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ODZIV ZASIČENIH ZEMLJIN
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Člani uredniškega odbora revije Acta Geotechnica Slovenica z veseljem sporočamo, da smo v petem letu izhajanja revije 
dosegli pomemben cilj, to je njeno vključitev v Thomsonovi bazi Science Citation Index Expanded in Journal Citation 
Reports/Science Edition, kjer sedaj poteka preverjanje člankov za določitev faktorja vpliva. Ob tej priliki se zahvaljujemo 
vsem, ki ste nas podpirali in vseskozi trdno verjeli v uspeh revije.

Druga novost je odločitev uredniškega odbora revije in vodstva Slovenskega geotehniškega društva (SloGeD), da bodo 
odslej teme vabljenih predavanj na Šukljetovih dnevih predstavljene v obliki člankov v reviji Acta Geotechnica Slovenica. 
Šukljetove dneve vsako leto  organizira SloGeD v spomin na pionirja slovenske geotehnike, akademika prof. dr. Luja 
Šukljeta. V duhu tega velikega raziskovalca so izbrane tudi vsebine vabljenih predavanj.  Doslej so bili na Šukljetove 
dneve povabljeni naslednji predavatelji iz tujine: M. Jamiolkowski (2000), G. Sanglerat (2001), D.D.Potts (2002), H. 
Brandl (2003), R. Katzenbach (2004), S. Semprich (2005), S. Leroueil (2006), D. Žnidarčić (2007) in A. Szavits Nossan 
(2008).

Pričujoča številka revije prinaša štiri zanimive prispevke avtorjev Antuna Szavits Nossana, Stanislava Škrabla, Stanislava 
Lenarta ter Tomaža Pliberška in Andreja Umeka. 

V prispevku A. Savitz Nossana je predstavljena možnost napovedovanja horizontalnih premikov in notranjih statičnih 
količin v sidranih podpornih konstrukcijah za zaščito izkopov z uporabo standardnih terenskih in laboratorijskih 
preiskav ter komercialnega programa s končnimi elementi. Slednji vsebuje konstitutivni model zemljine, ki simulira 
osnovne aspekte obnašanja tal na lokaciji gradbene jame.

Članek S. Škrabla obravnava izvirni pristop določanja kritične razporeditve in mejnih vrednosti pasivnih zemeljskih 
tlakov za tri-dimenzionalne primere po metodi mejne analize in teorema zgornje vrednosti. Za določanje kritične razpo-
reditve pasivnih tlakov vzdolž višine podporne konstrukcije je uporabljena metoda mejne analize z množico tri-dimen-
zionalnih kinematično dopustnih hiperboličnih rotacijskih porušnih mehanizmov po metodi postopnega določanja 
intenzitete pasivnih tlakov od zgoraj navzdol.

Avtor tretjega prispevka S. Lenart predstavlja dva najbolj izrazita načina deformiranja dinamično obremenjenih zasi-
čenih zemljin in sicer likvifakcijo s tečenjem in ciklično mobilnost. Oba pojava sta bila preiskana na meljnih peskih in 
prodno peščenih meljih, ki izhajajo z območja potopljenega nasipa železniške proge zaradi novozgrajenega akumulacij-
skega bazena na reki Savi v Boštanju in velikega plazu, ki se je sprožil na področju Stože v Julijskih Alpah.

Članek T. Pliberška in A. Umeka obravnava nov pristop k evaluaciji integralne predstavitve Greenove funkcije za slojevit 
pol-prostor, ki je na površini obremenjen s harmonično tangencialno točkovno silo.

        Ludvik Trauner
        Glavni urednik

UVODNIK
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I am very pleased to be able to report that Acta Geotechnica Slovenica has been selected for coverage in Thomson 
Reuters products and custom information services. Beginning with Vol.4 (1) 2007, Acta Geotechnica Slovenica will be 
indexed and abstracted in the Science Citation Index Expanded (also known as SciSearch®) and the Journal Citation 
Reports/Science Edition. I would like to take this opportunity to thank all of you who have supported us and contributed 
to the continued success of our journal.

Other news is the decision of journal’s editorial board and the Slovenian Geotechnical Society (SloGeD) that the invited 
lectures of Šuklje’s Days, which are organized every year by SloGeD in memory of the pioneer of Slovene geotechnics, 
academician professor Lujo Šuklje, will be published in Acta Geotechnica Slovenica. In this way the journal will have the 
opportunity to be the first to publish the results of these important scientific studies. The publication of the contents of 
the invited lectures in the form of papers is a great advantage for the authors also, who will now have the opportunity to 
acquaint a broader circle of interested readers with their achievements, since these articles can be found in the Thomson 
databases. In recent years, the invited lecturers on Šuklje’s Days were M. Jamiolkowski (2000), G. Sanglerat (2001), D.D. 
Potts (2002), H. Brandl (2003), R. Katzenbach (2004), S. Semprich (2005), S. Leroueil (2006), D. Žnidarčić (2007) and A. 
Szavits Nossan (2008).

The first issue of Year 5 contains four interesting articles authored by Antun Szavits Nossan, Stanislav Škrabl, Stanislav 
Lenart, and Tomaž Pliberšek and A. Umek.

In his paper, A. Szavits Nossan presents a prediction of the horizontal displacements and the internal forces in an 
anchored wall for the protection of an excavation using standard field and laboratory tests and a finite-element program. 
The last of these includes a constitutive soil model that can simulate the key aspects of the soil’s behaviour at a construc-
tion site.

The paper of S. Škrabl deals with a novel approach to the determination of the critical distribution and limit values of 
three-dimensional passive soil pressures acting on flexible walls, following the upper-bound method within the frame-
work of the limit-analysis theory. The method of limit analysis with a set of three-dimensional cinematically admissible 
hyperbolic translational failure mechanisms is used to determine the critical distribution of the passive pressures along 
the retaining structure’s height.

The author of the third paper, S. Lenart, treats the two most marked types of deformation behaviour for dynamically 
loaded saturated soil, i.e., flow liquefaction and cyclic mobility. Both phenomena were researched in silty sand and lacus-
trine carbonate silt, which are found in the area of a submerged railway line, due to the newly built Sava-river accumula-
tion reservoir in Boštanj, and where the large landslide occurred in the Stože area of the Julian Alps.

The topic of the paper by T. Pliberšek and A. Umek is a novel evaluation of the integral representation of a surface 
Green’s function for a layered half-space, loaded on its surface by a harmonic tangential point force.

        Ludvik Trauner
       Editor−in−chief

EDITORIAL
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Izvlec̆ek

V članku je predstavljena možnost napovedovanja horizontalnih premikov in notranjih statičnih količin v sidranih 
podpornih konstrukcijah za zaščito izkopov z uporabo standardnih terenskih in laboratorijskih preiskav ter komercialnega 
programa s končnimi elementi. Slednji vsebuje konstitutivni model zemljine, ki simulira osnovne aspekte obnašanja tal na 
lokaciji gradbene jame. V prispevku je prikazano, da se mora uporabnik dobro seznaniti s konstitutivnim modelom vključe-
nim v program ter da predstavlja odločilen del modeliranja izbira primernih parametrov zemljin za numerične analize. Za 
izbiro primernih parametrov za simulacijo dejanskih pogojev prisotnih med gradnjo je koristna izvedba numeričnih simula-
cij standardnih laboratorijskih preizkusov, ki jih je potrebno primerjati s poznanim obnašanjem zemljine.

V članku je prikazano, da izmerjene hitrosti strižnih valov, iz katerih lahko določimo strižno togost tal pri majhnih defor-
macijah, lahko uporabimo tudi za določitev statične togosti tal za velikosti deformacij obravnavane geotehnične konstruk-
cije, tako v koherentnih kot tudi nekoherentnih tleh.

Raziskovalno delo je bilo izvedeno za primer iz geotehnične prakse z detajlno analizo zaščite izkopa s sidrano armirano 
betonsko steno v relativno togi zemljini. Deformacije stene so bile merjene z vgrajenim inklinometrom.

Pretežni del članka predstavlja izbiro parametrov konstitutivnega modela, še posebej parametrov togosti tal. Za potrditev 
ocene zmanjšanja sekantnega deformacijskega modula zaradi povečanja mobilizirane strižne trdnosti za trde gline z objav-
ljenimi empiričnimi odnosi iz literature je bila uporabljena simulacija triosnega konsolidacijskega nedreniranega preizkusa. 
Prikazano je, da je s takšno izbiro parametrov togosti v konstitutivnem modelu tal možno dobiti sprejemljivo napoved defor-
macij sidrane stene. Čeprav je predstavljen samo en primer uspešne analize, le ta daje vzpodbudo, saj prikazuje možnost 
relativno zanesljive napovedi deformacij samo na osnovi terenskih in laboratorijskih preizkusov in z uporabo razpoložljivih 
računalniških programov z realnim modelom zemljine.

Kljuc̆ne besede

sidrana stena, model tal, strižna togost, numerično modeliranja, merjene deformacije

NAPREDEK IN NEZANESLJIVOSTI PRI NUME-
RIČNEM MODELIRANJU SIDRANH PODPORNIH 
KONSTRUKCIJ

ANTUN SZAVITS NOSSAN
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ADVANCES AND UNCERTAINTIES IN THE 
DESIGN OF ANCHORED RETAINING WALLS 
USING NUMERICAL MODELLING

ANTUN SZAVITS NOSSAN

About the author

Antun Szavits Nossan
University of Zagreb,
Faculty of Civil Engineering
Kačićeva 26, 10 000 Zagreb, Croatia
E-mail: szavits@grad.hr

Abstract

This paper describes research on the prediction of hori-
zontal displacements and internal forces in an anchored 
wall for the protection of an excavation, using standard 
field and laboratory tests and a finite-element programme 
with a soil model that can simulate the key aspects of 
soil behaviour at a construction site. It is important to 
be acquainted with the constitutive model incorporated 
in the programme, and the selection of the appropriate 
soil parameters for the numerical analysis is a crucial 
part of the modelling. As a result, it is useful to carry out 
numerical simulations of standard laboratory tests with 
well-known soil behaviour in order to select the relevant 
parameters for the simulation of the actual construction 
process.
It is shown in this paper that the measurements of the 
shear-wave velocities, which can provide the soil’s stiffness 
at very small strains, can also be useful for determining 
the static stiffness at a magnitude of the strains relevant for 
the geotechnical structure under consideration, for both 
cohesive and noncohesive soils.
The research was carried out by a detailed analysis of a 
case history involving an anchored, reinforced concrete 
wall supporting the walls of an excavation in a relatively 
stiff soil. The wall displacements were monitored using an 
installed inclinometer.
The major part of the paper is devoted to an analysis of the 
selection of parameters, especially the stiffness parameters. 
The simulation of the triaxial, consolidated, undrained 
tests was used in order to assess the reduction of the secant 
stiffness modulus with an increase of the relative mobi-
lized shear strength for the hard clay layer according to the 
published empirical evidence. It is shown that by selecting 
the appropriate stiffness parameters for the soil model used 

in the numerical analysis, it is possible to get an acceptable 
prediction of the anchored-wall displacements. This is just 
one example of a successful analysis, but it is encouraging 
in the way that it shows how it is possible to make reliable 
predictions based on standard field and laboratory tests 
and with the use of an available computer programme 
with a realistic soil model.

Keywords

anchored wall, soil model, shear stiffness, numerical 
modelling, measured displacements

1 INTRODUCTION

Anchored, retained structures are often used as tempo-
rary protection for deep excavations in urban areas. 
Their role is to ensure the stability of the soil around the 
excavation and to prevent any damage to surrounding 
buildings that might be caused by the excavation. The 
successful design of such structures depends a great deal 
on a realistic solution to the interaction between the 
structure, the anchors and the soil, taking into consider-
ation the mechanical characteristics of the surrounding 
soil as well as the manner and the sequence of the 
construction. Gaba et al. [1] gave an overview of the 
available numerical methods, together with an assess-
ment of their advantages and drawbacks. A detailed 
solution to the interaction problems is becoming 
increasingly more accessible with the use of commercial, 
numerical tools based primarily on the finite-element 
method, which allows for the use of complex, constitu-
tive soil models [2], [3]. There are, however, serious 
problems with the practical use of these tools. Schweiger 
[4] describes a detailed benchmarking experiment in 
which several experts were invited to numerically model 
the behaviour of an anchored diaphragm wall. The 
results were scattered over an alarmingly wide range, 
which is not acceptable in practice, due to the selection 
of different constitutive models and soil parameters. 
De Vos and Whenham [5] have shown the results of a 
survey among a large number of users of geotechnical 
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finite-element programmes that show the problems 
they were encountering. The first item on the list of 
problems is the determination of soil parameters (23% 
of answers), followed by the determination of the initial 
conditions in the soil, the selection of the constitutive 
soil model, the interpretation of the results, the numeri-
cal discretization, the boundary conditions and the 
selection of the type of analysis. The first three items 
represent the core of the geotechnical design, supported 
by numerical modelling, and so they appeared at the top 
of the list in more than 50% of the answers. Gaba et al. 
[1] state, among others, the following reasons for these 
problems: the inadequate constitutive models, where the 
simple ones are not realistic; the data on soil strength; 
the stiffness and initial stresses that are not of sufficient 
quality; the insufficient user experience with the particu-
lar programme; and the inadequate modelling of the 
undrained conditions in cohesive soils. They claim that 
“Ground movements cannot be predicted accurately. It 
is essential that optimum use is made of precedent in 
comparable conditions through the use of good-quality 
case-history data. Case-history-based empirical methods 
of prediction are to be preferred to the use of complex 
analyses, unless such analyses are first calibrated against 
reliable measurements of well-monitored comparable 
excavations and wall systems.” In any case, finite-element 
analyses should be used with caution, but they remain 
the only tool in cases of unusual structures for which 
there is no comparable experience.

Studies in which complex numerical models are 
calibrated against the monitoring data of a case history 
can be helpful in resolving the above-mentioned prob-
lems related to the use of commercial finite-element 
programmes for geotechnical structures. This paper 
describes such a case history and the subsequent 
numerical modelling. The case history comprises an 
excavation protected by an anchored, retaining struc-
ture, of which there are several examples constructed 
recently in Zagreb, Croatia. Standard geotechnical inves-
tigations of average quality were carried out along with 
measurements of the shear-wave velocities with respect 
to depth. It was intended to use these measurements 
for the prediction of the anchored-wall displacements, 
based on the significance of this aspect of soil behaviour, 
which has recently gained attention [6], related to the 
soil-structure interaction [7] and particularly to the 
interaction of the soil with the anchored walls [8]. 
Shear-wave velocities provide a direct in-situ measure 
of the soil stiffness without the necessity to retrieve 
undisturbed soil samples or use problematic correla-
tions. The anchored-wall displacements were monitored 
during construction, and the excavation was successfully 
completed. Subsequent numerical analyses were carried 

out using the finite-element programme Plaxis V8 [9], 
which is widely used in Croatia. Its option of small strain 
was used in order to take advantage of the shear-wave 
velocity measurements and the resulting soil stiffness at 
very small strains. It was decided, for practical reasons, 
to use Plaxis V8, even though sophisticated analyses of 
anchored walls at small strains have been reported [10], 
but using a commercially unavailable programme.

Designers in Croatia are familiar with the use of Plaxis 
for modelling anchored structures. Their predictions of 
displacements based on the standard recommendations 
for the selection of soil parameters usually turn out as 
a significant overestimation in comparison with the 
measured wall displacements. As a result they use a 
higher soil stiffness, based on the argument of available 
data on similar structures in similar soils. This type of 
reasoning, which is not based on serious studies, makes 
the use of complex finite-element calculations question-
able, because they do not seem to have a significant 
advantage over, for example, the method of a beam 
resting on elasto-plastic springs, where the springs’ char-
acteristics are determined empirically from displacement 
measurements on similar anchored walls.

2 THE CASE HISTORY

The excavation, 14.5 m deep, is located in a rapidly 
expanding commercial area in Zagreb, and is intended 
for the construction of underground storeys of a 
commercial building. An existing, old, brick house, 
sensitive to soil displacements, is located near to the 
excavation. A 17.5-m-high and 0.6-m-thick wall of 
reinforced concrete, embedded in the soil 4 m below the 
bottom of the excavation, provided protection. The wall 
was cast in place prior to the excavation works.

Three rows of BBR 1860/1660 pre-stressed ground 
anchors were installed at a horizontal distance of 2.5 
m in each row. The upper, first row anchors consist of 
4 strands of high-strength steel, 0.6” in diameter. The 
second and third row anchors consist of 5 strands. Each 
anchor in the first two rows was pre-stressed to 500 kN, 
whereas the anchors in the third row were pre-stressed 
to 650 kN. Inclinometer measurements of the relative 
horizontal wall displacements were taken during the 
excavation works. The inclinometer tube was installed in 
the wall concrete along its whole height at the location of 
the brick house. The vertical excavation section with the 
wall and the neighbouring house is shown in Fig. 1.

A. S. NOSSAN: ADVANCES AND UNCERTAINTIES IN THE DESIGN OF ANCHORED RETAINING WALLS USING NUMERICAL MODELLING
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Figure 1. Vertical excavation section, reinforced concrete wall with three rows of anchors and the neighbouring brick house.

The ground surface at the location is horizontal and 
the underlying ground is horizontally layered. The 
surface layer is around 2 m thick and it consists of 
medium dense fill and clay underlain by a layer of poorly 
graduated medium dense gravel down to a depth of 14 
m. Below this depth is a thick layer of hard, overcon-
solidated clay. The geotechnical field investigation was 
carried out in several 30-m-deep boreholes. Disturbed 
and undisturbed samples were retrieved and SPT 
measurements were taken. The shear-wave velocities 
were measured in two boreholes using the down-hole 
method. The underground water level was determined 
in the gravel layer at 7 m below the ground surface.

Standard classification tests were carried out in the 
laboratory on disturbed samples, and undisturbed 
clay samples were used for the triaxial, consolidated, 
undrained (CIU) and unconsolidated, undrained (UU) 
tests. The CIU tests were performed with pore-water 

pressure measurements in order to determine the effec-
tive shear-strength parameters. The undrained shear 
strength was determined in the UU tests and with the 
use of a pocket penetrometer. The undisturbed clay 
samples were also used for oedometer tests. The results 
of the field and laboratory tests are presented in Fig. 2.

The SPT blow count N was corrected by the standard 
hammer impact energy of 60% and the normalized 
vertical effective stress, where pref = 100 kPa, according 
to Skempton [11]

( )N N
p

1 60 60=
′

ref

vσ        (1)

The full line in Fig. 2 represents the selected character-
istic value of the design parameter (N1)60  according 
to Eurocode 7 [12]. The same characteristic value of 

A. S. NOSSAN: ADVANCES AND UNCERTAINTIES IN THE DESIGN OF ANCHORED RETAINING WALLS USING NUMERICAL MODELLING
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this parameter was selected for the gravel for reasons 
of simplicity, even though a larger value could have 
been selected for the gravel above the water level. It 
also seemed reasonable to select a unique value of this 
parameter for the entire clay layer.

The characteristic value of the shear modulus for very 
small strains, G0 , was determined from the shear-wave 
velocity through G v0

2= ρ s  , where ρ  is the soil density. 
The distribution of this modulus with depth was 
assumed according to the following expression

G G
p0 0=
′ref v

ref

σ
        (2)

where G0
ref  is the reference shear modulus at a verti-

cal effective stress of 100 kPa. Two distinct values of 
G0

ref  were allocated to the entire layers of gravel and 
clay. No such parameter was allocated to the thin surface 
layer because it was assumed that its influence on the 
behaviour of the anchored wall was negligible. The full 
line in Fig. 2 shows the design characteristic shear-wave 
velocities, which result from the above assumptions.

The characteristic value of the effective angle of internal 
friction ′ϕ for the gravel layer was determined through 
the correlation with ( )N1 60  proposed by Hatanaka and 
Uchida [13]

′( )= +ϕ 0 0
1 6020 15 4. ( )N         (3)

which gives a characteristic value of ′ =ϕ 350 for ( )N1 60 14= . 
Even though this correlation was derived for sandy soils, 
there were no reliable data for gravel available.

The characteristic values of the effective cohesion, ′c , and 
the effective angle of internal friction for the clay layer 
were determined by the interpretation of the triaxial 
CIU tests. The shear-strength parameters were selected 
at the point where the ratio of the major and minor 
principal effective stresses reaches a maximum. The 
test results and the selected values of the shear-strength 
parameters are shown in Fig. 3. The other characteristic 
parameter values depend on the selected soil model, and 
their determination will be described in the next section.

