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Abstract

Extending results of Wyser, we determine formulas for the equivariant cohomology
classes of closed orbits of certain families of spherical subgroups of the general linear
group on the flag variety. Combining this with a slight extension of results of Can, Joyce
and Wyser, we arrive at a family of polynomial identities which show that certain explicit
sums of Schubert polynomials factor as products of linear forms.
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1 Introduction

Suppose that G is a connected reductive algebraic group over C. Suppose that B O T are
a Borel subgroup and a maximal torus of G, respectively, W is the Weyl group, and let t
denote the Lie algebra of T'. By a classical theorem of Borel [1], the cohomology ring of
G /B with rational coefficients is isomorphic to the coinvariant algebra Q[t*]/I", where
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IV denotes the ideal generated by homogeneous W -invariant polynomials of positive de-
gree. Any subvariety Y of G/ B defines a cohomology class [Y] in H*(G/B). It is then
natural to ask for a polynomial in Q[t*] which represents [Y]. In this paper, for certain fam-
ilies of subvarieties of certain G/ B, we approach and answer this question in two different
ways. Relating the two answers leads in the end to our main result, Theorem 4.1, which,
roughly stated, says that certain non-negative linear combinations of Schubert polynomials
factor completely into linear forms.

Our group of primary interest is G = GL,,, with B its Borel subgroup of lower-
triangular matrices, and T its maximal torus of diagonal matrices. In this case, there
is a canonical basis z1,...,z, of t* that correspond to the Chern classes of the tauto-
logical quotient line bundles on the variety of complete flags G/B. Let Z,, denote the
center of GL,,, consisting of diagonal scalar matrices. Let O,, denote the orthogonal
subgroup of GL,,, and let Sp,,, denote the symplectic subgroup of GL3,. Denote by
GO,, (resp. GSp,,,) the central extension Z,, O,, (resp. Z2,Sp,,,). For any ordered se-
quence of positive integers p = (u1, ..., us) that sum to n, GL,, has a Levi subgroup
L, :=GL,, x---x GL,_, as well as a parabolic subgroup P, = L, x U, containing
B, where U, denotes the unipotent radical of P,.

The subgroup

H,:= (GO, x---xGO,,)x U,

of GL,, is spherical, meaning that it acts on GL,, /B with finitely many orbits. Moreover,
there is a unique closed H,,-orbit Y, on GL,, /B, which is our object of primary interest.

The reason for our interest in this family of orbits is that they correspond to the closed
B-orbits on the various G-orbits of the wonderful compactification of the homogeneous
space GL,,/GO,,. This homogeneous space is affine and symmetric, and it is classically
known as the space of smooth quadrics in P*~!. Its wonderful compactification, classically
known as the variety of complete quadrics [9, 13], is a G-equivariant projective embedding
X which contains it as an open, dense G-orbit, and whose boundary has particularly nice
properties. (We recall the definition of the wonderful compactification in Section 2.1.)

It turns out that, with minor modifications, our techniques apply also to the wonder-
ful compactification X’ of the space GLs,,/GSps,,,, which parameterizes non-degenerate
skew-symmetric bilinear forms on C?", up to scalar. Letting G = GLy,, in this case, the
G-orbits on X’ are again parametrized by compositions

M:(M17--~7ﬂs)

of n; note that this is of course equivalent to parametrizing them by compositions of 2n
with each part being even. Each G-orbit has the form G/H/,, with

H; = (GSpy,, X -+ xGSp,, ) x U,

a spherical subgroup which again acts on GLy,, /B with a unique closed orbit Y7,.

Let us consider two ways in which one might try to compute a polynomial represen-
tative of [Y,] (or [YL]). For the first, note that Y, being an orbit of H,,, also admits an
action of a maximal torus S, of H,,. Thus Y, admits a class [YH]S“ in the S,,-equivariant
cohomology of GL,, /B, denoted by Hg, (GL,,/B). In brief, this is a cohomology theory
which is sensitive to the geometry of the S ,-action on GL,,/B. It admits a similar Borel-
type presentation, this time as a polynomial ring in two sets of variables (the usual set of
x-variables referred to in the second paragraph, along with a second set which consists of
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y and z-variables) modulo an ideal. Moreover, the map Hg (GL,/B) — H*(GL,/B)
which sets all of the y and z-variables to 0 sends the equivariant class of any S, -invariant
subvariety of GL,,/B to its ordinary (non-equivariant) class. Thus if a polynomial repre-
sentative of [Y,]s, can be computed, one obtains a polynomial representative of [Y ] by
specializing y, z — 0.

In [15], this problem is solved for the case in which p has only one part, in which case
H, = GO,,. Here, we extend the results of [15] to give a formula for the equivariant class
[Y,]s, (and [Y}]s/) for an arbitrary composition . The main general result is Propo-
sition 3.4; it, together with Proposition 3.5, imply the case-specific equivariant formulas
given in Corollaries 3.6 and 3.8.

The formulas for [Y,] and [Y7,] obtained from these corollaries (by specializing y and
z-variables to 0) are as follows:

Corollary 1.1. The ordinary cohomology class of [Y ;] is represented in H* (G /B) by the

Sformula
9d(1) (H x?(“’i)Jra(“’i)) H H (z; + x1).

i=1 =1 v;+1<j<k<vi}1—j

Corollary 1.2. The ordinary cohomology class of [Y ] is represented in H*(G /B) by the

formula
2n s
<H xf“”’”) II I1 (xj + Xk).
i=1

1=1 v;+1<j<k<vi}1—j

The notations v;, d(p), R(u,1), 6(u, 1), etc. will be defined in Sections 2 and 3. For
now, note that the representatives we obtain are factored completely into linear forms. In
fact, the formulas reflect the semi-direct decomposition of H,, (resp., H/u) as we will detail
in Section 3.

A second possible way to approach the problem of computing [Y ] is to write it as a
non-negative integral linear combination of Schubert classes. For each Weyl group element
w in the symmetric group W = S,,, there is a Schubert class [X,,], the class of the
Schubert variety X,, = BtwB/B in GL,,/B, where BT denotes the Borel subgroup of
upper-triangular elements of GL,,. The Schubert classes form a Z-basis for H*(GL,,/B).

