KATEDRA ZA ONKOLOGIJO SEKCIJA ZA INTERNISTIČNO ONKOLOGIJO

Onkološki Inštitut Institute of Oncology

let vears

Ljubljana 🕥

#1. SUMMER SCHOOL SCHOOL IN MEDICAL ONCOLOGY

Part 1 – Tuesday (3.9.) & Wednesday (4.9.)

LJUBLJANA 3-6. SEPTEMBER 2019

Strokovni odbor:

izr. prof. dr. Janja Ocvirk, dr.med. doc. dr. Martina Reberšek, dr.med. dr. Tanja Mesti, dr.med. Marko Boc, dr.med.

Organizacijski odbor:

izr. prof. dr. Janja Ocvirk, dr.med. doc. dr. Martina Reberšek, dr.med. dr. Tanja Mesti, dr.med. Marko Boc, dr.med. ga. Lidija Kristan

Uredniki zbornika:

Marko Boc, dr.med. doc. dr. Martina Reberšek, dr.med. izr. prof. dr. Janja Ocvirk, dr.med. dr. Tanja Mesti, dr.med.

Organizator in izdajatelj (založnik):

Onkološki inštitut Ljubljana Sekcija za internistično onkologijo Katedra za onkologijo

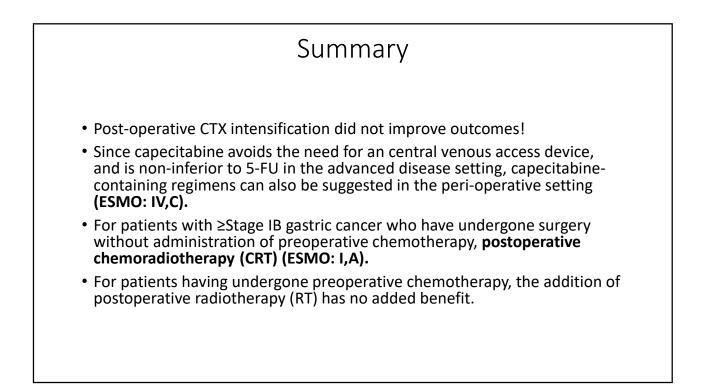
Ljubljana, september 2019

AGENDA & INDEX

Tuesday, September 3				
10:30-11:00	Registration of participants			
<u>Part 1</u>	Moderators: dr. Dobrila, dr. Boc			
11:00-11:30	Neoadjuvant and Adjuvant treatment strategies for gastric cancer			
	(dr. Boc)			
11:30-12:15	Systemic treatment of metastatic gastric cancer (dr. Dobrila)			
12:15-12:35	Neoadjuvant and Adjuvant treatment strategies for pancreatic cancer			
	(dr. Mesti)			
12:35-13:15	Systemic treatment of metastatic pancreatic cancer (dr. Mesti)			
13:15-13:30	Discussion			
13:30-14:30	Lunch break			
<u>Part 2</u>	Moderators: dr. Pleština, dr. Hlebanja			
14:30-14:50	Satellite symposium			
14:50-15:20	Systemic treatment of biliary tract cancer (dr. Reberšek)			
15:20-15:40	Systemic treatment strategies for HCC (dr. Mesti)			
15:40-16:10	Adjuvant treatment strategies for colorectal cancer			
	(dr. Ignjatović, dr. Ocvirk)			
16:10-16:55	Systemic treatment of metastatic colorectal cancer (dr. Pleština)			
16:55-17:10	Discussion			

Wednesday, September 4

Part 1	Moderators: dr. Radosavljevič, dr. Grašič Kuhar	
8:30-9:15	Neoadjuvant and Adjuvant treatment strategies for lung cancer	
	(dr. Radosavljevič)	
9:15-10:00	Systemic treatment of metastatic lung cancer (dr. Zarić)	
10:00-10:45	Systemic treatment of head and neck cancer (dr. Grašič Kuhar)	
10:45-11:00	Break	
11:00-11:30	Systemic treatment of patients with unknown primary tumor (dr. Matos)	
11:30-11:45	Systemic treatment of germinal tumors (dr. Škrbinc)	
11:45-12:15	Discussion	
12:15-12:45	Satellite symposium (Roche)	
12:45-13:45	"First line treatment of metastatic NSCLC" (dr. Maximilian J. Hochmair)	
13:45-14:30	Lunch break	
Part 2	Moderators: dr. Belev, dr. Šeruga	
14:30-15:15	Systemic treatment of prostate cancer (dr. Belev)	
15:15-16:00	Systemic treatment of RCC (dr. Šeruga)	
16:00-16:15	Break	
16:15-16:45	The systemic treatment of the bladder cancer (dr. Mencinger)	
16:45-17:15	The palliative care - when to start and how to lead the patient and the	
	patients family through the process (dr. Ebert Moltara)	
17:15-18:15	Interesting cases from audience	

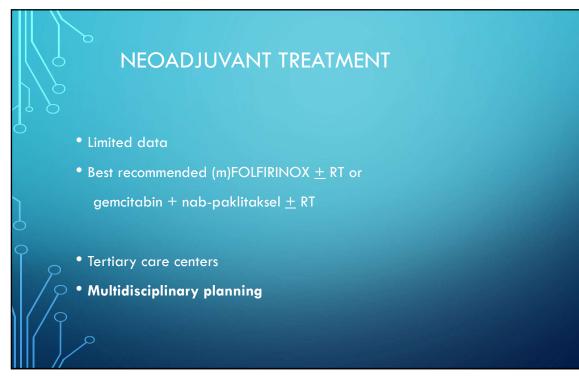

PERI-OPERATIVE TREATMENT OF GASTRIC CANCER

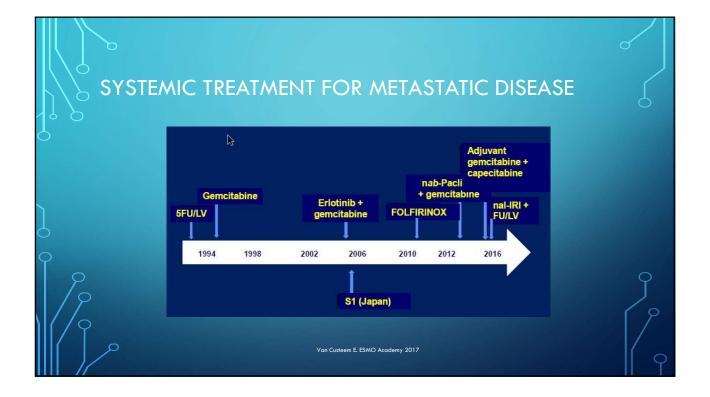
Marko Boc, dr.med. Sector of medical oncology Institute of Oncology Ljubljana SLOVENIA

Ljubljana, 3-6. september 2019

Γ

Summary
 Peri-operative chemotherapy (pre- and post-operative) is standard of care for unmetastatic resectable gastric cancer ≥ Stage IB (ESMO: I,A): Peri-operative chemotherapy comprises a platinum compaund and a fluoropyrimidine, Addition of epirubicine is optional (toxicity), strongest evidence for cisplatin/fluorouracil ± epirubicine,
 Taxanes improve peri-operative chemoterapy response and improve survival outcomes trough better response.
 For patients ≥ Stage IB gastric cancer who have undergone surgery without administration of pre-operative chemotherapy or post-operative CRT, adjuvant chemotherapy is recommended (ESMO: I,A): S-1 (1,A) and XELOX in Asian pupulation
 6% absolute benefit for 5-FU based chemotherapy, [HR 0.82 (0.76-0.90), p<.0001] (ESMO: 1,A).



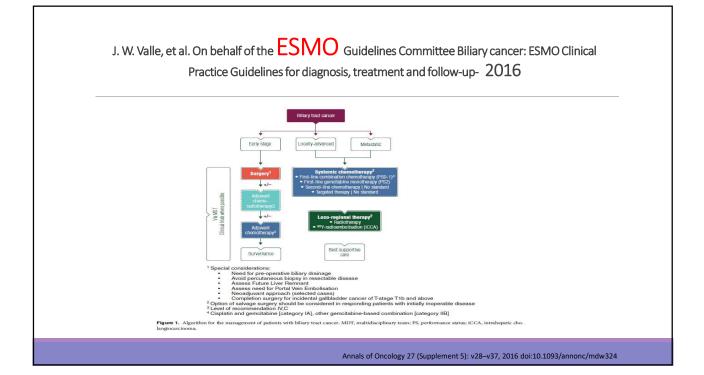


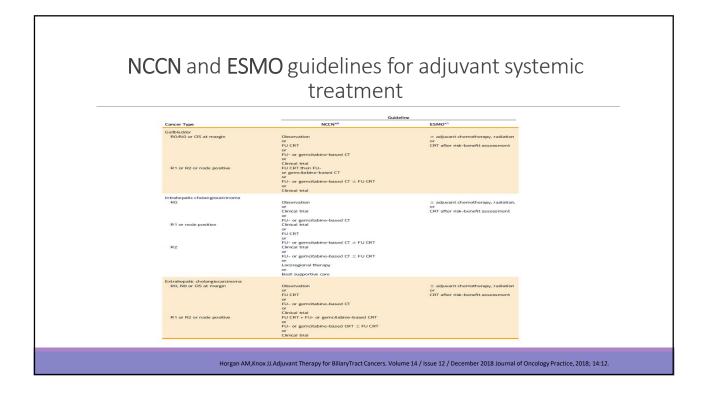
tanja mesti, md, phd Institute of oncology ljubljan,

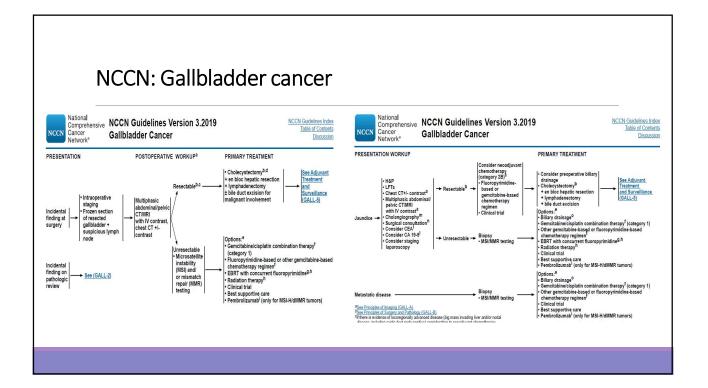
ADJUVANT TREATMENT

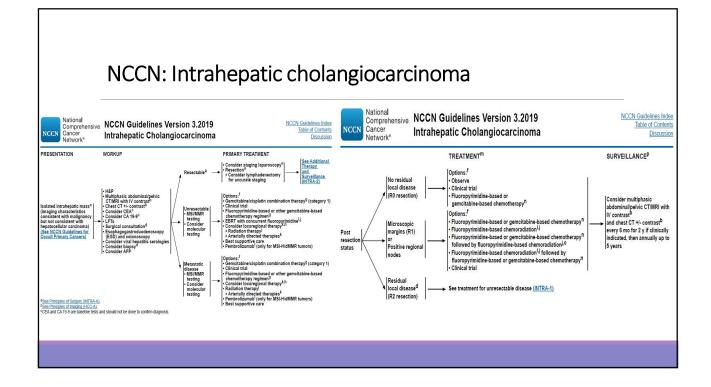
- Adjuvant ChT > DFS & OS
- Adjuvant ChT > operation alone
- m- FOLFIRINOX the best, but the most toxic option
- m- FOLFIRINOX PS (0-1)

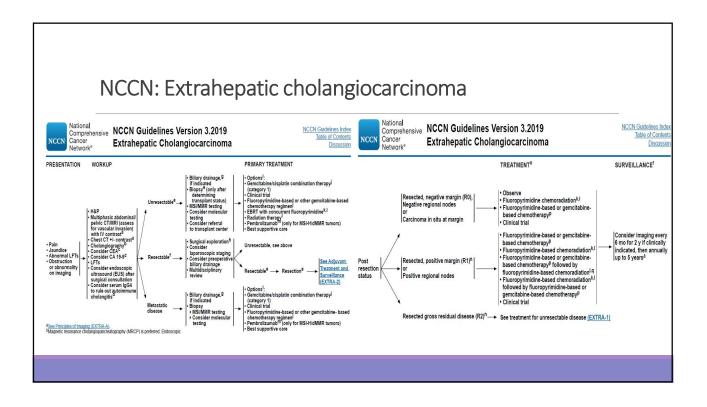
CONCLUSIONS


- Initially CT th/abd
- CA 19-9
- Multidisciplinary approach
- Treatment according to the guidelines
- Pts preferences, tumour burden, comorbidities


CONCLUSIONS Inclusion in the clinical studies if possible Systemic treatment for advanced or metastatic pancreatic adenocarcinoma < symptoms and tumour burden and > survival GOOD PALLIATIVE CARE – EARLY


Systemic treatment of biliary tract cancers


1st Summer school in medical oncology - standards and open questions


ASSIST.PROF.MARTINA REBERŠEK, MD DEPARTMENT OF MEDICAL ONCOLOGY INSTITUTE OF ONCOLOGY LJUBLJANA

Conclusions(1)

- rare cancers
- poor prognosis
- important diagnostic procedures
- surgical treatment first

Conclusions (2)- systemic treatment

- Neo- adjuvant therapy: no standards
- Adjuvant therapy:
- capecitabine monotherapy
- role of radiation therapy in combination with systemic treatment- the need of prospective randomized clinical phase III trials
- Metastatic disease:
- 1st line: gemcitabine + cisplatin (PS ECOG 0-1), gemcitabine mono (PS ECOG 2)
- 2nd line: no standard therapy
- targeted therapy: no standards
- Immunotherapy: MSI- H

HCC – systemic treatment strategies

Tanja mesti, md, phd Institute of oncology ljubljana

Landscape-Second line therapy for HCC

		Total N	PFS benefit	OS benefit	RR
CHECKMATE040 (SINGLE ARM)	Nivolumab*	154	NA	NA median OS ≈15 mo*	14%
RESOURCE	Regorafenib* v placebo	573 (2:1)	+1.6 mo HR 0·46 (0.37-0.56); p<0·0001	+2.8 mo HR 0.63 (0.50-0.79) p<0.0001)	11%
CELESTIAL**	Cabozantinib v placebo	707 (2:1)	+3.3 mo HR=0.44 [0.36-0.52]; P < 0.001	+2.2 mo HR=0.76 (0.63-0.92) P = 0.0049	4%
REACH1	Ramucirumab v placebo	565	+0.7mo HR 0.63 [0.52-0.75]; p<0.0001	NO	7%
REACH 2 (AFP≥400)	Ramucirumab v placebo	292 (2:1)	+1.2 mo HR 0.452 (0.339, 0.603) p< 0.0001	+1.2 mo HR 0.71 (0.531, 0.949); p=0.0199	4.6%
Pooled REACH 1 / 2 (AFP≥400 subgroup)	Ramucirumab v placebo	542	NA	+3.1 mo HR 0.694 (0.571, 0.842) P=0.0002	NA

PRESENTED AT: 2018 ASCO ANNUAL MEETING

*FDA approved ** included 2nd and 3rd line; 2nd line update: Kelley, et al. Abstr #4088 ASCO 2018

7

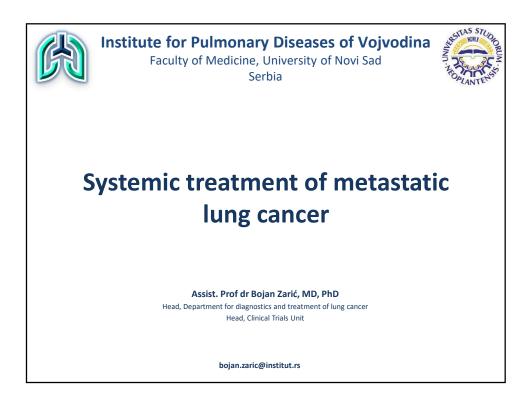
Onkološki Inštitut Institute of Oncology Ljubljana

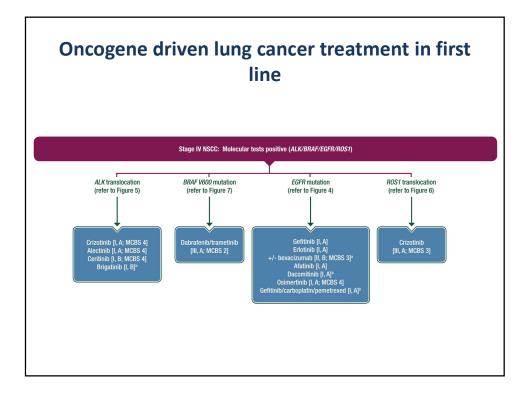
ADJUVANT TREATMENT STRATEGIES FOR COLORECTAL CANCER

1st Summer School in Medical Oncology 3. – 6. September, Ljubljana, Slovenia

Marija Ignjatović,MD

Neoadjuvant and adjuvant treatment strategies for lung cancer


Davorin Radosavljevic Institute for Oncology and Radiology of Serbia Belgrade "1st Summer School in Medical Oncology - Standards and Open Question", September 3-6th 2019, Ljubljana, Institute of Oncology


conclusions

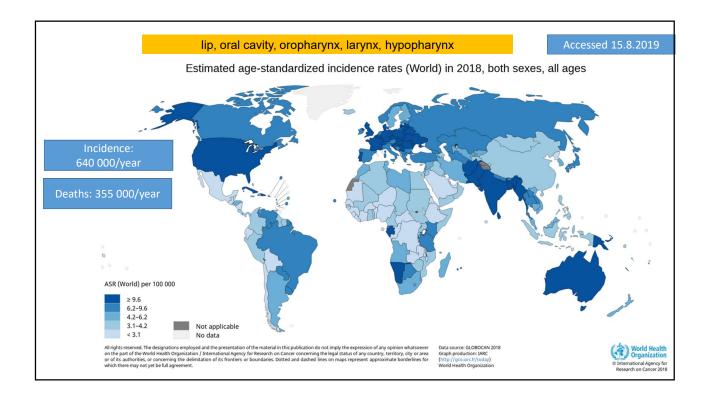
- adjuvant chemotherapy is established for stage II and III resected NSCLC with sustained benefit
- the regimen with most evidence is cisplatin vinorelbine although the accepted schedule differs from JBR.10 and ANITA trials
- stage IB tumours can be considered for adjuvant chemotherapy if >/= 4cm although evidence is from unplanned, retrospective analyses (CALGB 9633 and JBR.10)
- selected older patients (70+) tolerate chemotherapy with acceptable toxicity but limited evidence for elderly and very elderly (75+, 80+)
- further major improvements with chemotherapy alone are unlikely (pemetrexed?)
- research will be focused on better discrimination of high versus low risk patients, predictive factors and more targeted therapies

Conclusions

- The local/regionally advanced setting is rapidly evolving with the addition of immunotherapy
- The new standard of care in patients with unresectable disease: concurrent chemoradiation, followed by one year of durvalumab
- Future studies, exploring the role of replacing chemotherapy with immunotherapy in unresectable disease and adding adjuvant or neoadjuvant immunotherapy in resectable disease, may further reshape our standard practice

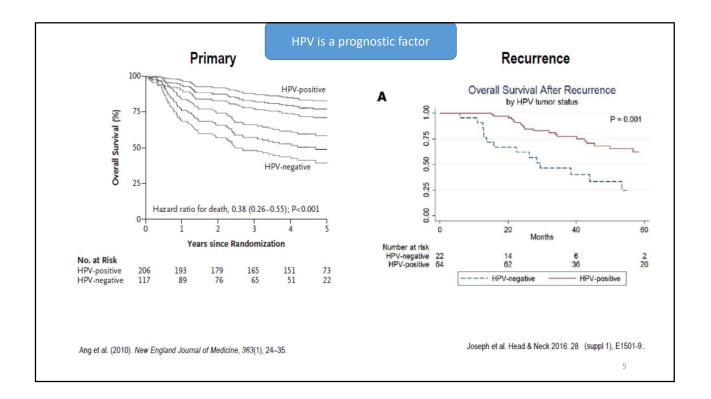
- Based on molecular profiling and determination of resistance mechanism,
- Should be tailored to target secondary mutation (if any), otherwise RCT or standard platinum based doublet,
- Adequate sequencing remains to be determined.

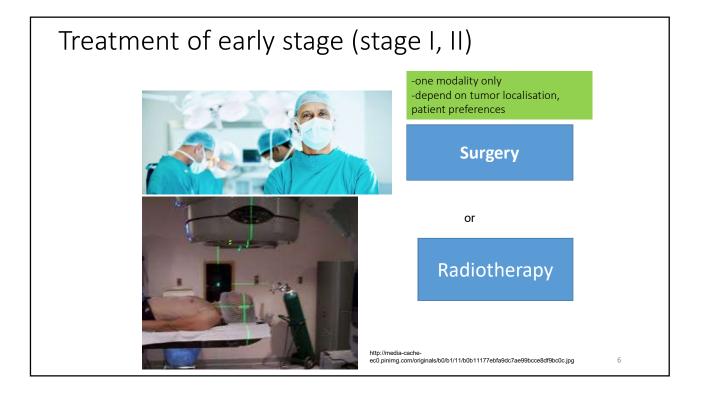
Treatment of metastatic lung cancer without driver mutations in first line

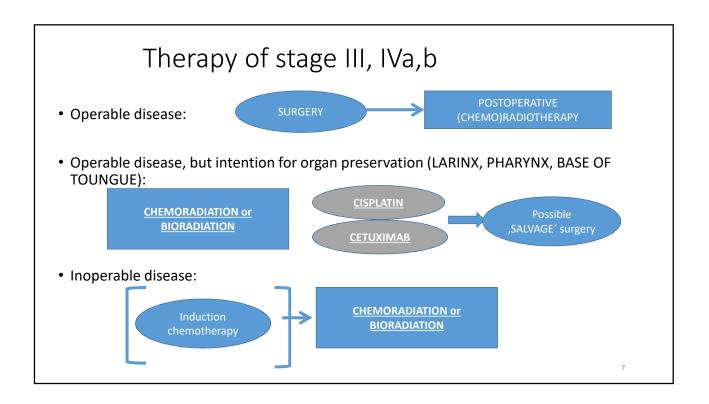

- TPS ≥ 50% (≥1%) pembrolizumab monotherapy,
- High TMB Nivolumab/Ipilimumab,
- Any expression of PD-L1 IO/Chemo combo, standard platinum based therapy.

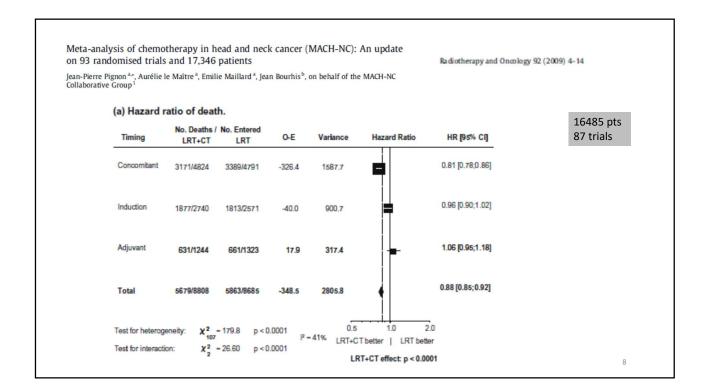
Treatment of metastatic lung cancer without driver mutations beyond first line

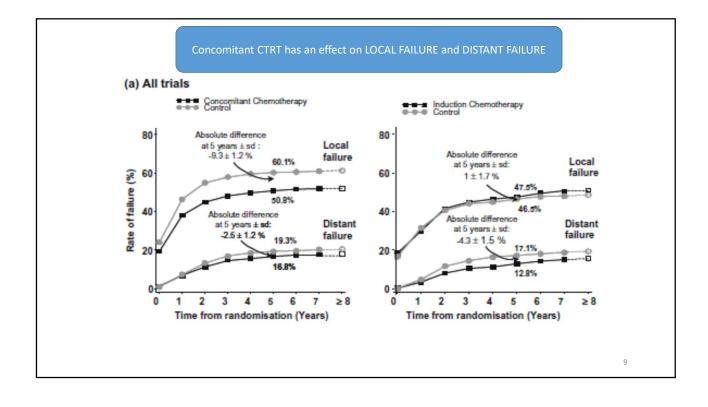
- Immunotherapy if not given in first line (regardless of PD-L1 expression,
- RCT,
- Docetaxel mono or any other available (platinum) based chemotherapy.

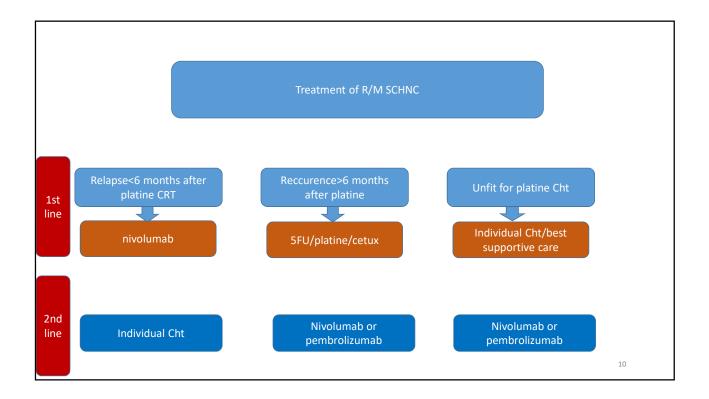

Systemic treatment of head and neck tumors

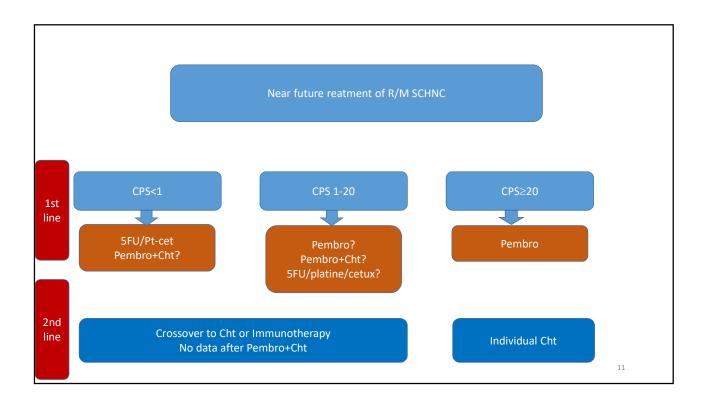

Assist. Prof. Cvetka Grašič Kuhar, MD, PhD Institute of Oncology Ljubljana, Department of Medical Oncology

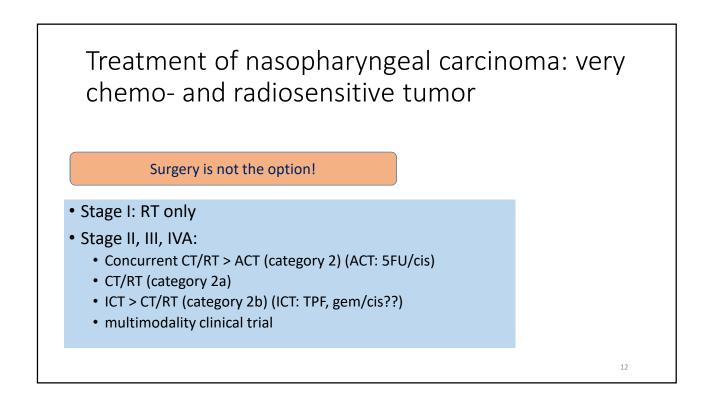


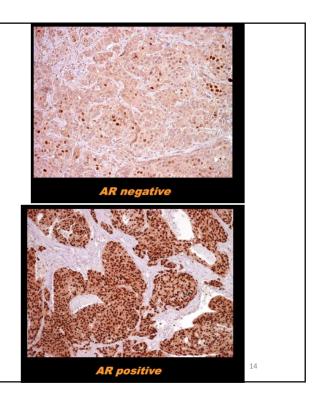

 Tobacco Alcohol HPV EBV Chewing of betel leafs UV-exposure (lips) Poor oral/dental hygiene/mechanical irritation Occupational hazards: wood dust, leather industry, nickel, azbestos Gastroesophageal reflux disease Genetic syndrome (i.e. Fanconi anemia) Exposure
3


		HPV+	HPV-
	Localisation	Tonsil, Base of toungue	All localizations
HPV+ vs.	Histology	nonkeratinizing, basaloid, high grade	keratinising
HPV- oropharynge al carcinoma	Age Soc econ status Performance status	53–57 years Good Better	57–64 years, Lower Lower
	Gender	3:1 for men	3:1 for men
	T stage N stage	Low T (Tx, T1-2) high N stage, cystic cervical nodes	High T stage High N stage, noncystic
	Molecular char. PD-L1 overexpression DNA metilation	PI3KCA mutated 49-70% more	p53 mutated 29-34% less
	Risk factors	Sexual behaviour, associated with HIV in anogenital HPV, less tobacco	Tobacco, alcohol
	3-year risk for metastases	9-11 %	14-15 %
	3- and 8-year OS of stage III, IV	82 and 71 %	57 and 30 %
			4





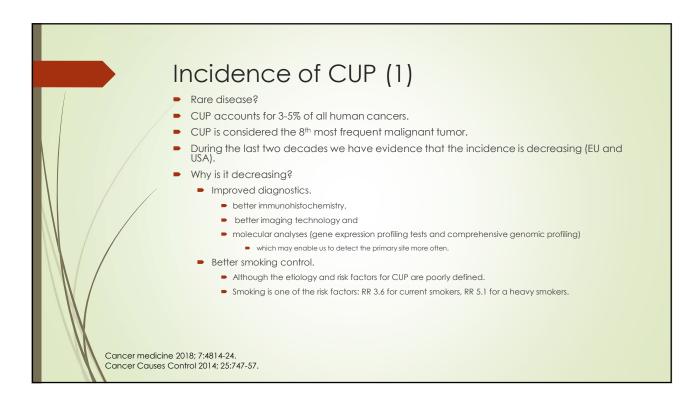


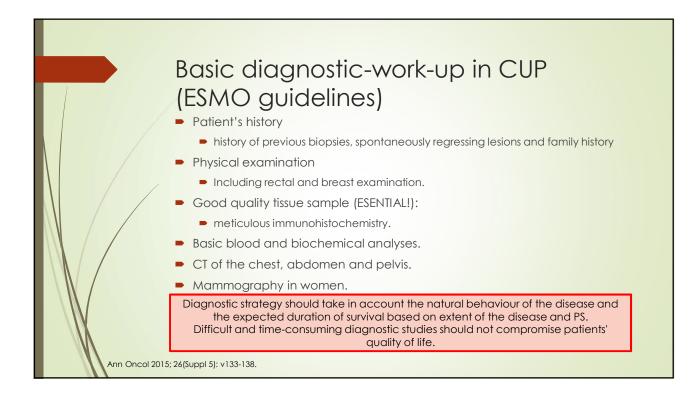

Primary metastatic or recurrent salivary carcinoma (local/regional/distant metastases)

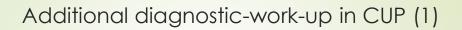
• Trial

- CT/RT
- CT > CT/RT or RT or Observation
- RT/surgery in selected pts with oligometastatic disease
- Salvage curative surgery (neck, local)
- Salvage RT (carbon or proton IMRT)
- CT (gem/cis better than 5FU/cis)
 - Other active drugs: Taxanes, IFO, FU, capecitabine, vinorelbine, gemcitabine, MTX, EDX, cetuximab (11%)
- Non active drugs: TKI
- Immunotherapy: CTL, to disrupt EBV cell latency (azacitidine..), Nivo: 20% RR, PFS at 1yr 19%

Androgen receptors in salivary gland ca. - antiandrogen therapy

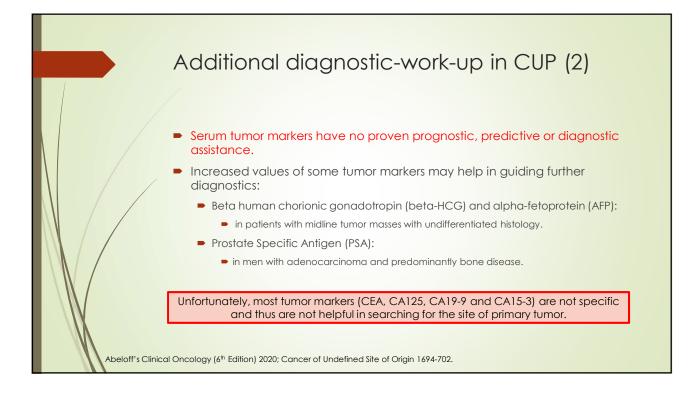

- Advanced disease
- •AR high expressing cases, independently from histology (mostly SDC; AD, NOS; HG-MEC)
- •Female?
- •Which type of HT?
 - bicalutamide 50 mg/die plus LHRH agonist q4wks?
 - ➢ bicalutamide 150 mg?
- How long?