Figure 2. Soil profile with the fines and sand content in the gravel, the water content (w0), the liquid limit (wL) and the plastic limit 
(wP), the undrained shear strength (cu), the corrected SPT blow count (N1 and (N1)60) and the shear-wave velocity (vs).
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3 THE SOIL MODEL

The hardening-soil model with the option of using 
the soil stiffness at small strains was selected from the 
Plaxis V8 programme. This model is described in the 
programme manual [9] and in much more detail by 
Schanz et al. [14] and Benz [15]. It is described here only 
to the extent of explaining the selection of the required 
parameters. The original hardening model, which did not 
have the option for small strain stiffness, is described first.

This soil model is of the elasto-plastic isotropic harden-
ing type with two hardening laws, each with its own 
yield surface and plastic potential. It satisfies the Mohr-
Coulomb strength criterion with a constant effective 
cohesion ′c  and a constant effective angle of internal 
friction ′ϕ . The first hardening law is related to shear 
(S) with a convex yield surface that crosses the Mohr-
Coulomb envelope at the point where the deviatoric 
stress q= 0 . It is used to model irreversible strains due 
to primary deviatoric loading. The second hardening law 
is related to the compression (C) and it is used to model 
irreversible plastic strains due to primary compression 
in the oedometer loading and the isotropic loading. 
When the loading phase results in the effective stress 
path reaching the two yield surfaces, they are “dragged” 
along with the stress path, thus producing both elastic 
and plastic strains. The development of the plastic 

A. S. NOSSAN: ADVANCES AND UNCERTAINTIES IN THE DESIGN OF ANCHORED RETAINING WALLS USING NUMERICAL MODELLING

Figure 3. Clay shear-strength parameters from the results of 
the CIU tests and selected characteristic values. The numbers 
connected to the symbols represent the vertical strains  ε1 (%) 
at the maximum value of  ′ ′σ σ1 3 .

Figure 4. Stress path and yield surfaces for the hardening model from Plaxis V8 for a soil going through
its geologic phases of sedimentation, overconsolidation and triaxial undrained shear.
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strains significantly reduces the value of the tangent soil 
stiffness compared to its value in the elastic region. The 
yield surfaces do not move during the unloading phase; 
they remain at the previously reached location, bound-
ing the elastic region, so that the resulting strains are 
fully elastic.

Fig. 4 shows the stress path and the yield surfaces for the 
hardening model from Plaxis V8 for a soil going through 
its geologic phases of sedimentation, overconsolidation 
and triaxial undrained shear; the last of these being such 
as the imposed loading to the geotechnical structure 
under consideration. The stress path in the left part of 
Fig. 4 is drawn in a ( ′p , q) diagram, where ′p and q are 
the effective stress invariants depending on the vertical,  
′σv , and horizontal, ′σh , effective stresses. The mean 

effective stress ′ = ′ + ′p ( )/σ σv h2 3  and the deviatoric 
stress q= ′ − ′σ σv h . MC denotes the Mohr-Coulomb 
envelope; S1 and S2 are two positions of the shear yield 
surface; and C1 and C2 are two positions of the compres-
sion yield surface. During sedimentation the soil follows 
the stress path from point (1) to point (2). When it is at 
the point (1'), for example, on yield surfaces C1 and S1, 
both the yield surfaces are “dragged” with the stress path 
to the new positions denoted by C2 and S2 to the point 
(2). The geologic unloading from point (2) to point (3) 
leads to the actual overconsolidated state of the soil. The 
yield surfaces remain at their positions C2 and S2. The 
undrained shear phase is shown by the stress path from 
point (3) to point (5). At point (4) it reaches the yield 
surface S2, thus producing plastic deformations and a 
reduction of the soil stiffness, which is demonstrated in 
the right part of Fig. 4 by a significant increase in the 
vertical deformation ε1  from point (4) to point (5).

The slope of the Mohr-Coulomb envelope for triaxial 
compression is given by

M =
′

− ′
6

3
sin
sin

ϕ
ϕ

        (4)

and the envelope crosses the ′p axis at the point with the 
coordinate 

′ =−
′
′=

p c
q 0 tanϕ

        (5)

This complex behaviour is, however, governed by the 
soil parameters, which are familiar in geotechnical 
practice. The user has to define the Mohr-Coulomb 
strength parameters ′c and ′ϕ , the angle of dilatancy 
at the drained failure ψ , the three reference values 
of the Young’s modulus, the power coefficient for the 
determination of the soil stiffness, and some additional 

advanced parameters, which can be left at their default 
settings. 

Rowe’s stress-induced dilatancy theory is used in the 
model for the determination of the volumetric plastic 
strains during shear loading. According to this theory, 
the material behaviour is governed by the critical state 
friction angle ϕcv , which is the slope of the Mohr-
Coulomb envelope corresponding to the critical state 
line in the ( ′p , q) diagram. The material contracts for the 
values of the mobilized friction angle smaller than ϕcv , 
whereas it dilates for values higher thanϕcv . At the point 
of failure, the mobilized friction angle equals ′ϕ , and 
the angle of dilatancy is determined from

sin
sin sin

sin sin
ψ

ϕ ϕ
ϕ ϕ

=
′−

− ′
cv

cv1
        (6)

The soil stiffness is determined through the reference 
values of Eur

ref  for the elastic stiffness, E50
ref  for the secant 

stiffness at 50% of the mobilized compressive strength 
in the standard drained triaxial test, and Eoed

ref  for the 
tangent oedometer modulus during the loading of a 
normally consolidated soil in an oedometer test. These 
reference values are related to the reference confining 
the effective stress ′ = =σ3 100pref  kPa. The values of 
the three Young’s moduli for different confining effective 
stresses are defined by

E E
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c p

m
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ϕ σ ϕ
ϕ ϕ

3         (9)

where m is the power coefficient defined by the user.

The advanced parameters include Poisson’s ratio, νur , for 
which the default value is set at 0.2, which corresponds 
to numerous published recommendations, the coef-
ficient of the earth pressure at rest for normally consoli-
dated soil K0

nc , with the default value determined from
K0 1nc = − ′sinϕ , and the failure ratio Rf  with the default 
value of 0.9.

The basic idea for the formulation of the hardening-soil 
model is the hyperbolic relationship between the vertical 
strain ε1  and the deviatoric stress q during the standard 
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isotropically consolidated drained shear, which can be 
approximated by

ε1
2
2 1

≈
−

−

R
E

q
q
qa

f

50

        (10)

where qa  is the asymptotic value of the shear strength, 
related to the deviatoric stress at failure, qf , through
q q Ra = f f , and the deviatoric stress at failure is defined by

q cf = ′+ ′
′

− ′
( cot ) sin

sin
ϕ σ

ϕ
ϕ3

2
1

        (11)

The recently developed new version of the Plaxis 
programme has the possibility to model the soil stiffness 
at small strains. This option requires two additional soil 
parameters, the reference shear modulus at very small 
strains, G0

ref , and the reference shear strain, γ0 7. . The 
first parameter serves for a determination of the shear 
modulus at very small strains G0  through

G G
c

c p

m
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ref
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cos sin
cos sin

ϕ σ ϕ
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        (12)

The reference shear strain is the value of the shear strain 
attained when the shear modulus, G0 , reduces to 70% 
of its initial value. The Plaxis manual recommends the 
following expression for its determination

γ ϕ σ ϕ0 7
0

1 0
1

9
2 1 2 1 2. ( cos ) ( )sin ’= ′ + ′ + ′ +⎡⎣ ⎤⎦G

c K         (13)

where K0 is the coefficient of the earth pressure at rest. 
K0 and the overconsolidation ratio OCR may be defined 
by the user in order to define the initial stresses.

4 DETERMINATION OF THE 
SOIL PARAMETERS AND THE 
INITIAL STRESS STATE 

Due to the complex constitutive relationship used in 
the numerical modelling, the determination of the 
soil parameters for the hardening-soil model deserves 
special attention. The intention in this research was 
to use those parameters that were readily available, 
either from tests and measurements performed at the 
construction site and in the laboratory or from correla-
tions published in the literature. It has to be emphasized 
that the parameters were not adjusted so as to get the 
best agreement between the measured and the calcu-

lated displacements for a class-C prediction, after the 
completion of construction, instead, they were selected 
as if a class-A prediction were to be made prior to the 
construction.

The determination of the parameters for the hard clay 
layer is described first, because it required an analysis in 
both the drained and the undrained conditions, as the 
two limiting states for the development of the deforma-
tions. The undrained conditions are required because of 
the clay’s low permeability and the high rate at which the 
excavation proceeded.

For the undrained conditions, the designer can make 
a total stress analysis with the determined, undrained 
shear strength, or an effective stress analysis with the 
requirement that there are no volumetric strains during 
the excavation. The second approach was chosen for this 
research because it was estimated that the undrained 
shear strength of the hard clays, determined in labora-
tory tests on undisturbed samples, is not sufficiently 
reliable because such samples might contain fissures. 
These fissures lead to an unrealistically fast consolidation 
and, thus, a too fast transition from the undrained to 
the drained state. This approach is on the safe side and it 
represents a cautious estimate of the characteristic values 
in terms of Eurocode 7 [12].

The hardening-soil model is, however, very limited in 
terms of  the choice of the effective stress analysis in 
undrained conditions. This is especially so for hard, 
overconsolidated clays, for which the undrained shear 
strength is larger than the drained shear strength. 
The soil parameters that successfully model the shear 
strength and the dilatancy characteristics in drained 
conditions lead to an unrealistic, extremely large, 
undrained shear strength. The only way to avoid this 
is to set the angle of dilatancy ψ= 0  for the hard clay, 
which ensures that the material volume does not change 
during the shear loading at the drained failure. The 
result is a significantly lower undrained shear strength 
for the numerical model than the one determined from 
laboratory tests, as shown in Fig. 5. Curve (1) represents 
the assumed effective stress path in undrained condi-
tions from the initial state at point A to failure at point 
B1 on the Mohr-Coulomb envelope (MC) in the grey 
area, which shows the range of measured values for 
the undrained shear strength in the UU tests. Curve 
(2) is the effective stress path in undrained conditions, 
from the initial state to the failure at point B2 for the 
hardening-soil model with an angle of dilatancy ψ= 0 . 
Curve (3) is the effective stress path in drained condi-
tions for the idealized case of Rankine active pressures 
on the wall. It is obvious from Fig. 5 that the stress path 
(2) gives a much lower value for the undrained shear 
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strength than the stress path (1). The same holds true for 
the passive state.

Figure 5. Effective stress paths for the hard clay.

Oedometer tests on samples of hard clay, the values of 
measured undrained shear strength, and the correlation 
between the preconsolidation pressure and the measured 
shear-wave velocities after Mayne et al. [16]

σp skPa( ) . ( / ) .= [ ]0 106 1 47v m s         (14)

all indicate that the hard clay is overconsolidated with an 
overconsolidation ratio 2 4≤ = ′ ≤OCR p vσ σ/ , where 
the larger values correspond to the upper parts of the 
clay layer. The value of OCR= 3  was adopted for the 
numerical analysis.

With the use of Jaky’s expression K0 1 0 5nc = − ′=sin .ϕ , 
the coefficient of the earth pressure at rest was deter-
mined according to the recommendation by Mayne and 
Kulhawy [17]

K K0 0= ′ncOCRsinϕ         (15)

which gives K0 0 87= .  for the hard clay.

The selection of the stiffness parameters for the hard 
clay was not so straightforward. The starting point was 
the determination of the shear modulus at very small 
strains from the measured shear-wave velocities. The 
comparison of the values of G0 obtained in this way with 
equation (12) gave m= 0 5.  and G0 308ref MPa=  . 

The reduction of the initial shear modulus at very 
small strains with increasing strain values was the most 
demanding part of the parameter determination. It was 
not possible to deduct this reduction from the triaxial 
tests because the strains were not measured directly 
on the sample. Even though there are many published 
triaxial test results with measurements of small strains, 
few of them cover the entire strain range, from very 
small strains to the point of failure. As a result, it was 
decided to use the recommendations given by Mayne 
et al. [16], who suggest the following secant modulus E 
reduction with the increase of the deviatoric stress q

E
E

q
q

g

0

1= −
⎛

⎝
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⎞

⎠
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f

        (16)

where the parameter g should be in the range 0 2 0 4. .≤ ≤g  . 
This range is shown in Fig. 6 by the grey area. Fig. 
6 also shows the curves resulting from the different 
numerical simulations for the hard clay in the process of 
determining the clay’s stiffness parameters, which will be 
commented on in the following paragraphs.

The next step was to select the value of the parameter
E50

ref , and the research of Stroud (after Clayton [17]) 
was used for this purpose. According to this research, 
the values of the ratio ′E N/ 60 for q q/ .f = 0 5  are in the 
range between 1 and 2 for normally consolidated and 
overconsolidated clays and sands. If it is assumed that 
′ ≈E E50  , it follows that the values of the ratio E N50 1 60

ref /( )  
are within a similar range, because, according to equa-
tions (1) and (8), the square root of K0  is also involved 
in the ratio, but its value is close to 1. From Fig. 2, ( )N1 60 20=
for the hard clay, so that E50

ref MPa= 40 was taken as the 
first choice.

The Plaxis manual recommends using E Eoed
ref ref= 50 , and 

with the selection of E Eur
ref ref= 2 50 , which is close to the 

initial modulus for the hyperbolic relationship given 
by equation (10), the simulation of the isotropically 
consolidated undrained triaxial test can be carried out 
with OCR = 3 and an initial isotropic stress of 200 kPa. 
This stress value approximately corresponds to the verti-
cal effective stress just below the interface between the 
gravel and the hard clay layers. The undrained modulus 
of elasticity at very small strains was determined from         
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Figure 6. Reduction of the normalized secant modulus E/E0 with the increase of the normalized deviatoric stresses in
undrained conditions after Mayne et al. [16], and different numerical simulations for the hard clay.

E G0 02 1= +( )ν         (17)

with ν = 0 5.  . 

This simulation with the hardening-soil model, which 
did not include the behaviour at small strains, gives the 
secant modulus reduction curve denoted by A1 in Fig. 
6. Curve A2 shows a similar simulation in which the 
soil is anisotropically consolidated, the state closer to 
the one at the construction site. It is obvious from Fig. 6 
that both curves, A1 and A2, are well below the grey area 
recommended by Mayne et al.

When the option for small strains is included, with the 
reference shear strain γ0 7

410. =
−  according to equation 

(13), as recommended in the manual, curve As1 is 

obtained for the isotropic consolidation and curve As2 
for the anisotropic consolidation. Again, both curves 
depart from the recommendations in the grey area, 
which resulted in the rejection of the first selected value 
of E50

ref  .

The second choice of E50
ref  was made with the aim to 

obtain a match between the simulated, consolidated, 
undrained triaxial test results and the recommendations 
by Mayne et al. The first value of E50

ref  was multiplied by 
a factor of 2.5, giving E G50 0100 3ref refMPa= ≈ / , with
E Eoed

ref ref= 50 , E Eur
ref ref= 2 50 . Curve H1 in Fig. 6 was now 

obtained with the hardening-soil model, which did 
not include the behaviour at small strains, for the 
isotropic consolidation, and curve H2 for the aniso-
tropic consolidation. For the small strain analysis, the 
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recommended equation (13) was not applied for the 
determination of the reference shear strain, but a value 
of γ0 7

52 10. = ⋅ − was chosen instead. Curve Hs1 was the 
result for the isotropic consolidation and curve Hs2 for 
the anisotropic consolidation. These two curves provide 
a much better comparison with the Mayne et al. grey 
area, particularly the curve for the isotropic consolida-
tion.

The deviations of the curve Hs2 from the grey area, 
with a sharp break at point Y, are the consequences of 
the characteristics of the hardening-soil model, i.e., the 
values of q q/ f  lower than the one at point Y are below 
the yield surface S2 in Fig. 4. At point Y, the stress path 
reaches this yield surface at point (4) from Fig. 4, after 
which, it was shown, the reduction of stiffness occurs 
all the way to the point of failure when q q/ f  equals 1. 
Even though similar research could not be found in the 
literature, it is not likely that the break at point Y reflects 
the actual soil behaviour. It seems more likely that the 
real Hs2 curve passes much closer to the grey area. It 
is interesting to note that a similar approach for the 
determination of the modulus reduction as a function of 
q q/ f  was adopted by Mayne [19] for the calculation of 
settlements of spread foundations. They reported good 
agreement with the observed settlement of the experi-
mental foundation.

The additional verification of the validity of the 
numerical simulations was carried out by comparing 
calculated vertical strains ε1  with the values measured 
in laboratory triaxial tests. It was noted that in simulated 
triaxial tests, where the behaviour at small strains was 
not included (curves H1 and H2 in Fig. 6), the vertical 
strains at the point of failure, defined by the maximum 
value of the ratio ′ ′σ σ1 3/ , differ by a small margin from 
the results of the simulated triaxial tests with small 
strains (curves Hs1 and Hs2). This means that the small 
strain behaviour in the range 0 0 2≤ ≤q q/ .f , where the 
modulus reduction is most important, does not have 
a significant influence on the strains close to the point 
of failure. Even though there are significant differences 
between curves H1 and H2, on the one hand, and Hs1 
and Hs2 on the other, the anisotropic consolidation does 
not dominate over the isotropic consolidation for strains 
at the point of failure.

The calculated vertical strains at the point of failure for 
curves H1, H2, Hs1 and Hs2 are in the range between 
2.8% and 3.2%. This is in very good agreement with the 
measured strains in the laboratory triaxial tests, which 
were in the range between 2.4% and 4.4% (Fig. 3). This 
is another indicator that the numerically simulated hard 
clay behaviour was within the measured values.

The stiffness parameters for the poorly graded gravel 
were determined in a similar way as for the hard clay, 
except for the dilatancy during shear, which was not 
disregarded. The gravel dilatancy was estimated based 
on the assessment of its critical state friction angle ϕcv

which, in turn, was determined through the round-
ness parameter R. For predominantly sub-rounded to 
rounded grains, 0 5 0 7. .≤ ≤R , and by using the correla-
tion suggested by Santamarina and Cho [20]

ϕcv
0 042 17( )= − R         (18)

With the use of equation (6), the angle of dilation ψ= 60 .

It was also estimated that due to its geologic age in the 
zone of strong local seismicity (IXth zone of the MCS 
intensity scale), the gravel would probably exhibit 
preconsolidation characteristics. It was just assumed 
that the preconsolidation ratio has a value of OCR = 2. 
The coefficient of the earth pressure at rest could then 
be calculated from equation (15) as K0 0 6= . . The effect 
of the selection of the assumed values was tested, and 
it turned out that the influence of the value of OCR on 
the wall displacements was negligible, which was not the 
case for the hard clay.

G0 226ref MPa=  was determined from the measured 
shear-wave velocity with m = 0.5. The other stiffness 
parameters were determined using the same equations 
as for hard clay, E G50 075 3ref refMPa= ≈ / , E Eoed

ref ref= 50  and  
E Eur

ref
50
ref= 2 . 

Table 1 lists the user-provided gravel and hard-clay 
parameters for the numerical analysis using the harden-
ing-soil model, and Table 2 gives the parameters for the 
calculation of the initial stresses.

It is interesting to note that for both the gravel and the 
hard clay, the following two ratios gave approximately 
the same values

E
N

50

1 60

5
ref MPa)

MPa
(

( )
≈         (19)

G
N

0

1 60

15
ref MPa

MPa
( )

( )
≈         (20)

Since the top fill layer is of small thickness, it was disre-
garded in the analysis in a way that it was assumed that 
the gravel layer extended from the ground surface.

As for the required parameters for the supporting wall 
and anchors, the modulus of elasticity of the reinforced 
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concrete was taken as Erc MPa= ⋅2 5 104. , and the 
design concrete section bending resistance at the occur-
rence of a plastic hinge as MRd MNm/m= 0 4.  accord-
ing to Eurocode 7. The anchor modulus of elasticity was 
taken as Es MPa= ⋅1 95 105. , the stiffness of the anchors 
with four strands as E As MN= ⋅1 17 102. , and those with 
five strands as E As MN= ⋅1 46 102. . The design anchor 
resistance to steel extension was taken as Rad = 0.844 MN 
for the anchors with four strands and Rad = 1.06 MN for 
the anchors with five strands.

Table 1. Soil parameters for the analysis with the hardening-soil model.

