
 Informatica 27 (2003) 425–432 425

Empirical Assessment of Methods for Software Size Estimation
Aleš Živkovič, Marjan Heričko and Tomaž Kralj
University of Maribor, Faculty of Electrical Engineering and Computer Science, Institute of Informatics
Smetanova 17, SI-2000 Maribor
ales.zivkovic@uni-mb.si, http://lisa.uni-mb.si

Keywords: Software metrics, Function Points, Software Size Estimation, Empirical Analysis

Received: July 20, 2003

In the software industry, many projects fail due to both the misjudgment of a project’s size and faulty
estimates correlated to this elementary metric. Several methods for software size estimation are present.
The Function Points Analysis (FPA) method, however, is most frequently put into practice. After
Albrecht introduced the FPA method, several variations evolved. All methods share the same
fundamental idea, but differ in procedural steps and metric units. A descriptive approach is usually used
for method comparison. To avoid the weaknesses of a descriptive approach, a mathematical model is
defined and used for theoretical comparison. The complexity of the mapping functions prevent detailed
comparisons -- consequently only general characteristics become evident. Characteristics exposed with
a formalization of the rules were further studied in different test scenarios using historical data from
past projects. Empirical results showed some limitations of the mapping function and anomalies in the
data set used. The possible reasons for deviations in the data set were also analyzed.

1 Introduction
Software size estimation is a crucial element in a project
manager's decision-making process, with regard to the
project’s duration, budget and resources. In the past,
different methods were developed. Albrecht introduced
the function point analysis method in 1979 [1], since then
it has been the target of many scientific studies [4, 5, 6].
Some modifications have also been made resulting in
new methods like Feature points, Full Function Points,
Function Weight, Function Bang, Mk II Function Points
Analysis, COSMIC-FFP and NESMA.
A comparison of different methods, based on verbal
descriptions, lack the formalism needed to understand
and compare them. In this paper, a mathematical
foundation for describing the methods is established first,
and then three popular methods are mapped into the
universal form and compared. To compare the mapping
functions, the empirical method is used. The paper is
divided into four sections. In the first section, the
methods for software size estimation are briefly
presented. The subsequent section introduces the formal
model for representing software-sizing methods. The
third section describes test scenarios and presents results.
The conclusion and plans for future work can be found in
the last section.

1.1 Function Points
The idea behind function points is quite simple [2].
Every information system processes some data that can
be stored in the application database or is gained from
external applications. Four operations are performed on
data records: create, read, update and delete. Besides
that, information systems use several query functions for

data retrieval and report construction. Each record
consists of several fields of basic data types or another
record that can be further decomposed. The FPA method
quantifies: the number of fields in each record, the
distinct operations performed on these records, and the
number of these operations that are necessary to perform
a business function. The sum over all business functions,
multiplied with some empirically determined weights,
represents unadjusted function points. The final
calculation is made using a value adjustment factor
(VAF) that measures system complexity. Figure 1 shows
an overview of the tasks performed within the scope of
the FPA method.

Define ILFs

Define EIFs

Determine count type

Calculate FP

Determine VAF

Ident ify data functions

<<include>>

<<include>>

FPC
specialist

Define EIs

Define EOs
Define EQs

Identify transact ional functions

<<include>>

<<include>><<include>>

(Internal Logical Files)

(External Interface Files)

(External Input)

(External Output)
(External Inquiry)

(Value Adjustment Factor)

Figure 1: Business Use Case diagram for FPA method

426 Informatica 27 (2003) 425–432 A. Živkovič et al.

1.2 COSMIC-FFP
The COSMIC-FFP method [10] reached standardization
in 2003 as ISO/IEC 19761 and is the only method in
accordance with ISO/IEC TR 14143 [7]. Its approach to
size measurement is different from the original FPA,
since data elements do not contribute directly to the size.
The focus of interest is on data movement, which is
defined by units of measure called Cosmic functional
size units (Cfsu). In [10] the conversion factor for
function points is given based on a sample application
portfolio of 14 applications from two different systems.
In general, the conversion factor is close to one, when
comparing unadjusted function points. Methods
distinguish between four different data movements
(entry, exit, read and write), and the sum of their size
represents the size of the system measured. Beside raw
measurement rules, the method clearly defines its
applicability in different circumstances (e.g. software
domain, project phase). Its popularity among
practitioners is growing.

