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Abstract. We investigate bosonization/fermionization for free massless fermions being
equivalent to free massless bosons with the purpose of checking and correcting the old
rule by Aratyn and one of us (H.B.F.N.) for the number of boson species relative to the
number of fermion species which is required to have bosonization possible. An important
application of such a counting of degrees of freedom relation would be to invoke restric-
tions on the number of families that could be possible under the assumption, that all the
fermions in nature are the result of fermionizing a system of boson species. Since a theory
of fundamental fermions can be accused for not being properly local because of having
anticommutativity at space like distances rather than commutation as is more physically
reasonable to require, it is in fact called for to have all fermions arising from fermionization
of bosons. To make a realistic scenario with the fermions all coming from fermionizing
some bosons we should still have at least some not fermionized bosons and we are driven
towards that being a gravitational field, that is not fermionized. Essentially we reach the
spin-charge-families theory by one of us (N.S.M.B.) with the detail that the number of
fermion components and therefore of families get determined from what possibilities for
fermionization will finally turn out to exist. The spin-charge-family theory has long be
plagued by predicting 4 families rather than the phenomenologically more favoured 3.
Unfortunately we do not yet understand well enough the unphysical negative norm square
components in the system of bosons that can fermionize in higher dimensions because we
have no working high dimensional case of fermionization. But suspecting they involve
gauge fields with complicated unphysical state systems the corrections from such states
could putatively improve the family number prediction.

Povzetek. Avtorja diskutirata bozonizacijo/fermionizacijo za proste brezmasne fermione,
ki jih obravnavata kot ekvivalentne prostim brezmasnim bozonom. Namen je preveriti
in popraviti staro pravilo Aratyna in H.B.F.N. za število vrst bozonov glede na število
vrst fermionov kot pogoj za obstoj fermionizacije bozonov. Pomembna uporaba takega
pravila bi bil pogoj na število možnih družin, če privzamemo, da so vsi fermioni v naravi
rezultat fermionizacije vrst bozonov. Teoriji fermionov kot fundamentalnih delcev lahko
očitamo, da nima pravilne lokalnosti, ker zahtevamo za fermione antikomutativnost, ne
pa komutativnosti. Temu očitku bi se lahko izognili, če vsi fermioni izhajajo iz fermion-
izacije bozonov. Za realističen opis v modelu, v katerem fermione dobimo s fermionizacijo
bozonov, mora vsaj nekaj bozonov ostati nefermioniziranih. Avtorja predlagata, da so ti
nefermionizirani bozoni gravitacijska polja. Želita na ta način reproducirati teorijo Spina-
nabojev-družin enega od avtorjev (S.N.M.B.), kjer bi število fermionskih komponent in
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število družin določale možnosti za fermionizacijo. Teorija spina-nabojev-družin napove
4 družine, namesto doslej opaženih 3. Avtorja še ne razumeta dovolj dobro nefizikalnih
komponent z negativnim kvadratom norm v sistemu bozonov, ki se fermionizira v višjih di-
menzijah, ker jima fermionizacije v višjih dimenzijah še ni uspelo zares izpeljati. Domnevata,
da bodo spoznanja o vlogi nefizikalnih stanj pomagala pri napovedi števila družin.

Keywords: Fermionization, Bosonization, Number of families

14.1 Introduction

One of the general requirements for quantum field theories is microcausality [1,2],
the requirement of causality, which in its form as suggested from tensor product
deduction says, that for two relative to each other spacelikely placed events x1
and x2 in Minkowski space-time a couple of quantum field operators O1 and O2
taken at these events will commute

{O1(x1),O2(x2)}− = 0 for spacelike x1 − x2. (14.1)

This is so for the O1 and O2 being boson fields, but if they are both fermion
fields, one would have instead to let them anticommute

{O1(x1),O2(x2)}+ = 0 for spacelike x1 − x2. (14.2)

Such anticommutation is, however, from the tensor product way of arguing for
the relation completely wrong. We could therefore claim that it is not truly allowed
to have fermions in the usual way, because it leads to a “crazy” locality axiom. It is
one of the purposes of the present proceedings article to suggest to investigate the
consequences of such an attitude, that fermions as fundamental particles are not
good, but that one should rather seek to obtain fermions, not as fundamental, but
rather only by fermionization of some boson fields instead. But then it becomes
very important what combinations - what systems - of fermions can be obtained
from appropriate bosonic models. For the existence of quite nontrivial restrictions
on the number of fermions, we can expect to be obtainable by fermionization
from a system bosons, the theorem [3] by Aratyn and one of us (H.B.F.N.) is
quite suggestive. In fact this theorem tells, that the ratio between the number
of fermion spin components for all the species (families) counted together and
the corresponding number of boson spin components counted together must be
2
dspatial

2
dspatial−1

. A priori this theorem seems to enforce that in say the experimental
number of dimensions, dspatial = 3 and 1 time, the collective number of fermions
components must be divisible by 23 = 8. If we count the components as real fields
a Weyl fermion has 2*2 = 4 such real components, and thus the number of Weyl
fermions must be divisible by 8/4 =2.

Let us immediately include the remark, that although we shall below mainly
go for the presumably simplest case of non-interacting massless bosons - presum-
ably Kalb-Ramond fields - being fermionized into also free massless fermions, that
does NOT mean that we seriously suggest Nature to have no interactions. Rather
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the hope is that gravitational degrees of freedom couple in a way specified alone
by the flow of energy and momentum, so that we can hope that having a free
theory it should be very easy and almost unique how to add a gravitational inter-
action. Let us say, that by the spin-charge-family theory by one of us, the interacting
fields are the gravitational ones (vielbeins and spin connections) [5–7] only, but in
d > (1+ 3), fermions manifesting in (1+ 3) as spins and all the observed charges,
as well as families, gravity manifesting all the observed gauge fields as well as the
scalar fields, explaining higgs and the Yukawa couplings.

In analogy to, how one sometimes says that the electromagnetic interaction
is added to a system of particles or fields with a global charge is “minimally
coupled”, if one essentially just replace the derivatives by the corresponding
covariant ones, we shall imagine that our free theory, which has energy and
momentum as global charges could be made to contain gravity by some sort
of “minimal coupling”. To introduce other extra interactions than just gravity is,
however, expected to be much more complicated: Especially higher order Kalb-
Ramond fields couple naturally to strings and branes, which in any case would
tend to have disappeared in the present status of the universe. So effectively
to day the Kalb-Ramond fields [13] should be free except for their “minimal
coupling to gravity”. This would mean that allowing such a “later” rather trivial
inclusion of gravity, which should be relatively easy, would make our at first free
model be precisely the since long beloved model of one of us, the-spin-charge-
family theory [5–7]. Fundamentally we have thus in our picture some series of
Kalb-Ramond fields together with gravity coupling to them in the minimal way.
Then we fermionize only this series of Kalb-Ramond fields, but keep bosonic the
gravitational field, which probably cannot be fermionized even, if we wanted to.
The resulting theory thus becomes precisely of similar type as the one by one of
us, the spin-charge-family theory.

Now, however, the Kalb-Ramond fields are plagued by a lot of gauge sym-
metry and “unphysical” degrees of freedom, some of which even show up with
even negative norm squared inner products. In principle these unphysical degrees
of freedom must also somehow be treated in the fermionization procedure. Es-
pecially, if we want to use our theorem of counting degrees of freedom under
bosonization [3], we should have such a theorem allowed to be used also when
the “unphysical” d.o.f. are present.