Parameter Symbol Unit
Value

gravel hard clay
Reference stress pref   kPa 100
Saturated density ρsat kN/m3 21 21
Density above GWL ρunsat MkN/m3 20 21
Permeability k m/day 100 10-4

Reference Young’s modulus at 50% mobilized strength E50
ref Mpa 75 100

Reference oedometer modulus Eoed
ref Mpa 75 100

Reference elastic Young’s modulus Eur
ref Mpa 150 200

Elastic Poisson’s ratio (effective) νur - 0.2 0.2
Power coefficient m - 0.5 0.5
Effective cohesion ′c kPa 2 25

Effective friction angle ′ϕ degree 35 30

Angle of dilatancy at drained failure ψ degree 6 0

Coefficient of earth pressure at rest (normally consolidated soil) K0
nc - 0.426 0.5

Failure ratio Rf - 0.9 0.9
Tension cut off - - yes yes
Reference shear strain γ0 7. - 2 · 10-5 2 · 10-5

Reference small strain shear modulus G0
ref Mpa 226 308

Table 2. Soil parameters for the initial stress state.

Parameter Symbol Unit
Value

gravel hard clay
Coefficient of earth pressure at rest K0 - 0.6 0.87
Overconsolidation ratio OCR - 2 3
Depth of phreatic surface - m -7 -7

5 SIMULATION OF THE 
CONSTRUCTION AND THE 
COMPUTED DISPLACEMENTS

The soil-structure interaction was analysed in phases 
that simulated the real construction stages. After the 
calculation of the initial stresses and the pore-water 
pressures was completed, the excavation was simulated 
as shown in Table 3. The load of the neighbouring house 
was estimated to be 720 kN/m, uniformly distributed on 
strip foundations and acting vertically. Each excavation 
phase, except for the last one, was subdivided into two 
parts, the first part comprising the excavation to the 

A. S. NOSSAN: ADVANCES AND UNCERTAINTIES IN THE DESIGN OF ANCHORED RETAINING WALLS USING NUMERICAL MODELLING



ACTA GEOTECHNICA SLOVENICA, 2008/116.

selected depth, and the ground-anchor pre-stressing in 
the second part. Drained conditions were assumed for 
the gravel layer and undrained conditions were assumed 
for the hard clay layer in all the construction phases.

As the excavation reached under the underground water 
level, the water level was lowered to the bottom of the 
excavation and the pore-water pressures were calculated as

u u u= +0 e         (21)

where u0  are the pressures due to seepage and ue  are 
the excess pore pressures developed in undrained condi-
tions. For drained conditions in gravel ue = 0  at all 
times. The last calculation phase consisted of consolida-
tion to the fully drained state in all the soil layers. The 
time development of the consolidation process was not 
simulated because of the unreliable data on the coeffi-
cient of consolidation. No measurements of pore-water 
pressure in the clay were taken during the construction.

Table 3. Construction calculation phases. 

No. Phase
Depth below
ground level

m

Anchors
Pre-stressing force (kN) Spacing (m)

0 initial state - - -
0a load from the adjacent house -1.7 - -
1 excavation -5 - -
1a anchor pre-stressing -4 500 2.5
2 excavation -8 - -
2a anchor pre-stressing -7.5 500 2.5
3 aexcavation -12 - -
3a anchor pre-stressing -11.5 650 2.5
4 excavation -14.3 - -
5 consolidation - - -

Figure 7. Calculated horizontal wall displacements in phases and measured displacements (M).

A. S. NOSSAN: ADVANCES AND UNCERTAINTIES IN THE DESIGN OF ANCHORED RETAINING WALLS USING NUMERICAL MODELLING



ACTA GEOTECHNICA SLOVENICA, 2008/1 17.

Fig. 7 shows the calculated development of the horizon-
tal displacements of the anchored wall in phases denoted 
by the numbers in the brackets. The analysis was 
performed with the hardening-soil model and the small 
strains. The measured relative horizontal wall displace-
ments after the last excavation phase are also shown by 
the curve (M). These displacements are relative because 
the inclinometer does not record the rigid-body wall 
translation. Thus, the bottom measured value is attached 
to curve (4) for undrained conditions after the comple-
tion of the excavation because it is assumed that the 
measured displacements occurred in such conditions.

The calculated displacements in phase 4 deviate signifi-
cantly from the measured displacements. However, the 
calculated shape of the wall bending seems to be well 
in accordance with the measured one. Also, when the 
deviations are regarded in the light of the parameter-
selection process and the generally negative experience 
in the prediction of displacements, then the obtained 
calculation results do seem to be encouraging and, from 
the point of view of the designer, acceptable. This partic-
ularly holds true when the fact that the displacement 
prediction was simulated on the basis of the available 
data and literature, and not actually a class-C prediction, 
is taken into account.

It has, however, to be noted that the measured displace-
ments indicate the wall is bending more than the 
calculations are showing. This means that savings on the 
reinforcement of the wall should not be made.

Fig. 8 shows the comparison of the wall horizontal 
displacements calculated with (full lines) and without 
(dashed lines) small strains near and after the comple-
tion of the excavation. The differences between the 
corresponding curves with and without small strains 
are not significant, which might appear surprising, but 
previously described simulations of triaxial, consoli-
dated, undrained tests showed that vertical strains at 
the point of failure do not differ much between the two 
options, which explains the results in Fig. 8. The gener-
alization of these results would lead to the conclusion 
that for practical purposes it is not necessary to include 
the soil behaviour at small strains for similar walls and 
similar ground conditions. However, the shear modulus 
at very small strains is still the most important param-
eter for the determination of other stiffness parameters. 
If it were not used, the accurate prediction of wall 
displacements would not have been feasible. This fact 
emphasizes the importance of measuring the shear-wave 
velocity in situ.

Figure 8. Comparison of horizontal wall displacements near and after the completion 
of the excavation with (full lines) and without (dashed lines) small strains.
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When comparing the wall bending moments with and 
without small strains, the differences are more signifi-
cant, the bending moments being smaller in the analysis 
with small strains than in the one without small strains. 
Similar results are obtained for the anchor forces.

Another comparison was made in order to determine 
the influence of the overconsolidation ratio on the 
behaviour of the gravel. Fig. 9 shows the results for the 
overconsolidation ratio of 2 and for normally consoli-
dated gravel with OCR = 1 and K K0 0 0= =nc 426. . The 
full lines correspond to the overconsolidated gravel and 
the dashed lines to the normally consolidated gravel, all 
calculated with the option for small strains. It is clear 
that the differences between the corresponding curves 
are negligible, so that the overconsolidation ratio for the 
gravel does not influence its behaviour. The same does 
not hold true for the hard clay, but this analysis is of 
minor importance because the overconsolidation ratio 
for the clay was determined with sufficient certainty.

The stability analysis was also performed using the 
option of reducing the soil’s strength parameters by a 
common factor, which can then be taken as the safety 
factor for the soil. For undrained conditions the safety 
factor was F ≈1 6.  , and for drained conditions F ≈1 3. . 
It has to be emphasized that the performed analyses 

Figure 9. Comparison of horizontal wall displacements near and after the completion of the excavation
for the overconsolidated (full lines) and the normally consolidated (dashed lines) gravel.

lead to the mobilization of the wall resistance, and for 
the undrained conditions also the mobilization of the 
anchor steel resistance. While this is not especially 
important for the wall, due to its ductility, it is of utmost 
importance for the anchor steel, because it has brittle 
behaviour, which leads to an annulment of the anchor 
forces at failure. As a result, it is essential to determine 
at exactly which point the anchor steel resistance is 
mobilized. In the undrained conditions, this occurred 
for a safety factor of a little below 1.6.

6 CONCLUSIONS

The described research of a case history involving the 
construction of an anchored wall for the protection of 
an excavation showed that it is possible to adequately 
predict wall displacements and stability based on 
standard geotechnical investigations, soil data from the 
literature and a finite-element computer programme 
with a realistic soil model. It was shown that it is very 
important to clearly understand the functioning of the 
selected soil model. This can be achieved by numerical 
simulations of a standard laboratory test with stress 
paths that are relevant for the geotechnical structure 
under consideration.
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The soil-parameter determination for numerical simula-
tions has the most important role in this type of analysis 
and the most valuable parameter is the shear modulus 
at very small strains, obtained from field measurements 
of the shear-wave velocity. The reduction of the shear 
modulus with increasing strains was obtained by using 
published evidence. The soil behaviour was analysed 
with and without the option of small strains. It is clear 
that it is not necessary to use modelling with small 
strains in order to get a satisfactory prediction of the 
wall displacements because the differences in the two 
types of analysis are within the general uncertainties of 
modelling. However, the determination of the soil stiff-
ness at larger strains has to be very detailed and based on 
solid arguments, because it greatly influences the results.

This is just one example of an analysis of a case history, 
but it is encouraging, and further similar research might 
lead to more reliable and more economic designs. Until 
then, the prediction of soil behaviour in similar situa-
tions will still be a challenge for designers who have to 
take into consideration that the use of finite-element 
programmes requires a studious approach.
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Izvlec̆ek

Članek obravnava izvirni pristop določanja kritične razporeditve in mejnih vrednosti pasivnih zemeljskih tlakov za tri-
dimenzionalne primere po metodi mejne analize in teorema zgornje vrednosti. Za določanje kritične razporeditve pasivnih 
tlakov vzdolž višine podporne konstrukcije je uporabljena metoda mejne analize z množico tri-dimenzionalnih kinematično 
dopustnih hiperboličnih rotacijskih porušnih mehanizmov po metodi postopnega določanja intenzitete pasivnih tlakov od 
zgoraj navzdol. Določena je kritična razporeditev, prijemališče in rezultantna vrednost pasivnih zemeljskih tlakov, ki se z 
ozirom na izbrani kinematični model lahko aktivirajo ob mejnem stanju. Rezultati analiz kažejo, da je skupna vsota pasiv-
nih tlakov z upoštevanjem kritične razporeditve manjša od dosedaj objavljenih primerljivih vrednosti v literaturi, višina 
prijemališča rezultante pa je neodvisna od trenja med podpornimi konstrukcijami in zalednimi zemljinami.
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Abstract

This paper presents a novel approach to the determination 
of the critical distribution and limit values of three-
dimensional passive soil pressures acting on flexible walls 
following the upper-bound method within the framework 
of the limit-analysis theory. The method of limit analysis 
with a set of three-dimensional kinematically admissible 
hyperbolic translational failure mechanisms is used to 
determine the critical distribution of the passive pressures 
along the retaining structure’s height. The intensity of 
the passive pressures is gradually determined with the 
mentioned translational failure mechanisms in the top-
down direction. Thus, the critical distribution, the trust 
point and the resultant of the passive pressures that can be 
activated at the limit state for the chosen kinematic model 
are obtained. The results of the analyses show that the total 
sum of passive pressures, considering the critical distribu-
tion, is lower than the comparable values published in 
the literature. Furthermore, the trust point of the passive 
pressure resultant is independent of the friction between 
the retaining structures and the soil.

Keywords

limit analysis, earth pressure, passive pressure, failure 
surface, soil-structure interaction

1 INTRODUCTION

In geotechnical practice, the results of three-dimensional 
analyses of passive earth pressures are used to design 
some anchor systems, to ensure the stability of the foun-
dations of arching and bridging structures, to design 
embedded caissons and other retaining structures with 
spaced out vertical supporting elements, etc.

It is only logical that research into passive earth pres-
sures is frequently presented in the literature. The major 
part of the research deals with 2D stability analyses, 
while much less attention is paid to 3D analyses. The 
magnitudes of the earth pressures for the active and 
passive limit states can be determined by different 
methods: the limit-equilibrium method (Terzaghi 1943), 
the slip-line method (Sokolovski 1965) and the limit-
analysis method (Chen 1975). In the limit-equilibrium 
and slip-line methods the static equilibrium and failure 
conditions are considered, while the expected move-
ments of the retaining structures are not directly consid-
ered in the analysis. Generally, a limit analysis serves for 
determining the upper  and lower bounds of the true 
collapse load by taking into account the supposed move-
ments. The results of the analyses can differ essentially, 
because they depend on the chosen failure mechanism 
or the kinematic model of the limit state. Irrespective of 
the chosen procedure and the method used, the consid-
ered static or kinematic model should be in equilibrium 
when the limit state is reached.

Researchers have used many different methods to 
determine earth pressures, among them Coulomb 
(1776), Brinch Hansen (1953), Janbu (1957), Lee and 
Herington (1972), Shields and Tolunay (1973), Kérisel 
and Absi (1990), Kumar and Subba Rao (1997), Soubra 
and Regenass (2000), Soubra (2000), Škrabl and Macuh 
(2005) and Vrecl-Kojc and Škrabl (2007).

The above-cited, published research mainly considers 
the 2D problem of passive earth pressures. The results of 
3D analyses have been presented only by Blum (1932), 
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and to a restricted extent. Extensive 3D analyses were 
treated by Ovesen (1964), who presented the procedure 
for determining the bearing capacity of different anchor 
plates based on 2D solutions of passive earth pressures 
and the results of several experimental studies in 3D 
conditions.

Soubra and Regenass (2000) published the results of an 
analysis for determining the 3D passive pressure accord-
ing to the limit-state analysis using the upper-bound 
theorem for the translational kinematic admissible 
multi-block failure mechanism. Duncan and Mokwa 
(2001) treated the procedures for determining the bear-
ing capacities for anchor plates and presented the results 
of several experimental studies. Škrabl and Macuh 
(2005) presented the procedure for a spatial passive pres-
sure analysis based on the hyperbolic kinematic admis-
sible failure mechanism and the upper-bound theorem.

The authors of all the above-mentioned works consid-
ered the presumed distribution of passive pressure along 
the retaining wall height (a triangular distribution for 
the determination of the self-weight contribution, γ , 
and a rectangular distribution for the determination of 
the surcharge contribution, q). 

This paper considers the distribution of passive earth 
pressures along the retaining structure height. The 
passive pressures distribution is determined numerically 
with simultaneous analyses of twenty different kinemati-
cally admissible translational spatial failure mechanisms.

The results of the analyses show that the resultants of the 
passive pressures obtained by the presented, proposed 
procedure give values, lower than those published in the 
literature for almost all cases; only for the case when
δ = 0° and ϕ ≤ 30° are the differences minimal, where the 
values are a little lower or equal to the values presented 
by Soubra and Regenass (2000), and Škrabl and Macuh 
(2005).

The application of the upper-bound theorem ensures 
that the actual values of the passive soil pressures cannot 
be higher than the values presented in the continuation 
of this paper.

2 ASSUMPTIONS AND LIMITATIONS

It is a characteristic of passive earth pressures under 3D 
conditions that they increase as the width of the wall 
decreases. The value depends on the ground properties 
and the height/width relationship of the wall. It can be 
several times higher than the value for 2D cases. The 

presented geomechanical analysis is based on the follow-
ing suppositions and limitations:

- the structure discussed is a vertical, flexible wall with 
an area of b·h (b = width; h = height) and a horizon-
tal backfill,

- the distribution of the passive pressures (pp) along 
the wall height is defined by:

         p e y y e q e cp p pq pc= ⋅ ⋅ −( )+ ⋅ + ⋅γ γ 0          (1)

 where factors epγ , epq and epc define the distribution 
of the passive pressures along the height of the verti-
cal wall, and y and y0 are the coordinates (see Fig. 1),

- the resulting value of the passive earth pressure is 
defined by:

   P K h b K c h b K q h bp p pc pq= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅γ γ* * *
2

2
        (2)

 where K pγ
* , K pc

*  and K pq
*  are comparative coef-

ficients of the passive earth pressure due to the 
soil-weight influence, the cohesion influence, and 
the surcharge influence, respectively, for a standard, 
assumed passive pressure distribution,

- the value of the factor epγ  at the top of the wall 
(y=y0) is equal to 0, its appurtenant values epq and
 epc are determined with a two-dimensional model 
(b/h = ∞) considering the boundary condition for 
the 3D kinematic admissible failure mechanism,

- the discussed translational failure mechanism is 
bounded by the log spiral in the region of the retai-
ning wall, and by the hyperbolic surfaces defined by 
the envelope of the connected hyperbolic half-cones 
at the lateral sides,

- the lateral surfaces coincide with the margins of the 
considered retaining wall,

- the backfill is homogenous, the soil is isotropic and 
considered as a Coulomb material with the associa-
tive flow rule obeying Hill’s maximal work principle. 

3 THE UPPER- AND LOWER-BOUND 
THEOREMS

The upper-bound theorem ensures that the rate of 
the work due to the external forces of the kinematic 
systems in equilibrium is smaller than, or equal to, the 
rate of dissipated internal energy for all kinematically 
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admissible velocity fields. The kinematically admissible 
velocity fields obey strain-velocity compatibility condi-
tions and velocity boundary conditions, as well as the 
flow rule of the considered materials. The lower-bound 
theorem for rigid-plastic material using the associative 
flow rule enables an evaluation of the lower-bound theo-
rem of the true passive earth pressures for each statically 
admissible stress field that satisfies the equilibrium and 
stress boundary conditions, and does not violate the 
yield criteria anywhere. The true value of the failure load 
is bracketed between both limit values with the expected 
deviations, which are usually acceptable in geotechnical 
design.

The presented research considers only the upper-bound 
theorem of the limit analysis to determine the 3D 
passive earth pressures using the kinematically admis-
sible velocity field. The solution of the 3D passive earth 
pressure problem according to the kinematic approach 
is equivalent to the solution of the limit-equilibrium 
approach (Mroz and Drescher 1969; Michalowski 1989; 
Salençon 1990; Drescher and Detournary 1993). The aim 
of the presented research is to improve on the known 
lowest values of the upper-bound solutions presented 
in the literature (Soubra and Regenass 2000, Škrabl and 
Macuh 2005) using a more exacting passive pressure 
distribution.

Figure 1. Cross-section of the failure mechanism.

4 TRANSLATIONAL 3D FAILURE 
MECHANISM

The applied 3D translational failure mechanism repre-
sents an extension of the plane slip surface in the shape 
of a log spiral (see Fig. 1). A very similar ‘friction cone’ 
mechanism in the upper-bound analysis of a 3D bear-
ing-capacity problem was used by Michalowski (2001). 

Every point along the retaining wall height (1-0, see Fig. 
1) is given an exactly defined and kinematically admis-
sible hyperbolic friction cone. The flexionally curved 
axis and the cross-section of the shaft surface with the 
plane r-ϑ  (see Fig. 1) are:

r ro
∗ ∗ ∗= ⋅ −cosh(( )tan )ϑ ϑ φ         (3)

r r ed
∗ ∗

−= ⋅ ∗( ) tanϑ ϑ φ         (4)

r r eu
∗ ∗

− −= ⋅ ( ) tan*ϑ ϑ φ         (5).

The radius and the centre of the arbitrary half cone in 
the r-z plane are:

R r* * *sinh ( )tan= ⋅ −[ ]ϑ ϑ φ         (6)

where R* , r* and ϑ* denote the cone diameter in the 
cross-section of the plane ϑ-z, and the polar coordinates 
of the apex of the hyperbolic half-cone.
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All hyperbolic half-cones whose infinite set represents 
the lateral surface of the failure mechanism are also 
kinematically admissible when the additional geometry 
condition is satisfied:

ϑ π φ0 2≤ −[ ]/         (7)

which ensures that there exists no half-cone with its apex 
on the vertical wall (1-0, see Fig. 2) that could intersect 
the vertical wall under point ( r0 0,ϑ ).

Since all the hyperbolic half-cones are kinematically 
admissible, then using the additional condition (7) the 
lateral surface, which is the envelope of the infinite set of 
all half-cones defined by expressions (8), (9) and (10), is 
also kinematically admissible.

r r rε ϑ ϑ φ ϑ ϑ φ ε
* * * * * *cosh ( )tan sinh ( )tan sin( )= −[ ]− −[ ]    (8),

z rε ϑ ϑ φ ε
* * * *sinh ( )tan cos( )= −[ ]        (9),

ε
ϑ ϑ φ φ ϑ

ϑ* *
* *arcsin( / ) arcsin

tanh ( )tan tan tan
tanh (

= =
−[ ]+

+
dR dr

1 −−[ ]

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪ϑ φ φ ϑ* *)tan tan tan
(10).

Considering  r r* = 1  and ϑ ϑ* = 1  , expressions (8), (9) 
and (10) define the coordinates of the envelope on the 
leading half-cone. 

The coordinate zf  of the lateral failure surface can be 
expressed:

Figure 2. The scheme of the spatial failure mechanism.

