
ELEKTROTEHNIŠKI VESTNIK 78(5): 293–297, 2011
ENGLISH EDITION

SimpleFSM - a domain-specific language for SIP
communication systems - Part II: Application to SIP
Servlets

Edin Pjanić, Amer Hasanović
Faculty of Electrical Engineering, University of Tuzla,
Franjevačka 2, Tuzla 75000, Bosnia and Herzegovina
E-mail: {edin.pjanic, amer.hasanovic}@untz.ba

Abstract. This is the second of a two-part paper on the SimpleFSM, a domain-specific language, developed to
simplify the application develoment for the SIP communication systems. While Part I describes the development
of the SimpleFSM and its syntax, Part II gives some details of the SimpleFSM DSL integration with the Java
SIP servlet architecture utilizing JRuby, a Ruby implementation for the Java Virtual Machine. Finally, a more
complex converged application is developed and implemented using the developed DSL.

Keywords: Domain-specific languages, Session-Initiation Protocol, finite-state machine, metaprogramming,
Ruby, telecom applications.

1 INTRODUCTION

In Part I [1] of this two-part paper, we presented the Sim-
pleFSM, a Ruby domain-specific language (DSL) [2]
for finite-state machines (FSM) developed to be used in
modeling FSMs in various domains, including complex
communication applications based on the SIP proto-
col [3]. The DSL syntax is simple. It supports state
and transition definitions that include definitions of the
events the FSM accepts as well as specification of
actions executed on certain events.

The DSL is developed as an internal DSL and does
not require any parser or other facility in order to be
used in Ruby applications.

In Part II we demonstrate an application of the
SimpleFSM DSL to SIP communication systems. In
particular, we combine the SimpleFSM DSL with SIP
servlets in order to simplify the description of the SIP
call flows inside the application.

The paper is organized as follows. Section 2 gives a
brief overview of SIP-message handling in a standard
Java SIP servlet. An approach to SIP servlet devel-
opment using the SimpleFSM DSL is presented in
Section 3. Finally, Section 4 presents an application that
utilizes the presented approach.

2 MESSAGE HANDLING IN SIP SERVLETS

The de facto standard for the SIP-application develop-
ment and deployment is the Java platform utilizing the
Sip Servlets API [4]. The SIP application developed in

Received October 5, 2011
Accepted October 24, 2011

Java is deployed to the Sip Servlets Container which
is usually a part of the JEE application server. The Sip
Servlet Container is responsible for routing the received
SIP messages to appropriate applications, managing
servlet lifecycles, sending and receiving messages and
providing other services to the servlets.

When a SIP message arrives, the Sip Servlet
Container finds a suitable SIP servlet and invokes
its service method with ServletRequest or
ServletResponse objects as arguments. The default
implementation of the service method is shown in
Listing 1.

The programmer can override this default imple-
mentation and customize the message handling in the
service method. However, the common practice is to
dispatch the SIP message from inside the doRequest
and doResponse methods to other message handlers
usually named in the form doXXX, where XXX stands for
a SIP request method or a SIP response family, as shown
in Fig. 1. Hence, to handle a SIP message, a programmer
typically overrides one of the doXXX() methods. The

Listing 1 Default implementation of the service method
public void service(ServletRequest req,

ServletResponse resp)
throws javax.servlet.ServletException,

java.io.IOException
{

if (req != null) {
doRequest((SipServletRequest) req);

} else {
doResponse((SipServletResponse) resp);

}
}

294 EDIN PJANIĆ, AMER HASANOVIĆ

Listing 2 Default implementation of doResponse method
protected void doResponse(SipServletResponse resp)

throws javax.servlet.ServletException,
java.io.IOException

{
int status = resp.getStatus();
if (status < 200) {

doProvisionalResponse(resp);
} else if (status < 300) {

doSuccessResponse(resp);
} else if (status < 400) {

doRedirectResponse(resp);
} else {

doErrorResponse(resp);
}
if(resp.isBranchResponse()) {

doBranchResponse(resp);
}

}

default implementation of the doResponse method is
implemented with a series of if branches as shown
in Listing 2. The code of the doRequest method is
similar.

