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Abstract

The strong geodetic problem is to find the smallest number of vertices such that by
fixing one shortest path between each pair, all vertices of the graph are covered. In this
paper we study the strong geodetic problem on complete bipartite graphs. Some results for
complete multipartite graphs are also derived. Finally, we prove that the strong geodetic
problem restricted to (general) bipartite graphs is NP-complete.

Keywords: Geodetic problem, strong geodetic problem, (complete) bipartite graphs, (complete) mul-
tipartite graphs.
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1 Introduction
The strong geodetic problem was introduced in [1] as follows. Let G = (V,E) be a graph.
For a set S ⊆ V , and for each pair of vertices {x, y} ⊆ S, x 6= y, define g̃(x, y) as a
selected fixed shortest path between x and y. We set

Ĩ(S) = {g̃(x, y) : x, y ∈ S},

and V (Ĩ(S)) =
⋃
P̃∈Ĩ(S) V (P̃ ). If V (Ĩ(S)) = V for some Ĩ(S), then the set S is called

a strong geodetic set. This means that the selected fixed geodesics between vertices from
S cover all vertices of the graph G. If G has just one vertex, then its vertex is considered
the unique strong geodetic set. The strong geodetic problem is to find a minimum strong
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geodetic set ofG. The size of a minimum strong geodetic set is the strong geodetic number
of G and is denoted by sg(G). A strong geodetic set of size sg(G) is also called an optimal
strong geodetic set.

In the first paper [1], it was proved that the problem is NP-complete. The invariant has
also been determined for complete Apollonian networks [1], thin grids and cylinders [14],
and balanced complete bipartite graphs [12]. Some properties of the strong geodetic num-
ber of Cartesian product of graphs have been studied in [13]. Recently, a concept of strong
geodetic cores has been introduced and applied to the Cartesian product graphs [9]. An
edge version of the problem was defined and studied in [16].

The strong geodetic problem is just one of the problems which aim to cover all vertices
of a graph with shortest paths. Another such problem is the geodetic problem, in which we
determine the smallest number of vertices such that the geodesics between them cover all
vertices of the graph [3, 5, 10, 11]. Note that we may use more than one geodesic between
the same pair of vertices. Thus this problem seems less complex than the strong geodetic
problem. The geodetic problem is known to be NP-complete on general graphs [2], on
chordal and bipartite weakly chordal graphs [6], on co-bipartite graphs [7], and on graphs
with maximal degree 3 [4]. However, it is polynomial on co-graphs and split graphs [6],
on proper interval graphs [8], on block-cactus graphs and monopolar chordal graphs [7].
Moreover, the geodetic number of complete bipartite (and multipartite) graphs is straight-
forward to determine, i.e. sg(Kn,m) = min{n,m, 4} [11].

Recall from [12] that the strong geodetic problem on a complete bipartite graph can be
presented as a (non-linear) optimization problem as follows. Let (X,Y ) be the bipartition
ofKn,m and S∪T , S ⊆ X , T ⊆ Y , its strong geodetic set. Let |S| = s and |T | = t. Thus,
sg(Kn,n) ≤ s + t. With geodesics between vertices from S we wish to cover vertices in
Y − T . Vice versa, with geodesics between vertices from T we are covering vertices in
X − S. The optimization problem for sg(Kn,m) reads as follows:

min s+ t

subject to: 0 ≤ s ≤ n
0 ≤ t ≤ m(
t

2

)
≥ n− s(

s

2

)
≥ m− t

s, t ∈ Z.

(1.1)

This holds due to the fact that every geodesic in a complete bipartite graph is either of
length 0, 1 (an edge), or 2 (a path with both endvertices in the same part of the biparti-
tion). If a strong geodetic set S has k vertices in one part of the bipartition, then geodesics
between those vertices can cover at most

(
k
2

)
vertices in the other part.