                                 ∀ ≥ ∧ ≤r
x

r r0
1sin
;

ϑ ε
  

= = −[ ]z z rf sinh ( )tan cos( )* * * *ϑ ϑ φ εε

                            
∀ ≥ ∧ ≤ −r r r r eε

ϑ ϑ φ
1

1
1

( ) tan ;
  

        
= = −[ ]− −z z r rr r rf ϑ ϑ ϑ φ1 1

22( , ) cosh ( )tan 11
2

5 WORK EQUATION

The considered failure mechanism on the width b is 
limited on the left by a vertical wall, on the right by a 
curved surface in the shape of a log spiral, and above by 
an even surface on which the surcharge can act. Both 
lateral surfaces are defined by the curved surfaces of 
the leading half-cone and the envelope of all the other 
hyperbolic half-cones (see Fig. 2).

At each point on the so-formed failure surface the 
normal vector of the surface encloses with the plane 
r-z shear angle ϕ and also defines the direction of the 
normal stress to the surface (see Fig. 3).

dN dA dT dN dQ dN dT= = = +σ φφ φ φ, tan , 2 2
  (13) 

where σ and A denote the normal stress and the area of 
the lateral surface, and N and Tϕ denote the resultant 

(11)

(12)
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values of the normal and the shear-stress components on 
the spatially formed failure surface.

The shear cones on the failure surface define all the 
real or admissible directions of the forces dTϕ and dQϕ 
(see Fig. 3). According to the upper-bound theorem 
the analyses should consider those directions of shear-
strength activation that are kinematically admissible and 
ensure the highest possible value of the passive pressure 
for the chosen failure mechanism. 

The considered spatially formed failure body is certainly 
symmetrical in the symmetry plane r-ϑ that runs 
through the centre of the rectangular wall surface, and 
should be in equilibrium, considering all the forces that 
act on it.

Certainly, all the forces dQϕ act in the plane r-z, and so 
they do not cause any momentum around the z axis, 

Figure 3. The forces on the failure surface.

which runs through the coordinate system’s origin.

Like in the 2D analyses, the equilibrium condition of all 
the momentums around the z axis is chosen for the work 
equation. From Fig. 3 it is evident that the maximum 
possible passive pressures arise when the shear force dTϕ 
acts at each point of the failure surface in a direction 
that is defined by the cross-section of the normal plane 
through the centre of the hyperbolic half-cone and the 
tangent plane to the failure plane through the considered 
point.

The coefficients of the individual parts of the passive 
pressure epγ and epq (let us call them the coefficients of 
passive pressure distribution) in the 3D problem are not 
constant along the wall height h. Certainly, they increase 
non-linearly with increased ratios of b/h. If γ ≠ 0, ϕ ≠ 0, 
δ ≠ 0 and q = c = 0 the work equation can be given in the 
following integral form:

e
x x

dpγ

ϑ

ϑ

ϑ ϑ
δ ϑ

ϑ
δ
ϑ

ϑ(
tan tan

)(cos cos
sin

sin
sin

) (0
3

0
3

0
3 2

1

0

1 2∫ − − − + zz b r drd

z b r

f
x

r e

f

/ )sin

( / )sin

/sin

( )tan

ϑ ϑ

ϑ

ϑϑ

ϑ ϑ ϑ φ

2

2

0

1
1

1
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And when γ = 0, ϕ ≠ 0, δ ≠ 0, q ≠ 0, and c = 0 it can be 
given in the following integral form: 

e x d z b ypq f0
2

3 2 0
2

1

0

1 2
ϑ

ϑ
δ ϑ

ϑ
δ
ϑ

ϑ
ϑ

∫ − − +(cos cos
sin

sin
sin

) ( / ) sin
cos33

0

2

0
ϑ

ϑ
ϑ

ϑ

∫ =d   (15) 

The unknown functions epγ = epγ (ϕ, δ, b/h) and 
epq = epq (ϕ, δ, b/h), which are the minimal possible solu-
tions of the integral expressions (14) and (15) for all real 
ratios b/h, define the distribution of the passive pressures 
along the wall height.

The minimum values of epγ and epq can be determined 
numerically for an individual in advance for known 
ratios of b/h. The geometry model (height h = 1, unit 
weight γ = 1 and ratio b/h) and the soil characteristics 
(shear angle ϕ and the friction between the soil and the 
wall δ) were used in our analysis.

6 NUMERICAL ANALYSIS AND 
RESULTS

The numerical resolving of the integral equations (14) 
and (15) is performed by dividing the analysed region in 
the x-y plane into an arbitrary number of triangular and 
rectangular finite elements. These are suitable for Gauss’s 
numerical integration as well as for the calculation of 
the integral over the area of the plane y = y0 , where one-
dimensional Gauss’s numerical integration elements (see 
Fig. 4) are used. 

At point y = y0 and when b/h = ∞, the factor of the 
passive pressure distribution is epγ = 0, and the appurte-
nant value of the factor of the passive pressure distribu-
tion epq is determined with a 2D model considering the 
geometry condition (7).

The values of the passive pressure distribution factors 
epγ and epq are determined gradually from the top of the 
wall downwards for different ratios of b/h (b/h = ∞, 100, 
75, 50, 25, 20, 16 down to 0.25), as can be seen in Fig. 4. 
It is assumed in the analysis that the passive pressures 
increase linearly between the individual calculation 
points upwards of the wall height. For each calculating 
point along the wall height there is an exactly deter-
mined spatial failure surface, which ensures the smallest 
possible value of the factors of the passive pressure 
distribution, epγ and epq , for the chosen ratio b/h.

In step m of the passive pressure determination, the 
minimum values of the factors epγ

0  to ep
m

γ
−1  and epq

0  to epq
m−1   

are known from the preceding steps. The appurtenant 
known momentums can be determined with the expres-
sions:
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Figure 4. Passive pressure distribution and the scheme of the numerical integration.
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where f p
m
γ
−1  and f pq

m−1  define the momentums of the 
already known values of the passive pressures, and 
f p

m
γ  and f pq

m , the momentums of the passive pressures 
for ep

m
γ =1   and epq

m =1 , according to the origin of the 
coordinate system x-y-z. The appurtenant momentum of 
the unit weight of the ground (γ = 1) and the surcharge 
(q = 1), above the failure surface are determined using 
expressions (20) and (21).

g A w z b rp xy
j

k

o

j

n

jk f
jk

jk jkγ ϑ=− +
==
∑∑

11

1 2( / ) sin         (20)

where Axy
j   denotes the area of the triangular or rect-

angular element j in the plane x-y (see Fig. 4), w jk  is 

the weight coefficient for Gauss’s integration point k, 
z f

jk  is the coordinate z on the envelope of the hyperbolic 
half-cones, rjk  is the radius of the integration point k on 
element j in the plane x-y, and ϑjk  is the appurtenant 
angle of the radius rjk . In the numerical integration of 
the considered problem in plane x-y, 514 rectangular 
and 42 triangular elements with 9 and 6 Gauss’s integra-
tion points were used (see Fig. 4). 

g L w z b rpq xy
l

k

r

l

p

lk f
lk

lk lk=− +
==
∑∑

11

1 2( / ) sinϑ         (21),

where Lxy
l  denotes the length of a one-dimensional 

integration element l  on the ground surface y = y0 in 
the plane x-y (see Fig. 4), wlk  is the weight coefficient 
for Gauss’s integration point k, z f

lk  is the coordinate z of 
the integration point on the envelope of the hyperbolic 
half-cones in the plane y = y0 , rlk  is the radius of the 
integration point k on element l in the plane x-y, and ϑlk  

Figure 5. Set of spatial failure surfaces.
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is the appurtenant angle of the radius rlk . In the numeri-
cal integration of the considered problem in the plane, 
42 one-dimensional integration elements with 3 Gauss’s 
integration points were used.

The unknown values of the passive pressure distribution 
factors are determined using:

e
g f

f
e

g f
fp

m p p
m

p
m pq

m pq pq
m

pq
mγ

γ γ

γ

=
−

=
−− −1 1

;         (22),

In the numerical procedure determining the minimal 
value of the passive pressure distribution factors ep

m
γ  and 

epq
m  , the starting failure surface in the optimization 

procedure is determined with the initial values of the 
parameters ϑ1  and ϑ2 , which should satisfy the follow-
ing boundary conditions:

x y0 0 00 0 2≥ ≥ ≥ −, , ( / )ϑ π φ         (23).

Mathematical optimization was used to determine the 
unknown parameters ϑ1  and ϑ2 of the critical failure 
surface, which defines, in the considered calculation 
step, the minimal value of the unknown factor of the 
passive pressure distribution, ep

m
γ  and epq

m , at the toe of 
the wall.

The Solver Optimization Tool (Microsoft Excel) with the 
generalized-reduced-gradient method was used in the 
minimization process.

The result of the gradual determination of the passive 
pressure distribution factors from the top of the wall 
downwards are the numerical values of the factors 
epγ and epq , and a set of spatial failure surfaces that are 
presented in Fig. 5 for the case when ϕ = 40° and δ/ϕ = 1.

The values of the factors of the passive pressure distribu-
tion, epγ and epq , for different values of ϕ , δ/ϕ  and  b/h 
are presented in Figs. 6 and 7. 

The values of the comparative passive pressure coeffi-
cients, K pγ

*  and K pq
* , and the distances of the handling 

points of the resultants, aγ , and aq , from the surface of 
the backfill soil are presented in Tables 1 and 2.

The values of the handling points are given for individ-
ual shear angles and given ratios b/h, where the numeri-
cally obtained results for different shear ratios δ/ϕ do not 
deviate by more than 0.5% from their average value.

The appurtenant values of the substitutive coefficient and 
the distances of the resultants from the surface of the back-
fill soil are determined with the expressions (24) to (27).

Figure 6. The factors of passive pressure distribution epγ for different values of  ϕ , δ/ϕ and b/h.
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In the analyses of the spatial stability problems the 
theorem of corresponding states (Caquot and Kérisel 
1948, Soubra and Regenass 2000) is still valid. The 
comparative coefficient of the passive earth pressure 
due to cohesion ( K pc

* ) can be determined by using the 
comparative coefficient of passive earth pressure due to 
the surcharge ( K pq

* ).

Figure 7. The factors of passive pressure distribution epq for different values of  ϕ , δ/ϕ and b/h.
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The values of K*pc for the purely cohesive soil (c > 0 and 
ϕ = 0) with different ratios of ca/c and with a centre of 
gravity of epc the pressures measured from the top of the 
wall are given in Table 3.
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Table 1. Values of K*pγ for different values of the parameters ϕ, δ and b/h with 
the centre of gravity of the epγ pressures measured from the top of the wall

b/h
ϕ

(deg)
δ/ϕ center of 

gravity0 1/3 1/2 1/3 1

0.25

15 3.6279 4.1527 4.3864 4.6365 5.1458 0.712
20 5.3933 6.4350 7.0004 7.5984 8.8877 0.712
25 7.9261 10.0117 11.2456 12.6106 15.7108 0.725
30 11.8711 15.9410 18.5946 21.7237 29.5912 0.730
35 20.0486 27.6728 33.3372 40.5337 60.4985 0.734
40 43.0671 57.3693 69.2222 85.9233 139.1175 0.738
45 116.4677 149.3839 177.6761 220.0038 375.5334 0.741

0.5

15 2.6711 3.0260 3.2012 3.3775 3.7313 0.699
20 3.7238 4.4311 4.8126 5.2130 6.0592 0.706
25 5.2089 6.5721 7.3711 8.2474 10.2079 0.712
30 7.4363 9.9335 11.6437 13.5710 18.3323 0.718
35 11.9863 16.5711 19.9663 24.2567 36.0095 0.724
40 24.6495 32.8951 39.7426 49.3782 79.7705 0.729
45 64.2513 82.5392 98.8063 121.9540 208.4111 0.734

1

15 2.1892 2.4647 2.6014 2.7383 3.0092 0.687
20 2.8862 3.4211 3.7071 4.0047 4.6270 0.693
25 3.8439 4.8396 5.4156 6.0425 7.4308 0.698
30 5.8439 7.0201 8.1663 9.4902 12.6793 0.704
35 7.9191 11.0232 13.2817 16.1123 23.6998 0.710
40 15.4367 20.6573 25.0023 31.1047 50.0679 0.716
45 38.1335 49.1298 58.6535 72.9298 124.8263 0.723

2

15 1.8479 2.1801 2.2961 2.4114 2.6380 0.678
20 2.4651 2.9099 3.1455 3.3890 3.8937 0.683
25 3.1579 3.9637 4.4240 4.9214 6.0131 0.687
30 4.1095 5.5370 6.4305 7.4462 9.8331 0.691
35 5.9395 8.2498 9.9397 12.0356 17.5319 0.696
40 10.8269 14.5378 17.6323 21.9686 35.1861 0.702
45 25.0634 32.4150 38.8084 48.4179 83.0027 0.707

5

15 1.7980 2.0064 2.1091 2.2105 2.4084 0.672
20 2.2106 2.5986 2.8021 3.0112 3.4411 0.674
25 2.7423 3.4307 3.8182 4.2341 5.1395 0.676
30 3.4441 4.6399 5.3717 6.1970 8.1113 0.679
35 4.7302 6.5872 7.9347 9.5873 13.8072 0.682
40 8.0584 10.8652 13.2127 16.4877 26.2246 0.686
45 17.2046 22.3721 26.8925 33.7108 57.8700 0.691

10

15 1.7483 1.9478 2.0456 2.1422 2.3290 0.670
20 2.1253 2.4935 2.6857 2.8827 3.2865 0.671
25 2.6034 3.2508 3.6129 4.0005 4.8411 0.672
30 3.2223 4.3370 5.0128 5.7721 7.5262 0.673
35 4.3270 6.0335 7.2664 8.7689 12.5571 0.675
40 7.1344 9.6407 11.7401 14.6610 23.2244 0.677
45 14.5765 19.0171 22.9160 28.8085 49.4740 0.681

2D

15 1.6984 1.8886 1.9817 2.0736 2.2518 0.667
20 2.0396 2.3876 2.5686 2.7541 3.1334 0.667
25 2.4644 3.0696 3.4067 3.7670 4.5479 0.667
30 3.0000 4.0321 4.6525 5.3492 6.9591 0.667
35 3.6901 5.4448 6.5993 7.9724 11.3870 0.667
40 4.5989 7.6224 9.8346 12.6613 20.3076 0.667
45 5.8284 11.1974 15.6822 21.9144 40.6109 0.667
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Table 2. Values of K*pq for different values of the parameters ϕ, δ and b/h with 
the centre of gravity of the epq pressures measured from the top of the wall

b/h
ϕ

(deg)
δ/ϕ center of 

gravity0 1/3 1/2 2/3 1

0.25

15 4.5768 5.2900 5.6081 5.9280 6.5309 0.609
20 7.0283 8.4840 9.2341 9.9907 11.5050 0.621
25 10.7112 13.5556 15.1308 16.8518 20.5128 0.630
30 16.2767 21.6076 25.0415 28.8780 37.6802 0.637
35 26.9519 36.2461 42.7186 51.2493 72.8142 0.642
40 52.6835 68.3932 81.3285 98.5627 151.3097 0.646
45 116.5809 149.1632 176.9264 217.2506 349.3207 0.650

0.5

15 3.1488 3.5825 3.8054 4.0025 4.4002 0.582
20 4.5447 5.4631 5.9108 6.3815 7.3299 0.596
25 6.5956 8.3312 9.2904 10.3297 12.5242 0.608
30 9.6385 12.8412 14.8706 17.1286 22.2471 0.618
35 15.4244 20.8022 24.6109 29.5968 41.8059 0.625
40 29.1399 37.9850 45.2969 55.1065 84.9392 0.632
45 62.8494 88.6238 95.8063 118.0501 191.9431 0.638

1

15 2.4316 2.7450 2.9041 3.0424 3.3246 0.555
20 3.3004 3.9297 4.2434 4.5715 5.2181 0.569
25 4.5344 5.7128 6.3552 7.0497 8.4886 0.581
30 6.3194 8.4512 9.7630 11.2191 14.4578 0.592
35 9.6528 13.0803 15.5514 18.7062 26.1839 0.601
40 17.3562 22.7883 27.2809 33.3902 51.4902 0.610
45 35.9646 46.3732 55.2288 68.4366 112.5270 0.619

2

15 2.0703 2.3184 2.4440 2.5563 2.7758 0.534
20 2.6753 3.1633 3.4047 3.6552 4.1404 0.545
25 3.5038 4.3975 4.8749 5.3812 6.4281 0.555
30 4.6598 6.2408 7.1807 8.2196 10.4893 0.565
35 6.7730 9.2194 11.0219 13.1920 18.2517 0.575
40 11.4902 15.1828 18.2730 22.5430 34.4973 0.585
45 22.5171 29.1956 34.9820 43.6475 72.5151 0.598

5

15 1.8513 2.0600 2.1639 2.2564 2.4323 0.516
20 2.2974 2.6965 2.8917 3.0896 3.4692 0.522
25 2.8854 3.5970 3.9688 4.3579 5.1504 0.529
30 3.6641 4.9014 5.6070 6.3809 8.0320 0.536
35 5.0419 6.9032 8.2543 9.7985 13.3404 0.543
40 7.9825 10.6136 12.8683 16.0172 23.9640 0.551
45 14.4186 18.8594 22.8019 28.7468 47.8074 0.560

10

15 1.7775 1.9726 2.0678 2.1531 2.3132 0.509
20 2.1705 2.5382 2.7169 2.8958 3.2362 0.512
25 2.6793 3.3254 3.6605 4.0075 4.7070 0.516
30 3.3322 4.4441 5.0746 5.7474 7.1781 0.521
35 4.4630 3.1341 7.3062 8.6307 11.6245 0.526
40 6.7878 9.0886 11.0668 13.7561 20.3108 0.531
45 11.7060 15.4077 18.7082 23.7798 39.2151 0.538

2D

15 1.6984 1.8836 1.9685 2.0050 2.1969 0.500
20 2.0369 2.3770 2.5400 2.7022 3.0107 0.500
25 2.4644 3.0468 3.3495 3.6573 4.2786 0.500
30 3.0000 3.9871 4.5357 5.1180 6.3569 0.500
35 3.6903 5.3540 6.3516 7.4707 9.9784 0.500
40 4.5990 7.4305 9.3077 11.5115 16.7775 0.500
45 5.8284 10.7914 14.4498 19.0443 30.7851 0.500
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Table 3. Values of K*pc for  ϕ = 0° and different values b/h and ca/c with center of 
gravity of epc pressures measured from the top of the wall.

b/h
K*pc center of 

gravityca/c = 0 ca/c = 1/3 ca/c = 1/2 ca/c = 1/3 ca/c = 1
0.25 6.9282 7.4720 7.7231 7.9631 8.4156 0.6051
0.50 4.5691 5.0257 5.2356 5.4287 5.7541 0.5854
1.00 3.3302 3.7248 3.8942 4.0439 4.2737 0.5611
2.00 2.6822 3.0314 3.1760 3.3024 3.4925 0.5391
5.00 2.2783 2.5938 2.7217 2.8321 2.9997 0.5192

10.00 2.1402 2.4427 2.5646 2.6693 2.8249 0.5104

Table 4. Comparison of K*pγ and K*pq with Kpγ and Kpq for different values ϕ, δ/ϕ and b/h.

ϕ (˚) δ/ϕ
Kpγ  (Soubra and Regenass 2000) Kpγ  (Škrabl and Macuh 2005) K*pγ (proposed)

b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0

20
0.5 5.04 3.85 2.75 4.92 3.76 2.69 4.81 3.71 2.69
1.0 6.99 5.14 3.35 6.35 4.77 3.30 6.06 4.63 3.29

40
0.5 53.74 31.22 14.75 41.55 25.92 11.85 39.74 25.00 11.74
1.0 131.75 77.02 26.42 90.36 55.48 23.93 79.77 50.07 23.22

ϕ (˚) δ/ϕ
Kpq  (Soubra and Regenass 2000) Kpq  (Škrabl and Macuh 2005) K*pq (proposed)

b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0

20
0.5 6.22 4.45 2.75 6.10 4.35 2.73 5.91 4.24 2.72
1.0 8.06 5.54 3.17 7.79 5.44 3.27 7.33 5.22 3.24

40
0.5 74.26 43.48 12.82 49.68 29.50 11.33 45.30 27.28 11.07
1.0 130.19 73.35 21.22 104.80 61.07 21.36 84.94 51.49 20.31

7 COMPARISON WITH EXISTING 
SOLUTIONS

In the literature only 2D analyses of the soil-pressure-
limit values using different approaches are presented, 
while the research results for 3D cases are very limited. 
The research results of 3D passive pressure analyses 
according to the theorem of the upper-bound value have 
been presented in Soubra and Regenass (2000), and 
Škrabl and Macuh (2005).