1.3 Mark II FPA
In 1988, Charles Symons developed a variation of the
FPA method [3] adding several new steps into the
measurement process. Additional steps are bound into
calculating the effort, productivity and influence in the
technical complexity of a specific solution. A functional
size itself is calculated as the weighted sum over all
logical transactions of the input data element types (Ni),
data entity types referenced (Ne) and output data element
types (No). For the weights, the industry average is used
with values Wi=0.58, We=1.66 and Wo=0.26. Compared
to the original FPA method, the major difference is that
MK II FPA is a continuous measure with linear
characteristics. Therefore MK II FPA produces
increasingly higher size estimates for projects with more
than 400 function points. The primary domain for MK II
FPA is business information systems. If applied to other
domains, special attention has to be given to components
with complex algorithms, since sizing rules do not take
into account their contribution. For use with real-time
systems, additional guidelines may be necessary [3].

2 FPC formal model
All methods for software size estimation lack formal
foundations in their origin descriptions. There were some
attempts [8, 9] in the past to add formalism to functional
size measurement. Fetcke's model is applicable to
different methods since it introduces an additional level
of abstraction. The approach proposed by Diab et al. is
designated to COSMIC-FPP and has a specific purpose.
In our research, the model defined by Fetcke is used as a
basis and further refined by the definition of a mapping
function.

2.1 Generalized representation
According to measurement theory, every measurement
can be represented as a function that maps empirical

objects into numerical. The FPA method defines a
function that maps a software system into a number. That
number represents the size of the system. Since the FPA
method is technologically independent, it introduces its
own concept for representing a software system. The
abstraction of a software system is data oriented and has
two steps.

1. The software documentation is transformed into
elements defined by the method.

2. Method elements are mapped into a numerical
value representing the size of the system
expressed in function points.

The procedure is presented in Figure 2 as a UML activity
diagram. It shows a specific example of where Software
Requirements Specifications (SRS) serve as an input to
the FPA elements identification process. Elements are
identified according to rules, and the outcome is a data-
oriented abstraction of the software system. The second
activity represents the mapping function. Several tables
are used for the transformation of a separate element
count into function points. The final result is the number
of function points.

Identificat ion of
FPA elements

SRS :
Documentation

FPA :
Rule

FPA :
Element

FPA :
Table

FP :
Number

Map FPA elements
to size

Data abstraction
of the system

Figure 2: Data abstraction steps for FPA method

2.2 Data-oriented abstraction
Different methods enumerated in the introduction use
different names for data abstraction elements; the rules
for element identification are different, mapping
functions also differ. However, similarities exist that can
be described by the following core concepts:

• The user concept covers the interaction between
a user and the system.

• The application concept represents the whole
system as an object of the measurement.

• The transaction concept is the logical
representation of the system's functionality.
Transaction is the smallest independent unit of
interest.

• The data concept deals with the subject of
change within the system. The data element is
the smallest unit of user observation.

• The type concept simplifies data handling via
the abstraction of individual data elements.

On a higher level of abstraction, an application is
represented with data and transactional types. The data

EMPIRICAL ASSESSMENT OF METHODS FOR... Informatica 27 (2003) 425–432 427

type is a set of data elements handled within the system.
The transactional type is a sequence of logical activities.
Fetcke defined seven classes of logical activities [8]:

• Entry activity. The user enters data into the
application.

• Exit activity. Data is outputted to the user.
• Control activity. The user enters control

information data.
• Confirm activity. Confirmation data is outputted

to the user.
• Read activity. Data is read from a stored data

group type.
• Write activity. Data is written to a stored data

group type.
• Calculate activity. New data is calculated from

existing data.
In Figure 3, a UML class diagram for data-oriented
abstraction can be found. Based on the abstract
presentation, mapping for a specific method can be
made.

Calculate

Act ivity Data element

**

calculates

**

handled

Read/Write

Transaction

**

Data group

**

**

**

references

<<uses>>

Application

** **

{non-complete}{type}

Figure 3: Relationship between FPC elements

2.3 Generalized structure
In this section we summarize the formal representation of
concepts described in the previous section. An
application closure H is defined as the vector of τ
transactional types T and σ data group types F.

