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Abstract

Let n, q and r be positive integers, and letKn
N be the n-skeleton of an (N−1)-simplex.

We show that for N sufficiently large every embedding of Kn
N in R2n+1 contains a link

consisting of r disjoint n-spheres, such that every pairwise linking number is a nonzero
multiple of q. This result is new in the classical case n = 1 (graphs embedded in R3)
as well as the higher dimensional cases n ≥ 2; and since it implies the existence of an
r-component link with all pairwise linking numbers at least q in absolute value, it also
extends a result of Flapan et al. from n = 1 to higher dimensions. Additionally, for r = 2
we obtain an improved upper bound on the number of vertices required to force a two-
component link with linking number a nonzero multiple of q. Our new bound has growth
O(nq2), in contrast to the previous bound of growth O(

√
n4nqn+2).

Keywords: Intrinsic linking, complete n-complex, Ramsey theory.

Math. Subj. Class.: 57Q45, 57M25, 57M15

1 Introduction
In the early 1980s Sachs [11] and Conway and Gordon [1] proved that every embedding
of the complete graph K6 in R3 contains a pair of disjoint cycles that form a nontrivial
link, and Conway and Gordon also showed that every embedding of K7 in R3 contains
a nontrivial knot. These facts are expressed by saying that K6 is intrinsically linked, and
K7 is intrinsically knotted. Since then, a number of authors have shown that embeddings
of larger complete graphs necessarily exhibit more complex linking behaviour, such as
non-split many-component links [4, 6]; two component links with linking number large
in absolute value [2]; and two component links with linking number a nonzero multiple
of a given integer [5, 6]. Embeddings of larger complete graphs must also exhibit more
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complicated knotting behaviour, such as knots with second Conway co-efficient large in
absolute value [2].

Such Ramsey-type results for intrinsic linking can also be shown to hold in higher di-
mensions. Let Kn

N be the n-skeleton of an (N − 1)-simplex, which we call the complete
n-complex on N vertices. Then Kn

2n+4 is intrinsically linked, in the sense that every em-
bedding in R2n+1 contains a pair of disjoint n-spheres that have nonzero linking num-
ber [10, 12]; and moreover, the linking results described above can all be extended to
embeddings of sufficiently large complete n-complexes in R2n+1 [13].

Flapan, Mellor and Naimi [3, Theorem 1] have shown that intrinsic linking of graphs is
arbitrarily complex, in the following sense: Given positive integers r and α, every embed-
ding of a sufficiently large complete graph in R3 contains an r-component link in which
the linking number of each pair of components is at least α in absolute value. The main
goal of this paper is to prove an analogue of this result in all dimensions, with the condi-
tion on the magnitude of the linking numbers replaced by a divisibility condition instead.
Namely, we show that, given positive integers r and q, every embedding of a sufficiently
large complete n-complex in R2n+1 contains a link consisting of r disjoint n-spheres, in
which all pairwise linking numbers are nonzero multiples of q.

This result is new in the classical case n = 1 as well as the higher dimensional cases
n ≥ 2. Since a nonzero multiple of q has magnitude at least q, it also extends the Flapan-
Mellor-Naimi result to n ≥ 2. The techniques used to prove it draw heavily on those of
Flapan, Mellor and Naimi (for the construction of many-component links with all pairwise
linking numbers nonzero), as well as those of our previous paper [13] (for intrinsic linking
with n ≥ 2, and constructing links with linking numbers divisible by q). By refining
a technique from [13] we also obtain a vastly improved upper bound on the number of
vertices required in the case r = 2. Our new bound has growth O(nq2), in contrast to the
previous best bound [13, Theorem 1.4] of growth O(

√
n4nqn+2).

We note that Flapan, Mellor and Naimi [3, Theorem 2] further show that intrinsic link-
ing of complete graphs is arbitrarily complex in an even stronger sense: one can addition-
ally require that the second co-efficient of the Conway polynomial of each component has
absolute value at least α as well. As an integral measure of the complexity of a knot, the
second Conway co-efficient may be regarded as the natural analogue of the pairwise link-
ing number, viewed as an integral measure of the complexity of a two-component link. By
Hoste [7, Lemma 2.1(i)] the Conway polynomial ∇L(z) of an oriented r-component link
L = K1 ∪K2 ∪ · · · ∪Kr has the form

∇L(z) = zr−1[a0 + a1z
2 + · · ·+ amz

2m],

and by the second Conway co-efficient we mean the co-efficient a1. When L = K1 is a
knot we have a0 = 1 (Kauffman [9, Proposition 4.1], or see Hoste [7, Lemma 2.1(iii)]),
so a1 is the first nontrivial co-efficient of ∇L(z); and when L = K1 ∪ K2 is a two-
component link we have a0 = `k(K1,K2) (Hoste [7, Lemma 2.1(iv)]), so here it is the
linking number that is the first nontrivial co-efficient of∇L(z). Moreover, for a knotK the
mod two reduction of a1 is equal to the Arf invariant of K (Kauffman [9, Section 4(a)], or
see [7, Lemma 2.1(iii)]), so the linking number and the second Conway co-efficient may
both be regarded as integral lifts of the mod two invariants used to establish the first results
in intrinsic knotting and linking: the intrinsic linking of K6 is proved by considering a
sum of pairwise linking numbers mod two, and the intrinsic knotting of K7 is proved by
considering the sum of the Arf invariants of the Hamiltonian cycles in an embedding of K7
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in R3 [1].
We do not consider knotting of the components in this paper. This is chiefly for reasons

of dimension: knotting of n-spheres occurs in Rn+2, whereas linking of n-spheres occurs in
R2n+1, so the only dimension in which we can consider intrinsic knotting and linking of n-
complexes simultaneously is the classical case n = 1. We have not given this case separate
consideration, instead giving uniform arguments that work for all n. To our knowledge
there are at present no known divisibility results for intrinsic knotting, and we pose the
following question:

Question 1.1. Let q ≥ 2 be a positive integer. Does there exist N such that every em-
bedding of KN in R3 contains a knot with second Conway co-efficient a nonzero multiple
of q?