In fact it is the main new point in the present article, that we put forward a
slightly more complicated Aratyn-Nielsen-theorem - an extended Aratyn-Nielsen
theorem -, allowing for theories with negative norm squared normalizations.

It is the true motivation of the present work, that once when we shall find some
genuinely working case(s) of theories that bosonize/fermionize into each other in
high dimensions, they will almost certainly turn out to involve gauge theories on
the bosonic side. That is to say it will be combinations of various Kalb-Ramond
fields [13] (among which we can formally count also electromagnetic fields and
even a scalar field), and such Kalb-Ramond fields often have lots of negative norm
square components. Thus once we know what is the boson theory that can be
fermionized we need an extended Aratyn-Nielsen theorem to calculate the correct
number of fermion components matching the fermionization correspondance.
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Well really, if we know it well, we can just read off how many fermion components
there are. It is namely this number of fermion components, that translates into the
number of families, on which they are to be distributed. It means that knowing
the detailed form of the boson system and the rule - the extended Aratyn-Nielsen
theorem - for translating the number of boson components into the number of
fermion components is crucial for obtaining the correct number of families. Will
so to speak the number of fermion-families remain 4 as claimed by one of us in
her model, which has reminiscent of being a fermionization, or will it be corrected
somehow from the true bosonization requirement including the negative norm
square components for the bosons? The reliability of the model would of course -
according to the judgement of one of us (H.B.F.N.) - be much bigger, if it turned
out that the true prediction were 3 families rather than the 4 as usually claimed,
except, of course, if the fourth family, predicted by the spin-charge-family theory,
will be measured.

With the old Aratyn-Nielsen theorem (the unextended version) it does crudely
not look promising to get the number 3 rather than 4 as H.B.F.N would hope
phenomenologically in as far this version implies that the number of fermion
components is divisible by a rather high power of the number 2. Such a number-
theoretic property of the number of families seems a priori to favor 4 much over
3.

The works of major importance for the present talk are:

• Aratyn & Nielsen We made a theorem [3] about the ratio of the number of
bosons needed to represent a number of fermions based on statistical mechan-
ics in the free case, under the provision that a bosonization exists.

• Kovner & Kurzepa They[8,9] present an explicit bosonization of two complex
fermion fields in 2+1 dimensions being equivalent to QED3 meaning 2+1
dimensional quantum electrodynamics.

• Mankoč-Borštnik [5–7] The spin-charge-family unification theory explains the
number of families from the number of fermion components appeared in this
theory.

In the next section 14.2 we put forward the main hope or point of view of our
application of bosonization to make prediction of the number of families. In section
14.3 we give a loose argument for what we think should our picture for nature to
cope with the investigations in the present article. Then we shall in section 14.4
and 14.5 review both Kalb Ramond fields and and our old Aratyn-Nielsen theorem
about the number fermion components needed to make an equivalent theory with
a number of boson components. In section 14.6 we look at the problem, that the
components of a Kalb-Ramond field with an index being 0 are on the one hand
to be a conjugate momentum to the other components and on the the other hand,
if we use Lorentz invariance, have to lead to states with negative norm square.
The latter is of course simply a reflection of the signature of the Minkowski metric
tensor. It is for the application on such negative norm square components - the
components with an index 0 - that our extension of our Aratyn-Nielsen theorem
to negative norm square components become relevant.

In section 14.8 we review the work by Kovner and Kurzepa[8], who proposed
a concrete bosonization including explicit expressions for the fermion fields in
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terms of the boson fields - actually simply electrodynamics - in the case of 2 space
dimensions and one time, 1+ 2. Next in 14.9 we seek to check our Aratyn-Nielsen
theorem on this special case of 1+2 both by counting the particle species including
spin states 14.10 and by counting the fields 14.11.

Towards the end, section 14.12, we seek to reduce away some of the degrees
of freedom from the Kovner and Kurzepa model to obtain a reduced case with
fewer particles on which we - if it is also a case of bosonization - would be again
able to check our counting theorem (Aratyn-Nielsen).

14.2 Hope

Use of Bosonization/Fermionization Justifying Number of Families
The governing philosophy and motivation for the present study is:

• Fermions do NOT exist fundamentally (because they do not have proper
causal/local property) .

• Some boson degrees of freedom are rewritten by bosonization (better fermion-
ization) to fermionic ones, which then make up the fermions in the world,
we see. (but some other boson degrees of freedom, hopefully gravity, are not
bosonized).

• We work here only with an at first free theory - for our presentation, it might
be best if only bosonization worked for FREE theories in higher dimensions -
i.e. free bosons can be rewritten as free fermions.

• We though suggest - hope- that exterior to both bosons and/or fermions, we
can add a GRAVITATIONAL theory. So fundamentally: gravity with matter
bosons. It gets rewritten to fermions in a gravitational field, just similar to the
theory [5–7] of one of us called spin-charge-family unification theory.

Let us be more specific about the dream or hope behind the present project:
By using say ideas from the below discussed paper by Kovner and Kurzepa [8]

or by our own earlier article in last years Bled Proceedings about bosonization,
we hope to find at least a case of fermionizing some series of Kalb-Ramond fields
(i.e. Boson fields) - and electrodynamics is of course considered here a special
Kalb-Ramond one - into some system of fermions. Presumably it is easiest - and
perhaps only possible - for free theories or only theories interacting in a very
special way. We therefore are most eagerly going for such a free and even massless
case.

But now if indeed we can find such a case, or if exists, then it is very likely
that we can extend it to interact with gravity in a minimal way. In fact we all the
time require our hoped for fermionization cases to have the same energy and
momentum for the bosonic and the fermionic theories that shall be equivalent.
Thus the fermionization procedure, if it exist at all, is compatible with energy and
momentum.

If we therefore let our boson-theory interact with gravity, that couples to the
energy and momentum - specifically to the energy momentum tensor Tµν(x) -
we have some hope that this coupling of the boson fields to gravity will simply
transfer to a coupling of the fermionized theory, too.
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As procedure we might have in mind writing the free massless fermionization
procedure in arbitrary coordinates. That should of course be possible, but although
the theory would now look as a gravitational theory, it would only have been
derived for the case of the gravitational fields having zero curvature, i.e. for the
Riemann tensor being zero all over. However, if the fermionization procedure
could be described by a local expression for the Kalb-Ramond fields - or other
boson fields - expressed in terms of fermion currents or the like, then the corre-
spondence would in that formulation be local and lead to the energy momentum
tensor being also related in such simple local way. I.e. we would have in this
speculation

Tµν(x)|boson = Tµν(x)|fermion. (14.3)

Here of course the two energy momentum tensors are the ones in respectively the
fermion and the boson theory being equivalent by the dream for fermionization.

It is further our hope for further calculation that we may argue that in general
it is very difficult to have interaction with Kalb-Ramond fields except for

• The appropriate branes,
• Some general gauge-theory coupling to the charges (think of global ones)

conserved by the Kalb-Ramond- theory in question. But since the always
conserved global charges are the energy and momentum this suggests the
coupling to gravitational field.

