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Abstract

We investigate representations of a rational function R ∈ k(x) where
k is a field of characteristic zero, in the form R = K · σS/S. Here
K, S ∈ k(x), and σ is an automorphism of k(x) which maps k[x] onto
k[x]. We show that the degrees of the numerator and denominator of
K are simultaneously minimized iff K = r/s where r, s ∈ k[x] and r
is coprime with σns for all n ∈ Z. Assuming existence of algorithms
for computing orbital decompositions of R ∈ k(x) and semi-periods
of irreducible p ∈ k[x] \ k, we present an algorithm for minimizing
w(deg num(S), deg den(S)) among representations with minimal K, where
w is any appropriate weight function. This algorithm is based on a reduc-
tion to the well-known assignment problem of combinatorial optimization.
We show how to use these representations of rational functions to obtain
succinct representations of σ-hypergeometric terms.

∗Partially supported by RFBR grant 04-01-00757.
†Partially supported by ARRS grant P1-0294.
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1 Introduction

Let k be a field of characteristic zero, and let x be transcendental over k. Denote
by E the unique k-automorphism1 of k(x) which satisfies Ex = x + 1 (the shift
operator). If q ∈ k∗, denote by Q the unique k-automorphism of k(x) which
satisfies Qx = qx (the q-shift operator).

Representations of a rational function R ∈ k(x) in the form

R = K · σS

S
(1)

where σ is either the shift or the q-shift operator, and K is σ-reduced2, play a
significant rôle in various computer algebra algorithms for symbolic summation
and solution of difference equations (see, e.g., (Gosper, 1978); (Zeilberger, 1991);
(Petkovšek, 1992); (Pirastu and Strehl, 1995); (van der Put and Singer, 1997,
Section 2.1); (Abramov and Petkovšek, 2002)). We call such a pair (K, S) a
rational σ-normal form (RNFσ) of R, with kernel K and shell S.

For the case σ = E , it is shown in (Abramov and Petkovšek, 2001, Cor. 1)
that the degrees of the numerator and denominator of K in (1) are simulta-
neously minimized iff K is σ-reduced. Once K has been minimized, it is also
desirable to minimize S. Not surprisingly, the degrees of the numerator and
denominator of S cannot, in general, be minimized simultaneously, and there
is a choice of minimization criteria. In a preliminary version (Abramov, Le
and Petkovšek, 2003), we used four such criteria, and called the corresponding
rational normal forms (which are unique if S is monic), rational canonical forms.

In this paper, we generalize the theory and algorithms for computing ra-
tional normal and canonical forms in two directions. First, we allow σ to
be any automorphism of k(x) which maps k[x] onto k[x]. In particular, we
do not require that Constσ(k(x)) = Constσ(k); instead, we assume that or-
bital decompositions3 of rational functions in k(x) and semi-periods1 of ir-
reducible polynomials in k[x] \ k can be computed. Second, we show how
to minimize w(deg num(S),deg den(S)) for any weight function w, by which
we mean a monomorphism of the partially ordered Abelian group Z × Z into
some computable linearly ordered Abelian group L. Typically, L = Z × Z
ordered lexicographically. For example, if w(n, d) = (n + d, d) then we mini-
mize deg num(S) + deg den(S), and in case of ties take the form with the least
deg den(S).

The overview of the paper is as follows: After describing our algebraic frame-
work and notation in Section 2, we define rational σ-normal forms and state
some of their basic properties in Section 3. In Section 4 we show how to use
orbital decompositions with respect to σ to reduce problems about RNFσ’s of
general rational functions to corresponding problems about p-orbital rational
functions for an irreducible polynomial p. We give a constructive proof of exis-
tence of strict RNFσ’s in Section 5, and in Section 6 we show that the degrees

1see Section 2 for definitions
2see Definition 1 in Section 3
3see Definition 3 in Section 4
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of the numerator and denominator of K in (1) are simultaneously minimized
iff (K, S) is an RNFσ of R. The core of the paper consists of Sections 7 and 8
where we define rational (w, σ)-canonical forms (RCFw,σ’s), and show how to
compute them. After presenting our algorithmic prerequisites in Section 8.1,
we reduce in Section 8.2 computation of RCFw,σ’s to the assignment problem,
a well-known combinatorial optimization problem with efficient algorithms to
solve it (cf. (Papadimitriou and Steiglitz, 1982)). Two cases need to be distin-
guished in constructing this reduction, corresponding to p being non-periodic4

or semi-periodic4 w.r.t. σ. They are treated in Sections 8.3 and 8.4, respec-
tively. In Section 9 we show that the rational (w, σ)-canonical form of R ∈ k(x)
is unique provided that each irreducible factor of R is non-periodic w.r.t. σ.

In Section 10, we present an application of rational canonical forms to the
problem of obtaining succinct multiplicative representations of hypergeometric
terms. Such representations are useful in simplification of hypergeometric terms
and in investigation of their asymptotics. In this section we require that σ is a k-
automorphism, and denote by ñ the value of σnx ∈ k[x] at x = 1. In particular,
if σ = E then ñ = n + 1; if σ = Q then ñ = qn. We call a sequence t = 〈tn〉n≥0

of elements of k a σ-hypergeometric term if tn 6= 0 for n large enough, and there
are coprime polynomials p, q ∈ k[x] \ {0} such that

p(ñ)tn+1 = q(ñ)tn for all n ≥ 0.

If there are F,G ∈ k(x) such that tn = G(ñ)
∏n−1

i=0 F (̃i) for all n, we call 〈F,G〉 a
multiplicative decomposition of t. We show that if t0 6= 0, and (K, S) is an RNFσ

of F · σG/G such that S(1) ∈ k∗, then 〈K, S · G(1)/S(1)〉 is a multiplicative
decomposition of t with minimal degrees of the numerator and denominator of
its first component. Furthermore, if (K, S) is the RCFw,σ of F · σG/G, then,
in addition, the weight w of its second component is minimal among all such
decompositions.

2 Preliminaries

We denote the set {1, 2, . . . , n} by [n]. In particular, [0] = ∅.
Throughout the paper, k is a field of characteristic zero, x is transcenden-

tal over k, and σ is a fixed automorphism of the polynomial ring k[x]. From
σ(k[x]∗) = k[x]∗ and k[x]∗ = k∗ it follows that σ(k) = k, hence σ restricted to
k is an automorphism of k. This implies that deg σp = deg p · deg σx for every
p ∈ k[x], and so deg σx = 1 or else σ would not be surjective. Hence σx = ax+b
for some a ∈ k∗ and b ∈ k. It follows that σ preserves degrees of polynomi-
als, and maps irreducibles to irreducibles. The unique automorphism of the
rational-function field k(x) which extends σ will be denoted by σ as well. For
p, q ∈ k[x]\{0}, it is defined by σ(p · q−1) = (σp) · (σq)−1. Note that (k(x), σ, 0)
is a unimonomial extension of (k, σ, 0) in the sense of (Bronstein, 2000). An
automorphism σ of k[x] or k(x) is a k-automorphism if σλ = λ for all λ ∈ k. For

4see Section 2 for definitions
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any field F and automorphism σ of F we write Constσ(F ) := {λ ∈ F ; σλ = λ}
for the constant field of F .

For p, q ∈ k[x], we write p⊥ q iff deg gcd(p, q) = 0. Clearly p⊥ q iff σp⊥σq.
The leading coefficient of p ∈ k[x] is denoted by lc (p). For u, v ∈ k(x), we write
u ∼ v iff u = λv for some λ ∈ k∗. For u ∈ k(x), its numerator num(u) and
denominator den(u) are uniquely determined by requiring that num(u) ∈ k[x],
den(u) ∈ k[x] \ {0}, u = num(u)/den(u), num(u)⊥den(u), and lc (den(u)) = 1.
Obviously num(σu) ∼ σ num(u) and den(σu) ∼ σ den(u). We define lc (u) :=
lc (num(u)), and call u monic if lc (u) = 1.

Similarly as in (Abramov and Bronstein, 2002), we denote the n-th rising
σ-factorial of an element u ∈ k(x)∗ by

uσ,n =
n−1∏
i=0

σiu, uσ,−n =
n∏

i=1

σ−iu−1

for all n ∈ Z, n ≥ 0, where an empty product equals 1. It is straightforward to
see that for all n, m ∈ Z and u, v ∈ k(x)∗,

uσ,n+m = uσ,n · σn(uσ,m), uσ,nm = (uσ,n)σn,m
,

(uv)σ,n = uσ,nvσ,n, (σu)σ,n = σ (uσ,n) ,
(σu

u

)σ,n

=
σnu

u
.

If p ∈ k[x]\k is irreducible and n is a positive integer, then σnp is irreducible
and deg σnp = deg p, so either σnp⊥ p or σnp ∼ p. The semi-period π̃(p) of p
is defined by

π̃(p) :=
{

0, if σnp⊥ p for all n ≥ 1,
min{n ≥ 1; σnp ∼ p}, otherwise.

We call p non-periodic if π̃(p) = 0, and semi-periodic if π̃(p) > 0. We denote

t(p) := pσ,π̃(p), µ(p) := σπ̃(p)p/p, (2)

and call t(p) the total span of p.

Proposition 1 Let p ∈ k[x] \ k be irreducible. Then

(i) if p is non-periodic then t(p) = 1,

(ii) σt(p) = µ(p)t(p) and σt(p) ∼ t(p).

We omit the easy proof.
Let G1 and G2 be two partially ordered Abelian groups. A monomorphism of

G1 into G2 is an injective mapping h : G1 → G2 such that h(a+b) = h(a)+h(b)
and a ≤ b =⇒ h(a) ≤ h(b) for all a, b ∈ G1.

4

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
11

2,
 J

an
u

ar
y 

20
, 2

01
0



3 Rational σ-normal forms

Definition 1 An element R ∈ k(x) is σ-reduced if num(R)⊥σnden(R) for all
n ∈ Z.

Definition 2 Let R ∈ k(x). If K ∈ k(x) and S ∈ k(x)∗ are such that

(i) R = K · σS

S
,

(ii) K is σ-reduced,

then (K, S) is a rational σ-normal form (RNFσ) of R. The set of all RNFσ’s of
R is denoted by RNFσ(R). We call K the kernel and S the shell of (K, S). If,
in addition,

(iii) num(K)⊥num(S) · den(σS) and den(K)⊥den(S) · num(σS),

then (K, S) is a strict RNFσ of R. The set of all strict RNFσ’s of R is denoted
by sRNFσ(R).

Example 1 In our examples, σ is a k-automorphism of k(x) unless explicitly
stated otherwise. We specify it by giving a ∈ k∗ and b ∈ k such that σx = ax+b.

Let

R(x) =
x3

(x− 1)(x− 2)(x− 3)
.

1. If σx = 2x then (R, 1) ∈ sRNFσ(R).

2. If σx = x + 1 then (1, (x− 1)3(x− 2)2(x− 3)) ∈ sRNFσ(R).

3. If σx = 1− x then (−x2/((x− 2)(x− 3)), 1− x) ∈ sRNFσ(R).

Lemma 1 Let (K, S) be an RNFσ of R ∈ k(x)∗. Then (K−1, S−1) is an RNFσ

of R−1. If (K, S) is strict then so is (K−1, S−1).