A comparison of the results for the coefficients K*pγ  and 
K*pq for δ/ϕ = 0.5 and 1, ϕ = 20° and 40°, b/h = 0.5, 1, 10 
is presented in Table 4.

A comparison of the results indicates that, particularly 
at greater shear angles and greater ratios of δ/ϕ, the 
differences between the values of passive-earth-pressure 
coefficients for the compared failure mechanisms are 
the greatest. The coefficient Kpγ  for the proposed trans-
lational failure mechanism is up to 11.72% smaller than 
the same coefficient for the failure mechanism (Škrabl 

and Macuh, 2005) when b/h = 0.5, while the coefficient 
Kpq is up to 18.95% smaller for the same b/h = 0.5. For 
higher ratios of b/h the difference gradually decreases, 
and when b/h > 20 the solutions are almost equal.

8 CONCLUSIONS

This paper presents a procedure for determining 3D 
passive earth pressures according to the kinematic 
method of limit analysis. The set of three-dimensional 
kinematically admissible hyperbolic translational 
failure mechanisms with lateral surfaces bounded by 
the envelope of the hyperbolic half-cones is used to 
determine the critical distribution of passive pressure 
along a flexible retaining structure’s height. The intensity 
of the passive pressures is gradually determined with the 
previously mentioned translational failure mechanisms 
from above, downwards. Thus, the critical distribution, 
the trust point and the resultant of the passive pressures 
that can be activated at the limit state for the chosen 
kinematic model are obtained.
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Using the diagrams presented in Figs. 6 and 7 it is 
possible to determine the actual critical distribution of 
the passive pressure limit values for any arbitrary practi-
cal case (within the frame of given assumptions) that is 
applicable in geotechnical design.

The results of the numerical analyses indicate that, when 
considering the upper-bound theorem and the set of 
three-dimensional kinematically admissible hyperbolic 
translational failure mechanisms, the passive-earth-
pressure coefficients are lower than in the case of the 
hyperbolic translational failure mechanism and the 
translational mechanisms published in the literature for 
b/h < 10. The upper-bound values of the comparative 
passive-earth-pressure coefficients with a calculated 
pressure distribution are lower than the existing solu-
tions with an assumed pressure distribution obtained 
using the upper-bound method within the framework 
of the limit analysis. This means that the classically 
presumed passive-earth-pressure distribution in 3D 
analyses is not acceptable, because it can actually not 
be activated. Furthermore, the trust point of the passive 
pressures resultant is independent of the friction 
between the retaining structures and the soil. Therefore, 
the presented results are applicable in geotechnical 
practice.

LIST OF SYMBOLS

area of triangular or rectangular element j in plane 
x-y;

b width of the retaining wall;
c cohesion;
ca adhesion along the soil-structure interface;

epc
factor of passive earth pressure distribution of the 
cohesion influence;

epγ
factor of passive earth pressure distribution of the 
soil weight influence;

epq
factor of passive earth pressure distribution of the 
surcharge influence;

momentums of passive pressures for 
momentums of passive pressures for 

gγ momentums due to unit weight of the ground;

gq
momentums due to surcharge loading on the back-
fill surface;

h height of the retaining structure;

comparative coefficient of passive earth pressure of 
the cohesion influence;

comparative coefficients of passive earth pressure of 
the soil weight influence;

comparative coefficient of passive earth pressure of 
the surcharge influence;

length of one dimensional integration element l on 
the ground surface;

N resultant value of normal stress component on spa-
tial formed failure surface;

Qϕ resultant value of stress on spatial formed failure 
surface;

R* cone diameter;
r polar co-ordinate;
r* polar co-ordinate of the apex of the curved cone;

rε*
co-ordinate appurtenant to gradient angle of the 
envelope;

Tϕ
resultant value of shear stress component on spatial 
formed failure surface;
weight coefficients for Gauss’s integration point k;

zε*
co-ordinate appurtenant to gradient angle of the 
envelope;

zε1
co-ordinate of the section of the envelope and the 
leading cone shaft in plane r-ϑ;

γ unit weight of the soil;
δ friction angle at the soil-structure interface;

ε1 gradient of the envelope in point rε1 which is defined 
in an arbitrary plane r-z;

ϕ angle of internal friction of the soil;
ϑ polar co-ordinate;
ϑ* polar co-ordinate of the apex of the curved cone.
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Izvlec̆ek

V članku sta predstavljena dva najbolj izrazita načina deformiranja dinamično obremenjenih zasičenih zemljin. Likvifakcija 
s tečenjem in ciklična mobilnost sta pojava, ki pritegneta posebno pozornost zaradi velikih deformacij, ki ju spremljajo. 
Potopitev nasipa železniške proge zaradi novozgrajenega akumulacijskega bazena na reki Savi v Boštanju in velik plaz, ki se 
je sprožil na področju Stože v Julijskih Alpah predstavljata študiji primerov v Sloveniji, kjer sta bili analizirani tudi likvifak-
cija s tečenjem in ciklična mobilnost. Upoštevana je bila dinamična obremenitev zaradi železniškega prometa in morebitne 
potresne obtežbe. Materiali iz obeh lokacij: meljni pesek in prodnato-peščeni melj, so bili uporabljeni v obsežnih laboratorij-
skih preiskavah, katerih namen je bil določiti postopek za modeliranje generiranja dodatnega pornega pritiska v dinamično 
obremenjenih z vodo zasičenih zemljinah.
Novejše ugotovitve kažejo, da je sprememba pornega tlaka povezana s količino disipirane energije, ki jo določajo histerezne 
zanke dobljene z dinamičnim obremenjevanjem. Na osnovi eksperimentalnih rezultatov je bila predlagana enačba za empi-
rično zvezo, ki definira generiranje pornega tlaka med dinamičnim obremenjevanjem. Enačba je sestavljena iz dveh delov, 
prvi opisuje generiranje nepovratnih sprememb pornega tlaka, drugi del pa opisuje prirastke in upade tlaka porne vode 
znotraj enega obremenjevalnega cikla, ti. povratne spremembe pornega tlaka. Z uporabo predlaganega energijskega nume-
ričnega modela je mogoče določiti dejanske efektivne napetosti in s tem napetostno pot dinamično obremenjene zemljine.
Predlagani model za porne tlake se lahko uporabi tudi za modeliranje deformacijskega obnašanja. Z eksperimenti je bilo 
ugotovljeno, da ima dinamično obremenjena zemljina po nekaj ciklih obtežbe na začetku cikla zelo nizko togost, ki pa se 
kasneje poveča. Deformacija, ki se razvije za časa trajanja te podajne faze zemljine, predstavlja glavnino deleža skupne 
deformacije. Pojav in trajanje te faze sta prav tako povezana z energijo, ki se disipira med cikličnim obremenjevanjem. 
Odnos med disipirano energijo in dodatnim pornim tlakom ter kratkotrajnim tečenjem med pojavom ciklične mobilnosti, 
omogoča preprosto modeliranje odziva dinamično obremenjenih zasičenih zemljin.
.

Kljuc̆ne besede

likvifakcija s tečenjem, ciklična mobilnost, dodatni porni tlak, disipirana energija

ODZIV ZASIČENIH ZEMLJIN NA DINAMIČNO 
OBREMENITEV

STANISLAV LENART
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Abstract

This paper presents the two most significant types of 
deformation behavior for dynamically loaded, saturated 
soil. Flow liquefaction and cyclic mobility deserve special 
attention because of the large deformations that accom-
pany these two phenomena. The submergence of a rail-
way-line embankment due to the newly built Sava-river 
accumulation reservoir in Boštanj and the large landslide 
that occurred in the Stože area in the Julian Alps are case 
histories in Slovenia where flow liquefaction and cyclic 
mobility were analyzed. The dynamic loading caused by 
railway traffic and possible seismic activity were taken 
into account. Material from these two sites, silty sand and 
lacustrine carbonate silt, were used in extensive laboratory 
research, with the objective to define a procedure for excess 
pore-water pressure-generation modeling in dynamically 
loaded saturated soil.
It has been found recently that the change of the pore-water 
pressure is related to the dissipated energy density calcu-
lated from the hysteresis loops caused by dynamic loading. 
Based on the experimental results an empirical equation 
defining the generation of pore pressure during dynamic 
loading has been proposed.  The equation is divided into 
two parts: the first part describing the residual pore-water 
pressure generation, and the second part describing the 
increment and decrement of pore-water pressure within 
the load cycle, the so-called temporary pore-water pressure 
change. The proper effective stresses and thus the stress path 
of the dynamically loaded soil can be defined by using the 
proposed energy-based numerical model. 
The proposed pore-pressure model can also be used in 
deformation-behavior modeling. It was observed from the 
experimental results that after a few cycles of dynamic 
loading the saturated soil starts to exhibit a very low stiff-

ness at the beginning of a load cycle, after which it begins 
to strengthen. The strain developed during this softening 
phase represents the main share of the total strain. The 
occurrence and duration of this phase are related to the 
energy dissipated during the cyclic loading as well, and 
the relation between the dissipated energy, the excess pore 
pressure and the short-term flow during cyclic mobility, 
give us an opportunity for a simple response modeling of 
the dynamically loaded saturated soils.

Keywords

flow liquefaction, cyclic mobility, excess pore pressure, 
dissipated energy

1 INTRODUCTION

Due to the existing hydro-power potential, a chain of 
five new hydro-power plants is planned for the lower 
part of the Sava river. The construction of the first power 
plant started at the Boštanj site in November 2002 and it 
was completed in May 2006 [1]. 

The railway connection between Ljubljana and Zagreb 
runs along the Sava river. The construction of the 
accumulation reservoir caused the submergence of the 
railway-line embankment and raised questions about 
possible changes in the response of newly saturated 
soils resulting from the dynamic load caused by the 
railway. Therefore, the stability analyses considering a 
new ground-water level were required by the owner of 
the railway [2, 3]. Field and laboratory tests were carried 
out before the upheaval of the water in order to get the 
input parameters for the analyses. Two possible types of 
saturated soil behavior were in question: liquefaction and 
cyclic mobility. The following extensive research gives an 
opportunity for a detailed study of the liquefaction poten-
tial of silty sand from the lower Sava river at Boštanj. 

The other case of material susceptible to liquefaction 
was found in the northern part of Slovenia – in the 
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Julian Alps. Lacustrine material of glacial origin has 
been recognized as very sensitive to various factors, 
such as water content and loading conditions, including 
seismic effects. A strong earthquake in April 1998, with 
its epicenter in the Krn mountains and a magnitude of 
MWA=6.0, caused the collapse of an approximately 
100-m-long section of the shore of the 20-km-distant 
Lake Bohinj. Saturated lacustrine soils were thought 
to be present. The same earthquake, in amplified form, 
caused serious damage to several buildings in the 
village of Mala vas, near Bovec, which were founded 
on saturated lacustrine soil [4]. Quite soon after the 
above-mentioned occurrences, in November 2000, a 
very severe landslide occurred in the area called Stože. 
It resulted in debris flow in its lower part. Layers of 
lacustrine carbonate silt of a relatively small thickness 
were observed in the material displaced during the 
landslide, and the question arose as to whether the pres-
ence of these layers was responsible for the landslide [5]. 
An investigation of the static and dynamic liquefaction 
potential of the lacustrine carbonate silt was initiated as 
a result [6, 7].

Several findings from the research mentioned above 
are presented in this paper. Saturated silty sand from 
the Sava river at Boštanj and the lacustrine carbonate 
silt from the Julian Alps are materials that forced the 
author of this paper as well as the geotechnical society 
in Slovenia to accept the danger of liquefaction as well 
as the occurrence of cyclic mobility in Slovenia as real 
possibilities. The findings from these two recent case 
histories have helped to introduce a more cautious treat-
ment of dynamically loaded saturated soil response in 
daily practice. They are used in this paper as examples.

2 LIQUEFACTION OF SOIL

When dynamically loaded saturated soils are being 
considered, the term liquefaction is very important. 
Liquefaction is defined as the transformation of soil 
from the solid to the liquid state. It happens as a conse-
quence of increased pore pressure and a reduced effec-
tive stress, mostly in saturated cohesionless soils. When 
such soil is subjected to rapid loading, e.g., earthquake 
loading or another kind of dynamic loading, the pore 
water is unable to drain in a very short time period. The 
loading conditions might be understood, therefore, as 
the undrained loading conditions. If it is not too dense, 
a cohesionless soil subjected to cyclic loading, especially 
cyclic loading in the shear mode, has a tendency to 
densify. As the pores between the soil grains are filled 
with water, which cannot drain sufficiently, the genera-
tion of excess pore pressure occurs. Figure 1 shows the 
changes in the soil skeleton caused by cyclic loading, 
which results in excess pore-water pressure being gener-
ated. 

The term static liquefaction (flow failure) refers to the 
rapid increment of pore-water pressure followed by 
a sudden loss of strength after the peak value of the 
deviator stress is reached, until a residual/steady-state 
strength is reached. Flow liquefaction appears when the 
residual strength of the soil is smaller than the static 
shear stress required for the equilibrium of a soil mass. 
The liquefied stress state, in that case, is represented by 
the initial effective confining pressure, decreased by the 
excess pore pressure. 

Figure 1. Cyclic loading in the shear mode causes grain movements and the generation of excess pore pressure.
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2.1 SIMPLIFIED PROCEDURES FOR AN 
EVALUATION OF SOIL’S LIQUE-
FACTION POTENTIAL

Based on the findings of many previous case histories, 
with and without the occurrence of flow liquefaction, 
some simplified procedures were developed for evaluat-
ing the liquefaction potential in a specific case [8, 9, 10]. 
The procedures are based on different field measure-
ments. The most widely used among them are SPT, CPT 
and shear-wave velocity measurements. The liquefaction 
potential for silty sand from the Sava river at Boštanj 
and lacustrine carbonate silt from the Julian Alps was 
evaluated in the manner of SPT and shear-wave velocity 
measurements. An earthquake with a magnitude of 
M=7.0 was proposed as the strongest possible type of 
dynamic load, and it can be seen from the results (Figure 

2) that the estimated danger of the occurrence of lique-
faction depends strongly on the procedure, and that the 
results differ. Thus, more detailed research was needed.

2.2 THE STATE-CRITERIA APPROACH

As described above, the occurrence of flow liquefaction 
depends upon the ability of a material to contract itself. 
This contractive behavior is the reason for the pore-pres-
sure increase. Therefore, it is of interest to know where 
is the boundary, called the critical void ratio (CVR) line, 
between the contractive and dilative soil state. The states 
of the tested soil – silty sand from the Sava river and lacus-
trine carbonate silt from Julian Alps – were defined in 
terms of the void ratio. Tests at different effective confining 
pressures resulted in the CVR lines shown in Figure 3. 

Figure 2. The danger of liquefaction occurring for silty sand from the Sava river and lacustrine carbonate silt
from the Julian Alps. The CRR are based on (a) SPT measurements, (b) shear-wave velocity measurements.

S. LENART: THE RESPONSE OF SATURATED SOILS TO A DYNAMIC LOAD
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The generation of an excess pore-water pressure causes 
a decrease in the effective stresses. The effective-stress 
conditions leading to the occurrence of flow liquefac-
tion can be most easily described in stress-path space. 
The response of five saturated cohesionless specimens 
isotropically consolidated to the same void ratio and 
different effective confining pressures, in undrained 

stress-controlled triaxial compression is shown in Figure 
4 [11]. Regarding the initial states of the specimens 
according to the steady-state line, specimens 1 and 2 
exhibit dilative behavior when the shearing starts, while 
specimens 3, 4 and 5 exhibit contractive behaviors, 
which is necessary for flow liquefaction. 

Figure 3. CVR line as a boundary between the loose contractive states and the dense dilative states of the two tested materials.

Figure 4. Initial conditions susceptible to either flow liquefaction or cyclic mobility (adapted from [11]).
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The flow liquefaction is initiated at the peak of the stress 
path in the case of the latter three specimens. The locus 
of the points describing the effective stress conditions at 
the initiation of flow liquefaction is a straight line [11, 
12] called the flow liquefaction surface (FLS). All the 
specimens reach the same steady-state point as they have 
the same void ratio. The FLS is truncated at the level of 
the steady-state point as flow liquefaction cannot occur 
if the stresses are below this point. The FLS therefore 
marks the boundary between the soil states at which 
either flow liquefaction or cyclic mobility can occur.

While cyclic mobility is described in more detail in 

the next section, the flow-liquefaction potential of two 
investigated materials, silty sand from the Sava river at 
Boštanj and lacustrine carbonate silt from Julian Alps, 
is estimated on the basis of triaxial test results. Samples 
of lacustrine carbonate silt (Figure 5) were reconstituted 
at different initial states, while the samples of silty sand 
(Figure 6) were intact. The tested state of the silty sand 
seems unsuitable for contractive behavior and thus 
flow liquefaction is also not expected. Loose samples of 
lacustrine carbonate silt contracts remarkably during 
shearing. To trigger the flow liquefaction the static shear 
stress should exceed the shear strength of a soil in the 
liquefied state.

Figure 5. Undrained triaxial test of isotropic, consolidated, reconstituted samples of lacustrine carbonate silt from the Julian Alps.
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3 CYCLIC MOBILITY

Cyclic mobility deformations are not of the flowing type 
and thus the damage would normally be smaller, but still 
severe, than in the case of flow liquefaction. Deforma-
tions due to cyclic mobility are developed incrementally 
during cyclic loading. The main reason for the dramatic 
increase of cyclic mobility deformations is the loss of 
stiffness caused by a decrease of the effective stresses.

An excess pore pressure generated during dynamic load-
ing moves the stress path from its initial position in the 
direction of the failure envelope (Figure 7). If the cyclic 
stress is large enough, the steady-state strength might 

Figure 6. Undrained triaxial test of isotropic, consolidated, intact samples of silty sand from the Sava river at Boštanj.

be exceeded during the cyclic loading. If this happens 
near the FLS, the effective stress path can touch the FLS. 
Momentary instability can occur therefore, leading to 
significant strain development. If the static shear stress is 
smaller than the steady-state strength, the strain gener-
ally ceases when the shear stress returns to the values 
below the steady-state strength.

If steady-state strength is not exceeded during the cyclic 
loading, the effective stress path approaches the so-
called phase transformation surface (PTS) [13]. The PTS 
represents a kind of boundary between the dilative and 
the contractive behavior of loaded soil. Above the PTS 
a dilative tendency increases the effective confinement 
(and consequently the shear strength), while below the 

S. LENART: THE RESPONSE OF SATURATED SOILS TO A DYNAMIC LOAD
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Figure 7. Generation of excess pore pressure due to the cyclic 
loading causes movement of the stress path from its initial 
position in the direction of the failure envelope.

PTS the soil exhibits a contractive behavior and thus a 
tendency to generate excess pore pressure. Youd [14] 
clearly described the rearrangements of soil grains that 

happen in cyclically loaded soil when the stress path 
approaches and crosses the PTS from one side or the 
other. A significant shear strain may develop without an 
appreciable shear stress at the moment when the PTS is 
crossed (Figure 8). This, almost flowing, behavior of the 
soil when the stress path meets the PTS causes serious 
problems in the numerical modeling of cyclic mobility 
phenomena [15]. 

When the cyclic stresses are larger than the static shear 
stresses, stress reversal occurs. Thus, each load cycle 
includes compression and extension loading. Any excess 
pore pressure generated during the cyclic loading causes 
the movement of the stress path in the direction of a 
zero effective stress (origin of q-p graph). This state is 
called the initial liquefaction [16]. When the stress path 
reaches it, only further oscillations along the compres-
sion and extension portions of the drained failure 
surface are possible due to the continuation of the cyclic 
or monotonic loading [11].

Figure 8. A typical stress path for cyclically loaded soil and the shear-strain relationship
when it crosses the phase transformation surface (adapted from [15]).
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It can be seen from the results of the two tested materials 
(Figure 5, Figure 6) that flow liquefaction is hardly likely 
to occur. There is a much higher risk of cyclic mobility, 
especially in the case of silty sand from the Sava river at 
Boštanj, which was found in the railway embankment. 
However, the dynamic load of a passing train might 
cause an increase in the pore pressure, leading to the 
occurrence of cyclic mobility. Two down-hole arrays 
with accelerometers and pore water-pressure sensors 
were established to enable monitoring of the dynami-
cally loaded investigated soil response during and after 
the upheaval of the water and the saturation of the soil 
(Figure 9). The aim of the research was to define an 
effective procedure for an evaluation of the excess pore 
pressure. This would help to define a stress path during 
the dynamic loading and thus help with the prediction 
of any deformations.

