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bJožef Stefan Institute, 1000 Ljubljana, Slovenia
cFaculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract. We apply the coupled channel formalism for the K-matrix to the calculation of

the P11 and P33 scattering amplitudes in the region the N(1440) and ∆(1600) resonances.

1 Introduction

In this work [1] we extend the coupled channel formalism for the K matrix de-
rived in [2] using the static approximation to take into account the correct rela-
tivistic kinematics of the meson-baryon system. We apply this method that has
been used in [2] to explain the peculiar behaviour of the scattering amplitudes in
the energy range of the Roper resonance to the calculation of the ∆(1600) reso-
nance, the Roper’s counterpart in the P33 partial wave.

In quark models these two resonances are assumed to have a similar spa-
tial structure, this similarity is however not reflected in the scattering ampli-
tudes. While in the P11 partial wave the phase shift reaches 90 degrees around
W ∼ 1500 MeV the phase shift in the P33 case shows no sign of resonanant be-
haviour in the energy range of W ∼ 1600 and above, which is a strong signal of
the important role of inelastic channels. This is further supported by the unusual
behaviour of the inelasticity which in the P11 case rapidly rises from zero to unity
and remains close to this value in a broad energy region, while in the P33 case it
rises rather slowly and reaches the unitarity limit only at much higher energies.

We show that these features can be explained by assuming that in this energy
range the inelastic channels are dominated by the two and three-pion decays pro-
ceedingmainly through two channels: (i) in the π∆ channel the resonance first de-
cays into the pion and the∆ isobar of invariantmassM,MN+mπ < M < W−mπ,
and (ii) the σ channel in which the resonance first decays into the σ-meson mim-
icking two pions in the relative s-state and either the nucleon (in the P11 case) or
the ∆ isobar (in the P33 case).

⋆ Talk delivered by B. Golli
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2 Coupled-channel K-matrix formalism

We consider a class of chiral quark models in which mesons (the pion and the
sigma meson in our case) couple linearly to the quark core:

Hmeson =

∫
dk

∑

lmt

{
ωk a

†
lmt(k)almt(k) +

[
Vlmt(k)almt(k) + V

†
lmt(k)a

†
lmt(k)

]}
,

where a†lmt(k) is the creation operator for a meson with angular momentum l

and the third components of spin m and isospin t. In the case of the pion, we
include only l = 1 pions, and

Vmt(k) = −v(k)

3∑

i=1

σi
mτ

i
t (1)

is the general form of the pion source, with the quark operator, v(k), depending
on the model. It includes also the possibility that the quarks change their radial
function which is specified by the reduced matrix elements VBB ′ = 〈B||V(k)||B ′〉,
where B are the bare baryon states (e.g. the bare nucleon, ∆, Roper, . . .) In the case
of the σmesons we assume only l = 0mesons, coupled to the quark core with

Ṽµ(k) = Gσ

k√
2ωµk

wσ(µ) , wσ(µ)2 ≈ 1

π

1
2
Γσ

(µ−mσ)2 + 1
4
Γ2
σ

. (2)

Here ω2
µk = k2 + µ2 and wσ(µ) is the mass distribution function modeling the

resonant decay into two pions. In this workwe take the values consistent with the
recent analysis of Leutwyler [5],mσ = 450MeV and Γσ = 550MeV. The strength
parameter Gσ in (2) is a free parameter of the model.

Chew and Low [4] have shown that in such models it is possible to find the
exact expression for the T matrix (and consequently for the K matrix) without
explicitly specifying the form of asymptotic states. In the basis with good total
angular momentum J and isospin T , in which the K and T matrices are diagonal,
it is possible to express the Kmatrix for the elastic channel in the form:

KJT
πNπN(k,W) = −πNN〈ΨN

JT (W)||V(k)||ΨN〉 ,

whereW is the invariant mass of the meson-baryon system. In the inelastic chan-
nels we find

