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Abstract

We study the direct product of automorphism groups of digraphs, where automorphism
groups are considered as permutation groups acting on the sets of vertices. By a direct
product of permutation groups (A, V ) × (B,W ) we mean the group (A × B, V × W )
acting on the Cartesian product of the respective sets of vertices. We show that, except
for the infinite family of permutation groups Sn × Sn, n ≥ 2, and four other permutation
groups, namely D4 × S2, D4 × D4, S4 × S2 × S2, and C3 × C3, the direct product of
automorphism groups of two digraphs is itself the automorphism group of a digraph. In the
course of the proof, for each set of conditions on the groups A and B that we consider, we
indicate or build a specific digraph product that, when applied to the digraphs representing
A and B, yields a digraph whose automorphism group is the direct product of A and B.
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The original problem of Kőnig [20], to describe finite abstract groups that are isomor-
phic to automorphism groups of simple graphs, quickly found an answer due to Frucht [5],
namely, each finite group is isomorphic to the automorphism group of some simple graph.
A related question, asking which permutation groups on a given set are automorphism
groups of graphs on that set of vertices, proved to be much more difficult.

The simplest example of a permutation group that has no graph representation in this
sense is the trivial group on two elements. Both simple graphs on two vertices admit the
full permutation group S2 as automorphisms.

In the present paper, we deal with a generalization of the original problem. We study
permutation group representability on directed simple graphs (digraphs). Note that the
trivial group of the above example, while having no graph representation, obviously does
have a digraph representation.

There are, however, groups that have neither graph nor digraph representations. The
smallest example is the Klein four group S2 × S2 (even symmetries of a square), and that
is despite the fact that both factors do have graph representations. This observation led us
to study the representability of direct products of representable groups.

Our main result is Theorem 2.1 that says that, given two permutation groups (A, V )
and (B,W ) that have digraph representations, their direct product (A × B, V ×W ) also
has a digraph representation, unless A×B is one of the four exceptional groups D4 × S2,
D4×D4, S4×S2×S2,C3×C3, or a member of the infinite family of groups Sn×Sn, n ≥ 2.
It is a digraph counterpart of Theorem 2.10 of [8] by Grech for undirected graphs.

Although it might seem that this generalization should be straightforward, it turns out
that we are in need, in addition to the conclusions of the aforementioned paper, of a whole
collection of new techniques. The reason is that, as we have already seen in the intro-
duction, there are plenty of permutation groups that are not the automorphism groups of a
graph but are the automorphism groups of a digraph with at least one directed edge.

Research on the problem of representability of a permutation group A = (A, V ) as the
full automorphism group of a digraph (graph) G = (V,E) started with studies of regular
permutation groups (see [15, 16, 18, 23, 24, 25, 29, 30], for instance). In particular, it was
established that abelian groups and generalized dihedral groups have no simple graph rep-
resentation. Moreover, 13 other groups with this property were found. The solution of the
problem for undirected graphs was completed by Godsil [7] in 1979. He proved that with
the exception of the groups mentioned above, all other regular permutation groups are au-
tomorphism groups of graphs. For digraphs, L. Babai [1] in 1980 used the result of Godsil,
and proved that, except for the groups S2

2 , S3
2 , S4

2 , C2
3 and the eight element quaternion

group Q, each regular permutation group is the automorphism group of a digraph.
The fact that all digraphs and graphs can be interpreted as complete digraphs (graphs)

in which the edges and non-edges are distinguished by assigning them one of two col-
ors provides motivation for working with edge-colored digraphs (or graphs) rather than
with plain digraphs (graphs). This subject was introduced by H. Wielandt in [32], where
permutation groups that are automorphism groups of edge-colored digraphs were called
2-closed, and those that are automorphism groups of edge-colored graphs were referred to
as 2∗-closed. In [19] Kisielewicz introduced the notion of graphical complexity of permu-
tation groups and suggested studying products of permutation groups in this context. We
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denote by DGR(k) (GR(k)) the class of automorphism groups of k-edge-colored digraphs
(graphs), and by DGR (GR), the union of all classes DGR(k) (GR(k)). A k-edge-colored
digraph (graph) is a complete digraph (graph) with every edge colored in one of k colors.
It is obvious that GR(k) ⊆ DGR(k), for every k. Note that the class DGR(2) (GR(2)) is
the class of automorphism groups of digraphs (graphs).