While handling the SIP call flows, the programmer
has to consider different messages originating from dif-
ferent call parties inside a single doXXX method. With
the more elaborate call flows, the code of the doXXX
method would be dominated by complex switch or if
statements. Hence, this approach would lead to reduced
code readability and tangled control structures.

3 SIP APPLICATION DEVELOPMENT
USING THE SIMPLEFSM DSL

To better organize the code for the SIP application logic,
the SimpleFSM DSL can be utilized inside a SIP servlet
class implemented in Ruby.

service(ServletRequest, ServletResponse)

doRequest(SipServletRequest) doResponse(SipServletResponse)

doProvisionalResponse
doSuccessResponse
doRedirectResponses
doErrorResponse

doAck
doBye
doCancel
doInfo
doInvite
doMessage
doNotify
doOptions
doPrack
doRegister
doSubscribe

SIP Sevlet Container

message?
SIP request SIP response

method
resp.
code

ACK

S
U

B
S

C
R

IB
E

100-1
99

400-699

Figure 1. SIP message dispatching in a standard SIP Servlet

For this purpose, the Ruby SipFSM class was de-
veloped as a subclass of Java SipServlet class
(javax.servlet.sip.SipServlet). It includes
the SimpleFSM module and some minor modifications
in the base class to effectively utilize the SimpleFSM
module and simplify the SIP servlet development. The
idea is to define the concrete SIP application logic using
the FSM meta-language inside the Ruby SIP controller
class, a subclass of the SipFSM class. The FSM inside
the controller class is manipulated as a consequence of
events generated by the JEE server after receiving SIP
messages.

The FSM events that represent the received SIP mes-
sages are specified in the format sipXXX, where XXX
represents the SIP request method extracted from the
message, in case the received message is a SIP request.
Similarly, a sipRESPONSE_YYY event, where YYY
represents a SIP response code or SIP response code
class, is used to notify the FSM that a SIP response
message was received. Futhermore, the FSM can accept
events sipREQUEST_ANY and sipRESPONSE_ANY
if it is required to process any received request and/or
response inside a certain application state. Examples of
events that can be handled by the FSM inside the Ruby
SIP controller are:

• sipINVITE - for INVITE request,
• sipACK - for ACK request,
• sipCANCEL - for CANCEL request,
• sipRESPONSE_200 - for SIP response with code

200 (OK),
• sipRESPONSE_2xx - for any SIP responses with

code begining with 2 (success responses),
• sipREQUEST_ANY - for any SIP request,
• sipRESPONSE_ANY - for any SIP response.
The application’s FSM, while in some state, can react,

for example, to sipRESPONSE_1xx events, which
represent all informational responses. While in another
state, the FSM can react distinguishing between the
events sipRESPONSE_180, sipRESPONSE_183 or
sipRESPONSE_1xx, as shown in the following listing:

transitions_for :state1 do
event :sipRESPONSE_1xx, :new => :state1,

:do => :action1
event :sipRESPONSE_ANY, :new => :state12

end

transitions_for :state2 do
event :sipRESPONSE_1xx, :new => state2,

:do => :action2
event :sipRESPONSE_180, :new => state2,

:do => :action3
event :sipRESPONSE_183, :new => state2,

:do => :action4
event :sipRESPONSE_ANY, :new => :state22,

:do => :action5
end

The FSM facility considers the current application
state and generates an event that is the most specific
to the message it receives. If, for example, the FSM

SIMPLEFSM - A DOMAIN SPECIFIC LANGUAGE FOR SIP COMMUNICATION SYSTEMS - PART II 295

receives a response message 180 Ringing while in
:state1, then the most specific event to generate is
the sipRESPONSE_1xx event. Similarly, when the
application is in :state2, the 180 response message
would result in generation of the sipRESPONSE_180
event, the 182 Queued message would result in gen-
eration of the sipRESPONSE_1xx event, while any
other received SIP response message would result in
generation of the sipRESPONSE_ANY event.

