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Abstract

In this note we investigate the convex hull of those n × n permutation matrices that
correspond to symmetries of a regular n-gon. We give the complete facet description.
As an application, we show that this yields a Gorenstein polytope, and we determine the
Ehrhart h∗-vector.
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1 Introduction
To any finite group G of real n×n permutation matrices we can associate the permutation
polytope P (G) given by the convex hull of these matrices in the vector space Rn×n. A
well-known example of such a polytope is the Birkhoff polytope Bn, which is defined as
the convex hull of all n × n permutation matrices [9, 8]. This polytope appears in various
contexts in mathematics from optimization to statistics to enumerative combinatorics. (See,
e.g., [24, 20, 21, 2, 1].) It is also a famous example of a Gorenstein polytope (see Section
5). Gorenstein polytopes turn up in connection to mirror symmetry in theoretical physics.

Guralnick and Perkinson [15] studied polytopes associated to general subgroups G of
the symmetric group and proved results about their dimension, and about the diameter of
their vertex-edge graph. A systematic exposition of general permutation polytopes is given
in [5]. There, we studied which groups lead to affinely equivalent polytopes, we considered
products of groups and polytopes, classified low-dimensional cases, and we formulated
several open conjectures.

In order to get an intuition about what one can expect in general, it is instructive to
consider some special classes of permutation groups. A seemingly very difficult case is
when G equals the group of even permutation matrices. Just to exhibit exponentially many
facets is already a daunting task, for this see [17]. Even for cyclic G we showed in [6] that
these polytopes have a surprisingly complex and not yet fully understood facet structure.

In [12] Collins and Perkinson studied polytopes given by Frobenius groups. A special
case is the dihedral groupDn for n odd, which was considered in more detail by Steinkamp
[22]. Since Dn is the automorphism group of a regular n-gon, the cases where n is even
and odd are quite different.

The most recent paper on permutation polytopes [11] focused on determining the vol-
umes of permutation polytopes associated to cyclic groups, dihedral groups, and Frobenius
groups. In order to compute the volume of P (Dn), the authors find a Gale dual combina-
torial description, which they use to provide an explicit formula for the Ehrhart polynomial
of P (Dn).

The dihedral group Dn is the automorphism group Aut(Cn) of a cycle Cn, and any
permutation matrix M(σ) of an element σ ∈ Dn commutes with the adjacency matrix A
of Cn. So any point in P (Dn) commutes with A, and

P (Dn) ⊆ {M ∈ Rn×n |M is doubly stochastic and MA = AM} .

Here, a matrix is doubly stochastic if all entries are non-negative and each row and column
sum is 1. Tinhofer [24] asks, more generally, for a classification of those undirected graphs
G where the two sets above are equal, i.e. where the commutation condition MA = AM
already suffices to characterize the elements of P (Aut(G)) among all doubly stochastic
matrices. The Birkhoff-von Neumann theorem is the special case where A is the unit ma-
trix. Tinhofer shows that this also holds for the adjacency matrices of cycles and trees [24,
Theorems 2&3].

In this note, we independently investigate P (Dn) in a more direct and elementary way.
We give a complete list of its facet inequalities (Theorem 3.3, Theorem 4.1). As an ap-
plication, we observe that these lattice polytopes are Gorenstein polytopes, and we get
a nice description of the generating function of their Ehrhart polynomials (Theorem 5.3,
Corollary 5.4).

Acknowledgments: Many results are based upon experiments and computations using
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the package polymake [14] by Gawrilow and Joswig. We would like to thank the referees
for carefully reading and improving the text.

2 Notation and preliminary results
Let Sn be the permutation group on n ≥ 3 elements. Every permutation σ ∈ Sn can be
represented by an n×nmatrixMσ with entries δi,(j)σ . So the entries are in {0, 1} and there
is exactly one 1 in each row and column. Notice that we apply matrices and permutations
from the right. We can view such a matrix as a vector in Rn2

. For a subgroup G of Sn we
define the polytope

PG := conv(Mσ | σ ∈ G) .

This is a 0/1-polytope, so all matrices are in fact vertices of the polytope.
We denote by Dn the subgroup of Sn corresponding to the symmetry group of the

regular n-gon, the dihedral group of order 2n. This group is generated by two elements.
If n is odd, then these may taken to be the rotation ρ of the n-gon by 360/n degrees, and
the reflection τ along a line through one vertex and the midpoint of the opposite edge. If
n is even, then the second generator τ is instead the reflection along a line through two
opposite vertices. Thus ρ is the permutation (1, 2, . . . , n) and τ the reflection (2, n)(3, n−
1) · · · ((n + 1)/2, (n + 3)/2) if n is odd and (2, n)(3, n − 1) · · · (n/2, (n/2) + 2) if n is
even.