We thus want to say that this starting form fundamental Klab-Ramond fields
supposedly difficult to make interact points towards a theory at the end with
gravity as the only interaction. Gravity namely is suggested to be hard to exclude
as possibility even for otherwise difficult to make interact Kalb-Ramond fields.

If we manage to fermionize the Kalb-Ramond fields as just suggested, we
therefore tend to end up with the spin-charge-family unification model of one of
us in the sense that we get ONLY gravity interaction, and otherwise a free theory.

But it shall of course be understood here that we only fermionize some of
the boson fields in as far as we leave the assumed fundamental gravity field non
fermionized.

14.3 Guiding and Motivation

The reader might ask why we choose - and suppose Nature to choose - these
Kalb-Ramond-type fields which are to be explained a bit more below in section
(14.5). Let us therefore put forward a few wish-thinking arguments for our bosonic
fundamental model:

• We have no way to make fermionization/bosonization conserving angular-
momentum truly (at the same time keeping the spin statistics theorem): The
bosons namely necessarily can only produce Fock space states with integer
angular momentum, but the fermion sates should for an odd number of
fermions in the the Fock state have half integer angular momentum. So clearly
fermionization/bosonization conserving angular momentum is impossible!
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• The trick to overcome this angular-momentum-problem is to reinterprete a spin
1/2 index on the fermions as a family index instead. That is to say we accept at first
that the fermions come out of the fermionization with bosonic integer spin
index combination, and then seek to reinterprete part of the spin polarisation
information as instead being a family information.

• In fact we shall be inspired by the spin-charge-family unification model to go
for that the fermions come out from the fermionization at first with two spinor
indices, so that they have indeed formally at this tage integer spin. Then we
make the interpretation that one of these spinor indices is indeed a family index.
That of course means, that we let one of the two indices be taken as a scalar
index i.e. being not transformed under Lorentz transformations.

• So we decide to go for a system of fermions at the “first interpretation” being
a two-spinor-indexed field. But now such a field Bαβ, where α and β are the
spinor indices, is indeed a Clifford algebra element, or we could say a Dirac
matrix (or a Weyl matrix only if we use only the Weyl components). In any
case we can expand it on antisymmetrized products of gamma-matrices:

Bαβ =
(
a1 + aµγ

µ + · · ·+ aµν...ργµγν · · ·γρ + . . .

+ a0,1,...,(d−1)γ
0γ1 · · ·γ(d−1)

)
αβ
, (14.4)

and thus the boson fields suggested to by fermionization leading to such
fermion fields should be a series of antisymmetric tensor fields of all the
different orders from the scalar a and the d-vector aµ all the way up to the
maximal antisymmetric order tensor a0,1,...,(d−1).

• With random coefficients on a Lagrange-density expansion for a theory with
boson fields, which have d-vectorial indices one unavoidably loose the bottom
in the Hamiltonian as one can see from e.g. just a term like

c ∗ (∂µ · · ·∂νaρ...τ)2 . (14.5)

Think for instance on the terms for which the series of the derivative indices
are spatial so that we have to do with a potential energy term. If the coefficient
c is adjusted to let the contribution with the indices on aρ...τ being spatial
to the Hamiltonian be positive, then the contributions with a 0 among these
indices will from Lorentz invariance have to be of the wrong sign. So it is at
best exceedingly hard to organize a positive definite Hamiltonian density.
Consider only the free part - meaning bilinear part in the field aρ...τ - in
the Lagrangian. For simplicity let us consider the situation of a field aρ...τ
being constant as function of the time coordinate x0, and that the number of
derivatives acting on the field is so low that some of the indices- say ρ - on the
aρ...τ has to be contracted with another one or the same index on this field
in order to cope with Lorentz invariance. Then if this (sum of) squares of the
field in some combination shall get a for the hamiltonian positive contribution
from a spatial value of the index ρ, it will get the opposite sign for ρ = 0. So it
looks that we cannot avoid the Hamiltonian having both signs for a “free term”
in the Lagrangian, unless all the indices on aρ...τ are in the term contracted
with derivatives. But with the antisymmetry this would be zero for more than
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one index on aρ...τ. So indeed it seems that unless one gets the fields restricted
in some way, so that these fields or their conjugate variables are somehow
not allowed to take independent values, then the Hamiltonian will loose its
bottom and (presumably infinite) negative energy values will be allowed.

• We are thus driven towards theories with constraints!
• Such constraints are typically obtained by means of some gauge symmetry,

and thus we are driven towards theories with gauge symmetry, if we want
to uphold a positive definite Hamiltonian for the by the constraints allowed
states of the field and its conjugate momenta.

• The obvious candidate for such a gauge theory with antisymmetrised tensor
fields is of course the Kalb-Ramond fields. (Personally we suspect, that we can
show that ONLY Kalb-Ramond-fields will solve this problem of positivity by
providing enough constraints.)
• Thus it seems that it is very hard to hope for our to be used fermionization

unless we make use of presumably a whole series of Kalb-Ramond fields!

14.4 Review

In theoretical condensed matter physics and particle physics, Bosonization/fermio-
nization is a mathematical procedure by which a system of possibly interacting
fermions in (1+1) dimensions can be transformed to a system of massless, non-
interacting bosons. In the present article we shall dream about extending such
bosonization to higher dimensions, and we shall be most interested in the case
when even the fermions do not interact. The method of bosonization was conceived
independently by particle physicists Sidney Coleman and Stanley Mandelstam;
and condensed matter physicists Daniel Mattis and Alan Luther in 1975. [4]
The progress to higher dimensions has been less developed [11] than the 1+1
dimensional case, but there has been some works also on higher dimensions.
especially we shall below review a bit a work[8] by Kovner and Kurzepa for the
next to simplest case, namely 2+1 dimensions. There has also been developments
based on Chern-Simon type action[11], but we suspect that the type of bosonization
we are hoping for in the present article should rather be of the Kovner Kurzepa
type than of the Chern-Simon one, although we have difficulty in explaining
rationally why we believe so.

When we have such transformation and thus two equivalent theories, one
with fermions and one with bosons, one will of course expect that the number of
degrees of freedom should in some way be the same for the boson and for the
fermion theory. Otherwise of course they could not be equivalent. In the most
studied case of 1+1 dimensions it has turned out in the cases known that there are
two fermion components per boson component. This ratio is in accord with the
theorem by Aratyn and one of us [3] - which we call the Aratyn-Nielsen theorem
- in as far as this theorem predicts the ratio to be 2

dspatial

2
dspatial−1

where dspatial is
the dimension of space ( not including time) so that we talk about the dimension
dspatial + 1. In fact of course for the case 1+1 we have thus dspatial = 1 and
the fraction predicted becomes 21

21−1
= 2 times as many fermion components as

boson components. This is really assuming that a “component” corresponds to a
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polarization state of a particle. What we - one of us and Aratyn - really derived
was that for a theory with massless interacting there ahd to be the mentioned ratio
between the number of polarization states for the fermion(s) relative to that for the
bosons. It were namely the contributions of such polarization states to the average
energy in a Boltzmann distribution calculation that was used to derive the theorem.
Although derived for this non-interacting massless case there could be reasons
to believe that by taking a couple of limits in an imagined case of interacting
and perhaps massive bosonization it could be argued, that the theorem of ours
would have to hold anyway. For instance going to a very small distance scale
approximation an approximately massless theory would arrive and the theorem
should be applicable even if there is a mass. Since we are concerned in this theorem
really with a counting of degrees of freedom a very general validity is in fact, what
would be expected. As already said, we are, however, in the present article more
concentrating on the generalization to include some unphysical degrees of freedom
with possibly wrong signature,