The exact value is known for balanced complete bipartite graphs: if n ≥ 6, then

sg(Kn,n) =

2
⌈
−1+

√
8n+1

2

⌉
, 8n− 7 is not a perfect square,

2
⌈
−1+

√
8n+1

2

⌉
− 1, 8n− 7 is a perfect square.

See [12, Theorem 2.1].
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In the following section, we generalize the above result to all complete bipartite graphs.
To conclude the introduction, we state the following interesting and surprisingly impor-

tant fact.

Lemma 1.1 (Shifting Lemma). Let Kn1,...,nr
be a complete multipartite graph with the

multipartition X1, . . . , Xr, |Xi| = ni for i ∈ [r]. Let S = S1 ∪ · · · ∪ Sr be an optimal
strong geodetic set, with Si ⊆ Xi and |Si| = si for i ∈ [r].

If s1 ≤ s2, s3 and s2 < n2, s3 < n3, then there exist x ∈ S1 and y ∈ S2 ∪ S3, such
that S ∪ {y} − {x} is also an optimal strong geodetic set.

Proof. Let G = Kn1,...,nr
, |Xi| = ni, |Si| = si for i ∈ [r]. Suppose Si 6= ∅, Xi for

i ∈ {1, 2, 3}. Without loss of generality, s1 = min{s1, s2, s3}, and let geodesics between
vertices of S1 cover fewer vertices in X2 − S2 than in X3 − S3.

Select vertices x ∈ S1 and y ∈ X2 − S2. Geodesics between vertices from S1 can be
fixed in such a way that no vertex in X2 is covered with a geodesic containing x. This is

trivial for s1 ∈ {1, 2, 3}, and follows from
⌊
(s12 )
2

⌋
≤
(
s1−1
2

)
for s1 ≥ 4.

Now consider T = S ∪ {y} − {x}, |T | = |S|. We will prove that T is a strong
geodetic set of G. Fix geodesics between vertices in T in the same way as in S, except
those containing x or y. As x /∈ T , at most s1 − 1 vertices U in V (G) − X1 − X2 are
uncovered. But geodesics containing y can cover the vertex x, as well as s2 − 1 other
vertices in V (G)−X2. As we have s2 − 1 ≥ s1 − 1, those geodesics can be fixed in such
a way that U is covered.

Proposition 1.2. For every complete multipartite graph there exist an optimal strong geode-
tic set such that its intersection with all but two parts of the multipartition is either empty
or the whole part.

Proof. Let G = Kn1,...,nr
, |Xi| = ni, be a multipartite graph. The Shifting Lemma states

that every strong geodetic set with three or more parts of size not equal to 0 or ni can be
transformed into a strong geodetic set of the same size, where one of these parts becomes
smaller and one larger. After repeating this procedure on other such triples, at most two
parts can have size different from 0 or ni.

The rest of the paper is organized as follows. In the next section, some further results
about the strong geodetic number of complete bipartite graphs are obtained. In Section 3 we
discuss the strong geodetic problem on complete multipartite graphs. Finally, in Section 4
the complexity of the strong geodetic problem on multipartite and complete multipartite
graphs is discussed.

2 On complete bipartite graphs
In this section, we give a complete description of the strong geodetic number of a complete
bipartite graph. Instead of giving an explicit formula for sg(Kn,m), we classify the triples
(n,m, k) for which sg(Kn,m) = k.

Define

f(α, β) = α− 1 +

(
max{β − 1, 2}

2

)
.
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Theorem 2.1. For positive integers n, m and k, (n,m) /∈ {(1, 1), (2, 2)}, sg(Kn,m) = k
if and only if

n < k & m = f(k, n) or m < k & n = f(k,m) or

f(k, i− 1) ≤ m ≤ f(k, i) & f(k, k − i− 1) ≤ n ≤ f(k, k − i) for some i, 0 ≤ i ≤ k.

Note that for the two exceptional cases, we have sg(K1,1) = 2 and sg(K2,2) = 3.