Hoste [8] shows that the first Conway co-efficient a0 of an r-component oriented link
L is equal to any cofactor of a certain matrix of pairwise linking numbers associated with
L. It then follows from Theorem 1.3 below that for N sufficiently large every embedding
of Kn

N in R2n+1 contains a non-split r-component link satisfying a0 ≡ 0 (mod q). As
a strengthening of Theorem 1.3, we might additionally ask that a0 be nonzero, motivating
the following question:

Question 1.2. Let n, q and r be positive integers, with q ≥ 2 and r ≥ 3. Does there exist
N such that every embedding of Kn

N in R2n+1 contains an r-component link with first
Conway co-efficient a nonzero multiple of q?

We conjecture that the answer to both questions above is yes.

1.1 Statement of results

Throughout this paper, an r-component link means r disjoint oriented n-spheres embedded
in R2n+1. Given a 2-component link L1 ∪ L2 we will write `k(L1, L2) for their linking
number, and `k2(L1, L2) for their linking number mod two. For {i, j} = {1, 2} the integral
linking number is given by the homology class [Li] in Hn(R2n+1 − Lj ;Z) ∼= Z.

Our main result is as follows:

Theorem 1.3. Let n, q and r be positive integers, with r ≥ 2. For N sufficiently large
every embedding of Kn

N in R2n+1 contains an r-component link L1 ∪ · · · ∪ Lr such that,
for every i 6= j, `k(Li, Lj) is a nonzero multiple of q.

Since every nonzero multiple of q has absolute value at least q, Theorem 1.3 immedi-
ately gives us the following extension of Theorem 1 of Flapan et al. [3] to higher dimen-
sions:

Corollary 1.4. Let n, λ and r be positive integers, with r ≥ 2. For N sufficiently large
every embedding of Kn

N in R2n+1 contains an r-component link L1 ∪ · · · ∪ Lr such that,
for every i 6= j, |`k(Li, Lj)| ≥ λ.

The r = 2 case of Theorem 1.3 is proved as Theorem 1.4 of [13], with an upper bound
of growth O(

√
n4nqn+2) on the number of vertices required. We re-prove this result with

a greatly improved bound with growth O(nq2):
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Theorem 1.5. For r = 2, the conclusion of Theorem 1.3 holds for

N ≥ κn(q) =

{
24q2, n = 1,

4q2(2n+ 4) + n+
⌈
4q2−2
n

⌉
+ 1, n ≥ 2.

In other words, every embedding of Kn
κn(q)

in R2n+1 contains a two component link
L1 ∪ L2 such that the linking number `k(L1, L2) is a nonzero multiple of q.

We note that the bound of Theorem 1.5 is equal to the best known upper bound on the
number of vertices required to force the existence of a generalised key ring with q keys
(see Flapan et al. [3, Lemma 1] for the case n = 1 (although they don’t state the bound
explicitly), and Tuffley [13, Theorem 1.2] for n ≥ 2).

1.2 Overview

As is the case with most Ramsey-type results on intrinsic linking, Theorems 1.3 and 1.5 are
proved by using the connect sum operation to combine simpler links into more complicated
ones. To achieve the divisibility condition we will require the building block components
to be “large”, in the sense that they all contain two copies of a fixed suitably triangulated
disc. The triangulation will not only need to have many n-simplices, but must also have
a combinatorial structure analogous to a path in a graph. Accordingly, we call such a
triangulated disc an n-path. We give a precise definition of a path in Section 2, and then
re-establish a number of known results on intrinsic linking to show that we can require the
necessary components to be large in this sense.

The bulk of the work required to prove Theorem 1.3 is done in Proposition 3.1, which
forms the main technical lemma of the paper. Section 3 is devoted to the proof of this. The
proposition plays the role of Flapan, Mellor and Naimi’s Lemma 2, and the statement and
proof are heavily modelled on theirs, making modifications as needed for it to work in all
dimensions and achieve the divisibility condition. From an arithmetic standpoint, realising
the divisibility condition largely boils down to repeatedly applying the following simple
number-theoretic observation, used by both Fleming [5] and Tuffley [13]:

Let `1, `2, . . . , `q be integers. Then there exist 0 ≤ a < b ≤ q such that

b∑
i=a+1

`i ≡ 0 (mod q).

The work then is in achieving this sum topologically, with the integers involved being
linking numbers with respect to some fixed sphere S. Paths and generalised key rings
(links in which one component has nonzero linking number with all the others) play crucial
roles in this.

With Proposition 3.1 established it is a relatively simple matter to prove Theorem 1.3,
and we do this in Section 4. The underlying argument is essentially that of Flapan, Mellor
and Naimi’s proof of their Theorem 1, using our Proposition 3.1 in place of their Lemma 2,
and with some additional considerations to ensure that the building block components are
sufficiently large, in the sense described above.

Finally, we turn our attention to the two component case in Section 5, and establish
the improved bound of Theorem 1.5. This is done by simply improving the construction
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of the building block link used in our original proof [13, Theorem 1.4] of this result. This
building block is a generalised key ring with q keys that are all sufficiently large, and our
original approach was to obtain this by working with a subdivision of Kn

N . By taking
the subdivision fine enough, we could ensure that each key contained the required pair
of paths. However, Lemma 5.1 gives us a simple way to enlarge the keys of an existing
key ring, thereby eliminating the need to subdivide. This by itself dramatically reduces
the number of vertices required. By additionally “recycling” vertices left over from earlier
stages of the construction, we show that we can in fact do this using no more vertices than
were needed to construct the initial key ring with q keys, reducing the number of vertices
still further.

1.3 Some notation and terminology

The combinatorial structure of a link with many components is usefully described by its
linking pattern:

Definition 1.6 (Flapan et al. [3, Definitions 1 and 2]). Given a link L, the linking pattern
of L is the graph with vertices the components of L, and an edge between two components
K and L if and only if `k(K,L) 6= 0. The mod 2 linking pattern of L is the graph with
vertices the components of L, and an edge between two components K and L if and only
if `k2(K,L) 6= 0.