4 AN ENERGY APPROACH TO 
EVALUATING THE EXCESS 
PORE PRESSURE 

The stress path moves from its initial position due to 
changes in the shear stress, which are caused by loading, 
and due to the effective pressure decreasing during the 
cyclic loading (Figure 7). The effective pressure usually 
decreases due to the excess generation of pore pressure. 
We can be sure that an excess generation of pore pres-
sure during the cyclic loading actually leads to stress-
path movements and thus to changes in the soil strength 
and the stiffness. 

Soil-grain rearrangements connected with soil-structure 
changes cause the pore pressure to increase when the 
soil contracts and decrease when it dilates. Changes 

from contractive to dilative behavior and vice versa 
happen when the stress path crosses the PTS. Cyclic 
loading causes the irrecoverable contraction of the soil 
skeleton (Figure 1), which in the case of an undrained 
loading condition is accompanied by the permanent 
generation of excess pore pressure. 

It is obvious that if a proper model for pore-pressure 
changes during dynamic loading were to exist, it would 
enable simple access to the modeling of the response of 
dynamically loaded saturated soils. The idea for the solu-
tion was taken from metal-fatigue analyses, for which 
purpose a cumulative damage hypothesis was developed 
[17]. Using this hypothesis an irregular dynamic loading 
can be converted into an equivalent damaging quantity, 
which makes it possible to evaluate a stress path’s 
movement from its initial position, approaching the 
phase-transformation surface and the failure envelope. 
The energy dissipated during dynamic loading is chosen 
as the equivalent damaging quantity.

Quantification by seismologists of the energy released 
during earthquakes and the use of the energy dissipation 
in performance-based design in structural earthquake 
engineering argues for the use of energy for an excess 
pore-pressure evaluation procedure. The first steps 
toward the energy approach to excess pore-pressure 
evaluation were made using the relationships between 
the energy released during earthquakes and the sites 
where liquefaction occurred [18, 19]. Nemat-Nasser and 
Shokooh [20] presented governing differential equations 
relating energy dissipation to the densification of dry 
samples and to the generation of excess pore-water pres-
sure in saturated samples. The dissipated energy density 
W was defined generally at time t as

W t dij ij

t

( )
’

= ∫
1

0 0
σ

σ ε ,        (1)

where σij and εij denote the stress and incremental strain 
tensors, respectively, t is the time in which the total 
dissipated energy is in question, and σ’0 is an initial 
effective confining stress. In the case of the laboratory 
cyclic-loaded test results the dissipated energy density 
is defined as the area bounded by the hysteresis loops of 
the stress-strain curve (Figure 10).

Complementing the theoretical framework, several labo-
ratory tests [21, 22, 23] as well as field measurements 
[24] have been performed to prove the relation. A typical 
general form, derived from the proposed expressions, 
could be written as 

r a Wu
b= ⋅ ,        (2)

Figure 9. Railway embankment with a down-hole array and an 
accelerometer before the upheaval of the water.
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where ru denotes the pore-water pressure ratio (=Δu/σ’0), 
Δu is the pore-water pressure change, while a and b are 
functions of the soil type, the relative density of the soil, 
the stress conditions, the initial soil-state parameters, 
etc. It should be mentioned again that the pore-water 
pressure change from Eq. 2 is caused only by the soil 
particles being rearranged and that this is a permanent 
change.

Lenart [25] divided the excess pore-water pressure 
generated during the dynamic loading into two parts: 
the temporary pore-pressure change and the residual 
pore-pressure change. Temporary pore-pressure changes 
can be observed as oscillations of the pore pressure in a 
normal pore-water pressure curve. They are caused by 
the transmission of compressive stresses onto the pore 
water. The origins of the pore-pressure oscillations and 
their effect upon the deformation behavior of the soil 
during dynamic loading are described in another paper 
[26].

Knowing the time function F(t) of a normal component 
of dynamic loading to which the soil is subjected, it is 
possible to write the equation for evaluating the pore-
pressure ratio, ru (Eq. 3). The parameters kr and kt are the 
residual and temporary pore-pressure parameters, which 
depend upon the type of soil and its state. Their evalua-
tion procedure is described in more detail in [25]. Using 
the least-square method, the best agreement between 
the proposed relationship and the empirical results 

was found if a dissipated energy density, W, in Eq. 3 is 
raised to the power of e/10, where e means the base of 
the natural logarithm. As it is based on the dissipated 
energy density, the pore-pressure ratio calculated with 
Eq. 3 is independent of the loading frequency or the rate 
impacts in the case of the strain range typical for cyclic 
mobility or liquefaction [26]. 

r W k k F tu
e

r t=( ) ⋅ + ( )[ ]10         (3)

The proposed equation was tested in the case of two 
investigated materials. Figure 11 shows the approxi-
mated pore-water pressure changes compared to the 
experimental results in the case of the undrained cyclic 
triaxial test of the lacustrine carbonate silt sample. The 
loading took the form of a sine wave with the frequency 
of the loading being 1 Hz. To prove the proposed equa-
tions’ independence from the frequency and the rate 
of loading, an irregular loading test was performed on 
a sample of silty sand from the Sava river. The loading 
simulated a seismic load recorded during the Petrovac 
earthquake in Montenegro in 1979. Good agreement 
was obtained between the results of the numerical analy-
sis and the results of the laboratory tests (Figure 12). 

Similar pore water pressure response due to dynamic 
loading was observed also, when other kind of materials 
were tested. An interesting increase in share of tempo-
rary pore water pressure changes was noticed in the case 
of highly porous snail soil [27].

Figure 10. The dissipated energy per unit volume for a soil sample in case of cyclic triaxial test results.
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Figure 11. Pore-water pressure curve during an undrained cyclic triaxial test of lacustrine carbonate silt.

Figure 12. Results of an experiment compared to the modeling of an excess pore-water pressure generation.

Figure 13. Evaluation of the energy dissipated during soil softening.
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5 STRESS-STRAIN RELATION 
MODELING 

If the generated excess pore-water pressure during the 
dynamic loading of saturated soil can be evaluated in 
the proper way, most of the work is done already. This 
makes it possible to evaluate the exact position of the 
stress path during the dynamic loading and thus to take 
into account the progressive degradation of the stiffness 
and the strength of the soil in an effective stress analysis.

The remaining problem is how to treat the phases of 
sudden soil softening and the significant regain in soil 
stiffness during cyclic loading at large deformations. 
Large deformations are limited by the soil hardening 
when the stress path crosses the PTS. A recent study [25] 

showed that this highly yielded segment can be limited 
by the amount of dissipated energy. Figure 13 presents 
an evaluation of the energy dissipated during the 
softening phase. It has been found through research [25] 
that the dissipated energy during the softening phase 
in a single load cycle is linearly related to the residual 
pore-pressure ratio. Using this finding one can define the 
residual pore-pressure ratio at which soil softening due 
to the cyclic mobility effect starts.

The pore-pressure model presented in the previous 
section and the relation between the pore pressure and 
the energy dissipated during short-term flows when the 
cyclic mobility occurs were used [28] for simple stress-
strain relation modeling. The results in case of the tested 
lacustrine carbonate samples are presented below.

Figure 14. Typical simulation of the pore pressure (a), stress states (b), displacements (c) and stress-strain relation (d)
for a cyclic triaxial test of a reconstituted sample of lacustrine carbonate silt.
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6 CONCLUSION

Due to the large accompanying deformations and the 
possibility of severe damage, the response of dynamically 
loaded saturated soils has long attracted attention. Flow 
liquefaction and cyclic mobility are two phenomena that 
are often confused with each other. Their characteristics 
are described using two case histories from Slovenia: 
lacustrine carbonate silt from the Julian Alps and silty 
sand from the Sava river in Boštanj.

The effective stress decrease and the occurrence of 
large strain without any noticeable increase of the 
stress are common characteristics of flow liquefaction 
and cyclic mobility. An undrained loading condition, 
which is needed in both cases, is assumed to be present 
in saturated soil subjected to a rapid, dynamic load. 
Flow liquefaction appears suddenly when the residual 
strength of a soil is smaller than the static shear stress 
required for the equilibrium of a soil mass. On the other 
hand, cyclic mobility deformation develops incremen-
tally during cyclic loading, mostly due to a decrease of 
the stiffness caused by a decrease of the effective stresses. 
It is important, therefore, to know the excess pore-water 
pressure generated during the cyclic loading of saturated 
soil, which impacts most upon the effective stresses in 
the soil.

An energy approach to saturated-soils response model-
ing during a dynamic load is presented in this paper. 
The energy concept is based on the idea that part of the 
energy of a dynamic load is dissipated into the soil. The 
density of the dissipated energy is represented by the 
area of the hysteretic strain-stress loop. The dissipated 
energy density is related to the generated excess pore-
water pressure. The latter was divided into the temporary 
and residual generated excess pore-water pressure. Such 
a formulation helps to model very precisely the pore-
water pressure oscillations during irregular dynamic 
loading. 

The dissipated energy was evaluated during the soil-
softening phase during cyclic mobility as well. Based on 
the observed linear relation between it and the residual 
excess pore-water pressure a promising attempt at 
modeling the response of dynamically loaded saturated 
soils was made.
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Izvlec̆ek

V članku je obravnavan nov pristop k evaluaciji integralne predstavitve Greenove funkcije za slojevit pol-prostor, ki je na 
površini obremenjen s harmonično tangencialno točkovno silo. Enačbe gibanja razvežemo z uvedbo valovnih potencialov. 
Nevezane enačbe rešujemo tako, da jih s pomočjo predpostavljene odvisnosti od kotne koordinate in uvedbo Hanklove trans-
formacije, pretvorimo v navadne diferencialne enačbe. Njihova rešitev in uvedba inverzne Hanklove transformacije vodita 
do integralne predstavitve za pomike na površini pol-prostora. Te nato izvrednotimo s pomočjo predlaganega tristopenjskega 
postopka. Najprej integrande razcepimo na dva dela, od katerih prvi po izvedeni integraciji vodi do singularnih pomikov, 
drugi del pa do regularnega dela pomikov. Opazimo, da je ta drugi del, potem ko uvedemo ustrezno izbrane razvejiščne reze 
in veljavnost integrandov s pomočjo analitičnega nadaljevanja razširimo s pozitivne realne osi Hanklovega parametra na 
njegovo celotno kompleksno ravnino, možno izvrednotiti s pomočjo konturne integracije za poljubno število slojev. Tako je 
ta del pomikov podan z rezidui integranda izvrednotenih v njegovih polih in integrali s končno razdaljo integracije vzdolž 
razvejiščih rezov. Te slednje z lahkoto izvrednotimo z zaželeno natančnostjo s pomočjo numerične integracije Izbrani nume-
rični rezultati dopolnjujejo matematična izvajanja.
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Abstract

The topic of this paper is a novel evaluation of the integral 
representation of the surface Green’s function for a layered 
half-space, loaded on its surface by a harmonic tangential 
point force. The equations of motions are reduced to 
wave equations by the introduction of wave potentials. 
The Hankel transform is applied to them and they are 
consecutively solved leading to the integral representation 
of surface displacements. They are consecutively evaluated 
by the proposed three step procedure. First the singularity 
is extracted. It is further noted that so obtained integrals, 
after suitably chosen branch cuts and analytic continu-
ation of integrands are introduced, can be evaluated by 
contour integration for an arbitrary number of layers. 
They are, therefore, expressed by number of residues at the 
poles of integrand and the integrals along finite portions 
of the branch cuts. The latter ones can easily be evaluated 
to any desired accuracy leading to a closed form solu-
tion. Some numerical results corroborating the presented 
approach are given.

Keywords

elastodynamics, elastic wave propagation, Green`s 
function, horizontaly layered half-space, horizontal 
point load

1 INTRODUCTION

Modeling the elastodynamic characteristics of soil is 
required in a number of engineering problems, e.g. 
dynamic soil-structure interaction, dynamically loaded 
foundations etc. The soil is geometrically in prevalent 
number of cases modeled as a half space, which is, to 
be more realistic, endowed with some structure. As a 
starting point to determine the elastodynamic charac-
teristics of soil one can use the fundamental solution 
or the Green’s function. The use of the fundamental 
solution, which is known from the literature, results in 
the integrals over the whole surface of the half-space, 
interface between the soil and the superstructure and 
over the interfaces between the materials with different 
elastodynamic properties. Some of them are of infinite 
or semi-infinite extend. Their evaluations, which can 
be performed only numerically, represent the major 
difficulty of this approach. For practical evaluation the 
integration area has to be made finite, what results into 
introduction of the fictitious boundary, where the radia-
tion conditions should be satisfied. The latter represent 
a demanding and not completely resolved problem e.g. 
Premrov [1]. The Green’s function approach leads us 
to the integrals extending across the interface surface 
between the soil and the superstructure only. Their eval-
uation is straightforward and relatively easy to perform, 
ones the Green’s function is given. The difficulty of the 
problem is transferred to the determining and evaluating 
the Green’s function itself.

The problematic of the homogeneous as well as 
the layered half-space has drawn the attention of 
considerable number of authors, not all of them can be 
mentioned here. The first elasticity solutions for whole- 
and half-space problems, static as well as dynamic 
ones have been obtained by Kelvin [2], Boussinesq [3], 
Cerruti [4], Lamb [5], Mindlin [6] and the others. The 
basic results on layered media were presented by Ewing 
et al. [7]. In more recent times the authors sought the 
solutions by two basically different approaches. On one 
side there are the approximate methods e.g. Luco’s ray 
method [8, 9], Kausel’s [10] thin layer method as well 
as BEM and FEM methods, their combinations e.g. 
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Gaitanaros et al. [11], Triantafyllidis [12], Auersch [13] 
and refinements e.g. Aubry et al. [14]. On the other hand 
we have methods leading to exact solutions in the form 
of integrals of semi- or infinite extend e.g. Vostroukhov 
[15] and Jin [16]. Their evaluation in the concept of 
FFT [17] concludes the latter approach. It, however, 
appears that the use of FFT like integration is a success-
ful method to evaluate the Hankel transforms inversion 
integrals in the cases, where there are no singularities 
in the resulting displacement field. It must be however 
noted that in the case of the Green’s function the vital 
information about its singularity comes from the portion 
of integration path, where the integration variable is 
very large or infinite. This fact makes in the case of the 
Green’s function the FFT like evaluation of integrals less 
efficient.

Kobayashi et al. [18] considered the homogeneous, elas-
tic half-space and succeeded to reduce the semi-infinite 
integrals representing the Green’s function to a part 
containing the singularity, the residue at the Rayleigh 
pole and the integrals of finite extend along the properly 
chosen branch cut, which can be easily evaluated with 
any desired accuracy. Štrukelj et al. [19] succeeded 
to modify the Kobayashi’s approach, so that it could 
be applied to the problem of vertically loaded layered 
half-space. The authors have first derived the Green’s 
function for a single layer [20] and have demonstrated 
that under the assumption of infinite thickness of the 
layer their solutions lead to the Kobayshi’s ones. Our 
decision to focus on the layer has also been motivated 
by the investigations of the mechanical properties of 
soils e.g. Žlender et al. [21] and [22], which are given at a 
point and can be easily generalized to a layer. This paper 
continues and completes the method to determine the 
surface Green’s function for a layered half-space loaded 
with the harmonic force acting in any direction. It is 
motivated by the previous works by Kobayashi et al. [18, 
23], Štrukelj et al. [19] and Pliberšek et al. [20]. The load 
acting in a general direction is decomposed into normal 
and tangential components with respect to the surface 
of the half-space, so that the problem of the latter one 
has to be dealt with only. First the general equations of 
motion for a single layer in Hankel transform domain 
are derived by adapting the Vostroukhov’s [15] approach 
and then transformed back into the geometrical domain. 
These single layer solutions are then combined into the 
solution for a layered half-space making use of the conti-
nuity conditions on the interfaces between the layers and 
boundary conditions on the surface of the half-space. 
It is proven that the basic mathematical properties of 
these solutions do not depend on the number of layers. 
They are the same for a homogeneous half-space as 
well as for the half-space with any number of layers. 

The inverse Hankel transform integrals appearing in 
the Green’s function can be therefore for any number of 
layers expressed with part proportional to r−1  , integrals 
of finite extend along the properly chosen branch cut 
and some residues at the poles of the integrand. The 
closed form solutions, obtained by our approach, for the 
Green’s function of the tangentially loaded layered half-
space are consecutively presented graphically for some 
selected number of cases.

2 METHOD OF ANALYSIS

2.1 GOVERNING EQUATIONS FOR A LAYER

We consider a horizontally layered half-space, which 
consist of  n layers on a half-space, as shown on the 
Fig. 1. The material properties of each layer and of the 
underlying half-space are assumed to be isotropic and 
homogeneous. Shear modulus μi , Poisson’s ratio νi , 
mass density ρi   and the dumping coefficient �μi  are the 
material constants of i-th layer. The homogeneous half-
space is labeled as the layer number H.

The global, cylindrical co-ordinate system and the local 
cylindrical co-ordinate systems having their origins 
at the top of each layer are introduced. The model is 
subjected on its free surface to a concentrated tangential 
point load, which varies harmonically in time. Without 
loss of generality, it is assumed that it acts in the 
direction of positive x-axis. The governing equation 
for each homogeneous, elastic layer is the well known 
[24] reduced Navier’s equation of motion in frequency 
domain:

μ
ρ

λ μ
ρ

ωi

i
i

i i

i
i iu u u i n H∇ +

+
∇∇⋅ =− ∈[ ]2 2 1 2� � � � � ; , ,..., , .     (1)

The boundary conditions on the free surface of the half-
space can be in the cylindrical coordinates written as:

σ ϑ ω σ ω ϑ
ω δ

π
ϑrz rzr r Q r

r, , , , , , cos cos1 0 0
2

( )= ( )⋅ ( )=−
( )⋅ ( )
⋅ ⋅

⋅ ( )     (2)

σ ϑ ω σ ω ϑ
ω δ

π
ϑϑ ϑz zr z r z Q r

r, , , , , , sin sin1 2
( )= ( )⋅ ( )=

( )⋅ ( )
⋅ ⋅

⋅ ( )      (3)

σ ϑ ωzz r, , , ,1 0 0( )=  .        (4)

where δ r( )  is the Dirac delta function. The continuity 
equation along the interfaces of consecutive layers, 
where perfect bonding is assumed, and radiation condi-
tions for r →∞   complete the definition of boundary 
value problem under consideration.
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The geometry of the above defined boundary-value 
problem is axi-symmetric. Therefore the ϑ-dependence 
of the problem is governed by the  ϑ-dependence of the 
loading only. Due to very simple  ϑ-dependence as a first 
step in the solution procedure reduced stresses:

σ ϑ ω σ ω ϑrz i rz ir z r z i n H, ,, , , , , cos ; , , , ,( )= ( )⋅ ( ) ∈ ⎡⎣
⎤
⎦1 2 …  (5)

σ ϑ ω σ ω ϑϑ ϑz i z ir z r z i n H, ,, , , , , sin ; , , , ,( )= ( )⋅ ( ) ∈ ⎡⎣
⎤
⎦1 2 …  (6)

σ ϑ ω σ ω ϑzz i zz ir z r z i n H, ,, , , , , cos ; , , , ,( )= ( )⋅ ( ) ∈ ⎡⎣
⎤
⎦1 2 …  (7)

and reduced displacements:

u r z u r z i n Hr i r i, ,, , , , , cos ; , ,..., ,ϑ ω ω ϑ( )= ( )⋅ ( ) ∈[ ]1 2   (8)

u r z u r z i n Hi iϑ ϑϑ ω ω ϑ, ,, , , , , sin ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2  (9)

u r z u r z i n Hz i z i, ,, , , , , cos ; , ,..., ,ϑ ω ω ϑ( )= ( )⋅ ( ) ∈[ ]1 2 (10)

are introduced. In the second step we make use of the 
Helmholtz wave potentials [25] to decouple the equa-
tions of motion (1):

Figure 1. A horizontally layered half-space subjected to a surface horizontal harmonic point load.