14.5 AratynN

Aratyn-Nielsen Theorem for massless free Bosonization
If there exist two free massless quantum field theories respectively with

Boson, and Fermion particles and they are equivalent w.r.t. to the number of states
of given momenta and energies, then the two theories must have the same average
energy densities for a given temperature T , or simply same average energies, if we
take them with the same infrared cut off(a quantisation volume V):

< Uboson > = < Ufermion > where (14.6)

< Uboson > =
∑
~p

E(~p)

1− exp (E(~p)/T)
(14.7)

< Ufermion > =
∑
~p

E(~p)

1+ exp (E(~p)/T)
. (14.8)

(14.9)

Here ~p runs through the by the infrared cut off allowed momentum eigenstates,
and E(~p) are the corresponding single particle energies. Of course the single
particle energy for a mass-less theory is

E(~p) = |~p|, (14.10)

when c=1, and in dspatial dimensions and with an infrared cut off spatial volume
V the sum gets replaced in the continuum limit by the integral∑

~p

...→ ∫ ∑
components

...
V

(2π)dspatial
, (14.11)

where
∑
components ... stands for the sum over the different polarization com-

ponents of the particles in question. So effectively in the simplest case of all the
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particles having the same “spin”/the same set of components we have the replace-
ment ∑

components

...→ Nfamilies ∗Nc... (14.12)

where Nc is the number of components for each particle and Nfamilies is the
number of families. Some formulas for deriving Aratyn-Nielsen

< Uboson > =
∑
~p

E(~p)

1− exp (E(~p)/T)
(14.13)

= ‘‘Nfamilies ∗N ′′c ∗ V/(2π)dspatial ∗ (14.14)∫
O(dspatial)|~p|

dspatialE(~p)
∑

n=0,1,...

exp (nE(~p)/Td|~p|

(14.15)

Simple Aratyn-Nielsen Relation For a given temperature must the average
energies of respectively the boson and the with it equivalent fermion theories

Our Realization Suggestion

• Fermions
For the fermions we shall use the needed number of say Weyl fermions, i.e.
we must adjust the number of families hoping that we get an integer number.
• Bosons

For the bosons we let the number 2dspatial − 1 suggest that we take a series
of all Kalb-Ramond fields, one combination of fields for each value of the
number p of indices on the “potential field” Aab...k (where then there are just
p symbols in the chain ab...k). At first we take these symbols a, b, ..., k to be
only spatial coordinate numbers.

Free Kalb-Ramond A Kalb-Ramond field[13] with p indices on the “po-
tential” and p+1 indices on the strength

Fµνρ...τ(x) = ∂[µAνρ...τ](x), (14.16)

where [...] means antisymmetrizing, and the “potential” Aνρ...τ is antisymmetric
in its p indices νρ...τ, is defined to have an action invariant under the gauge
transformation:

Aνρ...τ(x)→ Aνρ...τ(x) + ∂[νλρ...τ](x) (14.17)

for any arbitrary antisymmetric gauge function λρ...τ(x) with p− 1 indices.
Free Kalb-Ramond Action:
Note that the strength Fµνρ...τ = ∂[µAνρ...τ] is gauge invariant, and that thus

we could have a gauge invariant Lagrangian density as a square of this field
strength

L(x) = Fµν...τFµ ′ν ′...τ ′gµµ
′
∗ gνν

′
∗ ... ∗ gττ

′
. (14.18)
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Then the conjugate momentum of the potential becomes(formally):

Πνρ...τ = ΠAνµ...τ =
∂L

∂(∂0Aνρ...τ)

= F0νρ...τ. (14.19)

A Lorentz gauge choice:

∂µAνρ...τg
µν = 0, (14.20)

allows to write the Lagrange density instead as

Lmodified(x) = 1/2 ∗ ∂µAµν...τ∂µ ′Aµ ′ν ′...τ ′ ∗ gµµ
′
gνν

′
· · ·gττ

′
, (14.21)

which leads to the very simple equations of motion letting each component of the
“potential” Aνρ...τ independently obey the Dalambertian equation of motion

gµµ
′
∂µ∂µ ′Aνρ...τ = 0. (14.22)

Lorentz Invariance Requires Indefinite Inner Product!:
Lorentz invariant norm square for the states generated by the creation oper-

ators a†νρ...τ(p), i.e. a†νρ...τ(p)|0 >, must have different sign of the norm square
depending on whether there is an even (i.e. no) 0’s among the indices or whether
there is an odd number (i.e. 1). A priori we are tempted to take

< 0|aνρ...τ(p)a
†
νρ...τ(p)|0 > > 0 for no 0 among the indices,

< 0|aνρ...τ(p)a
†
νρ...τ(p)|0 > < 0 for one 0 among the indices,

(14.23)

14.6 Time-index

Problem with Components with the time index 0:
But full Kalb-Ramond fields require also components a 0 among the in-

dices.(This is the main new thing in the present article to treat this problem of the
components with one 0 among the indices.)

Remember about these components with a 0 index:

• Using a usual Minkowskian metric tensor gµν in constructing an inner product
between Kalb-Ramond fields, say

gµνgρσ · · ·gτκAµρ...τ(potentially an ∂0)Aνσ...κ, (14.24)

we get the opposite signature (=sign of the square norm) depending on
whether there is a 0 or not!
This means that if particles produced by the components without the 0 in-
dex have normal positive norm square, then those produced by the ones
with the 0 have negative norm-square!
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Good Luck We Removed the Kalb-Ramond A with p = 0 Indices! We could
namely not have replaced on A one among its indices by a 0 because it has no
indices. So we would not have known what to do for the fields Awith 0 indices.

We correspondingly also have to leave out the Kalb-Ramond-field with p =

dspatial + 1 indices, because for that there would be no components without an
index 0.

For the unexceptional index numbers p = 1, 2, ..., dspatial there are some
components both with and without the 0.

For the two exceptions p = 0 and d = dspatial + 1 we have chosen not
to have a Kalb-Ramond-field in our scheme, using it to get the −1 in the from
Aratyn-Nielsen required 2dspatial − 1.

Simplest (Naive) Norm Square Assignment
Note that for each Kalb-Ramond-field we can choose an overall extra sign on

the inner product, because we simply can define the overall inner product with an
extra minus sign, if we so choose. But the simplest choice is to just let the particles
corresponding to fields with only spatial indices (i.e. all p indices different from 0)
to have positive norm square, while then those with one 0 have negative norm
square.

This simple rule would lead to equally many components/particles with
positive as with negative norm square, so that dreaming about imposing a con-
straint that removes equally many negative and positive norm square at a time
would leave us with nothing.