CANCER OF UNKNOWN PRIMARY SITE (CUP)

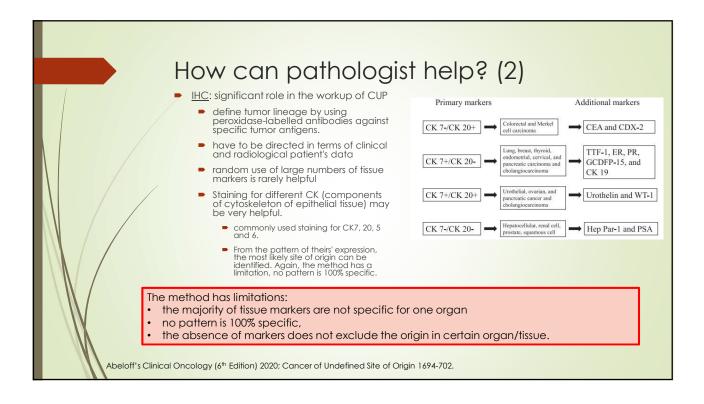
4th September 2019 Erika MATOS

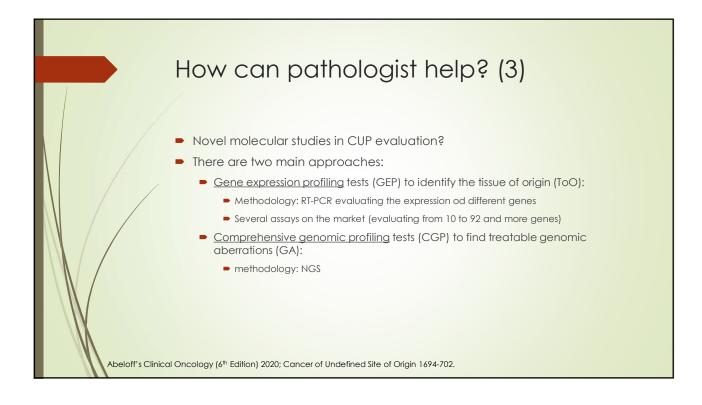
Definition Our is biopsy-proven malignancy for which the anatomic origin at the time of assentation remains unidentified in spite of a detailed history, physical aximitation and a thorough diagnostic work-up. Our is a heterogeneous group of metastatic tumors, which share some common features: A enability of an early dissemination, A enability of an early dissemination, A engressive behaviour; A pore response to conventional systemic cytotoxic therapy.



- Additional procedures should be sign-, symptom-, lab. abnormalities guided.
- <u>Breast MRI</u>: in patients with isolated axillary lymph node metastases and suspected occult primary breast carcinoma after negative mammography and sonography results.
- Broader use of MRI in CUP diagnostics is questionable.
- Endoscopy: if the patient has symptoms or relevant signs.
 - FDG-PET imaging in CUP diagnostics:
 - in patients with cervical lymphadenopathy of primarily squamous histological subtype.
 - PET-CT is useful (not been prospectively studied):
 - patients presenting with solitary metastatic disease who are candidates for curative locoregional treatment in purpose to exclude occult metastases before extensive surgery,
 - patients with known severe iodine dye allergy
 - patients with predominant bone disease who would otherwise require either multiple MRIs or bone scans to evaluate response to therapy.

Abeloff's Clinical Oncology (6th Edition) 2020; Cancer of Undefined Site of Origin 1694-702.

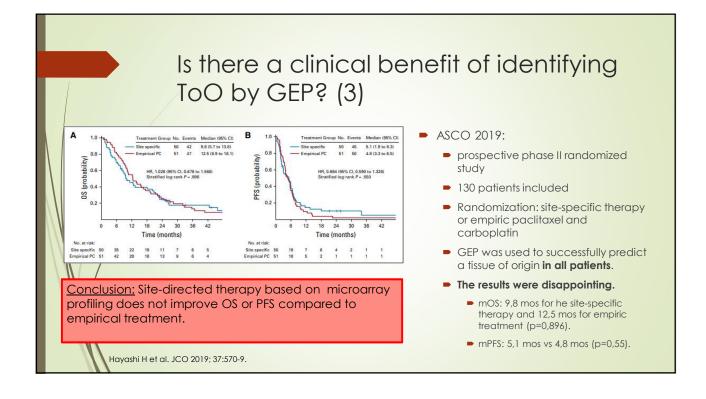



Clinical presentation of patients with CUP?

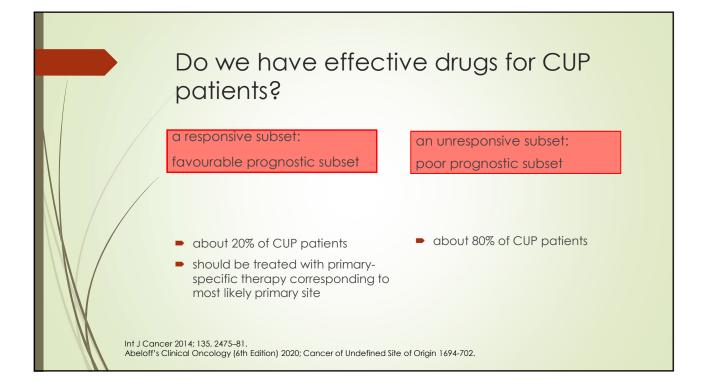
- There is no unique clinical picture.
- The majority of patients presents with symptoms and signs of metastatic disease.
- There are patients with only or manly liver metastases, with lymph node metastases in mediastinal or retroperitoneal region, with axillary lymph nodes, with cervical lymph nodes, with peritoneal disease, with malignant ascites, with lung disease only or pleural effusion only, bone only disease or metastases to CNS only, although more often as a part of disseminated disease.
- Clinical presentation depends on number of metastatic lesions and theirs' distribution.
- The majority of patients has metastatic disease in more than one organ, the most often in liver, lung, bone and lymph nodes.

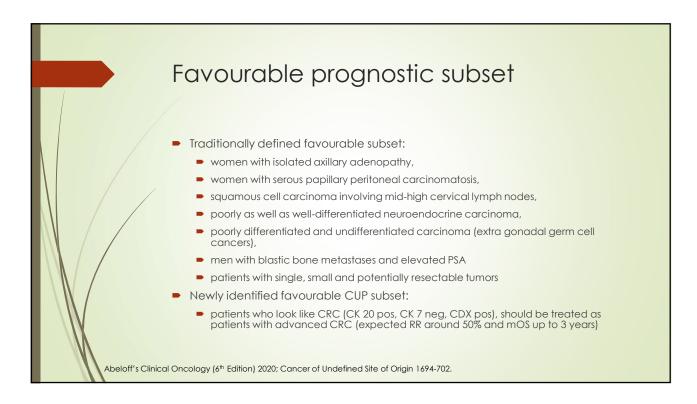
Ann Oncol 2015; 26(Suppl 5): v133-138.

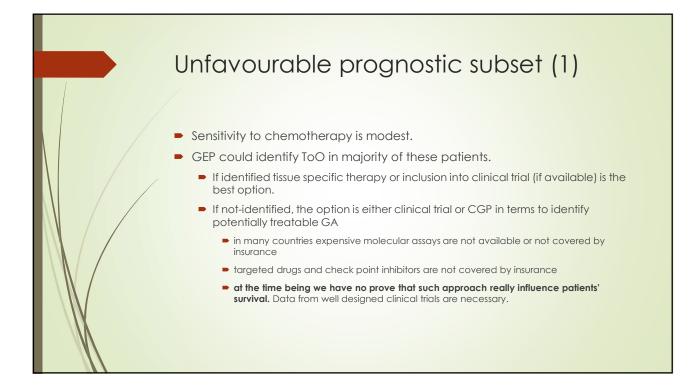
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

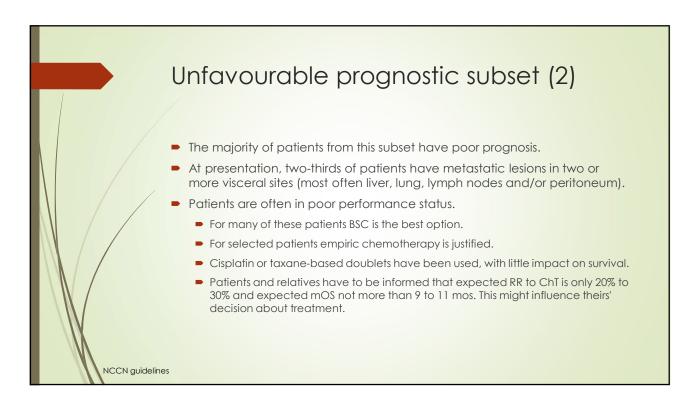

Is there a clinical benefit of identifying ToO by GEP? (1)

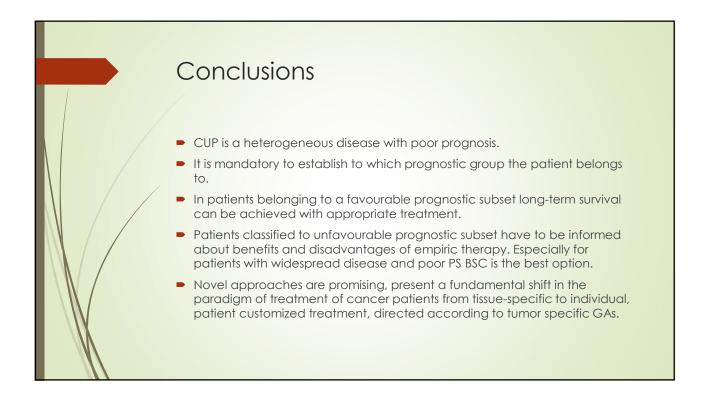
GEP:

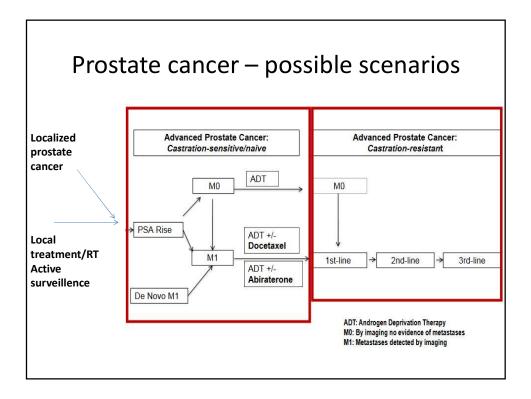

- Has the potential to predict the origin of tumor tissue.
- It is based on the finding that metastases have molecular signatures that may resemble to ToO.
- The strategy has been validated in metastatic tumors with known primary site with an accuracy of 80% to 90%.

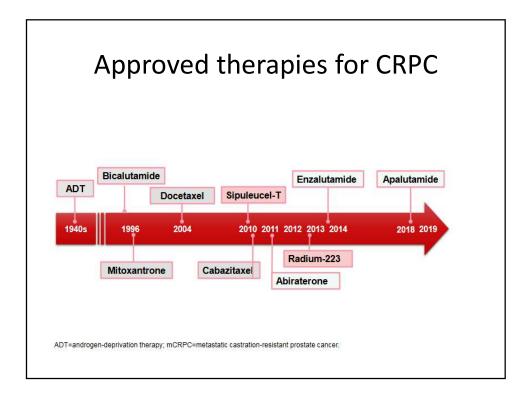

Survival of patients who received tissue-specific therapy did not differ significantly to historical cohorts, treated with empiric chemotherapy.

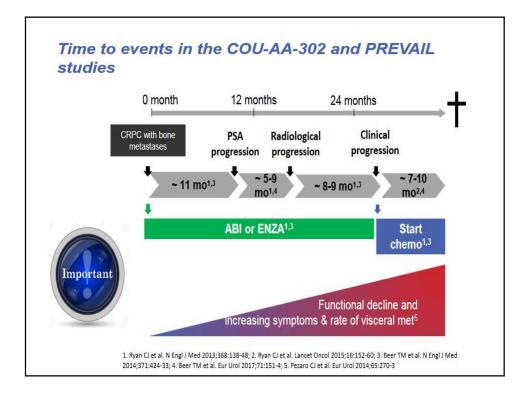

Abeloff's Clinical Oncology (6th Edition) 2020; Cancer of Undefined Site of Origin 1694-702.

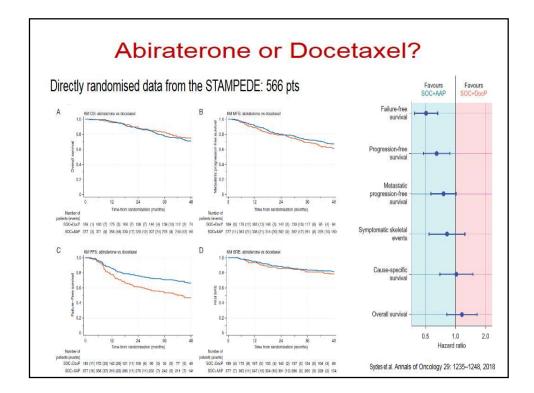


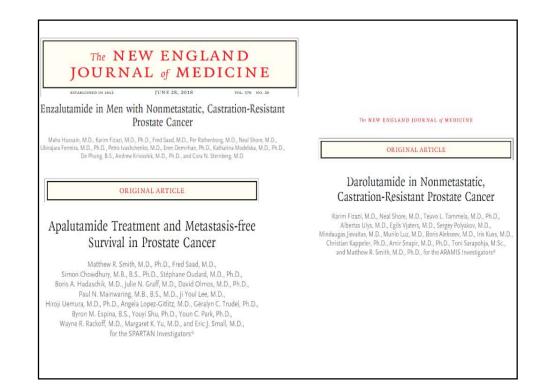

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

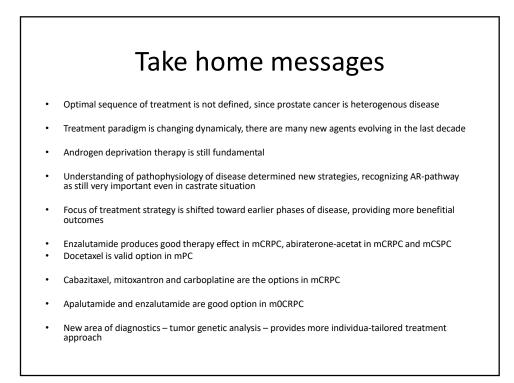


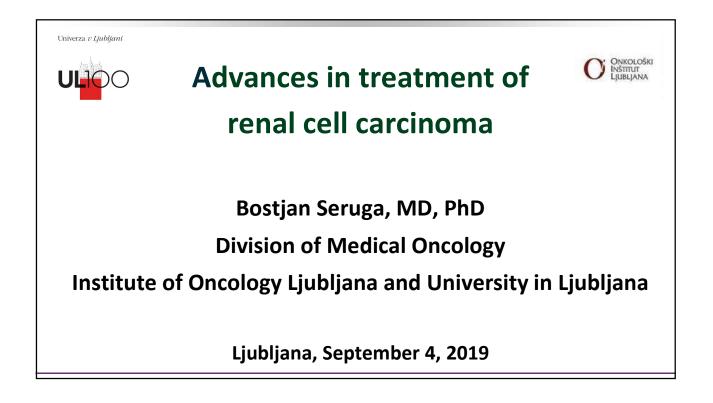

Systemic treatment of prostate cancer

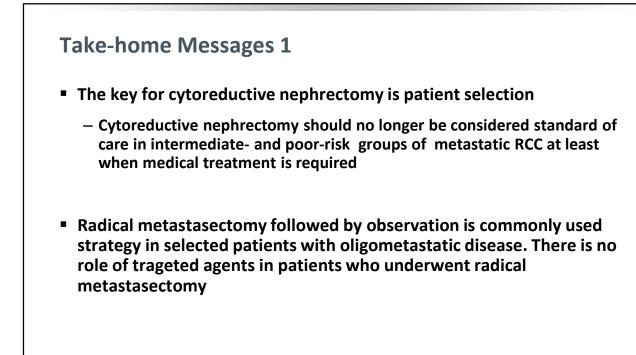

Borislav Belev


Clinical Hospital Center Zagreb School of Medicine Zagreb


1st Summer School in medical oncology -Ljubljana, 3.-6. September 2019







Topics

- Role of surgery in advanced RCC
- Targeted Therapy for Advanced RCC
- Immune Checkpoint Inhibitors for Advanced RCC
- Combination Therapy: Current and Future Opportunities
- Optimal Sequencing of Systemic Therapy in Advanced RCC
- Nuances in Treating Patients: Adjuvant Therapy, Treating Brain Metastases, Managing Adverse Events

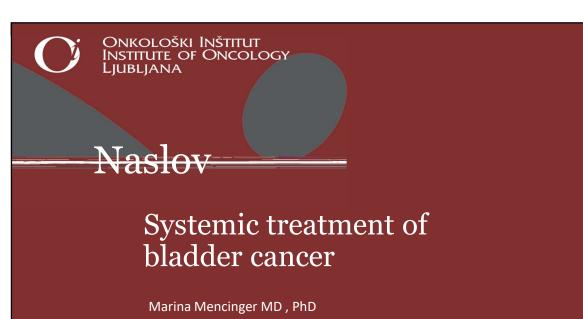
Take-home Messages 2

- Small molecule targeted agents dramatically improved the outcome of patients with metastatic RCC
- Sequencing of small targeted agents should be based on the currently available evidence
- In the era of checkpoint inhibitors small molecule targeted agents remain important therapeutic strategy for patients with metastatic RCC

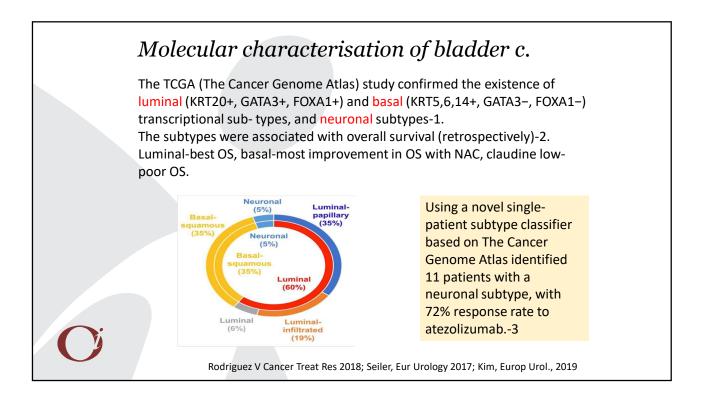
Take-home Messages 3

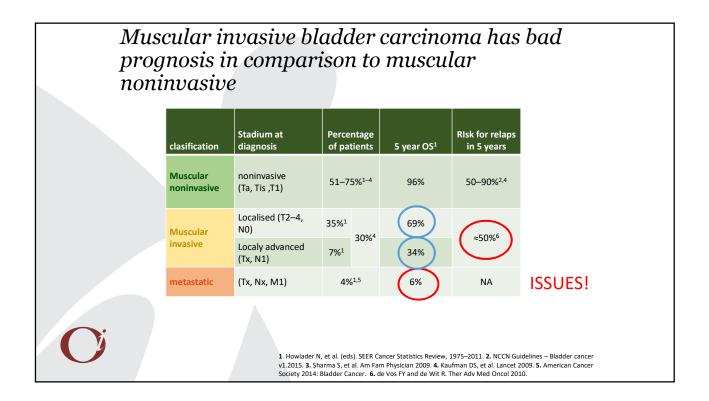
- Anti–PD-1 based therapy is active in treatment-naive patients including favorable-risk patients
- Much, <u>but not all</u>, of the activity of nivo/ipi is likely from the anti–PD-1 component
- Anti–PD-1 monotherapy with nivo/ipi salvage might be a reasonable strategy when one is concerned about the toxicity of nivo/ipi
- A trial of nivo/ipi vs nivo in frontline RCC is indicated

Take-home Messages 4

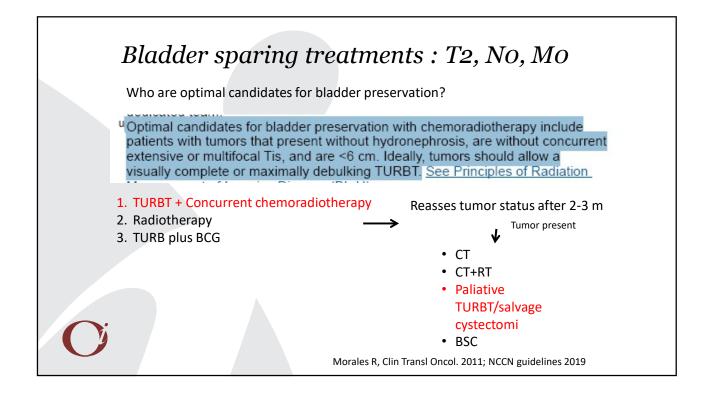

- Most immune-related AEs are reversible with immunosuppression through steroid treatment
 - Typically start with high-dose IV and then taper over 1-3 mos
 - Exception: adrenal insufficiency and hypothyroid need replacement hydrocortisone and levothyroxine, respectively, without use of steroids
- No evidence that intervening with steroids curtails antitumor efficacy of agent

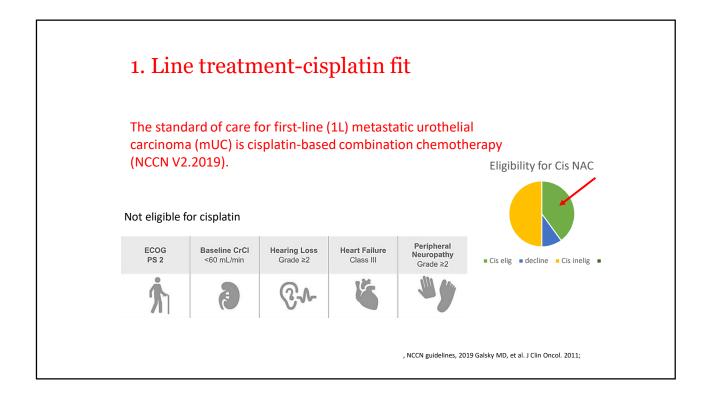
Take-home Messages 5


- Adjuvant VEGF therapy, when adequately dosed, can offer very modest benefit balanced against toxicity
- The goal of a patient with newly metastatic RCC is potential cure; therefore, regimens with the highest chance of cure/durable response, balanced against acceptable toxicity/time off of treatment, should be prioritized
- Immunotherapy-based regimens offer the best chance of achieving patient goals
 - Whether immunotherapies in combination with one another or with VEGF therapies most effectively achieves these goals is as yet undefined


IO–Non-IO Combinations

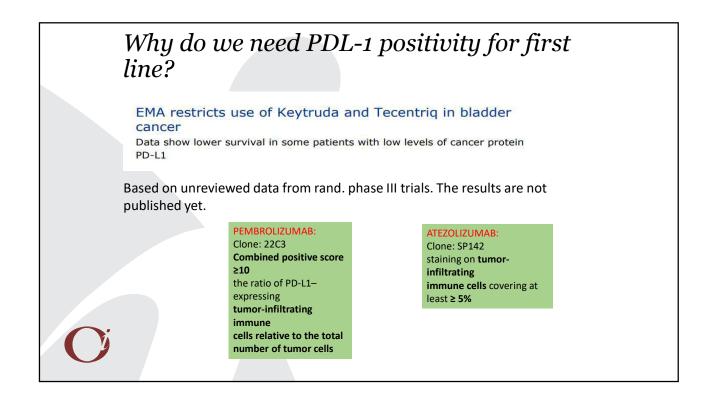
- IO is different than tumor-directed therapy because of its ability to produce Treatment-Free Survival (TFS)
- Combinations that improve median PFS or median OS without producing TFS may sacrifice the potential of IO while contributing toxicity, inconvenience, and tremendous extra cost
- Not only must A+B > A followed by B (or B followed by A), but TFS must be maintained in order for such combos to be fully embraced
- Clinical trials with IO agents need to use IO endpoints

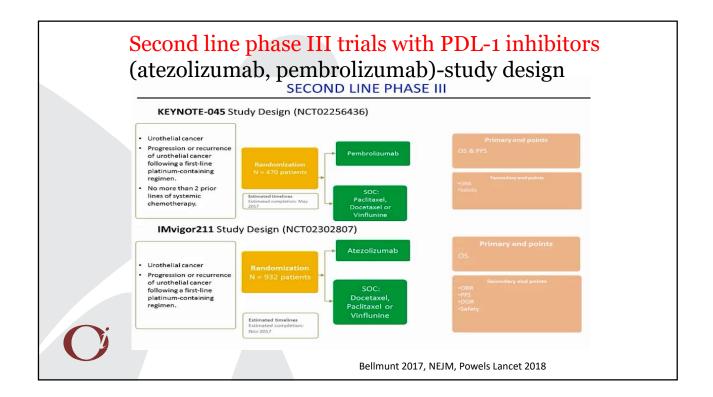

International School for Medical Oncology Ljubljana Sept 2019

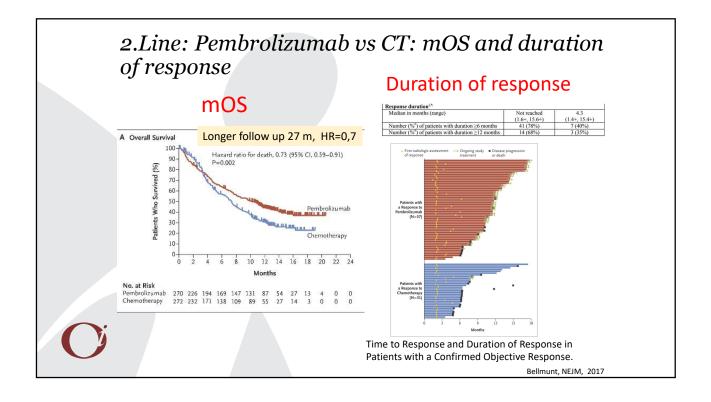


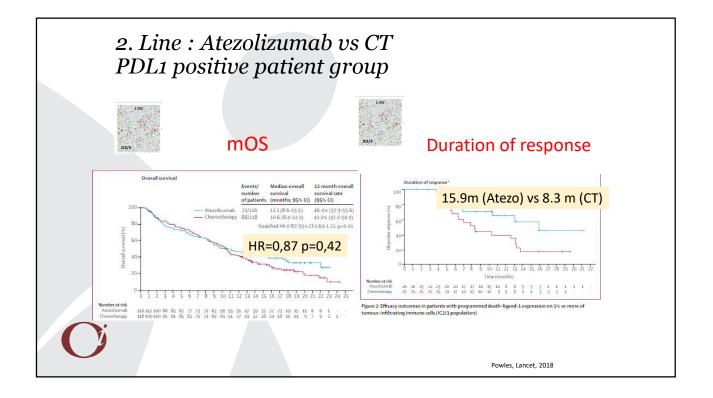
	RATIONALE FOR NAC–prolonged OS: T2- 4a, No, Mo: Neoadjuvant CT with platinum						
	Trial	n	Neoadj. CT + surgery vs. surgery alone				
	Meta-analysis 11 trials ¹	3.005	 Statistically significant prolonged OS (HR=0,86; 95% CI: 0,77–0,95; p=0.003) 5% absolute improvment 5 – y OS (from 45% na 50%)² Statistically significant prolonged survival without disease (HR=0,78; 95% CI: 0,71–0,86; p<0,0001) 9% absolute improvement in 5 – y survival without disease 				
C 1- Advance	4 cycles gemcitabin i 3 cycles CMV (cisplat	: dose- n cispl tin, me	-dense metotreksat, vinblastin, doksorubicin in cisp				