An (r + 1)-component link R ∪ L1 ∪ · · · ∪ Lr is a generalised key ring with ring R
and keys L1, . . . , Lr if its linking pattern contains the star on r + 1 vertices as a subgraph,
with R as the central vertex. Thus, the components Li all link R, just like the keys on a key
ring. The link is referred to as a “generalised” key ring to reflect the fact that the keys may
link each other, which is not typically the case with the kinds of key rings we carry on our
persons.

The linking numbers between components of two disjoint many-component links are
conveniently collected into a linking matrix as follows:

Definition 1.7. Given disjoint ordered oriented links J = J1∪· · ·∪Js, L = L1∪· · ·∪Lt,
we define their linking matrix `k(J ,L) to be the s× t matrix with (i, j)-entry `k(Ji, Lj).

We will say that a matrix A is positive if all entries of A are positive, and nonvanishing
if every entry of A is nonzero.

2 Constructing links with large components
A common strategy in proving Ramsey-type results for intrinsic linking is to start with a
link with many components and relatively simple linking behaviour, and combine some
of the components to form a link with fewer components but more complicated linking
behaviour. Our arguments to prove Theorem 1.3 will require that the building block linking
components are “large” in a suitable sense. Thus, in this section we re-establish a number
of known results on intrinsic linking to prove the existence of links with large components.

In the classical one-dimensional case (graphs embedded in R3) we will simply require
our components to have sufficiently many vertices (equivalently, sufficiently many edges).
In principle, no additional work is required in this case, because we could simply take a
sufficiently large complete graph and subdivide each edge into a suitably long path, as is
done in Flapan [2]. The combinatorics of triangulated n-spheres are more complicated
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for n ≥ 2, however, and it will not be sufficient to simply work with spheres with many
vertices or n-simplices. Instead, we will additionally require our components to be large in
the following sense, where D is chosen in advance:

Definition 2.1. Let D be an n-dimensional triangulated disc. A triangulated n-sphere is
large with respect to D or D-large if it contains two disjoint oppositely oriented copies
of D.

When it comes time to prove Theorem 1.3 we will chooseD so that it has a triangulation
of the following form:

Definition 2.2. Let D be an n-dimensional triangulated disc with ` n-simplices. Then D
is a path of length ` if its n-simplices may be labelled ∆1, . . . ,∆` such that

Dab =

b⋃
i=a

∆i

is a disc for any 1 ≤ a ≤ b ≤ `.

For n = 1 this definition co-incides with the usual meaning of a path in a graph. To
construct a path for n ≥ 2 we may start with ` n-simplices ∆1, . . . ,∆`, and choose distinct
(n− 1)-simplices γi, δi belonging to ∆i. Choose simplicial isomorphisms φi : δi → γi+1

for 1 ≤ i ≤ ` − 1, and glue the ∆i according to the φi. The result is a disc Dn, and the
triangulation Dn = ∆1 ∪ · · · ∪∆` satisfies Definition 2.2 by construction. In Lemma 2.6
of [13] it is shown that a disc constructed in this way has ` + n vertices, and the number
of (n − 1)-simplices in ∂Dn is `(n − 1) + 2. We note that for n ≥ 2 a path does not
necessarily have this form: for instance, for n = 2 the triangulation of a regular n-gon by
radii may be given the structure of a path.

We begin by establishing the existence of D-large n-spheres with arbitrarily many ad-
ditional n-simplices. For convenience, we let σn(D,m) be the minimal number of vertices
of a triangulated sphere satisfying the conditions of the following lemma.

Lemma 2.3. Let D be a triangulated disc, and let m be a positive integer. There is a
triangulation of Sn that contains two disjoint oppositely oriented copies of D, together
with at least m additional n-simplices.

Proof. Consider D × I . If V = {v0, . . . , vN} is the vertex set of D, then D × I has a
triangulation with vertex set V × {0, 1}, and simplices of the form

δj = [(vi0 , 0), . . . , (vij , 0), (vij , 1), . . . , (vik , 1)]

for 0 ≤ j ≤ k and each k-simplex δ = [vi0 , . . . , vik ] of D with i0 < i1 < · · · < ik. As a
first pass we let S = ∂(D × I) with the induced triangulation.

The n-sphere S contains two disjoint copies of D, namely D × {0} and D × {1},
and they are oppositely oriented because they are exchanged by reflection in the equator
∂D × { 12}. Suppose that ∂D contains a total of t simplices of dimension n − 1. Each
contributes a total of n simplices of dimension n to ∂D × I , so S has a total of nt addi-
tional n-simplices. If nt ≥ m does not hold then let S′ be a triangulated n-sphere with at
least m− nt+ 1 simplices of dimension n (such a triangulated sphere certainly exists, for
example by taking the boundary of a sufficiently long (n+ 1)-path, as constructed above).
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Choose n-simplices δ and δ′ belonging to ∂D × I and S′, respectively, and form the con-
nected sum of S and S′ by gluing the discs S − δ and S′ − δ′ along their boundaries. The
resulting sphere satisfies the conditions given in the conclusion of the lemma.

We now use Lemma 2.3 to prove the existence of generalised key rings with large rings.
To do this we require the following slight strengthening of Lemma 3.2 of [13], which is in
turn an extension of Lemma 1 of Flapan et al. [3] to all dimensions.

Lemma 2.4. Let D be a triangulated disc. Suppose that Kn
N is embedded in R2n+1 such

that it contains a link

L ∪ J1 ∪ · · · ∪ Jm2 ∪X1 ∪ · · · ∪Xm2 ,

where `k2(Ji, Xi) = 1 for all i, and L contains two disjoint oppositely oriented copies of
D and at least m2 additional n-simplices. Then there is an n-sphere Z in Kn

N with all its
vertices on L∪ J1 ∪ · · · ∪ Jm2 , and an index set I with |I| ≥ m

2 , such that `k2(Z,Xj) = 1
for all j ∈ I and Z contains two disjoint oppositely oriented copies of D.

In Lemma 3.2 of [13] we require only that L has at least m2 n-simplices. Thus, the
difference between the two results is the stronger condition that L contains the two copies
of D and a further m2 n-simplices, and the additional conclusion that Z contains two
disjoint oppositely oriented copies of D. To prove the stronger form it is only necessary to
observe that in proving the original result we can ensure that the copies of D in L end up
in Z.