The most general open question in this field is to find all permutation groups that be-
long to the class DGR. Another problem is to describe all the classes DGR(k). Several
results on DGR(k) membership for basic classes of permutation groups are known, see for
instance [1, 12, 34].

A closely connected topic is research on factorization of digraphs, see [3, 6, 22] and the
bibliography given there. The same problem as before is considered, but from a slightly dif-
ferent point of view. Special attention is devoted to homogeneous factorization of complete
digraphs [12, 21].

Also, various products of automorphism groups of digraphs were considered, see for
instance [10, 11, 14, 28, 31]. In particular, in [10], the direct product of automorphism
groups of edge-colored digraphs was studied. One of the results, worked out there, is that,
for k ≥ 2, the direct product (A × B, V × W ) of two permutation groups (A, V ) and
(B,W ) from the class DGR(k) belongs to the class DGR(k + 1).

In [9] the study of the direct product was carried on and gave an improvement of the re-
sult from [10]. It was shown that for k ≥ 3, the direct product of two groups from DGR(k)
is either in DGR(k) or is equal to S3

2 . The same holds for the case of automorphism groups
of edge-colored graphs. The result of the present paper can be seen as an extension of the
above result for the case k = 2.

1 Preliminaries
We assume that the reader has basic knowledge in the areas of graphs and permutation
groups, so we omit an introduction to standard terminology. If necessary, additional details
can be found in [2, 11, 33].

We recall the most important definitions. A digraph G is a pair (V,E), where V is the
set of vertices. The set of oriented edges, E, is a subset of V × V \ {(v, v) : v ∈ V } (the
set of ordered pairs of different elements of V ). By G we denote the complement of G. A
complete digraph with n vertices is denoted by Kn.

An undirected edge is a pair {v, w} such that both (v, w) and (w, v) belong to E. By
d1G(v) we mean the number of undirected edges of the form {v, w}, w ∈ V in a digraph G
(the number of 1-neighbors of the vertex v). We define the number of non-neighbors (or 0-
neighbors) of a vertex v by d0G(v) = d1

G
(v). If a digraph G is regular, then we denote these

numbers d1(G) and d0(G), respectively. A directed edge is an edge (v, w) ∈ E such that
(w, v) 6∈ E. For every v ∈ V , by dfG(v), we denote the number of its forward-neighbors,
that is, of directed edges of the form (v, w), w ∈ V (with (w, v) /∈ E).

In the case when a digraph G has no directed edges, we say that G is an undirected
graph (a graph). For a digraph G we let s(G) denote the undirected graph (shadow graph)
that is obtained from G by replacing all directed edges by undirected ones. We will also
use the notion of weak neighbors of a vertex v in a digraph G, that is, of vertices that
are neighbors of v in s(G). Similarly, a digraph is said to be weakly connected if s(G) is
connected.

We define two products of digraphs G1 = (V1, E1) and G2 = (V2, E2). Their
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Cartesian product G1 �G2 is a digraph G1 �G2 = (V,E), where V = V1 × V2, and
((v1, v2), (w1, w2)) ∈ E if either (v1, w1) ∈ E1 and v2 = w2, or v1 = w1 and (v2, w2) ∈
E2. We say that a digraph is prime if it is not the Cartesian product of two nontrivial
digraphs. It is not hard to show that Cartesian multiplication of graphs is commutative,
associative, and that K1 is a unit.

The second productG1∗G2 = (V,E), first studied by Watkins [28], is a digraph where
V = V1 × V2 and ((v1, v2), (w1, w2)) ∈ E if and only if either (v1, w1) ∈ E1 and v2 =
w2, or v1 6= w1 and (v2, w2) ∈ E2.

For a digraph G with vertex set V ×W , the subdigraphs of G induced by sets V ×{w}
will be called rows, and the subdigraphs induced by sets {v} ×W will be called columns.
An edge that belongs neither to a row nor to a column will be called a slant edge. When
G = G1 �G2, for given v ∈ V (G) and i ∈ {1, 2} we will use the notation layer for the
row or column (image of Gi) containing v and denote it Gv

i .
A permutation σ of the set V is an automorphism of a digraph G = (V,E) (σ ∈

Aut (G)) if, for v, w ∈ V, a pair (v, w) ∈ E if and only if (σ(v), σ(w)) ∈ E. It is obvious
that Aut (G) is a group and that Aut (G) = Aut

(
G
)
.