Numbers of Components with and without 0. An of course totally antisym-
metric field Aµν...τ with p indices has

# components
KR pindices =

(
d

p

)
=

(
dspatial + 1

p

)
# no 0 components

KR pindices =

(
dspatial

p

)
=

(
d− 1

p

)
# cmps. with 0 & p-1 non-0

KR pindices =

(
dspatial

p− 1

)
=

(
d− 1

p− 1

)
.

and so one must have as is easily checked(
d

p

)
=

(
d− 1

p

)
+

(
d− 1

p− 1

)
corresponding to

“All components” = “Without 0” + “With 0”

Using ONLY the Components WITHOUT 0 would fit 2dspatial Nicely !
Having decided to leave out the number of indices p values p = 0 and p = d the
number of components without any component indices being 0 just makes up

# without 0 for all p = 1, 2, ..., d− 1 =
∑

p=1,2,...,d−1

(
d− 1

p

)
= 2d−1 − 1

so these “only with spatial indices components” could elegantly correspond to
2d−1 = 2dspatial fermion components.
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But problem: Kalb- Ramond fields need also the component with an index
being 0.

Using ONLY the Components WITH 0 could also fit 2dspatial Nicely ! Hav-
ing decided to leave out the number of indices p values p = 0 and p = d the
number of components with the 0 just makes up

# with 0 for all p = 1, 2, ..., d− 1 =
∑

p=1,2,...,d−1

(
d− 1

p− 1

)
= 2d−1 − 1

also, so these “only with 0 index components” could elegantly correspond to 2d−1

= 2dspatial fermion components, also!
But problem: Kalb- Ramond fields need also the components without an

index being 0, and these with 0 usually come with wrong norm square.
The Trick Suggested is to use for Some KR-fields Opposite Hilbert Norm

Square
In other words we shall look along the chain of all the allowed p-values

p = 1, 2, ..., d− 1; and for each of these p-values we can choose whether

• Normal: The states associated with the polarization components without the
0 among the indices shall be of positive norm square, as usual, and then from
Lorentz invariance essentially the ones with the 0 shall have negative norm
square, or

• Opposite The states with 0 shall have positive norm square, while the com-
ponents without 0 negative norma square.

Our proposal: Choose so that we get the largest number of positive norm square
components. How to get Maximal Number of Positive over Negative Norm
Square Single Boson States

For each value of p (=the number of indices on the Kalb Ramond “potential”)
p = 1, 2, ..., dspace decided to be used in the bosonization ansatz a priori, we
investigate whether the number of (independent) components with or without a
0 is the bigger:

# no 0 components
KR pindices =

(
dspatial

p

)
=

(
d− 1

p

)
# cmps. with 0 & p-1 non-0

KR pindices =

(
dspatial

p− 1

)
=

(
d− 1

p− 1

)
.

So if there are most components without 0, i.e. if
(
dspatial
p−1

)
<
(
dspatial

p

)
, then we

give the particle states corresponding to the without 0 “potentials” have positive
norm square. And opposite if

(
dspatial
p−1

)
>
(
dspatial

p

)
.

But if there are most components with 0, i.e. if
(
dspatial
p−1

)
>
(
dspatial

p

)
, then

we give the particle states corresponding to the with 0 “potentials” have positive
norm square.

To Maximize Positive Norm Square we Choose:
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• When p < d
2

, choose without 0 positive norm squared, while “with 0” nega-
tive;

• but when p > d
2

, choose with 0 positive norm squared, while “without 0”
negative;

For e.g. p < d/2 the excess of positive norm square “components ” over the
negative norm ones becomes:(

dspace

p

)
−

(
dspace

p− 1

)
=

(
dspace

p

)
(1−

p

dspace − p+ 1
)

=
dspace!(dspace + 1− 2p)

(dspace − p+ 1)!p!
=

(d− 1)!(d− 2p)

(d− p)!p!
, (14.25)

However, for p > d/2 the excess is(
dspace

p− 1

)
−

(
dspace

p

)
=

(
dspace

p− 1

)
(1−

dspace − p+ 1

p
)

=
dspace!(2p− dspace − 1)

(dspace − p+ 1)!p!
=

(d− 1)!(2p− d)

(d− p)!p!
, (14.26)

Adding up Positive Norm Square over Negative Excess:
The sums over p “ telescopes” from each of the two cases of p bigger or smaller

than d/2, and gives by symmetry the same excess of positive over negative norm
square states, namely for each for say d even (i.e. dspace odd)(

d− 1

d/2− 1

)
− 1 =

(d− 1)!

(d/2− 1)!(d/2+ 1)!
− 1, (14.27)

where we used that the middle value p = d/2 contribution vanishes. Including as
we shall both “sides” smaller than d/2 and also bigger than d/2 we get the double
of this.

Example Excesses States for even d for Bosons

Excess(d = 2) = 2(

(
2− 1

2/2− 1

)
− 1) = 0

Excess(d = 4) = 2(

(
4− 1

4/2− 1

)
− 1) = 2

Excess(d = 6) = 2(

(
6− 1

6/3− 1

)
− 1) = 18

Excess(d = 14) = 2(

(
14− 1

14/2− 1

)
− 1) (14.28)

Contribution from a Negative Norm square Component
One shall count the Hilbert space states with the negative norm square into

the Boltzmann weighted averaging with a minus extra.
This extra minus for a negative norm square boson functions accidentally

just like the fermi-statistics versus bose statistics. And thus e.g. a small p timelike
polarization contributes to the average energy just like a fermion, though with an
over all minus sign.
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14.7 Extension of Our Theorem on Counting

It is a major purpose of the present talk to present an extension of the Aratyn-
Nielsen theorem[3] on the numbers of bosons versus fermions in a bosonization to
include the just above discussed negative norm square states associated with the
Kalb-Ramond components having an index 0. Since such states obtaining at first
negative norm squares are seemingly enforced by Lorentz invariance, it seems to
be important to extend our Aratyn-Nielsen theorem to the case, where some of
the components of the fields are quantized with a negative norm square.

We take such a negative norm square mode to mean, that whenever there in
a Fock space state is an odd number of particles with the component in question,
then such a Fock-space basis vector is in the “Hilbert norm” given a negative norm
square. Of course that means that strictly speaking our Fock space is no longer
a genuine Hilbert space, but rather just an (infinite dimensional) space with an
indefinite inner product, |, giving the inner product between two Focks, |a > and
|b > say, as < b|a >. But now the point is just that we have no sign restriction on
< a|a >; it can easily be negative.

The in usual Hilbert spaces used expansion on an orthonormal basis

1 =
∑
a

|a >< a| (usual), (14.29)

cannot now be applied. Now we rather have to use

1 =
∑
a

(−1)Nneg(a)|a >< a| (with negative norm square also), (14.30)

where Nneg(a) denotes the number of particles in the various negative norm
square single particle states together. If for instance a basis state |a > for the Fock
space has 3 particle in the states with 0 index all together (and we have used the
choice of letting the components with a 0-index be the ones with negative norm,
rather than the more complicated possibilities discussed above), Nneg(a) = 3

and thus such a state would come with a minus sign in the expansion of the unit
operator 1.

