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Algorithms for Drawing Polyhedra from 3-Connected Planar Graphs
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Two algorithms for producing polyhedral representations for 3-connected planar graphs are discussed in
the paper. One of them uses Tutte’s drawing algorithm [11] to produce a 2D drawing. Then the drawing is
lifted into 3D space obtaining a polyhedral embedding. The other is a simple algorithm by G. Hart [4] for
drawing canonical polyhedral representations. Some alternative aspects (physical model, Markov chain
model) in algorithms for obtaining Tutte’s drawings are presented and proved.

Povzetek: članek opisuje dva pristopa za grafičen prikaz planarnih grafov.

1 Introduction

A convex polyhedron can be viewed as a convex hull of its
vertices and referred as P = (p1, . . . ,pn), pi ∈ R3, or as
an intersection of the half-spaces defined by the support-
ing planes of the faces using the side of R3 that contains
the polyhedron. These are two dual definitions. For more
detailed and generalized definitions of polyhedra see [12].

Any graph mentioned in the article is 3-connected pla-
nar. Vertices and edges of a polyhedron P define a skele-
ton graph G(P ) in an obvious way. The skeleton graph is
obviously planar. By Balinski’s theorem [12] this graph is
3-connected. In 1922 Steinitz proved that 3-connected pla-
nar graphs are exactly the skeletons of the convex 3D poly-
hedra. According to Whitney [2], every 3-connected planar
graph has a unique embedding in the plane and the faces of
the embedding are exactly the non-separating induced cy-
cles. These faces are exactly the faces of any polyhedron
with the same skeleton graph.

Given a 3-connected graph G one would like to have an
algorithm to obtain a polyhedron with its skeleton G. We
will call such a representation a polyhedral representation.
A graph is given as a combinatorial structure and our algo-
rithms return 3D coordinates of the vertices of the polyhe-
dron. There are infinitely many polyhedral representations
for a given graph. According to Koebe [5], for each polyhe-
dron there is the canonical form, which is determined up to
a rotation in 3D space. The canonical representation is es-
pecially “nice” because it possesses maximal possible geo-
metric symmetry. Each edge of such a polyhedron touches
the unit sphere in exactly one point and the center of the
gravity of these touching points is the origin. If a polyhe-
dron P is in canonical form, then the polar polyhedron is
also in canonical form and the dual edges have the same
touching points with the unit sphere. For a given polyhe-

dron P containing the origin of R3 a polar polyhedron P ∗

is well defined and unique:

P ∗ = {y ∈ R3 | 〈x,y〉 ≤ 1 for all x ∈ P}.

A skeleton graph of P ∗, G∗ := G(P ∗) is exactly the dual
graph of the skeleton graph G := G(P ).

We will present some methods together with references
for more detailed information. 1

2 Tutte’s algorithm
The proofs and detailed descriptions can be found in [10]
and [11].

In 1963 Tutte [11] invented an interesting rubber-band
method for embedding a 3-connected planar graph G into
the plane. By this method one face C (on vertices k +
1, . . . , n, referred as the outer cycle) of a graph is em-
bedded into the plane as a fixed strictly convex polygon,
while the other adjacent vertices are connected with rubber-
bands. On the edge ij, where i, j not both in C, there is a
strictly positive stretching coefficient ωij . Later we will
also assign the weights ωij to edges ij ∈ C, but we will
not use them in the Tutte’s method. Let pi represent a po-
sition of the vertex i in the plane. The positions pi := p0

i ,
i = k+1, . . . , n are fixed. The other positions are to be cal-
culated and lie somewhere inside the polygon. The system
consisting of a rigid polygon as a frame and rubber-bands is
in equilibrium if the following system of equations holds:

∑

ij∈E(G)

ωij(pj − pi) = 0, i ∈ V (G)− V (C), (1)

pi = p0
i , i ∈ V (C).
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Tutte proved that this system has a unique solution which
gives a set of positions that induces a straight line embed-
ding of G into the plane with convex faces. Instead of solv-
ing the system of the linear equations directly, two alterna-
tive approaches can be used.

In [8] the following algorithm called Schlegel diagram
was introduced:

ALGORITHM 1 Fix the positions of the vertices of the
outer cycle C on a convex polygon in R2. Assign to the
other vertices random positions inside the polygon. For
those vertices repeat the following steps:

– for each vertex i calculate the resulting force Fi of all
adjacent rubber-bands;

– move each vertex i for vector αFi, where α > 0 is a
fixed real number;

until the displacements of all vertices are sufficently small
(depends on the prescribed precision of the drawing).