All groups considered here are groups of permutations. They are considered up to
permutation group isomorphism. Sn denotes the full group of permutations of an n-element
set. By Cn, n > 2, we denote the cyclic group on n elements (i.e. the group generated
by the cycle (1, 2, . . . , n)). And finally, by Dn, n > 2, we denote the dihedral group
acting on an n-element set (i.e. the group generated by (1, 2, . . . , n) and (1, n)(2, n−1) . . .
([n/2], n− [n/2] + 1)).

We define two kinds of products of permutation groups. Let A and B be permutation
groups acting on the sets V and W, respectively. The direct product A × B is the permu-
tation group consisting of the elements {(a, b) : a ∈ A, b ∈ B} acting on the set V ×W
as follows: (a, b)((v, w)) = (a(v), b(w)), for v ∈ V,w ∈W . The group A×A is denoted
A2. A wreath product AwrB acting imprimitively on the set V ×W is the permutation
group consisting of the elements {(a, b1, . . . , bn) : a ∈ A, bi ∈ B,n = |V |} acting on the
set V ×W as follows: (a, b1, . . . , bn)(i, w) = (a(i), bi(w)), where i ∈ {1, . . . , n} = V,
w ∈W. (A acts on the set of columns, B acts on each column independently.)

The class of groups which are the automorphism groups of digraphs with at least one
directed edge will be denoted by EDGR.

Lemma 1.1. Let G be a digraph and v, w, x, y ∈ V (G), such that the only edges joining
any two of them are (v, w), (y, x) ∈ E (G) and {w, y}, {v, x} ∈ E (G). Then, for every
cartesian decomposition of the digraph G = G1 �G2, there is an i ∈ {1, 2} such that all
the arcs between v, w, x, y belong to Gv

i .

Proof. Without loss of generality assume that the layer Gv
1 contains w. Vertex y can now

be in the layer Gv
1 = Gw

1 or in the layer Gw
2 . Assume the latter. Then, x has to be at

the intersection of Gy
1 and Gv

2 , as there are no slant arcs in G, but then the orientations
of (v, w) and (y, x) are inconsistent with the definition of the cartesian product. Hence,
vertex y must be in the layer Gv

1 = Gw
1 . Since the vertex x is a weak neighbor of both

y and v which are in a single layer, it also must belong to that layer, because there are no
slant arcs.

In contrast to the undirected case, where Imrich [14] found a short list of exceptional
graphs for which both the graph and its complement are connected and not prime, for
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digraphs with at least one directed edge there are no exceptions, as the following theorem
shows:

Theorem 1.2. For every digraph G with at least one directed edge either G or G is weakly
connected and prime.

Proof. Assume the digraph G with at least one directed edge is not prime, that is G =
G1 �G2. We have to show that G is weakly connected and prime.

Let (v, w) = ((v1, v2), (w1, w2)) ∈ E (G) be one of the directed edges of G. Without
loss of generality, assume that (v1, w1) ∈ E (G1) and v2 = w2. Since the cartesian decom-
position is not trivial, there exists a vertex v′2 ∈ V (G2), v′2 6= v2. Then ((v1, v

′
2), (w1, v

′
2))

is also a directed edge in E(G). If between (v1, v
′
2) and (v1, v2) there is no edge or there

is a directed edge, then it is easy to see that the subdigraph of G induced by the vertices
(w1, v2), (v1, v2), (w1, v

′
2), (v1, v

′
2) contains edges (directed or undirected) between ev-

ery pair of vertices, and therefore belongs to a single layer of G. If there is an undirected
edge between (v1, v

′
2) and (v1, v2) then the same holds by Lemma 1.1. Now, all other

vertices of G can be split into three categories according to their adjacence in G to the ver-
tices (w1, v2), (v1, v2), (w1, v

′
2), (v1, v

′
2). First, those in Gv

1 are neighbors of both (v1, v
′
2)

and (w1, v
′
2), and those in G(v1,v

′
2)

1 are neighbors of both (v1, v2) and (w1, v2). Second,
those in Gv

2 are neighbors of both w and (w1, v
′
2) and those in Gw

2 are neighbors of both v
and (v1, v

′
2). Third, all other vertices are neighbors of all four vertices (w1, v2), (v1, v2),

(w1, v
′
2), (v1, v

′
2).