Example 2.2. The strong geodetic numbers of small complete bipartite graphs can be
found in Table 1.

Table 1: The strong geodetic numbers sg(Kn,m) for some small complete bipartite graphs.

m

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3 3 3 4 5 6 7 8 9 10 11 12 13 14 15

4 4 4 4 4 4 4 5 6 7 8 9 10 11 12 13

5 5 5 5 4 5 5 5 5 5 5 6 7 8 9 10

6 6 6 6 4 5 6 6 6 6 6 6 6 6 6 6

7 7 7 7 5 5 6 7 7 7 7 7 7 7 7 7

8 8 8 8 6 5 6 7 8 8 8 8 8 8 8 8

9 9 9 9 7 5 6 7 8 8 8 9 9 9 9 9

10 10 10 10 8 5 6 7 8 8 8 9 9 9 9 10

11 11 11 11 9 6 6 7 8 9 9 9 9 9 9 10

12 12 12 12 10 7 6 7 8 9 9 9 10 10 10 10

13 13 13 13 11 8 6 7 8 9 9 9 10 10 10 10

14 14 14 14 12 9 6 7 8 9 9 9 10 10 10 10

15 15 15 15 13 10 6 7 8 9 10 10 10 10 10 10

Figure 1 shows the positions of all 201 pairs (n,m) for which sg(Kn,m) = 12. We
can notice the “parabolas” corresponding to m = f(k, n) and n = f(k,m), as well as the
“intersecting rectangles” corresponding to f(k, i − 1) ≤ m ≤ f(k, i), f(k, k − i − 1) ≤
n ≤ f(k, k − i).

Proof of Theorem 2.1. It is not difficult to see that sg(Kn,m) = 2 if and only if (n,m) ∈
{(1, 1), (1, 2), (2, 1)}, and that sg(K2,2) = 3. So assume that k ≥ 3 and max{n,m} ≥ 3.

The statement follows from the following (note that the sum s1 + s2 equals k for every
(s1, s2) that appears below). Note that all different optimal solutions are described here,
hence some of the conditions overlap.

1. If n ≤ 3 and m = f(k, n) = k, or m = f(k, i − 1) and f(k, k − i − 1) < n ≤
f(k, k − i) for i ≤ 4, or m = f(k, i − 1) and n = f(k, k − i − 1) for i ≤ 4, then
(0, k) is an optimal solution. Symmetrically, if m ≤ 3 and n = f(k,m) = k, or
f(k, i− 1) ≤ m ≤ f(k, i) and n = f(k, k − i− 1) for i ≥ k − 4, then (k, 0) is an
optimal solution.
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Figure 1: All pairs (n,m) for which sg(Kn,m) = 12.

2. If 3 ≤ n < k andm = f(k, n), then (n, k−n) is an optimal solution. Symmetrically,
if 3 ≤ m < k and n = f(k,m), then (k −m,m) is an optimal solution.

3. If f(k, i − 1) < m ≤ f(k, i) and f(k, k − i − 1) < n ≤ f(k, k − i) for 4 ≤ i ≤
k − 4, or m = f(k, i − 1) and f(k, k − i − 1) < n ≤ f(k, k − i) for i ≥ 3, or
f(k, i−1) < m ≤ f(k, i) and n = f(k, k− i−1) for i ≤ k−3, or m = f(k, i−1)
and n = f(k, k − i− 1) for 3 ≤ i ≤ k − 3, then (i, k − i) is an optimal solution.

4. If f(k, i−1) < m ≤ f(k, i) and n = f(k, k−i−1) for i ≤ k−4, orm = f(k, i−1)
and n = f(k, k − i − 1) for 2 ≤ i ≤ k − 4, then (i + 1, k − i − 1) is an optimal
solution.