We will determine the values of α which guarantee the
convergence of Algorithm 1.

A weighted Laplacian matrix Qω for a graph G on n
vertices and weights ω = (ωij)ij∈E(G) is a n × n ma-
trix with (Qω)i,j = (Qω)j,i = −ωij when ij ∈ E(G),
(Qω)i,j = 0, when i 6= j, and ij /∈ E(G) and (Qω)i,i =
−∑n

j=1,j 6=i(Qω)i,j . Let K = {1, . . . , k} and Qω,K be a
matrix that consists of the first k rows of Qω . Let

A =
( −Qω,K

0k,n−k −In−k

)
, (2)

where 0k,n−k represents a k × (n − k) zero matrix and
I` a ` × ` identity matrix. Let x = (x1, . . . , xn) and
y = (y1, . . . , yn), where pi = (xi, yi). Let pi := p0

i

be fixed values for i = k + 1, . . . , n and pi be the pairs
of variables for i = 1, . . . , k. Let also b = (b1, . . . , bn),
c = (c1, . . . , cn) and (bi, ci) = (0, 0) for i = 1, . . . , k
and (bi, ci) = −p0

i for i = k + 1, . . . , n. The system of
equations (1) can be written as:

Ax = b, Ay = c. (3)

The iteration procedure in the Algorithm 1 can be rewritten
as:

xn+1 = xn + α(Axn − b), (4)

yn+1 = yn + α(Ayn − c).

Let us determine the bounds for α that ensure that the algo-
rithm converges. It is sufficient to do this for the iteration
for x. Let us rewrite the iteration (4):

xn+1 = (αA + I)xn − αb. (5)

Let ρ(M) denote a spectral radius of a matrix M : It is well
known that an iteration of this type converges iff ρ(αA +
I) < 1, see [1]. We will show that for a sufficiently small
α > 0 it follows ρ(αA + I) < 1.

If σ(A) is the spectrum of the matrix A, then (with slight
abuse of notation) σ(αA+I) = 1+σ(αA) = 1+α ·σ(A).
Proving that σ(A) is strictly negative would yield the ex-
istence of the appropriate α, such that ρ(αA + I) < 1.
The matrix A is block diagonal and upper triangular with
two diagonal blocks−Qω,(K,K) and−Ik, where Qω,(K,K)

is a matrix obtained from Qω taking the rows and the
columns in the set K in induced order. It follows that
σ(A) = σ(−Qω,(K,K)) ∪ σ(−Ik). It suffices to show that
Qω,(K,K) is positive definite.

The matrix Qω,(K,K) is a principal sub-matrix of Qω.
We will prove that σ(Qω) ≥ 0 and that Qω,(K,K) is non-
singular. Cauchy’s interlacing theorem [1] implies that
Qω,(K,K) is also positive definite.

Using the Gershgorin’s theorem (see [1]) it is easy to see
that the eigenvalues of Laplacian matrix Qω are contained
in [0, 2 · maxi=1,...,n{(Qω)i,i}], hence σ(Qω) ≥ 0. By
Whitney’s theorem H = G − C is connected. Let Q′ :=
Qω(H) be a weighted Laplacian matrix of H and Q :=
Qω,(K,K). Then: Q = Q′ + ∆, where ∆ is a nonnegative
diagonal matrix. Since G is connected, ∆ 6= 0. For an
arbitrary vector w ∈ Rk:

wT Qw = wT Q′w + wT ∆w.

Since eigenvalues of Q′ are by Gershgorin’s theorem con-
tained in the interval [0, 2 ·maxi=1,...,k {Q′i,i}], it follows
that wT Q′w ≥ 0. Since H is connected, the multiplicity
of the smallest eigenvalue is 1. But the smallest eigenvalue
is 0 and its eigenvector is the all ones vector 1. Therefore
wT Q′w = 0 iff w = c1 for some c ∈ R. Since ∆ is a
nonnegative diagonal matrix, it follows that wT ∆w ≥ 0.
But for w = 1, wT ∆w = c21T ∆1 > 0, if c 6= 0. So
wT Qw > 0 for each w 6= 0 and Q is positive definite.
The following theorem holds:

THEOREM 1 Let G be a 3-connected planar graph. If:

0 < α <
2

max
{

1, 2 ·maxi=1,...,k

{∑
ij∈E(G) ωij

}} ,

then Algorithm 1 converges to the solution of (1).