The associated permutation polytope is the convex hull of the corresponding matrices,

DPn := conv(Mσ | σ ∈ Dn) .

The dihedral group Dn has 2n elements

ρ0, ρ1, ρ2, . . . , ρn−1, τ, τρ, τρ2, τρ3, . . . , τρn−1.

We label the vertices of DPn by v0, . . . , vn−1, w0, . . . , wn−1 in this order. Let us give a
more convenient way to write these matrices.

Let I be the n-dimensional identity matrix and R be the n × n matrix that has 0’s
everywhere except at the n entries (i, j), where 0 ≤ i, j ≤ n− 1 and j ≡ i+ 1 mod n:

R =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

. . . . . . . . .
...

...
...

. . . . . . . . .
...

...
0 · · · · · · 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0


.

Reading the matrices Mσ row by row, we can identify Mσ with a (row) vector in Rn2

.
For instance, the 2 × 2 identity matrix would be identified with (1 0 0 1). Under this
identification the vertices of DPn are (in the order given above) the rows of the 2n × n2
matrix [

R0 R1 R2 · · · Rn−1

R0 R−1 R−2 · · · R−(n−1)

]
.
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Permuting the coordinates (corresponding to a linear automorphism of Rn2

) we may write
the vertices in the form

V =

[
I I I · · · I
I R−2 R−4 · · · R−2(n−1)

]
. (2.1)

Clearly, the first 2n coordinates of the vertices linearly determine the remaining coordi-
nates. So we can project onto R2n without changing the combinatorics of the polytope.
Hence, we observe that the dimension of DPn is at most 2n.

3 The situation for odd n

In this section we completely describe DPn for n odd. As it will turn out, it is useful to
introduce a new polytope that will serve as a basic building block for both situations of
even n and odd n.

Definition 3.1. LetQn be the polytope defined as the convex hull of the rows of the 2n×n2
matrix

W :=

[
I I I . . . I
I R1 R2 . . . Rn−1

]
. (3.1)

While Qn differs from DPn for even n, for odd n the R2k for 0 ≤ k ≤ n − 1 are a
permutation of the Rk for 0 ≤ k ≤ n− 1. So we deduce from (2.1) that, for n odd, Qn is
up to a permutation of coordinates just the polytope DPn.

Proposition 3.2. For odd n, the polytopes DPn and Qn are affinely isomorphic.

The following theorem examines the structure of Qn for arbitrary n. For n odd, this
result is a special case of Theorem 4.4 in [12].

Let us fix some convenient notation. We denote by ∆r the r-dimensional simplex. We
also use for any two integers s, k, the term [s]k ∈ {0, . . . , k − 1} to denote the remainder
of s upon division by k. The free sum of two polytopes P and P ′ of dimensions d and d′ is
the polytope

P ⊕ P ′ := conv({(p, 0) ∈ Rd+d
′
| p ∈ P} ∪ {(0, p′) ∈ Rd+d

′
| p′ ∈ P ′}).

Theorem 3.3 (Collins&Perkinson [12]). Let n be odd or even. The polytope Qn has di-
mension 2n−2 and is a free sum of two copies of ∆n−1. Taking coordinates x0, . . . , xn2−1
for Rn×n, its affine hull is given by the equations

1 =

(l+1)n−1∑
i=ln

xi (aff)

0 = xkn+[j]n − x(k+1)n+[j]n − x(k+1)n+[j+1]n + x(k+2)n+[j+1]n (Aj,k)

for 0 ≤ l ≤ n− 1, 0 ≤ j ≤ n− 2, 0 ≤ k ≤ n− 3.
An irredundant system of inequalities defining the polytope inside its affine hull is given

by the inequalities

xi ≥ 0

for 0 ≤ i ≤ n2 − 1.
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Proof. All the given equations are satisfied by the vertices of Qn. There are n equations
of type (aff) and n2 − 3n+ 2 equations of type (Aj,k). They are easily seen to be linearly
independent, so the dimension of Qn is at most 2n − 2. On the other hand, deleting any
row of W leaves us with a linearly (and hence affinely) independent set of row vectors.
(Observe that deleting a row leaves us with a column that contains exactly one 1.) Hence,
dim(Qn) = 2n− 2 and the given equations define the affine hull of Qn in Rn2

.
Further, we see that every 2n − 1 of the 2n rows of W span the affine hull of Qn. So

any facet of Qn has 2n− 2 vertices. Since the inequalities xj ≥ 0 are 0 on exactly 2n− 2
of the rows, they all define facets.