()στ FFTTH ,,,,, 11 KK= (E 1)

The transactional type Ti is a vector of activities

()
iinii PPT ,,1 K= (E 2)

An activity is further described by four attributes:

• its class θik ∈ {Entry, Exit, Control, Confirm, Read,

Write, Calculate},
• for read and write activities, the data group type

referenced rik,
• the set of data elements Dik handled and
• for calculate activities, the set of data elements

calculated Cik.
In the equation E3, i can have values from 1 to τ and
represents the transaction activity it conforms to. k runs
from 1 to n identifying activity within the transaction.

()ikikikikik CDrP ,,,Θ= (E 3)

The data group type Fj is a set

)},(,),,{(11 jj jrjrjjj gdgdF K= (E 4)

where the djk are data elements and the gjk the designate
sub-groups. j can have values from 1 to σ and represents
the number of data types. k distinguishes between data
elements and can have values from 1 to r.

2.3.1 Representation of the mapping
function

In the previous section, a formal representation of
transactional and data types was introduced. The system
is composed of different data and transactional types.
The number of data and transactional types, and their
attributes, contribute to the size of the software system.
Some methods also define the third component that has
an influence on software size, and the technical
complexity of the solution. The universal function that
maps application attributes into size is therefore:

)()()()(321 TCFPCfFPCtFPCaFPC
j

j
i

i ∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

 (E 5)

 where
FPC(a) is the function that maps attributes of the
application a into software size.
FPC1(ti) is the function that maps transactional
type ti into size.
FPC2(fj) is the function that maps data type fj
into size.
FPC3(TC) is the function that maps technical
complexity of the anticipated solution for
application a into a factor.

The total value for an application size is the sum of both
parts multiplied by the factor of the solution’s
complexity. The factor can reduce or increase the overall
size. However, it is not clear if the factor actually
measures raw application size or is an attribute of the
implementation and should be part of the function that

428 Informatica 27 (2003) 425–432 A. Živkovič et al.

maps size to effort. In this research, the function of FPC3
is not examined.

A generalized structure can now be used to define
different methods. First, we will use it for representing
the original FPA method.

2.3.2 Mapping for the FPA method
Since data functions from the FPA method correspond to
data element type (F), data element type (DET)
corresponds to data element and record element type
(RET) is equivalent to sub-group defined in the
generalized structure. The FPA method distinguishes
between internal and external data requirements;
generalized representation, however, defines more
activity types than the FPA method. Therefore, we define
external interface files (EIFs) as a data type that cannot
be used in write type activities.
The mapping of the transactions is a bit more
complicated and is summarized in Table 1. In the table,
activities that are allowed in the transaction type are
marked with X.

Table 1: Mapping of transactions into activities

 GENERAL STRUCTURE ACTIVITIES

En
try

Ex
it

W
rit

e

R
ea

d

C
on

fir
m

C
on

tro
l

C
al

cu
la

te

EI X X X X X
EO X X X FP

A

EQ X X X X X

The FPC functions for the FPA method would look like
this:

∑ ∑

∑∑∑
+=

++=

l m
gdEIFgdILF

k
rdEQ

j
rdEO

i
rdEI

NNWNNWFPC

NNWNNWNNWFPC

),(),(

),(),(),(

2

1

(E 6)

where the WEI, WEO, WEQ, WILF, WEIF are functions that
prescribe the number of function points for every FPA
function identified in the measurement process. Function
W has two parameters. For transactional functions,
parameters are the number of data element types (Nd) and
number of file types referenced (Nr), for data functions
parameter Ng is used instead of Nr, representing the
number of record element types. Functions Wx are the
step functions represented by discrete values with the
following range:

WILF={7, 10, 15}
WEIF={5, 7, 10}
WEI=WEQ={3, 4, 6}
WEO={4, 5, 7}

Given as an example, the step function WILF is defined
as:

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≤∧≤

∨≤∧≤≤
=∧≤

∨≤≤∧≤≤

∨≤∧≤≤
=∧≤≤

∨≤≤∧≤≤

=

))2()51((

))6()5020((
;15

))1()51((

))52()5020((

))6()191((

;10

))1()5020((

))51()191((
;7

),(

gd

gd

gd

gd

gd

gd

gd

gdILF

NN

NN
NN

NN

NN
NN

NN

NNW

(E 7)