The described message hierarchy is accomplished
utilizing the Ruby’s metaprogramming features when
redefining the doRequest and doResponse meth-
ods inside the SipFSM Ruby class. As shown in
Listing 3, the doRequest method first executes the
fsm_prepare_state method, which reads FSM
state data stored in the request’s application session, and
initializes several instance variables used for bookkeep-
ing, such as the @state variable that keeps track of the
current state. The current state of the FSM is written
in the servlet application session in order to make it
available for both HTTP and SIP traffic when developing
converged applications. If the FSM data is not found in

Listing 3 doRequest and doResponse methods of the
SipFSM Ruby class
class SipFSM < Java::javax.servlet.sip.SipServlet

include SimpleFSM
#-further code omitted-#

def doRequest(request)
run if !fsm_prepare_state([request, nil])
m = request.get_method
fsmm = "sip#{m}".to_sym

if fsm_state_responds_to @state, fsmm
send(fsmm, request, nil)

elsif fsm_state_responds_to @state,
:sipREQUEST_ANY

send(:sipREQUEST_ANY, request, nil)
else

super
end

end

def doResponse(response)
run if !fsm_prepare_state([nil, response])
rc = response.get_status.to_s

exact="sipRESPONSE_#{rs}".to_sym
group="sipRESPONSE_#{rs[/./].to_s}xx".to_sym

if fsm_state_responds_to @state, exact
send(exact, nil, response)

elsif fsm_state_responds_to @state, group
send(group, nil, response)

elsif fsm_state_responds_to @state,
:sipRESPONSE_ANY

send(:sipRESPONSE_ANY, nil, response)
else

super
end

end
#-further code omitted-#

end

BA Controller

INVITE no SDP

200 OK answer1

ACK answer1

INVITE offer1

200 OK offer1

ACK

BYE

BYE

200 OK

200 OK

RTP

Figure 2. Click to dial call flow with call termination

the application session, the FSM is started and put to
the initial state executing the run method. In method
doRequest, the SIP request method is extracted from
the SIP message and the corresponding FSM event name
is constructed, such as sipINVITE, sipACK, etc. Af-
ter that, the corresponding method is called dynamicaly
using the send method which accepts the method name
as the first parameter. The remaining parameters of the
send method are passed to the called method. Method
fsm_state_responds_to is a private method de-
fined in the SimpleFSM module. It is used to check
if the current FSM state responds to a certain event.
The event corresponding to the received SIP request is
checked first. Then, :sipREQUEST_ANY is checked.
Finally, the doRequest method of the superclass is
invoked performing the default SIP Servlet dispatching.

The logic of the doResponse method is similar. The
only difference is that it deals with responses instead of
requests.

4 EXAMPLE - CLICK TO DIAL
APPLICATION

In order to demonstrate the SIP application develop-
ment using the FSM DSL, a click to dial converged
application is analyzed in this section. The application
uses a web interface, in which the users can sign in
by entering their SIP client (VoIP phone) address and
see all other currently signed in users. The application
uses a database to keep track of the required information
and is implemented as a normal Ruby on Rails [5] web
application.

After signing in, a user can initiate a VoIP call to
another user by clicking the appropriate link on the
web page. For this part a Sip Servlet API is used. The
application acts as a back to back user agent (B2BUA)
and is developed to model the flow I of the RFC
3725 [6]. This call flow is shown in Fig. 2.

Furthermore, the application handles the rejection

296 EDIN PJANIĆ, AMER HASANOVIĆ

class C2dSipHandler < SipFSM
 fsm do
 state :idle
 state :calling_leg1
 state :calling_leg2, {:enter => :invite_leg2}
 state :connected
 state :terminating, {:enter => :b2bua_BYE_other}

 transitions_for :idle do
 event :sendREQ, :new => :calling_leg1,

:guard => :is_INVITE?, :do => :b2b_send_initial_req
 end

 transitions_for :calling_leg1 do
 event :sipRESPONSE_4xx, :new => :idle, :do => :invalidate_session
 event :sipRESPONSE_6xx, :new => :idle, :do => :invalidate_session
 event :sipRESPONSE_200, :new => :calling_leg2
 event :hangUP, :new => :idle, :do => :cancel_req
 end

 transitions_for :calling_leg2 do
 event :sipBYE, :new => :terminating, :do => :send_response_200
 event :sipRESPONSE_4xx, :new => :terminating
 event :sipRESPONSE_6xx, :new => :terminating, :do => :invalidate_session
 event :sipRESPONSE_200, :new => :connected, :do => :send_ACKs
 event :hangUP, :new => :idle, :do => :bye_cancel
 end