� � � �
u i n Hi i i=∇⋅ +∇× ∈[ ]ϕ ψ ; , ,..., ,1 2  .        (11)

The vector potential 
�
ψi  should in addition satisfy the 

constraint condition:

∇• =
�
ψi 0  .        (12)

As in the case of displacements and stresses we intro-
duce the reduced wave potentials:

ϕ ϑ ω ϕ ω ϑi ir z r z i n H, , , , , cos ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2    (13)

ψ ϑ ω ψ ω ϑr i r ir z r z i n H, ,, , , , , sin ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2   (14)

ψ ϑ ω ψ ω ϑϑ ϑ, ,, , , , , cos ; , ,..., ,i ir z r z i n H( )= ( )⋅ ( ) ∈[ ]1 2     (15)

ψ ϑ ω ψ ω ϑz i z ir z r z i n H, ,, , , , , sin ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2 . (16)

The substitution of Eqs. (13) to (16) into equations of 
motion (1) yields:
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We note that the above equation system contains two 
decoupled equations (17) and (20) and two still coupled 
equations (18) and (19). To decouple the latter ones we 
add them and subtract them and introduce two new 
reduced wave potentials χi  and κi  as:

χ ψ ψ κ ψ ψϑ ϑi r i i i r i i= + = −, , , ,;   ,       (22)

where i n H∈[ ]1 2, ,..., ,  and the equations (18) and (19) 
are replaced by:
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and the compatibility condition becomes:

κ
χ κ ψ

i
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r z
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0 1 2, ; , ,..., , . (25)

The most efficient way to solve the boundary value 
problem under consideration is by the introduction of 
Hankel integral transform.

2.2 HANKEL TRANSFORM AND SOLUTIONS 
IN HANKEL TRANSFORM DOMAIN

To solve the equations of motion (17), (20), (23) and 
(24) for each layer with appropriate boundary conditions 
(2) to (4) and continuity conditions Hankel integral 
transform r → ξ  :

f̆ H f r f r J r r drHn
n nξ ξ( )= ( )[ ]= ( )⋅ ( )⋅ ⋅

∞

∫
0

        (26)

and its inverse ξ→ r :

f r H f f J r dn
Hn Hn

n( )= ( )⎡⎣ ⎤⎦ = ( )⋅ ( )⋅ ⋅−
∞

∫1

0

ξ ξ ξ ξ ξ˘  ,        (27)

are introduced [26]. n is the order of the transform and J rn ξ( )   
is Bessel function of the first kind and order n. To trans-
form the equations of motion to their canonical form 
the integral transforms of different orders are employed. 
Equations (17) and (20) are transformed through Hankel 
transform of order 1, equation (23) of order 0 and equa-
tion (24) of order 2. This yields the following system of 
equations:

d
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The solutions of the above equations can be written as:

˘ ; , ,..., ,, ,ϕ α α
i
H

i
z

i
zC e C e i n Hi i i i1

1 2 1 2= ⋅ + ⋅ ∈[ ]⋅ − ⋅        (32)
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3 4 1 2= ⋅ + ⋅ ∈[ ]⋅ − ⋅        (33)
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5 6 1 2= ⋅ + ⋅ ∈[ ]⋅ − ⋅        (34)
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z i
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i
z

i
zC e C e i n Hi i i i1

7 8 1 2= ⋅ + ⋅ ∈[ ]⋅ − ⋅  ,       (35)

where:

α ξ β ξi L i i T ik k i n H= − = − ∈[ ]2 2 2 2 1 2, , ; , ,..., ,; . (36)
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The constraint condition the transformed wave potentials 
must satisfy is obtained from equation (25). This yields:
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The yet unknown integration constants  C iij ; , , ,∈[ ]1 2 8…  
and j n H∈[ ]1 2, , , ,…  will be determined from boundary, 
continuity and radiation conditions. For this purpose 
the reduced displacement components are expressed 
through the transformed wave potentials as:

From the above expressions strains are derived and 
introduced into the constitutive equation for linear, 
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homogeneous and isotropic solid. The pertinent reduced 
stresses are then given as:
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The equations (38) to (43) permit us to construct a liner, 
algebraic equation system in integration constants Cij  as 
unknowns. It is worth-while to note that in these equa-
tions due to constraint condition (37) only three wave 
potentials are appearing, what results in six integration 
constants per layer or underlying half-space. If a branch 
cut in the complex ξ-plane is introduced, which makes 
Re αi( )>0  and Re β( )>0  on the real positive ξ-axis, 
then the radiation conditions demand:

C C CH H H1 5 7 0, , ,= = =  .        (44)

The boundary conditions on the surface of the half-
space are given by equations (2) to (4) and for the 
continuity condition perfect bonding between the 
layers and the underlying half-space i.e. the continuity 
of displacements and stresses across the interfaces, is 

assumed. Thus the boundary and continuity conditions 
result in 6 3⋅ +n  equations for the same number of 
unknown integration constants Cij . For the reason 
of in the forthcoming paragraph introduced solution 
procedure we must study some properties of the matrix 
of this equation system and its submatrices. To simplify 
the further mathematical derivation some dimensionless 
variables and constants are introduced:
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; ; ;
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,

ii T ik h i n H= ⋅ ∈[ ]1 1 2; , ,..., , .
 (45)

We begin the derivation of the equation system with the 
boundary conditions defined on the upper surface of the 
first layer shown on the Fig. 2.

Figure 2. Material and geometrical properties of the first layer.

T. PLIBERŠEK & A. UMEK: GREEN’S FUNCTION FOR TANGENTIALY LOADED HORIZONTALY LAYERED HALF-SPACE



ACTA GEOTECHNICA SLOVENICA, 2008/1 57.

We introduce the expressions for stresses (41) to (43) 
into the transformed boundary conditions (2) to (4) and 
take into account the equation (45). This yields:
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The other equations follow from continuity conditions 
on the interfaces between layers and the nth layer and 
the underlying half-space respectively. The interface 
between the ith  and the (i+1)st  layer is depicted in
Fig. 3.

Figure 3. Material and geometrical properties of  ith  and  (i+1)st  layer.

Introduction of equations for the displacements and the 
stresses (38) to (43) into continuity equations leads to:
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where i n n H∈ + ≡[ ]1 2 1, ,..., ,   and the equation (44) 
has to be accounted for. The above created system of  6 3⋅ +n  
equations can be written in the matrix form:

A• =
� �
C b   .        (55)

The matrix A in the above equation is a band matrix 
with the bandwidth of maximum 9 terms. 

�
C  is a 

properly ordered vector of integration constants Ci j, . 
The right side of the system is a vector, where each term 
except the first one equals to zero. As we have limited 
our interest to motion at the surface, only the first six 
integration constants are needed. They are obtained 
by Cramer’s rule. The value of the determinant of the 
matrix A is determined by its development along the 
first row. According to the fact, that only first six terms 
of the first row are different from zero the expression of 
the determinant A  has the following form:

A a Aj
j

j

j

j= − ⋅ ⋅+

=

=

∑( ) ,1 1
1

1

6

  ,        (56)

where a jj1 1 2 6, ; , , ,∈[ ]…  represent the first six 
non-zero terms of first row of matrix A[ ]  and A jj ; , , ,∈[ ]1 2 6…   
represent corresponding sub matrices. Due to the fact 
that the vector on the right side of the system equations 
(55) has the following form:

b Q
k

b j n
T

j1
1 1

0 2 3 6 2=
( )

⋅ ⋅
= ∈ +⎡

⎣
⎤
⎦

ω
π μ

; ; , , , ,…     (57)

the six constants, which determine the surface motion of 
the half-space, can be written as:

C
A

A
Q

k
kk

j j

T
1

1

1 1

1 1 2 5 6 7 8, ( ) ; , , , , , ;= − ⋅ ⋅
( )

⋅ ⋅
∈[ ]+ ω

π μ (58)

Introducing the equations (32), (33), (35) and (58) into 
equations (38) to (40) and evaluating the latter at z= 0  
lead to the displacements on the surface of the half-space as:

j 1 2 6, , , .∈[ ]…

T. PLIBERŠEK & A. UMEK: GREEN’S FUNCTION FOR TANGENTIALY LOADED HORIZONTALY LAYERED HALF-SPACE



ACTA GEOTECHNICA SLOVENICA, 2008/1 59.

u a Q
c A

A A A Ar
T

,
,

0
2

1
1 1

1 2
2

3 4
0

( )=
( )

⋅
⋅ ⋅ ⋅ ⋅ −( )− − ⋅ +( )⎡

⎣
⎢⎢

⎧
⎨
∞

∫
ω

π μ
ω η

η η
⎪⎪⎪

⎩⎪⎪
+

+ − ⋅ −( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⋅ −( )⎤

⎦
⎥
⎥ ⋅ ( )⋅ + ⋅ − ⋅η

η
η η η

η
η

2 12
5 6 0 1A A J a d

A
A −−( )⎡

⎣
⎢ +

+ − ⋅ +( )+ ⋅ −( )⎤⎦⎥⎥ ⋅ ( )⋅ }

∞

∫ A

A A A A J a d

2
0

2
3 4 5 6 21η η η η

         (59)

u a Q
c A

A A A
T

ϑ

ω
π μ

ω η
η η,

,

0
2

1
1 1 0

1 2
2

3( )=
( )

⋅
⋅ ⋅

−( )
⋅

⎧
⎨
⎪⎪

⎩⎪⎪
⋅ −( )− − ⋅ +

∞

∫ AA

A A J a d
A

4

2
5 6 0

2 1

( )⎡
⎣
⎢⎢

+

+ − ⋅ −( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⋅ −( )⎤

⎦
⎥
⎥ ⋅ ( )⋅ + ⋅ −η

η
η η η

η
η ⋅⋅ −( )⎡

⎣
⎢ +

+ − ⋅ +( )+ ⋅ −( )⎤⎦⎥⎥ ⋅ ( )⋅ }

∞

∫ A A

A A A A J a d

1 2
0

2
3 4 5 6 21η η η η

         (60)

u a Q
c A

A A A Az
T

,
,

0
1 1

2
1
2

1 2 3 4
0

( )=
( )

⋅
⋅ ⋅ ⋅ − ⋅ +( )− ⋅ −( )⎡

⎣
⎢⎢

+
∞

∫
ω

π μ
ω η

η γ η

−− − ⋅ +( )⎤⎦⎥⎥ ⋅ ( )⋅η η η2
5 6 11 A A J a d ,

         (61)

where following change of variable has been introduced:
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The newly introduced functions B ii η( ) =, , ,1 2 3  can 
be identified from the above equations. They also allow 
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For further analysis it is worth vile to note that in the 
above equations only three distinct integrals appear. 
They are denoted as I1 , I2  and  I3  and are given as:

us to write the reduced surface displacements in a more 
compact form. They are given as:
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3 EVALUATION OF THE 
INVERSION INTEGRALS

As it is known from the literature [27] and it was already 
demonstrated in the previous paper by the authors [19] 
the leading term of singularity depends on the local 
conditions only. Due to this fact the singularity at the 

surface of the layered half-space can be determined by 
considering the homogeneous half-space with the mate-
rial properties of the uppermost layer, what considerably 
simplifies the analysis. The integrals I ii , , ,=1 2 3  equa-
tions (63) to (65) are first reduced to the case of a 
homogeneous half-space and consecutively their limits 
are evaluated. This yield:
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and in an analogous way:
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where:

FH η η η η η γ( ) = ⋅ −( ) − ⋅ ⋅ − ⋅ −2 1 4 12 2 2 2 2 2  .     (71)

The limit of the integral  I3  as a→ 0   is zero and there-
fore it remains regular for all values of  a. The singulari-

ties given by equations (69) and (70) are now subtracted 
from integrals  I1  and  I2  respectively and taken under 
the integral sign. This yields:
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The horizontal displacements components are now given by:
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We note that the singular terms, which appear in the 
horizontal displacement components, are given explic-
itly. The values of the integrals I1  and I2  are bounded 
for all values of the parameter a or r respectively. And 
what is also important for a numerical evaluation and of 
course for our later considerations B1 η( ) , B2 η( )  and B3 η( )   
tend to zero as η→∞ .

3.1 EXTENDING THE RANGE OF INTE-
GRATION

To transform the integrals I ii , ,=1 2   and I3 into a form 
permitting their evaluation by contour  integration in a 
complex  η -plane we must make their integrands single 
valued and extend the range of integration from −∞   to 

∞ . Thus we note that the functions B1 η( ) , B2 η( )  and 
B3 η( )  are not single-valued due to the terms αi  and 
βi  appearing in them. They are made single valued by 
introducing the branch cuts in the complex η -plane. 
In the selection of a suitable branch cut we are however 
limited by the following requirements: imposed radia-
tion conditions, which require that the real parts of α ηi ( )   
and β ηi ( )  are positive on the positive real η -axis; that it 
does not intersect the big semi-circle in the upper
η -half-plane and by the demand that α ηi ( )  and 
β ηi ( )   are odd functions of η  on the real η -axis. The 
latter is needed to extend the range of integration from 
semi-infinite to infinite. The branch-cut fulfilling the 
above stated requirements is shown in Fig. 4.
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We realize that the chosen branch-cut indeed makes α ηi ( )   
and  β ηi ( )  odd functions of  η  on the real η -axis and 
does not intersect the big semi-circle in the upper  
η -half-plane. We further note that all terms of matrix A, 
equation (55), except the exponential functions:

p e ei
t ti i i i± ± ± −( )= =η α η γ2 2

     and 

q e ei
t ti i i i± ± ± −( )= =η β η ϑ2 2

         (76)

which are neither odd nor even. To make the terms in 
matrix A determined with respect to evenness or oddness 
respectively we replace them by their analytic continu-
ations, which do not change their values on positive η
-axis and are even functions on the real η -axis. As func-
tions satisfying the stated requirements we have chosen:
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2 2
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η ϑ
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1

 .        (77)

The replacement of the functions pi
± ( )η   and qi

± ( )η   in 
equations (49)-(54) through �pi

± ( )η   and �qi
± ( )η   leads 

Figure 4. Branch points of expressions αi   and βi   with introduced branch cut and the corresponding Rayleigh pole. For greater 
clarity of the figure some material damping has been assumed and expressed by complex shear module μ μ ϕ

i i
ie= ⋅0 .

to the matrix �A , which has on the integration path 
of inverse Hankel transform exactly the same values 
as the original matrix A. The terms of matrix �A  have 
interesting and for further analysis very useful proper-
ties. It can be seen from equations (46) to (48) that all 
the terms in the first three rows of matrix �A  are even 
functions of η  on the real  η -axis. The further rows of 
matrix �A  are coming from continuity conditions on 
interfaces between layers, six rows for each interface. 
From equations (49) to (54) it is easy to recognize that 
the first tree of these six rows contain only terms, which 
are even functions of  η , and the next three only terms, 
which are odd functions of η  on the real  η -axis. 
Matrix �A  therefore has 3 1⋅ +( )n  rows, where all the 
terms are even, and 3 ⋅n   rows, where all the terms are 
odd and n is the number of layers. This implies that all 
the determinants �A   and  � …A ii , , , ,∈[ ]1 2 6  are in the 
case of odd number of layers n odd functions and on the 
other hand in the case of even number of layers n are 
even functions on the real  η -axis. We now derive func-
tions �Bi η( )   exactly the same way as we have derived 
functions Bi η( )  only that we make use of determinants  
�A  and � …A ii , , , ,∈[ ]1 2 6  , instead of the determinants A  

and A ii , , , ,∈[ ]1 2 6…  . This yields:
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�
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         (79)  and

�
�

� � � � � �B
A

A A A A A A3
2

1
2

1 2 3 4
2

5 61( )η
η

η γ η η= ⋅ − ⋅ +( )− ⋅ −( )− − ⋅ +( )⎡
⎣⎢

⎤
⎦⎦⎥ .         (80)

where all the �B ii η( ) ∈[ ], , ,1 2 3   are even functions of  
η  on the real  η -axis and �B B ii iη η( )= ( ) ∈[ ], ,1 2   and 
�B Bi3 η η( )= ( )  on the real, positive  η -axis. Taking into 

account these equalities, the equations (72), (73) and 
(65) can be written as:

I B J a d B J a d I1 1
0

0 1
0

0 1= ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞ ∞

∫ ∫η η η η η η� �     (81)

I B J a d B J a d I2 2
0

2 2
0

2 2= ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞ ∞

∫ ∫η η η η η η� �   (82)

and

I B J a d B J a d I3 3 1
0

3 1
0

3= ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞ ∞

∫ ∫η η η η η η� � .(83)

At this point we make use of integral representations of Bessel 
functions known from the literature e.g. Gradshteyn et al. [28]:

J a h a h a ii i iη η η( )= ( )+ −( ) =; , ,1 2 3         (84)

where:

h a e di a
0

0

1
2

η
π

ϑη ϑ
π

( )= ∫ sin         (85)

h a H a1 1
11

2
η η( )= ( )         (86)

h a e di a
2

2

0

1
2

η
π

ϑη ϑ ϑ
π

( )= −( )∫ sin         (87)

and H a1
1 η( )   is the Hankel’s function of the first order 

and the first kind. Making use of the relationship (84) 
equation (81) yields:

I I B J a d B h a d B h a1 1 1
0

0 1 0
0

1 0= = ( )⋅ ( )⋅ = ( )⋅ ( )⋅ + ( )⋅ −
∞ ∞

∫ ∫� � � �η η η η η η η ηη η

η η η η η η η

( )⋅

= ( )⋅ ( )⋅ + −( )⋅ ( )⋅ − = ( )

∞

∞

∫

∫

d

B h a d B h a d B

0

1 0
0

1 0 1
� � �( ) ⋅⋅ ( )⋅ =

−∞

∞−∞

∫∫ h a d I0
0

1η η ˘ .
         (88)

Where we have made use of the change of variables 
η η→−   and the symmetry of the function �B1 η( ) . In 
a very analogous fashion we obtain for the other two 
pertinent integrals given by equations (82) and (83) 
following expressions:

I I B J a d B h a d I2 2 2
0

2 2 2 2= = ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞

−∞

∞

∫ ∫� � �η η η η η η ˘  (89)

I B J a d B h a d I3 5 1
0

5 1 3= ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞

−∞

∞

∫ ∫η η η η η η� ˘  . (90)

The equations (88) to (90) clearly show that we have 
successfully replaced the original inverse Hankel trans-
form integrals with the range of integration from 0  to +∞  
with newly defined integrals having the range of integra-
tion from −∞  to +∞  . The integrals ˘ , , ,I ii =1 2 3  can 
be evaluated by contour integration in the complex  
η -plane as it will be shown in the next paragraph.

3.2 EVALUATION OF INTEGRALS BY 
CONTOUR INTEGRATION

Integrals Ĭ1 , Ĭ2  and Ĭ3 , are finally in the form permit-
ting their evaluation by the contour integration in the 
complex  η -plane. The most suitable contour is shown 
in Fig. 5. By the residue theorem it can be written:

˘ ˘ ˘ ˘ ˘ ˘ ; , , .I I I I I I i res ii iR i ib ir ib i+ −+ + + + + = =∑1 2 2 1 2 3π  (91)

It can be easily shown that the value of the integral along 
the big semi-circle in the upper  η -half plane is identi-
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cally zero. This is due to the behaviour of integrands, 
which are dominated by h ai η( )  functions. On the big 

lim lim exp cos sin sin
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ϕ ϕ ϑ ϑ
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1h a i R i d
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1 0
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         (93)

Figure 5. Integration path for the evaluation of integrals Ĭ1 , Ĭ2 and Ĭ3 . Some material damping is assumed to make the picture clearer.

And the same behavior for h a H a1 1
1η η( )= ( )( ) , namely 

that lim ( )

R

iH R e
→∞

⋅( )→1
1 0ϕ   for 0≤ ≤ϕ π   is well docu-

mented in the literature [29]. Therefore it can be concluded:

˘ ; , , .I iiR = =0 1 2 3         (94)

Taking in account the above equation the equation (91) 
can be rewritten as:

˘ ˘ ˘ ˘ ˘ ˘ ; , , .I I I i res I I I ii i i i ib ir ib= + = − − − =+ − ∑2 1 2 31 2π   (95)

It is clear from Fig. 5 that all three integrals appearing 
in the right hand term of the above equation have finite 
integration path. Therefore by the equation (95) our 

fundamental goal has been achieved. It can be further 
noted that if the integrals Ĭib1  and Ĭib2  are led along one 
and the other side of the branch cut and the value of the 
integral Ĭir  is equal zero. For the numerical calculation 
it is advantageous to express the integrals Ĭib1  and Ĭib2   
through a sum of integrals of even shorter integration 
range stretching from one singularity on the branch cut 
to the other. These singularities are either branch points 
of functions αi  and βi  defined through the equation 
(45) or the poles defined by the zeros of the determinant 
A , which lie on the branch cut. Introducing the equa-

tion (95) and considering the equations (88)-( 90) into 
equations (74), (75) and (68) yields the surface displace-
ments as:

semi-circle η  can bi given as η ϕ= ⋅ ⋅R ei , where ϕ  takes 
the values from 0 to π . Equations (85) and (87) yield:
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u a Q
r c
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u a Q
c

i res I Iz
T

b b, ˘ ˘
,

0
2

2
1 1

3 3 1 3 2( )= ( )

⋅
⋅ − −( )∑ω

π μ
ω

π   .         (98)

The above three equations are the final result of our 
analysis. In them the surface displacements of a layered 
half-space due to a tangential point load are given by 
a singular term, in the components, which become 
singular as r → 0 , a sum of the residues and a sum of 
integrals with the finite integration path. The latter ones 
can be evaluated numerically with any desired accuracy. 
We can further note that the residues represent the 
surface waves and the integrals are due to body waves.