5. Ifm = f(k, i−1) and f(k, k−i−1) < n ≤ f(k, k−i) for i ≥ 4, orm = f(k, i−1)
and n = f(k, k − i − 1) for 4 ≤ i ≤ k − 2, then (i − 1, k − i + 1) is an optimal
solution.

It is easy to see that the above solutions give rise to the strong geodetic sets of size
k. For example, in the first case, the part of the bipartition of size m is a strong geodetic
set with parameters (0, k). What remains to be proved is sg(Kn,m) ≥ k for each case.
This can be shown by a simple case analysis. As the reasoning is similar in all cases, we
demonstrate only two of them. Let X be the part of the bipartition of size n and Y the part
of size m. Also, let S = S1 ∪ S2, where S1 ⊆ X , S2 ⊆ Y , be some strong geodetic set.

• The case k > n ≥ 3 and m = k − 1 +
(
n−1
2

)
= k − n +

(
n
2

)
: If S1 = X , then

geodesics between these vertices cover at most
(
n
2

)
vertices in Y , so at least k − n

vertices in Y must also lie in a strong geodetic set. Hence, |S| ≥ n− (k − n) = k.

If S1 6= X , geodesics between these vertices cover at most
(
n−1
2

)
vertices in Y ,

so at least k − 1 vertices from Y must lie in a strong geodetic set. Hence, |S| ≥
|S1| + (k − 1). If S1 6= ∅ or |S2| ≥ k, we have |S| ≥ k. Otherwise, S = S2 and
contains exactly k−1 vertices. But then the remaining vertices in Y are not covered.

• The case where f(k, i − 1) < m ≤ f(k, i) and f(k, k − i − 1) < n ≤ f(k, k − i)
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for 4 ≤ i ≤ k − 4: We can write

n = k − 1 +

(
k − i− 2

2

)
+ l, l ∈ {1, . . . , k − i− 2},

m = k − 1 +

(
i− 2

2

)
+ j, j ∈ {1, . . . , i− 2}.

Suppose |S| ≤ k − 1. If |S1| ≤ i − 2, these vertices cover at most
(
i−2
2

)
vertices

in X , thus at least k vertices remain uncovered and |S| ≥ k. Hence, |S1| ≥ i − 1.
Similarly, |S2| ≥ k − i− 1.

If |S1| = i − 1, then
(
i−1
2

)
vertices in Y are covered. As k + j − i + 1 are left

uncovered, it holds that |S2| ≥ k − i+ 2 and thus |S| ≥ k + 1.

If |S2| = k − i − 1, then
(
k−i−1

2

)
vertices in X are covered. As l + i + 1 are left

uncovered, it holds that |S1| ≥ i+ 2 and thus |S| ≥ k + 1.

Hence |S1| ≥ i and |S2| ≥ k − i and thus |S| ≥ k.

The first condition from Theorem 2.1 can be simplified as follows.

Corollary 2.3. If n ≥ 3 and m >
(
n
2

)
, then sg(Kn,m) = m + 1 −

(
n−1
2

)
. If n ≤ 3 and

m > n, then sg(Kn,m) = m.

When m ≤
(
n
2

)
, Theorem 2.1 is harder to apply. Note, however, that the theorem

suggests that m is approximately equal to k − 1 +
(
i−1
2

)
, and n is approximately equal to

k−1+
(
k−i−1

2

)
. Furthermore, note that we can rewrite the system of equations (with known

m,n and variables k, i)m = k−1+
(
i−1
2

)
, n = k−1+

(
k−i−1

2

)
as a polynomial equation of

degree 4 for k (say by subtracting the two equations, solving for i, and plugging the result
into one of the equations), and solve it explicitly. It seems that one of the four solutions
is always very close to sg(Km,n). Denote the minimal distance between sg(Km,n) and a
solution k of m = k − 1 +

(
i−1
2

)
, n = k − 1 +

(
k−i−1

2

)
by e(m,n). Then our data is

indicated in Table 2.

