
Informatica 24 (2000) 249-257 249

Linear Algebra in One-Dimensional Systolic Arrays

Gregor Papa and Jurij Šile
Computer Systems Department, "Jožef Štefan" Institute, Jamova 39, 1001 Ljubljana, Slovenia
email: gregor.papa@ijs.si, jurij.silc@ijs.si

Keywords: systolic array, QR, LU, decomposition, Gauss elimination, matrix multiplication

Edited by: Rudi Murn

Received: June 1, 1999 Revised: July 20, 1999 Accepted: April 5, 2000

Frequently used problems of linear algebra, such as the solution of linear systems, triangular decomposition
and matrix multiplication, are computationally extensive. To increase the speed, those problems should
be solved with systolic structures, where many processors are used concurrently to compute the result.
Since two-dimensional array of processors is very consumptive, considering space and resources, it is
better to use one-dimensional array of processors. This leads to the operation reallocation and causes
unequal utilization of processors, but it is much easier to implernent since there is only one linear array of
processors.

1 Introduction
Many scientific problems can be solved by linear algebraic
computations, but even some basic operations are compu-
tationally extensive. Computation time could be shortened
by synchronous data processing, which is enabled through
the systolic structure. Systolic solving is presented by the
processor structure, where data is fiowing through the net
of specialized processors, vvhich are locally connected and
work synchronically. This approach has some disadvan-
tages, while there is a lot of connections. It is difficult to
monitor aH processors and to read data from them. Be-
sides, they are poorly utilized, since they mostly wait for
their data to compute. It is possible to compose the struc
ture with higher utilization, time suitability and lower com-
plexity [3], which would remove the mentioned disadvan-
tages. To realize that, we can merge some processors, i.e.
one processor performs tasks of more processors, and we
can put them into one straight array, to reduce the num-
ber of connections and to make easier access to the pro
cessors. This work presents the linearization of different
matrix transformation algorithms, such as elimination, de-
compositions and multiplication, and also some compar-
isons of two-dimensional and linear arrays are given.

2 Linear system of equations

SystoIic arrays can be used to solve the system of linear
equations [2] in the form:

A- ; b .

Suitable triangular systolic array for realization of Gauss
elimination and various decompositions (QR and LU) [4,9]
is presented in Fig. L Shapes O ^"d Q represent two
types of processor (diagonal and inner), performing their

own instructions; diagonal operations are executed in di
agonal processors and inner operations are executed inside
the structure. Inputs of the structure are matrix coefficients
(aij) and at the end there are coefficients of the upper-
triangular matrix inside the structure and the coefficients of
the lower-triangular matrix on the outputs. Dotted square
represents a delay r. According to the matrix size n x n
the number of required processors n* is:

. n(n + l)

Where n diagonal processors and (n* — n) inner proces
sors are required.

Figure 1: Triangular systolic array (n=4)

Two-dimensional array in Fig. 1 can be transformed into
one-dimensional [II, 6] in several directions; horizontal
linear array (Fig. 2), vertical linear array (Fig. 4), diag
onal linear array (Fig. 6) and interweaved linear array (Fig.
8). Symbol O represents the processor that performs the

mailto:gregor.papa@ijs.si
mailto:jurij.silc@ijs.si

250 Informatica 24 (2000) 249-257 G. Papa et al.

tasks of processors O ''"d Q . Next, the operations of di
agonal and inner processors are presented. Ali mentioned
operations [1] are executed in one systolic cycle (step), but
of course, more cycles are needed to finish a transforma-
tion, i.e. those operation are repeated (operations present
only the set of processor's instructions).

Gauss elimination [5] and LU decomposition [7]:

Odi
1.

2.

1.
2.

y=

r =

Xo

r =

r

= Xi

Xi

-y r
O j :

In such structure there is a simi]arity of Gauss elimina
tion and LU decomposition (results of LU decomposition
are just transformed Gauss coefficients) [7].

QR decomposition [5]:

'\ixi=0, r=0 then
c=l,s=0

Od.- else t=^> r^+xf

Oj: (c.s) - . (CS)

C = rit,
s = Xilt, r= t

r=c-r+s-Xi

Input or output (c, s) of QR decomposition vvill be
treated as y in the follovving sections.