Because a vertex can be a neighbor of two vertices in one and the same layer only if it
also belongs to that layer, we conclude that all vertices in G belong to a single layer, so G
is prime. It is easy to see that it also is weakly connected.

Assume now thatG is prime and not weakly connected. Its complementG is connected.
If G were not prime, then, by the previous paragraph, G = G would have to be weakly
connected, contrary to assumption. Thus G is weakly connected and prime.

In what follows we need a result analogous to the Sabidussi-Vizing [26, 27] theorem
about the automorphism group of the Cartesian product of connected coprime graphs. To
prove it, we use a result on unique prime factorization of digraphs with respect to the
Cartesian product. This result can be traced back to Feigenbaum [4], but for an easy proof
in a more general setting we refer to the recent paper by Imrich and Peterin [17]:

Theorem 1.3. Every weakly connected digraph has a unique prime factor decomposition
with respect to the Cartesian product.

We can now state our two simplified versions of the Sabidussi-Vizing theorem for
digraphs.

Theorem 1.4. Let G,H be non-isomorphic weakly connected digraphs, where |V (G)| ≥
|V (H)| and G is prime. Then Aut (G�H) = Aut (G)×Aut (H).

Proof. It is clear that Aut (G)×Aut (H) ⊂ Aut (G�H). We shall prove the opposite
inclusion. To that end, it suffices to show that every a ∈ Aut (G�H) maps G-layers to
G-layers and H-layers to H-layers in G�H .

We know that Aut (G�H) ⊂ Aut (s (G�H)) and, in general, the factors of the
shadow graph s(G�H) = s(G)� s(H) need not be prime. Take a ∈ Aut (G�H).
A G-layer in G�H has the form G� {h} for h ∈ V (H). Consider s (G� {h}), a
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cartesian product of subgraphs of s (G) and s (H). Using the terms defined in Chapter 6
of [13], it is a convex subgraph of the shadow graph s (G�H), and so, by a corollary
that leverages the convexity preserving property of automorphisms, obtained as a step in
the proof of Theorem 6.8 therein (first paragraph on page 69), the image of s (G� {h})
under the automorphism a is again a cartesian product of subgraphs of s (G) and s (H),
that is, a(s (G� {h})) = s (G1)� s (H1), where G1 ⊂ G and H1 ⊂ H . But, since
the vertex sets of the shadows are the same as those of the digraphs, we also have that
a(G� {h}) = G1 �H1. Suppose |V (G1)| = 1, that would imply that H1 = H with
|V (H)| = |V (G)| and that G is isomorphic to H , which is contrary to assumption. Now
suppose that 1 < |V (G1)| < |V (G)|. This would imply that the digraphG has a nontrivial
cartesian product decomposition, which is also contrary to assumption. We are, thus, left
with the case |V (G1)| = |V (G)|, which proves that a maps G-layers to G-layers.

Because we have no slant arcs and H is weakly conected this means that a maps H-
layers into H-layers.

Theorem 1.5. LetG be a weakly connected, prime digraph with at least one directed edge.
Let H be an undirected and connected graph. Then Aut (G�H) = Aut (G)×Aut (H).

Proof. Similarly as above, we get that a(s (G� {h})) = s (G1)� s (H1). We do not
assume that the digraph G has at least as many vertices as H , so we need to exclude the
case |V (G1)| = 1 differently. Here this would imply that G is a subgraph of H , but this
is not possible as G has a directed edge while H does not. The conclusion follows as
above.

The following proposition is modelled on an observation made in the proof of Theo-
rem 6 of Watkins [28]:

Proposition 1.6. Let G1 = (V1, E1) and G2 = (V2, E2) be digraphs where G2 is weakly
connected. Suppose that every automorphism a of the digraph G = G1 ∗ G2 maps rows
onto rows. Then Aut (G) = Aut (G1)×Aut (G2).

Proof. Let w1 and w2 be weak neighbors in G2 and let v ∈ V1 be arbitrarily chosen. Write
a(v, wi) = (a1(v, wi), a2(v, wi)). Since rows are mapped onto rows, a2 does not depend
on v. Hence, a2 ∈ Aut (G2).