Rationale CT	ACT	: T3/4, N+, Mx: adjuvant	
trial	n	Surgery + adjuv. CT vs surgery alone	
Meta-analysis of 9 trials (1)	945	Statistically significant prolongation of OS (HR=0,77; 95% CI: 0,59–0,99; p=0,049) Statistically significant prolongation of survival withouth disease (HR=0.66: uvant therapy are incomplete or underpowered.	
Ranuomiseu una	als of auj	uvant therapy are incomplete of underpowered.	
EORTC (2)	284	PFS was longer with immediate versus deferred adjuvant chemotherapy [Hazard ratio (HR): 0.54 ; $p < 0.001$], but no diferences in OS were observed (HR 0.78 ; $p = 0.13$)	
O i		1-Leow JJ, Eur Urol 2014; 2-Sternberg, Lancet Onc	ol 2015

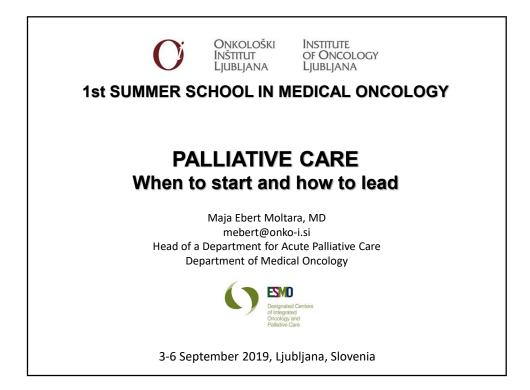


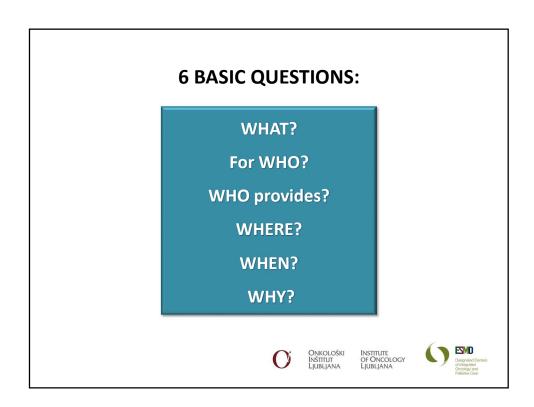


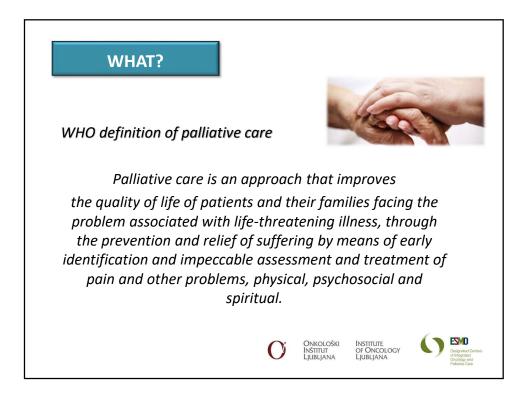

	How do (met or						ıs comp	oare
		GemCis	M-VAC	DD- MVAC	MVAC	DD Gem Cis	- DD M- VAC	
	mOS	=		=	=	=		
	toxicity	<		<		<		
	Quality of life =		=	Ĩ	?	?		
	ITT (263)			DD MVAC (6x)	C MVAC (4x) P-vrednost			
	5 y OS			21,8%,	13,5%	b b	0,042	Maria
	(RR)			72%	72% 58% 0,016		0,016	More ORR
	Febrile neutr	openia		10%	26%		0,001	and CR.
	(CR)			25% 11%			0,006	anu Cr.
O		r Maase et al, J C Eur J Can	lin Oncol, 2000; s	Sternberg et al, J Clir	n Oncol, 2001; Bam	ias, Ann Oncol.,	2013, Sternberg et al,	

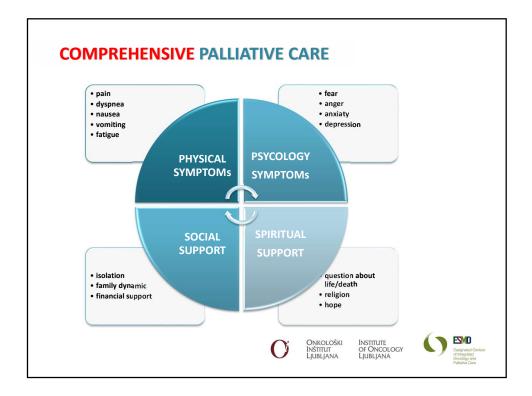

1. Line (cisplatin ineligible or CT naïve in met setting))-NO randomised data!

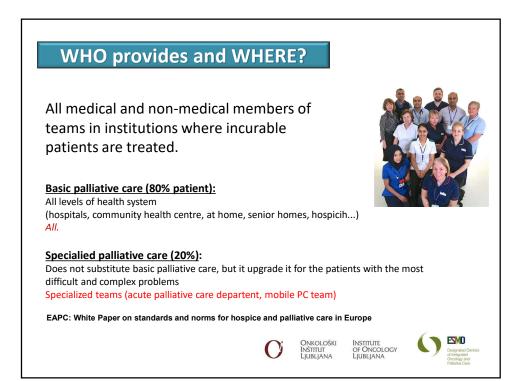
			No	ORR all	DCR	ORR PD-L1 pos.	ORR in PD-L1 neg	mOS	Adverse events gr 3- 4
	Phase II, nonrandom, cohort 1 IMVIGOR 210	atezo	119	24% (CR 10%)		28% (CR 13%)	21 % (CR 8%)	16,3 m	18%
	Phase II, nonrand Keynote 52	pembro	370	29% (CR 7%)	47%	51%	23%	11,5 m Elig	16% ibility for Ci
C						are PD-L1 uky J, et al. ASCO 201			ig decline C SCO 2018. Abstract

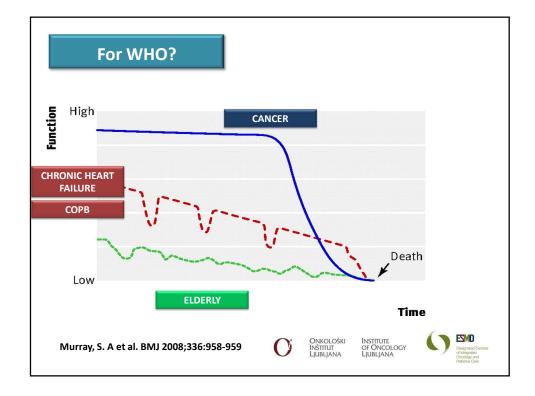


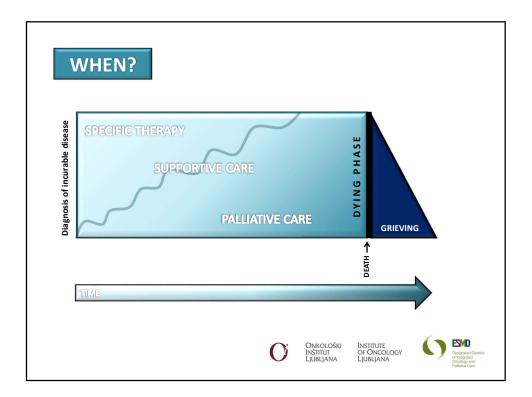


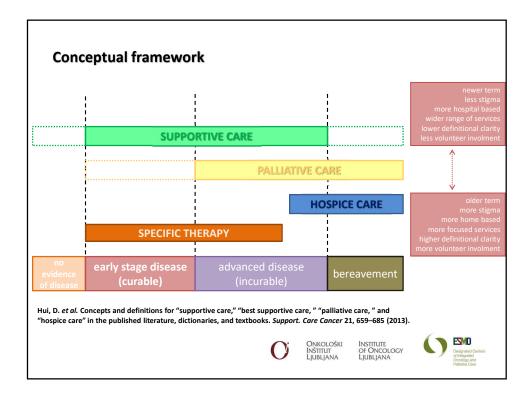


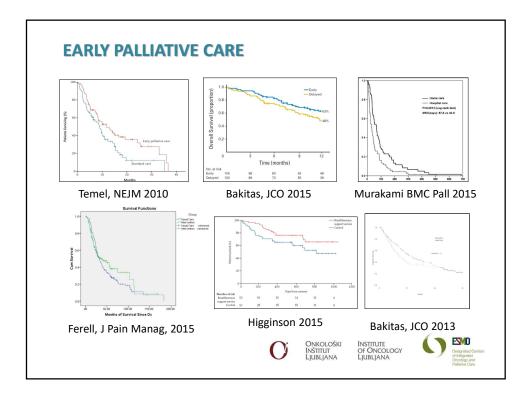

	Summary of Treatment in bladder cancer										
	FIRST LINE (MANDATORY PD-L:	1 TESTING)			SECOND LINE (NO PD-L1 TESTING)						
	Cisplatin-eligible	Cisplatin ineligible (PD-L1)	Cisplatin ineligibl (PD-L1 high)	e CT-ineligible							
		low)									
	Cisplatin-based CT	Carboplatin based CT	PD-1/PD-L1 block	ade							
C											

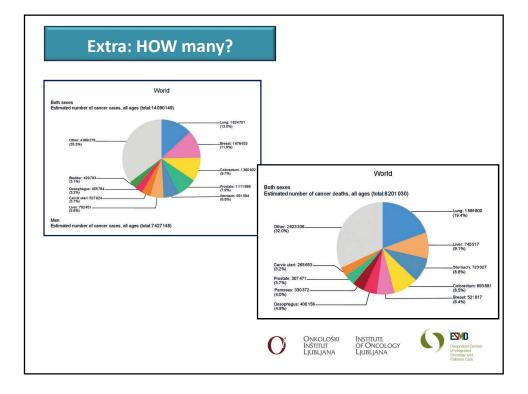


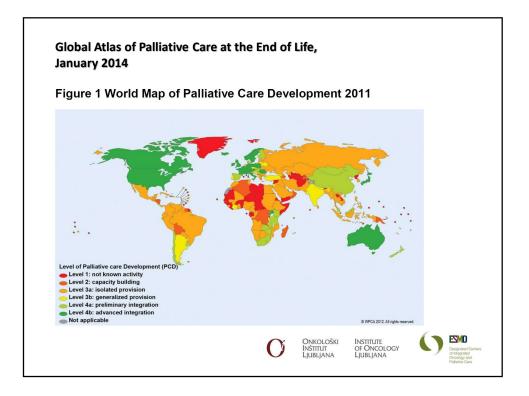


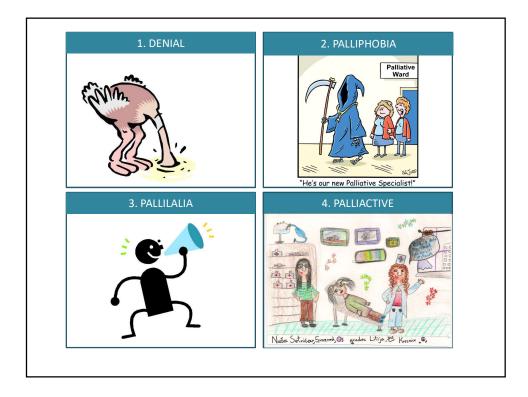


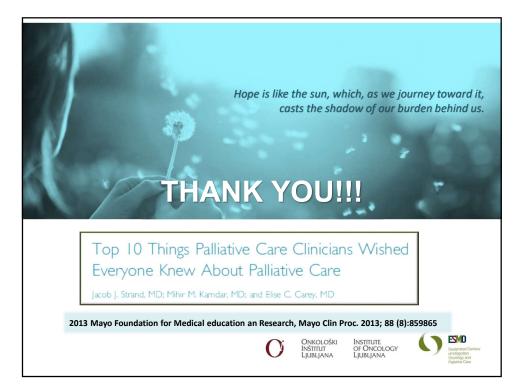












#1. SUMMER SCHOOL IN MEDICAL ONCOLOGY IS SPONSORED BY:

U NOVARTIS

IIII PHARMASWISS

KATEDRA ZA ONKOLOGIJO SEKCIJA ZA INTERNISTIČNO ONKOLOGIJO

Onkološki Inštitut Institute of Oncology

let vears

Ljubljana 🔿

#1. SUMMER SCHOOL SCHOOL IN MEDICAL ONCOLOGY Part 2 – Thursday (5.9.) & Friday (6.9.)

LJUBLJANA 3-6. SEPTEMBER 2019

Strokovni odbor:

izr. prof. dr. Janja Ocvirk, dr.med.
doc. dr. Martina Reberšek, dr.med.
dr. Simona Borštnar, dr.med.
doc. dr. Cvetka Grašič, dr.med.
dr. Tanja Mesti, dr.med.
Marko Boc, dr.med.

Organizacijski odbor:

izr. prof. dr. Janja Ocvirk, dr.med.
doc. dr. Martina Reberšek, dr.med.
doc. dr. Cvetka Grašič, dr.med.
dr. Tanja Mesti, dr.med.
Marko Boc, dr.med.
ga. Lidija Kristan

Uredniki zbornika:

Marko Boc, dr.med. doc. dr. Martina Reberšek, dr.med. izr. prof. dr. Janja Ocvirk, dr.med. dr. Tanja Mesti, dr.med.

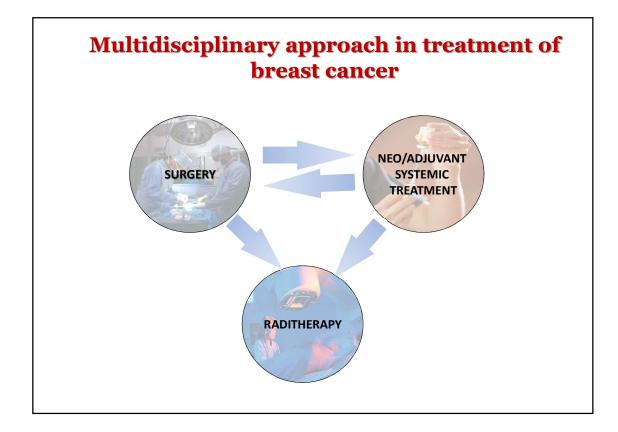
Organizator in izdajatelj (založnik):

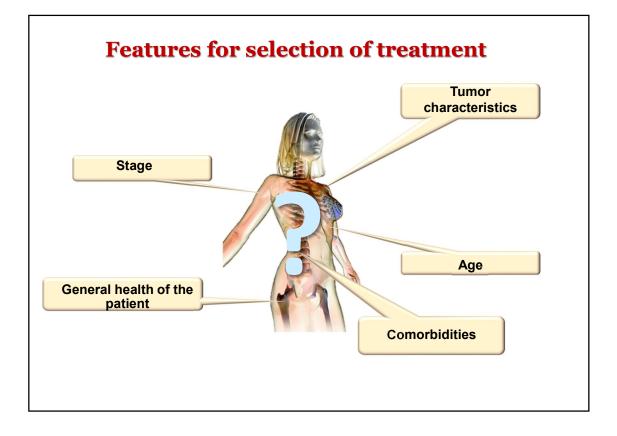
Onkološki inštitut Ljubljana Sekcija za internistično onkologijo Katedra za onkologijo

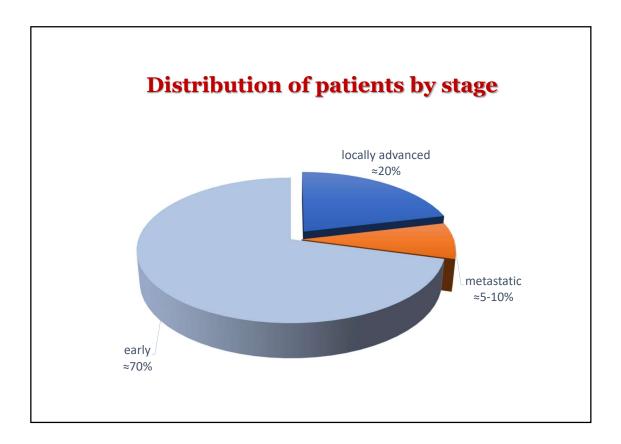
Ljubljana, september 2019

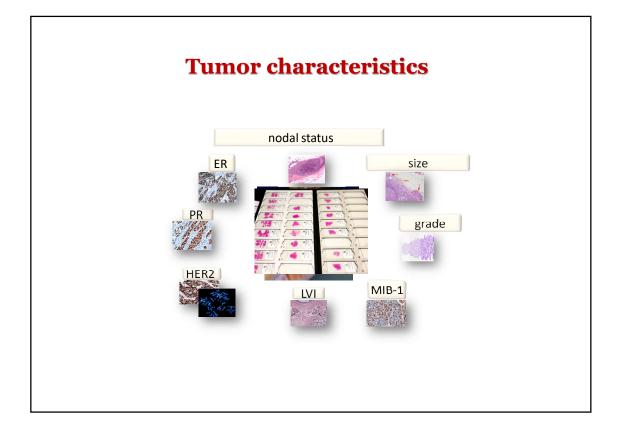
AGENDA & INDEX

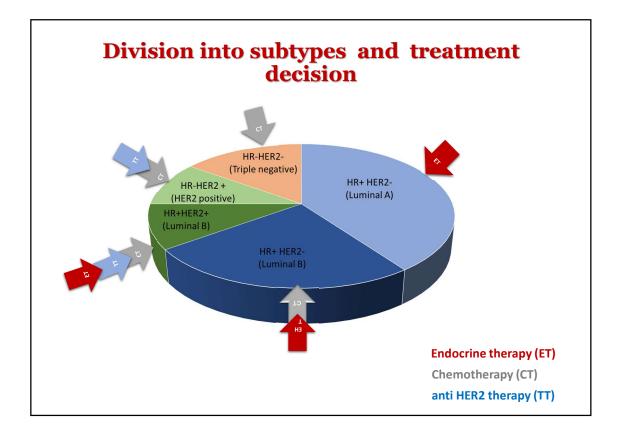
Ť

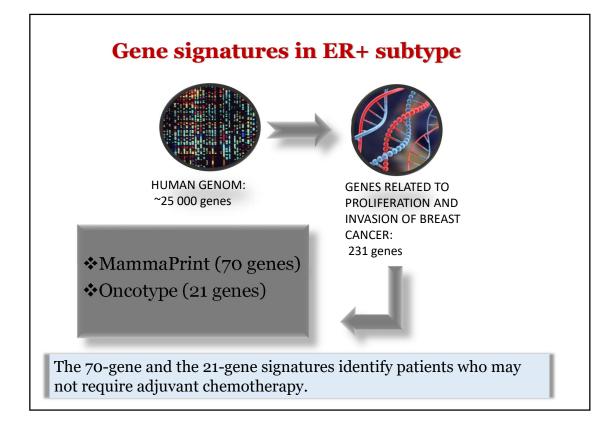

Thursday, September 5

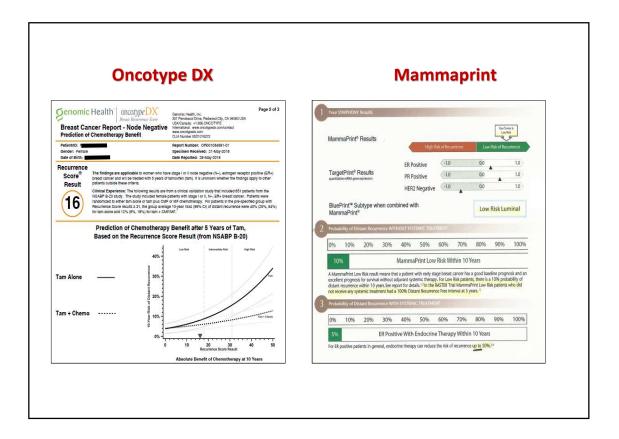

<u>Part 1</u>	Moderator: dr. Borštnar	
8:30-10:00	Early and locally advanced Breast cancer	
	(dr. Borštnar, dr. Ribnikar, dr. Bešlija)	
	Introduction (20-30 min) (Dr. Borštnar)	
	Case 1: HR+HER2- luminal A BC (dr. Geršak, dr. Borštnar)	
	Case 2: HR+HER2- luminal B BC (dr. Prepeluh, dr. Borštnar)	
	Case 3: Early TNBC (dr. Geršak, dr. Borštnar)	
	Case 4: First-line ribociclib in primary metastatic hormone receptor-	
	positive breast cancer (dr. Rugelj, dr. Borštnar)	
10:00-10:15	Break	
10:15-11:45	Metastatic breast cancer	
	(dr. Borštnar, dr. Ribnikar, dr. Bešlija)	
	Introduction (20-30 min) (Dr. Ribnikar)	
	Case 5: Metastatic HR+ BC with visceral crisis (dr. Dobovišek, dr. Borštnar)	
	Case 6: Primary metastatic HER2+, HR+ BC (dr. Dobovišek, dr. Borštnar)	
	Case 7: Metastatic TNBC (dr. Dobovišek, dr. Borštnar)	
11:45-12:00	Discussion	
12:00-12:30	Systemic treatment of sarcomas (dr. Unk)	
12:30-13:20	Lunch break	
Part 2	Moderators: dr. Kandolf Sekulović, dr. Ocvirk	
13:20-14:00	Satellite symposium (MSD)	
14:00-14:30	Adjuvant treatment strategies for malignant melanoma (dr. Herceg)	
14:30-15:15	Melanoma 2020 Standards of care and unmet needs	
	(dr. Kandolf Sekulović)	
15:15-15:30	Discussion	
15:30-15:40	Break	
15:40-16:10	Systemic treatment of non melanoma skin cancers (dr. Ocvirk)	
16:10-17:10	Interesting cases from audience	
	Case 1: Skin toxicity of immunotherapy (dr. Vermiglio, dr. Mesti)	
17:10-17:40	Satellite symposium	

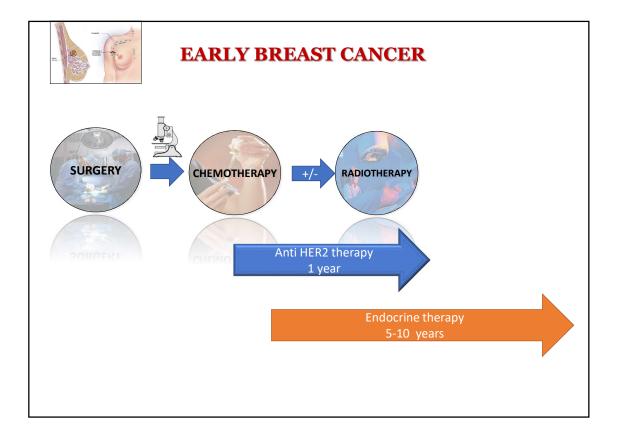

Friday, September 6

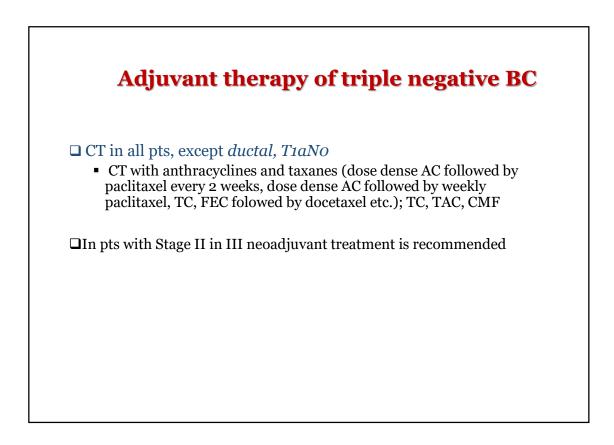

	Moderators: dr. Reberšek, dr. Ebert Moltara	
8:30-9:30	Interesting cases from audience	
9:30-10:00	Systemic treatment of ovarian cancer (dr. Škof)	
10:00-11:00	How to manage patients with renal insufficiency (dr. Milanez)	
11:00-11:30	Side effects of immunotherapy and the management	
	(dr. Hribernik, dr. Reberšek)	
11:30-11:40	Break	
11:40-12:30	Side effects of chemotherapy (including extravasation) and TKI and the	
	management (dr. Ovčariček, dr. Bokal)	
12:30-13:00	Discussion and conclusions	


ONKOLOŠKI INŠTITUTE OF ONCOLOGY
LJUBLJANADESERVICE









Adjuvant treatment of HER2+ breast cancer

CT +anti-HER2 therapy (+ ET in HR+)

□CT should contain anthracyclines and taxanes;

- a possible but not preferred choice is a combination without anthracyclines TCH (docetaxel + carboplatin + trastuzumab)
- For pT1b,c No, paclitaxel weekly x 12 is sufficient
- For stage II and III, neoadjuvant CT is recommended

□Anti-HER2 treatment

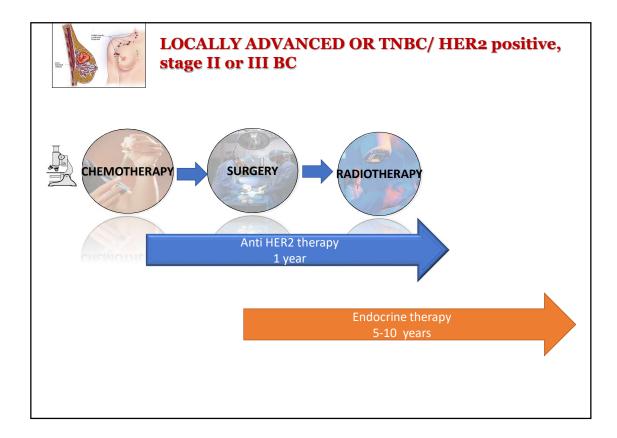
- Trastuzumab +/- pertuzumab (addition of pertuzumab if positive limphnodes or negative HR
- infusions or subcutaneous applications every 3 weeks; \rightarrow duration: 1 year

□In pts with HR+ tumors , ET after completion of CT, selection by age and menopausal status

Adjuvant therapy in INTERMEDIATE (HR+) BC

CT in majority of pts, ET in all pts

□*Premenopausal*:

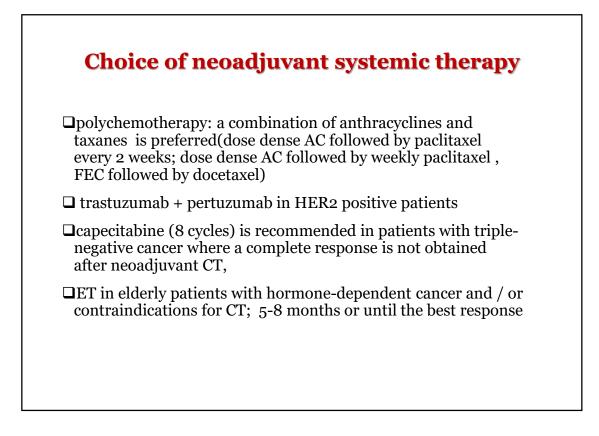

 \rightarrow Tamoxifen ± OS or AI + OS in No and intermediate characteristics (gradus, proliferation, gene signature)

 \rightarrow CT and then AI + OS or tamoxifen ± OS in N + and intermediate / poor characteristics (gradus, proliferation, gene signature); prolongation of HT to 10 or 15 years depending on side effects

□*Pomenopausal*:

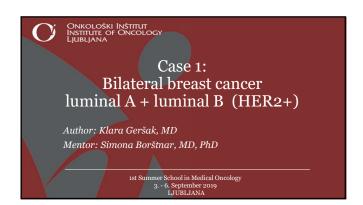
 \rightarrow AI in NO and intermediate characteristics (gradus, proliferation, gene signature) \pm bisphosphonates

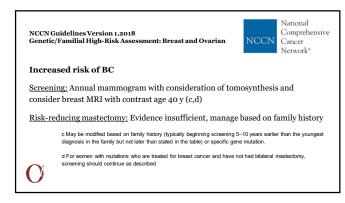
 \rightarrow CT and AI in N + and intermediate / poor characteristics (gradus, proliferation, gene signature) ± bisphosphonates; prolongation of HT to 10 or 15 years depending on side effects

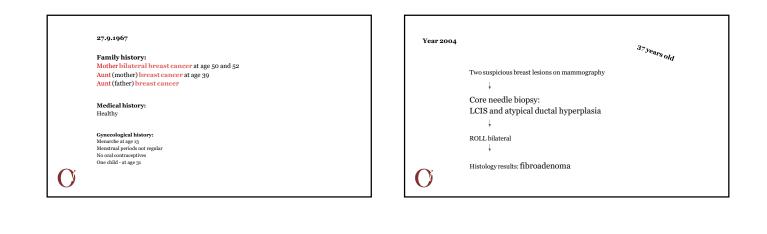


Indications for neoadjuvant CT

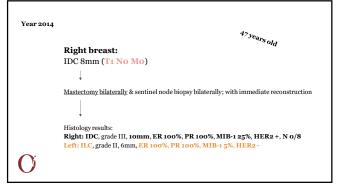
Inflammatory breast cancer
 Triple-negative or HER2-positive stages II and III
 Luminal B with intention to deescalate surgical treatment


Diagnostic procedure before neoadjuvant CT


Core biopsy is mandatory to determine tumor characteristics
 CT of the neck, chest and abdomen, bone scan
 Insertion of a marker clip into the tumor before the onset of neoadjuvant CT
 Breast MRI before and after neoadjuvant CT



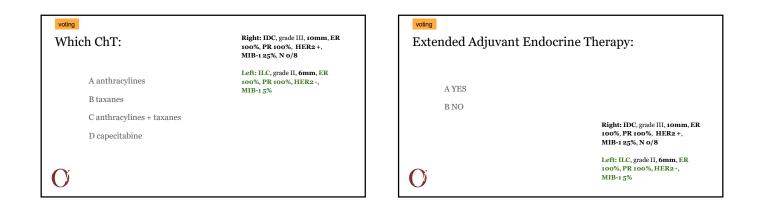
Literature

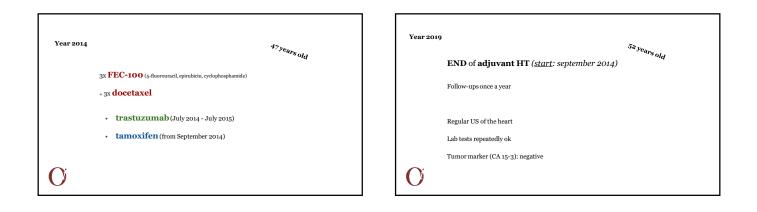

- □ Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S and Senkus E, on behalf of the ESMO Guidelines Committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2019;30: 1194–1220.
- □ Waks AG, Winer EP. Breast Cancer Treatment. : A Review. JAMA 2019;321(3):288-300.
- Burstein HJ et al: Estimating the Benefits of Therapy for Early Stage Breast Cancer The St Gallen
 International Consensus Guidelines for the Primary Therapy of Early Breast Cancer 2019. Ann Oncol.
 2019 Aug 2. pii: mdz235. doi: 10.1093/annonc/mdz235. [Epub ahead of print]
- L https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Version 2.2019; 07/02/2019

Year 2002	35 years old
	High risk for developing breast cancer
	CHEK2 mutation
	Regular follow ups Mammography, breast US, MRI of the breast & visit at Medical oncologist every 6 months
O	

Following treatment:

voting


O

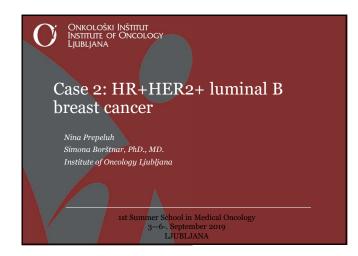

- A ET + trastuzumab
- B ChT + trastuzumab
- C ChT + trastuzumab + ET
- D ChT + trastuzumab + ET + RT

Right: IDC, grade III, 10mm, ER 100%, PR 100%, HER2 +, MIB-1 25%, N 0/8

Left: ILC, grade II, **6mm**, ER 100%, PR 100%, HER2 -, MIB-1 5%

49 years old
Ovarian cyst — laparoscopic adnexectomy bilaterally
Side effects of hormonal therapy:
Muscle pain in arms and legs,
severe joint pain,
small foot joint stiffness,
ankle pain,
tiredness,
lower physical capacity,
hot flashes,
occasional headaches

Follow ups:

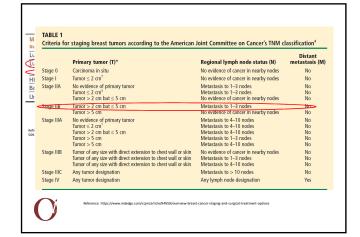

voting

A LAB + tumor marker CA 15-3 B Mammography/breast US

C Clinical exam

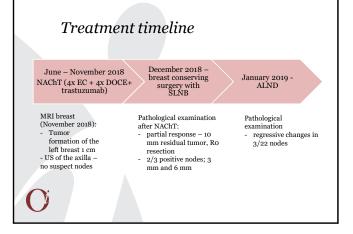
DA+B+C

O



Clinical presentation

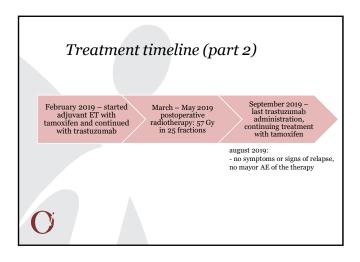
- 43- years old female
- history: lump in left breast for 6 months, otherwise healthy
- · family history: cousin had uterine cancer
- gynecological history: regular menses, 4x partus, no use of contraceptive pills
- smoker (25 years, a pack a day)


Diagnostic work-up

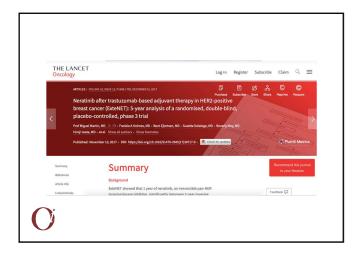
- <u>mammography</u> (June 2018) tumor formation in upper inner quadrant of left breast, 5 cm in diameter with microcalcinations; <u>MRI-</u> tumor formation 27x22 mm, one pathological lymph node
- core needle biopsy: IDC, grade 3, ER 100%, PgR 0%, Ki-67 15%, HER-2 positive (3+)
- staging: CT of the thorax & abdomen + bone scan no metastases detected

What treatment regimen would you recommend to start with?