Proof: As σ preserves degrees, K ∈ k(x)∗ is σ-reduced iff K−1 is σ-reduced. �

Lemma 2 Let R ∈ k(x). If (K, S) ∈ sRNFσ(R) then num(K) |num(R) and
den(K) |den(R).

Proof: As num(R)den(K)num(S)den(σS) = den(R)num(K)den(S)num(σS)
and num(K)⊥den(K) num(S) den(σS), it follows that num(K) |num(R). From
den(K)⊥num(K) den(S) num(σS) it follows that den(K) |den(R). �

From Lemma 2 it follows immediately that if (K, S) is an sRNFσ of a λ ∈ k
then K ∈ k as well. In fact, the same holds for any RNFσ of λ ∈ k.

Lemma 3 Let (K, S) be an RNFσ of λ ∈ k. Then K ∈ k.
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Proof: If λ = 0 then K = 0 ∈ k. Now let λ 6= 0. Write num(S) = p1p2 · · · pm,
den(S) = q1q2 · · · qn where pi, qj ∈ k[x] are irreducible. From λ = K · σS/S it
follows that num(K) |num(S)den(σS) and den(K) |den(S)num(σS). Let

num(K) ∼

(∏
i∈A

pi

)∏
j∈B

σqj

 , den(K) ∼

(∏
i∈C

σpi

)∏
j∈D

qj


where A,C ⊆ [m] and B,D ⊆ [n]. Denote Ā = [m]\A, B̄ = [m]\B, C̄ = [n]\C,
D̄ = [n] \D. Then

(∏
i∈Ā pi

) (∏
j∈B̄ σqj

)
∼
(∏

i∈C̄ σpi

) (∏
j∈D̄ qj

)
. Since k[x]

is a unique factorization domain and pi⊥ qj , it follows that there is a bijection
b : Ā → C̄ such that pi ∼ σpb(i) for all i ∈ Ā.

Assume that C 6= ∅, and pick an i ∈ C. As K is σ-reduced, A ∩ C = ∅, so
i ∈ Ā and b can be applied to i. If there is an infinite sequence over Ā of the
form 〈i, b(i), b2(i), . . .〉 then bn(i) = bm(i) for some n > m ≥ 0, so bn−m(i) =
i ∈ C. On the other hand, bn−m(i) ∈ b(Ā) = C̄. This contradiction shows
that there is an r ≥ 1 such that i, b(i), . . . , br−1(i) ∈ Ā while br(i) ∈ A. Then
pbr(i) |num(K). From the properties of b it follows that pi ∼ σrpbr(i), therefore
σ−rpi |num(K). But this is impossible since σpi |den(K) and K is σ-reduced.
Hence the assumption was false, and C = A = ∅.

By Lemma 1, (K−1, S−1) is an RNFσ of λ−1. Applying the above argument
to (K−1, S−1) we see that B = D = ∅ as well. Hence K ∼ 1, i.e., K ∈ k∗. �

4 Orbital decompositions

Definition 3 Let p ∈ k[x]\k. Following (Bronstein, 2000) we say that q ∈ k[x]
is p-orbital (with respect to σ) if q ∼

∏n
i=0 σipei for some n, ei ≥ 0. We say that

R ∈ k(x) is p-orbital (with respect to σ) if R can be written as the quotient of
two p-orbital polynomials. An orbital decomposition of R ∈ k(x) with respect
to σ is a factorization R =

∏N
i=1 Ri where each Ri ∈ k(x) is pi-orbital for some

irreducible pi ∈ k[x] and pi/pj is σ-reduced for all i, j ∈ [N ]. A closely related
concept is called σ-factorization in (Karr, 1981; Schneider, 2005).

Lemma 4 Let
∏N

i=1 Ri and
∏N

i=1 R′
i be two orbital decompositions of R ∈ k(x)∗

where Ri and R′
i are pi-orbital. Then Ri ∼ R′

i for all i ∈ [N ].

Proof: This follows from (Bronstein, 2000, Lemma 17(v)). �

Lemma 5 Let p ∈ k[x] be irreducible. If R ∈ k(x)∗ is p-orbital and (K, S) ∈
RNFσ(R), then K is p-orbital.

Proof: Let K =
∏N

i=1 Ki and S =
∏N

i=1 Si be orbital decompositions of K resp.
S where Ki, Si are pi-orbital. They exist by (Bronstein, 2000, Lemma 17(i)).
W.l.g. assume that p = p1. Denote K ′ = K/K1, S′ = S/S1. Then

K ′ · σS′

S′ = R · S1

K1σS1
.
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While the right-hand side is p1-orbital, the left-hand side has an orbital de-
composition of the form

∏N
i=2 Wi where Wi = KiσSi/Si is pi-orbital for i =

2, . . . , N . By Lemma 4, this is only possible if K ′σS′/S′ = RS1/(K1σS1) ∈ k∗.
Since K is σ-reduced, K ′ is σ-reduced as well, and Lemma 3 implies that
K ′ ∈ k∗. Thus K = K ′K1 is p-orbital. �

Note that in Lemma 5, S need not be p-orbital, even if (K, S) ∈ sRNFσ(R).

Example 2 Let σx = 2x and R(x) = x+1. Then ((x+1)/2n, xn) ∈ sRNFσ(R)
for all n ∈ Z. While R(x) is (x + 1)-orbital, xn for n 6= 0 is not.

Corollary 1 Let R =
∏N

i=1 Ri be an orbital decomposition of R ∈ k(x)∗, and
(Ki, Si) ∈ RNFσ(Ri) for each i ∈ [N ]. Then (

∏N
i=1 Ki,

∏N
i=1 Si) ∈ RNFσ(R).

Proof: Denote K =
∏N

i=1 Ki, S =
∏N

i=1 Si. Clearly K · σS/S = R. Suppose
that K is not σ-reduced. Then there are i and j such that num(Ki)/den(Kj)
is not σ-reduced. But by Lemma 5, Ki is pi-orbital and Kj is pj-orbital, while
pi/pj is σ-reduced, so this is impossible. �

5 Existence of strict rational σ-normal forms

To prove existence of RNFσ for any R ∈ k(x)∗, by Corollary 1 it suffices to do
so for p-orbital rational functions of the form

R = λ · σa1p σa2p · · · σamp

σb1p σb2p · · · σbnp
, m ≤ n, (3)

where λ ∈ k∗, a1 ≤ a2 ≤ · · · ≤ am and b1 ≤ b2 ≤ · · · ≤ bn are nonnegative
integers such that ai 6= bj for all i ∈ [m], j ∈ [n], and p ∈ k[x] is irreducible.
When p is semi-periodic we will assume w.l.g. that ai, bj < π̃(p). If m > n we
consider R−1 and apply Lemma 1.

Existence of RNFσ for R 6= 0 in a ΠΣ-field5 k(x) over a semi-computable6

constant field is proved constructively in (Schneider, 2005, Alg. 4.17). For R as
in (3), this algorithm yields (K, S) ∈ RNFσ(R) with

K = λ · pm−n, S =

∏m
j=1

∏aj−1
i=0 σip∏n

j=1

∏bj−1
i=0 σip

which, in general, is not strict. In order to minimize the shell S, we need to
consider the sRNFσ’s of R. Theorems 1 and 4 below describe strict RNFσ’s of
R in (3) by means of injections f : [m] → [n], similar to those used in (Caruso,
2003, Chapter 4) to estimate the degree of polynomials involved in the Gosper-
Form of Zeilberger’s algorithm.

5see (Karr, 1981), (Karr, 1985), or (Schneider, 2001) for definitions
6 Following (Schneider, 2005), a field F is semi-computable if Z ⊂ F is recognizable, there

is an algorithm for factoring multivariate polynomials over F , and the orbit problem (given
f, g ∈ F ∗, decide if there is an n ∈ Z such that fn = g, and if so, find one) is solvable in F .
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Theorem 1 Let R be as in (3). Let f : [m] → [n] be an injection. Define

Kf :=
λ∏

j /∈f([m]) σbj p
, Sf :=

m∏
j=1

u
(f)
j

v
(f)
j

(4)

where

u
(f)
j =

{ ∏aj−1
i=bf(j)

σip, aj > bf(j),

1, otherwise,
v
(f)
j =

{
1, aj > bf(j),∏bf(j)−1

i=aj
σip, otherwise.

Then (Kf , Sf ) ∈ RNFσ(R). If, in addition, f is increasing (i.e., f(1) < f(2) <
· · · < f(m)) and such that |{i ∈ [m]; bf(i) ≤ bj}| = |{i ∈ [m]; ai < bj}| for each
j ∈ [n] \ f([m]), then (Kf , Sf ) ∈ sRNFσ(R).

Proof: Kf is trivially σ-reduced. A simple calculation shows that σSf/Sf =∏m
j=1(σ

aj p/σbf(j)p), hence that Kf · σSf/Sf = R. The second assertion is
proved in the same way as in the special case when σ = E (Abramov, Le and
Petkovšek, 2003, Lemma 4.2). �

Remark 1 We call (Kf , Sf ) defined in (4) the RNFσ induced by f .

Lemma 6 Every R of the form (3) has a strict RNFσ with p-orbital shell.

Proof: We claim that there is an increasing injection f : [m] → [n] such that

|{i ∈ [m]; bf(i) ≤ bj}| = |{i ∈ [m]; ai < bj}| (5)

for each j ∈ [n] \ f([m]). Indeed, if m = 0 then we take f = ∅ (the empty
function). Otherwise we use induction on n.

If n = 0 then m = 0 as well.
If n > 0 we distinguish three cases.

(a) m = n: In this case we take f = id[m].

(b) 0 < m < n and am < bn: By inductive hypothesis, there exists an increas-
ing injection g : [m] → [n − 1] which satisfies |{i ∈ [m]; bg(i) ≤ bj}| =
|{i ∈ [m]; ai < bj}| for each j ∈ [n− 1] \ g([m]). We define f : [m] → [n]
by f(i) := g(i) for all i ∈ [m].

(c) 0 < m < n and am > bn: By inductive hypothesis, there exists an increas-
ing injection g : [m − 1] → [n − 1] which satisfies |{i ∈ [m − 1]; bg(i) ≤
bj}| = |{i ∈ [m− 1]; ai < bj}| for each j ∈ [n− 1] \ g([m− 1]). We define
f : [m] → [n] by f(i) := g(i) for all i ∈ [m− 1] and f(m) := n.

In all three cases, it is easily seen that f satisfies (5).
By Theorem 1 it follows that R has a strict RNFσ of the form (Kf , Sf )

where both Kf and Sf are p-orbital. �

Corollary 2 Every R ∈ k(x) has a strict RNFσ.