Because of the transformations the instruction sets of the
processors are changed as described in the follovving sec
tions.

2.1 Horizontal array

L i l

r̂ rt — » 1 ril

3, 6 and 8 into processor C; processors 4, 7, 9 and 10 into
processor D. So, processor A takes over the tasks of one
processor and performs operation o^, but processor D takes
over the tasks of four processors and performs operations
Od and Oj. They work in different modes:

- mode 1: operation Od with one input Sj,
- mode 2: operation Oi with two inputs ixi,y),
- mode 3: operation Oj with one input y and one input

from its output {Xo to Xi).

Each processor works in these modes:

- processor A always in mode 1,
- processor B in modes 2 and i,
- processor C in modes 2, 3 and 1,
- processor D in modes 2, 3, 3 and 1,
- additional processors would work in modes 2, 3, ... 3

and 1.

Occupation of processors is presented in Table 1.

Table 1: Processor occupation in horizontal array

O O O

10

Figure 2: Transformation into horizontal array

presented in Fig. 2, processor 1 is mapped into pro-
r A; processors 2 and 5 into processor B, processors

A s pi^^^^iu^u m l i g . z,, j.;iucc:>aui i la i i i appcu i i i iu [j iu-

cessor A; processors 2 and 5 into processor B, processors

1
2
3
4
5
6
7
8

17
18
19

A
1

1

B

2
1

2
1

C

2
3
1

2
3

1

D

2
3
3
1
2

3
3
1

Figure 3: Data inputs in horizontal array

Input valuesan, ai2, flis and ai4 are delayed foroner,
and values 021, 022, «23 and a2A are delayed for {n — l) r
according to values a n , 012, 013 and 014, where n is the
number of processors, as presented in Fig. 3.

2.2 Vertical array

As it can be seen in Fig. 4, processors i, 2, 3 and 4 are
mapped into processor A; processors 5, 6 and 7 into pro
cessor B; processors 8 and 9 into processor C; processor
10 into processor D. Processor A is the most loaded, vvhile
processor D takes over the tasks of only one processor.

LINEAR ALGEBRA IN 0NE-D1MENSI0NALSYST0LIC ARRAVS Informatica 24 (2000) 249-257 251

3 •

6

1 (B)_J

4

7

a
a

1

s
CH

© -
Figure 4: Transformation into vertical array

Processors A, B and C perform operations Od and Oi,
vvhile processor D performs only operations Od- They work
in different modes:

- mode 1: operation Od with one inputXi,
- mode 2: operation Oi with one input Xi and one input

from its output.(2/ to y).

Table 2: Processor occupation in vertical array

1
2
3
4
5
6
7
8

17
18
19

A
1
2
2
2
1
2
2
2

B

1
2
2

1
2

2

C

1
2

1
2

D

1

1

Each processor vvorks in these modes:
- processor A in mode 1, 2, 2 and 2,
- processor B in mode 1, 2 and 2,
- processor C in mode 1 and 2,
- processor D always in mode 1,
- additional processors \vould work in modes 1, 2, ...2

and 2.

Occupation of processors and their work modes are pre-
sented in Table 2. Values a n , ai2, ois and ai4 follow each
other Nvithout delay, values a2i, a-22, «23 and a2A are im-
mediate successors of values c n , ai2, aia and au, as pre-
sented in Fig. 5.

When transformed into horizontal or vertical array, the
processors' occupation and their instruction set are equal.
The only difference can be noticed in data inputs.

2.3 Diagonal array

Fig. 6 presents the diagonal contraction, where processors
1, 5, 8 and 10 are mapped into processor A; processors 2,
6 and 9 into processor B; processors 3 and 7 into processor
C; processor 4 into processor D. Even here the most loaded
is processor A and at least processor D, but ali processors

cC^•

Figure 5: Data inputs in vertical array

y \ \ \ X,
1 » 2 « 3 • 4

Figure 6: Transformation into diagonal array

execute only one type of operations (processor A performs
only diagonal operations, the others only inner operations).

Processor occupation and their operations are presented
in Table 3.