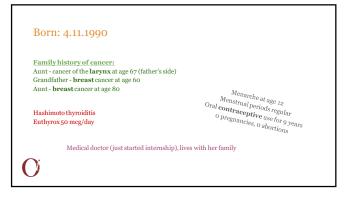
- A. neoadjuvant chemotherapy (anthracyclines + taxanes) + neoadjuvant antiHER-2 therapy (trastuzumab)
- B. neoadjuvant chemotherapy (anthracyclines + taxanes) + dual neoadjuvant antiHER-2 therapy (trastuzumab+ pertuzumab)
- C. surgery followed by adjuvant chemotherapy + adjuvant antiHER-2 therapy
- D. surgery followed by adjuvant antiHER-2 therapy

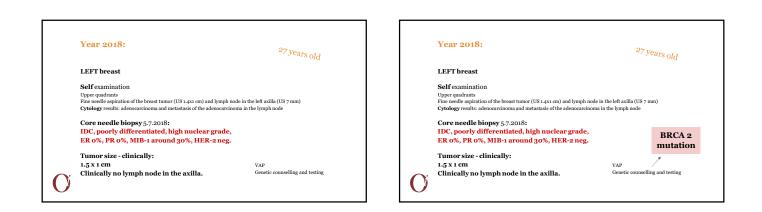

Which adjuvant therapy would you recommend?

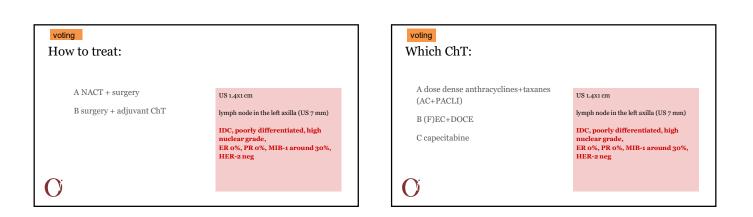
- A. anti-HER2 therapy (trastuzumab) to complete 1 year + ET B.
- (tamoxifen) + postoperative radiotherapy anti-HER2 therapy (trastuzumab) to complete 1 year + ET (goserelin/oophorectomy with AI) + postoperative radiotherapy C. anti-HER2 therapy (trastuzumab) to complete 1 year followed
- by adjuvant neratinib D. anti-HER2 therapy (trastuzumab) to complete 1 year + ET (tamoxifen)

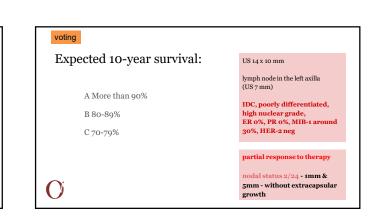

ý

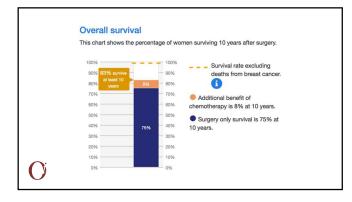

dual anti-HER2 therapy (trastuzumab + pertuzumab) to complete 1 year + ET (tamoxifen) + postoperative radiotherapy E.

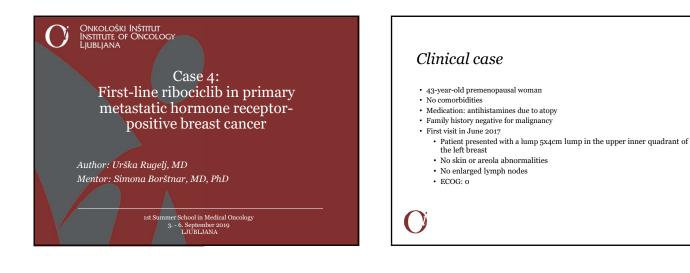

	gy		Log in Reg	ister Subscribe (Claim Q ☰
	ARTICLES VOLUME 17, ISSUE 6, P791-800, JUNE 01, 2016		7 0	1 12 %	d C
			Purchase Subs		eprints Request
	5-year analysis of neoadjuvant pertu				
_	with locally advanced, inflammatory	, or early-stage HE	R2-positive breast		
	cancer (NeoSphere): a multicentre, o	non label phace	2 randomicod trial		and the second se
<	cancer (Neosphere): a muticentre, c	open-tabet, phase	z randomised that		
	Prof Luca Gianni, MD 🔗 🖂 + Prof Tadeusz Pienkowski, MI	- Prof Youne-Hourk Im MD	Line Mine Trene MD		and the second s
_				-1-	
		Trastuzumab plus docetaxel (group A; n=107)	Pertuzumab, trastuzumab, and docetaxel (group 8; n=107)	Pertuzumab plus trastuzumab (group C; n=107)	Pertuzumab plus docetaxel (group D; n=96)
Pathological cor	mplete response in ITT population	31 (29.0%, 20-6-38-5)	49 (45-8%, 36-1-55-7)*	18 (16 8%, 10 3-25-3)*	23 (24-0%, 15-8-33-7)1
	nplete response and N- at surgery	23 (21.5%, 14.1-30.5)	42 (39-3%, 30-0-49-2)	12 (11-2%, 5-9-18-8)	17 (17.7%, 10.7-26-8)
	nplete response and N+ at surgery	8 (7.5%, 3.3-14-2)	7 (6-5%, 2-7-13-0)	6 (5-6%, 2-1-11-8)	6 (6-3%, 2-3-13-1)
Pathological con	mplete response in ER positive or PR positive, or both, women	10/50 (20.0%, 10.0-33-7)	13/50 (26 0%, 14 6-40-3)	3/51 (5.9%, 1.2-16-2)	8/46 (17-4%, 7-8-31-4)
Parhological con	mplete response in ER negative and PR negative women	21/57 (36.8%, 24.4-50-7)	36/57 (63.2%, 49-3-75-6)	15/55 (27-3%, 16-1-41-0)	15/50 (30-0%, 17-9-44-6)
racionguarco					
	Clior n/N (%, 95% Cl). ITT+intention-to-treat. Nhmph-node re	gative. N++kmph-node positiv	e ER-oestropen receptor PR-p	rogesterone receptor. "p=0.01	141 vs group A. tp=0.0198 vs
	CI) or n/N (%, 95% CI). ITT+intention-to-treat. N-→lymph-node ne Ivs group 8	gative. N++lymph-node positiv	e. ER+oestrogen receptor. PR+p	rogesterone receptor. *p=0.03	141 vs group A. †p=0.0198 vs


<section-header><section-header></section-header></section-header>	Adjuvant Pert								
	Adjuvant Pert								
	Adjuvant Pert								
	Adjuvant Pert								
E.G. La Gondara U.S. Moior Monte, D.S. Exolar de Gondara U.S. 200. Serie Transmission U.S. Monte Shores P.G. Konseppe Val. 200. Serie Transmission U.S. Monte Shores P.G. Monte P.G. Monte P.G. Monte Shores P.G. Monte Shores P.	Adjuvant Pert			ORIGINAL ARTICLE					
		uzuma	b and Tra	stuzumab in Earl	y HER2-Posi	tive Br	east C	ancer	ŕ
State State State State State State Note State Stat	M.D., Thomas Suter, M.D.	, Amal Arahm				, Istvan Lan	g, M.D., \$1	al, for the	1
Data Data <t< td=""><td></td><td></td><td>APHINI</td><td>PY Steering Committee and Inve</td><td>stigators"</td><td></td><td></td><td></td><td></td></t<>			APHINI	PY Steering Committee and Inve	stigators"				
Data Data <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
Data Data <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>									1
Normal (Normal Sector) Normal (Normal Sector)<	Subgroup	Perturumab	Placebo	Unstratified Hazard Ratio for Invasive-C	forase Event (95% CI)	3-ftr investive Survive	Disease-Iree al Rate		
Alternation Direction Direction <thdirection< th=""> <thdirection< th=""> <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thdirection<></thdirection<>									
$ \begin{matrix} - \mu + \mu$									
	An patients No. of exciting and ex-	11122400	THEFT		9.82 (3.87-1.85)	94.1	10.2	0.17	
		2.90	4.54		441.000.140	82.2	87.5		
$\begin{array}{ $				A		97.5	98.5		
	1-3 Positive nodes	55,907	75,900		0.73 (0.52-1.04)	94.9	95.8		
Mathematical State Mathema		84,596	206,902		4.79 (5.59-1.85)	87.5	84.7		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								6.17	
		32,897	29/902		1.13 (5.48-1.84)	97.5	98.4		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		138,5905	181/0502	A	0.17 (0.62-0.96)	92.0	90.2		
Non-marked based market mark			100.000					1.09	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Data Description Object <		14,000	10,047		481(011-130)	10	100	6.54	
Deal of the second se	Postive	105/1514	118/1546		9.54 (2.64-1.12)	94.8	94.4		
Data/set Description Discription Discription <thdiscription< t<="" td=""><td>Negative</td><td>71/864</td><td>91,838</td><td></td><td>0.75 (0.56-1.84)</td><td>92.8</td><td>91.2</td><td></td><td></td></thdiscription<>	Negative	71/864	91,838		0.75 (0.56-1.84)	92.8	91.2		
Data Description Direction Direction <thdirection< th=""> <thdir< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.55</td><td>1</td></thdir<></thdirection<>								0.55	1
Alternational Production (1997) Other Control (1997) <t< td=""><td>Potocal A</td><td></td><td>343/5827</td><td></td><td></td><td></td><td>94.1</td><td></td><td>sh in Early</td></t<>	Potocal A		343/5827				94.1		sh in Early
Marcanowski (Marca) Marcanooski (Marca) Marcanowski (Marca)		31/572	6/(317		0.77 (0.53-1.11)	91.9	72.6		and in Carry
Alternative No.001 No.002 Image of the second s		45/2112	864173		A44.0 PC-1 KN	83.5	49.7	100	
Approx 100 100 100 100 100 0 +0 + 0 0.00 0				been set of					1
Control Control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.78</td><td>1</td></t<>								0.78	1
District Open P OpenP OpenP<	100 91			h					1
off DOID LODID Image: Control of the second sec		48,008			0.09 (0.60-1.32)		94.3		
Name State Open State E 20 E 20 <the 20<="" th=""> E 20 E 20</the>		65,0055			0.78 (0.57-1.87)		93.5		1
Jun Algor Mass Image: Control of the		#4(913	24/525		0.30 (2.41-1.1.7)	92.9	70.6		1
Ju-rin Discription State (1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		41.017			40.00.000	87.0		* /2	1
stem 22,567 31,074 → 58,51,69-1,49 133 0,5 femderer 07,0797 20,076 1 2 0 10 20 144 141 141 142 144 Product stem Friedda Ster		100.0177	115/1163		-52 (0.42-0.52)	87.5			1
Ferendarises 177(2192 205(2194 10) 10) 10) 10 10 10 10 10 10 10 10 10 10 10 10 10	a5 on	22,547	30/074		0.85 (0.45-1.47)	87.5	825		1
02 03 10 20 50 Perturumb Botter Flandes Better								NA	1
Perkaunak Beter Fische Beter				93 10 20					
									1




	NEOADJUVANT SYSTEMIC THERAPY	
	4x AC (DOXORUBICIN+CYCLOPHOSPHAMIDE)	D O
	+	S E
	4x PAKLITAKSEL	D E
	+ pegfilgrastim	E N S E
O	After 2. Cycles of the therapy: no tumor clinically	





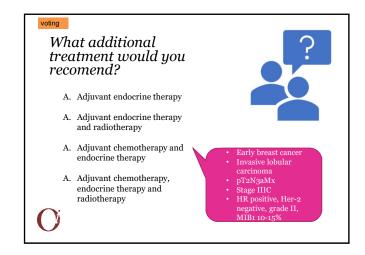

28 years old Adjuvant RADIATION therapy From 14.1.- 20.2.2019 (+ parasternal lymph nodes)

		28 years old
	25.2.2019 adjuvant CHEMOTHERAPY	
	Capecitabine 2150 mg/12 hours, 14 days + goserelin 3.6 mg sc	
	6th, 7th and 8th cycle 75% dose - because of hematotoxicity	
O	Last visit: 16.8.2019	



Imaging:

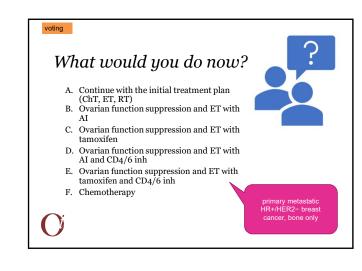
- Mammography structural abnormality in the left breast Magnetic resonance imaging of the left breast: tumor on the border of upper quadrants 50×35 mm, 2 other foci in the upper and lower inner quadrant 30 and 35 mm, pathological axillary lymph nodes with enlarged capsule – the largest 6 mm in diameter
- · Bone scan: no signs of osteoblastic lesions
- · Ultrasound of the abdomen: no signs of metastases
- Chest X-ray: no signs of metastases
- Cytological puncture of the tumor: adenocarcinoma
- Ultrasound guided cytological puncture of the axillary lymph node: metastasis of the adenocarcinoma
- Diagnosis: adenocarcinoma of the left breast with positive ipsilateral axillary lymph nodes


Initial treatment and final pathology

Surgery:

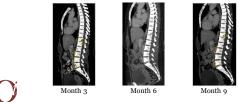
Radical mastectomy and axillary lymph node dissection with immediate reconstruction with DIEP flap

· Definitive histology


- · Invasive lobular carcinoma, 50 mm in largest diameter, with foci of lobular carcinoma in situ, grade 2, mitosis 2, lymphovascular invasion present
- · 25/28 axillary lymph nodes positive, the largest metastasis
- measuring 18 mm with extension outside of the capsule and infiltrating the surrounding adipose tissue

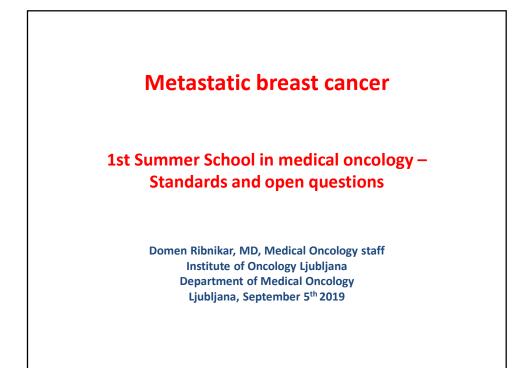
New symptoms

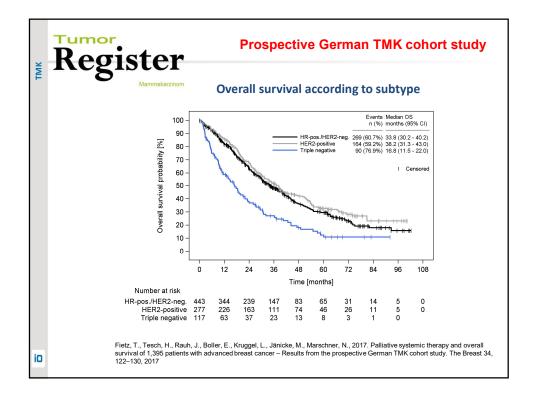
- · Before chemotherapy was started new onset of pain with deterioration of performance status from 0 to 1 was observed
- Additional bone scan September 2018 • No changes from the preoperative scan in June 2018 – most likely degenerative changes in both shoulders and hips
- · CT of the chest and abdomen September 2018
 - · Diffuse osteolytic bone metastases, no signs of metastases elsewhere

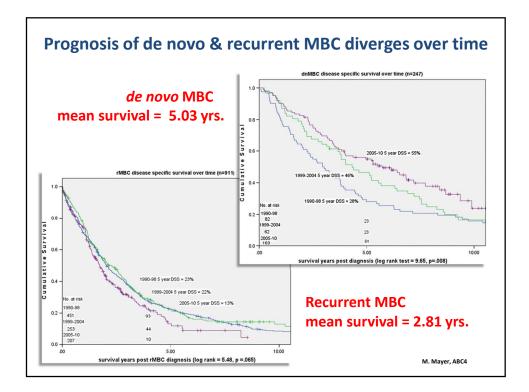


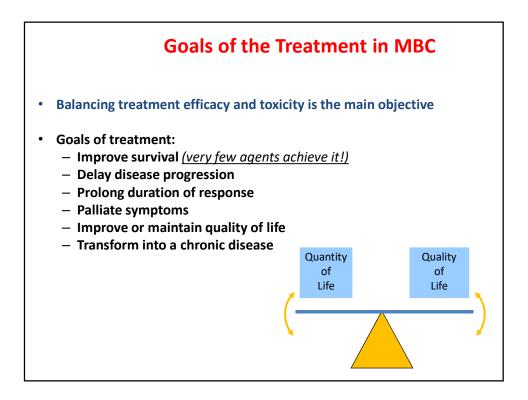
First line treatment

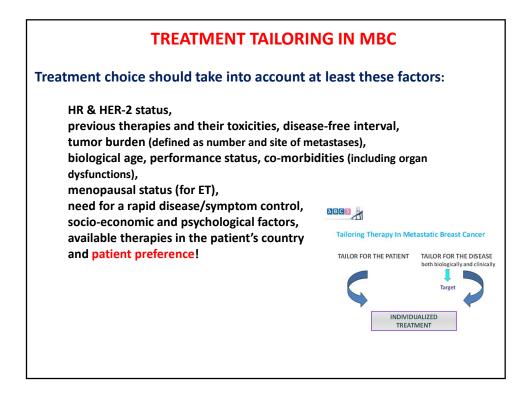
- · Ribociclib 600 mg once daily (OD) for 21 days, then 7 days off
- Letrozole 2.5 mg OD continuously
- Goserelin 3.6 mg subcutaneously monthly · Denosumab 120 mg subcutaneously monthly
- · Monitoring strategy
- - Complete blood count (CBC), liver tests, electrolytes and electrocardiogram every 14 days for the first 2 or 3 cycles
 - · CBC, liver tests, electrolytes monthly
- Supportive treatment:
 - Analgesia with paracetamol/tramadol combination, later de-escalation to a non-steroidal anti-inflammatory drug
 - · Calcium carbonate, vitamin D due to bone antiresorptive agent

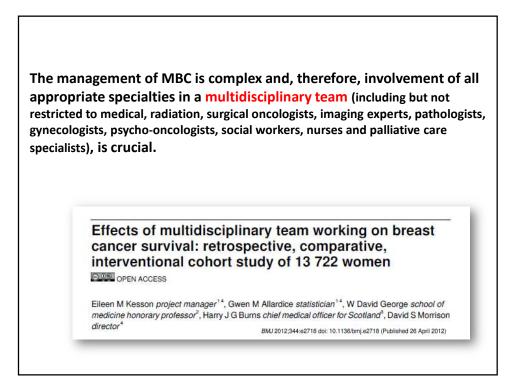

Treatment - cont.

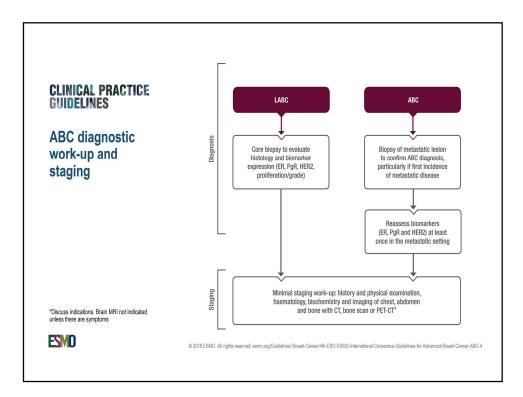

- Patient responded well to therapy, no major adverse effects were noted, no treatment delays, the pain improved
- · Improvement in ECOG from 1 to 0 was noted
- · Quality of life was improved
- The best response is stable disease. The duration of response is currently 20 months

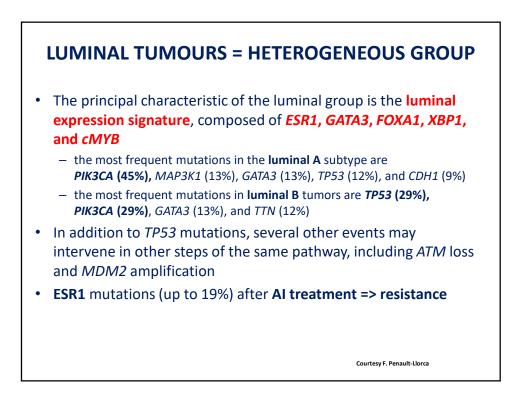


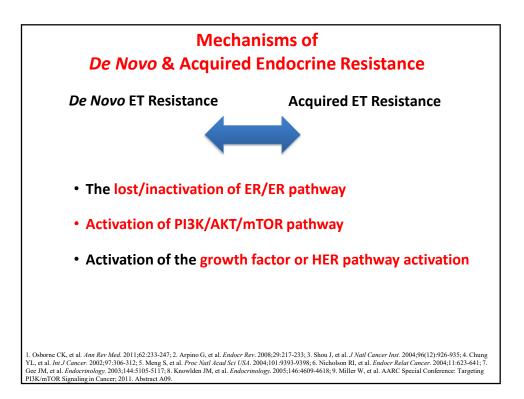

Conclusion

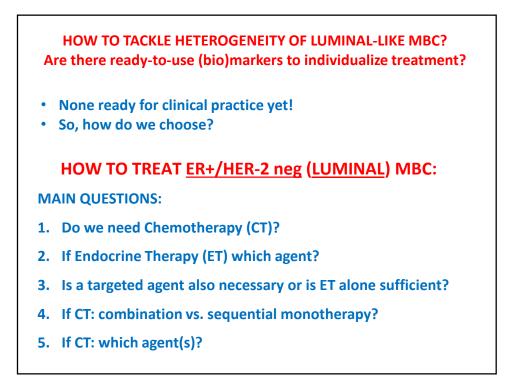

- · Patient started her treatment of an early breast cancer
- · Bone metastases were found after surgery when new symptoms were present
- Treatment plan was changed from adjuvant chemotherapy, followed by endocrinal therapy and radiotherapy to treatment of primary metastatic HR+/HER2- breast cancer with a combination of hormonal therapy and a CDK 4/6 inhibitor

