allam, M.M. Shatla: Maximal optimal benefits of distributed 
generation using genetic algorithms, Electric Power System Research, vol.80, 2010., 
pp.869–877 

[5] E. Rezenia, S.M. Shahidehpur: Real Power loss minimization using interior point method, 
Electric Power and Energy Systems, vol.23, 2001, pp. 45–46 

[6] K. Byeong-Gi , R. Dae-Seok: Optimal Voltage Regulation Method for Distribution Systems 
with Distributed Generation Systems Using the Artificial Neural Networks, JEET, vol. 8, No 
742, 2013. 

[7] H. Gavin: The Levenberg-Marquardt method for nonlinear least squares curve fitting 
problem, Duke University, 2011. 

[8] DIgSILENT PowerFactory User’s Manual, Vol. I & 2, Edition 1, DIgSILENT GmbH, 2011. 
[9] D. Lukman, T.R. Blackburn: Modified Algorithm Of Load Flow Simulation For Loss 

Minimization In Power Systems, IEEE/PES, Sydney, 2003. 
[10] Y. Alinejad-Beromi, M. Sedighizadeh, M.R. Bayat, M.E. Khodayar: Using genetic algorithm 

for distributed generation allocation to reduce losses and improve voltage profile, 
International Universities Power Engineering Conference - UPEC. 2007. pp. 954–959 

[11] J.M. Abdallah, A.R. Al-Zyoud: Voltage and Reactive Power Control Simulations Using 
Neural Networks, IJSSST, vol.10, No.4, pp. 64–72 

[12] M. Vardarajan, K.S. Swarup: Differential evolutionary algorithm for optimal reactive power 
dispatch, Electric Power and Energy Systems, vol. 30, 2008, pp. 435–441 

[13] S.M. Moghaddas-Tafreshi, H.A. Zamani, S.M. Hakimi: Optimal sizing of distributed 
resources in micro grid with loss of power supply probability technology by using breeding 
particle swarm optimization, J. Renewable Sustainable Energy 3, 2011 

[14] A.Q.H. Badar, B.S. Umre, A.S. Junghare: Reactive power control using dynamic Particle 
Swarm Optimization  for real power loss, Electric Power and Energy Systems, vol.41, 2012., 
pp. 133–136. 

 Marko Vukobratović, Predrag Marić, Željko Hederić JET Vol. 6 (2013) 

  Issue 4 

---------- 

implementation the lowest voltage level was 0.88 p.u. Regardless of the DG implementation 
terminal, the voltage level never exceeded upper technical limit of 1.1 p.u. 
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Figure 10: Voltage values on terminals with 1150kW DG on Terminal 8 

DIgSILENT PowerFactory calculated the total active power losses of 273kW, which is remarkably 
close to the results for the same scenario estimated by ANN. Since the improvement of voltage 
value and the active power losses control is achieved, the proposed method of combining GA 
and ANN could provide a real-time solution for the economical operation of distribution 
systems.  

 

7 CONCLUSIONS 

Distributed Generation (DG) is increasingly common in electrical distribution networks, so its 
influence needs to be properly evaluated and rated in order to achieve the greatest benefit for 
DG itself as well as for the power system. A new optimization method based on Artificial Neural 
Networks (ANN) and Genetic Algorithms (GA) is proposed in this paper, and how the method 
could be used for the determination of size and location of DG is successfully demonstrated. 
This method is based on formulation by objective function and technical constraints. The rapidly 
obtained and correct solution for solving the given formulation is provided by using ANN, since 
they have the ability to solve non-linear mathematical problems extremely quickly and 
precisely. Back-propagation ANN is designed and trained via power-flow calculation results 
provided via DIgSILENT PowerFactory software for estimating the active power losses in the 
distribution system. In addition, GA is used for finding the best optimal solution, i.e. the one 
with the lowest active power losses, based on the best fitness performance of each individual in 
each population. Populations differ from each other by the power of DG, and individuals differ 
from each other by the terminal to which they are connected. 
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Improvements in voltage profiles and active power losses reduction made by the proposed 
method confirm the usefulness of the combination of ANN and GA for radial and networked 
distribution systems. 
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terminal, the voltage level never exceeded upper technical limit of 1.1 p.u. 
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Figure 10: Voltage values on terminals with 1150kW DG on Terminal 8 

DIgSILENT PowerFactory calculated the total active power losses of 273kW, which is remarkably 
close to the results for the same scenario estimated by ANN. Since the improvement of voltage 
value and the active power losses control is achieved, the proposed method of combining GA 
and ANN could provide a real-time solution for the economical operation of distribution 
systems.  

 

7 CONCLUSIONS 

Distributed Generation (DG) is increasingly common in electrical distribution networks, so its 
influence needs to be properly evaluated and rated in order to achieve the greatest benefit for 
DG itself as well as for the power system. A new optimization method based on Artificial Neural 
Networks (ANN) and Genetic Algorithms (GA) is proposed in this paper, and how the method 
could be used for the determination of size and location of DG is successfully demonstrated. 
This method is based on formulation by objective function and technical constraints. The rapidly 
obtained and correct solution for solving the given formulation is provided by using ANN, since 
they have the ability to solve non-linear mathematical problems extremely quickly and 
precisely. Back-propagation ANN is designed and trained via power-flow calculation results 
provided via DIgSILENT PowerFactory software for estimating the active power losses in the 
distribution system. In addition, GA is used for finding the best optimal solution, i.e. the one 
with the lowest active power losses, based on the best fitness performance of each individual in 
each population. Populations differ from each other by the power of DG, and individuals differ 
from each other by the terminal to which they are connected. 



30 JET

 

JET Volume 6 (2013), p.p. 31 - 46 

Issue 4, November 2013 

http://www.fe.um.si/sl/jet 

 

NUMERICAL ANALYSIS OF FLOW OVER A
WIND TURBINE AIRFOIL

NUMERIČNA ANALIZA TOKA OKOLI 
LOPATIČNEGA PROFILA VETRNE TURBINE

Janez Bitenc, Brane Širok, Ignacijo Biluš 

Keywords: wind turbine, numerical simulation, airfoil 

Abstract 
This work presents a comparison of flow conditions over a NACA 4421 two-dimensional airfoil 
with a closed trailing edge (normal airfoil shape) and a new blade shape with an open trailing 
edge. The numerical analysis was made using software for an approximate solution of a system 
of conservation law equations. The results yield a comparison of numerically obtained values of 
the lift coefficient, as well as diagrams of pressure coefficients and velocity vectors on the 
airfoil, at different angles of attack. The validity of the method of computation was confirmed 
with a comparison of computed lift coefficient values for the closed trailing edge profile, with 
experimentally acquired values from literature. It is reasonable to continue the research of flow 
conditions with the use of the open trailing edge airfoil. 

Povzetek 
Predstavljena je primerjava tokovnih razmer pri obtekanju zraka okoli dvodimenzionalnega 
profila NACA 4421 z zaprtim izstopnim robom (običajna oblika profila) in novo obliko lopatice z 
odprtim izstopnim robom. Numerična simulacija je bila narejena s programskim paketom za 
aproksimativno reševanje sistema parcialnih enačb, ki predstavljajo ohranitvene zakone. 
Rezultati podajajo primerjavo izračunanih vrednosti vzgonskih koeficientov, ter diagrame tlačnih 
koeficientov in vektorjev hitrosti na profilu, za različne natočne kote. Pravilnost načina izračuna 
je bila potrjena s primerjavo izračunanih vrednosti koeficientov vzgona za primer zaprtega 
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