Assuming that one is able to compute the coefficients in

Y=Y cwlXu, (1.1)

weEW

then one may replace the Schubert classes in the above sum with the corresponding Schu-
bert polynomials to obtain a polynomial in the x-variables representing [Y,]. The Schu-
bert polynomials G,, are defined recursively by first explicitly setting

n—1_n-2

— 2
Gy, =27 T, Ty _9Tn_1,

and then declaring that &,, = 9;6,,s, if ws; < w in Bruhat order. Here, s; = (i,7 + 1)
represents the ith simple reflection, and 0; represents the divided difference operator
defined by

f(fEl, N 71’77,) — f(a:l, ey =13 441y Ljy Tj4-2y + + - ,In)

Tj — Ti41

ai(f)(ﬁcl,...,ajn) =
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It is well-known that &,, represents [X,,] [10], and so if (1.1) can be computed, [Y ] is
represented by the polynomial
Z [ I

weW

In fact, a theorem due to M. Brion [2] tells us in principle how to compute the sum
(1.1) in terms of certain combinatorial objects. More precisely, to the variety Y, there is
an associated subset of W, which we call the W-set of Y ,, and denote by W (Y ). For
each w € W(Y,), there is also an associated weight. In fact, this weight is always a power
of 2, and the aforementioned theorem of Brion says that the sum (1.1) can be computed as

Y= Y 2/Mewix,] (12)
weW (Y ,,)

for non-negative integers d(Y,,,w). This can be turned into an explicit polynomial repre-
sentative via the aforementioned Schubert polynomial recipe, assuming that one can com-
pute the sets W(Y ), and the corresponding exponents d(Y,,, w) explicitly. In fact, in
Section 2.4, we recall explicit descriptions of the W-sets W(Y,) which have already
been given in [5, 6], slightly extending those results to also give an explicit description
of W(Y},) for arbitrary p. (Previous results of [6] only described W (Y,) when 1 con-
sisted of a single part.) And as we will note, the exponents d(Y ,, w) are straightforward
to compute.

This gives a second answer to our question, but note that it comes in a different form. In-
deed, the formulas of Corollaries 1.1 and 1.2 are products of linear forms in the x-variables
which are not obviously equal to the corresponding weighted sums of Schubert polynomi-
als. Of course, it is a priori possible that the two polynomial representatives are actually
not equal, but simply differ by an element of /W, the ideal defining the Borel model of
H*(G/B). However, our main result, Theorem 4.1, states that in fact the apparent identity
in H*(G/B) is an equality of polynomials.

The paper is organized as follows. Section 2 is devoted mostly to recalling various
background and preliminaries: We start by recalling necessary background on the wonder-
ful compactification in Section 2.1. We then give the explicit details of the examples which
we are concerned with in Section 2.2; this includes our conventions and notations regarding
compositions, as well as our particular realizations of all groups, including the groups H,
and H;L In Section 2.4, we review the notion of weak order and W -sets. We recall results
of [5, 6] which are relevant to the current work, giving a slight extension of those results to
the case of W (Y},) for arbitrary p.

In Section 3, we briefly review the necessary details of equivariant cohomology and
the localization theorem. We then use those facts to extend the formulas of [15] to the
more general cases of this paper, obtaining Proposition 3.4 in a general setting, and its
case-specific Corollaries 3.6 and 3.8. Corollaries 1.1 and 1.2 are immediate consequences
of these.

Finally, in Section 4, we compare the representatives of [Y ] and [Y,] obtained via our
two different approaches, obtaining Theorem 4.1.

2 Background, notation, and conventions

Throughout the text, we use italicized notation when we give arguments that apply to gen-
eral reductive groups. In that case, G is an arbitrary connected, reductive algebraic group
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defined over C. We fix a Borel subgroup B of GG and a maximal torus 7" of G contained in
B. We let W denote the Weyl group of G and for every simple root o of T', we let s, € W
denote the associated simple reflection and P, = B U Bs, B denote the minimal parabolic
subgroup containing B associated to a.

By contrast, we use bolded notation to denote our two main examples

G/H=GL,/0, and G/H = GL,,/Sp,,.

In these examples, we use the Borel subgroup B consisting of lower-triangular matrices
and the maximal torus T consisting of diagonal matrices. Furthermore, the Weyl group W
is isomorphic to the symmetric group S,, (respectively, Sa,,). We hope this helps the reader
distinguish our case-specific results from the general results that we need along the way.

2.1 The wonderful compactification

We review the notion of the wonderful compactification of a general spherical homoge-
neous space. Using our convention outlined above, let G be a connected, reductive alge-
braic group defined over C. An algebraic subgroup H of G, as well as the homogeneous
space G/H, is called spherical if a Borel subgroup B has finitely many orbits on G/H
(or equivalently, if H has finitely many orbits on G/B). Some such homogeneous spaces,
namely partial flag varieties, are complete, while others (for example, symmetric homoge-
neous spaces) are not. In the event that G/H is not complete, a completion of it is a com-
plete G-variety X which contains an open dense subset X° G-equivariantly isomorphic
to G/H. X is a wonderful compactification of G/H if it is a completion of G/H which
is a “wonderful” spherical G-variety; this means that X is a smooth spherical G-variety
whose boundary (the complement of X) is a union of smooth, irreducible G-stable divi-
sors Dy, ..., D, (the boundary divisors) with normal crossings and non-empty transverse
intersections, such that the G-orbit closures on X are precisely the partial intersections of
the D;’s. The number r is called the rank of the homogeneous space G/ H.

The number of G-orbits on X is then 27, and they are parametrized by subsets of
{1,...,r}, with a given subset determining the orbit by specifying the set of boundary
divisors containing its closure. It is well-known that the subsets of {1,2,...,r} are in
bijection with the compositions of » + 1. A composition of n is simply a tuple p =
(f1,. .-, ps) With >, p; = n. For a given composition jt = (j1, ..., fs), we define the
integers v, . .., Vs by the formula v; = 23;11 pj fori = 2,...,s. By convention, we set
v1 = 0. In words, v; is the sum of the first i — 1 parts of the composition y. We parametrize
the G-orbits (G = GL,, or G = GLy,,) in our examples by compositions of n, with n — 1
being the rank of both of the symmetric spaces GL,,/GO,, and GL2,,/GSp,,,.

2.2 Our examples

We now describe the two primary examples to which we will directly apply the general
results of this paper. The first is the wonderful compactification X of the space of all smooth
quadric hypersurfaces in P"~1, i.e. G/H, where (G,H) = (GL,,GO,,), classically
known as the variety of complete quadrics.