Proof. The first step in the proof of [13, Lemma 3.2] is to construct an n-sphere S with
all its vertices on L ∪ J1 ∪ · · · ∪ Jm2 , and meeting each sphere Ji in an n-simplex δi.
This is done by choosing a distinct n-simplex δ′i belonging to L for each i = 1, . . . ,m2,
and applying [13, Corollary 2.2] to obtain a sphere Qi ⊆ Kn

N with all its vertices on
δi ∪ δ′i, and meeting Ji in δi and L in δ′i. The sphere S is then constructed from L and
the Qi by omitting the interiors of the discs δ′i. Thus, we can ensure that S contains two
disjoint oppositely oriented copies of D by choosing the δ′i from among the m2 additional
n-simplices of L, leaving the copies of D intact.

At the final step in the proof of [13, Lemma 3.2], the required sphere Z is constructed
from S and a (possibly empty) subset of the Ji, by omitting the interiors of the correspond-
ing n-simplices δi. Therefore, since S contains the required copies ofD, we are guaranteed
that Z does too.

Corollary 2.5. Let D be a triangulated disc, and r a positive integer. For N sufficiently
large, every embedding of Kn

N in R2n+1 contains an (r + 1)-component link R ∪ L1 ∪
· · ·∪Lr such that `k2(R,Li) = 1 for all i, and R contains two disjoint oppositely oriented
copies of D. It suffices to take

N ≥ κn(D, r) = 4r2(2n+ 4) + σn(D, 4r2).

Proof. Given an embedding of Kn
κn(D,r)

in R2n+1, choose 4r2 disjoint copies of Kn
2n+4

contained in the embedding, together with a copy of Kn
σn(D,4r2)

. By Taniyama [12] the ith
copy of Kn

2n+4 contains a 2-component link Ji ∪ Xi such that `k2(Ji, Xi) = 1, and the
copy of Kn

σn(D,4r2)
contains a triangulated sphere L that contains two disjoint oppositely
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oriented copies of D and at least 4r2 additional n-simplices. The result now follows by
applying Lemma 2.4 with m = 2r to the link

L ∪ J1 ∪ · · · ∪ J4r2 ∪X1 ∪ · · · ∪X4r2 .

Finally, we extend Proposition 1 of Flapan et al. [3] to higher dimensions, with the
additional conclusion that all components are large with respect to a chosen triangulated
disc D. This result serves as the base case for the inductive argument proving Theorem 1.3
in Section 4.

Proposition 2.6. Let D be a triangulated disc, and let r be a positive integer. For N
sufficiently large, every embedding of Kn

N in R2n+1 contains a 2r-component link

J1 ∪ · · · ∪ Jr ∪ L1 ∪ · · · ∪ Lr,

such that `k2(Ji, Lj) is nonzero for all i and j, and each component contains two disjoint
oppositely oriented copies of D.

The link given by this result has mod two linking pattern containing the complete bi-
partite graph Kr,r, because each component Ji has nonzero mod 2 linking number with
each component Lj . The argument to prove the existence of such a link is exactly that of
Flapan et al.’s proof of their Proposition 1, and the extension to higher dimensions already
follows from our paper [13]: as noted in Section 1.2.2 of [13] their Proposition 1 is a purely
combinatorial argument that depends only on their Lemma 1 and the existence of gener-
alised key rings, and these are generalised to higher dimensions in [13]. So the work to be
done here is to ensure that each component contains copies of the disc D.

For n = 1 this already follows from Flapan et al.’s Proposition 1, because we may
simply subdivide each edge of a sufficiently large complete graph into paths of length `.
A similar approach could be taken in higher dimensions, using the subdivisions of Kn

N

constructed in [13], but this introduces many unnecessary vertices. We give a simpler
argument that doesn’t make use of subdivision, and requires far fewer vertices.

Proof. Following Flapan et al. [3] let m = (4r)2
r

4 , and let

N = mκn(D, r) + rσn(D,m).

Then Kn
N contains m copies of Kn

κn(D,r)
and r copies of Kn

σn(D,m), all disjoint from one
another. Given an embedding of Kn

N in R2n+1, by Corollary 2.5 the ith copy of Kn
κn(D,r)

contains a generalised key ring

Ri ∪ Ji1 ∪ · · · ∪ Jir

such that the ring Ri is D-large; and the jth copy of Kn
σn(D,m) contains a D-large sphere

Lj that contains at least m additional n-simplices.
Apply Lemma 2.4 to the link

L1 ∪ J11 ∪ · · · ∪ Jm1 ∪R1 ∪ · · · ∪Rm.

This yields a D-large sphere Z1 with all its vertices on L1 ∪ J11 ∪ · · · ∪ Jm1, and an index

set I1 with |I1| ≥
√
m
2 = (4r)2

r−1

4 = m1, such that `k2(Z1, Ri) = 1 for all i ∈ I1.
Suppose now that for some 1 ≤ k < r we have constructed D-large spheres Z1, . . . , Zk
and an index set Ik such that
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(1) all vertices of Zj lie on Lj ∪ J1j ∪ · · · ∪ Jmj for 1 ≤ j ≤ k;

(2) |Ik| ≥ mk = (4r)2
r−k

4 ;

(3) `k2(Zj , Ri) = 1 for all 1 ≤ j ≤ k and i ∈ Ik.

Applying Lemma 2.4 to the link

Lk+1 ∪

(⋃
i∈Ik

Ji(k+1)

)
∪

(⋃
i∈Ik

Ri

)

we obtain a D-large sphere Zk+1 with all its vertices on Lk+1 ∪ J1(k+1) ∪ · · · ∪ Jm(k+1),

and an index set Ik+1 ⊆ Ik with |Ik+1| ≥
√
mk

2 = (4r)2
r−k−1

4 = mk+1, such that
`k2(Zk+1, Ri) = 1 for all i ∈ Ik+1. This gives us D-large spheres Z1, . . . , Zk+1 and
an index set Ik+1 such that conditions (1) – (3) hold with k replaced by k+ 1, so by induc-
tion there areD-large spheres Z1, . . . , Zr and an index set Ir such that they hold for k = r.

