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Analytical investigation of properties 
of the iso-NTCP envelope

Pavel Stavrev2, Colleen Schinkel1,2, Nadia Stavreva2, Krassimir Markov2, 
B. Gino Fallone1-3

1Department of Physics, University of Alberta, Edmonton, Alberta, Canada; 2Department of 
Medical Physics, Cross Cancer Institute, 11560 University Ave, Edmonton, Alberta, T6G 1Z2, 

Canada; 3Department of Oncology, University of Alberta, Edmonton, Alberta, Canada

Background. A property of the integral dose-volume histogram (DVH) space is analytically investigated in 
this work. A curve called an α-iso-NTCP (normal tissue complication probability) envelope is constructed 
by connecting points belonging to step-like integral DVHs, each corresponding to homogeneous partial organ 
irradiation of a relative volume vk to dose Dk such that the resulting NTCP has, in all cases, a particular 
value α. The two subspaces into which the envelope divides the DVH space are analytically explored in 
terms of the equivalent uniform doses (EUDs) corresponding to the different DVHs. It is theoretically 
proven that any DVH, other than the step-like DVH, passing through a point (Dk, vk) from the α-iso-NTCP 
envelope, will result in an NTCP > α. 
Conclusions. Thus, it is proven that any DVH that at least partially lies above the envelope results in an 
NTCP > α. For some of the DVHs lying under the envelope, e.g. those that are tangential to the envelope, 
it is also true that the resulting NTCP > α. However, it was numerically demonstrated elsewhere that there 
exist DVHs lying entirely in the lower subspace that result in an NTCP < α. Therefore, one can conclude 
that since there is a chance that a DVH lying under the α-iso-NTCP envelope will result in NTCP < α, it 
would be preferable in the treatment optimization process to seek solutions for DVHs lying entirely under 
an iso-NTCP envelope and avoid solutions that have DVHs above an iso-NTCP envelope.
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normal tissue complication probability 

(NTCP) can be used as a source of dose-

volume constraints for inverse planning.1,2 

Constraint points were estimated for a 

number of organs using two NTCP models 

– the Lyman model3 with the parameters 

of Burman et al.4 and the critical volume 

population model5 with the parameters of 

Stavrev et al.6 We also reported an observed 

property of the integral dose-volume histo-

gram (DVH) space.1,2 In those reports we 

constructed a curve, which we called an 

Introduction

Recently we proposed that the DVH av-

eraged from those resulting in a certain 



α-iso-NTCP envelope, by connecting points 

belonging to step-like integral DVHs. Each 

of these DVHs corresponded to homogene-

ous partial organ irradiation of a relative 

volume vk to dose Dk such that, for each 

DVH, the resulting NTCP had a particular 

value α. 

We numerically demonstrated that any 

DVH passing through a point (Dk, vk) from 

the α-iso-NTCP envelope, i.e., any DVH 

that tangents or crosses the envelope, will 

result in an α≥NTCP . It should be em-

phasized that the equality is valid only for 

the step-like DVH that corresponds to the 

homogeneous partial organ irradiation of vk 

to Dk. In our present report, we prove, ana-

lytically, this property of the α-iso-NTCP 

envelope for the three most commonly used 

NTCP models – the Lyman model, the indi-

vidual critical volume model and the popu-

lation critical volume model.

Proof for the Lyman model

For our purposes, a normalized integral 

DVH is defined as a monotonically decreas-

ing function characterized by the set of 

points Di, vi: i = 1, …, N such that 11 =v , 
01 =+Nv , ii vv <+1 ,  1+< ii DD . .

We begin this proof for the Lyman3 

NTCP model:
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where m and D50 are model parameters, and EUD is the equivalent uniform dose, which will 

be defined later. It is clear from Eq. [1] that NTCP is a monotonically increasing function 

of EUD. Thus, for two arbitrary EUDs, if EUD1 > EUD2, then it follows that NTCP(EUD1) > 

NTCP(EUD2).