2.3.3 Mapping for the MKII FPA
In the Mark II FPA method, data groups are called entity
types and do not directly contribute to functional size.
Therefore, FPC2=0 in all cases. Logical transactions are
broken down into activities. There are only three types of
activities in MK II FPA, namely input, processing and
output. Table 2 shows mapping for activities defined in
generalized form. Notice that MK II FPA does not have
an equivalent to the calculate activity, which is due to
processing activity deals with existing entities, and which
conforms with the read and write activity types.

Table 2: Mapping for MK II FPA

 GENERAL STRUCTURE ACTIVITIES

En
try

Ex
it

W
rit

e

R
ea

d

C
on

fir
m

C
on

tro
l

C
al

cu
la

te

Input X X
Output X X

M
K

 II

FP
A

Processing X X

)()()()(dooFedi
j

i NWNWNWaFPC ∗+∗+∗=∑

(E 8)

where the Wi is the weight for input elements and has a
constant value of 0.58, Wo, is the weight for output
elements with the value 0.26, We is the weight for
entities referenced in processing with the value 1.66, Ndi
is the number of data elements used in the input activity,
Ndo is the number of data elements used in the output
activity and NF is the number of entities used in
processing.

2.3.4 Mapping for COSMIC-FPP
As described in the introduction, the COSMIC-FFP
method defines Cfsu as a unit of measure and introduces
a different approach to software sizing. The method
counts data movements that can be one of four types:
entry, exit, read, and write.

EMPIRICAL ASSESSMENT OF METHODS FOR... Informatica 27 (2003) 425–432 429

∑∑∑
= ==

==
n

i k
ik

n

i
i FPTFPC

1

4

11
)((E 9)

Equation 9 shows the mapping function. The sum across
all identified transactions (Ti) is made in the first part of
the equation. In the second part, transactions are broken
down into activities (Pik), where k runs from 1 to 4, since
the method has only four types of activities. With the F
in brackets, we have revealed that activity depends on
data types, since data is the object of movement. Again
FPC2=0 and only FPC1 contributes to the application
size.
It can be seen from the equations E6, E8 and E9 that FPC
functions of selected methods are multivariable, thus
further research into them is complex. To observe them
in specific situations, we have set a few test scenarios
described in the text section.

3 Test scenarios
With methods for software size estimation two kinds of
errors are likely to occur: a method error and a
measurement error. A method precision is not formally
defined nor statistically proven. Approximate values can
usually be found that imply method accuracy. Since the
behavior of the FPC function is dimmed, it is difficult to
predict results in all circumstances. To analyze the basic
characteristics of the FPC function for three selected
methods, we have to construct three diverse scenarios.
The findings help us choose the right method for the
given problem domain.
A measurement error can be identified via an analysis of
historical data. In the second part of our research, only
the original FPA method was used to estimate the size of
eight applications. The data gathered were used as the
small dataset and compared with the industry average.
The deviations in the dataset are analyzed in the second
part of this section.

3.1 Empirical comparison of different FPC
functions

In the first part of our research we set up three different
scenarios, applied different methods and compared the
results in order to find deviations between methods’ FPC
functions. In this research, we decided to apply the
original FPA method, MK II FPA and COSMIC-FFP.
For the first case we chose only one requirement from
the bigger payroll application. The purpose of the
selected requirement was to print out specific data in
order to monitor the final account for a specific period of
time. We named this function Account Control. Let's
summarize the measurement technique for all three
methods. Because we have chosen only part of the whole
application, applying COSMIC-FFP, some steps were
excluded from the counting procedure. We followed only
the necessary steps in performing the task. In applying
the original method and MK II FPA, the Value
Adjustment Factor (VAF) was not calculated. Therefore,
size is expressed in unadjusted function points (UFP).
Lokan discouraged the use of VAF, according to his

empirical analysis of FP adjustment factors [4]. The VAF
was found not to improve the relationship between FPs
and effort. For most projects, the VAF does not result in
much change to the function point value [11]. To get
considerably accurate results with the original FPA
method, we added the contribution of data functions to
the value of unadjusted FPs. Since only part of the
system was sized, equation E13 was used. FPCF
represents the contribution of data functions and is
calculated from the total contribution of data functions
(FPC2) divided by the number of data functions (l and m)
and multiplied with the number of referenced data types
(Nr).