Proof: Take an orbital decomposition R =
∏N

i=1 Ri. By Lemmas 6 and 1, for
each i ∈ [N ] there is a strict RNFσ (Ki, Si) of Ri with pi-orbital kernel and shell.
Let K =

∏N
i=1 Ki, S =

∏N
i=1 Si. It is easy to see that (K, S) ∈ sRNFσ(R). �
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6 Minimality of the kernel

It is shown in (Schneider, 2005, Thm. 4.14) for ΠΣ-extensions k(x) of k that
deg num(K) and deg den(K) in (1) are simultaneously minimized iff K is σ-
reduced. Here we show this for all unimonomial extensions k(x) of k.

Lemma 7 Let p ∈ k[x] be irreducible. If R ∈ k(x)∗ is p-orbital and (K, S),
(K ′, S′) ∈ RNFσ(R), then deg num(K) = deg num(K ′) and deg den(K) =
deg den(K ′).

Proof: From K · σS/S = K ′ · σS′/S′ it follows that

deg num(K) + deg den(K ′) = deg num(K ′) + deg den(K). (6)

By Lemma 5, K and K ′ are p-orbital. Since they are σ-reduced, either
deg num(K) = 0 or deg den(K) = 0, and either deg num(K ′) = 0 or
deg den(K ′) = 0. Thus we distinguish four cases, and use (6) in each:

1. If deg num(K) = deg num(K ′) = 0 then deg den(K) = deg den(K ′).

2. If deg num(K) = deg den(K ′) = 0 then deg num(K ′) + deg den(K) = 0,
hence deg den(K) = deg num(K ′) = 0.

3. If deg den(K) = deg den(K ′) = 0 then deg num(K) = deg num(K ′).

4. If deg den(K) = deg num(K ′) = 0 then deg num(K) + deg den(K ′) = 0,
hence deg num(K) = deg den(K ′) = 0. �

Theorem 2 If (K, S) and (K ′, S′) are two RNFσ’s of the same R ∈ k(x)∗,
then deg num(K) = deg num(K ′) and deg den(K) = deg den(K ′).

Proof: Let K =
∏N

i=1 Ki, S =
∏N

i=1 Si, K ′ =
∏N

i=1 K ′
i, S′ =

∏N
i=1 S′

i

be orbital decompositions of K, S, K ′, S′, respectively, where Ki, Si,K
′
i, S

′
i

are pi-orbital. As K and K ′ are σ-reduced, so are Ki and K ′
i. Denote

Ri = Ki · σSi/Si and R′
i = K ′

i · σS′
i/S′

i. Then Ri and R′
i are pi-orbital,

(Ki, Si) ∈ RNFσ(Ri), and (K ′
i, S

′
i) ∈ RNFσ(R′

i), for all i ∈ [N ]. As∏N
i=1 Ri =

∏N
i=1 Ri, it follows from Lemma 4 that Ri ∼ R′

i. By Lemma 7,
deg num(Ki) = deg num(K ′

i) and deg den(Ki) = deg den(K ′
i) for all i ∈ [N ].

Hence deg num(K) =
∑N

i=1 deg num(Ki) =
∑N

i=1 deg num(K ′
i) = deg num(K ′)

and deg den(K) =
∑N

i=1 deg den(Ki) =
∑N

i=1 deg den(K ′
i) = deg den(K ′). �

Corollary 3 Let K, S ∈ k(x)∗ and R = K ·σS/S. Then (K, S) ∈ RNFσ(R) iff

deg num(K) ≤ deg num(K ′) and deg den(K) ≤ deg den(K ′) (7)

for all K ′, S′ ∈ k(x)∗ such that R = K ′ · σS′/S′.
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Proof: Assume that (K, S) ∈ RNFσ(R), and let (L, T ) be a strict RNFσ of K ′

which exists by Corollary 2. Then (L, S′T ) ∈ RNFσ(R), and Theorem 2 implies
that deg num(K) = deg num(L) and deg den(K) = deg den(L). By Lemma 2,
num(L) |num(K ′) and den(L) |den(K ′), hence deg num(K) ≤ deg num(K ′) and
deg den(K) ≤ deg den(K ′).

Conversely, assume that (K, S) /∈ RNFσ(R). Then K is not σ-reduced, hence
there are p ∈ k[x] \ k and n ∈ Z \ {0} such that p |num(K) and σnp |den(K).
Let K ′ = K · σnp/p and S′ = S/pσ,n. Then K ′ · σS′/S′ = K · σS/S =
R, deg num(K ′) = deg num(K) − deg(p) < deg num(K), and deg den(K ′) =
deg den(K)− deg(p) < deg den(K), contrary to (7). �

7 Minimization of the shell

According to Theorem 2, all RNFσ’s of the same R ∈ k(x) have kernels of the
same degrees. In contrast, the degrees of their shells can differ widely. We wish
to minimize the shell with respect to one of the many possible weight functions
which we define in the following way.

Definition 4 A weight function is a monomorphism7 of the Abelian group
Z×Z, partially ordered by components8, into some computable linearly ordered
Abelian group L. If w is a weight function, we define the associated weight W of
a rational function S ∈ k(x)∗ by setting W (S) := w(deg num(S),deg den(S)).

Definition 5 Let w be a weight function, and R ∈ k(x). We call (K, S) ∈
RNFσ(R) a rational (w, σ)-canonical form (an RCFw,σ) of R if S is monic, and
W (S) is minimal among all RNFσ’s of R.

Remark 2 From Corollary 2 it follows immediately that rational (w, σ)-
canonical forms exist for all weight functions and all R ∈ k(x). In Corollary 4
we will see that they are unique provided that each irreducible factor of R is
non-periodic with respect to σ.

Example 3 Take L = Z× Z, ordered lexicographically by (a1, b1) ≤lex (a2, b2)
iff a1 < a2, or a1 = a2 and b1 ≤ b2. Our foremost examples are the following
four weight functions:

1. w1(n, d) = (d, n),

2. w2(n, d) = (n, d),

3. w3(n, d) = (n + d, d),

4. w4(n, d) = (n + d, n).

Instead of RCFwi,σ we write RCFi,σ, for i = 1, 2, 3, 4. Thus (K, S) ∈ RNFσ(R)
with monic S is an

7see Section 2 for definition
8(a1, b1) ≤ (a2, b2) iff a1 ≤ a2 and b1 ≤ b2
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1. RCF1,σ of R iff deg den(S) is minimal among all RNFσ’s of R, and under
this condition, deg num(S) is minimal;

2. RCF2,σ of R iff deg num(S) is minimal among all RNFσ’s of R, and under
this condition, deg den(S) is minimal;

3. RCF3,σ of R iff deg num(S) + deg den(S) is minimal among all RNFσ’s
of R, and under this condition, deg den(S) is minimal;

4. RCF4,σ of R iff deg num(S) + deg den(S) is minimal among all RNFσ’s
of R, and under this condition, deg num(S) is minimal.

From these definitions and from Lemma 1 it follows that for any R ∈ k(x)∗,
(K, S) is an RCF2,σ of R iff (K−1, S−1) is an RCF1,σ of R−1, and (K, S) is an
RCF4,σ of R iff (K−1, S−1) is an RCF3,σ of R−1.

More generally, w(n, d) = (a1n + b1d, a2n + b2d) is a weight function for any
nonnegative integers a1, b1, a2, b2 such that a1b2 6= a2b1. Note that it suffices to
consider weight functions of the form w′(n, d) = (a1n + b1d, n) and w′′(n, d) =
(a1n+b1d, d) because w(n, d) attains its minimum at the same point as w′(n, d)
(resp. w′′(n, d)) when a1b2 < a2b1 (resp. a1b2 > a2b1).

Remark 3 In (Abramov, Le and Petkovšek, 2003), the forms RCF1,σ, RCF2,σ

RCF3,σ, and RCF4,σ are denoted by RCF1, RCF2, RCF∗
1, and RCF∗

2, respec-
tively, in the special case when σ = E . Note that the definitions of RCF1

and RCF2 given in (Abramov, Le and Petkovšek, 2003) are different from, but
equivalent to those of RCF1,σ and RCF2,σ in this case.

Example 4 Let σ be any automorphism of k[x]. Assume that p ∈ k[x] is a
non-periodic polynomial of degree 1, and let

R =
p σ3p σ10p σ16p σ21p

σp σ2p σ6p σ7p σ12p σ13p σ19p σ20p
.

Consider the following four strict RNFσ’s of R:

K1 =
1

σ6p σ12p σ19p
, S1 =

σ2p σ7p σ8p σ9p σ13p σ14p σ15p σ20p

p
;

K2 =
1

σ2p σ7p σ13p
, S2 =

σ20p

p σ3p σ4p σ5p σ10p σ11p σ16p σ17p σ18p
;

K3 =
1

σ6p σ7p σ19p
, S3 =

σ2p σ13p σ14p σ15p σ20p

p σ10p σ11p
;

K4 =
1

σ6p σ7p σ13p
, S4 =

σ2p σ20p

p σ10p σ11p σ16p σ17p σ18p
.

The weights W1, W2, W3, W4 of S1, S2, S3, S4 are given in the following table:

W1 W2 W3 W4

S1 (1,8) (8, 1) (9, 1) (9, 8)
S2 (9, 1) (1,9) (10, 9) (10, 1)
S3 (3, 5) (5, 3) (8,3) (8, 5)
S4 (6, 2) (2, 6) (8, 6) (8,2)
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In each column, the lexicographically minimum weight is shown in boldface. It
can be verified that ((σλi/λi)Ki, Si/λi) where λi = lc (Si) is an RCFi,σ of R,
for i = 1, 2, 3, 4.

Theorem 3 Any RCFw,σ of R is strict.

Proof: Let (K, S) be an RNFσ of R which is not strict. We distinguish three
cases.

a) deg gcd(num(K),num(S)) > 0: Write num(K) = rg, num(S) = ug where
g = gcd(num(K),num(S)). We claim that

(K ′, S′) :=
(

r · σg

den(K)
,

u

den(S)

)
∈ RNFσ(R).

Indeed,

r · σg

den(K)
· σu

den(σS)
· den(S)

u
=

=
rg

den(K)
· σ(ug)
den(σS)

· den(S)
ug

= K · σS

S
= R,

and r · σg/den(K) is σ-reduced because r |num(K), σg |num(σK), and
K is σ-reduced. But then (K, S) is not an RCFw,σ of R because
deg num(S′) < deg num(S) and deg den(S′) = deg den(S), so W (S′) <
W (S).

b) deg gcd(num(K),den(σS)) > 0: Write num(K) = rg, den(σS) = σv · g
where g = gcd(num(K),den(σS)). Similarly as in a), we can verify that

(K ′, S′) :=
(

r · σ−1g

den(K)
,

num(S)
v

)
∈ RNFσ(R).