In order to prove that Qn is a free sum of simplices we observe that the first n and
the last n vertices define (n − 1)-dimensional simplices sitting in transversal subspaces
(intersecting in the matrix corresponding to the row vector (1/n, . . . , 1/n)). Therefore, the
combinatorial dual of Qn corresponds to the product of ∆n−1 with itself. In particular, Qn
has precisely n2 facets, so the facet description given above is complete.

4 The situation for even n

Recall that the join P ? Q of two polytopes P and Q is the convex hull of P ∪ Q after
embedding P and Q in skew affine subspaces. The dimension of P ? Q equals dim(P ) +
dim(Q) + 1. For instance, the join of two intervals is a tetrahedron.

Theorem 4.1. Let n be even. The polytope DPn is a join of two copies of Qn/2. In
particular, its dimension is 2n− 3.

Combined with Theorem 3.3, this result gives a complete description of the facet in-
equalities and the affine hull equations of DPn for n even.

Proof. Permuting the coordinates, we can transform V (see (2.1)) into[
I I I · · · I I I I · · · I
R0 R2 R4 · · · Rn−2 R0 R2 R4 · · · Rn−2

]
.

Clearly, projecting onto the first n
2

2 coordinates yields an affine isomorphism of DPn onto
the convex hull of the rows of the 2n× n2

2 matrix[
I I I . . . I
R0 R2 R4 . . . Rn−2

]
.

In the representation given by this matrix let us partition the set of 2n vertices (labelled
from 0 to 2n − 1) into two sets: consisting of the n rows with even index and the n rows
with odd index.

1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1

sort rows
 

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

sort columns
 

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

Then we permute the n2

2 coordinates in such a way that in the first set of rows (correspond-
ing to even vertices) all nonzero entries are in the first half (i.e. in the first n

2

4 columns).
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Then all nonzero entries in the second set of rows (corresponding to the odd vertices) will
be in the second half (i.e. in the last n2

4 columns). By a permutation of the coordinates
within the first half we get that the rows of even vertices yield precisely the vertex set of
Qn/2 × {0} (for 0 ∈ Rn2

4 ). In the same way, the coordinates in the second half can be

permuted so that the rows of odd vertices equal the vertices of {0} ×Qn/2 (for 0 ∈ Rn2

4 ).
Since 0 is not in the affine hull of Qn/2, we deduce that DPn is a join of two copies of
Qn/2. Hence, its dimension equals 2 dim(Qn/2) + 1 = 2(n − 2) + 1 = 2n − 3 by
Theorem 3.3.

5 Lattice properties

DPn andQn are lattice polytopes, i.e. their vertices lie in the lattice Zn2

of integral vectors.
It is readily checked that all above affine isomorphisms respect lattice points. In this section,
we will show that these lattice polytopes have especially nice properties which allow us to
completely describe their Ehrhart h∗-vectors.

A d-dimensional lattice polytope P containing 0 in its interior is reflexive, if its polar
(or dual) polytope

P ∗ := {x ∈ Rd | 〈x, v〉 ≥ −1 ∀ v ∈ P}

is again a lattice polytope (in the dual lattice). This notion was introduced by Batyrev in
[3]. A generalization of this is the class of Gorenstein polytopes. A lattice polytope is a
Gorenstein polytope of codegree k, if there is a positive integer k and an interior lattice point
m in kP such that kP −m is a reflexive polytope. Such polytopes play an important role
in the classification of Calabi-Yau manifolds for string theory. See [4] for basic properties.
The next proposition tells us that the polytopes Qn belong to this class. The normalized
volume of Rn is the volume form which assigns to the standard simplex the volume 1.

Proposition 5.1. Let n be odd or even. The polytope Qn is Gorenstein of codegree n and
normalized volume n.

Proof. By Theorem 3.3, the point 1
n (1, 1, . . . , 1) is an interior point of Qn with equal

integral distance 1/n to all facets, and m := (1, 1, . . . , 1) is the unique interior lattice point
in nQn. Hence nQn −m is a reflexive polytope.

By Theorem 3.3, all facets of Qn are simplices of facet width 1, hence they are all
unimodular. As we have seen, multiplying by n gives (up to translation) a reflexive polytope
with the unique interior lattice point m = (1, 1, . . . , 1). The normalized volume of nQn
is the sum of the volumes of n2 pyramids over facets with apex m. But in nQn each facet
has normalized volume n2n−3, and the apex has lattice distance 1 from the facet, so each
pyramid has normalized volume n2n−3. There are n2 of these pyramids, so the normalized
volume of nQn equals n2n−1. Dividing by n2n−2 to get from nQn back to Qn gives the
normalized volume n of Qn.