By the definition of the ∗-product, (v, w2) is the only vertex in G
(v,w2)
1 that is not

weakly adjacent to (v, w1). Hence a(v, w2) = (a1(v, w2), a2(w2)) is the only vertex in
G

a(v,w2)
1 that is not weakly adjacent to (a1(v, w1), a2(w1)), so a1(v, w1) must be equal

to a1(v, w2). By the weak connectivity of G2 this means that a1 only depends on v. It is
easily seen that it is an automorphism of G1. Thus, for any (v, w) ∈ V (G) we conclude
that a(v, w) = (a1(v), a2(w)), where a1, a2 are a automorphisms of G1, resp. G2.

2 Main result
The following theorem settles the problem when the direct product of automorphism groups
of digraphs is an automorphism group of a digraph.

Theorem 2.1. Let A,B ∈ DGR(2). Then A× B ∈ DGR(2), unless A× B is D4 × S2,
D4 ×D4, S4 × S2 × S2, C3 × C3, or one of the groups Sn × Sn, n ≥ 2.
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The proof is broken up into a series of lemmas. Let us note first that we are given
permutation groups A = (A, VA), B = (B, VB) and graphs GA = (VA, EA), GB =
(VB , EB), where Aut (GA) = A and Aut (GB) = B. Since Aut (G) = Aut

(
G
)

for any
G we may assume without loss of generality that both GA and GB are weakly connected.
Moreover, by Theorem 1.2 we may also assume that they are prime if they have at least one
directed edge.

We begin by extending Theorem 2.10 of [8] by Grech for undirected graphs to directed
graphs.

Lemma 2.2. Let A,B ∈ GR(2). Then A×B ∈ DGR(2) if and only if A×B ∈ GR(2).

Proof. By Theorem 2.10 of [8], A × B ∈ GR(2), unless A × B is D4 × S2, D4 × D4,
S4×S2×S2 or Sn×Sn, for n ≥ 2. In the exceptional cases the pair (v2, v1) belongs to the
orbit of the pair (v1, v2) in the natural action of the group (A×B, V ) on pairs of elements
of V . Thus, every digraph G such that A × B ⊆ Aut (G) has to be an undirected graph.
Hence, in all the cases, A × B ∈ DGR(2) would imply A × B ∈ GR(2). Consequently,
in the exceptional cases, A×B 6∈ DGR(2).

Notice that this takes care of all exceptional groups of Theorem 2.1 that are different
from C3 × C3. The proof also shows that in what follows it suffices to consider only the
cases where either A or B admits a digraph representation with at least one directed edge.
We can thus assume without loss of generality that A ∈ EDGR.

Lemma 2.3. Assume that A,B are non-isomorphic groups, where A ∈ EDGR and B ∈
DGR(2). Then Aut (GA �GB) = Aut (GA)×Aut (GB)

Proof. As noted above, GA and GB can be chosen to be weakly connected, the comple-
ment being taken if necessary, with GA being prime. Then, if B ∈ EDGR so that GB can
also be chosen to be prime, the proof follows from Theorem 1.4, and from Theorem 1.5
otherwise.

This means that we can assume that B ∼= A. Moreover, if we are able to find two
non-isomorphic weakly connected digraphs, at least one of which is prime, with the same
automorphism group A, then Theorem 1.4 also gives us a positive answer.

It therefore remains to consider the case A×A, where A is the automorphism group of
a weakly connected prime digraph GA with at least one directed edge. In other words, we
can assume that A ∈ EDGR and that GA is prime.

Lemma 2.4. Let A ∈ EDGR with prime GA. If A is intransitive, then A×A ∈ DGR(2).

Proof. We consider two copies Gr = (Vr, Er) and Gc = (Vc, Ec) of GA and will define a
digraph G = (Vr × Vc, E) such that Aut (G) = A × A. We call Gr the row copy and Gc

the column copy of GA.
SinceA is intransitive, GA 6= K|VA|. LetW ⊂ Vc be one of the orbits ofA in its action

on Gc. The edge set E of the digraph G = (Vr × Vc, E) is then defined as the set of all
pairs ((vr, vc), (wr, wc)) satisfying one of the following conditions:

(a) (vc, wc) ∈ Ec and vr = wr;

(b) vc = wc and

• either vc ∈W
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• or vc 6∈W , and (vr, wr) ∈ Er.