Since mr = (4r)2
r−r

4 = r, the first 2r components of

Z1 ∪ · · · ∪ Zr ∪

(⋃
i∈Ir

Ri

)

are the required link.

3 The main technical lemma
This section is dedicated to proving the following analogue of Lemma 2 of Flapan et al. [3],
which forms the main technical lemma of this paper:

Proposition 3.1 (Main technical lemma). Let q ∈ N. Suppose that Kn
N is embedded

in R2n+1 such that it contains a link with oriented components J1, . . . , JA, L1, . . . , LB ,
X1, . . . , XS and Y1, . . . , YT satisfying

(1) A ≥ 2SqS+T ;

(2) B ≥ 3S2T (S + T )qS+T ;

(3) `k(Ja, Xs) is nonzero for all a and s;

(4) `k(Lb, Yt) is nonzero for all b and t; and

(5) each component Ja, Lb contains two disjoint oppositely oriented copies of a fixed
path D of length λ ≥ (2q)S+T .

Then Kn
N contains an n-sphere Z with all its vertices on J1 ∪ · · · ∪ JA ∪ L1 ∪ · · · ∪ LB

such that, for each s and t, `k(Z,Xs) and `k(Z, Yt) are nonzero multiples of q.

We note that the hypotheses of our Proposition 3.1 are much stronger than the hypothe-
ses of Flapan et al.’s Lemma 2: we require A and B to be much greater, and we have
the additional hypothesis (5) that the components Ja, Lb are large with respect to a cer-
tain path. This is to be expected, since our conclusion is strictly stronger than theirs: any
nonzero multiple of q is necessarily at least q in magnitude.

Before proving Proposition 3.1 we first establish the following lemma on sums of vec-
tors in Rd, which we will use in the proof.
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Lemma 3.2. Let f ∈ Rd be a vector with all entries nonzero, and for i = 0, . . . , N let
vi ∈ Rd. If N ≥ 2d then there exist 0 ≤ j < k ≤ N such that every entry of f + vk − vj
is nonzero.

Proof. The proof is by induction on d. In the base case d = 1, suppose that N ≥ 2. If
either f + v1 − v0 or f + v2 − v1 is nonzero then we are done, and otherwise

f + v2 − v0 = (f + v2 − v1) + (f + v1 − v0)− f = −f 6= 0.

Thus the lemma holds in the base case d = 1.
Suppose now that the lemma holds for some d ≥ 1, and let v0,v1, . . . ,vN be N +

1 ≥ 2d+1 + 1 vectors in Rd+1. We claim that there is N ′ ≥ 2d and N ′ + 1 indices
0 ≤ i0 < i1 < · · · < iN ′ ≤ N such that, for any 0 ≤ j < k ≤ N ′, the (d + 1)th entry
of f + vik − vij is nonzero. The inductive step will then follow by applying the inductive
hypothesis to the first d entries of f and vi0 , . . . ,viN′ .

Write x(i) for the ith entry of x ∈ Rm. To prove the claim we consider the graph
with vertex set {0, 1, . . . , N}, and an edge between j and k if j < k and the difference
v
(d+1)
k − v(d+1)

j is equal to the forbidden value −f (d+1). Now observe that for any path
(i0, i1, . . . , im) in this graph we have

v
(d+1)
im

− v(d+1)
i0

=

m∑
j=1

[v
(d+1)
ij

− v(d+1)
ij−1

] = −f (d+1)
m−1∑
j=1

sign(ij − ij−1).

In particular, if the path is a cycle then im = i0, and it follows that

fd+1
m−1∑
j=1

sign(ij+1 − ij) = 0.

Since f (d+1) is nonzero by hypothesis the sum must be zero, and since each term is ±1,
for this to occur it must involve an even number of terms. Thus any cycle must be of even
length, and it follows that our graph is bipartite.

Colour the vertices black and white in such a way that there is no edge between vertices
of the same colour, and let 0 ≤ i0 < i1 < · · · < iN ′ ≤ N be the vertices belonging to the
larger colour class. Then N ′ + 1 ≥ d(N + 1)/2e ≥ d(2d+1 + 1)/2e = 2d + 1, and for any
0 ≤ j < k ≤ N ′ we have f (d+1) + v

(d+1)
ik

− v(d+1)
ij

6= 0, as required. Lemma 3.2 now
follows by our discussion above.

Proof of Proposition 3.1. Let

J = J1 ∪ · · · ∪ JA, X = X1 ∪ · · · ∪XS ,

L = L1 ∪ · · · ∪ LB , Y = Y1 ∪ · · · ∪ YT .

Following Flapan et al. [3], we begin by replacing the links J and L with sublinks J ′,
L′′ for which we have some control over the signs of the entries of the linking matrices
`k(J ′,X ), `k(L′′,Y) and `k(L′′,X ). To do this, we first consider the patterns of signs of
the entries of the vectors `k(Ja,X ). Since these vectors have S entries, and all are nonzero,
there are 2S possibilities for the patterns of signs (positive and negative) in each one. It
follows that we can choose at least A/2S ≥ qS+T of them that all have the same pattern of
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signs. Moreover, after reversing the orientation of some components of X if necessary, we
may assume that these signs are all positive. Thus, setting J ′ = J1 ∪ · · · ∪ JqS+T , we may
assume without loss of generality that the linking matrix `k(J ′,X ) is positive.

Applying the same argument to the vectors `k(Lb,Y), we obtain a sublink L′ of L with
at least 3S(S+T )qS+T components such that the linking matrix `k(L′,Y) is positive. We
now consider the patterns of signs (positive, negative or zero) of the vectors `k(Lb,X ) for
Lb a component of L′. There are now 3S possibilities for these patterns, so we may choose
at least (S + T )qS+T components that have the same pattern. Setting L′′ = L1 ∪ · · · ∪
L(S+T )qS+T we may therefore assume without loss of generality that the linking matrix
`k(L′′,Y) is positive, and that each column of `k(L′′,X ) is either positive, negative, or
zero. From now on we restrict our attention to the sublinks J ′ and L′′ of J and L.