Choose B to be the lower-triangular subgroup of GL,,, and T to be the maximal torus
consisting of diagonal matrices. We realize Hy = O,, as the fixed points of the involution
given by 0(g) = J(g*)~1J, where J is the n x n matrix with 1’s on the antidiagonal, and
0’s elsewhere. When Hj is realized in this way, Hg N B, the lower-triangular subgroup of
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H,, is a Borel subgroup, and Sy := Hy N T is a maximal torus of Hy, consisting of all
elements of the form
diag(ay, ..., am,ay’,...,a; "), 2.1)
where a; € C* fori = 1,...,m when n = 2m is even, and of the form
diag(ar,...,am,1,a,}, ... a7%),
where a; € C* fori = 1,...,m when n = 2m + 1 is odd. The Lie algebra sy of Sy then
takes the form
diag(a1,...,am, —Am, ..., —a1), 2.2)
where a; € C fori =1,...,m in the even case, and
diag(ay, ..., am,0, —am,...,—a1),
where a; € C fori =1,...,m in the odd case.

Note that the diagonal elements of H form a maximal torus S of dimension one greater
than dim Sg. The general element of S is of the form

diag(Aay, ..., Aam, Aa b, .o dapt) (2.3)
in the even case, and of the form
diag(Aa1, ..., Aam, N\, Aat, ., )\afl) 2.4)

in the odd case. Here, ) is an element of C* and the a;’s are as before.
The Lie algebra s of S then consists of diagonal matrices of the form

diag(A+ a1, ..., A+ @Gy A — Gy -y A — a1) (2.5)
in the even case, and of the form
diag(A+ a1, ..., A+ Qs A =y ooy A —aq). (2.6)

in the odd case. Here, ) is an element of C and the a;’s are as before.

Thus we have described the homogeneous space G/H, where G = GL,, and H =
GO,,, which is the dense G-orbit on X. We now describe the other G-orbits. As men-
tioned in Section 2.1, they are in bijection with compositions p of n.

Corresponding to ji, we have a standard parabolic subgroup P,, = L, x U, containing
B whose Levi factor L, is GL,,, x --- x GL,, embedded in GL,, in the usual way, as
block diagonal matrices. The G-orbit O, corresponding to y is then isomorphic to G /H,,,
where H,, is the group

(GO, x---x GO,,) x Uy,

where GO, = Z,,,0,,, is realized in GL,,, as described above. Then B N H,, is a Borel
subgroup of H,,, and S,, := T N H,, is a maximal torus of H,,.

Note that S, is diagonal, and consists of s “blocks”, the ith block consisting of those
diagonal entries in the range v; + 1,...,v; + p;. If u; = 2m is even, then the ith block is
of the form

diag(/\iai,l, ey )\iai’m, /\Z‘(L71 ey )\Zajll) (27)

7,m?
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The corresponding ith block of an element of s, is then of the form
diag(Ni + i1, 3 A+ Qi Ni — Qimy ooy A — Qi1)- (2.8)
If u; = 2m + 1 is odd, then the ¢th block is of the form

diag()\iam, ey )\iam,,,, )\7;7 )\ia_l ey )\7CLZ_711) (29)

The ith block of an element of s,, is correspondingly of the form
diag()\i + a1, A + Qim, iy A — Aimy - -+ A — ai,l). (2.10)

Our second primary example is the wonderful compactification of (G, H'), (G,H’) =
(GLgy,, GSps,,). H' is a central extension of Hjy = Sp,,,, the latter group being realized
as the fixed points of the involutory automorphism of GLy,, given by g — J (gt)*lj ,
where J is the 2n x 2n antidiagonal matrix whose antidiagonal consists of n 1’s followed
by n —1’s, reading from the northeast corner to the southwest. Let Sj, := Sp,,, N T.

Once again taking B to be the lower-triangular Borel of GLo,,, and T to be the diagonal
maximal torus of GLa,, one checks that H; N B is a Borel subgroup of Hf, and that
S, := H{ N T is a maximal torus of H{. The corresponding torus S’ of H' is then
of exactly the same format as indicated in (2.3), while its Lie algebra s’ is as indicated
by (2.5).

The additional G-orbits on the wonderful compactification X’ of GL2,,/GSp,,, again
correspond to compositions p = (u1, . .., ts) of n. For such a composition, we let P, =
L, x U, be the standard parabolic subgroup whose Levi factor is GLy,,, X --- x GLg,,,
embedded in GLg,, as block diagonal matrices. Then the G-orbit corresponding to (i is
isomorphic to G/H/,, where

H/u = (Gsp2p,1 X X GSpZ/LS) X UHa

with each GSp,,,, = Zy,,,Sp,,,, embedded in the corresponding GL5,,, just as described
above.

The torus S;L then consists of s “blocks”, just as in the orthogonal case. This time, each
block is of even dimension, so each is of the form described by (2.7). The corresponding
block of the Lie algebra 5; is then of the form indicated in (2.8).

2.3 Some general results

We now introduce several general observations that are applicable to our chosen examples.
In this subsection, returning to the conventions set forth in the beginning of Section 2, let
G be an arbitrary connected, reductive algebraic group over C and let P be a parabolic
subgroup of G containing the Borel subgroup B with Levi decomposition P = L x U,
where L is a Levi subgroup of G containing 7" and U is the unipotent radical of P. Let
H7, be a subgroup of L and consider the G-variety V. = G x© L/H|, the quotient of
G x L/ H|, by the action of P, where P acts on G by right multiplication and on L/ H, via
its projection to L. Note that V" is a G-variety via left multiplication of G on the first factor.
V is a homogeneous G-variety, and the stabilizer subgroup of the point [1,1H,/H/)] is
H := H,U C P. The construction of V' = G/H from L/H/, (or equivalently of H C G
from Hy, C L) is called parabolic induction.
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Note that in our examples, H,, is obtained via parabolic induction from GO, x --- X
GO, (playing the role of Hr) and H:L is obtained via parabolic induction from GSp,,, x
-+ x GSp,,, (likewise playing the role of H,). We now summarize some results from the
literature that describe the role of parabolic induction for wonderful varieties.

Definition 2.1. Let G be a reductive algebraic group. A subgroup H of G is said to be
symmetric if there exists an algebraic involution #: G — G such that, letting K = G% =
{9 € G :0(g) = g} and letting Z denote the center of G, we have ZK° C H C ZK.