Thus, again (K, S) is not an RCFw,σ of R because deg num(S′) =
deg num(S) and deg den(S′) < deg den(S), hence W (S′) < W (S).

c) deg gcd(den(K),num(σS)den(S)) > 0: By Lemma 1, (K−1, S−1) is
a non-strict RNFσ of R−1 such that deg gcd(num(K−1),den(σS−1) ·
num(S−1)) > 0. By a) and b), (K−1, S−1) is not an RCFw,σ of R−1,
so by Lemma 1, (K, S) is not an RCFw,σ of R. �

8 Computing rational (w, σ)-canonical forms

8.1 Algorithmic prerequisites

A rational (w, σ)-canonical form for a given R ∈ k(x) and a given weight function
w : Z× Z → L can be computed by the following algorithm:
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Algorithm RCFw,σ

1. Compute an orbital decomposition
∏N

i=1 Ri of R.

2. For each i ∈ [N ], compute a rational (w, σ)-canonical form (Ki, Si) of Ri.

3. Compute K =
∏N

i=1 Ki, S =
∏N

i=1 Si, and λ = lc (S).

4. Return ((σλ/λ)K, S/λ).

Proof of correctness: Note that (K, S) ∈ RNFσ(R) by Corollary 1, hence the
same is true of ((σλ/λ) ·K, S/λ). Now take any (K ′, S′) ∈ RNFσ(R), and let
K ′ =

∏M
i=1 K ′

i, S′ =
∏M

i=1 S′
i be orbital decompositions such that M ≥ N and

Ki, Si, K ′
i, S′

i are pi-orbital for each i ∈ [N ]. Suppose that K ′
i is not σ-reduced

for some i ∈ [M ]. Since K ′ is σ-reduced, there exists some j ∈ [M ] such that
deg gcd(num(K ′

i),den(K ′
j)) > 0 or deg gcd(den(K ′

i),num(K ′
j)) > 0. But this

is impossible as K ′
i is pi-orbital and K ′

j is pj-orbital, while pi/pj is σ-reduced.
Hence (K ′

i, S
′
i) ∈ RNFσ(R′

i) where R′
i = K ′

i · σS′
i/S′

i, for all i ∈ [M ]. Since∏M
i=1 R′

i = K ′ · σS′/S′ = R is another orbital decomposition of R, Lemma 4
implies that R′

i ∼ Ri for all i ∈ [M ]. Therefore for each i ∈ [M ] there is some
λi ∈ k∗ such that (λiK

′
i, S

′
i) ∈ RNFσ(Ri). Since (Ki, Si) is an RCFw,σ of Ri, it

follows that W (Si) ≤ W (S′
i) for all i ∈ [M ]. By additivity of w,

M∑
i=1

W (Si) =
M∑
i=1

w(deg num(Si),deg den(Si))

= w

(
M∑
i=1

deg num(Si),
M∑
i=1

deg den(Si)

)

= w

(
deg

M∏
i=1

num(Si),deg
M∏
i=1

den(Si)

)
= w(deg num(S),deg den(S)) = W (S),

where the fourth equality follows from the fact that Si is pi-orbital, Sj is pj-
orbital, and pi/pj is σ-reduced for all i, j ∈ [M ]. In the same way we obtain

M∑
i=1

W (S′
i) = w(deg num(S′),deg den(S′)) = W (S′).

Hence W (S) ≤ W (S′) for all (K ′, S′) ∈ RNFσ(R). Together with lc (S/λ) = 1
this implies that ((σλ/λ)K, S/λ) is an RCFw,σ of R. �

It remains to explain how to perform steps 1 and 2 of Algorithm RCFw,σ.
In step 1, an orbital decomposition of R can be computed9 if we have

9cf. (Bronstein, 2000, Lemma 15(i) and its proof)

13

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
11

2,
 J

an
u

ar
y 

20
, 2

01
0



1. an algorithm PF for factoring polynomials in k[x];

2. an algorithm SE which, given irreducible p, q ∈ k[x] \ k, decides if there is
an n ∈ Z such that p ∼ σnq, and if so, computes one.

These two conditions are satisfied, e.g., when k(x) is a ΠΣ-field over a semi-
computable constant field (Schneider, 2005, Thm. 2.11).

Step 2 of Algorithm RCFw,σ requires computation of an RCFw,σ of a p-
orbital rational function R. An algorithm for doing this via reduction to the
assignment problem is the main result of the paper and is described in Sections
8.2, 8.3 and 8.4. However, this algorithm assumes that the value of π̃(p) is
known. Therefore we sketch here an algorithm which computes the semi-period
of an irreducible polynomial p ∈ k[x] \ k, provided that we have

1. an algorithm LDE which, given a ∈ k∗ and b ∈ k, decides if there is a
w ∈ k such that σw = aw + b, and if so, computes one;

2. an algorithm SR which, given a ∈ k∗, decides if a is a σ-radical10;

3. an algorithm HSO which, given α ∈ k∗, computes a nonnegative generator
of the ideal J(α) := {n ∈ Z; ασ,n = 1} ⊆ Z.

Using these algorithms, we can proceed as follows:
Run LDE on a and b where σx = ax + b. If there is no w ∈ k such that

σw = aw + b, Theorem 1 of (Karr, 1981) implies that there is no q ∈ k[x] \ k
such that σq/q ∈ k∗. However, if π̃(p) > 0 then t(p) ∈ k[x] \ k and Proposition
1(ii) implies that σt(p)/t(p) ∈ k∗. Hence π̃(p) = 0.

If w ∈ k satisfies σw = aw + b, introduce a new variable y = x − w. Then
σy = ay, so it suffices to consider the case b = 0.

Run SR on a. If a is not a σ-radical, then Theorems 2 and 9(d) of (Karr,
1981) imply that π̃(p) ∈ {0, 1}. Hence: if σp ∼ p then π̃(p) = 1 else π̃(p) = 0.

So let σx = ax where a is a σ-radical. Assume that σnp = λp for some n > 0
and λ ∈ k∗. Write p(x) =

∑r
i=0 cix

i where r > 0. If c0 = 0 then r = 1 (since p
is irreducible), hence π̃(p) = 1. Otherwise (since π̃(λp) = π̃(p) for any λ ∈ k∗)
assume w.l.g. that c0 = 1. Then σnci · (aσ,n)i = λci for all i ∈ [r] and also for
i = 0. This yields λ = 1 and (

ai σci

ci

)σ,n

= 1

for all i ∈ [r] such that ci 6= 0. Run HSO on αi := ai · σci/ci for all i ∈ [r]
such that ci 6= 0, and let ni be the generators of the corresponding ideals J(αi).
Then, clearly, π̃(p) = lcm{ni; i ∈ [r], ci 6= 0}.

Example 5 Let σ be a k-automorphism of k(x) where σx = ax and a ∈ k∗

is a primitive m-th root of unity. Then (ai · σci/ci)σ,n = 1 ⇔ ain = 1 ⇔
10a ∈ k is a σ-radical if an = σλ/λ for some n ∈ Z, n > 0, and λ ∈ k∗
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m | (in) ⇔ (m/ gcd(m, i)) |n. Hence ni = m/ gcd(m, i) and

π̃(p) = lcm
{

m

gcd(m, i)
; i ∈ [r], ci 6= 0

}
.

So we can compute π̃(p) if we know m.

Example 6 Let σ be any automorphism of k(x) where σx = x (i.e., a = 1 and
x is an explicit new constant). Define the period π(c) of c ∈ k∗ by

π(c) :=
{

0, if σnc 6= c for all n ≥ 1,
min{n ≥ 1; σnc = c}, otherwise.

Then (ai · σci/ci)σ,n = 1 ⇔ σnci = ci ⇔ π(ci) |n, hence ni = π(ci) and

π̃(p) = lcm {π(ci); i ∈ [r], ci 6= 0} .

So we can compute π̃(p) if we can compute π(c) for each c ∈ k∗.

Algorithms LDE and SR exist, e.g., when k is a ΠΣ-field over a σ-
computable11 constant field (see (Karr, 1981, Section 3); (Schneider, 2005, Thm.
3.2)). If also k(t) is a ΠΣ-extension of k then π̃(p) ∈ {0, 1} by (Karr, 1981, Thm.
9(d)), hence algorithm HSO is not needed in this case. Furthermore, if π̃(p) = 1
then R in (3) is σ-reduced, so (R, 1) is trivially an RCFw,σ of R for any weight
function w, and the algorithm of Section 8.4 is not needed either. Incidentally, a
k-automorphism of k[x] such that π̃(p) ∈ {0, 1} for each irreducible p ∈ k[x] \ k
is called aperiodic in (Bauer and Petkovšek, 1999).

8.2 The assignment problem

Let R be as in (3). Theorem 3 tells us that in order to find an RCFw,σ of R,
we need to minimize W (S) over all (K, S) ∈ sRNFσ(R). Up to a factor from
k, the kernel K is determined by some increasing injection f : [m] → [n]. The
shell S satisfies the first-order σ-difference equation σS = (R/K) · S, so once
the kernel is fixed, the shell is determined up to a factor T ∈ k(x) such that
σT ∼ T (Theorem 4). If, in addition, (K, S) is an RCFw,σ of R, then T ∼ t(p)ξ

where t(p) is the total span of p, and ξ ∈ Z (Theorem 5).

Theorem 4 Let R be as in (3), and let (K, S) ∈ sRNFσ(R). Then there is
T ∈ k(x)∗ such that σT ∼ T , and an increasing injection f : [m] → [n] such
that K ∼ Kf and S = TSf , where (Kf , Sf ) is the RNFσ of R induced by f .

Proof: By Lemma 5, K is p-orbital. As it is σ-reduced, either num(K) ∼ 1
or den(K) ∼ 1. But deg num(K) − deg den(K) = (m − n) deg p ≤ 0,
hence num(K) ∼ 1 and deg den(K) = (n − m) deg p. By Lemma 2,

11Following (Schneider, 2005), a field F is σ-computable if it is semi-computable (see foot-
note 6) and the generalized orbit problem (given f1, . . . , fr ∈ F ∗, find a basis for the Z-module
{(n1, . . . , nr); fn1

1 · · · fnr
r = 1} ⊆ Zr) is solvable in F .

15

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
11

2,
 J

an
u

ar
y 

20
, 2

01
0



den(K) |
∏n

j=1 σbj p. Let j1 < · · · < jm be such that
∏n

j=1 σbj p/den(K) ∼∏m
i=1 σbji p. Define f(i) := ji. Then f : [m] → [n] is an increasing injection

and den(K) ∼
∏

j∈[n]\f([m]) σbj p, hence K ∼ Kf and R ∼ Kf · σS/S. Let
T := S/Sf . By Theorem 1, R = Kf · σSf/Sf . Hence σT ∼ T . �

Lemma 8 Let
∏m

i=1 Ti be an orbital decomposition of T ∈ k(x)∗. If σT ∼ T
then σTi ∼ Ti for all i ∈ [m].

Proof: Clearly
∏m

i=1(σTi/Ti) is an orbital decomposition of some λ ∈ k∗, and
so is λ · 1 · 1 · · · 1. By Lemma 4, σTi/Ti ∼ 1 for all i ∈ [m]. �

Lemma 9 Let T ∈ k(x) be such that σT ∼ T . Then σnum(T ) ∼ num(T ) and
σden(T ) ∼ den(T ).

