MATEMATIKA

ResSitev Maltattijevega

problema

NN
NADA RAZPET

- Najprej se spomnimo, kako se glasi naloga: Dan
je trikotnik. Kako naj iz trikotnika izrezemo
tri kroge tako, da bo njihova skupna ploSc¢ina

najvecja?

SLIKA 1.
Malfattijeva resitev naloge, ki pa ni pravilna.

Dolgo je matematike zanimalo le, kako se ti krogi
konstruirajo, niso pa razmisljali o pravilnosti Malfat-
tijeve reSitve.

Nato pa sta leta 1929 Lob in Richmond ugotovila,
da Ze za enakostranicni trikotnik Malfattijeva reSitev
problema ni pravilna (slika 2).

V enakostranicnem trikotniku je vsota ploscin
krogov vcrtanih tako, kot je to predlagal Malfatti (na
sliki 2 levo), manjSa kot v primeru na sliki 2 desno.

Howard Eves je 35 let kasneje ugotovil, da Malfat-
tijeva reSitev tudi za dolg ozek trikotnik ni pravilna
(slika 3).

SLIKA 2.

Za levi primer je vsota ploscin (1’:%)_, ~ 0,729, za desnega pa
11T

273~ 0,739

SLIKA 3.

Evesova resitev Malfattijevega problema za ozek in dolg
trikotnik.

Leta 1967 je Goldberg pokazal, da Malfattijeva re-
Sitev ne drZi za noben trikotnik. Leta 1994 sta Los
in Zalgaller sistemati¢no (z racunalnikom) proucila
vse mozne lege treh krogov, vértanih v dani trikotnik
(obstaja 14 razli¢nih moZnosti), in proucila vsote nji-
hovih plos¢in. Ugotovila sta, da je najbolje, da je prvi
krog kar vertani krog trikotnika, potem pa se je treba
odlociti, kam narisati Se preostala dva kroga. Obsta-
jata le dve taki mozZnosti. Prikazani sta na sliki 4.
In kako naj se odlo¢imo v danem primeru? Odlocata
vrednosti kotnih funkcij sin(x/2) in tg(B/4).
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SLIKA 4.
Zgornja slika velja za primer, ko je sin(o/2) < tg(B/4) (primer
A), spodnja pa, ko je sin(x/2) = tg(B/4) (primer B).

Kdaj prva in kdaj druga moznost?

Privzemimo, da za kote v trikotniku velja

= x<f<y y = konst = o + B = konst. (1)

Ce to za dani primer ne drzi, kote preimenujemo, da
ustrezajo pogoju 1.

Dobro je, da izberemo enoto. Naj bo polmer tri-
kotniku ABC vertanega kroga v = 1. Oznake daljic
razberemo s slike 5.

Trikotnik AB;S je pravokoten, zato velja

1

_ r
. 31n(0</2)—§, r=1, S_m'

Tudi preostala dva trikotnika AA;S; in AA»S> sta
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pravokotna, zato velja:

= sin(x/2) N L,
S1 S—r—mTn
- 1 -sin(ax/2)
"7 1+ sin(x/2)’
2 2

sin(x/2) =— = —M8M8MMM@@@8@™,
Y S—1v =211 —1

(1 - sin(o</2))2

r=—7:> .

1 + sin(x/2)

Opazimo, da so polmeri 7, ¥; in > trije zaporedni
Cleni geometrijskega zaporedja. Izrazimo Se polmer
13 s kotom f:

- _r
sin(B/2) e

1
sin(B/2) =§ = 33_1;73_73,
1 —sin(B/2)
3 =

“1+sin(B/2)
Da bo manj pisanja, zapiSimo:
= sin(x/2) = u, sin(f/2) = v.
Primerjamo vsoti plosSc¢in
= 7T(72+712+722)>1T(72+Tf+1f32). (2)

Obe strani neenacbe (2) delimo s 1T, vstavimo ustre-
zne izraze in dobimo:

= 2 r i+ ri vt v+,

v >rs,
1-u\* [1-v\?
<1+u) Z(1+v> ’ ®)
1-u\? 1-v
<1+u> Z1+v' @)

Neenacbo (3) smo korenili. To smemo narediti, saj
sta tako Stevca kot imenovalca obeh ulomkov pozi-
tivni Stevili.

Ker je po dogovoru kot y najvecji kot v trikotniku,
sta kota « in 8 manjSa od 90° in vrednosti kotnih
funkcij sinus in tangens pozitivni Stevili. ZapiSimo
povezavo med kotnima funkcijama sinus in tangens:

2tg(B/4)

T gy
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SLIKA 5.
Trikotniku vértamo kroge

AS=s
AS] =51
ASs = sy
SB = s3
S3B = s4

Torej velja:

1-v 1-sin(B/2)
1+v 1+sin(B8/2)

21g(B/4)
_ltheesn A -w®)?
- 2tg(B/4)) 2"
1+ ot (1+1tg(B/4))

Desno stran neenacbe (4) zamenjamo z desno stra-
njo enacbe (5), neenacbo korenimo in dobimo:

1 —sin(o/2) - 1-tg(B/4)
1+sin(x/2) — 1+tg(B/4)"

In z malo racunanja dobimo:

= 1g(B/4) = sin(«x/2). (6)

SLIKA 6.

sin(a/2) < tg(B8/4) = p1 > po

Iz neenacbe (6) sledi, da je vsota plos¢in krogov v
primeru A vecja od vsote ploscin krogov v primeru
B, Ce je sin(x/2) < tg(B/4).