Consider an arbitrary integral DVH, with points (Di, vi : i = 1,…,N), that passes through the 

point (Dk, vk) on the α-iso-NTCP envelope (see Figure 1). The EUD of this arbitrary DVH 

will be referred to as EUD. Now consider a step-like DVH that also passes through the same 

point. This step-like DVH has an NTCP of α. If we call the EUD of this DVH EUDα, then we 

may write that NTCP(EUDα) =  α. According to our observation,2 the NTCP of the arbitrary 

DVH that passes through a point on the α-iso-NTCP envelope will be greater than α: 

[2a] ( ) ( ) αα => EUDNTCPEUDNTCP .  

Because of the monotonic nature of NTCP as a function of EUD, this statement is true, if 

and only if, 

[2b] αEUDEUD >  . 

Therefore, if we can show that αEUDEUD > , then Eq. [2a] is also true. 

To calculate EUD, the integral DVHs must be converted into differential DVHs. In the case 

of homogeneous partial organ irradiation of volume vk to a dose Dk, the integral and the dif-

ferential DVHs are determined solely by the pair (vk, Dk). For any other type of irradiation, 

the corresponding differential DVH is given by the following set of points: (vi – vi+1, Di).

One of the commonly accepted forms of EUD is the one given by the generalized mean dose 

(GMD):7-9
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where n is a volume parameter. For the case of partial organ irradiation of the volume vk to 

dose Dk, Eq. [3] simplifies to:
q p
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For the arbitrary DVH passing through point (Dk, vk), the EUD may be written as:
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To prove Eq. [2b], we have to prove, from Eqs. [4] and [5], that the following inequality is 

valid: 
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Taking each side of Eq. [6] to the power of 1/n, we obtain:
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which can then be written as:
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We now proceed by proving that Eq. [8] is true.

First, consider the term 
n

kk Dv 1

1+  in Eq. [8]. It may be re-written as:
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where, by definition, 01 =+Nv . 

We can expand the second sum in Eq. [8]:
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According to our definition of the integral DVH, 1+< ii DD  for all Ni ...1= . Therefore, each 

term of the sum in Eq. [9] is less than the corresponding term in Eq. [10], and we can write:
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Because of our definition of an integral DVH, 1+> ii vv   for all Ni ...1= , the first sum in 

Eq. [8] is greater than zero:
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From Eqs. [11] and [12], the following is true: 
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which is identical to Eq. [8]. Thus, we have proven Eq. [8], which is equivalent to Eq. [6], and 

thus, Eq. [2b]. Therefore, Eq. [2a] is also true, and we have thus mathematically proven the 

property of the envelope for the Lyman model.

Proof for the critical volume model

The basic property of the α-iso-NTCP envelope will also be proven for the critical volume 

(CV) NTCP model. The CV model exists in two forms – individual and population models. 

The individual CV model is given by:

[14] 
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where N is the total number of functional subunits (FSUs) comprising the organ, dμ   is the 

mean relative damaged volume, dμσ  is the variance in dμ , and crμ  is the relative critical 

volume of the organ.5,10,11

The population CV model, under the assumption that only the relative critical volume dis-

plays inter-patient variability, is given by:
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where crμ  is the population mean relative critical volume and 
crμσ  is the variance in crμ .5

As can be seen in Eqs. [14] and [15], both the individual and the population CV models are 

monotonically increasing functions of the mean relative damaged volume dμ . This quantity 

is given by the following sum:

[16] ( ) ( )∑ +−=
i

iFSUiid DPvv 1μ , 

where ( )iFSU DP   is the probability that a functional subunit is damaged beyond repair. It, 

in turn, is given by:g y

[17] ( ) ( )[ ]icciFSU DNDP α−−= expexp , 
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where Nc is the number of cells in an FSU and αc is the cell radiosensitivity. The quan-

tity ( )Dcα−exp   is the probability that a cell survives an irradiation to dose D. Since  
αc is a positive quantity, then ( )Dcα−exp   is a decreasing function of dose. The term 

( )DN cc α−exp  
 
is the mean number of cells that survive dose D and also decreases as 

D increases. Equation [17] is the probability that a functional subunit is damaged beyond 

repair, which is equivalent to the probability that all cells in the subunit are destroyed. Therefore, 

( )Dc
ceN α−−exp ,  which is the probability of zero cell survivals, increases with decreasing 

mean number of cell survivals, ( )DN cc α−exp ,  or increasing dose D.