Proposition 2.2.

1. Let H be a symmetric subgroup of G such that G/H has a wonderful compactifi-
cation X. Then every G-orbit of X is obtained via parabolic induction from some
symmetric homogeneous space L/H |, associated to some Levi subgroup L of G.

2. If Hy, is a spherical subgroup of L such that L/ Hy, contains a single closed By -orbit
(with By, a Borel subgroup of L) and H is the subgroup of G obtained by parabolic
induction, i.e. G/H = G x L/Hy, then H is a spherical subgroup of G and G | H
contains a single closed B-orbit.

Proof. The first result is a reformulation of a result of de Concini and Procesi [7, Theo-
rem 5.2]. They show that a G-orbit V' has a G-equivariant map V' — G/P with fiber
L/Hy,. (In fact, they show that the closure of V' maps G-equivariantly to G/P with fiber
the wonderful compactifcation of L/H,, from which our statement follows by restricting
the map to V) It follows that there is a bijective morphism ¢: G x* L/Hy — V, which
is an isomorphism if ¢ is separable [14, discussion after Theorem 2.2].

The second result follows from [4, Lemma 6], but we give a direct proof for com-
pleteness. We again consider the G-equivariant fibre bundle 7: G/H — G/ P, with fiber
L/Hjy,. Since Hy, is a spherical subgroup of L and P is a spherical subgroup of G (by the
classical Bruhat decomposition), it follows that H is a spherical subgroup of G. Moreover,
since there is a unique closed By -orbit in L/Hy, and a unique closed B-orbit in G/P,
there is a unique closed B-orbit in G/H, namely the B-orbit which maps via 7 to the
closed B-orbit of G/P and whose fiber over the base point 1P/ P is identified with the
closed By -orbitin L/Hp,. O

2.4 Weak order and W -sets

Let H be a spherical subgroup of the connected, reductive algebraic group G and assume
that there exists a wonderful compactification X of G/H. We continue with the notation
of the previous subsection. In this subsection we review the notion of the weak order on the
set of B-orbit closures of X. Note that X is a spherical variety, meaning that B has finitely
many orbits on X, so the set of B-orbits equipped with the weak order is a finite poset.

The weak order on the set of B-orbit closures of X is the one whose covering relations
are given by Y < Y’ ifand only if Y’ = P,Y # Y for some simple root « of T relative
to B. In general, Y < Y’ ifand only if Y’ = P, --- P,,Y for some sequence of simple
roots oy, ..., Q5.

When considering the weak order on X, it suffices to consider it on the individual G-
orbits separately. Indeed, if Y and Y are the closures of B-orbits () and @', respectively,
and if Y < Y” in weak order, then @Q and Q' lie in the same G-orbit. Therefore, we focus
on the weak order on B-orbit closures on a homogeneous space G/ H. The Hasse diagram
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of the weak order poset can be drawn as a graph with labeled edges, each edge with a
weight of either 1 or 2. This is done as follows: For each cover Y < Y’ with Y’ = P,Y,
we draw an edge from Y to Y, and label it by the simple reflection s,,. If the natural map
P, xBY — Y is birational, then the edge has weight 1; if the map is generically 2-to-1,
then the edge has weight 2. (These are the only two possibilities.) The edges of weight 2
are frequently depicted as double edges [4].

In the graph described above, there is a unique maximal element, since G/H is the
closure of its dense B-orbit. Given a B-orbit closure Y, its W-set, denoted W (Y'), is
defined as the set of all elements of W obtained by taking the product of edge labels of
paths which start at Y and end at G/H. The weight d(Y,w) alluded to before (1.2) is
defined as the number of double edges in any such path whose edge labels multiply to
w. (Note that there is one such path for each reduced expression of w, but all such paths
have the same number of double edges, so that d(Y, w) is well-defined [4].) We have now
recalled all explanation necessary to understand (1.2).

Next, we briefly recall results of [5, 6] which give explicit descriptions of these IV -sets
in the cases described in Section 2.2.

We begin by addressing the case of the extended orthogonal group H = GO, and the
variants H,,. Foraset A C [n] := {1,2,...,n}, say that a < b are adjacent in A if there
does not exist ¢ € A such that a < ¢ < b. Let W, denote the set of permutations w € S,
that have the following recursive property. Initialize A; = [n]. For 1 < i < |n/2], assume
that w(1),...,w(i — 1) and w(n + 2 — i),...,w(n) have already been defined. (This
condition is vacuous in the case ¢ = 1.) Then w(i) and w(n 4+ 1 — ) must be adjacent in
A; and w(4) must be greater than w(n + 1 —1). Define A; 1 := A; \ {w(i),w(n+1—1i)}.
This completely defines w when n is even, and if n = 2k + 1 is odd, then A1 will consist
of a single element m, so define w(k + 1) = m. For example, W5 consists of the eight
elements of S5 given in one-line notation by 24531, 25341, 34512, 35142, 42513, 45123,
52314, 53124.

Proposition 2.3 ([5]). Let Y denote the closed B-orbit in G/H where G = GL,, and
H =GO, Then W(Y) = W,.

Remark 2.4. The “W-set” of [5], which is denoted by D,, there, differs slightly from ours.
More precisely, the relationship between D,, and our WW-set is

W, = {wow wo : w € D, }.

Let us explain the reason for the discrepancy. First, the partial order considered in [5] is the
opposite of the weak order on Borel orbits considered here, which necessitates inverting the
elements of D,,. Second, we consider here B to be the Borel subgroup of lower triangular
matrices in GL,,, while [5] uses the Borel subgroup of upper triangular matrices. This
necessitates conjugating the elements by wy.

Similarly, we define a set W,, C S, associated with a composition p = (p1,. .., its)
of n. We begin by recalling the notion of a p-string [5]. Recall that we have defined
v = E;:é p; for 2 < k < s; by convention v; = 0. The 7th p-string of a permutation
w € Sy, denoted by str; (w) is the word w(v; + 1) w(v; + 2) ... w(vit+1). For example,
if w = 3715462 is a permutation from S7 (written in one-line notation) and p = (2,4, 1),
then the second p-string of w is the word 1546. Let A C [n] have cardinality k and
assume a word w of length k is given that uses each letter of A exactly once. Define a
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bijection between [k] and A by associating to ¢ € [k] the sth largest element of A. Under
this bijection, the word w corresponds to the one-line notation of a permutation w in Sk.
Call w the permutation associated to the word w. Continuing the example, the permutation
associated to the word w = 1546 is 1324 € S, (in one-line notation).