Table 2: The difference between the exact and estimated values of sg(Km,n) for different
values of n.

n 10 100 1000 10000 100000

max{e(m,n) : n ≤ m ≤
(
n
2

)
} 1.094 1.774 1.941 1.983 1.995

We conjecture the following.

Conjecture 2.4. If n ≤ m ≤
(
n
2

)
, then e(m,n) < 2.

If the conjecture is true, sg(Km,n) is among the (at most 16) positive integers that
are at distance < 2 from one of the four solutions of the system m = k − 1 +

(
i−1
2

)
,

n = k − 1 +
(
k−i−1

2

)
. For each of these (at most) 16 candidates, there are at most three

(consecutive) i’s for which f(k, i−1) ≤ m ≤ f(k, i), found easily by solving the quadratic
equation m = k− 1 +

(
i−1
2

)
. For each such i, check if f(k, k− i− 1) ≤ n ≤ f(k, k− i).

This allows for computation of sg(Km,n) with a constant number of operations.
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3 On complete multipartite graphs
The optimization problem (1.1) can be generalized to complete multipartite graphs. How-
ever, solving such a program seems rather difficult. Hence, we present an approximate
program which gives a nice lower bound for the strong geodetic number of a complete
multipartite graph. If i vertices from one part are in a strong geodetic set, geodesics be-
tween them cover at most

(
i
2

)
other vertices. In the following, we do not take into account

the condition that they can only cover vertices in other parts, and that the number of se-
lected vertices must be an integer. Recall the notation 〈1m1 , . . . , kmk〉 which describes a
partition with mi parts of size i, 1 ≤ i ≤ k. Let G be a complete multipartite graph corre-
sponding to the partition π = 〈1m1 , . . . , kmk〉 and let aij denote the number of parts of size
j with exactly i vertices in the strong geodetic set. Thus we must have

∑j
i=0 aij = mj

and
∑k
j=1

∑j
i=0

(
i
2

)
aij ≥

∑k
j=1

∑j
i=0(j − i)aij . The second condition simplifies to∑k

j=1

∑j
i=1

(
i+1
2

)
aij ≥

∑k
j=1

∑j
i=0 jaij =

∑k
j=1 jmj = n. As a0j’s do not appear in it

anymore, we also simplify the first condition to
∑j
i=1 aij ≤ mj and get

min

k∑
j=1

j∑
i=1

iaij

subject to:
j∑
i=1

aij ≤ mj

k∑
j=1

j∑
i=1

(
i+ 1

2

)
aij ≥ n

0 ≤ aij ≤ mj .

(3.1)

As the sequence
(
k
2

)
− k is increasing for k ≥ 3, it is better to select more vertices in a

bigger part. Hence, the optimal solution is

ak,k = mk

ak−1,k−1 = mk−1
...

al+1,l+1 = ml+1

al,l =
lml + · · ·+ 1m1 −

(
k
2

)
mk − · · · −

(
l+1
2

)
ml+1(

l+1
2

) ,

where l is the smallest positive integer such that
(
k+1
2

)
mk + · · · +

(
l+2
2

)
ml+1 ≤ kmk +

· · · + 1m1 = |V (K〈1m1 ,...,kmk 〉)|, which is equivalent to lml + · · · + 1m1 ≥
(
k
2

)
mk +

· · ·+
(
l+1
2

)
ml+1, and

sg(K〈1m1 ,...,kmk 〉) ≥⌈
kmk + · · ·+ (l + 1)ml+1 +

lml + · · ·+m1 −
(
k
2

)
mk − · · · −

(
l+1
2

)
ml+1

l+1
2

⌉
.



488 Ars Math. Contemp. 17 (2019) 481–491

The result is particularly interesting in the case when π = 〈km〉, i.e. when we observe
a multipartite graph with m parts of size k, as we get l = k and

sg(K〈km〉) ≥
⌈
2km

k + 1

⌉
.