Proof: From the assumption it follows that σnum(T ) · den(T ) ∼ σden(T ) ·
num(T ). Hence σnum(T ) |num(T ), den(T ) |σden(T ), σden(T ) |den(T ), and
num(T ) |σnum(T ), proving the claim. �

Proposition 2 Let p ∈ k[x] be irreducible, and let P ∈ k[x] \ {0} be a p-orbital
polynomial such that σP ∼ P . Then P ∼ t(p)ξ for some ξ ∈ Z, ξ ≥ 0.

Proof: Assume that σjp |P for some j ≥ 0. Then σj+1p |σP . From σP ∼ P
it follows that σj+1p |P . By induction, σip |P for all i ≥ j. If π̃(p) = 0 this
is impossible, so P ∈ k∗. If π̃(p) > 0 we use induction on deg P . If deg P = 0
then P ∼ t(p)0. Otherwise P = t(p)P ′ where P ′ ∈ k[x] \ {0}, σP ′ ∼ P ′, and
deg P ′ < deg P . By inductive hypothesis, P ′ ∼ t(p)ξ′

, hence P ∼ t(p)ξ′+1. �

Theorem 5 Let R be as in (3), and let (K, S) be an RCFw,σ of R for some
weight function w. Then there are an increasing injection f : [m] → [n] and
ξ ∈ Z such that K ∼ Kf and S ∼ t(p)ξSf where (Kf , Sf ) is the RNFσ of R
induced by f .

Proof: By Theorem 3, (K, S) is strict. By Theorem 4, there are T ∈ k(x)∗

and an increasing injection f : [m] → [n] such that σT ∼ T , K ∼ Kf , and
S = TSf . Let

∏j
i=1 Ti be an orbital decomposition of T where each Ti

is pi-orbital and p1 = p. Write T ′ = T/T1. By Lemma 8, σT1 ∼ T1. By
Lemma 9 and Proposition 2, T1 ∼ t(p)ξ for some ξ ∈ Z, hence T ∼ t(p)ξT ′

and S ∼ t(p)ξT ′Sf . From num(t(p)ξT ′Sf ) = num(T ′)num(t(p)ξSf ) it follows
that deg num(S) = deg num(t(p)ξT ′Sf ) = deg num(T ′) + deg num(t(p)ξSf ) ≥
deg num(t(p)ξSf ). Similarly, deg den(S) = deg den(T ′) + deg den(t(p)ξSf ) ≥
deg den(t(p)ξSf ), hence W (S) ≥ W (t(p)ξSf ). But (K, S) is an RCFw,σ of R and
(Kf/µ(p)ξ, t(p)ξSf ) is an RNFσ of R, so W (S) = W (t(p)ξSf ). This implies that
deg num(S) = deg num(t(p)ξSf ) and deg den(S) = deg den(t(p)ξSf ). Hence
deg num(T ′) = deg den(T ′) = 0, T ′ ∼ 1, and S ∼ t(p)ξSf . �

Now we will reduce the problem of finding an RCFw,σ of R as in (3) to an
instance of the following combinatorial optimization problem:
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Assignment problem

input: a computable linearly ordered Abelian group L;
a cost matrix [ci,j ]i∈[m],j∈[n] where ci,j ∈ L and m ≤ n;

output: an injection f : [m] → [n] such that its cost c(f) =
∑m

i=1 ci,f(i)

is minimal.

The assignment problem can be solved in time polynomial in max{m,n} by
linear programming techniques (see, e.g., (Papadimitriou and Steiglitz, 1982)),
hence an RCFw,σ of R can be computed efficiently for arbitrary R ∈ k(x) from
the orbital decomposition of R. In order to reduce the computation of RCFw,σ

to the assignment problem, we need to distinguish two cases – according to
whether p is non-periodic or semi-periodic.

Remark 4 In standard specifications of the assignment problem, L is a com-
putable subgroup (such as Z or Q) of the linearly ordered additive group R.
Allowing more general groups L – as we do above – does not affect algorithms
for solving the assignment problem, provided that subroutines for computing
addition and comparison of elements of L are available (which is implied by
computability of L). Nevertheless, if one wishes to model this more general
situation in a standard setting, one can often do so quite easily. For instance,
if L = Z × Z ordered lexicographically as in Example 3, one can replace each
weight ci,j = (ai,j , bi,j) ∈ Z×Z where ai,j , bi,j ≥ 0, by the weight ai,jN+bi,j ∈ Z
where N = max

{∑m
i=1 maxj∈[n] ai,j ,

∑m
i=1 maxj∈[n] bi,j

}
+ 1. Since the cost of

an injection f : [m] → [n] does not exceed (N − 1, N − 1), this mapping (repre-
senting evaluation of 2-digit numbers in base N) faithfully embeds the original
lexicographic order in Z× Z into the usual order in Z.

8.3 The non-periodic case

In this subsection, p ∈ k[x] is an irreducible non-periodic polynomial, hence
t(p) = 1. We denote δ := deg p. If (K, S) is an RCFw,σ of R, then by Theorem
5, K ∼ Kf and S ∼ Sf where f : [m] → [n] is an increasing injection. Thus it
only remains to define a cost matrix [ci,j ]i∈[m],j∈[n] so that the solution f of the
associated assignment problem will also minimize the weight of Sf .

Definition 6 Let R be as in (3), let f : [m] → [n] be an injection, and let w be
a weight function. We define the weight of f as w(f) := w(d1, d2) where

d1 = δ
∑

aj>bf(j)

(aj − bf(j)),

d2 = δ
∑

aj<bf(j)

(bf(j) − aj).

Lemma 10 Let f : [m] → [n] be an injection, and let w be a weight function.
Then W (Sf ) ≤ w(f). If f is increasing, then W (Sf ) = w(f).
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Proof: From (4), deg num(Sf ) ≤
∑m

j=1 deg u
(f)
j = d1 and deg den(Sf ) ≤∑m

j=1 deg v
(f)
j = d2, hence W (Sf ) = w(deg num(Sf ),deg den(Sf )) ≤

w(d1, d2) = w(f). If f is increasing then we claim that uj1 ⊥ vj2 for all
j1, j2 ∈ [m]. To prove this, assume that q ∈ k[x] is an irreducible common
factor of uj1 and vj2 . By definition of u

(f)
j and v

(f)
j it follows that aj1 > bf(j1),

aj2 < bf(j2), and there are i1, i2 such that q ∼ σi1p where bf(j1) ≤ i1 < aj1

and q ∼ σi2p where aj2 ≤ i2 < bf(j2). From σi1p ∼ σi2p we get σ|i1−i2|p ∼ p.
As p is non-periodic, this implies that i1 = i2. Hence aj2 < aj1 which im-
plies that j2 < j1, and bf(j1) < bf(j2) which implies that f(j1) < f(j2). As
f is increasing, it follows that j1 < j2, a contradiction. Thus in this case
deg num(Sf ) =

∑m
j=1 deg u

(f)
j = d1 and deg den(Sf ) =

∑m
j=1 deg v

(f)
j = d2,

whence W (Sf ) = w(f). �

Theorem 6 Let R be as in (3), w a weight function, g : [m] → [n] an injection
of minimum weight, and let (Kg, Sg) be the RNFσ of R induced by g. Then
((σλ/λ)Kg, Sg/λ), where λ = lc (Sg), is an RCFw,σ of R.

Proof: Let (K, S) be an RCFw,σ of R. By Theorem 5, there is an increasing
injection f : [m] → [n] such that K ∼ Kf and S ∼ Sf . Then by Lemma 10,
W (S) = W (Sf ) = w(f) ≥ w(g) ≥ W (Sg). Hence W (Sg) = W (S) is minimal
among all RNFσ’s of R, and the assertion follows because lc (Sg/λ) = 1. �

Theorem 6 shows that to compute an RCFw,σ of R where R is as in (3), it
suffices to find an injection f : [m] → [n] of minimum weight. This can be done
by solving the assignment problem with the cost matrix

ci,j =
{

w(ai − bj , 0), ai > bj ,
w(0, bj − ai), ai < bj .

(8)

Indeed, the cost c(f) of f is then given by

c(f) =
∑

ai>bf(i)

w(ai − bf(i), 0) +
∑

ai<bf(i)

w(0, bf(i) − ai) = w

(
d1

δ
,
d2

δ

)
.

As w is additive, δ · c(f) = w(d1, d2) = w(f), hence injections of minimum cost
are also injections of minimum weight, and vice versa.

Example 7 Let σ = Q and assume that q is transcendental over Q ⊆ k. Let

p1(x) = q−3 x + q2, p2(x) = q−4 x + q − q−1

and R = R1R2 where

R1 =
σ3p1 σ5p1

p1 σp2
1 σ9p1

, R2 =
p2 σp2 σ6p2 σ15p2

σ3p2 σ5p2
.

Notice that because q is transcendental over Q, p1 and p2 are non-periodic,
and p1/p2 is σ-reduced. Since p1 and p2 are irreducible, R1R2 is an orbital

18
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decomposition of R. For i = 1, 2, 3, 4, the algorithm suggested by Theorem 6
finds that ((σλi/λi)Ki, Si/λi) where λi = lc (Si) and

K1 =
p2 σp2

p1 σ9p1
, S1 = σp1 σ2p1 σ5p2

∏4
i=1 σip1

∏14
j=3 σjp2;

K2 =
σ6p2 σ15p2

p1 σp1
, S2 =

σp1 σ2p1

σp2 σ2p2

∏8
i=5 σip1

∏4
j=0 σjp2

;

K3 =
p2 σ15p2

p1 σ9p1
, S3 =

σp1 σ2p1 σ5p2

∏4
i=1 σip1

σp2 σ2p2
;

K4 =
p2 σ15p2

p1 σp1
, S4 =

σp1 σ2p1 σ5p2

σp2 σ2p2

∏8
i=5 σip1

;

is an RCFi,σ of R. The weights of the shells are given in the following table:

W1 W2 W3 W4

S1 (0,19) (19, 0) (19, 0) (19, 19)
S2 (11, 2) (2,11) (13, 11) (13, 2)
S3 (2, 7) (7, 2) (9,2) (9, 7)
S4 (6, 3) (3, 6) (9, 6) (9,3)

In each column, the lexicographically minimum weight is shown in boldface.