rF N
ml

FPCFPC ∗
+

= 2 (E 10)

Table 3: Results summary for the test scenarios

 SIZE IN FUNCTION POINTS
 FPA MK II FPA COSMIC-FFP*
TS1 5. 5 10.5 5
TS2 14 33.1 18
TS3 3 3.2 5

* 1Cfsu treated as 1 FP [10]

Table 5 summarizes the results for all test scenarios. The
row labeled TS1 shows results from the first test
scenario, Account Control function. With 10 function
points, MK II FPA produced twice the results of the
other two methods. The reason for this lies in the three
referenced entities that added 5 FP.
In the next scenario we measured function behavior,
using many data element types (DET). In the original
FPA method, the increased number of data element types
did not influence the contribution of the transactional
function to the final size. By comparison, MK II FPA
reacts to all changes with a greater amount of FPs. In the
example, personal data has to be entered for an
employee. The number of attributes was set to 51. The
second row in table 5 summarizes the results. The FPA
method produced the smallest size, since its FPC
function is a step function that cannot follow growth in
data elements and referenced data types. The COSMIC-
FPP method follows the change in the number of data
elements with its read activity, however data elements
are grouped for the entry activity. Consequently the final
results are smaller than with MK II FPA. The MK II FPA
has produced the greatest number of function points. The
changes in the number of data elements directly
influence the final amount with the factor 0.58. In our
opinion, however, it is difficult to predict, in cases like
this, how much more effort is necessary when we
increase the number of data element types.
Our last test deals with real time applications. The
original FPA method is already known to produce non-
accurate results for applications in this group. How about
the other two methods? We measured the size of

430 Informatica 27 (2003) 425–432 A. Živkovič et al.

applications that regulate the temperature in a building.
The results can be found in the third row (Table 5).
We can argue that only the COSMIC-FPP method
produced a correct result, since the result of the Mk II
FPA is almost the same as the result of the original FPA
method, known not to produce accurate results within
real-time systems. Therefore, the warning concerning the
real-time application domain in the MK II FPA manual
has to be taken seriously. The difference would be even
greater if more sensors gathering data and controlling
output were introduced.

3.2 Influence of subjectivity
In the second part of our research we selected eight
different applications developed by the same company.
Although it would be better to apply all three methods,
only the original FPA method was used. The applications
under consideration had to be developed in the same
environment, for the same target platform, with the same
tools and the same group. Consequently, only eight
applications satisfied the criteria. We have marked
applications with letters from A to H. Table 3 briefly
illustrates all the selected applications.

Table 4: Short description of selected applications

A Most recently developed application and currently
in use. Analysis and design were carried out in a
systematic manner. Therefore all the
documentation was available.

B A lot of documentation exists, describing the
current state of the application. It was recently
enhanced.

C Older application with incomplete documentation.
It was changed many times in the past without
making the appropriate corrections in the
corresponding documentation.

D, E,
F

Applications had some kind of documentation
that was not precise enough to perform the count.

G Newer application with good documentation.
H The largest application developed as an answer to

the Y2K problem. It was developed under stress
and lacks proper documentation.

In cases D, E, F and H we have used GUI forms and E-R
model to perform the count. For these applications, the
counting specialist took additional measures;
consequently the counting speed was reduced.

Table 5: Results for the original method

Application Number
of FPs

Effort
(hours)

PDR
(h/FP)

PDRISBSG

A 102 726 7.1 3.6

B 141 1000 7.1 4.0
C 128 800 6.2 3.9
D 254 1600 7.5 5.1
E 472 3000 6.3 6.5
F 485 3000 6.2 6.5
G 624 4400 7.1 7.2
H 719 6000 8.3 7.6

Table 2 depicts the counting results for all eight
applications. In the second column, the application’s size
is expressed in FPs showing that A, B and C are smaller
applications; applications G and H are larger. In the third
column, we can find the number of hours spent on
implementation. The last two columns show the value
calculated from the number of FPs and hours spent on
implementation. It represents the amount of time spent
implementing one FP and its so-called Project Delivery
Rate (PDR). PDRISBSG is the value calculated from the
ISBSG repository [11] data using equation E10 with the
values 0.587 for constant C, and 0.390 for constant E.
The FPC is the function point count expressed in
function points. The calculated value represents the
"normal" PDR for the project of a specific size,
according to the repository's average. Comparing these
two values, the performance of projects A, B, C and D is
quite unsatisfactory, with deviation from 50% to 100% in
hours spent implementing one function point.