Table 3: Processor occupation in diagonal array

1
2
3
4
5
6
7
S

14
15
16

A
Od

Od

Od

Od

Od

Od

Od

Od

Od

Od

Od

13

Oi

O;

Oi

Oi

Oi

o i

Oi

Oi

C

Oi

Oi

Oi

Oi

Oi

D

Oi

Oi

Values ai i , ai2, flis and 014 are one r delayed and are
followed by values 021, 022, «23 and 024. Values asi, 032,
a33 and 034, are delayed 2(n — l)r , where n is the number
of processors, as presented in Fig. 7.

Contraction of the array in the direction of the other di
agonal is not reasonable, while there would be too many
delays and inputs/outputs on each processor.

file:///vould

252 Informatica 24 (2000) 249-257 G. Papa ct al.

Figure 7: Data inputs in diagonal array

2.4 Processor mirroring

To decrease the number of processors and to eniiance the
performance of transformations, mirroring can be used.
The processor can be mirrored into another processor, so
that its tasks are executed while another processor would
be idle otherwise. The exampie of processor mirroring in
horizontal linear array is presented in Table 4. Processor A
is mapped into processor B, and merged processor A+B ex-
ecutes tasks of both processors. Similarly other mirrorings
can be used.

Table 4: Processor mirroring a)original array, b)array with
mapped processor

a)
1
2
3
4
5
6
7
8

A
1

1

B

2
1

2
1

C

2
3
1

2
3

D

2
3
3
I
2

b)
1
2
3
4
5
5
7
8

A+B
1
2
1

1
2
I

C

2
3
1

2
3

D

2
3
3
1
2

2.5 Interweaved array

When there is an odd number of processors in the first line
of the triangular array, the intervveaved method can be used,
as presented in Fig. 8 [11], where the isomorphic embed-
ding of the graph is employed. Processors in Fig. 8a are
mapped into processor array in Fig. 8b: processors 1, 6,
10, 13 and 15 are mapped into processor A; processors 2,
5, 7, 11 and 14 into processor B; processors 3, 4, 8, 9 and
12 into processor C. Ali processors (A, B, C) are evenly
loaded, while each of them takes over the tasks of five pro
cessors.

The method is similar to processor mirroring, but it oc-
cupies processors almost completely and evenly. Instead

L X X 1

a)

2

1
C') -

3

T

00 \ •

B

S

0

©^{U iL

Figure 8: Transformation into intervveaved array

of n = 5 processors only n* = '^^' = 3 are needed,
which are fully utiiized. Processor A performs operations
Od, while B and C perform operations Oj. Processors occu-
pation and their operations are presented in Table 5.

Table 5: Occupation of interweaved array
A B C

1
2
3
4
5
6
7
8
9

10

27
28
29

Od

Od

Od

Od

Od

Od

Od

Od

Od

Od

Od

Od

Od

Values ai i , ai2, ais, an andais are delayed oner, val
ues a2i, 022, ^23. «24 and 025 are delayed (n* + l) r , ac-
cording to values a n , ai2, «13, 014 and O15, as presented
in Fig. 9.

3 Matrix multiplication
SystoIic arrays can be also used when performing matrix
multiplication [2] of the form

C = A B + Co.

LINEAR ALGEBRA IN ONE-DIMENSIONAL SVSTOLIC ARRAVS Informatica 24 (2000) 249-257 253

H
"21

H

1
C'^:

ki
n
^22

^15

1 1
1 i
^12
(i

T
tu B

Figure 9: Data inputs in intervveaved array

Square array of processors for multiplication of two
square matrices is presented in Fig. 9 [8]. Inputs of the
structure are coefficients (ajj in bij) of the matrices and at
the end of the process there are coefficients Cij inside the
structure. According to the matrix size n x n the number
of required processors n* is:

Figure 10: Square systolic array (n=4)

Ali processors in the square array in Fig. 10 perform the
same operations [8]:

2.r = Xo

1

9

1

\k

— •

— • •

— * •

h

e

!

10

14

•

•

•

•

-

11

15

»
1
4

Ha

»

»

12

16

Figure 11: Transformation into horizontal array

Occupation of the processors is presented in Table 6,
where numbers represent the processor of the adequate
(square) array that would be used in that moment.

Table 6: Processor occupation in horizontal array

1
2
3
4
5
6
7

17
18
19

A
1
5
9
13
1
5
9

B

2
6
10
14
2
6

14

C

3
7
11
15
3

11
15

D

4
8
12
16

8
12
16

Due to the processor merging the data inputs are changed
as presented in Fig. 12.