The other alternative approach comes from probability.
Let us define a Markov chain X0, X1, . . . with transition
matrix P using the graph G and the weights ω:

Pij =





0 ij /∈ E(G),
ωijP

ik∈E(G) ωik
ij ∈ E(G)− E(C),

1 ij ∈ E(C).

(6)

After rewriting the system (1) we get:

pi =

∑
ij∈E(G) ωij · pj∑

ij∈E(G) ωij
, i ∈ V (G)− V (C), (7)

pi = p0
i , i ∈ V (C).
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or

Px = x,

Py = y, (8)

pi = p0
i = (x0

i , y
0
i ), i ∈ V (C).

The vertices of the graph G are the states of the Markov
chain. Let A ⊂ V (G). The values:

hA
i = Pr(Xr ∈ A for some r ≥ 0 | X0 = i), (9)

are hitting probabilities for the set A when starting in the
state i. We will write hj

i for h
{j}
i . The following theorem

holds (see [7]):

THEOREM 2 A vector hA = (hA
1 , . . . , hA

n ) is a solution of
a system:

1. hA
i = 1, for i ∈ A,

2.
∑n

j=1 Pijh
A
j = hA

i , for i /∈ A,

3. 0 ≤ hA
i ≤ 1 for all i.

If h̃A is any other solution then hA
i ≤ h̃A

i (inequality on
components). Therefore hA is a minimal solution.

Let hj = (hj
i )

n
i=1 be the vector of hitting probabilities.

By Theorem 2, Phj = hj . Let J = [hk+1, . . . , hn] be a
matrix with vectors hj as columns. Hence PJ = J .

Let x0 = (x0
k+1, . . . , x

0
n) and y0 = (y0

k+1, . . . , y
0
n) be

the coordinates of vertices on the outer polygon. Then:

PJx0 = Jx0, (10)

PJy0 = Jy0,

and

(Jx0)j = x0
j , (11)

(Jy0)j = y0
j , j = k + 1, . . . , n.

Thus pi = ((Jx0)i, (Jy0)i) is a solution of the system (7)
and it is unique by Tutte.

The following theorem holds:

THEOREM 3 Let G = ({1, . . . , n}, E(G)) be a 3-connec-
ted planar graph, C = (k + 1, . . . , n) be one of its faces,
and p0

i , i = k + 1, . . . , n, be the fixed coordinates of the
vertices of C forming a convex polygon in the cyclical or-
der of C. Let P be a transition matrix for the Markov chain
(Xr) and let hj

i be the hitting probabilities for entering
into vertices j = k + 1, . . . , n, starting from the vertex
i ∈ V (G). Then the Tutte’s drawing can be obtained in the
following way:

pi =
n∑

j=k+1

hj
ip

0
j , i ∈ V (G)− V (C),

pi = p0
i , i ∈ V (C).

The theorem was originally conjectured by T. W. Tucker.
To obtain the hitting probabilities hj

i one can make suffi-
cently large number of the following experiments: start in i
and make a series of steps until a state in C is reached. The
frequency of the walks ending in j is an approximation for
hj

i .
It can be easily verified that

lim
n→∞

(Pn)ij = hj
i , i /∈ C, j ∈ C.

Hence the hitting probabilities can be obtained by calculat-
ing P r, r large.

3 Lifting of a Tutte’s Drawing
A detailed procedure with proofs can be found in [10].

A weighted embedded 3-connected planar graph G with
weights ω and positions p1, . . . ,pn of the vertices is in
equilibrium if:

∑

ij∈E(G)

ωij(pj − pi) = 0, for all i ∈ V (G). (12)

The corresponding weight ω is called an equilibrium
weight. Maxwell-Cremona’s theorem states that if for an
embedded 3-connected graph with convex faces there ex-
ists an equilibrium weight with strictly negative weights on
the edges of the outer face and strictly positive weights on
the inner edges, then the drawing can be lifted to a polyhe-
dron. A Tutte’s drawing with the corresponding weights on
the edges that are not in the outer face has all the vertices
not on the outer face in an equilibrium. To use a Maxwell-
Cremona’s theorem there should be negative equilibrium
weights on the edges of the outer face. A simplified ver-
sion of the theorem will be used to solve that problem.