We now compare the mean relative damaged volume caused by an arbitrary DVH that 

is tangential to or is crossing the α-iso-NTCP envelope at point (Dk, vk) with the mean rela-

tive damaged volume caused by a step-like DVH given by (Dk, vk). From Eq. [16], the mean 

relative damaged volume for the arbitrary DVH passing through the point (Dk, vk) on the 

α-iso-NTCP envelope is:
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The mean relative damaged volume caused by partial organ homogeneous irradiation of 

relative volume vk to dose Dk will be denoted as αμ ,d  and is given by:

[19] ( )kFSUkd DPv=αμ , . 

We now compare ( ) ( )∑
=

+−=
N

i
iFSUiid DPvv

1

1μ   (Eq. [18]), containing point (Dk, vk), with 

( )kFSUkd DPv=αμ ,  
 
(Eq. [19]). Since ( )DPFSU   is an increasing function of dose, Eqs. [18] 

and [19] are similar to the EUD form of Eq. [3] from the Lyman model. By applying the same 

process as to the proof of Eq. [6] it can be shown that the following inequality is valid:

[20] ( ) ( ) ( )kFSUkd

N

i
iFSUiid DPvDPvv =>−=∑

=
+ αμμ ,

1

1 . 

Given that NTCP is an increasing function of the mean relative damaged volume, it follows 

that ( ) ( ) αμμ α => ,dd NTCPNTCP  
 
for DVHs having a common point with the α-iso-

NTCP envelope.
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Discussion and conclusions

Because we have proven that the discussed 

property of the α-iso-NTCP envelope ap-

plies to three of the most commonly used 

NTCP models – the Lyman model, the 

critical volume individual model, and the 

critical volume population model – there is 

reason to believe that this property may be 

model-independent.

The α-iso-NTCP envelope divides the 

dose-volume space in two sub-spaces. For 

the sub-space above the envelope, we have 

analytically proven that all DVH curves 

with at least one point in this region result 

in an NTCP > α. For the sub-space under 

the α-iso-NTCP envelope, it was numeri-

cally demonstrated elsewhere2 that there 

exist DVH curves that result in an NTCP < 

α. However, as it is shown above, there do 

exist other curves, e.g., those that are tan-

gential to the envelope from below, which 

result in an NTCP > α. Nevertheless, since 

there is a chance that a DVH lying under 

the α-iso-NTCP envelope will result in an 

NTCP less than α, one can conclude that it 

would be preferable in the treatment opti-

mization process to seek solutions for DVHs 

lying entirely under an iso-NTCP envelope 

and avoid those that lie even partially above 

the envelope.

The physical dose-volume constraint 

points that we calculated in a previous 

work2 were found to be dependent on the 

NTCP model as well as the parameters used 

for their determination. The iso-NTCP en-

velope could be used to estimate the impact 

of a change of NTCP model and/or param-

eters on the calculated constraint points 

for a given organ, since the envelope curve 

is dependent on both of these quantities. 

Dawson et al.12 observed that the iso-NTCP 

curve corresponding to their liver parame-

ters for the Lyman3 model was shifted con-

siderably to the right in DVH space com-

pared to the iso-NTCP curve corresponding 

to the Burman et al.4 parameters for the 

same organ. To estimate how the source 

of dose-volume constraints (the average of 

DVHs with a certain NTCP) would change 

Figure 1. Illustration of an α-iso-NTCP envelope and two arbitrary DVH curves 

– one that crosses the envelope at the point (Dk, vk) and one that is tangential to the 

envelope at the same point. Also shown is a step-like DVH passing through (Dk, vk) 

that corresponds to homogeneous partial organ irradiation. The NTCP of the step-like 

DVH should be equal to α, while the NTCP for both arbitrary DVHs should be greater 

than α.
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with a change of NTCP parameter values, 

one could calculate the iso-NTCP envelope 

corresponding to these new parameters. 

The distance in DVH space between the old 

and new iso-NTCP curves is approximately 

the same as the distance between the old 

and new averaged DVHs. The position of 

the new dose-volume constraints could 

then be estimated by shifting them in DVH 

space by an amount equal to the distance 

between the two iso-NTCP curves. In this 

way, one can avoid having to perform an 

extensive recalculation of the dose-volume 

constraints.
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