8.4 The semi-periodic case

In this subsection, p ∈ k[x] is an irreducible semi-periodic polynomial. If R
is as in (3) and π̃(p) = 1, then trivially (R, 1) is an RCFw,σ of R for any
weight function w, hence we can assume that π̃(p) > 1. Denote δ := deg p and
ρ := π̃(p). If (K, S) is an RCFw,σ of R, then by Theorem 5, K ∼ Kf and
S ∼ t(p)ξSf where f : [m] → [n] is an increasing injection, t(p) is the total
span of p, and ξ ∈ Z. Here it can happen that W (t(p)ξSf ) < W (Sf ) for ξ = ±1
because of cancellations, hence it is not enough to consider merely those RNFσ’s
which are induced by injections. For example, if R = σap/σbp where a < b, then

Sf =
1∏b−1

i=a σip
, t(p)Sf =

a+ρ−1∏
i=b

σi mod ρp,

so we choose between Sf and t(p)Sf , and take the one with smaller weight.
Therefore instead of plain injections as in the non-periodic case, we consider
signed injections which are pairs (f, s) where f : [m] → [n] is an injection and
s : [m] → {−1,+1} is a sign function. We define the RNFσ of R induced by
(f, s) roughly in the following way: The kernel depends only on f and is defined
in the same way as in the non-periodic case. The contribution from σaip/σbf(i)p
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to the shell is initially also defined in the same way as in the non-periodic case,
but if s(j) = −1, this contribution is divided by t(p) (in case it is a polynomial)
or multiplied by t(p) (in case it is the reciprocal of a polynomial). As it turns out,
it is again possible to define an appropriate cost matrix such that an RCFw,σ

of R can be obtained from the solution of the associated assignment problem.

Definition 7 Let m,n be nonnegative integers such that m ≤ n. The pair (f, s)
is a signed injection if f : [m] → [n] is an injection and s : [m] → {−1,+1}.

Theorem 7 Let R be as in (3), and let (f, s) be a signed injection. Define

r(j) =
{

ρ, s(j) = −1,
0, s(j) = +1,

and

Kf,s :=
λ · µ(p)τ∏

j /∈f([m]) σbj p
, Sf,s :=

m∏
j=1

u
(f,s)
j

v
(f,s)
j

(9)

where µ(p) is defined in (2),

τ = |{j ∈ s−1(−1); aj > bf(j)}| − |{j ∈ s−1(−1); aj < bf(j)}|,

u
(f,s)
j =

{ ∏aj+r(j)−1
i=bf(j)

σi mod ρp, s(j) · (aj − bf(j)) > 0,

1, otherwise,

v
(f,s)
j =

{
1, s(j) · (aj − bf(j)) > 0,∏bf(j)+r(j)−1

i=aj
σi mod ρp, otherwise.

Then (Kf,s, Sf,s) ∈ RNFσ(R).

Proof: Kf,s is trivially σ-reduced.
Assume that s(j) · (aj − bf(j)) > 0. If r(j) = 0 then u

(f,s)
j =

∏aj−1
i=bf(j)

σip,
and

σu
(f,s)
j

u
(f,s)
j

=
σaj p

σbf(j)p
.

If r(j) = ρ then u
(f,s)
j =

∏ρ−1
i=bf(j)

σip ·
∏aj−1

i=0 σip, and

σu
(f,s)
j

u
(f,s)
j

=
σρp

σbf(j)p
· σaj p

p
=

σaj p

σbf(j)p
· µ(p).

Hence

σu
(f,s)
j

u
(f,s)
j

=

{
σaj p

σ
bf(j)p

· µ(p)r(j)/ρ, s(j) · (aj − bf(j)) > 0

1, otherwise.
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Similarly we compute

v
(f,s)
j

σv
(f,s)
j

=

{
1, s(j) · (aj − bf(j)) > 0

σaj p

σ
bf(j)p

· µ(p)−r(j)/ρ, otherwise.

Therefore

σSf,s

Sf,s
=

m∏
j=1

σu
(f,s)
j

u
(f,s)
j

·
v
(f,s)
j

σv
(f,s)
j

=
m∏

j=1

σaj p

σbf(j)p
· µ(p)−τ ,

hence Kf,s · σSf,s/Sf,s = R. �

Remark 5 We call (Kf,s, Sf,s) defined in (9) the RNFσ induced by (f, s).

Definition 8 Let R be as in (3), let (f, s) be a signed injection, and let w be
a weight function. We define the weight of (f, s) as w(f, s) := w(d1, d2) where

d1 = δ
∑

s(j)·(aj−bf(j))>0

(aj + r(j)− bf(j)),

d2 = δ
∑

s(j)·(aj−bf(j))<0

(bf(j) + r(j)− aj),

and r(j) is defined in Theorem 7.

Lemma 11 Let (f, s) be a signed injection, and let w be a weight function.
Then W (Sf,s) ≤ w(f, s).

Proof: From (9), deg num(Sf,s) ≤
∑m

j=1 deg u
(f,s)
j = d1 and deg den(Sf,s) ≤∑m

j=1 deg v
(f,s)
j = d2, hence W (Sf,s) = w(deg num(Sf,s),deg den(Sf,s)) ≤

w(d1, d2) = w(f, s). �

Definition 9 A signed injection (f, s) is non-crossing if W (Sf,s) = w(f, s).

Lemma 12 Let (f, s) be a signed injection. Then there is a non-crossing signed
injection (f ′, s′) which induces the same RNFσ as (f, s).

Proof: If
∏m

j=1 u
(f,s)
j ⊥

∏m
l=1 v

(f,s)
l then (f, s) is non-crossing and we can take

f ′ = f, s′ = s. Otherwise there are j 6= l ∈ [m] such that u
(f,s)
j and v

(f,s)
l

share a nontrivial common factor. This means that s(j) · (aj − bf(j)) > 0,
s(l) · (al − bf(l)) < 0, and

Q(j, l) :=
u

(f,s)
j

v
(f,s)
j

·
u

(f,s)
l

v
(f,s)
l

=

∏aj+r(j)−1
i=bf(j)

σi mod ρp∏bf(l)+r(l)−1

i=al
σi mod ρp

.

There are four ways in which the intervals I := [bf(j), aj + r(j) − 1] ∩ Z and
J := [al, bf(l) + r(l)− 1] ∩ Z can intersect when projected into Z/ρZ:
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(a) one of I, J is contained in the other,

(b) I and J partially overlap,

(c) I ∩ J = ∅ but when projected into Z/ρZ one is contained in the other,

(d) I ∩ J = ∅ but when projected into Z/ρZ they partially overlap.

In each of these cases there are two subcases as to the rôles played by I and J .
Hence altogether we distinguish eight subcases:

(a1) bf(j) < al < bf(l) + r(l) < aj + r(j):

This is only possible if r(l) = 0, or r(j) = r(l) = ρ. Then

Q(j, l) =
al−1∏

i=bf(j)

σi mod ρp ·
aj+r(j)−1∏

i=bf(l)+r(l)

σi mod ρp.

(a2) al < bf(j) < aj + r(j) < bf(l) + r(l):

This is only possible if r(j) = 0, or r(j) = r(l) = ρ. Then

Q(j, l) =
1∏bf(j)−1

i=al
σi mod ρp ·

∏bf(l)+r(l)−1

i=aj+r(j) σi mod ρp
.

(b1) bf(j) < al < aj + r(j) < bf(l) + r(l):

This is only possible if r(j) = 0, or r(j) = r(l) = ρ. Then

Q(j, l) =

∏al−1
i=bf(j)

σi mod ρp∏bf(l)+r(l)−1

i=aj+r(j) σi mod ρp
.

(b2) al < bf(j) < bf(l) + r(l) < aj + r(j):

This is only possible if r(l) = 0, or r(j) = r(l) = ρ. Then

Q(j, l) =

∏aj+r(j)−1

i=bf(l)+r(l) σi mod ρp∏bf(j)−1

i=al
σi mod ρp

.

In subcases (c1) and (d1) we have bf(j) < aj + r(j) < al < bf(l) + r(l) and
bf(j) + ρ < bf(l) + r(l). This is only possible if r(j) = 0 and r(l) = ρ, hence
al > bf(l) > bf(j).

(c1) If aj < bf(l) then

Q(j, l) =
1∏bf(j)+ρ−1

i=al
σi mod ρp ·

∏bf(l)−1

i=aj
σi mod ρp

.
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(d1) If aj > bf(l) then

Q(j, l) =

∏aj−1
i=bf(l)

σi mod ρp∏bf(j)+ρ−1

i=al
σi mod ρp

.

In subcases (c2) and (d2) we have al < bf(l) + r(l) < bf(j) < aj + r(j)
and al + ρ < aj + r(j). This is only possible if r(j) = ρ and r(l) = 0, hence
al < aj < bf(j).

(c2) If aj > bf(l) then

Q(j, l) =
al+ρ−1∏
i=bf(j)

σi mod ρp ·
aj−1∏

i=bf(l)

σi mod ρp.

(d2) If aj < bf(l) then

Q(j, l) =

∏al+ρ−1
i=bf(j)

σi mod ρp∏bf(l)−1

i=aj
σi mod ρp

.

Define f1 : [m] → [n] by f1(x) = f(x) for x 6= j, l, f1(j) = f(l), f1(l) = f(j).
Define s1 : [m] → {−1,+1} by s1(x) = s(x) for x 6= j, l, and

• in cases (a), (b):

s1(j) =
{

+1, s(j) = s(l),
−1, otherwise,

s1(l) = +1;

• in cases (c), (d):

s1(j) = +1,

s1(l) = −1.

Then it is straightforward to check that (f1, s1) is a signed injection which in-
duces the same RNFσ as (f, s), and that deg gcd

(∏m
j=1 u

(f1,s1)
j ,

∏m
l=1 v

(f1,s1)
l

)
<

deg gcd
(∏m

j=1 u
(f,s)
j ,

∏m
l=1 v

(f,s)
l

)
. Iterating this procedure, we eventually arrive

at a signed injection (f ′, s′) which induces the same RNFσ as (f, s), and is such
that

∏m
j=1 u

(f ′,s′)
j ⊥

∏m
l=1 v

(f ′,s′)
l . Hence (f ′, s′) is non-crossing. �

Lemma 13 Let R be as in (3), and let (K, S) be an RCFw,σ of R. Then there
is a non-crossing signed injection (f, s) such that W (S) = w(f, s).

Proof: By Theorem 5, there are an increasing injection f : [m] → [n] and
ξ ∈ Z such that K ∼ Kf and S ∼ t(p)ξSf . Let Sf =

∏m
j=1 u

(f)
j /v

(f)
j as

in (4), and assume that ξ ≥ 0 (if ξ < 0 the proof is analogous). Denote
J = {j ∈ [m]; aj < bf(j)} and N = |J |. We distinguish two cases:
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a) ξ > N : In this case, t(p)ξSf equals t(p)P for some polynomial P ∈ k[x].
Then (ηKf , P ) ∈ RNFσ(R) where η = (K/Kf )σ(S/P )/(S/P ). Since
deg P < deg(t(p)P ) = deg num(S), we have W (P ) = w(deg P, 0) <
w(deg num(S),deg den(S)) = W (S). So this case is impossible.

b) ξ ≤ N : W.l.g. assume that aj < bf(j) for j ∈ [N ]. Then

t(p)ξSf =
ξ∏

j=1

t(p)

v
(f)
j

·
m∏

j=ξ+1

u
(f)
j

v
(f)
j

=
ξ∏

j=1

∏ρ−1
i=0 σip∏bf(j)−1

i=aj
σip

·
m∏

j=ξ+1

u
(f)
j

v
(f)
j

=
ξ∏

j=1

aj+ρ−1∏
i=bf(j)

σi mod ρp ·
m∏

j=ξ+1

u
(f)
j

v
(f)
j

= Sf,s

where

s(j) =
{
−1, 1 ≤ j ≤ ξ,
+1, ξ + 1 ≤ j ≤ m.