The set W, consists of all w € S, such that the letters of str;(w) are precisely those j
such that n — ;11 < j < n—v; and the permutation associated to str; (w) is an element of
W, For example, W4 ) consists of the three elements of Sg given in one-line notation
by 465321, 563421, 643521.

Proposition 2.5 ([5]). Let Y, denote the closed B-orbit in G/H,, where G = GL,
and H, = (GO, x --- x GO,,,) x U, i.e. H, is obtained by parabolic induction
fromHp = GO,, x---xGO,, CL=GL,, x---xGL, to G = GL,. Then
W(Y,) =W,

Just as in Remark 2.4, the relation between W, and the set D, defined in [5]is W, =
{wow™lwg : w € D, }.

We now turn to the extended symplectic case H' = GSp,,, and its variants H},. Con-
sider the inclusion of S,, into Sy, via the map u — ¢(u) = v = vyvs - - - Vg, Where

[’Ul,’UQ, ooy UnyUntis-- .,Ugn_l,vgn} =

2u(l) — 1,2u(2) — 1,...,2u(n) — 1,2u(n), ..., 2u(2), 2u(1)].

Let W), = {¢(u) € Sap, : u € Sy, }. For example, W} consists of the six elements of Sg
given in one-line notation by 135642, 153462, 315624, 351264, 513426, 531246.

Proposition 2.6 ([6, 12]). Let Y’ denote the closed B-orbit in G /H' where G = GLg,
and H' = GSp,,,. Then W(Y') =W,

We now proceed to define a set W, C Sy, for any composition y1 = (p1, ..., fis) of
n. The set W, consists of all w € S,, such that the letters of str;(w) are precisely those j
such that n — ;41 < j < n — v; and the permutation associated to str;(w) is an element
of W, ;- For example, sz, 1 consists of the two elements of Sg given in one-line notation
by 123564, 125346.

Proposition 2.7. Let YL denote the closed B-orbit in G/ H; where G = GLs,, and
H), = (GSpy,, x - x GSpy,, ) x Uy, i.e. H) is obtained by parabolic induction from
H, = GSp,,, X - X GSpy,, € L = GLy,, x -+ x GLy,, to G = GLa,. Then
W(Y,)=W,..

Proposition 2.7 is proved in exactly the same manner as Proposition 2.5 is proven in
[5, Theorem 4.11], so we omit its proof. Alternatively, it can be obtained as a corollary of
Proposition 2.6 by applying a general result of Brion on W-sets for homogeneous spaces
obtained by parabolic induction [2, Lemma 1.2].

3 Equivariant cohomology computations

3.1 Background

We start by reviewing the basic facts of equivariant cohomology that we will need to sup-
port our method of computation. All cohomology rings use Q-coefficients. Results of this
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section are generally stated without proof, as they are fairly standard. To the reader seeking
a reference we recommend [15] for an expository treatment, as well as references therein.
We will apply our results to equivariant cohomology with respect to the action of S,
(respectively, SL) on G/B, these tori having been defined in Section 2.2. Given a variety
X with an action of an algebraic torus .S with Lie algebra s, the equivariant cohomology
is, by definition,
H3(X) = H*((ES x X)/S),

where ES denotes a contractible space with a free S-action. H§(X) is an algebra for the
ring Ag := H§({pt.}), the Ag-action being given by pullback through the obvious map
X — {pt.}. The ring A is naturally isomorphic to the symmetric algebra Sym(s*) on s*.
Thus, if 41, . . ., y, are a basis for §*, then Ag ~ Sym(s*) is isomorphic to the polynomial
ring Qy] = Q[y1,-..,¥yn]. When X = G/B with G a reductive algebraic group and B
a Borel subgroup, and if S C T C B with T a maximal torus in G, then we have the
following concrete description of HE(X):

Proposition 3.1. Ler R = Sym(t*), R’ = Sym(s*). Then H{(X) = R' @gw R. If
Xi,..., Xy are a basis for t*, and Y1, . .., Y, are a basis of s*, elements of H5(X) are
thus represented by polynomials in variables x; .= 1 ® X; andy; :=Y; ® 1.

To make this clear in the setting of our examples (cf. Section 2.2), if S is taken to be
the full maximal torus T of GL,,, we let X; (¢ = 1,...,n) be the function on t which
evaluates to a; on the element

t = diag(ay,...,an).

We denote by Y, (z = 1,...,n) asecond copy of the same set of functions. We then have
two sets of variables as in Proposition 3.1, typically denoted x = z;,...,2, andy =
Y1, - -+ Yn, and T-equivariant classes are represented by polynomials in these variables.

If o = (p1, ..., ps) is a composition of n, let T be the full torus of GL,,, and let S,
be the torus of H,, as in Section 2.2. We denote by X; the same function on t as described
above. We denote by Y, ; the function on s, which evaluates to a; ; on an element of
the form in (2.8) (if w; is even) or (2.10) (if w; is odd). We denote by Z, the function
which evaluates to A; on an element of the form (2.8) or (2.10). Then letting lower-case x,
y. and z-variables correspond to these coordinates (with matching indices), Hg (G/B) is
generated by these variables, and when we seek formulas for certain S,-equivariant classes,
we are looking for polynomials in these particular variables.

We next recall the standard localization theorem for torus actions. For more on this
fundamental result, the reader may consult, for example, [3].

Theorem 3.2. Let X be an S-variety, and let i: X° < X be the inclusion of the S-fixed
locus of X. Then the pullback map of As-modules

it H5(X) — H5(XS)

is an isomorphism after a localization which inverts finitely many characters of S. In
particular, if H5(X) is free over Ag, then i* is injective.

When X = G/B, H5(X) = R @pw R is free over R’ (as R is free over R"), so
any equivariant class is entirely determined by its image under ¢*. We will only apply this
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result in the event that S = T is the full maximal torus of GG, so the S-fixed locus is finite,
being parametrized by W. Then for us,

H5(X®) = P As,
weWw

so that in fact a class in H§(X) is determined by its image under ¢}, for each w € W,
where here i,, denotes the inclusion of the S-fixed point wB/B in G/B. Given a class
B € H5(X) and an S-fixed point wB/B, we may denote the restriction ¢}, (5) at wB/B

by -
We end the section by recalling how the restriction maps are computed.