4 NUMERICAL EXAMPLE

As an illustrative example a one-layer half-space with the 
same geometrical and material characteristics as the one 
considered by Štrukelj et al. [19] has been chosen. It is 
shown in Fig. 1 with n=1 . On its surface a horizontal, 
harmonic point-load is applied. The material properties 
of this half-space are as follows: ratio of material densi-
ties in the underlying half-space and the layer is
ρ ρH 1 1 5= . , the ratio of shear modules μ μH 1 2 0= . , 
the Poisson’s ratio for the layer is ν1 1 3=  and the 

Poisson’s ratio for underlying half-space is νH =1 4 . The 
materials in the layer and in the underlying half-space 
are assumed to have no material damping. The ratio of 
the layer thickness h1 and the wave length of shear waves 
in the layer λ1  is taken to be h1 1 2 0λ = . .

As it can be seen from equations (96) to (98), the 
displacement components are expressed as sums of 
several terms. It is worthwhile to note that in the both 
horizontal displacements components the same terms 
appear with exception of the singular term. In the verti-
cal displacement, however, completely different terms 
are forthcoming. The numerical effort can be, therefore, 
considerably reduced by computing first each of these 
terms separately and later combine them into displace-
ment components as given by equations (96) to (98). In 
the Fig. 6 and 7 as an example three such characteristic 
terms are given.

Our choice of the geometrical and material properties of 
the half-space is based on the fact that it is nearly impos-
sible to obtain the data in the pertinent literature, with 
which our results could be compared to prove their valid-

Figure 6. Real parts of terms 2 3πi res∑  and Ĭ b3 1  .
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Figure 7. Imaginary parts of terms 2 3πi res∑ and Ĭ b3 1 .

ity and accuracy. Therefore we have decided to make use 
of the principle of reciprocity in elastodynamics, which 
is well described in the literature e.g. by Achenbach [30]. 
It can be concluded from this principle, that the vertical 
displacements along the ray ϑ= 0  in a half-space loaded 
with a horizontal, harmonic, unit point-load are equal to 
the radial displacements in an identical half-space loaded 
with a vertical, harmonic and unit point-load. Therefore 
we can state that for our above described choice of the 
layered half-space the displacement component u az ,0( ) , 
as given by equation (98), should equal the radial compo-
nent of the surface displacements presented by Štrukelj et 
al. [19]. It is however worth vile to note that this equiva-
lence can not be seen from the two expressions before 
their numerical evaluation. The integrals in equation (98) 

have integrands, which are based on the determinant and 
sub-determinants of a 9x9 matrix A. The corresponding 
integrals are in the case of the vertically loaded half-space 
based on a 6x6 matrix.

The real and imaginary parts of both displacement func-
tions are shown in Fig. 8 and 9. It can be seen from both 
figures that they are in an excellent agreement with the 
results presented by Štrukelj et al [19].

The results of the evaluation of the radial displacement 
component u ar ,0( )  are shown in the Fig. 10 and 11. In 
exactly the same way the circumferential displacement 
component u aϑ ,0( )  can be evaluated through a different 
combination of terms appearing in u ar ,0( ) . The results 
of this evaluation will not be presented in this paper.

Figure 8. The real part of the displacement function u az ,0( )  given by the dotted line and
the real part of the function u ar ,0( )  presented through the solid line.
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Figure 9. The imaginary part of the displacement function u az ,0( ) given by the dotted line and
the real part of the function u ar ,0( ) presented through the solid line.

Figure 10. The real part of the displacement function u ar ,0( ) .

Figure 11. The imaginary part of the displacement function u ar ,0( ) .
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5 CONCLUSION

The displacement components on the surface of a hori-
zontally layered half-space due to a tangential point-load 
were expressed through a combination of tree distinct 
Hankel’s inverse integrals and trigonometric functions 
with the circumferential coordinate as argument. For the 
evaluation of these Hankel’s integrals a novel three step 
procedure is employed. In the first step the singularity 
at the generic point from the integrals, where it exists is 
extracted and the resulting new integrals are made regu-
lar. In the second step we replaced the new integrands 
functions with their suitable analytic continuations, by 
which we were able to extend the integration range of 
Hankel’s integrals to −∞  to +∞ . By this extension of 
the integration range we were in the last step permitted 
to evaluate them by contour integration.

Through these three steps we were able to transform the 
Hankel’s integrals into sum of three terms. The first one 
contains the singularity in the form C r , the second 
one is given by a sum of the residues of the integrand 
and finally the third term consists of finite number of 
integrals along the suitable chosen branch-cut. The latter 
ones regular and finite in their integration range can be 
easily evaluated numerically.

The results presented in this paper together with the our 
previous results, Štrukelj et al. [19], constitute, what we 
believe, a robust and numerically efficient method to 
evaluate the displacements on the surface of the horizon-
tally layered half-space due to a point force of any direc-
tion. The method of evaluation presented in this paper 
provides us with exact and closed form expressions for 
the singularities of displacement field, what makes our 
results very suitable to be used in soil-structure interac-
tion problems.

We are convinced that an even more efficient integra-
tion line around the branch cut from the one used in 
this paper can be developed. Before we could come 
up with a definite recommendation concerning the 
integration path more numerical research is needed. 
It is however believed that this problem is beyond the 
scope of this paper, where we succeeded to demonstrate 
that the Green’s function for a layered half-space can 
be expressed as a combination of terms, which can be 
easily, especially in comparison with original Hankel’s 
inversion integrals, and accurately evaluated.
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NAVODILA AVTORJEM

Članki so objavljeni v angleškem jeziku s prevodom 
izvlečka v slovenski jezik. 

VSEBINA C̆LANKA

Članek naj bo napisan v naslednji obliki:

- Naslov, ki primerno opisuje vsebino članka in ne 
presega 80 znakov.

- Izvleček, ki naj bo skrajšana oblika članka in naj ne 
presega 250 besed. Izvleček mora vsebovati osnove, 
jedro in cilje raziskave, uporabljeno metodologijo 
dela, povzetek izidov in osnovne sklepe.

- Uvod, v katerem naj bo pregled novejšega stanja in 
zadostne informacije za razumevanje ter pregled 
izidov dela, predstavljenih v članku.

- Teorija.
- Eksperimentalni del, ki naj vsebuje podatke o posta-

vitvi preiskusa in metode, uporabljene pri pridobitvi 
izidov.

- Izidi, ki naj bodo jasno prikazani, po potrebi v obliki 
slik in preglednic.

- Razprava, v kateri naj bodo prikazane povezave in 
posplošitve, uporabljene za pridobitev izidov. Prika-
zana naj bo tudi pomembnost izidov in primerjava s 
poprej objavljenimi deli.

- Sklepi, v katerih naj bo prikazan en ali več sklepov, ki 
izhajajo iz izidov in razprave.

- Literatura, ki mora biti v besedilu oštevilčena 
zaporedno in označena z oglatimi oklepaji [1] ter na 
koncu članka zbrana v seznamu literature. 

OBLIKA C̆LANKA

Besedilo naj bo pisano na listih formata A4, z dvojnim 
presledkom med vrstami in s 3.0 cm širokim robom, 
da je dovolj prostora za popravke lektorjev. Najbolje je, 
da pripravite besedilo v urejevalniku Microsoft Word. 
Hkrati dostavite odtis članka na papirju, vključno z 
vsemi slikami in preglednicami ter identično kopijo v 
elektronski obliki.

Enačbe naj bodo v besedilu postavljene v ločene vrstice 
in na desnem robu označene s tekočo številko v okroglih 
oklepajih.

ENOTE IN OKRAJŠAVE

V besedilu, preglednicah in slikah uporabljajte le 
standardne označbe in okrajšave SI. Simbole fizikalnih 

veličin v besedilu pišite poševno (npr. ν, T itn.). Simbole 
enot, ki sestojijo iz črk, pa pokončno (npr. Pa, m itn.).

Vse okrajšave naj bodo, ko se prvič pojavijo, izpisane v 
celoti.

SLIKE

Slike morajo biti zaporedno oštevilčene in označene, v 
besedilu in podnaslovu, kot sl. 1, sl. 2 itn. Posnete naj 
bodo v kateremkoli od razširjenih formatov, npr. BMP, 
JPG, GIF. Za pripravo diagramov in risb priporočamo 
CDR format (CorelDraw), saj so slike v njem vektorske 
in jih lahko pri končni obdelavi preprosto povečujemo 
ali pomanjšujemo.

Pri označevanju osi v diagramih, kadar je le mogoče, 
uporabite označbe veličin (npr. ν, T). V diagramih z več 
krivuljami mora biti vsaka krivulja označena. Pomen 
oznake mora biti razložen v podnapisu slike.

Za vse slike po fotografskih posnetkih je treba priložiti 
izvirne fotografije ali kakovostno narejen posnetek.

PREGLEDNICE

Preglednice morajo biti zaporedno oštevilčene in 
označene, v besedilu in podnaslovu, kot preglednica 
1, preglednica 2 itn. V preglednicah ne uporabljajte 
izpisanih imen veličin, ampak samo ustrezne simbole. K 
fizikalnim količinam, npr. t (pisano poševno), pripišite 
enote (pisano pokončno) v novo vrsto brez oklepajev. 

Vse opombe naj bodo označene z uporabo dvignjene 
številke1.

SEZNAM LITERATURE

Vsa literatura mora biti navedena v seznamu na koncu 
članka v prikazani obliki po vrsti za revije, zbornike in 
knjige:

[1] Feng, T. W. (2000). Fall-cone penetration and water 
content ralationship of clays. Geotechnique 50, No. 
2,  181-187.

[2] Ortolan, Ž. and Mihalinec, Z. (1998). Plasticity 
index-Indicator of shear strength and a major axis 
of geotechnical modelling. Proceedings of the Elev-
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enth Danube-European conference on soil mechan-
ics and geotechnical engineering, Poreč, 25 –29  May 
1998.

[3] Toporišič, J. (1994). Slovenski pravopis. 2nd.ed., 
DZS, Ljubljana.

PODATKI O AVTORJIH

Članku priložite tudi podatke o avtorjih: imena, nazive, 
popolne poštne naslove, številke telefona in faksa, 
naslove elektronske pošte. Navedite kontaktno osebo. 

SPREJEM C̆LANKOV IN AVTORSKE PRAVICE

Uredništvo si pridržuje pravico do odločanja o sprejemu 
članka za objavo, strokovno oceno mednarodnih 
recenzentov in morebitnem predlogu za krajšanje ali 
izpopolnitev ter terminološke in jezikovne korekture.

Avtor mora predložiti pisno izjavo, da je besedilo 
njegovo izvirno delo in ni bilo v dani obliki še nikjer 
objavljeno. Z objavo preidejo avtorske pravice na revijo 
ACTA GEOTECHNICA SLOVENICA. Pri morebitnih 
kasnejših objavah mora biti AGS navedena kot vir.

Rokopisi člankov ostanejo v arhivu AGS.

Vsa nadaljnja pojasnila daje:

Uredništvo
ACTA GEOTECHNICA SLOVENICA 
Univerza v Mariboru
Fakulteta za gradbeništvo 
Smetanova ulica 17
2000 Maribor
Slovenija
E-pošta: ags@uni-mb.si

INSTRUCTIONS FOR AUTHORS

The papers are published in English with a translation of 
the abstract into Slovene. 

FORMAT OF THE PAPER

The paper should have the following structure:

- A Title that adequately describes the content of the 
paper and should not exceed 80 characters;

- An Abstract, which should be viewed as a mini 
version of the paper and should not exceed 250 
words. The Abstract should state the principal 
objectives and the scope of the investigation and the 
methodology employed, it should also summarise 
the results and state the principal conclusions;

- An Introduction, which should provide a review of 
recent literature and sufficient background informa-
tion to allow the results of the paper to be under-
stood and evaluated;

- A Theoretical section;
- An Experimental section, which should provide 

details of the experimental set-up and the methods 
used for obtaining the results;

- A Results section, which should clearly and concisely 
present the data using figures and tables where 
appropriate;

- A Discussion section, which should describe the 
relationships shown and the generalisations made 

possible by the results and discuss the significance 
of the results, making comparisons with previously 
published work;

- Conclusions, which should present one or more 
conclusions that have been drawn from the results 
and subsequent discussion;

- References, which must be numbered consecutively 
in the text using square brackets [1] and collected 
together in a reference list at the end of the paper. 

LAYOUT OF THE TEXT

The text should be written in A4 format, with double 
spacing and margins of 3 cm, to provide editors with 
space to write in their corrections. Microsoft Word for 
Windows is the preferred format for submission. One 
hard copy, including all figures, tables and illustrations 
and an identical electronic version of the manuscript 
must be submitted simultaneously.

Equations should be on a separate line in the main body 
of the text and marked on the right-hand side of the 
page with numbers in round brackets.

UNITS AND ABBREVIATIONS

Only standard SI symbols and abbreviations should be 
used in the text, tables and figures. Symbols for physical 
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quantities in the text should be written in Italics (e.g. ν, 
T, etc.). Symbols for units that consist of letters should 
be in plain text (e.g. Pa, m, etc.).

All abbreviations should be spelt out in full on first
appearance.

FIGURES

Figures must be cited in consecutive numerical order 
in the text and referred to in both the text and the 
caption as Fig. 1, Fig. 2, etc. Figures may be saved in any 
common format, e.g. BMP, JPG, GIF. However, the use 
of CDR format (CorelDraw) is recommended for graphs 
and line drawings, since vector images can be easily 
reduced or enlarged during final processing of the paper.

When labelling axes, physical quantities (e.g.  ν, T) 
should be used whenever possible. Multi-curve graphs 
should have individual curves marked with a symbol; 
the meaning of the symbol should be explained in the 
figure caption.

Good quality black-and-white photographs or scanned 
images should be supplied for illustrations.

TABLES

Tables must be cited in consecutive numerical order in 
the text and referred to in both the text and the caption 
as Table 1, Table 2, etc. The use of names for quantities 
in tables should be avoided if possible: correspond-
ing symbols are preferred. In addition to the physical 
quantity, e.g. t (in Italics), units (normal text), should be 
added on a new line without brackets.

Any footnotes should be indicated by the use of the 
superscript1. 

LIST OF REFERENCES

References should be collected at the end of the paper in 
the following styles for journals, proceedings and books, 
respectively:

[1] Feng, T. W. (2000). Fall-cone penetration and water 
content ralationship of clays. Geotechnique 50,
No. 2,  181-187.

[2] Ortolan, Ž. and Mihalinec, Z. (1998). Plasticity 
index-Indicator of shear strength and a major axis 
of geotechnical modelling. Proceedings of the Elev-
enth Danube-European conference on soil mechan-
ics and geotechnical engineering, Poreč, 25 –29  May 
1998.

[3] Toporišič, J. (1994). Slovenski pravopis. 2nd.ed., 
DZS, Ljubljana.

AUTHOR INFORMATION

The following information about the authors should 
be enclosed with the paper: names, complete postal 
addresses, telephone and fax numbers and E-mail
addresses. Indicate the corresponding person.

ACCEPTANCE OF PAPERS AND COPYRIGHT

The Editorial Committee of the Slovenian Geotechnical 
Review reserves the right to decide whether a paper is 
acceptable for publication, to obtain peer reviews for 
submitted papers, and if necessary, to require changes in 
the content, length or language.

Authors must also enclose a written statement that 
the paper is original unpublished work, and not under 
consideration for publication elsewhere. On publica-
tion, copyright for the paper shall pass to the ACTA 
GEOTECHNICA SLOVENICA. The AGS must be 
stated as a source in all later publication.

Papers will be kept in the archives of the AGS.

For further information contact:

Editorial Board 
ACTA GEOTECHNICA SLOVENICA 
University of Maribor
Faculty of Civil Engineering
Smetanova ulica 17
2000 Maribor
Slovenia
E-mail: ags@uni-mb.si



NAMEN REVIJE

Namen revije ACTA GEOTECHNICA SLOVENICA 
je objavljanje kakovostnih teoretičnih člankov z novih 
pomembnih področij geomehanike in geotehnike, ki 
bodo dolgoročno vplivali na temeljne in praktične vidike 
teh področij.

ACTA GEOTECHNICA SLOVENICA objavlja članke 
s področij: mehanika zemljin in kamnin, inženirska 
geologija, okoljska geotehnika, geosintetika, geotehnične 
konstrukcije, numerične in analitične metode, računal-
niško modeliranje, optimizacija geotehničnih konstruk-
cij, terenske in laboratorijske preiskave.

Revija redno izhaja dvakrat letno.

AVTORSKE PRAVICE

Ko uredništvo prejme članek v objavo, prosi avtorja(je), 
da prenese(jo) avtorske pravice za članek na izdajatelja, 
da bi zagotovili kar se da obsežno razširjanje informacij. 
Naša revija in posamezni prispevki so zaščiteni z 
avtorskimi pravicami izdajatelja in zanje veljajo naslednji 
pogoji:

Fotokopiranje

V skladu z našimi zakoni o zaščiti avtorskih pravic je 
dovoljeno narediti eno kopijo posameznega članka 
za osebno uporabo. Za naslednje fotokopije, vključno 
z večkratnim fotokopiranjem, sistematičnim foto-
kopiranjem, kopiranjem za reklamne ali predstavitvene 
namene, nadaljnjo prodajo in vsemi oblikami nedobič-
konosne uporabe je treba pridobiti dovoljenje izdajatelja 
in plačati določen znesek.

Naročniki revije smejo kopirati kazalo z vsebino revije 
ali pripraviti seznam člankov z izvlečki za rabo v svojih 
ustanovah.

Elektronsko shranjevanje

Za elektronsko shranjevanje vsakršnega gradiva iz revije, 
vključno z vsemi članki ali deli članka, je potrebno 
dovoljenje izdajatelja.

ODGOVORNOST

Revija ne prevzame nobene odgovornosti za poškodbe 
in/ali škodo na osebah in na lastnini na podlagi odgo-
vornosti za izdelke, zaradi malomarnosti ali drugače, ali 
zaradi uporabe kakršnekoli metode, izdelka, navodil ali 
zamisli, ki so opisani v njej.

AIMS AND SCOPE

ACTA GEOTECHNICA SLOVENICA aims to play an 
important role in publishing high-quality, theoretical 
papers from important and emerging areas that will have 
a lasting impact on fundamental and practical aspects of 
geomechanics and geotechnical engineering.

ACTA GEOTECHNICA SLOVENICA publishes 
papers from the following areas: soil and rock mechan-
ics, engineering geology, environmental geotechnics, 
geosynthetic, geotechnical structures, numerical and 
analytical methods, computer modelling, optimization 
of geotechnical structures, field and laboratory testing.

The journal is published twice a year.

COPYRIGHT

Upon acceptance of an article by the Editorial Board, 
the author(s) will be asked to transfer copyright for 
the article to the publisher. This transfer will ensure 
the widest possible dissemination of information. This 
review and the individual contributions contained in it 
are protected by publisher’s copyright, and the following 
terms and conditions apply to their use:

Photocopying

Single photocopies of single articles may be made for 
personal use, as allowed by national copyright laws. 
Permission of the publisher and payment of a fee are 
required for all other photocopying, including multiple 
or systematic copying, copying for advertising or 
promotional purposes, resale, and all forms of document 
delivery.

Subscribers may reproduce tables of contents or prepare 
lists of papers, including abstracts for internal circula-
tion, within their institutions.

Electronic Storage

Permission of the publisher is required to store electron-
ically any material contained in this review, including 
any paper or part of the paper.

RESPONSIBILITY

No responsibility is assumed by the publisher for any 
injury and/or damage to persons or property as a matter 
of product liability, negligence or otherwise, or from any 
use or operation of any methods, products, instructions 
or ideas contained in the material herein.
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