"23

"aa
b̂ ,

b„
K

6,3

"?4

K

1 1 1 1
°A3 °33 "13 °13 °4Z °32 °22 °12 °41°31 °21 *"l1

D O D O
3.1 Horizontal array

Horizontal array is obtained when ali processors of the
first column are merged into processor A, processors of
the second column into processor B, etc, as presented in
Fig. 11. Processors perform the same operations, as before
the transformation, beside that, there is an additional input
from one of its outputs.

Figure 12: Data inputs in horizontal array

3.2 Vertical array

Vertical array is made when we merge the processors of
the first rovv into processor A, processors of the second

254 Informatica 24 (2000) 249-257 G. Papa et al.

row into processor B, etc, as presented in Fig. 13. Proces- 3.3 Diagonal array
sors perform the same operations as when they vvere trans-
formed into horizontal array.

ca 1 2

5 —*

^
1
3

6

i,
—i i j - *

1 ̂

10

X ^
1 3 1 1

• 11

1 4 15

03
<- => a

Figure 13: Transformation into vertical array

Occupation of processors is presented in Table 7 and
changed data inputs are presented in Fig. 14.

Table 7: Processor occupation in vertical array

1
2
3
4
5
6
7

17
18
19

A
1
2
3
4
1
2
3

B

5
6
7
8
5
6

8

C

9
10
11
12
9

11
12

D

13
14
15
16

14
15
16

= " L J , - . L > I : ^,o:ija,a::r]—[D]3

Figure 14: Data inputs in vertical aiTay

Actually there is no significant difference between hor
izontal and vertical transformation, since aH piocessors in
tvvo-dimensional array perform the same operations. Thus,
it is insignificant what the contraction direction is, hovvever
we can choose which coefficients are delayed when enter-
ing the array.

Figure 15: Diagonal transformation (n=4, n*=4)

Due to the square array structure, diagonal transforma
tion is a bit more complicated. Accoiding to the meiging
process, there can be different linear soIutions, but only
some typical will be presented in this paper.

If there is an even number of processors (e.g., n=4) in a
tvvo-dimensional array, vve can choose betvveen two possi-
bilities.

In the first one, as presented in Fig. 15, the processor
array is transformed as follovvs: processors 9, 13 and 14
are merged into processor A, processors 1, 5, 10, 11 and
15 are merged into processor B, processors 2, 6, 7, 12 and
16 are merged into processor C and processors 3, 4 and 8
are merged into processor D. So there is even number of
processor (n*=4) in linear processor array.

Table 8 represents the occupation of the processors,
vvhile data inputs are set as presented in Fig. 16.

In the second čase, there is an odd number of proces
sors (e.g., n*=5) in the linear aiTay. According to Fig. 15,
processors are merged as follovvs: processors 9, 13 and 14
are merged into processor A, processors 5,10 and 15 are
merged into processor B, processors 1, 6, 11 and 16 are
merged into processor C, processors 2,7 and 12 are merged
into processor D and processors 3, 4 and 8 are merged into
processor E.

Processor occupation is shovvn in Table 9, vvhile Fig. 17
presents the data inputs.

But vvhen there is an odd number of processors (n=5) in
the tvvo-dimensional array, the linear array consists of odd
number of processors(n*=5) . The situation is presented in
Table 10.

Here processors 11, 16, 21, 22 and 23 are merged into
processor A, processors 6, 12,17,18 and 24 into processor

LINEAR ALGEBRA IN ONE-DIMENSIONAL SVSTOLIC ARRAVS Informatica 24 (2000) 249-257 255

Table 8: Processor occupation (n=4, n*=4) Table 9: Processor occupation (n=4, n*=5)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A

9
13
9

14
13
9
14
13
9

14
13
14

13
1
5
1
5
1
10
5
1
10
5

n
10
15
11
10
15
11
15
11
15

C

2
6
2
6
2
7
G
2
7
6
12
7
16
12
7
16
12
16
12
16

D

3
4
3

8
4
3
8
4
3

8
4
8

^44

L-

« 3 .

,"'
''a

r'

"•a
a-i

a.

»74

!

i \

^ 2 1

» l l

b..

b„

b 4 j

i j

b„

b j ;

,.̂ .1?