Notice that there are no slant edges and that the subgraphs induced by the columns
{vr} × Vc are isomorphic toGA, whereas the the subgraphs induced by the rows Vr×{vc}
are isomorphic to K|VA| if vc ∈W , otherwise they are isomorphic to GA.

In other words, Vr ×W induces the Cartesian product K|VA|� 〈W 〉, where 〈W 〉 de-
notes the subgraph of GA induced by W , and Vr × {Vc \W} induces GA � 〈Vc \W 〉.

It is easy to see that A × A ⊆ Aut (G). We have to prove the converse. To that end it
suffices to show that Aut (G) maps rows onto rows and columns onto columns.

Consider a row Vr × {vc}, where vc ∈ W . The row induces a complete subgraph.
Because we have no slant edges, automorphisms can only map it into rows or columns. As
all rows and columns have the same number of vertices and since GA 6= K|VA|, it can only
be mapped onto a Vr × {wc}, where wc ∈W .

We will now prove that automorphisms of G map columns onto columns. Pick a vc ∈
W to single out one of the rows of W , and let (wr, wc) be any vertex of G. As there are
no slant edges in G, the paths realizing the weak distance of (wr, wc) to points (vr, vc) in
the chosen row will be built of column edges and row edges. By analogy to the reasoning
behind the distance formula for the cartesian product, the column edges of any such path
projected onto the column graph Gc will form a weak path from wc to vc in Gc, just as in
a cartesian product, but the row edges can go through regular rows or through K|VA| rows.
When vr equals wr, row edges are eliminated. That means that given a vertex (wr, wc)
there is a unique vertex in the chosen row Vr × {vc}, to which weak distance ρ in G is
minimal, this unique vertex (wr, vc) is in the same column as (wr, wc) and is unique in the
above sense for all vertices (wr, wc) of that column.

Consider now an automorphism a ∈ Aut (G). We already know that it will map the
row Vr × {vc} onto some other row Vr × {xc}. If the vertices (xr, xc) = a(wr, vc) and
(yr, yc) = a(wr, wc) were in different columns, that is if xr 6= yr, there would be a vertex
(yr, xc) in row xc closest to (yr, yc) and different than (xr, xc):

ρ ((xr, xc), (yr, yc)) > ρ ((yr, xc), (yr, yc)) ,

while after having applied a−1 on both sides we would get

ρ ((wr, vc), (wr, wc)) > ρ ((w′r, vc), (wr, wc)) ,

withw′r 6= wr because of xr 6= yr, but that cannot be true. Hence, any automorphism maps
columns onto columns, as vertices of G follow their closest vertices in the chosen row.

Since column edges are mapped by automorphisms onto column edges, row edges are
mapped only to row edges, thus, the only way the image of a row can preserve its weak
connectedness is for automorphisms to map entire rows onto entire rows.

Lemma 2.5. Let A ∈ EDGR with prime GA. If A is transitive and |VA| ≤ 4, then
A×A ∈ EDGR unless A = C3.

Proof. The group A is one of C3 and C4. By a result of Babai [1], C3 × C3 /∈ EDGR.
C4 × C4 ∈ EDGR by Theorem 1.4 for GC4 and GC4 .

Observe that this takes care of the last exceptional case of Theorem 2.1.

Lemma 2.6. Let A ∈ EDGR with prime GA, where A is transitive and |VA| > 4. If GA

is weakly connected, then A×A ∈ EDGR.
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Proof. Denote n = |VA|. Since the graph GA is weakly connected, we only need to
consider the case GA

∼= GA (otherwise the conclusion follows from Theorem 1.4). This
implies that d0(GA) = d1(GA). Because GA is not undirected, we infer that 2df (GA) >
1. Then d0(GA) + d1(GA) + 2df (GA) = n− 1 implies 2d1(GA) = 2d0(GA) < n− 2.

We shall now prove that the graph G = Gr ∗ Gc, where Gr = (Vr, Er) and Gc =
(Vc, Ec) are copies of GA, has the property Aut (G) = A × A. To this end, we will
show that every undirected edge that is contained in a row is mapped, under the action of
Aut (G), onto an undirected edge which is contained in a row, and that the same is true for
directed edges.