Our next goal is to construct a sublink Z = Z1 ∪ · · · ∪ ZC of J ′ ∪ L′′ such that every
entry of

z =

C∑
c=1

`k(Zc,X ∪ Y)

is a nonzero multiple of q. At the final step we will obtain the required n-sphere Z as a
connect sum of the components of Z . To this end we begin by considering the sums

jα =

α∑
a=1

`k(Ja,X ∪ Y)

modulo q for 1 ≤ α ≤ qS+T . Each vector jα has S + T entries, so there are qS+T pos-
sibilities when considered mod q. Since we have qS+T vectors in total, by the pigeonhole
principle we can either find one that is zero modulo q, or two that are equal modulo q. In
either case, there are integers 0 ≤ α0 < α1 ≤ qS+T such that the vector

j =

α1∑
a=α0+1

`k(Ja,X ∪ Y)

is zero modulo q. Moreover, the first S entries of j are given by
∑α1

a=α0+1 `k(Ja,X ), and
are therefore nonzero, because the vector `k(Ja,X ) is positive for each a. We will use
Jα0+1 ∪ · · · ∪ Jα1 as the first α1 − α0 components of Z .

We now consider the sums
β∑
b=1

`k(Lb,X ∪ Y)

modulo q for 1 ≤ β ≤ (S + T )qS+T . Since there are again qS+T possibilities mod q,
and we have (S + T )qS+T sums in total, we can either find S + T of them that are zero
mod q, or S + T + 1 of them that are identical mod q. In either case, there are integers
0 ≤ β0 < β1 < · · · < βS+T ≤ (S + T )qS+T such that the vectors

`i =

βi∑
b=β0+1

`k(Lb,X ∪ Y)

are zero modulo q. Any additional components of Z will be chosen from among Lβ0+1 ∪
Lβ0+2 ∪ · · · ∪ LβS+T

.



342 Ars Math. Contemp. 16 (2019) 331–348

To choose the remaining components of Z we consider the sequence of S + T + 1
vectors j, j + `1, . . . , j + `S+T . From above these vectors are all zero when considered
modulo q, and we claim that it is possible to choose at least one of them that is nonvanishing
when considered as an integer vector. To see this, consider first the (S+ t)-entries for some
1 ≤ t ≤ T , which are given by

j(S+t) =

α1∑
a=α0+1

`k(Ja, Yt),

(j + `i)
(S+t) =

α1∑
a=α0+1

`k(Ja, Yt) +

βi∑
b=β0+1

`k(Lb, Yt).

Since the linking matrix `k(L′′,Y) is positive these form a strictly increasing sequence,
and consequently the (S + t)-entry vanishes for at most one of our S + T + 1 vectors.

Next, consider the s-entries for some 1 ≤ s ≤ S, which are given by

j(s) =

α1∑
a=α0+1

`k(Ja, Xs),

(j + `i)
(s) =

α1∑
a=α0+1

`k(Ja, Xs) +

βi∑
b=β0+1

`k(Lb, Xs).

Recall that the first sum is positive, and that each column of the linking matrix `k(L′′,X )
is either positive, negative, or zero. It follows that the above sequence of integers is either
constant (in which case it is positive), or it is strictly increasing or strictly decreasing. In
any case we again conclude that the s-entry vanishes for at most one of our S + T + 1
vectors. Thus there are at most S + T vectors for which one of the entries vanishes, and so
there is at least one for which no entry vanishes, proving the claim. We may then set

Z = Z1 ∪ · · · ∪ ZC

=

{
Jα0+1 ∪ · · · ∪ Jα1

if j is nonvanishing, or
Jα0+1 ∪ · · · ∪ Jα1

∪ Lβ0+1 ∪ · · · ∪ Lβi
if j + `i is nonvanishing.

With this choice of Z , every entry of

z0 =

C∑
c=1

`k(Zc,X ∪ Y)

is a nonzero multiple of q, as required.
Our final task is to obtain the required n-sphere as a suitable connect sum of the com-

ponents of Z . To do this we will inductively construct oriented spheres F1, . . . , FC−1 such
that, for each 1 ≤ γ ≤ C − 1,

(a) the vertices of Fγ lie on Zγ ∪ Zγ+1 (and so Fγ is disjoint from X , Y , and the rest
of Z);

(b) Fγ−1 ∩ Zγ and Fγ ∩ Zγ are disjoint discs, each of which is oppositely oriented by
Zγ and Fγ−1 or Fγ ;
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(c) every entry of the vector

zγ = z0 +

γ∑
i=1

`k(Fi,X ∪ Y)

is a nonzero multiple of q.

We will then obtain the required sphere Z from the union of Z and the Fc by omitting the
interiors of the discs Fc ∩ Zc and Fc ∩ Zc+1. Conditions (a) and (b) imply that Fc and Fc′
are disjoint for all c and c′, and it follows that Z is a connect sum of spheres, and hence
itself a sphere. Moreover, as a chain we have Z =

∑C
c=1 Zc +

∑C−1
c=1 Fc, so

`k(Z,X ∪ Y) = z0 +

C−1∑
c=1

`k(Fc,X ∪ Y),

and by condition (c) every entry of this vector is a nonvanishing multiple of q.
The underlying technique for constructing the spheres Fc comes from the proof of

Theorem 1.4 of Tuffley [13], but additional work is required to ensure that condition (c)
is satisfied. By hypothesis (5) each sphere Zc contains two disjoint copies of the path D,
one of each orientation. We begin by labelling these Dc and D′c in such a way that there
is an orientation reversing simplicial isomorphism φc : Dc → D′c+1. This may be done
inductively: first label the copies of D contained in Z1 arbitrarily, and then once Dc and
D′c have been chosen, choose Dc+1 and D′c+1 so that D′c+1 is oppositely oriented to Dc.
We will choose the spheres Fc so that the following strengthened form of condition (a)
holds for 1 ≤ γ ≤ C − 1:

(a′) the vertices of Fγ lie on Dγ ∪D′γ+1.

This condition serves to ensure that Fγ−1 ∩ Zγ and Fγ ∩ Zγ are disjoint, as required by
condition (b).

