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Abstract

A facial parity edge coloring of a 2-edge-connected plane graph is such an edge
coloring in which no two face-adjacent edges (consecutive edges of a facial walk of some
face) receive the same color, in addition, for each face f and each color c, either no edge
or an odd number of edges incident with f is colored with c. It is known that any 2-edge-
connected plane graph has a facial parity edge coloring with at most 92 colors. In this paper
we prove that any 2-edge-connected outerplane graph has a facial parity edge coloring with
at most 15 colors. If a 2-edge-connected outerplane graph does not contain any inner edge,
then 10 colors are sufficient. Moreover, this bound is tight.
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1 Introduction
The facial parity edge coloring concept was introduced in [4]. The motivation has come
from the papers of Bunde et al. [1, 2]. They introduced parity edge colorings of graphs. A
parity walk in an edge coloring of a simple graph is a walk along which each color is used
an even number of times. Let p(G) be the minimum number of colors in an edge coloring
of G having no parity path (parity edge coloring). Let p̂(G) be the minimum number of
colors in an edge coloring of G in which every parity walk is closed (strong parity edge
coloring). Clearly, every parity edge coloring is a proper edge coloring. Although there
are graphs G with p̂(G) > p(G) [1], it remains unknown how large p̂(G) can be when
p(G) = k. In [1] it is mentioned that computing p(G) or p̂(G) is NP-hard even when G is
a tree.

The facial parity edge coloring can be considered as a relaxation of the parity edge
coloring. We focus on facial cycles of plane graphs. This coloring has to satisfy the
following two conditions:
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1. face-adjacent edges receive different colors,
2. for every color c and every face f the total number of occurrences of edges colored

with c on a facial walk of f is odd or zero.
The authors of [4] proved that every 2-edge-connected plane graph has a facial parity

edge coloring with at most 92 colors.
In this paper we substantially improve this bound for the class of 2-edge-connected

outerplane graphs.
Note that the vertex version of this problem was investigated in [5]. The authors proved

that every 2-connected plane graph admits a parity vertex coloring using at most 118 colors.
Kaiser et al. [8] improved this bound to 97. Czap [3] proved that any 2-connected outerplane
graph has such a coloring with at most 12 colors. The generalization of the parity coloring
for graphs and set systems can be found in [6].

2 Notation
Let us introduce the notation used in this paper. A graph which can be embedded in the
plane is called planar graph; a fixed embedding of a planar graph is called plane graph.
Outerplane graphs are plane graphs such that every vertex lies on the outer face.

A bridge is an edge whose removal increases the number of components. A graph
which contains no bridge is said to be bridgeless or 2-edge-connected. In this paper we
consider connected bridgeless plane graphs, multiple edges and loops are allowed.

Given a graph G and one of its edges e = uv (the vertices u and v do not have to be
different), the contraction of e consists of replacing u and v by a new vertex adjacent to all
the former neighbors of u and v, and removing the loop corresponding to the edge e. (We
keep multiple edges if they arise.)

Two (distinct) edges are face-adjacent if they are consecutive edges of a facial walk of
some face f .

A k-edge coloring of a graph G = (V,E) is a mapping ϕ : E(G) → {1, . . . , k}. We
say that an edge coloring of a plane graphG is facially proper if no two face-adjacent edges
of G receive the same color. The facial parity edge coloring of a 2-edge-connected plane
graph is a facially proper edge coloring such that for each face f and each color c, either
no edge or an odd number of edges incident with f is colored with c.

Question 2.1. What is the minimum number of colors χ′p(G) such that a 2-edge-connected
plane graph G has a facial parity edge coloring with at most χ′p(G) colors?

3 Results
Lemma 3.1. Let Cn be a cycle on n edges, n ≥ 1. Then χ′p(Cn) ≤ 5.

Proof. If n = 1, then we use one color. Let n = 4k + z, where k is a non-negative integer
and z ∈ {2, 3, 4, 5}. We repeat k times the pattern 1, 2, 1, 2 and then use colors 1, 2, . . . , z.
The colors 1 and 2 are thus used 2k + 1 times, the remaining three colors are used at most
once.

An edge of a plane graph not incident with the outer face is called inner edge.

Theorem 3.2. LetG be a 2-edge-connected outerplane graph with no inner edge (bridgeless
cactus graph). Then χ′p(G) ≤ 10. Moreover, this bound is tight.
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Proof. First we prove that the edges of G can be colored with at most 5 colors, say
1, 2, 3, 4, 5, in such a way that for every inner face f and every color c ∈ {1, 2, 3, 4, 5},
either no edge or an odd number of edges incident with f is colored with c, in addition,
face-adjacent edges receive different colors.