 transitions_for :connected do
 event :sipRESPONSE_4xx, :new => :terminating, :do => :invalidate_session
 event :sipBYE, :new => :terminating, :do => :send_response_200
 event :hangUP, :new => :idle, :do => :b2bua_BYE_both
 end

 transitions_for :terminating do
 event :sipRESPONSE_200, :new => :idle
 event :sipRESPONSE_4xx, :new => :idle, :do => :invalidate_session
 end
 end

 private
 #- further code omited -#
end

idle calling_leg1

connected

calling_leg2

enter: invite_leg2

terminating

enter: b2bua_BYE_other

sendREQ [is_INVITE?] / send_req

sipRESPONSE_4xx, sipRESPONSE_5xx, sipRESPONSE_6xx
/ invalidate_session

sipRESPONSE_200

sipRESPONSE_200 /
send_ACKs

sipBYE / send_OK

sipRESPONSE_200 sipRESPONSE_4xx,
sipRESPONSE_5xx,
sipRESPONSE_6xx
/ invalidate_session

hangUP / cancel_req

hangUP / bye_cancel

hangUP /
b2bua_BYE_both

Figure 3. Click to dial Ruby SIP controller implemented using the SimpleFSM DSL and the corresponding state diagram

and call termination. Call termination is initiated after
receiving a SIP BYE request from either call party. After
that, the controller (SIP servlet) has to terminate the
other call leg, as shown in Fig. 2. Additionaly, the user
that initiated the call can terminate it at any time from
the Web interface.

The state diagram that appropriatelly models the
controller behavior described in the call flows and its
implementation as the C2dSipHandler class using
the developed DSL is shown in Fig. 3. For a detailed
explanation of FSM modeling using SimpleFSM DSL
and better understanding of the state diagram, we direct
the reader to Part I of this two-part paper. The listing
in Fig. 3 shows only the fsm block that specifies the
FSM controller logic. The rest of the code that contains
several short private methods utilizing SipServlet API is
omitted.

As an example, Listing 4 shows the two private
methods called from within the fsm block of the
C2dSipHandler class. Method is_INVITE is used
to check if a SIP request is an INVITE request. The
second method, b2bua_BYE_other, is used as an
:enter method of the :terminating state. It uses
B2BUAHelper of the SipServlet API to send the BYE
request to the linked session of the received SIP request
or response.

The application is initially in the :idle state. When

Listing 4 Selected private methods of the C2dSipHandler
class
def is_INVITE? msgs
req, res = msgs
req.get_method == "INVITE"

end

def b2bua_BYE_other msgs
req, res = msgs
req ||= res.get_request
current_sess = req.get_session
b2b = req.get_b2bua_helper
session2 =

b2b.get_linked_session(current_sess)
session2.create_request("BYE").send

end

a user clicks on one of the links in the web interface, as-
sociated with another user’s SIP address, the sendREQ
event is invoked with the appropriate INVITE SIP
request as an argument.

The request is then sent to the SIP phone of the user
who initiated the call. After sending the initial INVITE
request, the Ruby SIP controller expects to receive the
200 OK SIP response. While the servlet is waiting for
the 200 OK response to arrive, the application is in the
:calling_leg1 state.

When the 200 OK response from the first call leg
arrives, the connection is established between the Ruby

SIMPLEFSM - A DOMAIN SPECIFIC LANGUAGE FOR SIP COMMUNICATION SYSTEMS - PART II 297

SIP controller and the first call party. The controller then
has to establish the call dialog to the other user. The
controller prepares and sends the INVITE request with
the Session Description Protocol (SDP) offer received
from the first call party, and waits for the response. The
SDP contains the data required to initialize the streaming
media used for voice communication. The application
transitions to :calling_leg2 state.

When the 200 OK response with the SDP answer
from the second call leg arrives, the call is established
between the Ruby SIP controller and the second call
party. Now, the SIP controller sends the ACK requests
to both call parties. The ACK request sent to the first
call party includes the SDP answer received from the
second call party, which is enough to establish the RTP
media session between the VoIP clients. The application
now goes to the :connected state.

When one of the call parties ends the call, the SIP
controller receives the BYE request that is sent by
the VoIP client of that party. The application goes to
the :terminating state and finally, after receiving
the sipRESPONSE_200 event, transitions back to the
:idle state.