PROPOSITION 4 Let G be a 3-connected planar graph em-
bedded with one outer face f1 on a convex polygon with
all other faces (f2, . . . , fm) as convex polygons inside the
outer polygon. Let G∗ be the geometric dual of G. Let
e = ij ∈ E(G) and let e∗ = fg be the corresponding dual
edge, such that if one traverses from i to j in the embedding
of G, the face f is on the left side. Let (i, j, f, g) denote an
oriented patch and let qf1 = (0, 0, 0). Then for 2 ≤ k ≤ m
the unique assignments qfk

exist, such that:

qf − qg = ωij(pi × pj),

where ω is an equilibrium weight and × denotes a cross
product.

For the proof see [10].
Using vectors q one can define a function on the interior

of the outer polygon:

z(x) = 〈x,qfi〉, for x ∈ fi ⊂ R2. (13)

It can be proved that the function z(x) is linear, continuous,
convex, and the image of each face lies on some plane. It
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can be seen that if we have a Tutte’s drawing with a trian-
gle as the outer face, then using (12) on the Tutte’s draw-
ing, one can calculate the remaining negative weights on
the edges of the triangle. The surface defined by the graph
of the function z(x) together with a patch in the place of
the triangle determines a hull of the polyhedral representa-
tion of G. Using the fact that if G is 3-connected planar
then either G or G∗ has a triangle as a face (see [6]). This
implies the following algorithm:

ALGORITHM 2 1. Determine the faces of G (some pla-
narity algorithm).

2. If one of the faces is a triangle, use G otherwise use
G∗.

3. Draw a Tutte’s drawing.

4. From the Tutte’s drawing and using Proposition 4 de-
termine vectors q.

5. Determine the vertices of the polyhedron using the
function z(x).

6. If G was used, we have a polyhedral embedding. Oth-
erwise move the polyhedron so that the center of the
gravity of the vertices lies in the origin. Calculate the
polar polyhedron.

Figure 1: Dodecahedron and Fullerene C60 drawn by
Tutte’s method.

4 Canonical polyhedra
To produce the canonical polyhedral representation one can
use methods for determining primal-dual circle packing
(PDCP) of 3-connected planar graph. Having PDCP one
can easily obtain the canonical polyhedral representation
using the inverse of the stereographic projection on the unit
sphere. One of the algorithms is due to Mohar [6] (circle
packing in the plane or on the sphere). The other, which
works in 3D and on more or less small graphs, is due to
G. Hart [4]. We present some slight improvements for the
latter algorithm. The Hart’s algorithm reads:

ALGORITHM 3 1. Start with a “good approximation”
of a polyhedron that has edges as near as possible to
the unit sphere. For instance, get the representation

from the Algorithm 2, move the center of gravity into
the origin, and project vertices from the origin to the
unit sphere.

2. Repeat the following procedure until the positions of
the vertices are precise enough:

(a) for each edge e calculate the point pe, which is
the closest to the origin. If the edge is not at the
distance 1 to the origin, move the endpoints of e
for a vector α(1− ‖pe‖)pe, where 0 < α < 1.

(b) for each face calculate the approximate plane of
the vertices on the face. If some vertex v is at the
distance d(v) from the plane, move v towards the
plane in the direction of the normal for a magni-
tude βd(v), 0 < β < 1.

Algorithm 3 works well on small graphs. It seems to work
well on cubic graphs and perhaps on graphs with lower de-
grees of the vertices, but the convergence might be poor,
especially on the larger graphs. It behaves very poorly
(does not even converge) if degrees are rather high (≥ 4).
More or less we tested the performance on cubic graphs. If
the cubic graph is large the convergence is very poor. To
improve the convergence on cubic graphs we first use Al-
gorithm 3 for a few iterations. Then at each iteration we
calculate the vertices of the approximate polar (from ap-
proximate faces) and the dual edges. Then we check if the
current dual edges are perpendicular to the original edges.
If not, the vertices are moved in a manner of rotation for
some small magnitude that depends on the difference be-
tween the current angle and π/2. This brings a small im-
provement to the convergence of the algorithm.

Both methods significantly depend on α, β and similar
parameters in the improved algorithm. Unfortunately we
were not able to prove the convergence for any set of the
parameters.

Figure 2: A dodecahedron obtained by lifting Tutte’s draw-
ing of its dual graph (left) and a dodecahedron in the canon-
ical form (right).
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