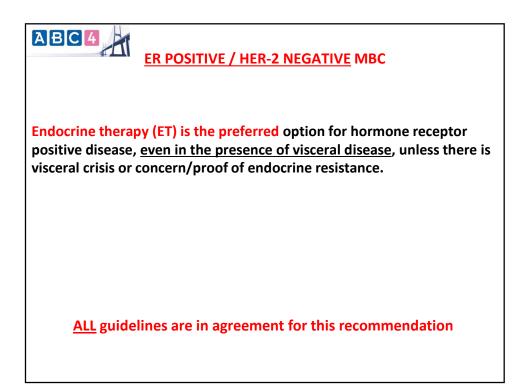


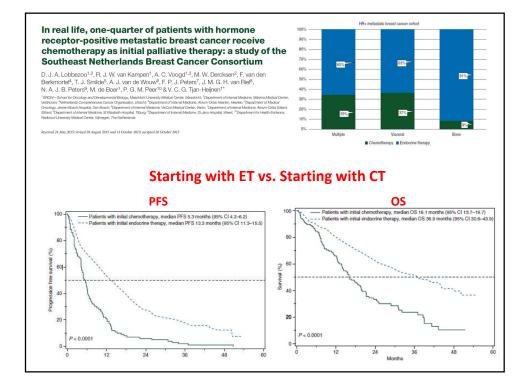


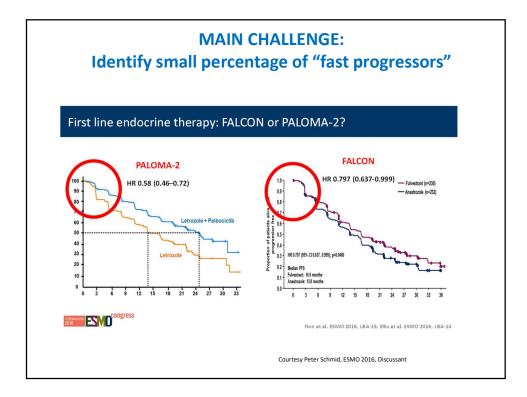


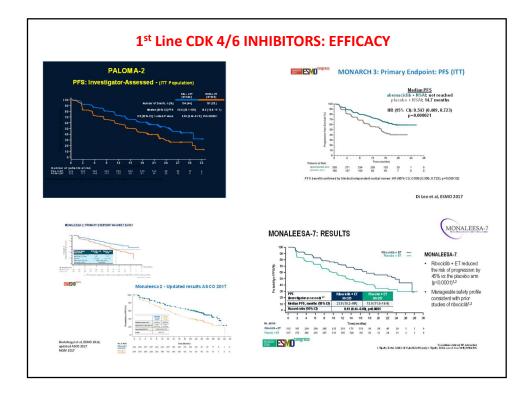


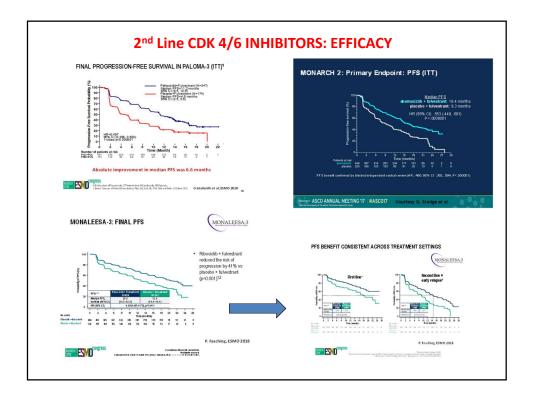


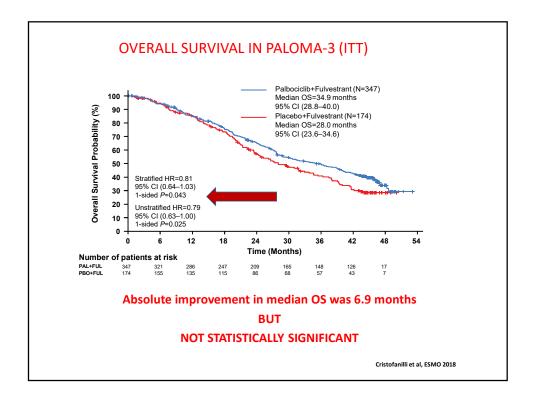


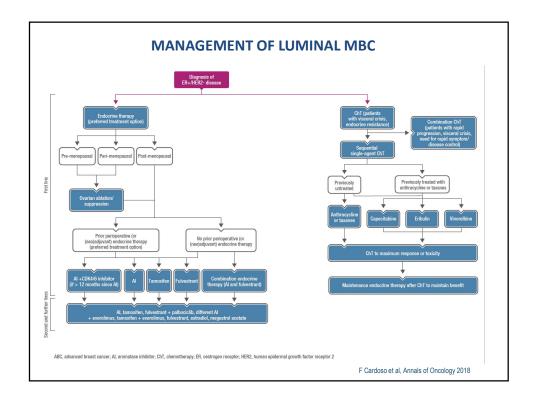


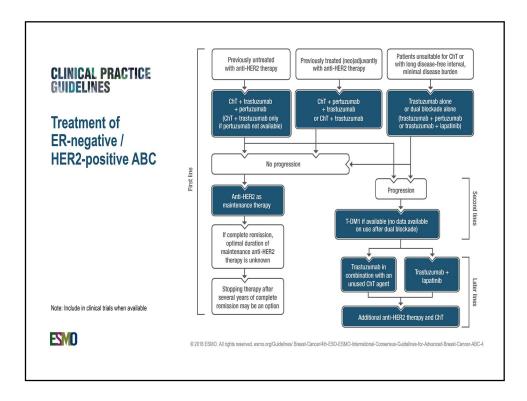


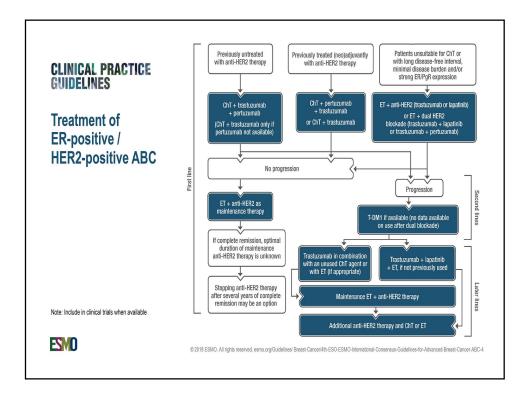


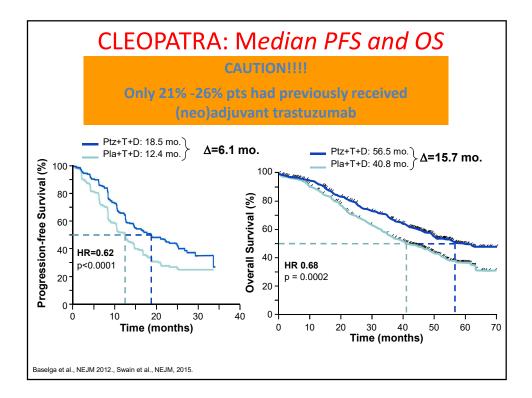


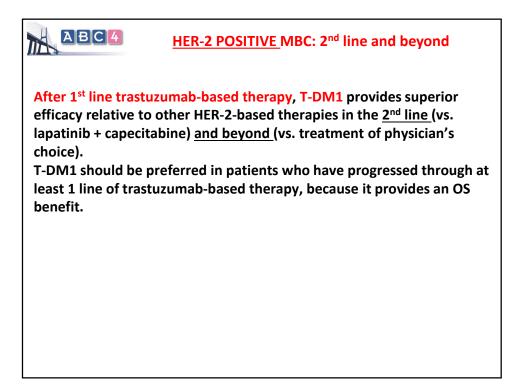


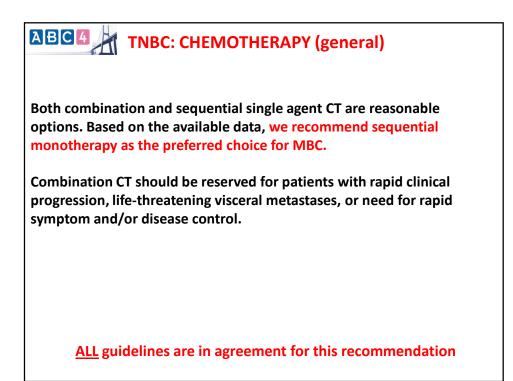


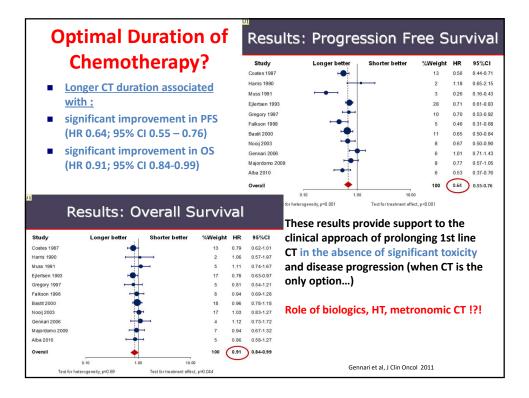

ER POSITIVE / HER-2 NEGATIVE MBC The addition of a CDK4/6 inhibitor to an aromatase inhibitor, in patients naïve or pre-exposed to ET, provided a significant improvement in median PFS (~10 months), with an acceptable toxicity profile, and is therefore one of the preferred treatment options*. Patients relapsing < 12 months from the end of adjuvant AI were not included in the published studies and may not be suitable for this combination. OS results are still awaited. QoL was comparable to that with ET alone. * for pre and peri with OFS/OFA, men (preferably with LHRH agonist) and post-menopausal women

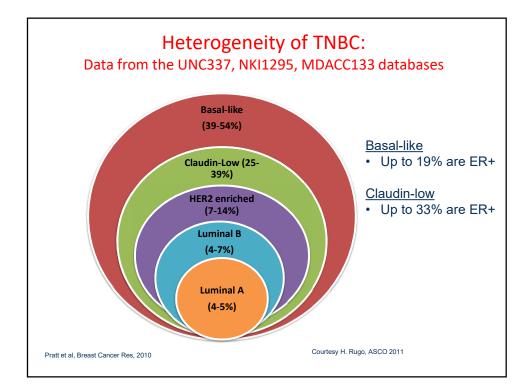












Progressio	n-free surv						
			Combination			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total		IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Alba 2004		0.1827	69	75	10.7%	1.03 [0.72, 1.47]	
Baker 1974		0.2295	46		6.8%	1.27 [0.81, 1.99]	
Beslija 2006 Dente 2004	-0.6033		50	50		0.55 [0.31, 0.96]	
Conte 2004	0.0862	0.139	106			1.09 [0.83, 1.43]	
Fountzilas 2001 Park 2010		0.1579	90 41	93 40		1.24 [0.91, 1.69] 1.32 [0.82, 2.12]	
Sledge 2003		0.2429	230			1.32 [0.82, 2.12]	
Tomova 2010	-0.1625		230	403	0.9%	0.85 [0.24, 2.99]	
1011104a 2010	-0.1025	0.0415	40	55	0.9%	0.65 [0.24, 2.88]	204 10 10 10
fotal (95% CI)			678	886	100.0%	1.16 [1.03, 1.31]	•
Internanciate Chil-							
heterogeneity. On –	9.41, df = 7 (P = 0.22	2); I ² = 26	%				
Test for overall effect:		2); I ^z = 26	%				0.01 0.1 1 10 100 Favours combination Favours sequential
Test for overall effect		rials)	% Combination	Sequential		Hazard Ratio	Favours combination Favours sequential Hazard Ratio
Test for overall effect	Z = 2.52 (P = 0.01) rvival (all tr log[Hazard Ratio]	ials)			Weight	Hazard Ratio IV, Fixed, 95% Cl	Favours combination Favours sequential
Test for overall effect: Overall su Study or Subgroup Alba 2004	Z = 2.52 (P = 0.01) rvival (all tr log[Hazard Ratio] 0.2151	rials) se	Combination Total 69	Total 75	4.5%	IV, Fixed, 95% CI	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974	Z = 2.52 (P = 0.01) rvival (all tr log[Hazard Ratio] 0.2151 0.3716	rials) se 0.2634 0.2606	Combination Total 69 46	Total 75 30	4.5% 4.6%	IV, Fixed, 95% Cl 1.24 [0.74, 2.08] 1.45 [0.87, 2.42]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006	Z = 2.52 (P = 0.01) rvival (all tr log[Hazard Ratio] 0.2151 0.3716 -0.6387	rials) se 0.2634 0.2606 0.3182	Combination Total 69 46 50	Total 75 30 50	4.5% 4.6% 3.1%	IV, Fixed, 95% CI 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006 Chlebowski 1989	Z = 2.52 (P = 0.01) rvival (all tr log[Hazard Ratio] 0.2151 0.3716 -0.6387 -0.1054	rials) se 0.2634 0.2606 0.3182 0.1282	Combination Total 69 46 50 129	Total 75 30 50 93	4.5% 4.6% 3.1% 19.2%	IV, Fixed, 95% Cl 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99] 0.90 [0.70, 1.16]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006 Chiebowski 1989 Conte 2004	Z = 2.52 (P = 0.01) rvival (all tr log[Hazard Ratio] 0.2151 0.3716 -0.6387 -0.1054 0.174	rials) <u>se</u> 0.2634 0.2606 0.3182 0.1282 0.2355	Combination Total 69 46 50 129 106	Total 75 30 50 93 92	4.5% 4.6% 3.1% 19.2% 5.7%	IV, Fixed, 95% CI 1.24 (0.74, 2.08) 1.45 (0.87, 2.42) 0.53 (0.28, 0.99) 0.90 (0.70, 1.16) 1.19 (0.75, 1.89)	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006 Chiebowski 1989 Conte 2004 Fountzias 2001	Z = 2.52 (P = 0.01) rvival (all tr log[Hazard Ratio] 0.2161 0.3716 -0.6387 -0.1064 0.174 0.1989	rials) <u>se</u> 0.2634 0.2606 0.3182 0.1282 0.2355 0.1667	Combination Total 69 46 50 129 106 90	Total 75 30 50 93 92 93	4.5% 4.6% 3.1% 19.2% 5.7% 11.3%	N, Fixed, 95% Cl 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99] 0.90 [0.70, 1.16] 1.19 [0.75, 1.89] 1.22 [0.88, 1.69]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006 Chlebowski 1889 Conte 2004 Fountzilas 2001 Park 2010	Z = 2.52 (P = 0.01) rvival (all tr 0.2151 0.3716 -0.6387 -0.1054 0.1744 0.1989 -0.1744	rials) se 0.2634 0.2606 0.3182 0.1282 0.2355 0.1667 0.235	Combination Total 69 46 50 129 106 90 41	Total 75 30 50 93 92 93 40	4.5% 4.6% 3.1% 19.2% 5.7% 11.3% 5.7%	N, Fixed, 95% Cl 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99] 0.90 [0.70, 1.16] 1.19 [0.75, 1.89] 1.22 [0.88, 1.69] 0.84 [0.53, 1.33]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006 Chiebowski 1989 Conte 2004 Fountzilas 2001 Park 2010 Siedge 2003	Z = 2.52 (P = 0.01) rvival (all tr 0.2151 0.3716 -0.6387 -0.1054 0.1744 0.1899 -0.1744 0.0488	•ials) •se 0.2634 0.2606 0.3182 0.2355 0.1282 0.2355 0.1667 0.235 0.0901	Combination Total 69 46 50 129 106 90 41 230	Total 75 30 50 93 92 93 40 453	4.5% 4.6% 3.1% 19.2% 5.7% 11.3% 5.7% 38.8%	N, Fixed, 95% Cl 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99] 0.90 [0.70, 1.16] 1.19 [0.75, 1.89] 1.22 [0.88, 1.69] 0.84 [0.53, 1.33] 1.05 [0.88, 1.25]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006 Chlebowski 1889 Conte 2004 Fountzilas 2001 Park 2010	Z = 2.52 (P = 0.01) rvival (all tr 0.2151 0.3716 -0.6387 -0.1054 0.1744 0.1899 -0.1744 0.0488	rials) se 0.2634 0.2606 0.3182 0.1282 0.2355 0.1667 0.235	Combination Total 69 46 50 129 106 90 41	Total 75 30 50 93 92 93 40	4.5% 4.6% 3.1% 19.2% 5.7% 11.3% 5.7%	N, Fixed, 95% Cl 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99] 0.90 [0.70, 1.16] 1.19 [0.75, 1.89] 1.22 [0.88, 1.69] 0.84 [0.53, 1.33]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslig 2006 Chiebowski 1989 Conte 2004 Fountzilas 2001 Park 2010 Siedge 2003 Tomova 2010	Z = 2.52 (P = 0.01) rvival (all tr 0.2151 0.3716 -0.6387 -0.1054 0.1744 0.1899 -0.1744 0.0488	•ials) •se 0.2634 0.2606 0.3182 0.2355 0.1282 0.2355 0.1667 0.235 0.0901	Combination Total 69 46 500 129 106 90 41 230 46	Total 75 30 93 92 93 40 453 53	4.5% 4.6% 3.1% 19.2% 5.7% 11.3% 5.7% 38.8% 7.1%	IV, Fixed, 95% CI 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99] 0.90 [0.70, 1.16] 1.19 [0.75, 1.89] 1.22 [0.88, 1.68] 0.84 [0.53, 1.33] 1.05 [0.88, 1.25] 1.22 [0.81, 1.84]	Favours combination Favours sequential Hazard Ratio
Test for overall effect: Overall su Study or Subgroup Alba 2004 Baker 1974 Beslija 2006 Chiebowski 1989 Conte 2004 Fountzilas 2001 Park 2010 Siedge 2003	Z = 2.52 (P = 0.01) rvival (all tr 0.2151 0.2151 0.3716 -0.6387 -0.1054 0.1744 0.1889 -0.1744 0.488 0.1989	rials) <u>se</u> 0.2634 0.2606 0.3182 0.1282 0.12825 0.1285 0.2355 0.2355 0.2355 0.2355 0.2355 0.2011 0.211	Combination Total 69 46 50 129 106 90 41 230 46 807	Total 75 30 50 93 92 93 40 453	4.5% 4.6% 3.1% 19.2% 5.7% 11.3% 5.7% 38.8% 7.1%	N, Fixed, 95% Cl 1.24 [0.74, 2.08] 1.45 [0.87, 2.42] 0.53 [0.28, 0.99] 0.90 [0.70, 1.16] 1.19 [0.75, 1.89] 1.22 [0.88, 1.69] 0.84 [0.53, 1.33] 1.05 [0.88, 1.25]	Favours combination Favours sequential Hazard Ratio

CLINICAL PRESENTATION

- 51-year old female (March 2017)
- \circ 2 months history of dry cough, pleuritic and abdominal pain
- Other medical conditions: none
- Gynecological history: regular menses, 1x partus, 1x abortus
- PS 2, jaundice, palpable mass left breast (5 cm), enlarged liver (reaching the umbilical line)
- CT (thorax, abdomen): multiple confluating liver lesions, tumour left breast (35 mm), tumor in the left ovary

C

TUMOR BIOMARKERS AND STAGING

• Core needle biopsy (left breast): IDC, grade II, ER 100 %, PR 70 %, Ki67 5 %, Her2 negative

Laboratory:

- AST 3.06 ukat/l (>5xULN),
- ALT 1.24 ukat/l (>2xULN),
- **AF 11.03** ukat/l (>6xULN),
- GGT 30.79 ukat/l (>48xULN),
- bilirubin total 75 umol/l (>5xULN),
- Ca 15-3 >3000 kU/l,
- LDH 3,52 ukat/l.

VOTING QUESTION 1: FIRST-LINE TREATMENT?

A ENDOCRINE THERAPY

B ENDOCRINE THERAPY + CDK 4/6 INHIBITOR

C CHT

U

VOTING QUESTION 2: WHAT KIND OF CHT WOULD YOU GIVE?

A TAXANE

B VINORELBINE

C ERIBULIN

D ANTHRACYCLINE

E CAPECITABINE

FIRST-LINE TREATMENT March – June 2017 – 12 x weekly vinorelbine 25 mg/m2 Clinically improvement in PS (now 1), pain well controlled on analgetics, liver border palpable 8 cm above umbilical line Lab Jun 2017: AST 1.33 ukat/l, ALT 1.52 ukat/l, AF 8.46 ukat/l, yGT 33.27 ukat/l, bilirubin total 16 umol/l, Ca 15-3 >3000 kU/l, LDH 3.07 ukat/l.

• CT (thorax, abdomen) Jun 2017: stable disease in liver

QUESTION 3:

voting

AFTER VISCERAL CRISIS IS OVER ... WHAT WOULD YOU GIVE NEXT?

- A TAMOXIFEN
- B TAMOXIFEN + CDK 4/6 INHIBITOR
- C TAMOXIFEN + LHRH ANALOG
- D AI + LHRH ANALOG
- E AI + LHRH ANALOG + CDK 4/6 INHIBITOR
- F METRONOMIC CHT

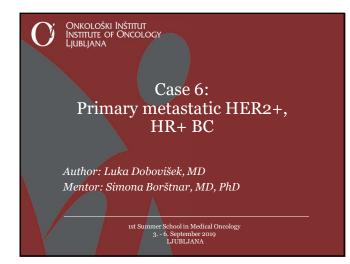
SECOND-LINE THERAPY

- July 2017 COMPLEEMENT-1:
 Ribociclib 600 mg
 Letrozol 2,5 mg
 Goserelin 3,6 mg
- Patient returned to work, asymptomatic, no analgetics needed, tumour left breast 2 cm, liver border not palpable
- Lab Aug 2018:
 AST 0.75 ukat/l,
 ALT 0.96 ukat/l,
 AF 4.32 ukat/l,
 yGT 7.16 ukat/l,
 bilirubin total 5 umol/l,
 Ca 15-3 344 kU/l,
 LDH 2.79 ukat/l

CT Jul 2018: stable liver metastasis (target lesion regression from Oct 2017 22 in 13 mm to 9 and 11 mm in Apr 2018)

voting **QUESTION 4:**

WHAT WOULD YOU GIVE AFTER PROGRESSION?


- A TAMOXIFEN
- **B** FULVESTRANT
- C FULVESTRANT + CDK 4/6 INHIBITOR
- D FULVESTRANT + ALPELISIB
- E EXEMESTANE + EVEROLIMUS

F CHT

CONCLUSION

• CHT is the optimal choice for the treatment of visceral crisis in luminal subtype of BC

• Otherwise ET (+/- CDK 4/6 inhibitor) is the preferred option in endocrine-responsive BC

CLINICAL PRESENTATION

- · 49-year old female, nurse (april, 2019)
- 2 months history of cough
- · Skin changes in the right breast (peau d'orange)
- Other medical conditions: none
- Gynecological history: regular menses, 1x partus
- Family history: grandmother on her mother side had BC

C

voting

CLINICAL PRESENTATION

- Because of the cough hospitalized at the internal medicine department (pneumonia? pulmonary embolism?)
- Abnormal chest x-ray: effusion and pathological lesions
 Pleural puncture: atypical cells malignant pleural
- effusion?

QUESTION 1:

WHICH PROCEDURES WOULD YOU ORDER?

A CT SCAN OF THE ABDOMEN AND THORAX B BONE SCAN C CORE NEEDLE BIOPSY (CNB) D PET-CT E A + B F A + B + C

C

IMAGING STUDIES

Mammography with tomosynthesis (march, 2019):

- 23x12 mm tumor formation in the lower two quadrants
- Thickened skin in the lower quadrants

• Bone scan (april, 2019):

 Many of the points of increased activity in practically whole axial skeleton – diffuse infiltration

IMAGING STUDIES

- CT (thorax, abdomen, neck):
- · Pronounced thickened skin of right breast
- Signs of pulmonary lymphangitic carcinomatosis of the right lung with pleural effusion
- Pericardial effusion
- · Diffuse osteoblastic infiltration of the skeleton

TUMOR BIOMARKERS AND STAGING

- PATHOLOGY:
- Core needle biopsy (17.4.2019):
- IDC, Grade 2, ER 100%, PR 15%, Ki67 25%, HER2+ (IHK 3+)

• LABORATORY:

- Ca 15-3: 527
- AF: 2.40
- AST: 0.79
- GGT: 0.65

()

VOTING QUESTION 1: FIRST-LINE THERAPY?

A CHT + ANTI-HER2 THERAPY B ET + ANTI-HER2 THERAPY C CHT D ET

O

voting

QUESTION 2: WHICH CHT WOULD YOU CHOOSE?

- A TAXANE
- B DOXORUBICIN + CYCLOPHOSPHAMIDE (AC)
- C GEMCITABINE + CISPLATIN

D CMF

QUESTION 3:

voting

WHAT KIND OF ANTI-HER2 THERAPY?

- A TRASTUZUMAB
- B TRASTUZUMAB + PERTUZUMAB
- C NERATINIB
- D TRASTUZUMAB EMTANSINE (T-DM1)

O

FIRST-LINE TREATMENT

Docetaxel + Trastuzumab + Pertuzumab
 No major AE

- Taxane induced paronychia, nail changes, fatigue
- Normalization of the tumor marker

voting

QUESTION 4: HOW LONG DO YOU CONTINUE CHT?

- A 2 MONTHS
- B 4 MONTHS
- C 6 MONTHS
- D UNTIL BEST RESPONSE
- E UNTIL MAJOR ADVERSE EVENTS

O

voting

QUESTION 5:

WHAT KIND OF TREATMENT WOULD YOU GIVE AFTER COMPLETION OF CHT?

- A TRASTUZUMAB + PERTUZUMAB
- B TRASTUZUMAB + PERTUZUMAB + ET
- C TRASTUZUMAB + ET
- D ET

U

voting QUESTION 6:

WHAT KIND OF ENDOCRINE THERAPY WOULD YOU GIVE?

- A AROMATASE INHIBITOR
- **B** TAMOXIFEN
- C AROMATASE INHIBITOR + LHRH ANALOG
- D TAMOXIFEN + LHRH ANALOG

C

voting

VOTING QUESTION 7: WHAT IS EXPECTED MEDIAN OVERALL SURVIVAL FOR THIS PATIENT?

A 12 MONTHS B 24 MONTHS C 59 MONTHS

QUESTION 8:

WHAT THERAPY WOULD YOU GIVE AFTER PROGRESSION?

A CHT

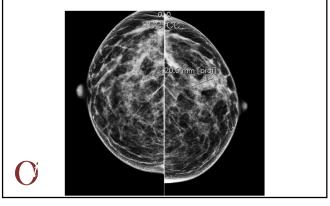
- B TRASTUZUMAB EMTANSINE (T-DM1)
- C CHANGE THE ENDOCRINE THERAPY AND CONTINUE TRASTUZUMAB + PERTUZUMAB
- D NERATINIB

O

Ő

CONCLUSION There are many therapeutical options in "triple positive" (ER+, PR+, HER2+) metastatic BC Anti-HER2 therapy is the backbone of HER2+ BC treatment Majority of patients with HER2+ disease have long OS

CLINICAL PRESENTATION


- 38-year old female (january, 2017)
- Lump in left breast
- Other medical conditions: none
- Gynecological history: regular menses, 2x partus, uses contraceptive pills
- Family history: aunt had a BC at similar age

O

IMAGING

- Mammography: 21 mm tumor formation in upper outer quadrant of the left breast
- US guided core needle biopsy with clip marking
- US of left axilla: one pathological lymph node
- FNA: adenocarcinoma
 CT (thorax, abdomen): tumor formation in left breast, 3
- pathological ipsilateral internal mammary nodes

MAMMOGRAPHY

TUMOR BIOMARKERS AND STAGING

Core needle biopsy:

- · IDC
- Grade 3 • ER 0%
- PR 0%
- HER-2 neg.
- Ki67 50%
- Germline BRCA 1/2 negative

NACT AND OPERATION

- $\,\cdot\,$ 4x dd AC + 4x dd paclitaxel with growth factor support
- CT (thorax): partial response in the left breast, complete response in internal mammary nodes (may, 2017)
- Breast conserving surgery with SLNB and ALND (june, 2017)
- Pathological examination after NACT:
 - Partial response in the breast: 9 mm residual tumor
 - 1/27 positive nodes: 5 mm, focal extracapsular extension, lymphovascular invasion

ADJUVANT CHT AND RT

- RT (august september, 2017)
 50 Gy in 28 fractions
- Capecitabine 8 cycles (september, 2017 february, 2018)
- Lower back and hip pain (april, 2018)
- CT (thorax, abdomen):

 pathological lymph nodes in mediastinum,
 new lytic bone lesions (spine, ribs,

right sacrum)

voting OUESTION 1:

FIRST-LINE THERAPY FOR mTNBC BC?

- A GEMCITABINE CISPLATIN
- **B** VINORELBINE
- C ERIBULIN
- D CAPECITABINE
- E TAXANE + IMMUNOTHERAPY
- (ATEZOLIZUMAB) F PALLIATIVE RADIATION THERAPY

O

METASTATIC DISEASE

- Palliative radiation to the sacroiliacal joint (12 Gy) and 10th rib (9 Gy)
- Gemcitabine-cisplatin /3 week (june september, 2018)
 AE: fatigue, neutropenia (+ pegfilgrastim)
- CT (thorax, abdomen): regression of nodal and skeletal metastases (september, 2018)
- · After 4 cycles refuses further therapy

O

VOTING QUESTION 2: WHAT WOULD YOU DO NOW?

- A ERIBULIN
- **B** VINORELBINE
- C CAPECITABINE
- D METRONOMIC CM
- E WAIT UNTIL PROGRESSION

C

METASTATIC DISEASE

- NGS (Foundation One):
 - somatic mutation of BRCA1
 - FGFR2 amplification, TP53 mutation
 MS-Stable
 - TMB-low (4 muts/Mb)
- Olaparib (PARPi) 2x 300 mg (november, 2018)
 AE: nausea, diarrhea, loss of appetite, fatigue, depression
- · She refuses further therapy after 2 weeks

DISEASE PROGRESSION

- Pain in thoracic spine (january, 2019)
 CT (thorax, abdomen): progression of skeletal metastasis and pathological fracture of TH9 and L2.
- Confusion and headache (february, 2019)
 CT (head): diffuse metastatic infiltration of the brain, intrametastatic hemorrhage, herniation in foramen ovale

O

VOTING QUESTION 3: TREATMENT FOR CNS METASTASIS?

- A RADIOTHERAPY
- B SYSTEMIC THERAPY
- C RADIOTHERAPY FOLLOWED BY SYSTEMIC THERAPY

PROGRESSION IN THE CNS

- RADIOTHERAPY:
- Palliative radiation to the head (30 Gy)
- $\circ\,$ Palliative radiation to the spine Th9-L2 (20 Gy)
- Hospitalized for symptomatic treatment and dies at the department (march, 2019)

CONCLUSION

- mTNBC is the subtype with the worst prognosis with mOS approximately 1 year
- TNBC remains a challenge in everyday clinical practice, new therapies are in active development
- New therapies are needed for CNS metastasis in all BC types

1st Summer School in Medical Oncology – Standards and Open Questions

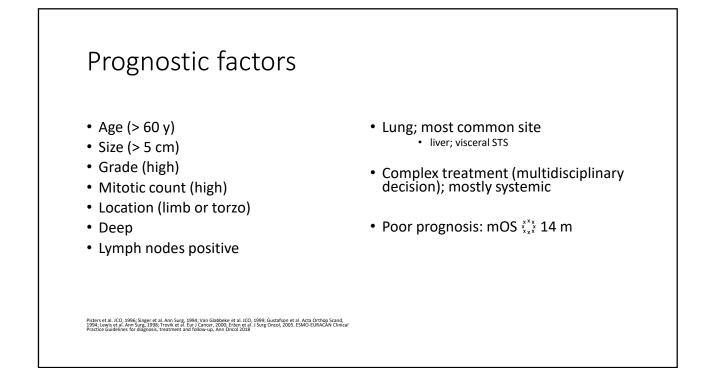
Systemic treatment in advanced soft tissue sarcoma (STS): what is standard, what is new

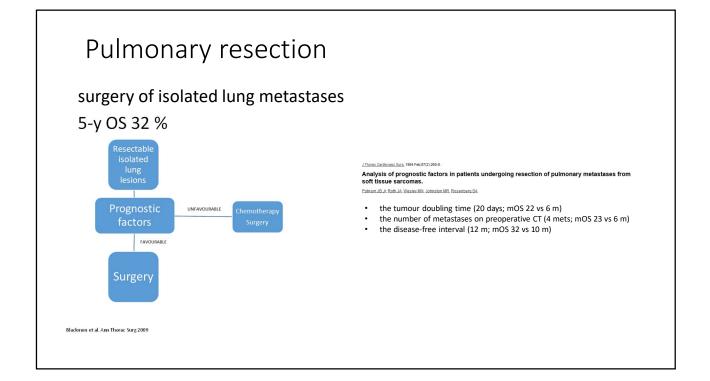
Mojca Unk, MD, MSc Institute of Oncology Ljubljana Department of Medical Oncology

3. - 6. September 2019

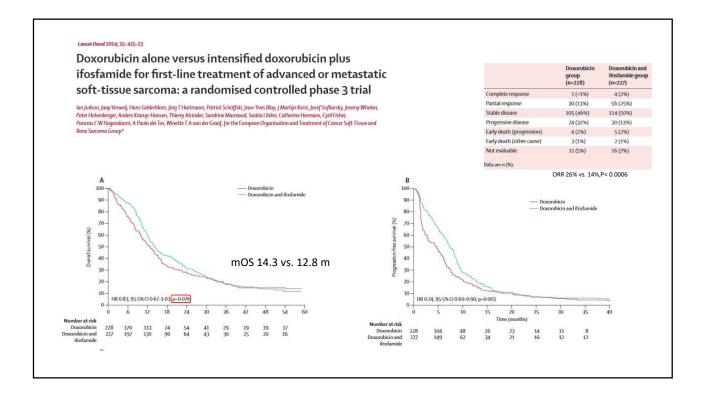
Audience....