Proposition 3.3 ([15]). With the notation of the preceding paragraph, suppose that B €
H(X) is represented by the polynomial f = f(x,y) in variables x, y. Then |, € Ag is
the polynomial f(wY|s,Y).

3.2 A general result

We continue with the general setup given at the beginning of Section 2. Let P = LU
be a parabolic subgroup of G containing B, with L a Levi factor containing 7" and U the
unipotent radical of P contained in B. Let Hy, denote a spherical subgroup of L and let
S :=T N Hy, be a maximal torus of Hy,. Let X denote the generalized flag variety G/B.

Let H be the subgroup obtained by parabolic induction from H;, C Lto G, ie. H =
HpU. As proven in Proposition 2.2, H is a spherical subgroup of G with a unique closed
B-orbit Q). The torus S is a maximal torus of H, and we seek to describe [Q)] € H%(X).

Denote by By, the Borel subgroup B N L of L, and let Y denote the generalized flag
variety L/Bp,. Note that there is an S-equivariant embedding j: Y — X, which induces
a pushforward map in cohomology j.: H&(Y) — HE(X). Given our setup, the orbit
Q' = H -1Br /By isclosed in Y. In fact, j(Q') = Q. To see this we just observe that
1B/B = 1By, /By, under the embedding j. Nonetheless, to avoid possible confusion, we
refer to the closed orbit as ' when thinking of it as a subvariety of Y, and as Q when
thinking of it as a subvariety of X.

Let W, C W denote the Weyl group of L. In the root system ® for (G, T), choose
&7 to be the positive system such that the roots of B are negative. Similarly, let ®, be
the root system for (L, T") and let <I>z = &, NP+ be the positive roots of L such that the
roots of By, are negative. Given a root r € ® (resp., r € @), let g, denote the associated
one-dimensional root space in g (resp., [).

The next result relates the class of Q" in H5(Y') to the class of @ in H§(X).

Proposition 3.4. With notation as above, the classes j*[Q] and |Q’] are related via mul-
tiplication by the top S-equivariant Chern class of the normal bundle Ny X, i.e. j*[Q] =
c5(Ny X)N[Q'). This Chern class is the restriction of a T-equivariant Chern class for the
same normal bundle, and the latter class, which we denote by o, is uniquely determined by
the following properties:

B Hreqﬁ\@z wr  ifw e Wy,
aly = .
0 otherwise.

Proof. The first statement follows easily from the equivariant self-intersection formula [8,
p. 621, (4)], since [Q] = j.[Q']. Since both X and Y have T-actions (not simply S-actions,
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as is the case for Q and Q"), there does exist a top T-equivariant Chern class of NxY', and
clearly the S-equivariant version is simply the restriction of the T-equivariant one.

The properties which define « follow from analysis of tangent spaces at various fixed
points. Indeed, it is clear that the T-fixed points of @’ lying in Y are those which corre-
spond to elements of W;, C W. Thus for w ¢ W, we have a,, = 0. For w € W, the
restriction is ¢Z (NxY)|w = ¢J(NxY|y) = ¢} (TwX/T,,Y), where d = codimx (Y).
Since both X and Y are flag varieties, it is straightforward to compute these two tan-
gent spaces, and their decompositions as representations of 7. Indeed, 7;,X is sim-
ply @B, co+ Guwr. While T,,)Y is @reéz gwr. The quotient of the two spaces is then

®7‘6<I>+\<I>z Gwr» Which implies our claim on a/,,.

Finally, that these restrictions determine « follows from the localization theorem, The-
orem 3.2. O

We now determine an explicit formula for the T-equivariant Chern class « that is de-
fined in Proposition 3.4 when G is of type A. Let = (i1, . . ., is) be a composition of n,
letL = GL,, x---x GL,_, and let T be the full diagonal torus of GL,,.

For each 1 < k < n, let ¢, € t* be given by ¢, (diag(t1,...,t,)) = tr. For any
1<k<l<mnletay; =€, —e € PT. Finally, let

ha(y) = I (@ —we)

ak,g€@+\‘i>z

An equivalent definition of A, showing the explicit dependence on the composition 1
is as follows. For each pair 7, j with 1 < ¢ < j < s, we define a polynomial

Vit Vit

hi,j(x7y) = H H (e — y).

k:l/j-‘rl l=v;+1

Then it follows immediately that

h#(xvy):: I]i th(XaY)'

1<i<j<s
Proposition 3.5. The T-equivariant class « is represented by the polynomial h,,(X,y).

Proof. 1t is straightforward to verify that the polynomial representative we give satisfies
the restriction requirements of Proposition 3.4. Indeed, the Weyl group Wy, of L is a
parabolic subgroup of the symmetric group on n-letters, embedded as those permutations
preserving separately the sets {v; + 1,...,v; + p;} fori = 0,...,s — 1. Applying such
a permutation to the representative above (with the action by permutation of the indices
on the x-variables, as in Proposition 3.3) gives the appropriate product of weights. On the
other hand, applying any w ¢ Wi, will clearly give 0, since such a permutation necessarily
sends some [ € {v; +1,...,v; + p;} (for some 7) tosome k € {v; +1,...,v; + p; } with
i < j. This permutation forces the factor x, — y;, to vanish, which, in turn, forces h,(x,y)
to vanish. By Proposition 3.4, h,, represents c. O
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3.3 The orthogonal case

We now apply these computations specifically to the two type A cases described in Sec-
tion 2.2, using all of the notational conventions defined there. We start with the case of
(G,H) = (GL,,,GO0,,). Let x = (y1,...,us) be a composition of n, and let B, T,
and S, be as defined in Section 2.2. Let P, = L, U,, be the standard parabolic subgroup
containing B whose Levi factor L, corresponds to .

With these choices made, let the x, y, and z variables be the generators for Hg (G/B)
explicitly described after the statement of Proposition 3.1. We seek a polynomial in the x,
y, and z-variables which represents the class of H,, - 1B/B € Hg (GL,/B).