Let us compare the numbers of the common 1-neighbors of the ends of an undirected
edge which is contained in a row, with the same number for the ends of an undirected slant
edge. Denote the ends of the edge e by (vr, vc) and (wr, wc). If e is contained in a row
(vc = wc), then the common 1-neighbors of (vr, vc) and (wr, wc) are those contained in
that row, together with all but two vertices in rows corresponding to 1-neighbors of vc = wc

in Gc, hence their number is equal to

N1
Gr

(vr, wr) + (n− 2)d1(Gc), (2.1)

where N1
Gr

(vr, wr) is the number of common 1-neighbors of the vertices vr and wr (in
Gr). If e is a slant edge, the common 1-neighbors of (vr, vc) and (wr, wc) are the 1-
neighbors contained in both rows (excluding the vertex directly in front of the other end
if it also is such a 1-neighbor), together with all but two vertices in rows corresponding to
common 1-neighbors of both vc and wc in Gc. Thus, their number is

(n− 2)N1
Gc

(vc, wc) + 2d1(Gr)− 2δ, (2.2)

where N1
Gc

(vc, wc) is the number of common 1-neighbors of the vertices vc and wc (in
Gc), and δ ∈ {0, 1}.

The assumption that the numbers (2.1) and (2.2) are equal, implies

(n− 2)(d1(Gc)−N1
Gc

(vc, wc)) +N1
Gr

(vr, wr)− 2d1(Gr) + 2δ = 0.

Since d1(Gc) > N1
Gc

(vc, wc) and 2d1(Gr) < n−2, it cannot be true. Hence, an undirected
edge which is contained in a row cannot be mapped onto a slant undirected edge. Since
there are no undirected edges in columns of a ∗-product, the set of the undirected edges
that are contained in the rows is preserved by automorphisms.

We continue with a similar calculation for directed edges. Let e be a directed edge with
ends as above. If e is contained in a row, then by similar reasoning as in the undirected
case, the number of common forward-neighbors of (vr, vc) and (wr, wc) equals

Nf
Gr

(vr, wr) + (n− 2)df (Gc), (2.3)

where Nf
Gr

(vr, wr) is the number of common forward-neighbors of the vertices vr and wr

(in Gr). If e is a slant edge, then this number is

(n− 2)Nf
Gc

(vc, wc) + df (Gr)− δ, (2.4)

where Nf
Gc

(vc, wc) is the number of common forward-neighbors of the vertices vc and wc

(in Gc), and δ ∈ {0, 1}.
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If it were possible for an automorphism from Aut (G) to map a directed slant edge onto
a directed row edge, the numbers (2.3) and (2.4) would need to be the same, which would
imply

(n− 2)(df (Gc)−Nf
Gc

(vc, wc)) +Nf
Gr

(vr, wr)− df (Gr) + δ = 0. (2.5)

If e = ((vr, vc), (wr, wc)) is a directed slant edge, then (vc, wc) is a directed edge of Gc.
The equality df (Gc) = Nf

Gc
(vc, wc) would then imply that the set of forward-neighbors

of each of the vertices vc and wc be identical, but this cannot be true, since wc is a forward-
neighbor of vc but not of itself. Hence, df (Gc) > Nf

Gc
(vc, wc). Note that since A is

transitive, every vertex has as many backward neighbours as forward neighbours. Therefore
since n > 4, we infer df (Gr) < n − 2. Thus, equation (2.5) cannot be true and the set of
directed edges that are contained in rows is preserved by automorphisms also in this case.
BecauseGA is weakly connected, it follows by Proposition 1.6 that Aut (G) = A×A.

Lemma 2.7. Let A ∈ EDGR, with prime GA, be transitive. If GA is disconnected, then
A×A ∈ EDGR.

Proof. We first consider the structure of GA. Because A is transitive, the subgraphs of
GA induced by the vertices belonging to common weakly connected components of GA

are isomorphic, so VA = W ′ ×W , where the weakly connected components of GA are
grouped as columns, with column size s = |W | = n/t, where t = |W ′| ≥ 2 is the number
of weakly connected components of GA. Thus, the group A acts on the set of columns
as St, and on every column independently as some A1, hence A = St wrA1. Since there
are no edges between columns of GA we infer that (v, w) ∈ E(GA) if v and w belong
to different columns. Because A is transitive, and GA is not undirected, we conclude that
either s ≥ 4 or A1 = C3.