By Lemma 12, there is a non-crossing signed injection (f ′, s′) which induces the
same RNFσ as (f, s). Hence W (S) = W (t(p)ξSf ) = W (Sf,s) = W (Sf ′,s′) =
w(f ′, s′). �

Theorem 8 Let R be as in (3), let w be a weight function, let (g, z) be a signed
injection of minimum weight, and let (Kg,z, Sg,z) be the RNFσ of R induced by
(g, z). Then ((σλ/λ)Kg,z, Sg,z/λ) where λ = lc (Sg,z) is an RCFw,σ of R.

Proof: Let (K, S) be an RCFw,σ of R. By Lemma 13, there is a signed injection
(f, s) such that W (S) = w(f, s). By minimality of (g, z), we have w(f, s) ≥
w(g, z), and by Lemma 11, w(g, z) ≥ W (Sg,z), so W (S) ≥ W (Sg,z). Hence
W (Sg,z) = W (S) is minimal among all RNFσ’s of R, and the assertion follows
because lc (Sg,z/λ) = 1. �

Theorem 8 shows that to compute an RCFw,σ of R where R is as in (3), it
suffices to find a signed injection of minimum weight. By additivity of w, we
have

min
(f,s)

w(f, s) = min
(f,s)

w(d1, d2) = min
(f,s)

δ · w

(
m∑

i=1

αi,
m∑

i=1

βi

)

= δ ·min
(f,s)

m∑
i=1

w (αi, βi) = δ ·min
f

min
s

m∑
i=1

w (αi, βi)

where

(αi, βi) =
{

(ai + r(i)− bf(i), 0), s(i) · (ai − bf(i)) > 0,
(0, bf(i) + r(i)− ai), otherwise.

The values of s can be chosen independently of each other, therefore

min
s

m∑
i=1

w (αi, βi) =
m∑

i=1

min
s

w (αi, βi) =
m∑

i=1

min (ξi, ηi)
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where

(ξi, ηi) =
(
w(αi, βi)|s(i)=+1, w(αi, βi)|s(i)=−1

)
=

{ (
w(ai − bf(i), 0), w(0, bf(i) + ρ− ai)

)
, ai > bf(i),(

w(0, bf(i) − ai), w(ai + ρ− bf(i), 0)
)
, ai < bf(i).

Thus min(f,s) w(f, s) = δ ·minf

∑m
i=1 ci,f(i) where

ci,j =
{

min (w(ai − bj , 0), w(0, bj + ρ− ai)) , ai > bj ,
min (w(0, bj − ai), w(ai + ρ− bj , 0)) , ai < bj .

(10)

Consequently, a signed injection (f, s) of minimum weight can be found in the
following way. By solving the assignment problem with cost matrix (10) we
obtain f , and s is determined by f : if ai > bf(i) and w(0, bf(i) + ρ − ai) <
w(ai − bf(i), 0), or if ai < bf(i) and w(ai + ρ − bf(i), 0) < w(0, bf(i) − ai), then
s(i) = −1. Otherwise s(i) = +1.

Example 8 Let p(x) = x and σx = ωx + 1 where ω is a primitive 22nd root of
unity. Then σ22p = p, and p is semi-periodic with semi-period ρ = π̃(p) = 22.

Let R be as in Example 4. Then ((σλi/λi)Ki, Si/λi) where λi = lc (Si) and

K1 =
1

p σ6p σ12p
, S1 = σ2p

∏9
i=7 σip

∏15
i=13 σip σ19p

(
σ20p

)2
σ21p;

K2 =
1

σ7p σ13p σ20p
, S2 =

1
p2 σp

∏5
i=3 σip

∏11
i=10 σip

∏18
i=16 σip σ21p

;

K3 =
1

σ6p σ7p σ19p
, S3 =

σ2p σ13p σ14p σ15p σ20p

p σ10p σ11p
;

K4 =
1

σ6p σ7p σ13p
, S4 =

σ2p σ20p

p σ10p σ11p σ16p σ17p σ18p
;

is an RCFi,σ of R, for i = 1, 2, 3, 4. The weights W1, W2, W3, W4 of S1, S2, S3,
S4 are given in the following table:

W1 W2 W3 W4

S1 (0,11) (11, 0) (11, 0) (11, 11)
S2 (12, 0) (0,12) (12, 12) (12, 0)
S3 (3, 5) (5, 3) (8,3) (8, 5)
S4 (6, 2) (2, 6) (8, 6) (8,2)

In each column, the lexicographically minimum weight is shown in boldface. It
is instructive to compare this table with the one in Example 4.

Proposition 3 Let p ∈ k[x] be irreducible semi-periodic, let R ∈ k(x) be p-
orbital, and let (K1, S1) resp. (K2, S2) be an RCF1,σ resp. an RCF2,σ of R.
Then S1 and 1/S2 are polynomials.
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Proof: In the case of RCF1,σ, the cost matrix (10) is

ci,j =
{

(0, ai − bj), ai > bj ,
(0, ai + ρ− bj), ai < bj ,

hence W (S1) = (deg den(S1),deg num(S1)) is of the form (0, u) for some u ∈ Z,
u ≥ 0. – Similarly, in the case of RCF2,σ, the cost matrix (10) is

ci,j =
{

(0, bj + ρ− ai), ai > bj ,
(0, bj − ai), ai < bj ,

hence W (S2) = (deg num(S2),deg den(S2)) is of the form (0, v) for some v ∈ Z,
v ≥ 0. �

9 Uniqueness of rational (w, σ)-canonical forms

Definition 10 Let f1, f2 : [m] → [n] be two increasing injections, and s ≥ 1.
A sequence of integers 〈i1, i2, . . . , is〉, 1 ≤ i1 < i2 < · · · < is ≤ m, is an
(f1, f2)-chain if

1. f1(ij) < f2(ij), for 1 ≤ j ≤ s,

2. f1(ij+1) = f2(ij), for 1 ≤ j ≤ s− 1.

Such a chain is maximal if f1(i1) /∈ f2([m]) and f2(is) /∈ f1([m]).

Lemma 14 If there is an i ∈ [m] such that f1(i) < f2(i) then [m] contains a
maximal (f1, f2)-chain.

Proof: Let 〈i1, i2, . . . , is〉 be an (f1, f2)-chain. If it is not maximal then either
there is i0 < i1 such that f2(i0) = f1(i1) or is+1 > is such that f1(is+1) = f2(is).
In the former case, f1(i0) < f1(i1) = f2(i0), so 〈i0, i1, . . . , is〉 is a larger (f1, f2)-
chain. In the latter case, f1(is+1) = f2(is) < f2(is+1), so 〈i1, . . . , is, is+1〉 is a
larger (f1, f2)-chain. Thus every chain which is not maximal can be extended
to a maximal chain. In particular, if f1(i) < f2(i) then 〈i〉 is an (f1, f2)-chain
which is contained in some maximal chain. �

Proposition 4 Let f1, f2 : [m] → [n], f1 6= f2, be two increasing injections
such that c(f1) = c(f2) where c is the cost matrix (8). Then there is an injection
f : [m] → [n] such that c(f) < c(f1).

Proof: Let i ∈ [m] be such that f1(i) 6= f2(i). W.l.g. assume that f1(i) < f2(i)
(otherwise interchange the rôles of f1 and f2). By Lemma 14, [m] contains a
maximal (f1, f2)-chain 〈i1, i2, . . . , is〉. Define g, h : [m] → [n] by

g(x) =
{

f1(x), x 6= i1, i2, . . . , is,
f2(x), otherwise,

h(x) =
{

f2(x), x 6= i1, i2, . . . , is,
f1(x), otherwise.
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We claim that g and h are injective. Indeed, if g is not injective then f1(x) =
f2(ij) for some x 6= i1, . . . , is and j ∈ [s]. Since f2(ij) = f1(ij+1) for 1 ≤ j ≤
s− 1, this is only possible if j = s. But then f2(is) = f1(x) ∈ f1([m]), contrary
to the maximality of 〈i1, i2, . . . , is〉. – In an analogous way we can see that h is
injective.

The cost of g respectively h is

c(g) = γ − α, c(h) = γ + α,

where γ = c(f1) = c(f2) and

α =
s∑

j=1

(cij ,f1(ij) − cij ,f2(ij)).

We wish to show that α 6= 0. By (8), we can write cij ,f1(ij)−cij ,f2(ij) = w(uj , vj)
for some uj , vj ∈ Z. Then α =

∑s
j=1 w(uj , vj) = w(u, v) where u =

∑s
j=1 uj

and v =
∑s

j=1 vj . Since bf1(ij) < bf2(ij), it suffices to distinguish three cases:

1. If aij
< bf1(ij) < bf2(ij) then, by (8), uj = 0 and vj = bf1(ij) − bf2(ij) < 0.

2. If bf1(ij) < aij
< bf2(ij) then, by (8), uj = aij

− bf1(ij) > 0 and vj =
aij − bf2(ij) < 0.

3. If bf1(ij) < bf2(ij) < aij
then, by (8), uj = bf2(ij) − bf1(ij) > 0 and vj = 0.

Hence u =
∑s

j=1 uj ≥ 0, v =
∑s

j=1 vj ≤ 0, and at least one of these inequalities
is strict. As w is injective, it follows that α = w(u, v) 6= w(0, 0) = 0.

Now define

f =
{

g, α > 0,
h, α < 0.

Then c(f) = γ − |α| < γ. �

Corollary 4 Let R ∈ k(x) be as in (3) where p ∈ k[x] is non-periodic. Then R
has a unique RCFw,σ for any weight function w.

Proof: Existence of RCFw,σ has already been established (see Remark 2).
To prove uniqueness, assume that (K1, S1) and (K2, S2) are two distinct

RCFw,σ’s of R. By Theorem 5, (K1, S1) and (K2, S2) arise from increasing
injections f1, f2 : [m] → [n], respectively. By Lemma 10, w(f1) = W (S1) =
W (S2) = w(f2), hence c(f1) = c(f2) where c is the cost matrix (8). By Propo-
sition 4, there is an injection f : [m] → [n] such that c(f) < c(f1). But then
w(f) < w(f1), which is impossible. �
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10 An application: Succinct representation of
σ-hypergeometric terms

In this section we assume that σ is a k-automorphism12 of k(x), which implies
that σR(x) = R(σx) for all R ∈ k(x). In addition, we assume that the mapping
˜: Z → k defined by ñ = (σnx) |x=1, is injective.

Definition 11 A sequence t = 〈tn〉n≥0 of elements of k is a σ-hypergeometric
term if tn 6= 0 for all large enough n, and there are polynomials p, q ∈ k[x]\{0},
p⊥ q, such that

p(ñ)tn+1 = q(ñ)tn for all n ≥ 0,

where ñ = (σnx) |x=1. The quotient q/p ∈ k(x)∗ is called the certificate of t.