To find such a formula, we use a known formula for the closed Hy = O,,-orbit on
GL,,/B to deduce a formula for the S,-equivariant class of H,,-1B/B in Hg, (L./By,).
and then apply Proposition 3.4. Indeed, we know from [15, 16] that when Hy = O,,, the
class of Hy - 1B/B in Hg (GL,/B) (here, Sg is the maximal torus of Hy described in
Section 2.2) is given by

Ho-1B/Bls, = [[ (@i+az)=2"2 ]« ][] @+z). @D

1<i<j<n—i i<n/2  1<i<j<n—i

The formula of (3.1) is given in [15] in the case that n is even, while an alternative
formula is given in the case that n is odd. It is observed in [16] that the above formula
applies equally well when n is odd.

Recall that when H = GO,,, a maximal torus S of H has dimension one greater
than the corresponding maximal torus Sy of Hy. Thus the S-equivariant cohomology of
GL,,/B has one additional “equivariant variable”, which we call z. In this case, it is no
harder to show that the class of H - 1B/B in H(GL,,/B) is given by

[H-1B/Bls = P,(x,y,2) := H (@i +x; — 22). 3.2)

1<i<j<n—i

Note that by restricting from Hg(G/B) to H§ (G/B) (which amounts to setting the ad-
ditional equivariant variable z to 0), we recover the original formula (3.1).

Combining these formulae with Proposition 3.4, for each composition x of n we are
now ready to give case-specific formulae for the unique closed H ,-orbit H,, - 1B/B on
GL,,/B. (Recall that each of these orbits corresponds to the unique closed B-orbit on the
corresponding G-orbit on the wonderful compactification of G /H.)

We consider the variables x = (1,...,2,), Yy = (Y1,---,Yn), and z = (21,...,25),
where s is the number of parts in the composition ;. We divide the variables into smaller
clusters dictated by the composition z. Let x¥) = (2,41, ...,7,,,,) and y@ = (y,, 41,

-y Yviy, )- Then define

where P, is given by (3.2).

We now introduce an equivalent, but more explicit, description of the class
[H,, - 1B/B]s, which reflects the block decomposition associated to 1. To this end, we
introduce new notation for a fixed composition po = (1, ..., s) of n. First, for each of
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the s blocks of S,,, define a polynomial f;(x, z) as follows:

vitlpi/2]
fixz)= [ (z5—2)

j=vi+1
In words, the x; occurring in the terms of this product are those occurring in the first half
of their block, and from each, we subtract the z-variable corresponding to that block. So
for example, if n = 11, u = (6, 5), then

fi(x,2) = (21 — 21) (22 — 21) (23 — 21),
while
fa(x,2) = (z7 — 22)(xg — 22).
Next, for each block, define g;(x, z) as follows:
gi(x,2) = H (xj + zr — 22;).
vi+1<j<k<2v;+p;—j
(Note that g;(x,z) = 1 unless u; > 3.) So for u = (6,5) as above, we have that
91(x,2) = (z1 + 20 — 221) (21 + 23 — 221) (21 + 24 — 221) (21 + 25 — 227)
(1’2 + I3 — 221)(1’2 + Ty — 221),
and
92(%,2) = (x7 + s — 222) (7 + g — 229) (w7 + 210 — 222) (x5 + T9 — 222).

Finally, we define a third polynomial ,(x, y, z) in the x, y, and z-variables to simply
be h,,(x, p(y)), where p denotes restriction from the variables y1, . .., y, corresponding to
coordinates on the full torus T to the variables y; ;, z; on the smaller torus S,,. To be more
explicit, for each ¢, j with 1 <4 < j < s define h; ;(x,y, z) to be

; /2 . .
TS @tk — 50— 27) @y + 50— 25) if /15 is even,
i j 2 . .

Ty o — 2) TIPS o — w7 — 2) @ v + 90— ;) if 1 is odd.
So for the case n = 4, 1 = (2, 2), we have
h172(X7Ya z) = (1 — Y21 — 2)(x1 + Y21 — z2) (22 — Y21 — z9) (2 + Y21 — 22),
while for the case n = 5, u = (2, 3), we have
hi2(X,y,2) = (1 — 22) (22 — 22) (%1 — y2,1 — 22) (%1 + Y2,1 — 22)
(12 —y2,1 — 22) (2 + Y2,1 — 22)-

Then we define
h;t(an7Z) = H hi,j(XaY7Z)'

1<i<j<s

Propositions 3.4 and 3.5 then imply the following formula for the S,,-equivariant class
of H,, - 1B/B in this case.
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Corollary 3.6. The S, -equivariant class of the unique closed H,-orbit H,, - 1B/B on
G /B is represented by the polynomial

2/h,(x,y,2) [ | filx,2)gi(x,2),

i=1

where d(y1) = Y35_, [1/2).

Proof. The fact that the product 2% [T7_, fi(x,2)gi(x,2) is equal to the formula for
7*[Q] follows from the formula of (3.2). It follows from Proposition 3.4 and Proposi-
tion 3.5 that the representative of [)] is obtained from j*[Q] by multiplying with the top
Sy-equivariant Chern class of the normal bundle, which is represented by the polynomial
hu(x,y,2). O

Corollary 3.7. The S, -equivariant class [H,, - 1B/B] is represented by the polynomial
Pu(x,y,2)hu(x,y,z).

Proof. This follows immediately from the observation that
P, (X(i)»y(i), zi) = glwi/2] fi(x,2)gi(x,2). 0

3.4 The symplectic case

We give similar (but simpler) formulas for the case when (G, H’) = (GLy,, GSps,,).
Recall from [15] that for the case (G, H{,) = (GLa,, Sp,,,), the Sj-equivariant class (S,
the maximal torus of Hy, described in Section 2.2) of the unique closed orbit Hj, - 1B/B is
given by

H-1B/Bls, = [ (zi+a)). (3.3)

1<i<j<2n—i

As before, it is no harder to see that if S’ is the maximal torus of diagonal elements of
H’, then the S’-equivariant class of the closed orbit H' - 1B/B is represented by

[H -1B/B|s: = Pl (x,y,2) := H (@i + z; — 22). (34)

1<i<j<2n—i

Now let u = (u1,. .., is) be a composition of 2n with all even parts. Let H;L be the
spherical group
((}Spu1 X oo X GSPMS) x Uy,

as defined in Section 2.2. Let S/, be the maximal torus of H;, with the y and z-variables
as defined above.