Suppose that for some 0 ≤ c < C − 1 the spheres F1, . . . , Fc have been constructed
so that conditions (a′), (b) and (c) hold for 0 ≤ γ ≤ c. When c = 0 conditions (a′) and (b)
are empty, and condition (c) is that every entry of z0 is a nonzero multiple of q, so we may
take c = 0 as our base case. Let ∆1, . . . ,∆λ be a labelling of the n-simplices of the path
Dc+1 as in Definition 2.2, and for 1 ≤ ` ≤ λ let P` be the oriented sphere satisfying

P` ∩ Zc+1 = ∆`, P` ∩ Zc+2 = φc+1(∆`)

that results from applying Corollary 2.2 of Tuffley [13] to the pairs (Zc+1, Dc+1) and
(Zc+2, D

′
c+2). The vertices of these spheres all lie on Dc+1 ∪D′c+2, and for any 1 ≤ µ ≤

ν ≤ λ, the chain
∑ν
`=µ P` represents a sphere meeting Dc+1 in the disc

⋃ν
`=µ ∆`, and

D′c+2 in the disc
⋃ν
`=µ φc+1(∆`).

For 1 ≤ ` ≤ λ we consider the sums

∑̀
i=1

`k(Pi,X ∪ Y)

modulo q. As above there are qS+T possibilities for these modulo q, and we have λ ≥
2S+T qS+T of them, so we can either find 2S+T of them that are identically zero mod q, or
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2S+T + 1 of them that are equal mod q. In either case there are integers 0 ≤ µ0 < µ1 <
· · · < µ2S+T such that the vectors

pj =

µj∑
i=µ0+1

`k(Pi,X ∪ Y)

are identically zero mod q for 1 ≤ j ≤ 2S+T .
Set p0 = 0, and apply Lemma 3.2 to the vectors p0,p1, . . . ,p2S+T ∈ RS+T with

f = zc. This yields indices 0 ≤ j < k ≤ 2S+T such that no entry of

zc + pk − pj = zc +

µk∑
i=µj+1

`k(Pi,X ∪ Y)

is zero. Moreover, the vectors zc, pj and pk are all identically zero mod q, so every entry
of zc + pk − pj is a nonzero multiple of q.

Let Fc+1 =
∑µk

i=µj+1 Pi. Then Fc+1 represents an n-sphere with all its vertices on
Zc+1 ∪ Zc+2, and meeting Zc+1 and Zc+2 in the discs

Fc+1 ∩ Zc+1 =

µk⋃
i=µj+1

∆i ⊆ Dc+1, Fc+1 ∩ Zc+2 = φc+1

 µk⋃
i=µj+1

∆i

 ⊆ D′c+2.

The construction of Corollary 2.2 of Tuffley [13] ensures that these discs are oppositely
oriented by Fc+1 and Zc+1 ∪ Zc+2, so conditions (a′) and (b) are satisfied; and with this
choice of Fc+1 we have zc+1 = zc + pk − pj , so condition (c) is too. This completes the
inductive step, and we now obtain the required sphere Z as described above.

4 Proof of Theorem 1.3
We are now in a position to prove our main result, Theorem 1.3. The strategy is that of
Flapan et al.’s proof of their Theorem 1.

Proof of Theorem 1.3. Following Flapan et al. [3], for each u, v ∈ N letH(u, v) denote the
complete (u + 2)-partite graph with parts P1 and P2 containing v vertices each, and parts
Q1, . . . , Qu containing a single vertex each. We will prove by induction on u that for every
u ≥ 0 and v, ` ≥ 1, for N sufficiently large every embedding of Kn

N in R2n+1 contains a
link L such that

(L1) the linking pattern of L contains the graph H(u, v);

(L2) the linking number between any two distinct components in Q1 ∪ · · · ∪ Qu is a
nonzero multiple of q; and

(L3) every component in P1 ∪P2 contains disjoint oppositely oriented copies of a path D
of length at least `.

For simplicity, we will say that a link L satisfying conditions (L1) – (L3) with the given
parameter values satisfies property (u, v, `).
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The base case u = 0 follows from Proposition 2.6 with r = v, by choosing D to be a
path of length `. Suppose then that the claim holds for some u ≥ 0. Given v, ` ≥ 0, let

S = v,

T = u+ v,

A = B = 2T 3S(S + T )qS+T ≥ 2SqS+T ,

λ = max{`, (2q)S+T },

and let w = S + A = S + B. By our inductive hypothesis, for N sufficiently large every
embedding of Kn

N in R2n+1 contains a link L satisfying property (u,w, λ). We will show
that every such embedding also contains a link L′ satisfying property (u+ 1, v, `).

Given an embedding of Kn
N in R2n+1 and a link L contained in it satisfying property

(u,w, λ), label the components of L such that

P1 = {X1, . . . , XS , L1, . . . , LB},
P2 = {Y1, . . . , YS , J1, . . . , JA},

and Qi = {Yv+i} for 1 ≤ i ≤ u. Then all linking numbers `k(Ja, Xs) and `k(Lb, Yt) are
nonzero by (L1), and every component Ja, Lb contains two disjoint copies of a path D of
length at least λ ≥ (2q)S+T , by (L3). So we may apply Proposition 3.1 to L to obtain a
sphere Z with all its vertices on J1∪· · ·∪JA∪L1∪· · ·∪LB and linking every component
Xs, Yt with linking number a nonzero multiple of q. Let

L′ = X1 ∪ · · · ∪XS ∪ Y1 ∪ · · · ∪ YT ∪ Z
= X1 ∪ · · · ∪Xv ∪ Y1 ∪ · · · ∪ Yu+v ∪ Z,

and partition the components as P ′1 ∪ P ′2 ∪Q′1 ∪ · · · ∪Q′u+1 such that

P ′1 = {X1, . . . , Xv},
P ′1 = {Y1, . . . , Yv},

and

Q′i =

{
{Yv+i} 1 ≤ i ≤ u,
{Z} i = u+ 1.