A polytope P is compressed if every so-called pulling triangulation is regular and uni-
modular. Equivalently, P is compressed if for any supporting inequality atx ≤ b with a
primitive integral normal a, i.e. with a normal vector whose entries are integers and which
is not an integral multiple of some other integer vector, the polytope is contained in the set
{x | b − 1 ≤ atx ≤ b}. For a more detailed explanation of these terms we refer to [13].
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This property has strong implications on the associated toric ideal, see e.g. [23]. The next
proposition follows immediately from Theorem 1.1 of [19] and Theorem 3.3.

Proposition 5.2. Let n be odd or even. The polytope Qn is compressed.

The Ehrhart polynomialLP (k) := |kP∩Zd| of a d-dimensional lattice polytope counts
the number of integral points in integral dilates of P . It is well known that the generating
function of LP is given by ∑

m≥0

LP (m)tm =
h∗(t)

(1− t)d+1

for some polynomial h∗ of degree at most d with integral non-negative coefficients, see [7].
Hence, determining the Ehrhart polynomial is equivalent to finding the h∗-vector (also
called the δ-vector) of coefficients of h∗(t). As is well-known, P is Gorenstein if and only
if the h∗-vector is symmetric. The following theorem shows that in our case this vector has
a particularly nice form.

Theorem 5.3. Let n be odd or even. The h∗-vector ofQn satisfies h∗i = 1 for 0 ≤ i ≤ n−1
and h∗i = 0 otherwise.

Proof. Since the codegree ofQn is n and its dimension is 2n−2 by Theorem 3.3, the max-
imal non-zero entry of the h∗-vector has to be h∗n−1, see [7]. By a theorem of Bruns and
Römer [10] we know that the h∗-vector of a Gorenstein polytope that has a regular unimod-
ular triangulation is symmetric and unimodal. In particular, h∗i ≥ 1 for i = 0, . . . , n − 1.
Since by Proposition 5.1 the sum of the entries of the h∗-vector equals n, the statement
follows.

In particular, if n is odd, the previous result describes the h∗-vector of DPn. Finally,
let us deal with the even case.

Corollary 5.4. Let n be even. The h∗-vector of DPn equals

(1, 2, 3, . . . ,
n

2
− 1,

n

2
,
n

2
− 1, . . . , 2, 1).

In particular, the polytope DPn is Gorenstein of codegree n and normalized volume n2/4.

Proof. By the proof of Theorem 4.1, DPn is given up to coordinate permutation as the
convex hull of the rows of [

W̃ 0

0 W̃

]
,

where W̃ is the n × (n2 )2 matrix whose rows are the vertices of Qn
2

as given in (3.1).
The integral linear functional which sums the first n2 coordinates evaluates to 1 on the first
n
2 rows, and to 0 on the second half. Hence, the two copies of Qn

2
(say, P1 × {0} and

{0} × P2) have lattice distance 1 in the lattice Zn2

2 ∩ aff DPn. In other words, there is
an affine isomorphism respecting lattice points which maps DPn onto the convex hull of
P1 × {0} × {1} and {0} × P2 × {0} in Rn2

2 +1. Therefore, the statement follows from the
well-known fact [7, Example 3.32] that in this case the h∗-polynomial equals the product
of the h∗-polynomials of P1 and P2.
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6 Substructures
In [5] the authors discussed which subgroups of a permutation group yield faces of P (G).
An obvious class of such subgroups are stabilizers:

Take a partition [n] := {1, . . . , n} =
⊔
Ii. Then the polytope of the stabilizer of the

subsets Ii
stab(G; (Ii)i) := {σ ∈ G | σ(Ii) = Ii for all i} ≤ G

is a face of P (G). The authors conjecture that there are no other examples.

Conjecture 5.8 [5] Let G ≤ Sn. Suppose H ≤ G is a subgroup such that P (H) � P (G)
is a face. Then H = stab(G; (Ii)i) for a partition [n] =

⊔
Ii.

We have verified the conjecture for G = Sn as well as for cyclic subgroups G ≤ Sn,
see Proposition 5.9 of [5]. Meanwhile Jessica Nowack and Daniel Heinrich studied this
question for the dihedral groups in their Diploma theses.

Proposition 6.1. (Heinrich, Nowack [16, 18]) Conjecture 5.8 holds for G = Dn ≤ Sn for
every n.

Sketch of the proof. For n odd Heinrich first shows that, ifH is the subgroup of all rotations
of G, then PH is not a face of PG. The remaining subgroups are precisely the stabilizers of
their orbits, see Theorem 7.1.1 of [16].

For n even the main work is to show that the subgroup of all rotations, the subgroup
of the squares of the rotations and finally the subgroup generated by the squares of the
rotations and by the reflections through two edges are precisely those subgroups H of G
for which PH is not a face of PG. Nowack shows that the remaining subgroups are precisely
the stabilizers of their orbits, see Section 4.2 of [18].
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