When the user terminates the call from the Web
interface, the Web part of the converged application
sends a :hangUP event to the FSM by calling the
hangUP method of the servlet. In this case, the servlet,
according to the model depicted in Fig. 3, performs
appropriate actions, depending on the current state of
the call.

The described Ruby SIP servlet class was devel-
oped using the infrastructure based on an embedded
Cipango [7] server, presented in [8]. This application
was also tested on the JBoss [9] application server
with Mobicents SIP Servlets [10] and TorqueBox [11]
deployer for Ruby applications.

5 CONCLUSION

In Part II of our two-part paper, an approach to SIP
application development using the SimpleFSM DSL
described in Part I is presented.

In this approach, a special Ruby-based SIP Servlet
class is used to create a Ruby SIP controller and
utilize the SimpleFSM DSL. The developed Ruby SIP
Servlet class offers additional flexibility in handling SIP
messages compared to the standard Java SIP Servlet.

The presented class and the DSL have enough fea-
tures to develop complex telecom applications. However,
other features can be added using the described metapro-
gramming techniques. Furthermore, no additional lan-
guage, other than Ruby, is required to develop SIP
applications. Moreover, the Ruby code and Ruby DSLs
do not require compilation for the code to be executed,
which is an important requirement for rapid application
development with short iteration cycles. Based on this

implementation of FSM in Ruby and the already estab-
lished web frameworks, such as Rails, it is possible to
develop complex converged SIP and HTTP applications
entirely in Ruby, thus cutting down the time and cost of
application development.

REFERENCES

[1] E. Pjanić and A. Hasanović. SimpleFSM - a domain specific
language for SIP communication systems - Part I: Language
description, Elektrotehnički vestnik, (submited for publication).

[2] A. van Deursen, P. Klint and J. Visser. Domain-specific lan-
guages: an annotated bibliography, ACM SIGPLAN Notices, Vol.
35, pp. 26-36, 2000.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo A. Johnston, J.
Peterson, R. Sparks, M. Handley and E. Schooler. SIP: Session
Initiation Protocol, RFC 3261 (Proposed Standard), IETF, up-
dated by RFCs 3265, 3853, 4320, 4916, 5393, 5621

[4] Y. Cosmadopoulos and M. Kulkarni. SIP Servlet v1.1, JSR 289
[5] M. Bachle and P. Kirchberg. Ruby on Rails, IEEE Software, Vol.

24, pp. 105-108, 2007.
[6] J. Rosenberg, J. Peterson, H. Schulzrinne and G. Camarillo.

Best Current Practices for Third Party Call Control (3pcc) in
the Session Initiation Protocol (SIP), RFC 3725 (Best Current
Practice)

[7] Cipango - SIP/HTTP Servlets Application Server Website,
http://cipango.org (1.9.2011)

[8] E. Pjanić and A. Hasanović. A JRuby Infrastructure for Con-
verged Web and SIP Applications, In: Digital Information Pro-
cessing and Communications, ser. Communications in Computer
and Information Science, Vol. 188, pp. 72-84, 2011.

[9] JBoss Website, http://jboss.org (1.9.2011)
[10] Mobicents Sip Servlets, http://www.mobicents.org/products

sip servlets.html (1.9.2011)
[11] TorqueBox Project Website, http://torquebox.org (1.9.2011)

Edin Pjanić received his M.Sc. degree from the University of Tuzla,
Bosnia and Herzegovina, in 2005. He is currently working towards his
Ph.D. degree at the same university where he is a teaching assistant.
His research interests include rapid web and telecom application
development, dynamic programming languages and domain-specific
languages.

Amer Hasanović received his B.Sc. degree in electrical engineering
from the University of Tuzla, Bosnia and Herzegovina, in 1999 and
his M.Sc. and Ph.D. degrees in 2001 and 2004 respectively from the
West Virginia University, Morgantown, USA. In 2004 he joined the
Faculty of Electrical Engineering, University of Tuzla, where he is
now working as an Associate Professor. His interests have been in
robust decentralized control and component-oriented software design
for large scale systems simulations and currently in telecom and web
application development based on dynamic programming languages.