Then with respect to this partition the linking pattern of L′ contains the graph H(u+ 1, v);
any two components in Q′1 ∪ · · · ∪Q′u+1 have linking number a nonzero multiple of q; and
every component in P1 ∪ P2 contains a copy of D, which is a path of length at least λ ≥ `.
So L′ satisfies property (u+ 1, v, `), completing the inductive step. By (L2) the result now
follows by restricting attention to Q1 ∪ · · · ∪Qu, with u = r.

5 The two component case
We now turn to the two component case, and establish the improved bound of Theorem 1.5.

From the proof of [13, Theorem 1.4] it suffices to prove every embedding of Kn
κn(q)

contains a generalised key ring with q keys each large with respect to a path D of length
q. The approach of [13] was to work with a subdivision of Kn

N , in which each n-simplex
was subdivided into qn simplices. This is a fairly extravagant approach, since only 2q
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n-simplices from each component are used to form the required paths. The reduction in
the number of vertices required comes from Lemma 5.1, which gives us a simple and
economical way to enlarge the keys of an existing generalised key ring. A further modest
saving comes from “recycling” some of the vertices leftover from the construction of the
initial key ring.

Lemma 5.1. Let Kn
N be embedded in R2n+1 such that it contains a link X ∪ Y with

`k(X,Y ) 6= 0. Let D be a triangulated n-disc with d vertices, and suppose that V is a set
of 2d− (n+ 1) vertices of Kn

N disjoint from X ∪ Y . Then Kn
N contains a D-large sphere

Z with all its vertices on Y ∪ V such that `k(X,Z) 6= 0.
The result also holds with all linking numbers calculated mod 2.

Proof. Choose an n-simplex ∆ belonging to Y, and let S = ∂(D × I) with the trian-
gulation with 2d vertices from the proof of Lemma 2.3. Then ∆ ∪ V contains a total of
(n+1)+(2d−(n+1)) = 2d vertices, so we may embed S inKn

N such that all vertices of S
lie on ∆∪V and ∆ is an n-simplex of ∂D× I . Orient S such that ∆ receives opposite ori-
entations from S and Y, and consider the chains S and T = S+Y . Both represent D-large
n-spheres with all their vertices on Y ∪ V , and the linking numbers `k(X,S), `k(X,T )
cannot both be zero because in the homology group Hn(R2n+1 −X) we have

[T ]− [S] = [S + Y ]− [S] = [Y ] 6= 0. (5.1)

We may therefore choose one of S and T to be Z so that `k(X,Z) 6= 0.
If `k2(X,Y ) 6= 0 then equation (5.1) holds in Hn(R2n+1 − X;Z/2Z), and we may

again choose Z to be one of S and T so that `k2(X,Z) 6= 0.

Corollary 5.2. Let q be a positive integer. Then every embedding of Kn
κn(q)

in R2n+1

contains a generalised key ring in which each key is large with respect to a path D of
length q.

Proof. By [13, Theorem 1.2] every embedding of Kn
κn(q)

in R2n+1 contains a generalised
key ringLwith q keys. This link is constructed by applying [13, Lemma 3.2] (the extension
of [3, Lemma 1] to higher dimensions) to a link

L ∪ J1 ∪ · · · ∪ J4q2 ∪K1 ∪ · · · ∪K4q2 ,

in which `k2(Ji,Ki) is nonzero for all i, and each component Ji,Ki is the boundary of
an (n + 1)-simplex. This yields an n-sphere R with all vertices on L ∪ J1 ∪ · · · ∪ J4q2
and linking at least q of the Ki, which forms the ring of the generalised key ring. Let
Ki1 , . . . ,Kiq be the keys.

Recall that a path D of length q can be constructed using as few as d = q + n vertices.
Since only q of the Ki are components of L this leaves at least (4q2 − q)(n + 2) =
q(4q − 1)(n+ 2) vertices of Kn

κn(q)
that do not belong to L. Observe that

(4q − 1)(n+ 2) = (4q − 1)n+ 8q − 2 ≥ 2n+ 2q = 2d > 2d− (n+ 1).

The spare vertices are therefore more than enough to apply Lemma 5.1 q times to R and
each key Kij in turn, replacing Kij with a D-large sphere Zj that still links R. Then

R ∪ Z1 ∪ · · · ∪ Zq

is the desired link.
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For completeness’ sake we sketch the steps needed to prove Theorem 1.5 from this
point. For any missing details see the proof of [13, Theorem 1.4], or the corresponding step
of the proof of Proposition 3.1.

Proof of Theorem 1.5. By Corollary 5.2, every embedding of Kn
κn(q)

in R2n+1 contains a
generalised key ring R∪Z1 ∪ · · · ∪Zq such that each key Zi is large with respect to a path
D of length q. Orient the Zi so that all linking numbers with R are positive. Working in
the homology group Hn(R2n+1 −R;Z), let 1 ≤ a ≤ b ≤ q be such that

b∑
i=a

[Zi] ≡ 0 (mod q),

and note that this sum is positive. From now on we restrict our attention to the spheres
Za, . . . , Zb.

If a = b we are done. Otherwise, we use the fact that each component Zi is D-large to
construct oriented spheres Fa, . . . , Fb−1 such that, for a ≤ i ≤ b− 1,

(a) the vertices of Fi lie on Zi ∪ Zi+1 (and so Fi is disjoint from R and the rest of
the Zj);

(b) Fi−1 ∩ Zi and Fi ∩ Zi are disjoint discs, each of which is oppositely oriented by Zi
and Fi−1 or Fi;

(c) the linking number `k(R,Fi) is zero mod q.

The construction of the Fi is identical to that of the corresponding spheres in Proposi-
tion 3.1, except that the simpler condition (c) means we only require D to have length
q, and the spheres can all be constructed simultaneously instead of inductively. Now if
`k(R,Fi) is nonzero for some i then R ∪ Fi is the required link; and otherwise, we let Z
be the connect sum of Za, . . . , Zb, Fa, . . . , Fb−1 obtained by omitting the interiors of the
discs Fi ∩Zi and Fi ∩Zi+1 for each i. Then Z is an n-sphere, and in Hn(R2n+1 −R) we
have

[Z] =

b∑
i=a

[Zi] +

b−1∑
i=a

[Fi] =

b∑
i=a

[Zi],

which is a nonzero multiple of q.
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