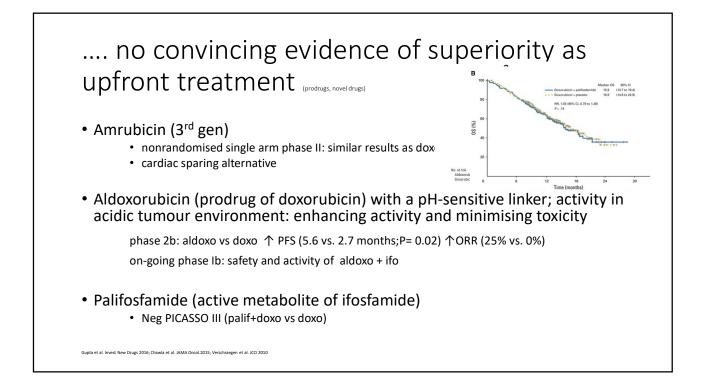
1st question

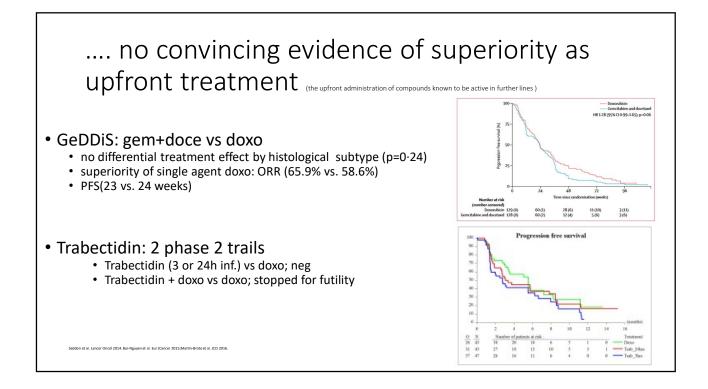

- How confident are you in systemic treatment of advanced STS?
- 1. very confident
- 2. somehow confident
- 3. not confident at all

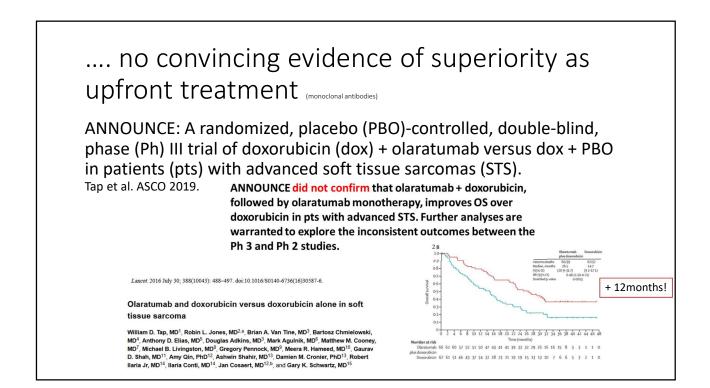

Background

- Heterogeneous group of rare neoplasms with mesenchymal origin
- More than 70 different entities
- Strong tendency toward local recurrence (10 -30 %) and metastatic spreading (30 – 40 %)
- Lung: most common site of STS metastases
- Pulmonary metastasectomy the standard treatment for selected patients with limited lung disease
- Chemotherapy the most relevant role in the management of metastatic disease
- Outcome for M1 disease very poor (mOS 14–17 months)


Fletcher et al.IARC 2013; Judson et al.Lancet Oncol. 2014; Ryan et al. JCO 2016; Tap et al. Lancet. 2016.

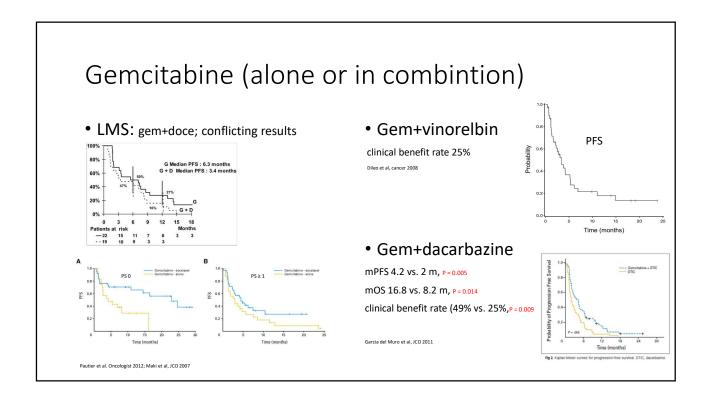


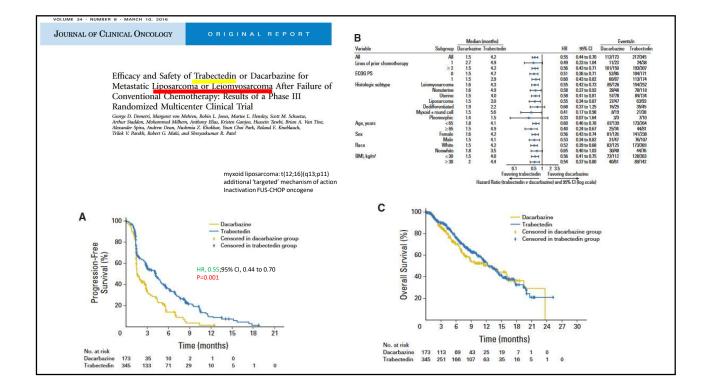


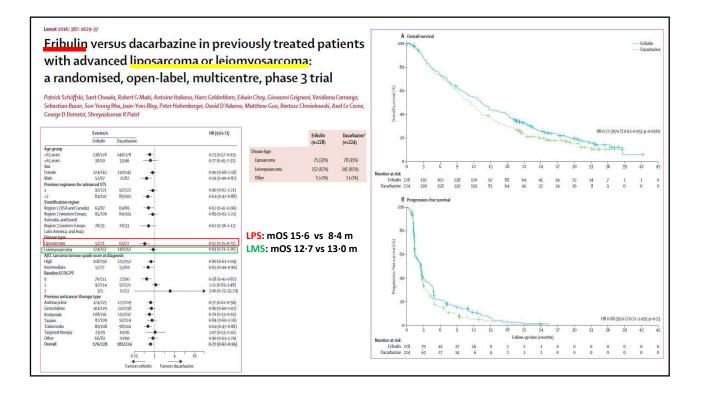

STS – 1st line systemic treatment

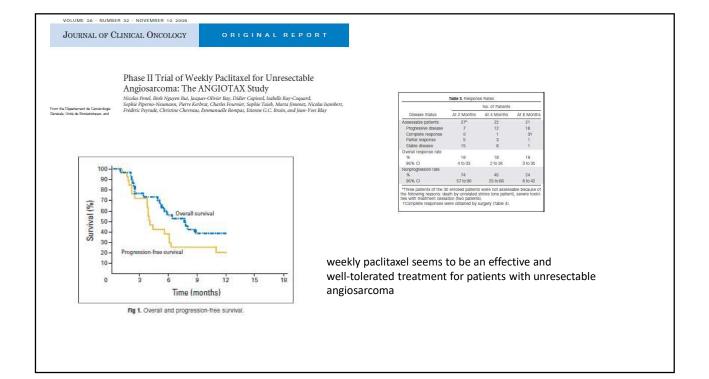
author	chemotherapy	Pt (number)	response rate	survival
Muss (1985)	A/AC	104	NS	NS
Omura (1983)	A/AD	146	NS	NS
Borden (1987)	A/AD	186	AD 30% (p=.02)	NS
Lerner (1987)	A/AD	66	AD 40% (LMS)	NS
Santoro (1995)	A/AI/CYVADIC	449	NS	NS
Borden (1990)	A/AV	195	NS	NS
Edmonson (1993)	A/AI/APM	262	AI 34% (p=.03)	NS
Antman (1993)	AD/MAID	340	MAID 32 % (p=.02)	NS
Judson (2014)	A/AI	415	AI 26% (A 14%)	NS
Ryan (2013)	A/APal	447	APal 28% (A 19%)	NS

Tar	geted therapy
tra mi im	matofibrosarcoma protuberans (DFSP) and imatinib anslocation COL1A1/PDGFB fusion gene → PDGFRB activation etastatic potencial- fibrosarcomatous (FS) component natinib mesylate: ORR 60–70% -DFSP: translocation +, imatinib sensitivity + with RR ~ 80%, but shorter duration
	colar soft part sarcoma (ASPS) Chemo resistant, MET overexpression Antiangigenetic drugs: sunitinib, pazopanib, cediranib MET inhibitors: crizotinib Immunotherapy (phase 2: atezo and tremi/durva)
•	tary fibrous tumour (SFT) NAB2-STAT6 fusion Chemotherapy but also antiangiogenetic drugs: sunitinib, sorafenib, pazopanib, axitinib

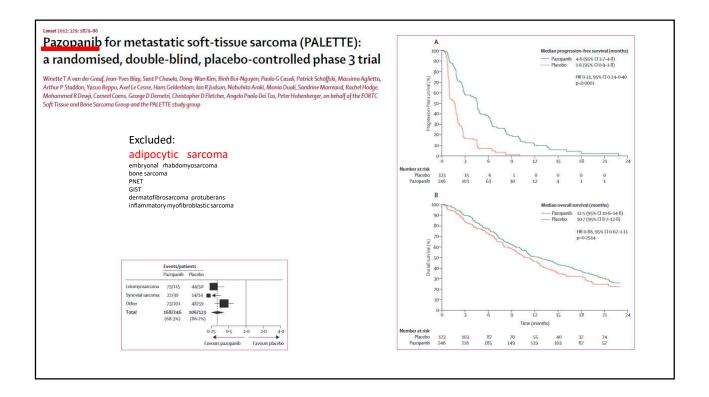

Simon et al Nat Genet 1997; Greco et al Oncogene 1998; Stacchiotti et al Clin Can Res 2016; Rekhardt et al. ELC 2003; Stacchiotti et al. ELC 2013; Somaia, discussant@CT052018; Schoffski et al, Ann Oncol 2017; Judson et al, Lancet Oncol2019.


Doxorubicin remains the standard of care, with or without ifosfamide!

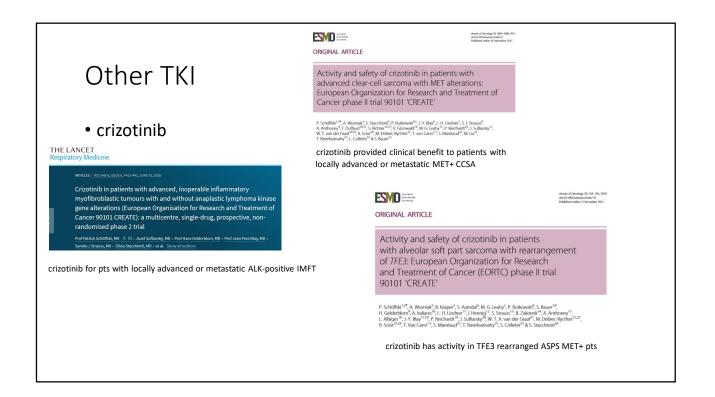

STS – further line systemic treatment



Chemotherapy



Histology driven approach Histology Cytotoxic compounds with selective activity Leiomyosarcoma Gemcitabine ± docetaxel, trabectedin, dacarbazine Dedifferentiated liposarcoma High-dose ifosfamide, trabectedin, eribulin Myxoid liposarcoma Trabectedin, eribulin Synovial sarcoma Ifosfamide, trabected in Epithelioid sarcoma Gemcitabine Angiosarcoma/intimal sarcoma Gemcitabine, paclitaxel Alveolar soft part sarcoma Solitary fibrous tumour Dacarbazine Clear cell sarcoma Extraskeletal myxoid chondrosarcoma Perivascular epithelioid cell tumor Gemcitabine Epithelioid hemangioendothelioma Inflammatory myofibroblastic tumour Undifferentiated pleomorphic sarcoma High-dose ifosfamide, gemcitabine Dermatofibrosarcoma protuberans Frezza et al. BMC Medicine 2017


TKI targeting angiogenesis

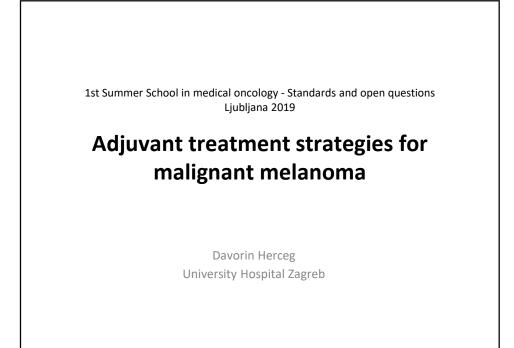
Other TKI, targeting angiogenesis

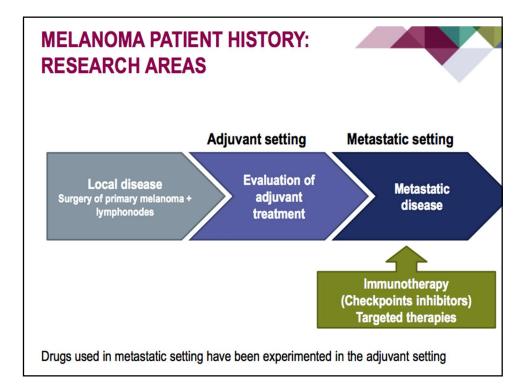
- Sorafenib
- Regorafenib
- Sunitinib
- Cediranib
- Tivozantinib

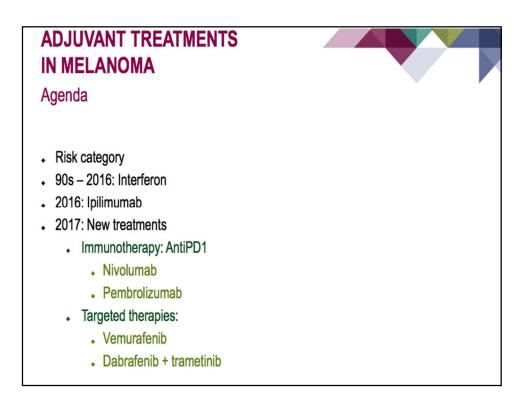
Ray-Coquard et al, Oncologist. 2012; Mir et al, Lancet Oncol. 2016; Hindi et al, JCO 2015; Kummar et al, JCO 2013; Agulnik et al, Ann Oncol 2017

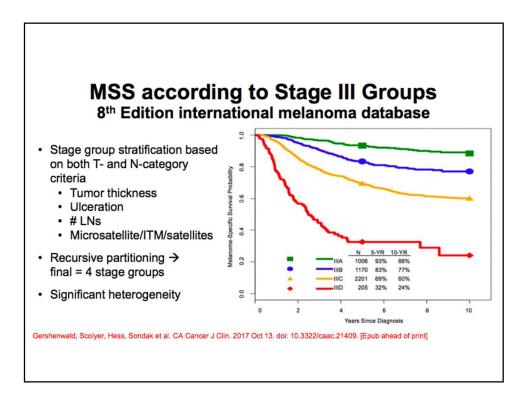
Immunotherapy

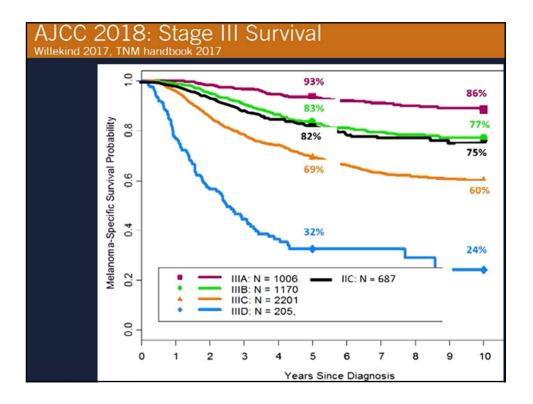
Immunotherapy in STS

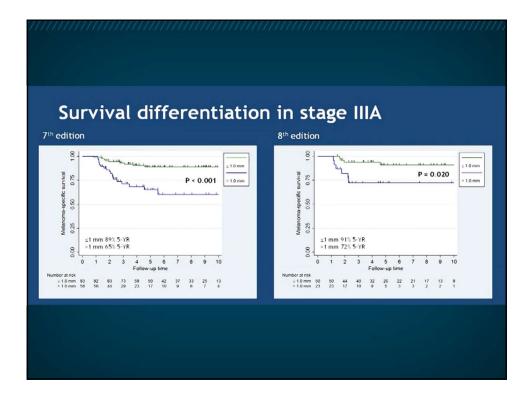

Study	Population	Study phase, status	Drug and schedule	Patients	Overall response rate (%)
Mackall et al., 2016 [88]	Synovial sarcoma	VII, recruiting	NY-ESO-1c259 SPEAR T-cells Cohort 1 and 2: FL 30 mg/m ² /day, day 1-4; CTX 1800 mg/m ² /day day 12 Cohort 3: CTX 1800 mg/m ² /day day 12 Cohort 4: FL 30 mg/m ² /day, day 1-3; CTX 600 mg/m ² /day, day 1-3	Cohort 1: 15 Cohort 2: 2 Cohort 3: 2 Cohort 4: 0	Cohort 1: 50 Cohort 2: NA Cohort 3: NA Cohort 4: NA
Italiano et al., 2016 [90]	LMS (Arm A), UPS (Arm B), GIST (Arm C), OS (Arm D), other sarcomas (Arm E)	II, recruiting in arm B and D	Pembrolizumab 200 mg i.v. 3-weekly; CTX 50 mg BID 1week on, 1 week off	Arm A: 15 Arm B: 0 Arm C: 10 Arm D: 0 Arm E: 16	No objective responses
Burgess et al., 2016 [89]	All-type STS (arm A) and BS (arm B)	II, completed	Pembrolizumab, 200mg i.v., 3-weekly	Arm A: 40 Arm B: 40	Arm A: 17.5 (UPS, LPS, SS) Arm B: 5 (OS, CS)
Paoluzzi et al., 2016 [91]	All-type STS and BS	Retrospective	Arm A: nivolumab 3 mg/kg i.v., 2-weekly Arm B: nivolumab 3 mg/kg i.v., 2-weekly + pazopanib 800 mg/day	Arm A: 10 Arm B: 18	Arm A: 10 (CS) Arm B: 11 (ES, OS)
George et al., 2016 [90]	Leiomyosarcoma	Ш	Nivolumab 3 mg/kg i.v., 2-weekly	12	No objective responses


Frezza et al. BMC Medicine 2017

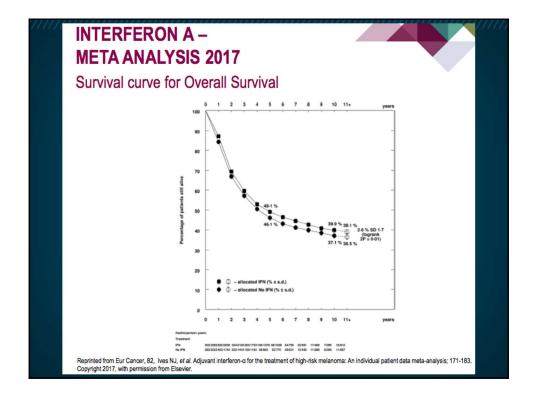

Conclusion

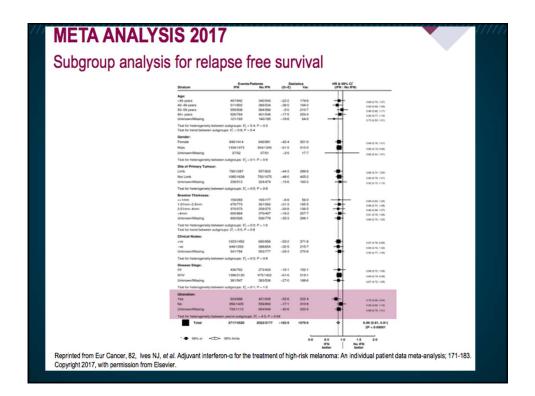

- Doxorubicin remains the standard in the treatment of advanced STS
- Combination with ifosfamide: fit patients, tumour response needed, histologies with selective sensitivity to alkylating agents
- Beyond the 1st line: histology driven treatment
- Newer strategies (drugs targeting epigenetic mechanisms and immunotherapies) are being developed to improve the outcome in this population.


Thank you for your attention!

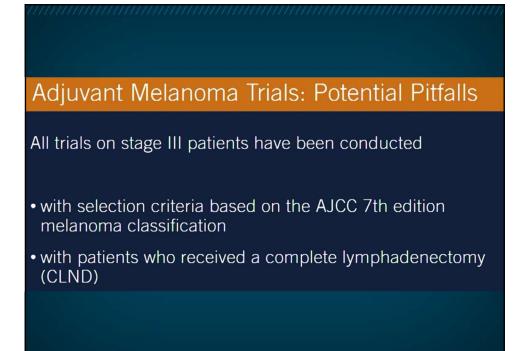


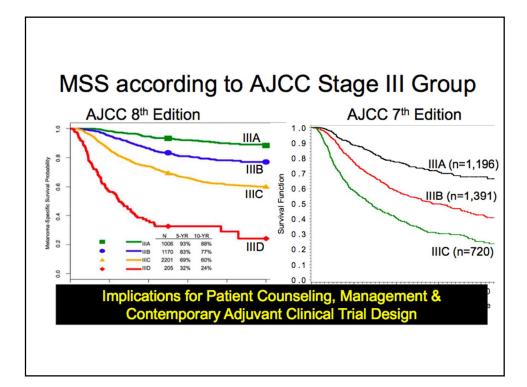


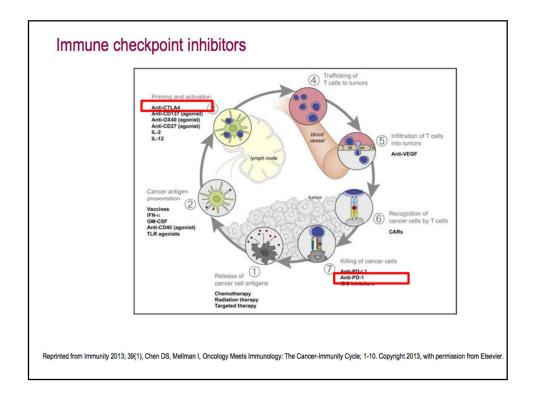


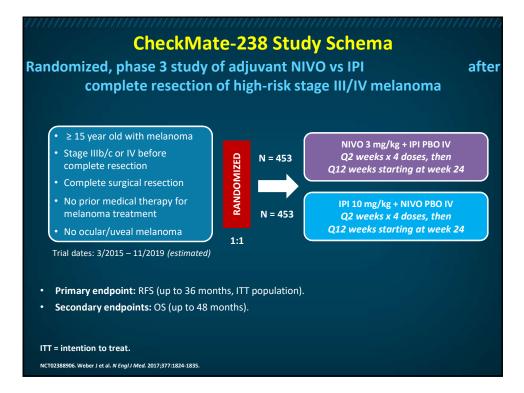


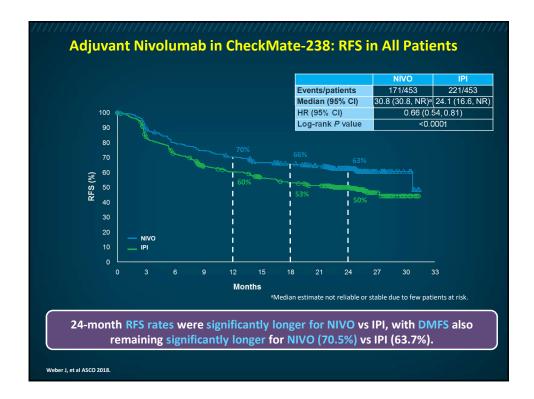
	Schedule	Dose	Frequency	Duration
	Low dose			
		3 miu	3 x weekly	18-24 months
	Intermediate do	se		
	Induction	10 miu	5 x weekly	4 weeks
	Maintenance	10 miu	3 x weekly	12-24 months
V X		5 miu	3 x weekly	24 months
	High dose			
	Induction	20 MIU/m ²	5 x weekly	4 weeks
	Maintenance	10 MIU/m ²	3 x weekly	11 months
	Short course			
	Induction x 1	20 MIU/m ²	5 x weekly	4 weeks
	Intermittent			
	Induction x 3	20 MIU/m ²	5 x weekly	4 weeks Q4 months

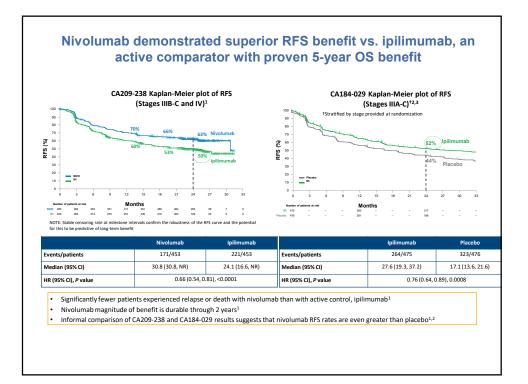

Overall risk	
Event Free Survival	Overall Survival
0.83 (0.72-0.96)	0.93 (0.80-1.08)
0.83 (0.76-1.00)	0.96 (0.82-1.11)
0.84 (0.74-0.95)	0.91 (0.79-1.04)
0.85 (0.77-0.94)	0.86 (0.77-0.96)
0.99 (0.80-1.23)	0.96 (0.76-1.21)
	Event Free Survival 0.83 (0.72-0.96) 0.83 (0.76-1.00) 0.84 (0.74-0.95) 0.85 (0.77-0.94)





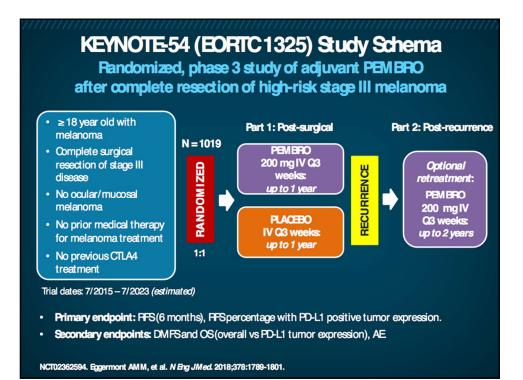




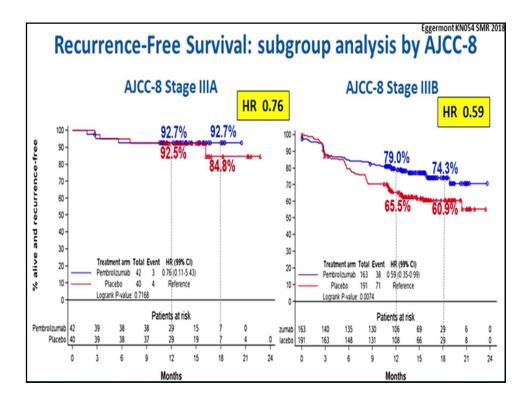


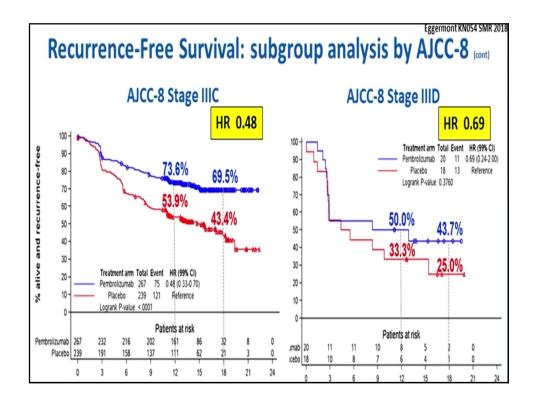
		No. of events/	no. of patlents	Unstratified	Unstratified HR
Subgroup		NIVO 3 mg/kg	IPI 10 mg/kg	HR (95% CI)	(95% CI)
Overall	Overall	171/453	221/453	0.68 (0.56, 0.83)	-
\ge	<65 years	117/333	158/339	0.67 (0.53, 0.85)	
	≥65 years	54/120	63/114	0.70 (0.49, 1.01)	
ex	Male	106/258	141/269	0.69 (0.53, 0.88)	
	Female	65/195	80/184	0.68 (0.49, 0.94)	-
stage (CRF)	Stage IIIb	48/165	60/148	0.68 (0.47, 1.00)	-
	Stage IIIc	87/203	114/218	0.68 (0.52, 0.91)	—
	Stage IV M1a- M1b	27/62	37/66	0.66 (0.40, 1.08)	
	Stage IV M1c	8/20	10/21	0.78 (0.31, 1.99)	
	Not reported	1/1	0/0		
tage III: Ulceration	Absent	64/201	100/216	0.61 (0.44, 0.83)	
	Present	68/154	68/135	0.77 (0.55, 1.08)	
	Not reported	3/15	6/15	0.42 (0.11, 1.70)	
age III: Lymph	Microscopic	46/126	59/134	0.75 (0.51, 1.10)	
ode involvement	Macroscopic	82/219	107/214	0.66 (0.49, 0.88)	
	Not reported	7/25	8/18	0.53 (0.19, 1.48)	
D-L1 status	<5%/indeterminat e	132/300	157/299	0.73 (0.58, 0.91)	-
	≥5%	39/152	64/154	0.54 (0.36, 0.81)	
RAF mutation atus	Mutant	73/187	95/194	0.73 (0.54, 0.99)	<u> </u>
	Wild-type	73/197	107/212	0.61 (0.45, 0.82)	
- All allow	Not reported	25/69	19/47	0.85 (0.47, 1.55)	

	NIVO (I	n = 452)	IPI (n = 453)		
AE, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
Any AE	438 (97)	115 (25)	446 (98)	250 (55)	
Treatment-related AE	385 (85)	65 (14)	434 (96)	208 (46)	
Any AE leading to discontinuation	44 (10)	21 (5)	193 (43)	140 (31)	
Treatment-related AE leading to discontinuation	35 (8)	16 (4)	189 (42)	136 (30)	

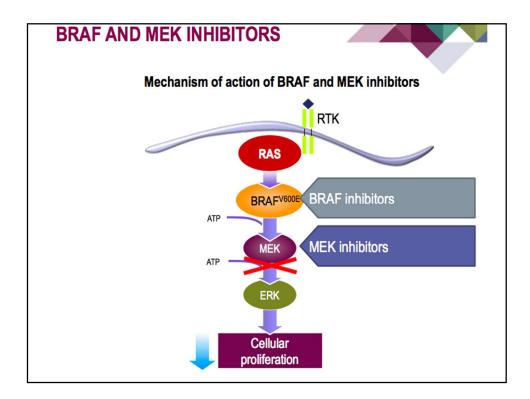

• There were no treatment-related deaths in the NIVO group

There were 2 (0.4%) treatment-related deaths in the IPI group (marrow aplasia and colitis), both >100 days after the last dose