Let us now calculate the average energy for a system described by a Fock
space with only one single particle state present, so it really is the system with
only one single particle state, that may be filled or empty according the rule for
it being bosonic or fermionic and having negative or positive norm square. For
this purpose we have to think about how one shall define the concept of a trace -
which goes into the average procedure to provide us with such a an average of the
energy, and we claim that we must indeed in the case with negative norm square
states take the trace definition:

Tr(O) =
∑
a

(−1)Nneg(a) < a|O|a > . (14.31)
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With this definition we easily check some usual rule for traces:

Tr(OP) =
∑
a

(−1)Nneg(a) < a|OP|a > (14.32)

=
∑
a

∑
b

(−1)Nneg(a) < a|O|b >< b|(−1)Nneg(b)P|a > (14.33)

= Tr(PO). (14.34)

Using this definition of the trace Tr we can then put in the quite analogous
way to the usual case for Boltzmann distribution in quantum mechanics

< E > =
Tr(exp(−H/T)H)
Tr(exp(−H/T))

, (14.35)

where the Boltzmann-Constant k has been absorbed into the temperature T , and
where now we use in the case of negative norm square the expression (14.31).
Let us enumerate the single particle states with the letter n and denote the single
particle energy of the state n as En. Then the free HamiltonianH is given by means
of the number operators

Nn = a†nan (14.36)

as
H =

∑
n

EnNn =
∑
n

Ena
†
nan, (14.37)

and we immediately see that

< EnNn > |bosonpos. =

∑
Nn=0,1,...

EnNn exp(−EnNn/T)∑
Nn=0,1,2,...

exp(−EnNn/T)

=
−
d
(

1
1−exp(−En/T)

)
d(1/T)

1
1−exp(−En/T)

=
En

exp(En/T) − 1
(boson; pos. norm sq.) (14.38)

< EnNn > |bosonneg. =

∑
Nn=0,1,...

(−1)NnEnNn exp(−EnNn/T)∑
Nn

(−1)Nn exp(−EnNn/T)

=
−
d
(

1
1+exp(−En/T)

)
d(1/T)

1
1+exp(−En/T)

= −
En

exp(En/T) + 1
(boson; neg. norm sq.) (14.39)

< EnNn > |fermionpos. =

∑
Nn=0,1

EnNn exp(−EnNn/T)∑
Nn=0,1

exp(−EnNn/T)

=
−
d(1+exp(−En/T))

d(1/T)

1+ exp(−En/T)
=

En

exp(En/T) + 1
(fermion; pos. norm sq.) (14.40)

< EnNn > |fermionneg. =

∑
Nn=0,1

(−1)NnEnNn exp(−EnNn/T)∑
Nn=0,1

(−1)Nn exp(−EnNn/T)

=
−
d(1−exp(−En/T))

d(1/T)

1− exp(−En/T)
= −

En

exp(En/T) − 1
(fermion; neg. norm sq.) (14.41)
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We notice that - by accident - the contribution from a negative norm square
fermion mode happens to be just the opposite of that of a positive norm square
boson mode with the same energy En. And also the positive fermion mode contri-
bution is just minus one time the negative boson contribution. Thus we can get
the requirement for the theory of fermions and that of bosons to provide the same
average energy: ∑

E ′nsfor (pos.)fermions
plus neg. bosons

En

exp(En/T) + 1
=

∑
E ′nsfor (pos.)bosons
plus neg. fermions

. (14.42)

14.7.1 Free Massless

The simplest case to consider is the one in which both the fermions and the bosons
- on their respective sides of the identification of the theories - are supposed to
be both free and massless relativistic particles. In this case - which is the one we
shall keep to in the present article - we introduce for definiteness an infra red
cut off so that we get discretized momentum eigenstates, and the above n now
really becomes a pair of a discretized momentum ~p and an index denoting the
component, which means typically the vector or spinor index including also the
family index, all put together say to t, standing for the word “total component”,
meaning that both family and genuine component is included. The number of
possible values for this total component enumeration is of course for what we
are indeed obtaining restrictions for. Let us therefore immediately define the four
numbers

Nt ferm pos. = Nfamilies ferm pos. ∗Nc ferm pos,

Nt ferm neg. = Nfamilies ferm neg. ∗Nc ferm neg.,

Nt boson pos. = Nfamilies boson pos. ∗Nc boson pos,

Nt boson neg. = Nfamilies boson neg. ∗Nc boson neg.,

to denote the total numbers of components of the respective types of particles w.r.t.
statistics and normsquare sign.

One technique for calculating the integrals over the momentum space consists
in first Taylor expanding the expressions to be integrated

En

exp(En/T) − 1
=

En

exp(En/T)
∗ (1+ exp(−En/T) + exp(−2En/T) + ...)

= En

 ∑
j=1,2,...

exp(−jEn/T)

 (14.43)

En

exp(En/T) + 1
=

En

exp(En/T)
∗ (1− exp(−En/T) + exp(−2En/T) − ...)

= En

 ∑
j=1,2,...

(−1)j−1 exp(−jEn/T)

 , (14.44)
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and then using ∑
~l∈integer lattice

exp(−j|~l ∗ 2π/L|) =
∫

exp(−j|~x2π/L|)ddspatial~x (14.45)

=

(
L

2π ∗ j

)dspatial ∫
exp(−|~x|)ddspatial~x (14.46)

=

(
L

2π ∗ j

)dspatial
O(dspatial − 1)

∫∞
0

exp(−x)xdspatialdx (14.47)

=

(
L

2π ∗ j

)dspatial
O(dspatial − 1)/dspatial!. (14.48)

Here we denoted the surface area of the unit sphere in dspatial dimensions by
O(dspatial − 1) because this surface then has the dimension dspatial − 1. In fact

O(dsurface) =
2πdsurface/2

Γ(dsurface/2)
. (14.49)

We then finally shall use

ζ(dspatial) =
∑

j=0,1,2,...

1

jdspatial
. (14.50)

ζ(dspatial)

(
1−

1

2dspatial

)
=

∑
j=0,1,2,...

(−1)j

jdspatial
. (14.51)

When we compare the different expressions for bosons versus for fermions,
most factors drop out and the only important factor is the factor

(
1− 1

2
dspatial

)
.

It is then easy to see that we obtain the extended Aratyn-Nielsen theorem:

Nt ferm pos. +Nt boson neg. =
2dspatial

2dspatial − 1
∗ (Nt boson pos. +Nt ferm neg.).

(14.52)

14.7.2 Properties and Examples

Let us first of all call attention to that this extended Aratyn-Nielsen theorem like
the original one has the property of “additivity” meaning that if we have two
cases of functioning bosonization - i.e. two cases of a system of fermions being
equivalent to a system of bosons - and thus by combining them formally a system
with both sets of bosons making up its set of bosons and similarly construct a set
of fermions by combing the fermions then the combined system will automatically
- just algebraically - come to obey the requirement from our theorem.

Let us also remark that the old Aratyn-Nielsen theorem[3] just is the special
case, in which there are no negative norm square components.