The proof is by induction on the number of inner faces. If G has one inner face, then
the statement follows from Lemma 3.1. Let G have k inner faces f1, . . . , fk and assume
that the face fk is such a face of G that the corresponding vertex in a block graph of G is a
leaf. Let H be a subgraph of G consisting of faces f1, . . . , fk−1. The graph H has fewer
inner faces than G, hence it has a required coloring. It is easy to extend the coloring of H
to a coloring of G. Assume that the boundary of fk is a cycle C. Clearly, C and H have
exactly one vertex v in common. There are at most two forbidden colors for the edges of
C incident with v. We have five colors, hence there is such a facial parity edge coloring of
the cycle C that no two face-adjacent edges incident with v receive the same color in G.

In the next step we recolor some edges. Assume that a color i ∈ {1, 2, 3, 4, 5} appears
an even number of times in G. Let f be an arbitrary inner face which is incident with an
edge of color i. We recolor all the edges of color i incident with f with a new color i+ 5.
Now the total number of occurrences of edges colored with i and i+ 5 is odd in G.

This recoloring uses at most 10 colors.
To see that the upper bound is tight it is sufficient to consider the graph in Figure 1.

Figure 1: An example of a graph with no facial parity edge coloring using less than 10
colors.

Corollary 3.3. LetG be a bridgeless cactus graph with noC5. Thenχ′p(G) ≤ 8. Moreover,
this bound is tight.

Proof. First we show that among all cycles only the cycle on five edges requires 5 colors
for a facial parity edge coloring. Let n = 4k + z, where k is a non-negative integer
and z ∈ {2, 3, 4, 5}. If z 6= 5, then χ′p(Cn) ≤ 4 (see the proof of Lemma 3.1). If
n = 4k + 5, k ≥ 1, then χ′p(Cn) = 3 (we repeat the pattern 1, 2, 3 three times and then
repeat k − 1 times the pattern 1, 2, 1, 2).

Now we can proceed as in the proof of Theorem 3.2.

Corollary 3.4. Let G be a bridgeless cactus graph with no C5 and no C4k, k ≥ 1. Then
χ′p(G) ≤ 6. Moreover, this bound is tight.

The dual G∗ of a plane graph G can be obtained as follows: Corresponding to each
face f of G there is a vertex f∗ of G∗, and corresponding to each edge e of G there is an
edge e∗ of G∗; two vertices f∗ and g∗ are joined by the edge e∗ in G∗ if and only if their
corresponding faces f and g are separated by the edge e in G (an edge separates the faces
incident with it). The weak dual of a plane graph G is the subgraph of the dual graph G∗

whose vertices correspond to the bounded faces of G.
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Lemma 3.5. [7] The weak dual of an outerplane graph is a forest.

We say that an edge coloring of a graph is odd, if each color class induces an odd
subgraph (each vertex has an odd degree).

Lemma 3.6. Let Sn be a star on n edges, n ≥ 1. Then it has a facially proper odd edge
coloring using at most 5 colors.

Proof. We can use the coloring defined in the proof of Lemma 3.1.

Corollary 3.7. Let T be a tree. Then it has a facially proper odd edge coloring using at
most 5 colors.

Proof. Pick any vertex of T to be the root. We color the edges of T starting from the root
to the leaves. In each step it is sufficient to find a facially proper odd edge coloring of a star
with (at most) one precolored edge.

Corollary 3.8. Let F be a forest. Then it has a facially proper odd edge coloring using at
most 5 colors.

Theorem 3.9. Let G be a 2-edge-connected outerplane graph. Then χ′p(G) ≤ 15.

Proof. First we color all the edges on the outer face with yellow color. The other edges let
be green.

We successively contract the green edges and we obtain a graph H . The graph H is
outerplane with no inner edge, hence, from Theorem 3.2 it follows that there exists a facial
parity edge coloring of H with at most 10 colors.

In the following we extend the coloring ofH to a coloring ofG. Let F be the weak dual
of G. Lemma 3.5 implies that F is a forest. By Corollary 3.8, F has a facially proper odd
edge coloring which uses at most 5 colors. This coloring induces a coloring of the green
edges of G in a natural way. The coloring of the yellow edges with at most 10 colors and
the coloring of the green edges with at most 5 colors (these five colors are different than the
previous ten ones) induce a required coloring of G.
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