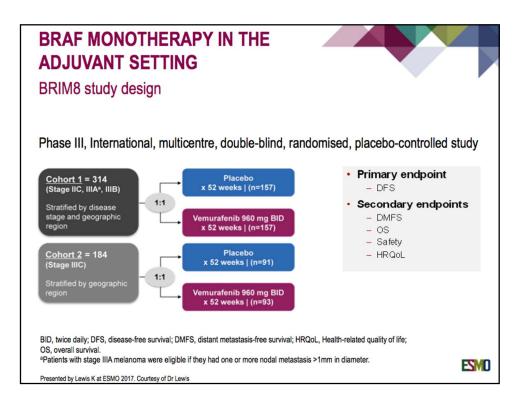

Acceptable toxicity profile

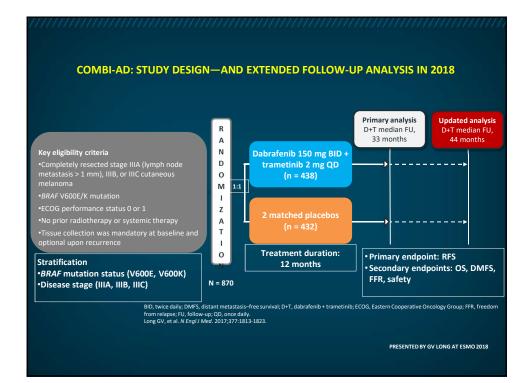

n (%)	Any			
	grade	Grade 3-4	Any grade	Grade 3- 4
Any AE	438 (97)	115 (25)	446 (98)	250 (55)
Treatment-related AE	385 (85)	65 (14)	434 (96)	208 (46)
Any AE leading to discontinuation	44 (10)	21 (5)	193 (43)	140 (31)

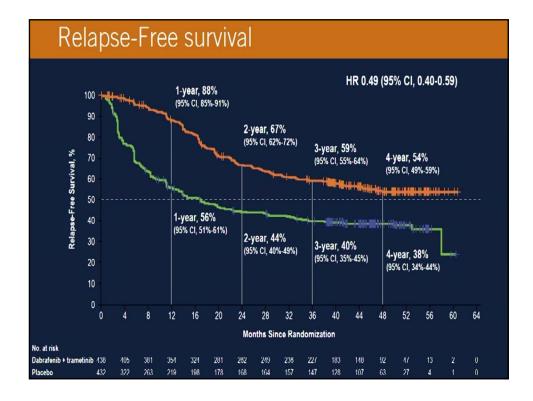
 There were 2 (0.4%) treatment-related deaths in the IPI group (marrow aplasia and colitis), both >100 days after the last dose

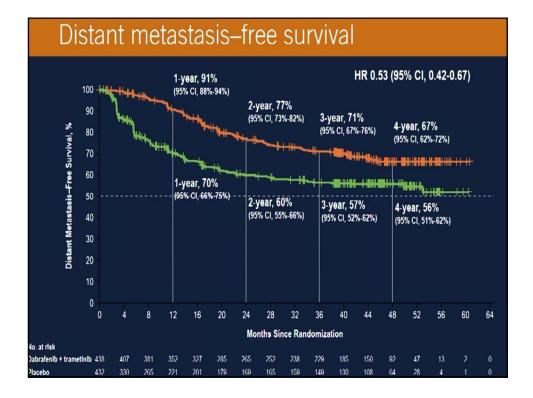

Patient Disposition and Treatment					
	Pembrolizumab (N=514)	Placebo (N=505)			
Started allocated treatment	N=509	N=502			
Reasons for discontinuation, %	96.3%	98.8%			
Normal completion	55.4	58.6			
Disease recurrence	21.4	35.7			
Adverse event	13.8	2.2			
Patient/investigator decision	3.5	1.2			
Other malignancy	0.8	1.0			
Non-compliance/Other reason	1.3	0.2			
Still on treatment, %	3.7	1.2			
Median (IQR) doses received per patient	18 (9-18)	18 (8-18)			

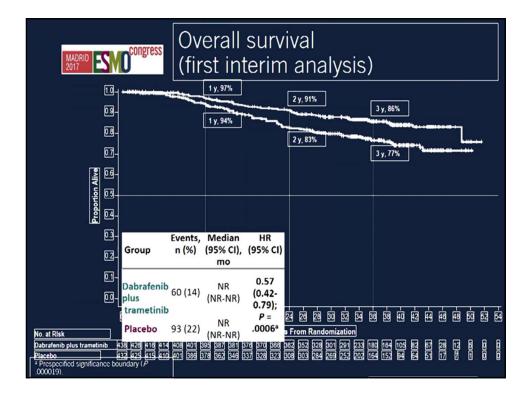

					Event	Pembrolizuma		Placebo (N	
						Any Grade	Grade ≥3	Any Grade	Grade ≥
							number of pati	ents (percent)	
					Immune-related adverse events, regardless of investigator attribution				
					Any	190 (37.3)	36 (7.1)	45 (9.0)	3 (0.
					Endocrine disorders	119 (23.4)	9 (1.8)	25 (5.0)	0
					Hypothyroidism	73 (14.3)	0	14 (2.8)	0
					Hyperthyroidism	52 (10.2)	1 (0.2)	6 (1.2)	0
Event	Pembrolizum	ab (N= 509)	Placebo (M	N= 502)	Thyroiditis	16 (3.1)	0	1 (0.2)	0
L'en l	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Hypophysitis, including hypopituitarism	11 (2.2)	3 (0.6)	1 (0.2)	0
	Any Grade			Grade 23	Type 1 diabetes mellitus	5 (1.0)	5 (1.0)	0	0
		number of pati			Adrenal insufficiency	5 (1.0)	1 (0.2)	4 (0.8)	0
Any adverse event	475 (93.3)	161 (31.6)	453 (90.2)	93 (18.5)	Respiratory, thoracic and mediastinal disorders	24 (4.7)	4 (0.8)	3 (0.6)	0
Freatment-related adverse events†					Pneumonitis or interstitial lung disease	17 (3.3)	4 (0.8)	3 (0.6)	0
Any	396 (77.8)	75 (14.7)	332 (66.1)	17 (3.4)	Sarcoidosis	7 (1.4)	0	0	0
Fatigue or asthenia Skin reactions	189 (37.1)	4 (0.8)	167 (33.3)	2 (0.4)	Vitiligo or severe skin reactions	27 (5.3)	3 (0.6)	8 (1.6)	0
Rash	144 (28.3)	1 (0.2)	92 (18.3)	0	Vitiligo	24 (4.7)	0	8 (1.6)	0
	82 (16.1)	1 (0.2)	54 (10.8)	0	Severe skin reactions	3 (0.6)	3 (0.6)	0	0
Pruritus Diarrhea	90 (17.7)	0 4 (0.8)	51 (10.2)		Gastrointestinal conditions	20 (3.9)	10 (2.0)	4 (0.8)	2 (0.
Arthralgia	97 (19.1) 61 (12.0)	3 (0.6)	84 (16.7) 55 (11.0)	3 (0.6)	Colitis	19 (3.7)	10 (2.0)	3 (0.6)	1 (0
Nausea	()	3 (0.6)	43 (8.6)	0	Pancreatitis	2 (0.4)	1 (0.2)	1 (0.2)	1 (0.
	58 (11.4)			0	Hepatobiliary disorders	9 (1.8)	7 (1.4)	1 (0.2)	1 (0.
Dyspnea	30 (5.9)	1 (0.2)	15 (3.0)	0	Hepatitis	9 (1.8)	7 (1.4)	1 (0.2)	1 (0.
					Other immune-related adverse events	15 (2.9)	5 (1.0)	5 (1.0)	0
					Nephritis	2 (0.4)	2 (0.4)	1 (0.2)	0
					Uveitis	2 (0.4)	0	0	0
					Myositis	1 (0.2)	1 (0.2)	1 (0.2)	0
					Myocarditis	1 (0.2)	1 (0.2)	0	0

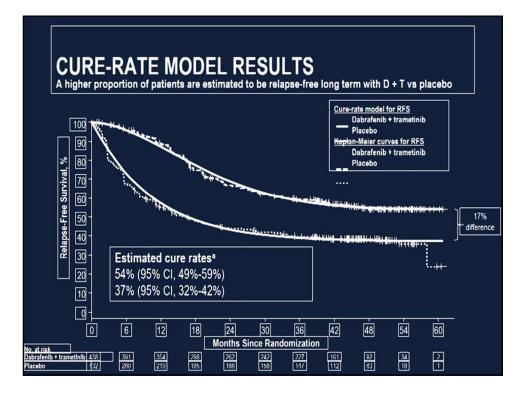

Adjuvant Nivolumab and Pembrolizumab

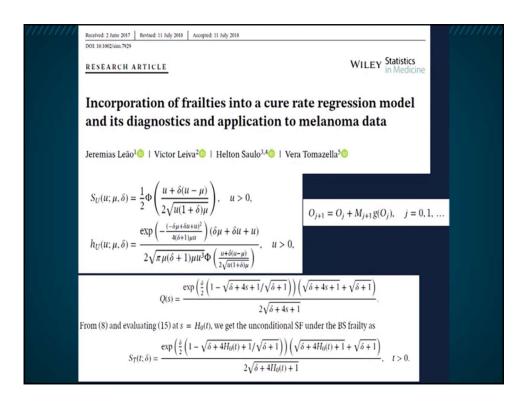

Effective in both BRAF mutated and wild-type melanoma pts in stage III/(IV)!

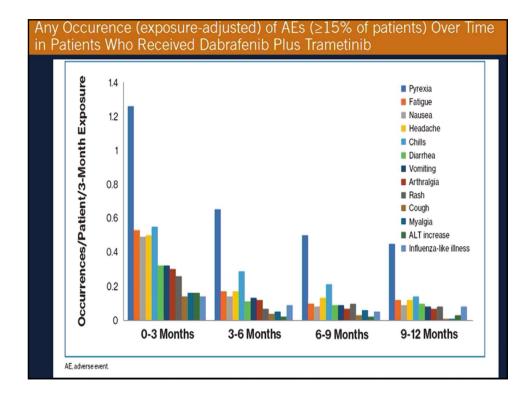

Well-tolerated in general (10-14% treatment discontinuations), but some rare, irreversible AEs

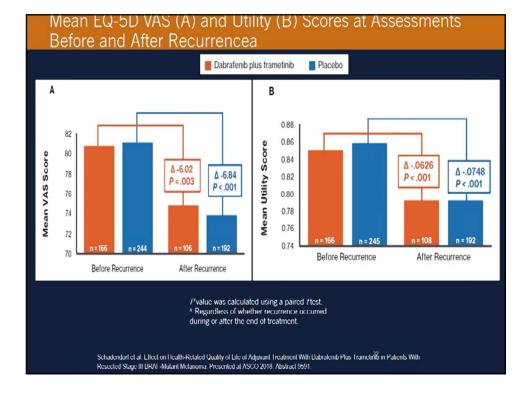


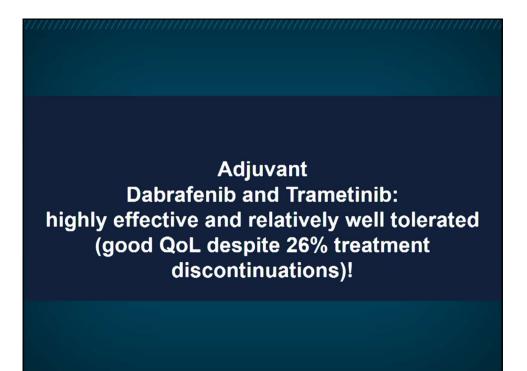




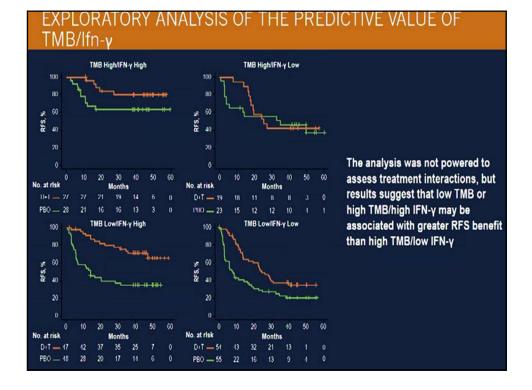


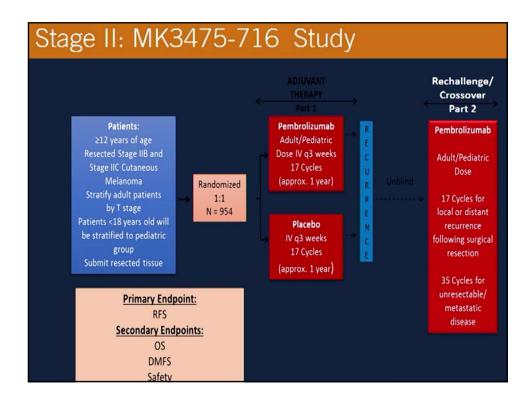


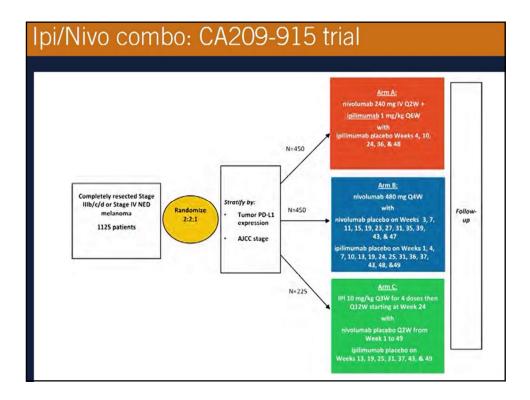




Safety summary		
AE Category, n (%)	Dabrafenib Plus Trametinib (n = 435)	Placebo (n = 432)
Any AE	422 (97)	380 (88)
AEs related to study treatment	398 (91)	272 (63)
Any grade 3/4 AE	180 (41)	61 (14)
Any SAE	155 (36)	44 (10)
SAEs related to study treatment	117 (27)	17 (4)
Fatal AEs related to study drug	0	0
AEs leading to dose interruption	289 (66)	65 (15)
AEs leading to dose reduction	167 (38)	11 (3)
AEs leading to treatment discontinuation ^a	114 (26)	12 (3)

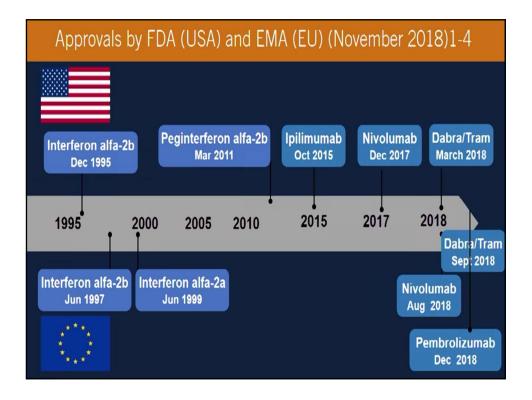

	Dabrafenib + Trametinib N = 435	Placebo N = 432
Patients with any AE leading to discontinuation ^a	114 (26)	12 (3)
Pyrexia	38 (9)	0
Chills	16 (4)	0
Fatigue	8 (2)	0
ALT increase	7 (2)	0
Headache	6 (1)	0
Arthralgia	5 (1)	0
AST increase	5 (1)	0
Nausea	5 (1)	1 (< 1)
Neutropenia	5 (1)	0





Adjuvant Melanoma Therapy:new jobs to do!

- Testing the new drugs for AJCC stage 2 melanomas ("how much recurrence risk justifies how much risk for toxicities?")
- Biomarker development for the selection of the best patients (and prediction of certain toxicities)
- Addressing the issue of induction for resistance for potential stage IV setting
- Neoadjuvant trials are mandatory!



	BRIM-8	Checkmate- 238	Nivo+Ipi	Combi-AD	Keynote- 054	EORTC 18071 - Ipi
Patients	llc – Illc (SN >1mm)	IIIB, IIIc or IV (no brain mets)	IIIc or IV (No Brain mets)	IIIA (>1mm), IIIB, IIIC	IIIA (>1mm), IIIB, IIIc (no Intransits)	IIIA (>1mm), IIIB, IIIC (no intransits)
Mucosal melanoma	excluded	3%	excluded	excluded	excluded	excluded
Duration of therapy	1 yr	1 yr	1 yr	1 yr	1 yr	1 yr
RFS	2yr DFS: 46.3% Vs 47.5% (IIIc)	1 yr 70% vs 60% HR 0.65	75 -80% at 2 yrs	3 yr 58% vs 39% HR 0.57	1 yr 75% vs 61% HR 0.57	5 yr 40% vs 30% HR 0.75
DMFS	NA	HR 0.73	NA	HR 0.51	NA	5yr 48% vs 38%
OS	NA	NA	NA	3 yr 86% vs 77% HR 0.57	NA	5yr 65% vs 54%

Patient selection for adjuvant treatment: potential criteria apart from efficacy

- Patient characteristics: age/gender
- Performance status
- Comorbidities
- Tumor characteristics: stage of metastasis (AJCC)
- Micro- versus macrometastases
- Mutational status
- Biomarkers (PD-L1 status)
- Treatment factors: oral vs. IV (intervals?)
- Potential toxicities (reversible vs irreversible)

Melanoma 2020: standards of care and unmet needs

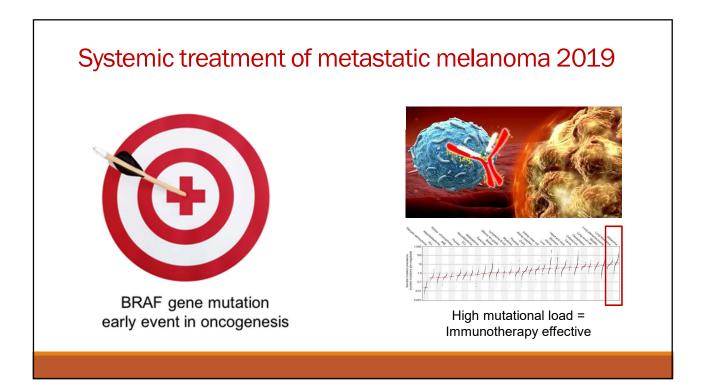
Prof dr Lidija Kandolf Sekulović Medical Faculty, Medical Military Academy Belgrade, Serbia

Metastatic melanoma: standards of care

SURGERY:

For solitary metastases: PET-CT and brain MRI necessary before decision for surgery (+adjuvant therapy with anti-PD1)

SYSTEMIC THERAPY:

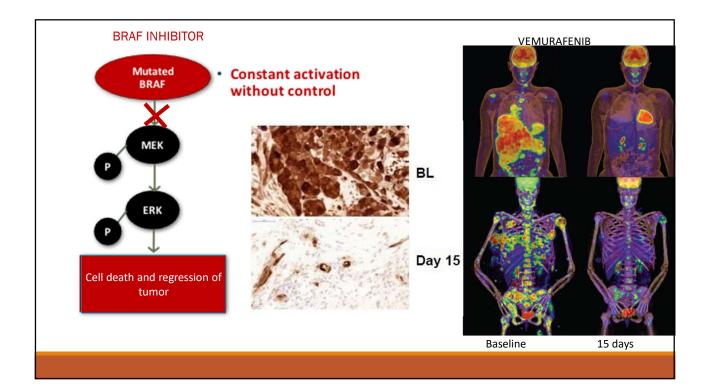

- Checkpoint inhibitor immunotherapy: anti-PD1 antibodies, anti-CTLA4 antibody
- Targeted therapy: BRAF and MEK inhibitors

RADIOTHERAPY:

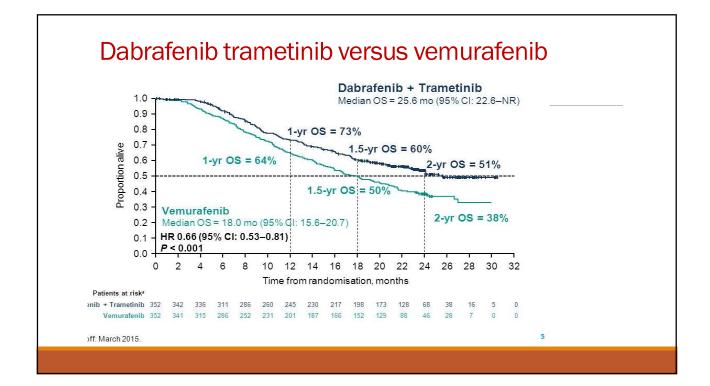
STEREOTACTIC RADIOTHERAPY AND GAMMA KNIFE SURGERY for CNS and other distant sites

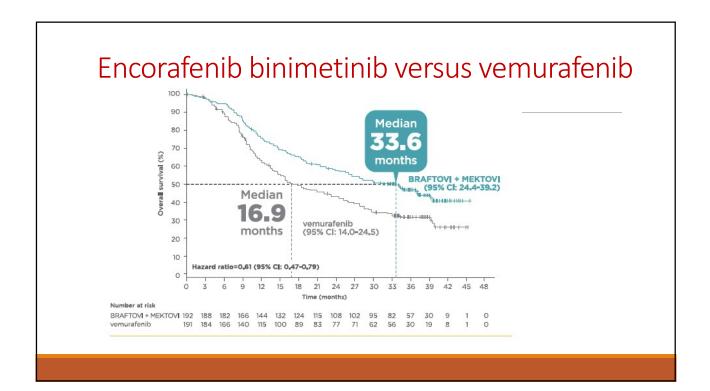
Palliative for bone metastases, lymph nodes and soft tissues, CNS metastases

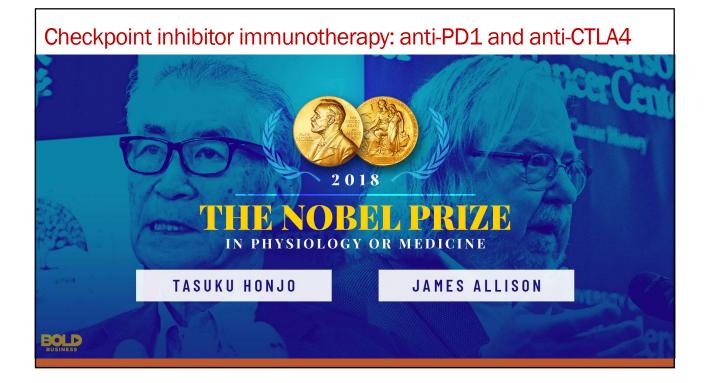
SUPPORTIVE CARE

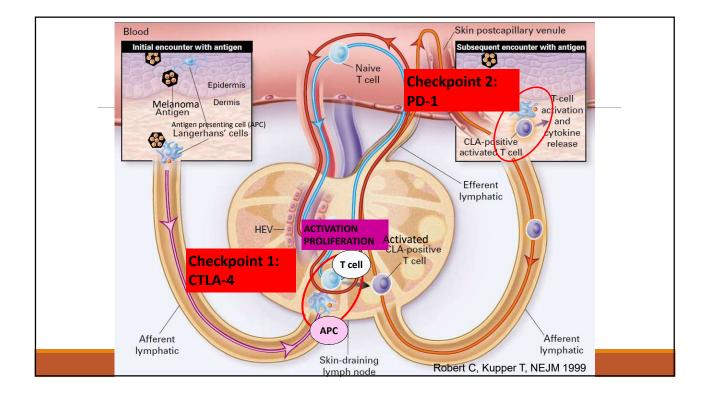

Targeted therapy

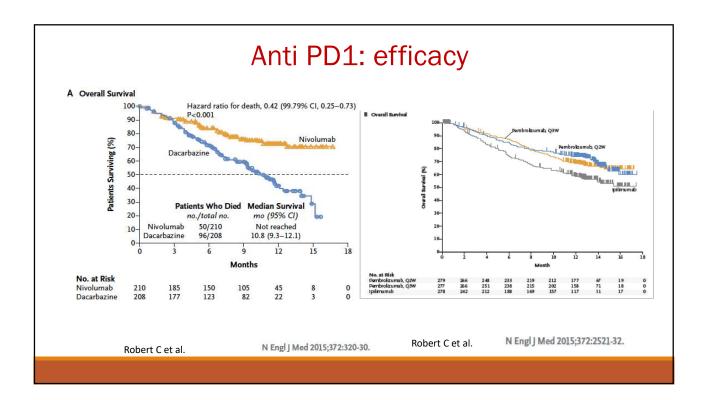
Vemurafenib Cobimetinib Dabrafenib Trametinib Encorafenib Binimetinib

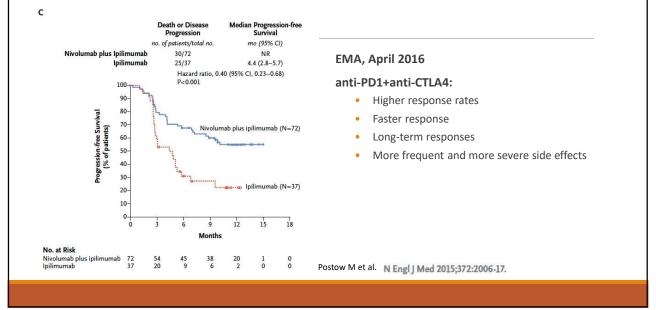

Checkpoint inhibitors

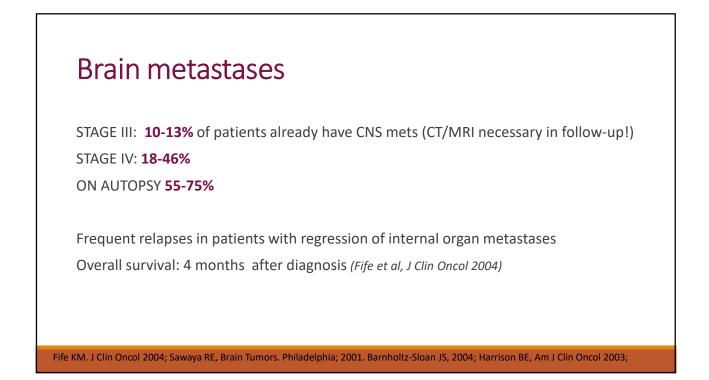

- Ipilimumab
- Nivolumab
- Pembrolizumab
- Atezolizumab
- Avelumab
- Durvalumab

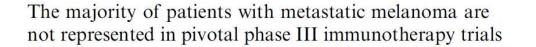








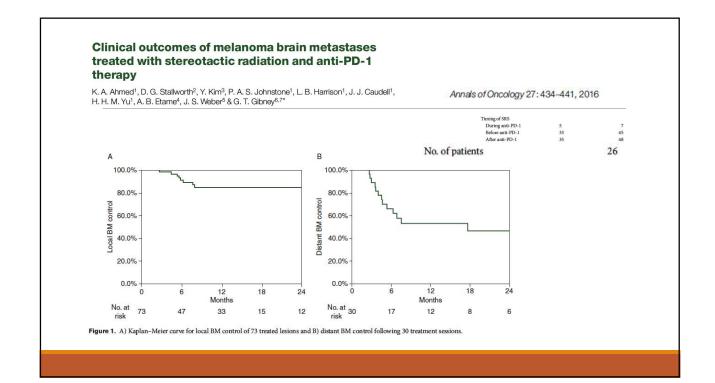


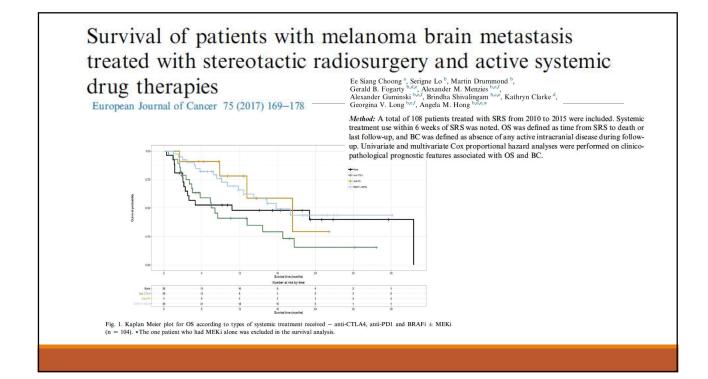


Combination immunotherapy: anti-PD1 plus anti CTLA4

Marco Donia ^{a,b,*}, Marie Louise Kimper-Karl ^c, Katrine Lundby Høyer ^d, – Lars Bastholt ^c, Henrik Schmidt ^d, Inge Marie Svane ^{a,b}

Performance status	$PS \ge 2$
	81 (29.3%)
Brain metastases	Yes, active
	62 (22.5%)
Comorbidities	Yes
	58 (21.0%)
Other malignancies	Yes
	24 (8.7%)
Autoimmunity	Yes
	12 (4.3%)
Immunosuppression	Yes
	46 (16.7%)


Fig. 1. Common eligibility criteria for immunotherapy trials may exclude over half of the patients diagnosed with metastatic n (A) The proportion of 'eligible' patients as well as 'not eligible' patients, because they do not meet one, two or more pre-defined criteria is shown. (B) About three quarters of patients 'not eligible' have $PS \ge 2$ or active/untreated brain metastases.


MM, metastatic melanoma.