In the Bled workshop in 2015 [12] we presented speculations, that one could
make a free massless case of bosonization/fermionization in an arbitrary num-
ber of dimensions. This attempt were indeed already strongly inspired from our
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theorem and counted just 2dspatial − 1 boson particle components and 2dspatial
fermionic components. There were no negative norm square components and the
there suggested case of bosonization should thus be an example on the use of
the “old” Aratyn-Nielsen theorem. The ratio of the number 2dspatial of fermion
components equivalent to 2dspatial − 1 bosonic components is namely of course
just equal to 2

dspatial

2
dspatial−1

as it should according to our theorem(s). The special
feature of that proposal [12] was that we imagined having chosen such infrared
cut off periodicity or antiperiodicity conditions, that these (anti)periodicity condi-
tions specified the components of the fields. Indeed there were just one fermion
component for each combination of a choice of periodicity versus antiperiodicity
for each of the dspatial spatial dimensions. That makes up of course 2dspatial
combinations of periodicity antiperiodicity choices and thus so many fermion
components. Similarly almost all such combinations gave rise to a boson compo-
nent, except that we deleted so to speak the boson components, that should have
corresponded to being periodic in all dspatial coordinates (taken with infrared
cut off). Thus there were just 2dspatial − 1 boson components in the in this Bled
proceeding speculated case of bosonization.

14.7.3 A speculative semi-trivial example

Starting from the example[12] we would now highly suggestively - but really a bit
speculatively - construct a not completely trivial although not so very physically
interesting at first example with negative norm square components. Since we have
anyway broken in this model full rotational invariance, it is no longer a catastrophe
to treat one of coordinate axis - say x1 in a different way from the other ones.

We modify the model in the 2015 Bled proceedings by:

• On the fermionic side we take all the components specified by having odd
momentum along say the x1-axis or equivalently have antiperiodic boundary
condition in x1 to have negative norm square. They make up just half - and
thus 2dspatial−1 - of all the fermionic components.

• On the bosonic side we also change the norm-square to be negative for the
components antiperiodic in the x1-coordinate. This is for even more than half
of the components in as far as it is again for 2dspatial−1, but now only out of
the 2dspatial − 1 bosonic components.

Both of these two modifications have in the Fock-space the same effect in as far
as they both just lead to shifting the norm square form positive to negative for all
the states with the total p1-momentum odd. So the two modifications suggested
for respectively the bosons and the fermions seem to be the same one in the Fock
space. At least speculatively then we expect, that the modified model will have
functioning bosonization - provided we trust that the original model from the Bled
2015 proceeding were indeed consistently a case of bosonization.

Now we want to test, if this suggestive speculative case of bosonization will
obey our extended Aratyn-Nielsen requirement(14.52):

We have in this modified model/case of bosonization:
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• We are left with 2dspatial−1 − 1 bosonic positive norm square components, i.e.
Nt boson pos. = 2

dspatial−1 − 1.
• While 2dspatial−1 of the bosonic components were made to have negative

norm squared. So Nt boson neg. = 2dspatial−1.
• Of the fermionic components 2dspatial−1 remained of positive norm-square;

so Nt ferm pos. = 2
dspatial−1.

• Also 2dspatial−1 components had the odd momentum in the x1-direction and
were made to have negative norm square. So Nt ferm neg. = 2

dspatial−1.

Inserting these numbers of components into (14.52) is easily seen to make it
satisfied. The point really is, that we made the same number of boson components
and of fermion components negative norm square. This sign of norm square in our
formula makes them move from one side to the other, but since the two groups
were of the same number at the end nothing were changed and the formula still
satisfied.

14.8 Kovner...

Kovner and Kurzepa made 2+1 The article by these authors [8] contains
the expression

ψα(x) = kΛVα(x)Φ(x)Uα(x) (14.53)

for the fermion fields expressed in terms of the boson fields in their fermionization
in 2+1 dimensions. Here the expressions Vα(x), Φ(x), and Uα(x) are exponentials
of integrals over the boson field, which are indeed electromagnetic fields in 2+1
dimensions. The variants of expressions are denoted by the index α, which takes
two values. There are thus (a priori) two complex fermion fields defined here.

14.9 Match?

Does the Kovner Kurzepa Bosonization Match with the Aratyn-
Nielsen Counting Rule?

First look at number of hermitean counted fields: Kovner and Kurzepa
gets two complex meaning 4 real fermion fields Reψ1(x), Imψ1(x), Reψ2(x),
and Imψ2(x) out of the for the construction relevant boson-fields A1(x), A2(x),
∂iEi = ∂1E1 + ∂2E2. This looks agreeing with the Aratyn Nielsen prediction that
the ratio shall be

#bosons
#fermions

=
2ds − 1

2ds
=
22 − 1

22
for the spatial dimension beingds = d− 1 = 2

(14.54)
Four real fermion fields bosonize to three real boson-fields! o.k.

What about the conjugate momenta to the fields? While the fermion fields
are normally each others conjugate variables(fields) in as far as they anticommute
with each other having only no-zero anticommutators with themselves, the boson-
fields typically are taken each to have associated an extra field - its conjugate -
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with which it does not commute, while of course any variable must commute with
itself. But a field, that depends on an x-point or on a momentum, need NOT to
commute with itself, though.

But then the question: Shall we for bosons somehow also count the conjugate
momentum fields, when we shall compare the number of fermion and boson
fields equivalent through bosonization ? For the fermions the conjugate fields
are unavoidable already included into the set of fields describing the fermions,
because the it is the field in question itself, but for bosons we could easily get the
number of fields doubled, if we include for each field also its conjugate.

Conjugate Momentum Fields NOT to be Included in Counting.
Let us argue that it is enough in the counting to count the number of fields,

from which you by Fourier resolution can extract the annihilation and creation
operators needed to annihilate or create the particles, the species of which are to
be counted:

• Normally we could extract the conjugate field by differentiating w.r.t. to time
the field because usually you can replace the fields and their conjugate by the
fields and their time derivatives.

• Using equations of motion these time derivatives can in turn be obtained by
some way - also some sort of differentiation - from the field itself.

• Thus at the end the information on the conjugate is extractable from the field
itself!

Further Support for NOT including also Conjugate Momentum Fields
We could very easily construct linear (or more complicated) combinations of

boson fields and their conjugate fields. Such combinations would like the fermion
fields typically not commute/anticommute with themselves.

So provided we can extra the particle creation and annihilation operators
from the combined field we would have no rule to tell that we should include
more. Thus we would need only the combined field, and with that rule have quite
analogy to the fermion case.

Meaning of NOT Counting also the Conjugate Field
InQED3 sayA1(x) andA2(x) would be enough to represent both longitudinal

and transversely polarized photons. It would NOT be needed also to have the
essentially conjugate electric fields E1(x) and E2(x).

The field ∂iEi is in fact the conjugate A0 so that we - having the symmetry
between a field and its conjugate, it being conjugate of its conjugate - can consider
that timelike photons are described by this ∂iEi field combination.

14.10 Particles

But in terms of Particles, How??
Usually one thinks of electrodynamics in 2+1 dimensions as having only one

particle polarisation, since there is only one transversely polarisation for a photon.
So seemingly only one component of boson. This transversely polarized photon is
even its own antiparticle, so even the anti-particle is not new.
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On the contrary the fermions after the fermionization counts two complex
fields meaning two different fermion components (ψ1 and ψ2) each with an a
priori different antiparticle in as far as the fields ψ1 and ψ2 both are complex(non-
Hermitean). That seems NOT to match!

Where have the two missing photon-polarizations gone?
Suggestion for How 3 photons.
To count independently both Ai (i=1,2.) as real fields, we need to consider it

that we have not only the transverse photon, but also a longitudinal photon !
The third of the real fields ∂iEi = div~E is actually the conjugate variable to

the time component A0(x) of the fourcomponent photon field. So if we take it that
conjugate or not does not matter it could correspond to the timelike polarized
photon.