On the other hand, considering a strong geodetic set consisting only of the whole parts
of the bipartition yields an upper bound. At least l ∈ Z, where l(k +

(
k
2

)
) ≥ mk, parts

must be in a strong geodetic set. Hence,

sg(K〈km〉) ≤
⌈

2m

k + 1

⌉
· k.

This implies the following result.

Proposition 3.1. If k, n ∈ N and (k + 1) | 2m, then sg(K〈km〉) =
2mk
k+1 .

4 Complexity results for multipartite graphs
The strong geodetic problem can be naturally formed as a decision problem.

Problem 4.1 (STRONG GEODETIC SET).
Input: a graph G, an integer k.
Question: does a graph G have a strong geodetic set of size at most k?

The strong geodetic problem on general graphs is known to be NP-complete [1]. In the
following we prove that it is also NP-complete on multipartite graphs.

The reduction uses the dominating set problem. Recall that a set D ⊆ V (G) is a
dominating set in the graph G if every vertex in V (G)−D has a neighbor in D.

Problem 4.2 (DOMINATING SET).
Input: a graph G, an integer k.
Question: does a graph G have a dominating set of size at most k?

The dominating set problem is known to be NP-complete on bipartite graphs [15].
The idea of the following proof is similar to the proof that the ordinary geodetic problem
restricted to chordal bipartite graphs is NP-complete [6].

Theorem 4.3. STRONG GEODETIC SET restricted to bipartite graphs is NP-complete.

Proof. To prove NP-completeness, we describe a polynomial reduction of DOMINATING
SET on bipartite graphs to STRONG GEODETIC SET on bipartite graphs. Let (G, k) be an
input for DOMINATING SET, and (X,Y ) a bipartition of the graph G. Define a graph G′,

V (G′) = V (G) ∪ {u1, u2} ∪ {x′ : x ∈ X} ∪ {y′ : y ∈ Y },

with the edges E(G), u1 ∼ u2, and x ∼ u2 ∼ x′ for all x ∈ X , y ∼ u1 ∼ y′ for all y ∈ Y .
Define the sets

X ′ = X ∪ {u1} ∪ {x′ : x ∈ X},
Y ′ = Y ∪ {u2} ∪ {y′ : y ∈ Y },
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and observe that (X ′, Y ′) is a bipartition of the graph G′. Define the parameter k′ =
k + |V (G)|.

Suppose D is a dominating set of the graph G of size at most k. Define

D′ = D ∪ {x′ : x ∈ X} ∪ {y′ : y ∈ Y }.

Notice that |D′| ≤ k′. For each x ∈ X ∩D, fix geodesics x ∼ y ∼ u1 ∼ y′, y ∈ NG(x).
Similarly, for each y ∈ Y ∩D, fix y ∼ x ∼ u2 ∼ x′, x ∈ NG(y). As D is a dominating
set, these geodesics cover all vertices in V (G). Additionally, fix geodesics x ∼ u2 ∼ x′

for some x ∈ X , and y ∼ u1 ∼ y′ for some y ∈ Y , to cover the vertices u1, u2. Hence, D′

is a strong geodetic set of the graph G′.
Conversely, suppose D′ is a strong geodetic set of G′ of size at most k′. Vertices

{x′ : x ∈ X} ∪ {y′ : y ∈ Y } are all simplicial, hence they all belong to D′. Geodesics
between them cannot cover any vertices in V (G), thus V (G) ∩ D′ 6= ∅. Let D = D′ ∩
V (G). Clearly, |D| ≤ k. Consider x ∈ V (G) − D. Thus x is an inner point of some
y, z-geodesic. At most one of y, z does not belong to D. The structure of the graph ensures
that at least one of y, z is a neighbor of x. Hence,D is a dominating set of the graphG.

Corollary 4.4. STRONG GEODETIC SET restricted to multipartite graphs is NP-complete.