EFPCCPDR ∗= (E 11)

The reason for the deviation in the results could be one of
the following:

• An error occurred within the counting
procedure, resulting in less function points.

• The project group performance was actually
below the industry average.

• The documentation for the application does
not include all features developed.

From the theoretical point of view, only the first case is
interesting. Let us assume that the types of some
elements were mixed. Equations E11 and E12 calculate
the error. In the equation E11 the error for data functions
is calculated. To get concrete numbers we need a ratio
between data element types.

Figure 4: Relationship between FPA elements

The left graph in Figure 4 shows the ratio between FPA
elements from the ISBSG repository with 238 projects in
the sample, on the right is the graph for our sample.
According to the industrial average, there are less then
20% of external interface files in the data functions for
standalone applications developed from scratch. If we
count all elements as internal logical files (ILF) the error
made is around 5 %. In the opposite case, when we
neglect ILFs, the error is 35 %.

EMPIRICAL ASSESSMENT OF METHODS FOR... Informatica 27 (2003) 425–432 431

3586.044.0815.0
)(
)(

0555.03.0185.0
)(
)(

)()(

)(

=∗=∗≅∗=

=∗=∗≅∗=

+
=

∑∑
∑

ILF

DF

ILF

ILFEIF

ILFILF

DF

ILF
ILF

EIF

DF

EIF

EIFILF

ILFEIF

DF

EIF
EIF

k
kEIFEIF

j
jILFILF

i
iILF

DF

e
N
N

FW
FW

N
NE

e
N
N

FW
FW

N
NE

FWFW

FW
E

(E 12)

The equation E12 calculates the maximal error for
transactional functions. Since external inputs and
external inquiries have the same weight, they are treated
equally. If external inputs and external inquiries are both
neglected and all transactional functions are treated as
external outputs, errors could be as high as 16%. If
external outputs are mixed with external inputs or
external inquiries, the error is around 7%. The final
numbers are specific for the case presented in the paper
and must be recalculated for other types of applications.

066.02.033.0
)(

)(

1676.025.067.0
)/(
)/(

)()()(

)(

,

,
,,,

,

,

=∗=∗≅∗=

=∗=∗≅∗=

++
=

∑∑∑
∑

EO

TF

EO

EOEQEI

EOEO

TF

EO
EO

EQEI

TF

EQEI

EQEIEO

EQEIEQEI

TF

EQEI
EQEI

l
lEQEQ

k
kEOEO

j
jEIEI

i
iEQEI

TF

e
N
N

TW
TW

N
N

E

e
N

N
TTW
TTW

N
N

E

TWTWTW

TW
E

(E 13)

3.3 Method comparison
All compared methods use the same type of abstraction,
based on requirements document for the software system.
However, the FPC function that maps identified elements
to the size is different and difficult to compare
mathematically. Therefore we have set three diverse test
scenarios to evaluate a method’s performance. To be able
to observe a function’s behavior, test scenarios were
simplified and may be unusual for real-world application.
In the first test case, the characteristics of functions were
analyzed. In the documentation for MK II FPA and
COSMIC-FPP, the function is described as linear with
respect to the number of data elements. The original FPA
method measures the size of the transactional function
according to its complexity. Transactional functions can
have 3 to 7 function points regardless of their simplicity
or complexity. The graph in Figure 5 shows the behavior
of unadjusted function points for external inputs (EI) and
external outputs (EO) with respect to the number of data
element types for MK II FPA and the original FPA. From
the graph it is easy to see when the threshold for the
original FPA method is reached and higher values of data
element types (DET) do not influence the number of
unadjusted function points (UFP). In the COSMIC-FPP
method, the behavior of the function depends on the
grouping of data elements. For example, all 51 elements
can be treated as one Cfsu in the case of entry activity.
On the other hand, they influence the final size through

the read activity contribution. The method is more
complex to use than the other two compared in the test.