Corollary 3.8. In Hg, (G/B), the class of the closed H,,-orbit H}, - 1B /B is represented
by

h,u(xv Yy, Z) H 9i (X7 Z)'
i=1

Proof. The proof is identical to that of Corollary 3.6, using Proposition 3.4 combined with
(3.4) in the same way. O
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Remark 3.9. Note that g;(x,2z) = P}, (x@,y@ . 2;), where P/, is given by (3.4), so that
again [H), - 1B/B] is equal to P}, (x, y, z)h,(x,y,z), where

(x,y,2 H () zL)

We now specialize these formulas to ordinary cohomology (by setting all y and z-
variables to 0), in order to prove Corollaries 1.1 and 1.2. First, we define the notations
used in those formulas which have not yet been defined. For each i = 1, ..., n, let B(u, 1)
denote the block that the variable x; occurs in, i.e. B(u, 1) is the smallest integer j such

that
J
Zue >
=1

Then for each i = 1,...,n, define R(u, %) to be

R(p,i):= >

B(u,i)<j<s

This is the combined size of all blocks occurring strictly to the right of the block in which
Z; Occurs.

Finally, again for each such 4, define (u, ) to be 1 if and only if &; occurs in the first
half of its block, and 0 otherwise. Note that by the “first half”” we mean those positions less
than or equal to ¢/2 where £ is the size of the block; in particular, for a block of odd size,
the middle position is not considered to be in the first half of the block.

Proof of Corollaries 1.1 and 1.2. The formula of Corollary 1.1 comes from that of Corol-
lary 3.6; we simply set y = z = 0. The binomial terms x; + 2} come from the polynomials
gi(x,0). The monomial terms come from the polynomials f;(x,0) and h; ;(x,0,0). The
f(” ) term comes from fi(x,0), the latter being z; if this variable occurs in the first half
of its block, and 1 otherwise. The remaining x; R comes from the hi j(x,0,0). Indeed,
it is evident that for an x-variable in block ¢, for each j > i the given x-variable appears in
precisely p; linear forms involving y, z terms associated with block j.
The proof of Corollary 1.2 is almost identical, except simpler. O

4 Factoring sums of Schubert polynomials

We end by establishing explicit polynomial identities involving sums of Schubert polyno-
mials, using the cohomological formulae of the preceding section together with the results
of [5, 6] which were recalled in Section 2.4.

Note that by Brion’s formula (1.2) combined with the fact that the Schubert polynomial
G, is a representative of the class of the Schubert variety X,, in H*(G/B), we have the
following two families of identities in H*(G/B):

Z 20 uw) g, = 94 HmR(“ RS H < H (z; —Hck)); 4.1

weW (Y ,,) i=1 \v;+1<j<k<v;y1—j
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2n s
Z Gw = fo(#’i) H ( H (xj + xk)) 4.2)
i=1

weW(Y7,) i=1 \v;+1<j<k<viy1—j

Equation (4.1) above simply combines (1.2) with Corollary 1.1. Likewise, (4.2) com-
bines (1.2) with Corollary 1.2, together with the fact that all B-orbit closures in the sym-
plectic case are known to be multiplicity-free, meaning d(Y,, w) = 0 forall w € W(Y},).

In fact, also in (4.1) above, the powers of 2 can be completely eliminated from both
sides of the equation. This follows from a result of Brion [4, Proposition 5], which states
that whenever G is a simply laced group (recall that for us, G = GL,, is simply laced),
all of the coefficients appearing in (1.2) are the same power of 2. It is explained in [5,
Section 5] that the coefficients appearing on the left-hand side of (4.1) are in fact all equal
to 2%, Since H*(G /B) has no torsion, we have the simplified equality

n

Z S, = H xf(#,i)+5(#,i) f[ < H (-Tj + xk)) ) 4.3)

weW (Y,,) i=1 i=1 \ v +1<j<k<vii1—j

Now, note that a priori, the identities (4.2) and (4.3) hold only in H*(G/B). That is,
we know only that the left and right-hand sides of the identities are congruent modulo the
ideal IW. We end with a stronger result.

Theorem 4.1. Both (4.2) and (4.3) are valid as polynomial identities.

Proof. We use the fact that the Schubert polynomials {&,, | w € S,,} are a Z-basis for
the Z-submodule I' of Z[x] spanned by monomials [ z;* with ¢; < n — i for each ¢ [11,
Proposition 2.5.4]. We claim that on the right-hand side of (4.3) (resp. (4.2)), each x; does
in fact occur with exponent at most n — ¢ (resp. 2n — ¢). To see this, note that since the
right-hand side of each identity is a product of linear forms, it suffices to count, for each ¢,
the number of these linear factors in which x; appears.

In (4.3), we claim that z; appears in precisely (Z;: B(ui) ,uj) — 4 of the linear factors.
Since > °_p(,.iy Hi < 21 Hj = n, this establishes our claim that the right-hand side
lies in I'. Indeed, clearly x; appears R(y,4) + d(p,) times as a monomial factor, so we
need only count the number of binomial factors of the form x; + x;, that it appears in. One
checks easily that it appears in p; — ¢ — 1 such factors if z; occurs in the first half of its
block, and in p; — ¢ such factors otherwise. In other words, if /V; is the number of binomial
factors involving x;, then we have 6(u, i) + N; = p; — 4. Thus

j=B(ui)+1
(> )
J=B(u,i)
as claimed.

Clearly, the right-hand side of (4.2) also lies in I', applying the same argument with n
replaced by 2n. Indeed, the only difference is in the lack of the additional monomial factor
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x?(“’l); thus x; occurs in either (Zj:B(W.) M) —ior (Z;:B(M,i) Nj) —i—1 of the linear
factors on the right-hand side of (4.2). In either event, this is at most 2n — ¢, as required.
Now, since the right-hand side of each of (4.2) and (4.3) are in I', they are expressible as
a sum of Schubert polynomials whose indexing permutations lie in Sy, (for (4.2)) or S,, (for
(4.3)) in exactly one way. Furthermore, since the Schubert classes {[X,,]} are a Z-basis for
H*(G/B), the cohomology class represented by the right-hand side of (4.2) and (4.3) is a
Z-linear combination of Schubert classes in precisely one way. Clearly, the same indexing
permutations must arise with the same multiplicities in both the polynomial expansion and
the cohomology expansion. Then since (4.2) and (4.3) are correct cohomologically, they
must also be polynomial identities. O

Example 4.2. In the orthogonal case when p = (3, 4), the identity (4.3) becomes

Ge752431 + Gers3412 + Gpr54213+G 7562431 + G7563412 + G7564213 =

wSryriraws(zy + x2)(xa + 5) (24 + 26).
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