Ploscine proucimo Se z GeoGebro

Kako se v posameznem primeru spreminja vsota plo-
$¢in, prouc¢imo Se z GeoGebro. Naj za kote v triko-
tniku ABC velja & < B < y. Naj bo kot y konstanten,
torej je tudi vsota kotov « + B konstantna. Ko tri-
kotniku vértamo krog, bo najmanj prostora za preo-
stala kroga v kotu y, torej bomo vcrtali oba kroga v
kot « ali pa v vsakega od kotov « in 8 po en krog.
Vemo, da so koti, ki leZijo nad istim kroZnim lo-
kom, med seboj enaki. Zato osnovni trikotnik ABC
nariSemo tako, da kotu y pripada najvecji lok, v na-
Sem primeru smo izbrali za ta lok ve¢ kot polovico
kroznice (slika 6). Da bo tudi & < 8, se mora to¢ka C

my = sin(o/2) = 0,18
ms = tg(B/4) = 0,27 .
P1=Dr+ Pm+ Do
P2 = Pr + Pm + D |

Ty = (sin(a/2),p,) T2

7(; Ty = (sin(a/2),p.) I ]
my = OM _ |M i sin(a/2)
my = ON  tg(8/4)

/ mo

Ploscini vijolicnega (vijolicna krivulja) in zelenega (zelena krivulja) kroga v odvisnosti od sin(x/2). Ko je sin(x/2) < tg(B/4), je
v (Ty) = py vedji od y(T>) = p2, zato je vsota ploscin p; > p2. Vse tri kroge je treba vcrtati v kot «.
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gibati po loku DB. Kota se s spremembo lege toCke
C spreminjata, pri tem je & < S, njuna vsota pa je
konstantna. Ce izberemo lego tocke C drugace, velja
drugacna relacija med koti in moramo vloge kotov v
nadaljevanju ustrezno spremeniti.

Trikotniku vértamo kroZnico, poiS¢emo preseci-
SCe te kroznico s simetralama kotov « in . V teh
tockah nariSemo pravokotnice na te simetrale. Pra-
vokotnice sekajo stranici ¢ in b oziroma a. Dobimo
nove trikotnike AB;Cy, AB>C» in B3B(C3, v katere zo-
pet vértamo kroZznice.

Vsoto ploscin rdecega (p, ), modrega (p;,) in vijo-
licnega (p,) kroga oznac¢imo s p1, vsoto ploscin rde-
Cega, modrega in zelenega (p;) kroga pa s p», Ce je
Pv > pz je p1 > p2. V koordinatni sistem (na desno
strani slike 6) riSemo sled tocke T (sin(x/2), pv), Vi-
joli¢na krivulja, in sled tocke T»(sin(e/2, p2), zelena

krivulja, ko se ogli§ce C giblje po loku DB. Program
riSe obe sledi hkrati. Ordinati odebeljenih pik na kri-
vuljah kaZeta, kolikSna je ploS$cina vijolicnega oz. ze-
lenega kroga za trenutno izbrana kota « in .

Bralci naj Se premislijo, kolikSna sta kota « in B,
ko je p1 = po.

Kaj smo se naucili? Pri geometrijskih nalogah se
pogosto zgodi, da pri reSevanju upoStevamo odnose
med koli¢inami, ki jih razberemo s slike. Ta pa nas
lahko zavede, zato je vedno dobro, da reSitev preve-
rimo tudi na kaksnih posebnih primerih, kot v na-
Sem primeru na enakostrani¢nem trikotniku ali pa
na zelo dolgem in ozkem trikotniku.
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O pitagorejskih
trojicah malo
drugace

N2
MARJAN JERMAN

- V pravokotnem trikotniku s katetama a in b ter
hipotenuzo c velja Pitagorov izrek, ki pravi, da je

" a®+b%=c?

Ce dodatno zahtevamo, da so $tevila a, b in ¢ na-
ravna, trojici (a, b, c) recemo pitagorejska trojica.
Posebej slavna pitagorejska trojica, s pomocjo ka-
tere so v starem Egiptu nacrtovali prave kote, je
trojica (3,4, 5).

Kadar stranice a, b in ¢ nimajo skupnega faktorja,
recemo, da je pitagorejska trojica (a, b,c) primitiv-
na. Na primer, (6, 8,10) je pitagorejska trojica, ki ni
primitivna in je dobljena s celoStevilskim raztegom
trojice (3,4,5).

Pokazimo, da je v vsaki primitivni pitagorejski trojici
ena kateta soda in ena liha.

Ce sta obe kateti v pitagorejski trojici sodi, je soda
tudi hipotenuza. Zato takSna trojica ni primitivna.
Ce bi bili obe kateti lihi, enacba

s Qk-1)2+ Q0 -1)2=4(k®-k+0?>-0)+2

pove, da bi dal kvadrat hipotenuze ostanek 2 pri de-
ljenju s 4. Ker kvadrat sodega Stevila da pri delje-
nju s 4 ostanek 0, kvadrat lihega Stevila (2k — 1)2 =
4(k? — k) + 1 pa ostanek 1, tak$na hipotenuza ni mo-
goca.

S pomocjo zadnje trdive lahko, recimo, pokazemo,
da je (3,4, 5) najmanjSa Pitagorejska trojica.

Ker iSCemo najmanjso pitagorejsko trojico, mora biti
iskana trojica (a, b, c) primitivna. Glede na trditev
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