KJT
π∆πN(k,W,M) = −πN∆〈ΨN

JT (W)||V(k)||Ψ̃∆(M)〉 ,
KJT

π∆π∆(k,W,M ′,M) = −πN∆〈Ψ∆
JT (W,M)||V(k)||Ψ̃∆(M ′)〉 ,

where Ψ̃∆(M) is the intermediate ∆ state with invariant mass M normalized as
〈Ψ̃∆(M ′)|Ψ̃∆(M)〉 = δ(M −M ′). The matrix elements of the K matrix involving
the σN channel in the P11 case read

K
1
2

1
2

σN(k,W, µ) = −πNσN 〈ΨN
1
2

1
2
(W)|Ṽµ(k)|ΨN〉 ,

K
1
2

1
2

σ∆ (k,W, µ,M) = −πNσN 〈Ψ∆
1
2

1
2

(W,M)|Ṽµ(k)|ΨN〉 ,

K
1
2

1
2

σσ (k,W, µ, µ ′) = −πNσN 〈Ψσ
1
2

1
2
(W,µ ′)|Ṽµ(k)|ΨN〉 ,
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and those involving the σ∆ channel in the P33 case:

K
3
2

3
2

Nσ(k,W,M,µ) = −πNσ∆ 〈ΨN
3
2

3
2
(W)|Ṽµ(k)|Ψ̃∆(M)〉 ,

K
3
2

3
2

∆σ (k,W, µ,M,M ′) = −πNσ∆ 〈Ψ∆
3
2

3
2
(W,M ′)|Ṽµ(k)|Ψ̃∆(M)〉 ,

K
3
2

3
2

σσ (k,W, µ,M,µ ′,M ′) = −πNσ∆ 〈Ψσ
3
2

3
2
(W,µ ′,M ′)|Ṽµ(k)|Ψ̃∆(M)〉 ,

whereNB =
√
ωEB/kW, NσB =

√
ωµEB/kµW, ω is the energy of the scattering

pion, k =
√
ω2 −m2

π, andωµ is the energy of the scattering σ-meson of invariant

mass µ, kµ =
√
ω2 − µ2. Here ΨH

JT is the principal value state for which we use
the following ansatz that takes into account the proper relativistic kinematics and
replaces the similar expression in [2] derived in the static (no-recoil) approxima-
tion:

|ΨH
JT (W,mH)〉 = NH

{∑

B

cH
B (W,mH)|ΦB〉 + [a†(kH)|Ψ̃H〉]JT

+

∫
dk

χNH
JT (k,W,mH)

ωk + EN(k) −W
[a†(k)|ΨN(k)〉]JT

+

∫
dM

∫
dk
χ∆H

JT (k,W,M,mH)

ωk + E(k) −W
[a†(k)|Ψ̃∆(M)〉]JT

+

∫
dµ

∫
dk
χσH

JT (k,W, µ,mH)

ωµk + E(k) −W
b†(k)|Ψ̃JT 〉

}
. (3)

Here H stands for either the πN, π∆, σN or the σ∆ channel, mH is the invariant
mass of the corresponding intermediate hadron in the inelastic channels, E(k) is
the energy of the recoiled baryon (nucleon or∆). The first term consists of the sum
over bare tree-quark states ΦB, involving different excitations of the quark core,
the next term corresponds to the free meson (pion or σ-meson) and the baryon
(N or ∆) and defines the channel, the next two terms represent the pion cloud
around the nucleon and the ∆ isobar, respectively, and the last term the σ-meson
cloud around the nucleon (for JT = 1

2
1
2
) or the ∆ (for JT = 3

2
3
2
), here b† is the

creation operator for the σ-meson.
The on-shell meson amplitudes χH ′H

JT , describing the corresponding meson
clouds around the nucleon and the ∆ are proportional to corresponding matrix
elements of the on-shell K matrix

KH ′H = πNH ′NH χ
H ′H
JT (kH ′ , kH) .