In the following we consider the complexity of STRONG GEODETIC SET on complete
multipartite graphs. Proposition 1.2 gives rise to the following algorithm.

Let G be a graph and (X1, . . . , Xr) its multipartition. Denote ni = |Xi|, i ∈ [r]. For
all {i, j} ⊆

(
[r]
2

)
, for all subsets R of [r] − {i, j}, for all si ∈ {0, . . . , ni}, for all sj ∈

{0, . . . , nj}, set Si ⊆ Xi of size si, and Sj ⊆ Xj of size sj . Check if Si ∪ Sj ∪
⋃
k∈RXk

is a strong geodetic set for G. The answer is the size of the smallest strong geodetic set.
The time complexity of this algorithm is O(n2r22r). This confirms the already known

result that STRONG GEODETIC SET restricted to complete bipartite graphs is in P , which is
an easy consequence of Theorem 2.1. Moreover, it is now clear that the problem is solvable
in quadratic time. The same holds for complete r-partite graphs (when r is fixed). But for
a general complete multipartite graph (when the size of the multipartition is part of the
input), the algorithm tells us nothing about complexity.

But we also observe an analogy between the STRONG GEODETIC SET problem on
complete multipartite graphs and the KNAPSACK PROBLEM, which is known to be NP-
complete [17]. Recall that in this problem, we are given a set of items with their weights
and values, and we need to determine which items to put in a backpack, so that a total
weight is smaller that a given bound and a total value is as large as possible. The approx-
imate reduction from the STRONG GEODETIC SET on complete multipartite graphs to the
KNAPSACK PROBLEM is the following. Let (X1, . . . , Xr) be the parts of the complete
multipartite graph. The items x1, . . . , xr represent those parts, a value if xi is

(|Xi|
2

)
and

the weight is |Xi|. Thus selecting the items such that their total value is as large as pos-
sible and the total weight as small as possible, is almost the same as finding the smallest
strong geodetic set of the complete multipartite graph (as Proposition 1.2 states that at most
two parts in the strong geodetic set are selected only partially). We were not able to find
a reduction from the KNAPSACK PROBLEM to the STRONG GEODETIC SET on complete
multipartite graphs. But due to the connection with the KNAPSACK PROBLEM, it seems
that the problem is not polynomial. Hence we pose

Conjecture 4.5. STRONG GEODETIC SET restricted to complete multipartite graphs is
NP-complete.
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However, as already mentioned, determining the strong geodetic number of complete
r-partite graphs for fixed r is polynomial. Using a computer program (implemented in
Mathematica [18]) we derive the results shown in Table 3.

Table 3: The strong geodetic numbers for some small complete multipartite graphs.

π sg(Kπ)

〈1〉 1

〈2〉 2

〈12〉 2

〈3〉 3

〈1, 2〉 2

〈13〉 3

〈4〉 4

〈1, 3〉 3

〈22〉 3

〈12, 2〉 3

〈14〉 4

〈5〉 5

〈1, 4〉 4

〈2, 3〉 3

〈12, 3〉 3

〈1, 22〉 4

〈13, 2〉 4

〈15〉 5

π sg(Kπ)

〈6〉 6

〈1, 5〉 5

〈2, 4〉 4

〈12, 4〉 4

〈32〉 3

〈1, 2, 3〉 3

〈13, 3〉 3

〈23〉 4

〈12, 22〉 4

〈14, 2〉 5

〈16〉 6

〈7〉 7

〈1, 6〉 6

〈2, 5〉 5

〈12, 5〉 5

〈3, 4〉 4

〈1, 2, 4〉 4

〈13, 4〉 4

π sg(Kπ)

〈1, 32〉 4

〈22, 3〉 4

〈12, 2, 3〉 4

〈14, 3〉 4

〈1, 23〉 5

〈13, 22〉 5

〈15, 2〉 6

〈17〉 7
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