0

5

10

15

20

1 5 9 13 17 21 25 29

DET

FP

MKII-outputs

FPA-outputs

MKII-inputs

FPA-inputs

Figure 5: The difference between MK II FPA and

original FPA

In the last test of the first scenario, two presumptions
were relied upon. The first one was that original FPA
does not perform well measuring real-time applications
and the second was that COSMIC-FPP does. The results
confirmed the generally accepted opinion that MK II
FPA and original FPA perform poorly with real-time
applications and COSMIC-FPP is the most appropriate
method for that domain.
In the second test scenario, an anomaly in the PDR
values appeared. We compared original values with
values calculated from the ISBSG repository. In the
relationships between the FPA elements, it is possible to
calculate errors for an element type mismatch. Although
the error could rise up to 35 % in our case, the reason for
the anomaly was either a poor group performance or
incomplete documentation.

4 Conclusion
Software size is an important attribute, which we can use
to manage the software development process. It is easy to
calculate the effort and costs of a project and to monitor
its progress. We can predict the software's size based on
experiences from past projects or we can use methods
and empirical data. Many projects from the past that
relied on a project manager's intuition failed. Thus, we
suggest using some method. In this paper, several
methods were evaluated and compared in diverse
scenarios. The results showed that the consistent use of a
selected method in the same environment gives a better
understanding of both the project size and the delivery
rate. Anomalies in the results become quickly evident
and can be analyzed with the help of the general
representation of methods for software size estimation,
proposed by Fetcke and supplemented with the mapping
functions presented in this paper. The mathematical
representation of the method and its rules, make them
more evident and easier to analyze. The comparison
showed that it is important to choose the most
appropriate method for the given problem domain to
exclude the possibility of anomalies in the results. Our
research confirmed that the MK II FPA has some
advantages compared to the original FPA method,
notably when a lot of DETs are present in the

432 Informatica 27 (2003) 425–432 A. Živkovič et al.

application. However, both methods performed poorly in
the case of real-time applications and system software.
The COSMIC-FPP method gives better results with a
higher number of FPs.
Function points have suffered a lot of criticism that has
discouraged their use in practice. With the data from past
projects and with the industry average, both problems
could be overcome, namely the problem of early
estimates and the human factor problem.
In the future, we will try to apply the second test scenario
to another two methods, theoretically compare the
mapping functions and express the error.

6. References
[1.] J. Albrecht (1979), Measuring Application

Development Productivity, Proceedings of Joint
SHARE, GUIDE and IBM Application
Development Symposium, str. 83-92.

[2.] M. Bradley, ur. (1999), Function Point Counting
Practices Manual, Release 4.1, International
Function Point Users Group (IFPUG), Westerville

[3.] Mk II Function Point Analysis, Counting Practices
Manual, The UK Software Metrics Association.,
http://www.uksma.co.uk/public/mkIIr131.pdf

[4.] C.J. Locan (2000), An empirical analysis of function
point adjustment factors, Information and Software
Technology, 42, 649-660

[5.] C. Yau, H. Tsoi (1998), Modeling the probabilistic
behavior of function point analysis, Information and
Software Technology. 40, 59-68

[6.] J.J. Dolado (1997), A Study of the Relationships
among Albrecht and Mark II Function Points, Lines
of Code 4GL and Effort, Journal Systems Software,
37, 161-173

[7.] ISO/IEC 14143-1:1998, Functional size
measurement, ISO standard, 1998

[8.] T. Fetcke (1999), A Generalized Structure for FPA,
IWSM'99

[9.] H. Diab, M. Frappier, R. St-Denis (2001), A Formal
Definition of COSMIC-FFP for Automated
Measurement of ROOM Specification, Proc. Fourth
European Conf. Soft. Measurement and ICT
Control, pp. 185-196

[10.] COSMIC-FFP Measurement Manual, version
2.2, January 2003

[11.] P.R. Hill (2001), Practical Project Estimation,
ISBSG