,^34

b„
b,.

1 -̂

b?3

b„
b,.

i i

^ /

1
2
3
4
5
6
7
S
9

10
11
12
13
14
15
16

A

9
13
9
14
13
9
14
13
9
14
13
14

13

5
5
10
5
10
5

15
10
15
10
15
15

C
1
1
6
1
6
1
11
6
11
6
16
11
16
11
16
16

D

2
2
7
2
7
2

12
7
12
7
12
12

E

3
4
3
8
4
3
8
4
3
8
4
S

?44

i«
?43

833

-«

B j j

841

a,,

1

^.2A

Ž j j

^ 2 2

3 2 !

i, k̂

5»

a , 3

3 , ,

\

b 4 .

bs.

b2,
b„

\N
1

r

b42

5?
b j 2

."«

:.^

^̂ /̂
C >

b43
,b34

b33

b24

'b,3

b„
b.,

\

' ^ \A
^
J

Figure 17: Data inputs (n=4, n*=5)

Figure 16: Data inputs (n=4, n*=4)

B, processors 1, 7, 13, 19 and 25 into processor C, proces
sors 2, 8, 9, 14 and 20 into processor D and processors 3,
4, 5, 10 and 15 into processor E.

Data inputs have to be set according to the nevv processor
utilization, as presented in Fig. 18.

4 Conclusions

According to the results, there are important differences
when transforming original triangular array in different di-
rections and with different mirrorings. The difference is
in execution tirne, processor utilization and complexity of
processor's operations. Table 11 represents characteristics
of n = 4 and n = 5 arrays. Different transformations
are considered (horizontal, vertical, diagonal, interweaved)
and different mirrorings (processor A mirrored into proces

sor B, processors A and B mirrored into processor C, ...).
Number of steps is the number of systolic cycles needed to
perform the algorithm. Number of processors is the num
ber of needed processors, and utilization is their use accor
ding to the number of steps (min and max utilization repre-
sent smallest and largest utilization of a single processor).

As it can be seen in Table 11 and Fig. 19, mirroring
improves the differences betvveen the smallest and largest
processor utilization in the array.

Table and figure show these conclusions:

- The number of steps, to execute the algorithm, in-
creases with the transformation, but the number of
processors decreases significantly, while their utiliza
tion is increased.

- When transforming triangular arrays with even num
ber of processors in the first row of the array, the best
transformation is diagonal one vvith mirroring. Diag
onal transformation is the best even if there is no mir
roring.

256 Informatica 24 (2000) 249-257 G. Papaet al.

Table 10: Processor occupation (n=:5, n*=5)

1
2
3
4
5
6
7
g
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

A

11
11
16
11
16
21
11
16
21
22
11
16
21
22
23
16
21
22
23
21
22
23
22
23
23

B

6
6
6
12
6
12
17
6
12
17
18

12
17
18

12
17
18
24
17
18
24
18
24
24
24

C
1
1
1
7
1
7
1
7
13
7
13

7
13
19

13
19
13
19
25
19
25
19
25
25
25

D

2
2
2
8
2
8
9
2
8
9
14

8
9
14

8
9
14
20
9
14
20
14
20
20
20

E

3
3
4
3
4
5
3
4
5
10
3
4
5
10
15
4
5
10
15
5
10
15
10
15
15

- When transforming triangular arrays with odd num
ber of processors in the first row of the array, the best
transformation is interweaved, while it offers largest
utilization and needs only a few processors.

- When transforming square arrays any transformation
is better than initial array. Since aH processors per-
form the same operations it is irrelevant in which di-
rection we contract the array, but horizontal or vertical
arrays are much simpler to implement than diagonal.

- Processor utilization can be even higher if there are
consecutive multiplication computations used one af-
ter another.

- In ali untransformed arrays the number of steps is de-
fined as 3n — 2 and the number of processors is 2il̂ —'-
in triangular and n^ in square arrays, where n x n is
thesizeof matrix.

- In transformed arrays the number of steps is defined
as n^ -I- n — 1 and the number of processors is n.

In some common problems there are very big matrices,
e.g., 250 X 250, which lead to the large number of pro
cessors required. Therefore in those cases it is appropriate
to use also some other techniques with even fewer number
of processors [5, 10].

