

Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 5 (2012) 289–293

Facial parity edge coloring of outerplane graphs

Július Czap

Department of Applied Mathematics and Business Informatics, Faculty of Economics, Technical University of Košice, Němcovej 32, 040 01 Košice, Slovakia

Received 6 September 2011, accepted 1 December 2011, published online 28 March 2012

Abstract

A facial parity edge coloring of a 2-edge-connected plane graph is such an edge coloring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same color, in addition, for each face f and each color c, either no edge or an odd number of edges incident with f is colored with c. It is known that any 2-edge-connected plane graph has a facial parity edge coloring with at most 92 colors. In this paper we prove that any 2-edge-connected outerplane graph has a facial parity edge coloring with at most 15 colors. If a 2-edge-connected outerplane graph does not contain any inner edge, then 10 colors are sufficient. Moreover, this bound is tight.

Keywords: Plane graph, facial walk, edge coloring. Math. Subj. Class.: 05C10, 05C15

1 Introduction

The facial parity edge coloring concept was introduced in [4]. The motivation has come from the papers of Bunde et al. [1, 2]. They introduced parity edge colorings of graphs. A *parity walk* in an edge coloring of a simple graph is a walk along which each color is used an even number of times. Let p(G) be the minimum number of colors in an edge coloring of G having no parity path (*parity edge coloring*). Let $\hat{p}(G)$ be the minimum number of colors in an edge coloring of G in which every parity walk is closed (*strong parity edge coloring*). Clearly, every parity edge coloring is a proper edge coloring. Although there are graphs G with $\hat{p}(G) > p(G)$ [1], it remains unknown how large $\hat{p}(G)$ can be when p(G) = k. In [1] it is mentioned that computing p(G) or $\hat{p}(G)$ is NP-hard even when G is a tree.

The facial parity edge coloring can be considered as a relaxation of the parity edge coloring. We focus on facial cycles of plane graphs. This coloring has to satisfy the following two conditions:

E-mail address: julius.czap@tuke.sk (Július Czap)

1. face-adjacent edges receive different colors,

2. for every color c and every face f the total number of occurrences of edges colored with c on a facial walk of f is odd or zero.

The authors of [4] proved that every 2-edge-connected plane graph has a facial parity edge coloring with at most 92 colors.

In this paper we substantially improve this bound for the class of 2-edge-connected outerplane graphs.

Note that the vertex version of this problem was investigated in [5]. The authors proved that every 2-connected plane graph admits a parity vertex coloring using at most 118 colors. Kaiser et al. [8] improved this bound to 97. Czap [3] proved that any 2-connected outerplane graph has such a coloring with at most 12 colors. The generalization of the parity coloring for graphs and set systems can be found in [6].

2 Notation

Let us introduce the notation used in this paper. A graph which can be embedded in the plane is called *planar graph*; a fixed embedding of a planar graph is called *plane graph*. *Outerplane graphs* are plane graphs such that every vertex lies on the outer face.

A *bridge* is an edge whose removal increases the number of components. A graph which contains no bridge is said to be *bridgeless* or 2-edge-connected. In this paper we consider connected bridgeless plane graphs, multiple edges and loops are allowed.

Given a graph G and one of its edges e = uv (the vertices u and v do not have to be different), the *contraction* of e consists of replacing u and v by a new vertex adjacent to all the former neighbors of u and v, and removing the loop corresponding to the edge e. (We keep multiple edges if they arise.)

Two (distinct) edges are *face-adjacent* if they are consecutive edges of a facial walk of some face f.

A *k*-edge coloring of a graph G = (V, E) is a mapping $\varphi : E(G) \to \{1, \ldots, k\}$. We say that an edge coloring of a plane graph G is *facially proper* if no two face-adjacent edges of G receive the same color. The *facial parity edge coloring* of a 2-edge-connected plane graph is a facially proper edge coloring such that for each face f and each color c, either no edge or an odd number of edges incident with f is colored with c.

Question 2.1. What is the minimum number of colors $\chi'_p(G)$ such that a 2-edge-connected plane graph G has a facial parity edge coloring with at most $\chi'_p(G)$ colors?

3 Results

Lemma 3.1. Let C_n be a cycle on n edges, $n \ge 1$. Then $\chi'_p(C_n) \le 5$.

Proof. If n = 1, then we use one color. Let n = 4k + z, where k is a non-negative integer and $z \in \{2, 3, 4, 5\}$. We repeat k times the pattern 1, 2, 1, 2 and then use colors $1, 2, \ldots, z$. The colors 1 and 2 are thus used 2k + 1 times, the remaining three colors are used at most once.

An edge of a plane graph not incident with the outer face is called *inner edge*.

Theorem 3.2. Let G be a 2-edge-connected outerplane graph with no inner edge (bridgeless cactus graph). Then $\chi'_p(G) \leq 10$. Moreover, this bound is tight.

Proof. First we prove that the edges of G can be colored with at most 5 colors, say 1, 2, 3, 4, 5, in such a way that for every inner face f and every color $c \in \{1, 2, 3, 4, 5\}$, either no edge or an odd number of edges incident with f is colored with c, in addition, face-adjacent edges receive different colors.