A sequence 〈sn〉n≥n0 with n0 ∈ Z \ {0} is also called a σ-hypergeometric term if
the sequence t = 〈tn〉n≥0 where tn = sn+n0 satisfies Definition 11.

Proposition 5 The certificate of a σ-hypergeometric term is unique.

Proof: By the assumptions on t and ˜, both tn and p(ñ) are nonzero for all large
enough n, hence q(ñ)/p(ñ) = tn+1/tn for such n. Thus any two certificates of t
agree infinitely often, and hence are equal. �

Theorem 9 Let F,G ∈ k(x)∗ be rational functions. For each n ≥ 0, let

Tn = σnG ·
n−1∏
i=0

σiF. (11)

If den(Tn)(1) 6= 0 for all n ≥ 0 and num(Tn)(1) 6= 0 for all large enough n, then
the sequence t = 〈tn〉n≥0 defined by

tn = Tn(1)

is a σ-hypergeometric term with certificate H = F · σG/G.

Proof: Denote p = den(H), q = num(H), and hi = σiH. Then

Tn+1

Tn
=

σn+1G

σnG
· σnF = σnH = hn,

therefore den(hn)Tn+1 = num(hn)Tn. As den(hn)(1) = den(σnH(x))|x=1 =
den(H(σnx))|x=1 = den(H)(σnx)|x=1 = p(σnx)|x=1 = p((σnx)|x=1) = p(ñ),
and similarly num(hn)(1) = q(ñ), it follows that p(ñ)tn+1 = q(ñ)tn. �

Definition 12 Let F , G and t be as in Theorem 9. Then we call 〈F,G〉 a mul-
tiplicative decomposition of t. If deg num(F ) ≤ deg num(F ′) and deg den(F ) ≤
deg den(F ′) for all multiplicative decompositions 〈F ′, G′〉 of t, then 〈F,G〉 is a
minimal multiplicative decomposition of t.

12In this case, we could also restrict our attention to the two special cases σx = x + b and
σx = ax, for if σx = ax + b and a 6= 1, the new variable y = x + b/(a− 1) satisfies σy = ay.
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Example 9 Let σx = x + 1. Then ñ = (x + n)|x=1 = n + 1. Let p ∈ k[x] \ {0}
be a polynomial such that p(0) 6= 0, and let the sequence t = 〈tn〉n≥0 be
defined by tn = p(n). Then p(ñ − 1)tn+1 = p(ñ)tn for all n ≥ 0, so t is a σ-
hypergeometric term. Since (σnp(x−1)·

∏n−1
i=0 σi1)|x=1 = p(x+n−1)|x=1 = p(n)

and (σnp(0) ·
∏n−1

i=0 σi(p(x)/p(x − 1)))|x=1 = (p(0) ·
∏n−1

i=0 (p(x + i)/p(x + i −
1)))|x=1 = (p(0) · p(x + n − 1)/p(x − 1))|x=1 = p(n), both (1, p(x − 1)) and
(p(x)/p(x − 1), p(0)) are multiplicative decompositions of t. Note that in the
latter case, some of the factors in

∏n−1
i=0 (p(x + i)/p(x + i − 1)) may well be

undefined at x = 1, but this represents no obstacle since the product itself is
defined at x = 1.

Definition 13 Let w be a weight function, and let 〈F,G〉 be a minimal multi-
plicative decomposition of t. If W (G) ≤ W (G′) for all minimal multiplicative
decompositions 〈F ′, G′〉 of t, then 〈F,G〉 is a w-minimal multiplicative decom-
position of t.

Theorem 10 Let t = 〈tn〉n≥0 be a σ-hypergeometric term such that t0 6= 0, with
multiplicative decomposition 〈F,G〉 and certificate H = F · σG/G. If (K, S) ∈
RNFσ(H) is such that S(1) ∈ k∗, and if S′ = S ·G(1)/S(1), then

(i) 〈K, S′〉 is a minimal multiplicative decomposition of t;

(ii) if, in addition, (K, S) is an RCFw,σ of H for some weight function w,
then 〈K, S′〉 is a w-minimal multiplicative decomposition of t.

Proof: We have

Tn = σnG ·
n−1∏
i=0

σiF = G ·
n−1∏
i=0

σi

(
F · σG

G

)

= G ·
n−1∏
i=0

σi

(
K · σS

S

)
=

G

S
· σnS ·

n−1∏
i=0

σiK.

By assumption, G(1) = t0 ∈ k∗ and S(1) ∈ k∗. Therefore

tn = Tn(1) =
G(1)
S(1)

·

(
σnS ·

n−1∏
i=0

σiK

)
(1) =

(
σnS′ ·

n−1∏
i=0

σiK

)
(1),

hence 〈K, S′〉 is a multiplicative decomposition of t.

(i) Let 〈F ′, G′〉 be any multiplicative decomposition of t. Then by Theorem 9
and Proposition 5, H = F ′ · σG′/G′. As (K, S) ∈ RNFσ(H), Corollary 3
implies that deg num(K) ≤ deg num(F ′) and deg den(K) ≤ deg den(F ′).
Hence 〈K, S′〉 is a minimal multiplicative decomposition of t.

(ii) Let 〈F ′, G′〉 be any minimal multiplicative decomposition of t. By (i),
〈K, S′〉 is a minimal multiplicative decomposition of t as well, there-
fore deg num(F ′) = deg num(K) and deg den(F ′) = deg den(K). As
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(K, S) ∈ RNFσ(H), Corollary 3 implies that deg num(F ′) ≤ deg num(F ′′)
and deg den(F ′) ≤ deg den(F ′′) for all F ′′, G′′ ∈ k∗ such that H =
F ′′ ·σG′′/G′′. Hence, by Corollary 3, (F ′, G′) ∈ RNFσ(H). Since (K, S) is
an RCFw,σ of H, it follows that W (S′) = W (S) ≤ W (G′), and so 〈K, S′〉
is a w-minimal multiplicative decomposition of t. �

Example 10 Let σx = qx where q ∈ k∗ is transcendental over Q ⊆ k. In
this case, ñ = (σnx)|x=1 = qn. Let t be a σ-hypergeometric term (called
q-hypergeometric in this case) with multiplicative decomposition 〈F,G〉. By
factoring F into linear factors over k̄, we may be able to avoid the explicit use
of the product operator in (11), and instead express t entirely by means of the
q-Pochhammer symbol (z; q)n defined for z ∈ k and n ∈ Z, n ≥ 0, by

(z; q)n =
n−1∏
i=0

(1− zqi).

Consider the q-hypergeometric term t with multiplicative decomposition 〈R, 1〉
where R is given in Example 7. Then

tn = Tn(1) =
n−1∏
j=0

σjR(x)|x=1 =
n−1∏
j=0

R(σjx|x=1) =
n−1∏
j=0

R(qj)

=
n−1∏
j=0

(qj+q2)(qj+1)(qj+q5−q3)(qj+q4−q2)(q3qj+q2−1)(q12qj+q2−1)
(qj+q5)(qj+q4)2(q4qj+1)(qj+q2−1)(q2qj+q2−1)

,

which can be expressed in terms of q-Pochhammer symbols as

tn = αn ·

(
− 1

q2 ; q
)

n
(−1; q)n

(
1

q3−q5 ; q
)

n

(
1

q2−q4 ; q
)

n

(
q3

1−q2 ; q
)

n

(
q12

1−q2 ; q
)

n(
− 1

q5 ; q
)

n

(
− 1

q4 ; q
)2

n
(−q4; q)n

(
1

1−q2 ; q
)

n

(
q2

1−q2 ; q
)

n

where α = (q2 − 1)2/q6 ∈ k∗.
Note that the number of q-Pochhammer symbols appearing in the above

expression (counted with multiplicities) is deg num(R) + deg den(R) = 12. By
replacing decomposition 〈R, 1〉 with some decomposition 〈K, S〉 where (K, S) ∈
RNFσ(R) and S(1) = 1, we can reduce the number of q-Pochhammer symbols
to its minimal possible value deg num(K) + deg den(K) = 4, at the reasonable
price of introducing the rational-function factor S(qn). Furthermore, if (K, S)
is an RCFw,σ of R for some weight function w, then, in addition, W (S) will be
minimal among all such representations of t.

Thus for the term t given above, and for the weight functions w1, w2, w3, w4

from Example 3, we obtain the following succinct representations of t:

tn =
αn

S1(1)
· S1(qn) ·

(
1

q3−q5 ; q
)

n

(
1

q2−q4 ; q
)

n(
− 1

q5 ; q
)

n
(−q4; q)n
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=
αn

S2(1)
· S2(qn) ·

(
q3

1−q2 ; q
)

n

(
q12

1−q2 ; q
)

n(
− 1

q5 ; q
)

n

(
− 1

q4 ; q
)

n

=
αn

S3(1)
· S3(qn) ·

(
q12

1−q2 ; q
)

n

(
1

q3−q5 ; q
)

n(
− 1

q5 ; q
)

n
(−q4; q)n

=
αn

S4(1)
· S4(qn) ·

(
1

q3−q5 ; q
)

n

(
q12

1−q2 ; q
)

n(
− 1

q5 ; q
)

n

(
− 1

q4 ; q
)

n

,

where the rational functions Si, for i = 1, 2, 3, 4, are given in Example 7. Note
that in each of the above representations, the number of q-Pochhammer symbols
is four (which is the least possible), and the weight Wi(Si) is minimal among
all representations of t containing no more than four q-Pochhammer symbols,
for i = 1, 2, 3, 4.

11 Questions for further research

1. Our approach to the computation of RCFw,σ’s is based on orbital decom-
position which requires polynomial facorization. In special cases (such as
computing RCF1,σ and RCF2,σ when σ = E) algorithms are known which
require only gcd and resultant computations (Abramov, Le and Petkovšek,
2003, Section 4.5). Is there an algorithm for computing RCFw,σ, based
perhaps on a suitable generalization of the greatest factorial factorization
of (Paule, 1995), which avoids polynomial factorization?

2. The problem solved by the (hypothetical) algorithm HSO of Section 8.1
is the homogeneous case (β = 1) of the σ-orbit problem13 of (Abramov
and Bronstein, 2002). In an analogous way, an algorithm for solving the
σ-orbit problem can also be used to construct algorithm SE of Section 8.1
in the case σx = ax. Based on (Karr, 1981, Thms. 4 and 5), (Abramov
and Bronstein, 2002) give an algorithm for solving the σ-orbit problem
in towers of Π-extensions over certain commonly occurring base fields. In
which other fields is this important problem solvable?

3. Is RCFw,σ(R) unique even if R contains irreducible factors which are semi-
periodic with respect to σ?
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of the necessary algorithmic prerequisites in the revised version, as well as to
Prof. Peter Paule for his encouragement and great patience while waiting for
the revised version. We are especially indebted to our late colleague Manuel
Bronstein whose scholarly work in (Bronstein, 2000) paved the way for our
investigations.
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