This would mean that we could hope for interpreting the three photon polar-
izations as being

• 1) The transverse photon.
• 2) The longitudinal photon.
• 3) The time-like photon.

But the time like photon has wrong signature ?!
Better Suggestion for the 3 particles ?
To avoid the problem with the ltime-like photon form Lorentz invariance

having the signature with negative norm square states we can instead take a further
scalar. If so we could have 3 bosons corresponding to the four (real) fermions.

In any case if we want a fermion system with positive definite Hilbert space
we better have the bosons also give positive definite Hilbert space if they shall
match in their Hilbert spaces.

14.11 Fields

How to count Hermitean Boson fields ?
To exercise we shall for the moment even begin with a 1+1 dimensional

only right moving Hermitean field constructed as a superposition of momentum
state creation a†(p) and annihilation operators a(p) for say a series discretized
momentum values, which we for “elegance”( and later interest) shall take to be
odd integers in some unit:

φ(x) =
∑

p odd,p>0

√
pa(p) exp (ipx) +

∑
p odd,p<0

√
|p|a†(|p|) exp (ipx)

=
∑
p odd

√
|p|a(p), (14.55)

where we have put
a(p) = a†(−p) for all the odd p (14.56)
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Properties of the Hermitean field A Hermitean field of the form (in 1+1
dimension say)

φ(x) =
∑

p odd,p>0

√
pa(p) exp (ipx) +

∑
p odd,p<0

√
|p|a†(|p|) exp (ipx)

=
∑
p odd

√
|p|a(p) (14.57)

obeys

φ(x)† = φ(x) (Hermiticity) and (14.58)

[φ(x), φ(y)] =
∑
p odd

∑
p ′ odd

√
|p|
√
|p ′|[a(p), a(p ′)] exp (ipx+ ip ′y) (14.59)

=
∑
p odd

p exp (ip(x− y)) = 2π
d

id(x− y)
δ(x− y) (14.60)

= −i2π∂δ(x− y) (local commutation rule). (14.61)

14.12 New

New, Reduce the Kovner Kurzepa model.
We claim, that in a way the Kovner and Kurzepa bosonization in 2 + 1 dimen-

sions has included a kind of “funny extra bosonic degree of freedom” the charge
density compared to our own plan of doing a completely free model.

Really we want to say: In a truly free electrodynamics “free QED3” (in 2 +1
dimensions) the divergence of the electric field is zero:

∂iEi ≈ 0 (on physical states). (14.62)

When we use ≈ instead of = it is because we may need the divergence ∂iEi as an
operator even though we may take it to be zero on the “physical states”.

Reduction of Kovner Kurzepa model w.r.t. degrees of freedom
Inserting formally our claim of a constraint equation

∂iEi ≈ 0 (on physical states). (14.63)

into the expressions of Kovner and Kurzepa

V1(x) = −i exp (
i

2e

∫
(θ(x− y) − π)∂iEi) (14.64)

U1(x) = exp (−
i

2e
θ(y− x)∂iEi) (14.65)

we get

V1(x) ≈ −i (14.66)

U1(x) ≈ 1. (14.67)
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Using the constraint equation formally on Kovner and Kurzepa In Kovner and
Kurzepa one finds

ψα(x) = kΛVα(x)Φ(x)Uα(x) (14.68)

Φ(x) = exp (ie

∫
ei(y− x)Ai(y)d

2y);ei(y− x) =
yi − xi
(y− x)2

(14.69)

V1(x) = −i exp (
i

2e

∫
(θ(x− y) − π)∂iEi);V2(x) = −iV†1(x) (14.70)

U1(x) = exp (−
i

2e
θ(y− x)∂iEi);U2(x) = V

†
1(x) (14.71)

and thus with the constraint formally included

ψ2(x) ≈ iψ1(x) (14.72)

Our Constraint would Spoil Rotation Symmetry A constraint equation

ψ2(x) ≈ iψ1(x) (14.73)

would not be consistent with the rotation symmetry and the transformation prop-
erty for the fermion field suggested in Kovner and Kurzepa

ψ1 → exp (iφ/2)ψ1;ψ2 → exp (−iφ/2)ψ2. (14.74)

So including the constraint would make the bosonization/fermionization become
non-rotational invariant. But it is our philosophy not to take that as a so serious
problem, because it is in any case impossible to get in a rotational invariant way
spin 1/2 fermions from a purely bosonic theory with only integer spin!

Rotation symmetry broken in reduced model!

14.13 Conclusion

We have extended the previous “Aratyn-Nielsen-thorem” relating the number
of degrees of freedom / number of components / number of particle (orthogo-
nal) polarizations for a set of bosons that by bosonization/fermionization is in
correspondance with each other. The extension consists in also allowing negative
norm square single particle states. We only considered yet the case of massless
noninteracting both bosons and fermions, but expect that by thinking of the limit
of small distances the relation of the theorem would also have to hold for massive
particles. If there existed a common for both bosons and fermions weak interaction
limit you would also expect that the noninteraction assumption could be avoided.

The main result is the relation (14.52):

Nt ferm pos. +Nt boson neg. =
2dspatial

2dspatial − 1
∗ (Nt boson pos. +Nt ferm neg.),

where the “normal” boson and fermion component numbers are denoted with
Nt boson pos. and Nt ferm pos. respectively for bosons and for fermions, and
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where the corresponding numbers of components with negative norm square
are Nt boson neg. and Nt ferm neg..

We have also looked at some examples where one might apply and test our
theorem, but the problem is that we do not know the higher dimensional examples
so well. Basically the dimension limit where the examples basically stop is not
high. Googling you find mainly at most 2+1. The case 3+1 is very rare.

14.13.1 Outlook Dream

Our motivation, which has not quite ran out to be realized yet is that we shall
find in literature or develop bosonization case(s) for the dimensions of interest as
dimension of the space time, such as the experimental dimension 3+1 or the in
the spin-charge-family theory practical starting dimension 13 +1. That is to say
we hope to find a set of boson fields that is equivalent to a set of fermion fields
in the bosonization way. If we have a valid theorem as the one we just extended
we strictly speaking only need to know one side, i.e. either the bosons or the
fermions, because then we can calculate the number of components for the other
side. Without the “extension ” of our theorem it looks that the number of fermion
components must always be a number divisible by 2dspatial , which e.g. for the
case of the experimental dimension is 23 = 8. It makes it especially difficult to
avoid the number of families being even, because if we think of Weyl fermions at
least and even count real components so that we get twice as many as if we used
complex components, we still need a multiplum of 2 families of Weyl particle. With
Dirac fermions we could use up a factor 2 more and we would get no prediction
than just the number of families being integer. But in the Standard model we
know that we have the weak interactions and the components put together to
Dirac fermions have separate gauge quantum numbers are are hardly suitable for
coming from the same fermionization.

With an extended theorem relating the two sides fermions and bosons, how-
ever, the situation gets less clear and the hope for even getting somehow a phe-
nomenologically good number is not excluded yet.
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N.S. Mankoč Borštnik, D. Lukman, ”Vector and scalar gauge fields with respect to
d = (3+ 1) in Kaluza-Klein theories and in the spin-charge-family theory”, Eur. Phys. J. C
77 (2017) 231.
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