In the latter case, we define G = Gr ∗ Gc, where both Gr and Gc are isomorphic to
GA. Then, it is easy to see that the ends of the undirected edges in the rows have common
forward-neighbors, and the ends of the undirected slant edges do not. Since the undirected
edges in rows form spanning connected subgraphs of the rows, Aut (G) maps rows onto
rows. By Proposition 1.6 we conclude that Aut (G) = A×B.

In the case s ≥ 4, we define a graph G = (Vr × Vc, E) such that ((vr, vc), (wr, wc))
is in E if either vc = wc and (vr, wr) ∈ E(Gr) or (vc, wc) ∈ E(Gc), vr 6= wr, and the
vertices vr and wr belong to the same weakly connected component in Gr.

If a connected graph H has a disconnected complement, then the subgraphs of H that
are induced by the vertices of the weakly connected components ofH are sometimes called
Zykov components of H . Our graph G thus consists of t copies of the R ∗Gc, where R is a
Zykov-component of Gr, and the row-edges that are not in a copy of R ∗Gc. We say these
row-edges are of type Q.

We wish to show that Aut (G) = A × A. It is easy to check that A × A ⊆ Aut (G).
We have to prove that the converse also holds. To this end, we count the common weak
neighbors of the ends of the edges that are contained in a row. These edges have the form
{(vr, vc), (wr, wc)}, where vc = wc. If vr and wr do not belong to the same Zykov
component in Gr, then these edges are of type Q. The number of common weak neighbors
of the endpoints of edges of type Q is

x = (t− 2)s+ 2dW , (2.6)
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where dW is the number of those weak neighbors of a vertex in Gr that belong to the same
Zykov component of Gr. (The notation dW is chosen, because all Zykov components are
isomorphic to W as defined in the beginning of the proof.) For row-edges that are not of
type Q the number of common weak neighbors of their endpoints is

y = (t− 1)s+NW (vr, wr) + (s− 2) ((t− 1)s+ dW ) , (2.7)

where NW (vr, wr) is the number of the common weak neighbors of the vertices vr and wr

in their Zykov component. Since x < (t− 1)s+ dW , it is obvious that x < y.
Moreover, the number of common weak neighbors of the ends of the slant edges of G

is
2(dW − ε) + (s− 2)NW (vc, wc) + (s− 2)(t− 1)s

for some ε ∈ {0, 1} if the endpoints of {vc, wc} ∈ E(Gc) belong to the same Zykov
component of Gc, and

2(dW − ε) + 2(s− 2)dW + (s− 2)(t− 2)s

for some ε ∈ {0, 1} if the endpoints of {vc, wc} ∈ E(Gc) belong to different Zykov
components of Gc. It is easy to see that under our assumptions both numbers are strictly
greater than x. Observe that the graph G has no edges that are contained in its columns.

This calculation implies that Aut (G) preserves the set of edges of type Q. Since these
edges form spanning subgraphs for all graphs induced by the rows ofG, every a ∈ Aut (G)
maps rows of G onto rows. Moreover, a maps any copy of a Zykov component of Gr that
is contained in a row in G onto a copy of a Zykov component of Gr that is contained in the
image of that row.

To complete the proof, we have to show that each column of G is mapped onto a
column. If we remove edges of typeQ we are left with t identical subgraphsRi ∗Gc where
i = 1, . . . , t. As any automorphim a of G maps rows into rows, it also maps subrows of
the form Ri × {vc} into subrows of the same form Rj × {a(vc)}.

Note that by assumptionR has s ≥ 4 vertices. Thus, everyRi∗Gc is weakly connected.
From this we infer that automorphisms of G map entire subgraphs Ri ∗ Gc onto entire
subgraphs Rj ∗Gc, as in G there are no slant edges between vertices belonging to different
Zykov components.

Call subrowsRi×{vc} andRj×{wc} ofG adjacent if there is an edge or directed edge
between some vertices of them, that is, when there is an edge or a directed edge between
vc and wc in Gc and i = j.

If Ri × {vc} and Ri × {wc} are adjacent, so are Rj × {a(vc)} and Rj × {a(wc)} and
the non-edges between vertices of the subrows are mapped to non-edges between vertices
of the images of the subrows. But the non-edges of adjacent subrows span subgraphs that
are isomorphic to copies of Gc and whose vertex sets are the columns. Therefore, columns
of G are mapped onto columns.

This also completes the proof of the main theorem.
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