References
[1] H.Barada, A.E1-Amawy, Systolic architecture for ma-

trix triangularisation with partial pivoting, IEEE Proč,
Vol. 135, Pt. E, No. 4, July 1988, pp. 208-213.

Figure 18: Data inputs (n=5, n*=5)

[2] RBlaznik, J.Tasič, D.J.Evans, Parallel Solving the Up-
dated Linear Systems of Equations, ESolina and B.Zaje
(ed.), Proceedings of the second Electrotechnical and
Computer Science ERK'93, Volume B, 1993, pp. 115-
118.

[3] J.Kanievvski, O.Maslennikow, R.Wyrzykowski, VLSI
implementation of linear algebraic operations based on
the orthogonal Fadeev algorithm, Parallel Computing:
State-of-the-Art and Perspectives, Elsevier, 1996, pp.
641-644.

[4] S,Y.Kung, VLSI Array Processors, Prentice Hali, En-
glewood Cliffs, New Jersey, 1988.

[5] J.G.Nash, S.Hansen, Modified Faddeeva Algorithm for
Concurrent Execution of Linear Algebraic Operations,
Proč. IEEE Transactions on Computers, Vol. 37, No. 2,
February 1988, pp. 129-136.

[6] J.G.Nash, C.Petrozolin, VLSI Implementation of a
Linear Systolic Array, Proč. 1985 Int. Conf. Acoust.,
Speech, Signal Processing, T<impa,FL, pp. 1392-1395.

[7] N.Petkov, Systolic Parallel Processing, North-HoUand,
Amsterdam, 1993.

[8] P.Quinton, V.Robert, Systolic Algorithms & Architec-
tures, Prentice-Hall, UK, 1989.

[9] R.Wyrzykowski, Processor arrays for matrix triangu
larisation with partial pivoting, IEEE Proc.-E, Vol. 139,
No. 2, March 1992, pp. 165-169.

LINEAR ALGEBRA IN ONE-DIMENSIONAL SVSTOLIC ARRAVS Informatica 24 (2000) 249-257 257

n=4
triangular
- horizontal
A into B

Table 11:

A into D, B into C
- vertical
D into C
Dinto A, CintoB
- diagonal
D into A, C into B
square
- horizontal
- vertical
- diagonal (n*
- diagonal (n*
n=5
triangular
- horizontal
A into B

=4)
=5)

A and B into C
- vertical
E into D
E and D into C
- diagonal
D into C. E into B
- interweaved
square
- horizontal
- vertical
- diagonal (n* =5)

Array efficiency
tiumber of

sleps

10
19
19
27
19
19
27
16
24
10
19
19
21
16

13
29
29
34
29
29
34
29
41
29
13
29
29
29

procs.

10
4
3
2
4
3
2
4
2
16
4
4
4
5

15
5
4
3
5
4
3
5
3
3

25
5
5
5

processor
overall

40.0
52.6
70.2
74.1
52.6
70.2
74.1
62.5
83.3
40.0
84.2
84.2
76.2
80.0

38.5
51.7
64.7
73.5
51.7
64.7
73.5
51.7
60.9
86.2
38.5
86.2
86.2
86.2

utilizatioii (%)
singlc

mm

40.0
21.1
63.2
74.1
21.1
63.2
74.1
25.0
83.3
40.0
84.2
84.2
57.1
75.0

38.5
17.2
51.7
58.8
17.2
51.7
58.8
17.2
60.9
86.2
38.5
86.2
86.2
86.2

max

40.0
84.2
84.2
74.1
84.2
84.2
74.1
100.0
83.3
40.0
84.2
84.2
95.2
100.0

38.5
86.2
86.2
88.2
86.2
86.2
88.2
86.2
60.9
86.2
38.5
86.2
86.2
86.2

[10] R.Wyrzykowski, V.Kanevski, S.Ovramenko, Depen-
dence graph transformations in the design of processor
arrays for matrix multiplications, Microproces. & Mi-
croprograiiL, Vol. 135, 1992, pp. 534-539.

[11] R.Wyrzykowski, J.S.Kanevski, H.Piech, One-
dimensiona! processor arrays for linear algebraic
problems. Proč. Coinput. Digit. Tech., Vol. 142, No. 1,
January 1995, pp. 1-4.

Figure 19: Arrays efficiency