The proof is by induction on the number of inner faces. If G has one inner face, then the statement follows from Lemma 3.1. Let G have k inner faces f_1, \ldots, f_k and assume that the face f_k is such a face of G that the corresponding vertex in a block graph of G is a leaf. Let H be a subgraph of G consisting of faces f_1, \ldots, f_{k-1} . The graph H has fewer inner faces than G, hence it has a required coloring. It is easy to extend the coloring of H to a coloring of G. Assume that the boundary of f_k is a cycle C. Clearly, C and H have exactly one vertex v in common. There are at most two forbidden colors for the edges of C incident with v. We have five colors, hence there is such a facial parity edge coloring of the cycle C that no two face-adjacent edges incident with v receive the same color in G.

In the next step we recolor some edges. Assume that a color $i \in \{1, 2, 3, 4, 5\}$ appears an even number of times in G. Let f be an arbitrary inner face which is incident with an edge of color i. We recolor all the edges of color i incident with f with a new color i + 5. Now the total number of occurrences of edges colored with i and i + 5 is odd in G.

This recoloring uses at most 10 colors.

To see that the upper bound is tight it is sufficient to consider the graph in Figure 1. \Box

Figure 1: An example of a graph with no facial parity edge coloring using less than 10 colors.

Corollary 3.3. Let G be a bridgeless cactus graph with no C_5 . Then $\chi'_p(G) \leq 8$. Moreover, this bound is tight.

Proof. First we show that among all cycles only the cycle on five edges requires 5 colors for a facial parity edge coloring. Let n = 4k + z, where k is a non-negative integer and $z \in \{2, 3, 4, 5\}$. If $z \neq 5$, then $\chi'_p(C_n) \leq 4$ (see the proof of Lemma 3.1). If $n = 4k + 5, k \geq 1$, then $\chi'_p(C_n) = 3$ (we repeat the pattern 1, 2, 3 three times and then repeat k - 1 times the pattern 1, 2, 1, 2).

Now we can proceed as in the proof of Theorem 3.2.

Corollary 3.4. Let G be a bridgeless cactus graph with no C_5 and no C_{4k} , $k \ge 1$. Then $\chi'_p(G) \le 6$. Moreover, this bound is tight.

The *dual* G^* of a plane graph G can be obtained as follows: Corresponding to each face f of G there is a vertex f^* of G^* , and corresponding to each edge e of G there is an edge e^* of G^* ; two vertices f^* and g^* are joined by the edge e^* in G^* if and only if their corresponding faces f and g are separated by the edge e in G (an edge separates the faces incident with it). The *weak dual* of a plane graph G is the subgraph of the dual graph G^* whose vertices correspond to the bounded faces of G.

Lemma 3.5. [7] The weak dual of an outerplane graph is a forest.

We say that an edge coloring of a graph is *odd*, if each color class induces an odd subgraph (each vertex has an odd degree).

Lemma 3.6. Let S_n be a star on n edges, $n \ge 1$. Then it has a facially proper odd edge coloring using at most 5 colors.

 \square

Proof. We can use the coloring defined in the proof of Lemma 3.1.

Corollary 3.7. Let T be a tree. Then it has a facially proper odd edge coloring using at most 5 colors.

Proof. Pick any vertex of T to be the root. We color the edges of T starting from the root to the leaves. In each step it is sufficient to find a facially proper odd edge coloring of a star with (at most) one precolored edge.

Corollary 3.8. Let F be a forest. Then it has a facially proper odd edge coloring using at most 5 colors.

Theorem 3.9. Let G be a 2-edge-connected outerplane graph. Then $\chi'_n(G) \leq 15$.

Proof. First we color all the edges on the outer face with yellow color. The other edges let be green.

We successively contract the green edges and we obtain a graph H. The graph H is outerplane with no inner edge, hence, from Theorem 3.2 it follows that there exists a facial parity edge coloring of H with at most 10 colors.

In the following we extend the coloring of H to a coloring of G. Let F be the weak dual of G. Lemma 3.5 implies that F is a forest. By Corollary 3.8, F has a facially proper odd edge coloring which uses at most 5 colors. This coloring induces a coloring of the green edges of G in a natural way. The coloring of the yellow edges with at most 10 colors and the coloring of the green edges with at most 5 colors (these five colors are different than the previous ten ones) induce a required coloring of G.

Acknowledgments

I would like to thank one of the anonymous referees for helpful comments and suggestions.

References

- D. P. Bunde, K. Milans, D. B. West and H. Wu, Parity and strong parity edge-coloring of graphs, *Congressus Numerantium* 187 (2007), 193–213.
- [2] D. P. Bunde, K. Milans, D. B. West and H. Wu, Optimal strong parity edge-coloring of complete graphs, *Combinatorica* 28 (2008), 625–632.
- [3] J. Czap, Parity vertex coloring of outerplane graphs, Discrete Math. 311 (2011), 2570–2573.
- [4] J. Czap, S. Jendrol' and F. Kardoš, Facial parity edge colouring, Ars Math. Contemp. 4 (2011), 255–269.
- [5] J. Czap, S. Jendrol' and M. Voigt, Parity vertex colouring of plane graphs, *Discrete Math.* 311 (2011), 512–520.
- [6] J. Czap and Zs. Tuza, Partitions of graphs and set systems under parity constraints, preprint, 2011.

- [7] H. J. Fleischner, D. P. Geller and F. Harary, Outerplanar graphs and weak duals, *J. Indian Math. Soc.* **38** (1974), 215–219.
- [8] T. Kaiser, O. Rucký, M. Stehlík and R. Škrekovski, Strong parity vertex coloring of plane graphs, *IMFM Preprint series* 49 (2011), #1144.