From the variational principle for the K matrix it is possible to derive the inte-
gral equation for the amplitudes which is equivalent to the Lippmann-Schwinger
equation for the K matrix.
Using a simplified ansatz for the principal value states in which the terms in-

volving the integrals are neglected amounts to taking only the non-homogeneous
part of the corresponding Lippmann-Schwinger equation. Such an approxima-
tion is widely used in phenomenological analysis of scattering amplitudes and is
known as the Born approximation for the K matrix.
The T matrix is calculated from the K matrix through the Heitler equation:

T = −K+ iKT .
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3 Results for the scattering amplitudes in the Cloudy Bag
Model

We illustrate the method by calculating scattering amplitudes for the P11 and
the P33 partial waves. Though the expressions derived in the previous sections
are general and can be applied to any model in which mesons linearly couple to
the quark core, we choose here the Cloudy Bag Model, primarily because of its
simplicity. In this model, the matrix element of the pion source (1) between the
model 3-quark states can be written as

〈ΦB ′ ||V(k)||ΦB〉 = rq v(k) 〈JB ′ , TB ′ = JB ′ ||

3∑

i=1

σi
mτ

i
t||JB, TB = JB〉 ,

where

v(k) =
1

2f

k2

√
12π2ωk

ωMIT

ωMIT − 1

j1(kRbag)

kRbag

and

rq =






1 for B = B ′ = (1s)3 configuration

rω =

[
ω1
MIT(ω

0
MIT−1)

ω0
MIT(ω

1
MIT−1)

]1/2

= 0.457 for B = (1s)3, B ′ = (1s)2(2s)1

2
3

+ r2ω for B = B ′ = (1s)2(2s)1

.

In this work we use Rbag = 0.9 fm, f = 76MeV yielding the correct value for the
πNN coupling constant. Similar results are obtained for 0.85 fm < Rbag < 1.0 fm.
In addition, the energies of the 3-quark states in different excited states are also
taken as free parameters.
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Fig. 1. The P11 (left panel) and P33 (right panel) phase shifts. The corresponding thin line

in the P33 case represent the phase shift for the pion scattering on the ∆. The data points

in this and subsequent figures are from the SAID πN → πN partial-wave analysis [6] The

model parameters areMR = 1510 MeV,M∆ = 1232 MeV,M∆∗ = 1700MeV

The results in the simplest approximation, the Born approximation for the
K matrix without background, are displayed in Figure 1. This approximation is
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equivalent to keeping only the the first term in the ansatz (3). By increasing the
πN∆ interaction strength by 60 % and the πNRoper by 80 % with respect to the
above model values, the widths of the N(1440) and ∆(1232) are reproduced. This
simplified approach explains why the resonant behaviour of the phase shift is not
observed for the ∆(1600) (≡ ∆∗) in the elastic channel: in this energy region, the
matrix element π∆∆∗ becomes stronger than πN∆∗ in which case the resonance
disappears in the πN → πN but appears is the non-observable π∆ → π∆ channel.

Including the background in the the Born approximation for the K matrix

through the term [a†(kH)|Ψ̃H(M)〉]JT in (3) we obtain almost perfect agreement
of the calculated scattering amplitudes compared to the amplitudes extracted in
the partial-wave analysis but still at the expense of considerably larger πN∆ and
πNRoper interaction strength compared to those predicted by the quark model.
This inconsistency is resolved when solving the Lippmann-Schwinger equation
for the pion amplitudes; it turns out that for our particular choice of the bag ra-
dius we are able to reproduce the experimental scattering amplitudes starting
from the bare values as predicted by the Cloudy Bag Model (see Fig. 2).
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Fig. 2. The real and the imaginary parts of the T matrix for the P11 (left panel) and P33

(right panel) partial waves. The dashed/full curves in the left panel show the effect of

omitting/including the N(1710) state in the sum over B in (3)
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Workshop “Progress in Quark Models”, July 10–17, 2006, Bled, Slovenia, p. 82.

3. P. Alberto, L. Amoreira, M. Fiolhais, B. Golli, and S. Širca, Eur. Phys. J. A 26 (2005) 99.
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