Brain metastases

HIRURGIJA	8.7 meseci
Hirurgija + radioterapija celog mozga (WBRT)	8.9 meseci
Samo radioterapija celog mozga (WBRT)	3.4 meseci
Suportivna terapija	2.1 meseci

STEREOTAKSNA RADIOHIRURGIJA: Lokalna kontrola bolesti 90% slučajeva Efikasnost slična hirurgiji **Ukupno preživljavanje 5-11 meseci**

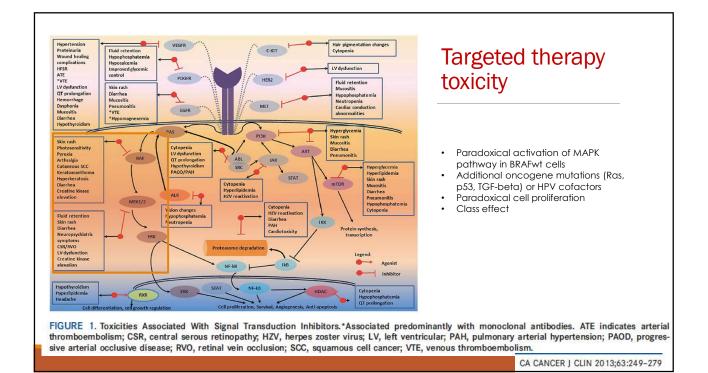
Systemic therapy	Study	Year	No. of patients	Patients received SRS	Systemic therapy	Median OS	OS at 6 months	OS at 1 year	OS at 2 years
Anti-CTLA4	Choong et al.		28	Y	Ipilimumab	7.5	59%	41%	16%
	Kiess [26]	2014	46	Y	Ipilimumab	12.4	N/A	40-65%	N/A
	Knisely [14]	2012	27	Y	Ipilimumab	21.3	N/A	N/A	47.2%
	Mathew [34]	2013	25	Y	Ipilimumab	5.9	56%	N/A	N/A
	Margolin [15]	2012	72	N	Ipilimumab				
			51	Asymptomatic (cohort A)		7.0	55%	31%	26%
			21	Symptomatic (cohort B)		3.7	38%	19%	10%
Anti-PD1	Choong et al.		11	Y	Anti-PD1	20.4	91%	78%	29%
	Ahmed [27]	2016	19	Y	Nivolumab	11.8	78%	55%	N/A
$BRAFi \pm MEKi$	Choong et al.		39	Y	$BRAFi \pm MEKi$	15.6	82%	66%	44%
	Ly D [30]	2015	52	Y	BRAFi	11.2	N/A	N/A	N/A
	Wolf [31]	2015	31	Y	BRAFi - (23% MEKi)	11.2	54%	41%	N/A
	Ahmed [29]	2015	24	Y	BRAFi	7.2	N/A	N/A	N/A
	Patel [36]	2016	6	Y	BRAFi + MEKi	20.0	N/A	100%	N/A
	Long [21]	2012	172	N	BRAFi	$\widetilde{}$			
			89	No prior local therapy (cohort A)		8.3	61%	N/A	N/A
			83	Progressed after local therapy (cohort B)		7.9	61%	N/A	N/A

	Cohort A		Cohort B	Cohort C (n=16)	
	Drug* naive (n=27)	Overall (n=35)	Drug* naive (n=19)	Overall (n=25)	
Intracranial response					
Overall (%; 95% CI)	15 (56%; 35-75)	16 (46%; 29-63)	4 (21%; 6-46)	5 (20%; 7-41)	1 (6%; 0–30)
Complete response	5 (19%)	6 (17%)	2 (11%)	3 (12%)	0
Partial response	10 (37%)	10 (29%)	2 (11%)	2 (8%)	1(6%)
Stable disease	3 (11%)	4 (11%)	0	0	2 (13%)
Progressive disease	8 (30%)	14 (40%)	14 (74%)	19 (76%)	13 (81%)
Non-evaluable	1(4%)	1 (3%)	1 (5%)	1 (4%)	0

Anti CTLA4 i anti PD1 u metastazama mozga (IVD)

Side effects?

Class specific


- Targeted therapy: primary drug target/pathway in cancer cells/tissues also mediates physiologic functions in normal cells/tissues.
- Checkpoint inhibitors: immune-mediated adverse effects; monoclonal antibody administration related side efects

Drug specific

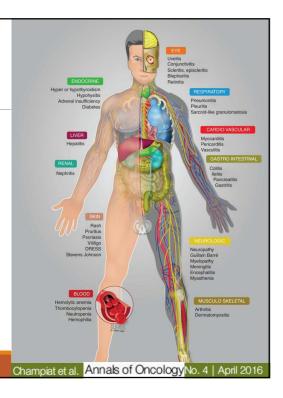
- Other mechanisms
 - Vemurafenib: photosensitivity
 - Dabrafenib: Hemolytic anemia in patients with G6PD deficiency (dabrafenib has sulfonamide moiety)

Tumor specific:

• different frequencies of side effects of the sam drug in different tumors

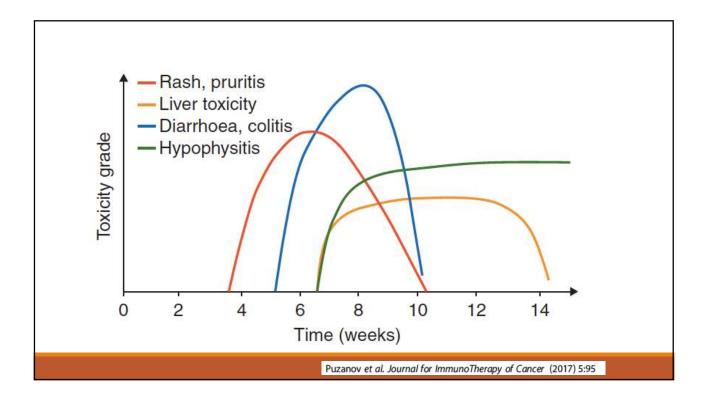
Targeted therapy: side-effects all grades % (grade 3-4 %)

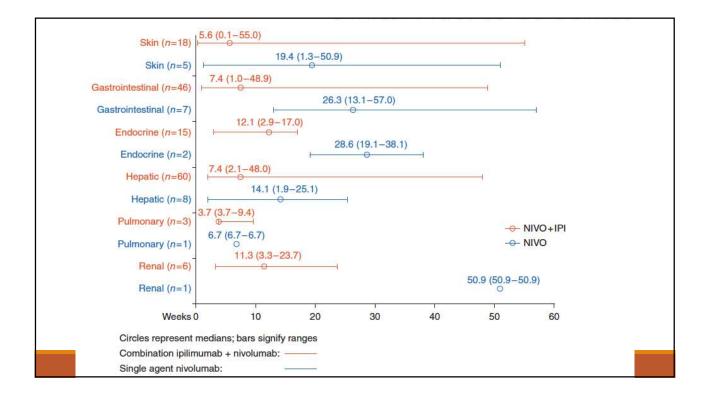
	Vemurafenib	Dabrafenib	Encorafenib	Trametinib	Vemurafenib Cobimetinib	Dabrafenib Trametinib	Encorafnib Binimetinib (450)
Rash	68 (16)	30 (0)	45 (5)	57 (8)	73 (17)	27 (0)	23 (1)
Cutaneous SCC	21 (21)	10 (4)	9 (1)	0	6 (5)	7 (5)	4 (0)
Diarrhoea	33 (1)	8 (0.4)	14 (2)	43 (0)	33.3 (7)	36 (2)	36 (3)
Arthralgia	56 (6)	19 (<1)	44 (9)	NR	38 (3)	24 (0)	26 (1)
Fatigue	33 (3)	18 (1)	25 (1)	26 (4)	37 (5)	53 (4)	29 (2)
Nausea	37.3 (1)	13 (0.4)	NR	18 (1)	41.3	36(0.4)	NR
Vomiting	14 (1)	7 (<1)	NR	13 (1)	24.3	30.3 (0.4)	NR
Cardiac	10 (2)	3 (2)	2 (1)	7 (1)	17 (3)	9 (0)	8 (2)
Ophtalmologic	9 (4)	2 (0)	1 (0)	9 (<1)	27 (3)	2 (2)	13 (2)
Liver laboratry abnormalities	36 (11)	26 (2)	7 (2)	24 (2)	26 (11)	27(2)	14 (6)
CPK increase	3 (<1)	NR	1 (0)	NR	35 (12)	2.9	23 (7)
Photosensitivity	41.4(4)	3 (0)	4 (0)	NR	28 (2)	4 (0)	5 (1)
Pyrexia	22.8 (<1)	32(4)	15 (1)	NR	26 (2)	52 (7)	18 (4)

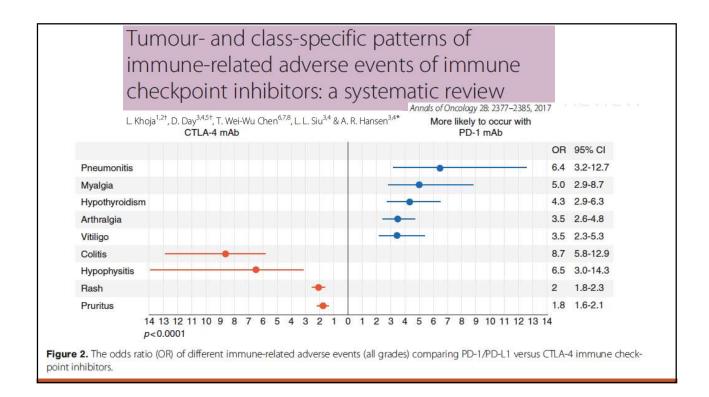

Checkpoint-inhibitors: immune-related adverse effects

Inhibitory immune-checkopoints are associated with tolerance mechanisms and prevention of autoimmunity

In the setting of CTLA-4 and anti-PD1-PDL-1 blockade immune related adverse events develop

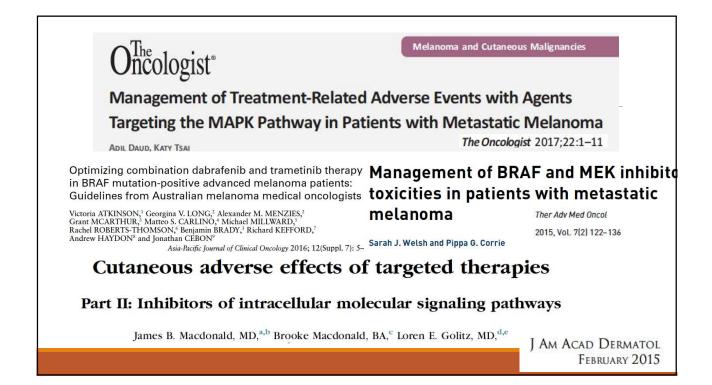

Most frequent: skin ,GI, liver, endocrine


Less common: pneumonitis, neurotoxicity, ocular, etc.

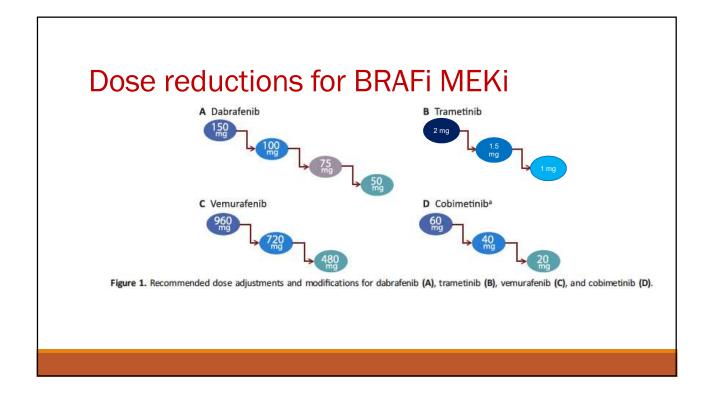


Immune related side effects: frequency

	Ipilimumab all % (gr 3-4%)	Nivolumab all, % (gr 3-4%)	Pembroiizumab all % (gr 3-4, %)	Nivolumab Ipilimumab all % (gr 3-4%)
Skin Rash Pruritus	54.6 (2.5) 21.6 (1.4) 34.4 (0.3)	38.4 (1.1) 16.9 (0.4) 18.4 (0.1)	21 (1) 21 (1)	61.9 (6.4) 31.2 (3.2) 33.4 (1.7)
Gastrointestinal Diarrhea Colitis	42.3 (11.5) 43 (8.8) 14 (9.6)	17.7 (1.7) 17.2 (1.3) 1.1 (0.6)	20 (1)	46.4 (15.7) 33.6 (6.2) 11.8 (8.4)
Pulmonary Pneumonitis	2.2 (0.6) 2 (0.6)	2 (0.1) 1.8 (0.1)	4 (1)	7.6 (1.2) 6.9 (1.2)
Endocrine Thyroid Hypophisitis	11.8 (2.5) 6.4 (0) 4.2 (2.2)	10.8 (0.6) 10.1 (0.1) 0.4 (0.3)	8 (1) NR	29.7 (4.9) 18.9 (0.9) 8.6 (1.7)
Renal	NR	1.5 (0.5)	2 (1)	4.7 (1.7)
Hepatic Lab abnormal.	0.7 (0.1) NR	6.9 (2.2) 0.4 (0.1)	18(1)	29 (17.4) 18.2 (8.4)
Infusion reactions	NR	4.8 (0.3)	NR	2.5 (0)
irAE	86.2 (27.7)	86.3 (20.8)		95.8 (58.5%)
Treatment discontinuation	16.1 (14.1)	11.5 (7.7)		39.6 (31)



General management principles Targeted therapy


Grade 1: continue TT, symptomatic therapy, diagnostic work-up

Grade 2:

- Interruption of treatment, until grade 1, then reintroduce in decreased dose
- If reappear, second interruption until grade 1 than reintroduce with further dose reduction
- Diagnostic work-up
- Symptomatic therapy

Grade 3 and 4

- Interruption of treatment until grade 1, then reintroduce in decreased dose
- Diagnostic work-up
- Symptomatic therapy
- Consider switching to other BRAFi+MEKi

General management principles

Immunotherapy

Grade 1: continue ICI therapy, symptomatic therapy, close follow-up

Grade 2:

- hold ICI therapy
- diagnostic work-up

 $^{\circ}$ start corticosteroid therapy and resume ICI when corticosteroid is tapered to \leq 10 mg/day and patient remains symptom-free (grade 1)

- If irAE returns on resuming ICI:
- Grade ≤ 2: temporarily hold ICI
- Grade ≥ 3: permanently discontinue ICI
- If using combination anti-CTLA-4/anti-PD-1 immunotherapy, continue anti-PD-1 agent only

Grade 3:

- withhold ICI; consider resuming ICI when
- corticosteroid is tapered to ≤10 mg/day and patient remains symptom-free (grade ≤ 1)
- If irAE returns: permanently discontinue ICI
- consider hospitalization

Grade 4: permanently discontinue ICI and hospitalize

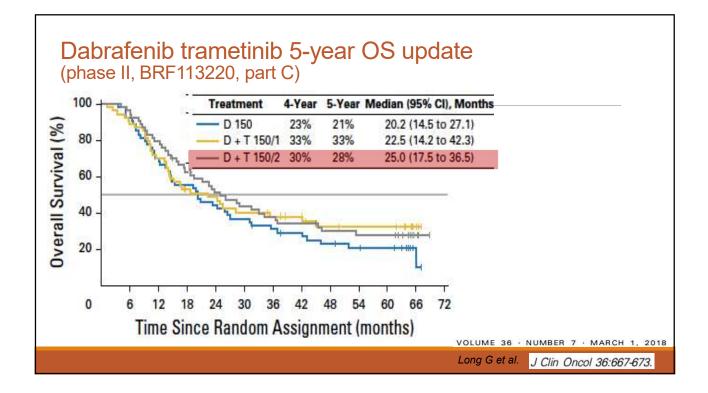
Corticosteroid use for irAE

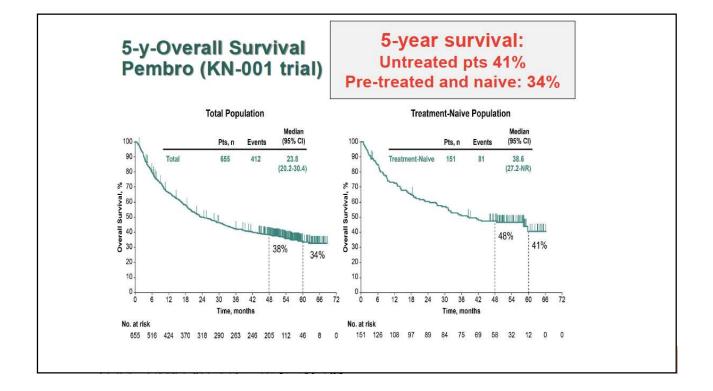
f indicated, start oral prednisone 0.5-1 mg/kg/day if patient can take oral medication.	 Hold immunotherapy during corticosteroid use Continue immunotherapy once resolved to ≤grade
f IV required, start methylprednisolone 0.5-1 mg/kg/day IV f no improvement in 2–3 days, increase corticosteroid dose to 2 mg/kg/day Once improved to ≤grade 1 AE, start 4–6 week steroid taper	1 and off corticosteroids Start proton pump inhibitor for GI prophylaxis
Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) f no improvement in 2–3 days, add additional/alternative mmune suppressant Droce improved to \leq grade 1, start 4–6-week steroid taper provide supportive treatment as needed	 Hold immunotherapy; if symptoms do not improve in 4–6 weeks, discontinue immunotherapy Consider intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)
Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) f no improvement in 2–3 days, add additional/alternative mmune suppressant, e.g., infliximab provide supportive care as needed	 Discontinue immunotherapy Continue intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)
2 I Dr Stani fr Dr Pri Stani fr	mg/kg/day the improved to ≤grade 1 AE, start 4–6 week steroid taper art prednisone 1-2 mg/kg/day (or equivalent dose of ethylprednisolone) to improvement in 2–3 days, add additional/alternative mune suppressant the improved to ≤ grade 1, start 4–6-week steroid taper ovide supportive treatment as needed art prednisone 1-2 mg/kg/day (or equivalent dose of ethylprednisolone) to improvement in 2–3 days, add additional/alternative mune suppressant, e.g., infliximab

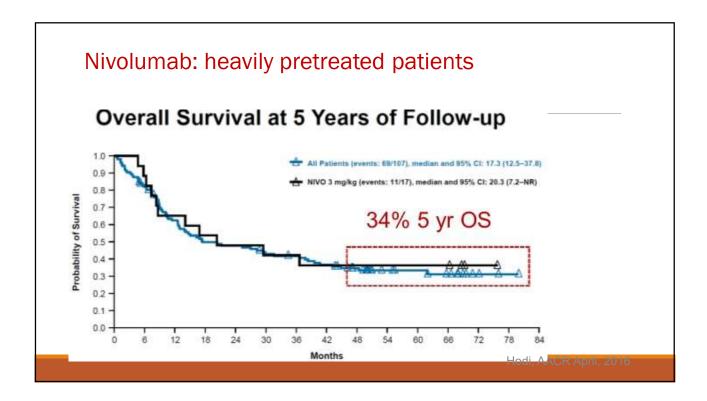
Dermatologic toxicities

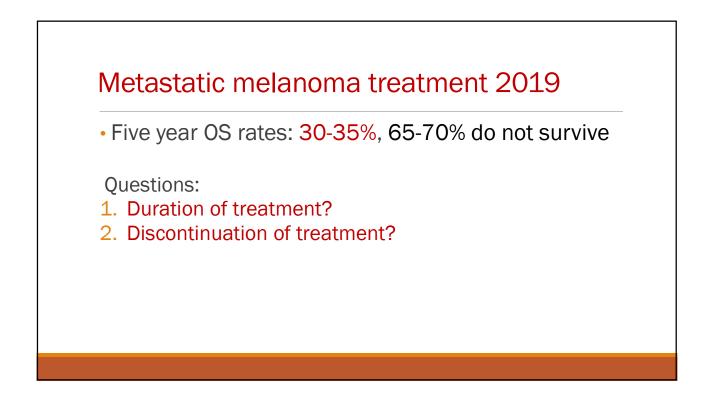
Targeted therapy

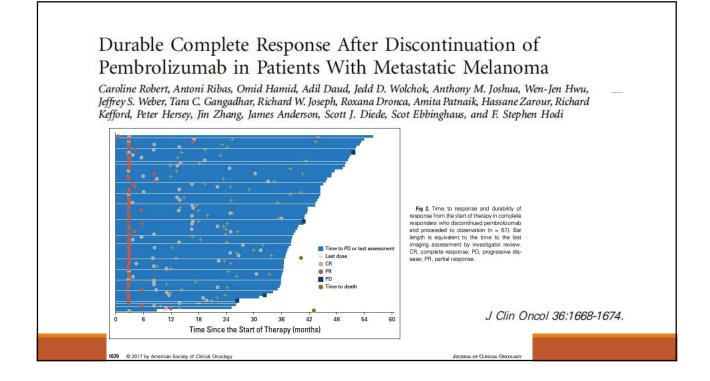
Targeted therapy:


- BRAFi
- Follicular rash
- Maculopapular rash
- Hair thinning and curling
- cuSCC
- Palmar-plantar dysestesia syndrome
- MEKi
 - Papulopustular rash
 - Palmar-plantar dysestesia syndrome


Immunotherapy


- Checkpoint inhibitor therapy
 - Pruritus
 - Maculopapular rash
 - Vitiligo
 - Rare
 - Neutrophilic dermatoses
 - Lichenoid reactions
 - Bullous pemphigoid
 - AGEP
 - Alopecia areata/universalis


TYPE > GRADE > MANAGEMENT


Melanoma 2020: standards of care and unmet needs **Targeted Therapies** Dabrafenib Vemurafenib 1975 2011 2012 2013 2014 2015 2016 2017 2018 2020? acarbazin (DTIC) Ipilimumab + Nivolumat Ipilimumab Pembrolizumab Nivolumab Immune Checkpoint Blockade Hauschild A. EADO 2018

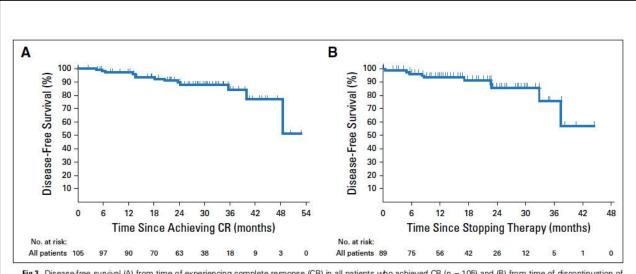
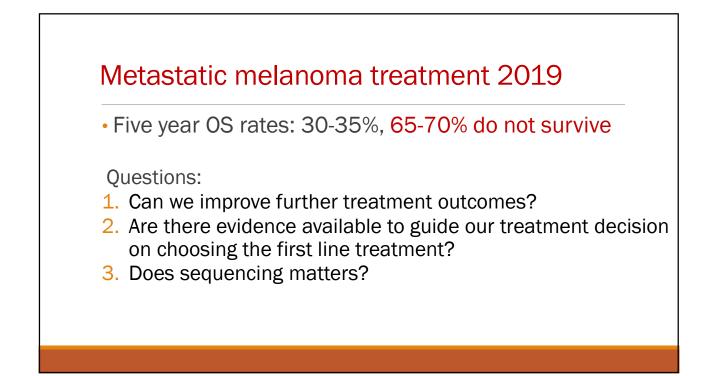
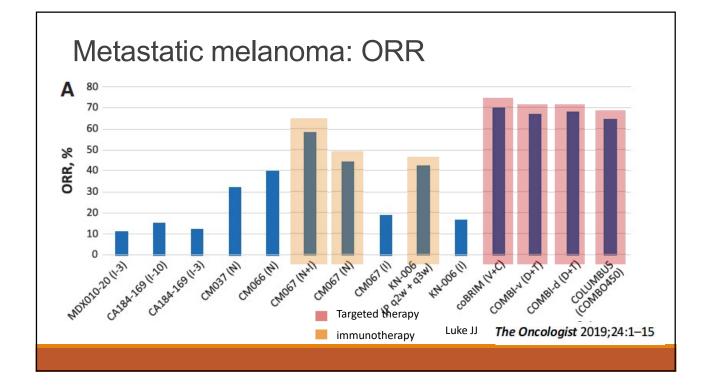
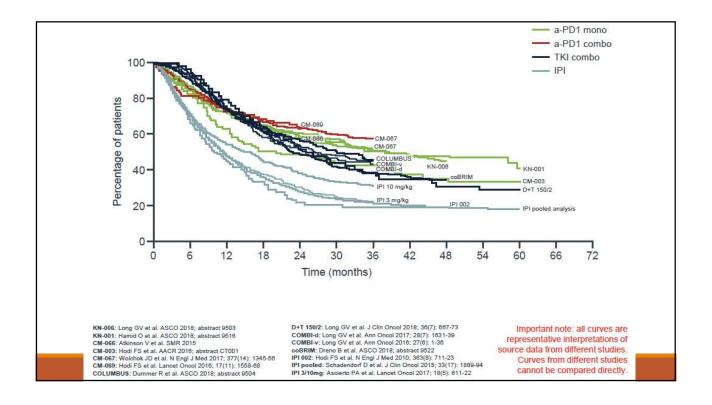
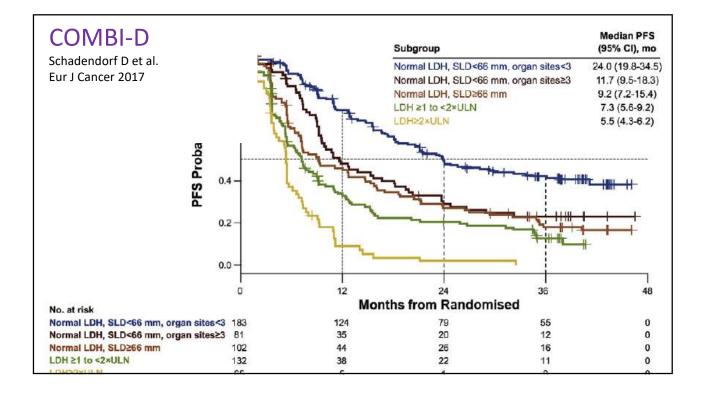
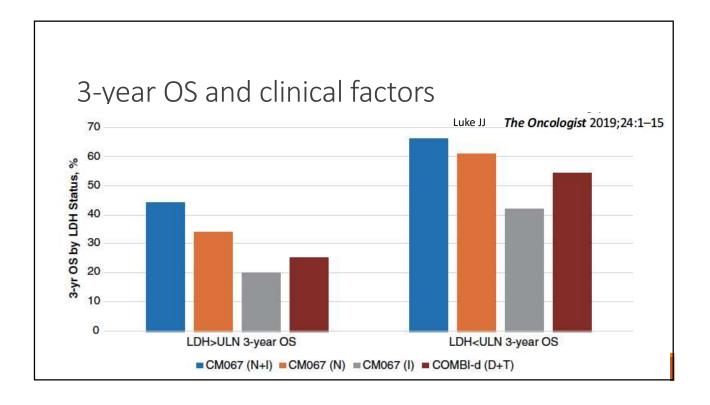





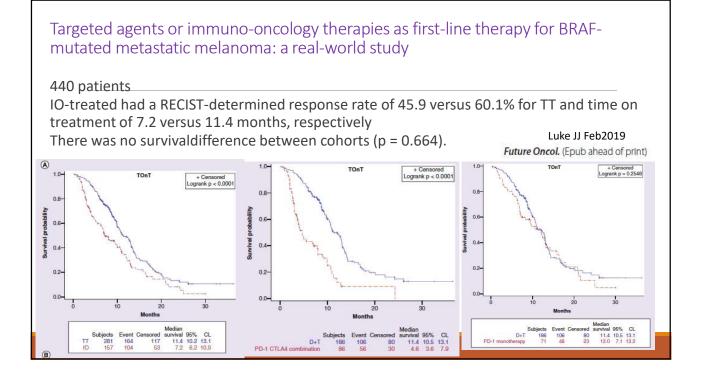
Fig 3. Disease-free survival (A) from time of experiencing complete response (CR) in all patients who achieved CR (n = 105) and (B) from time of discontinuation of pembrolizumab in patients who discontinued after CR for reasons other than progression (n = 89). The hash marks designate patients who were censored at that time point.

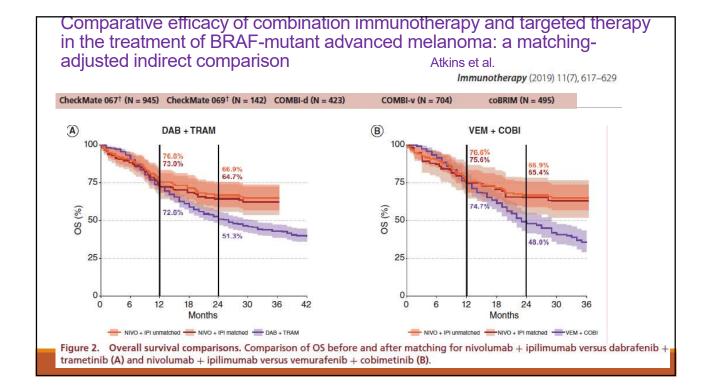
J Clin Oncol 36:1668-1674.

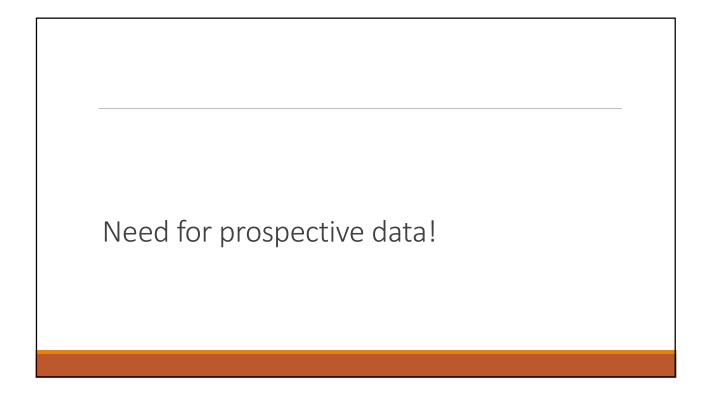


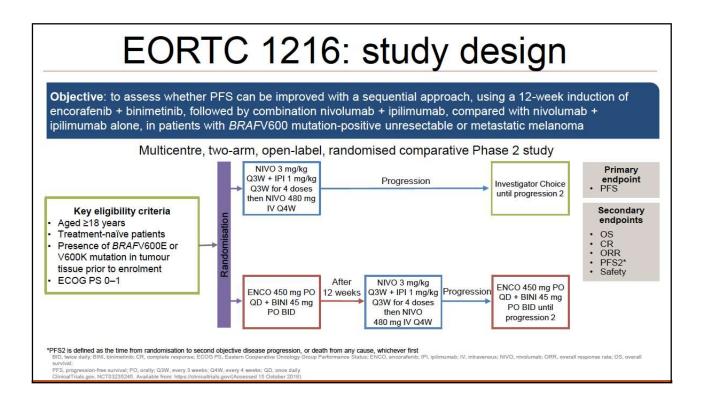


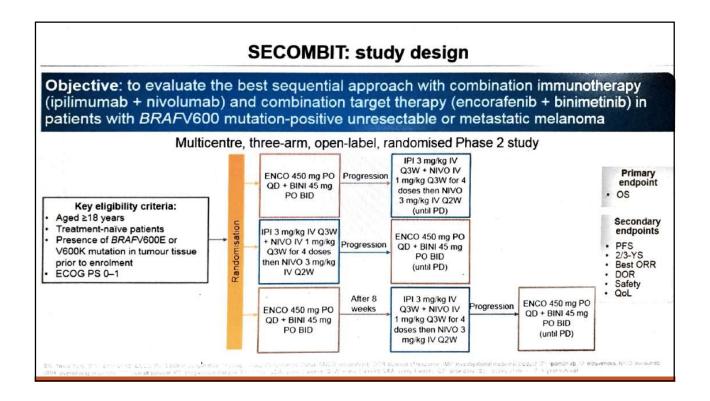
OS rates: 1st line treatment

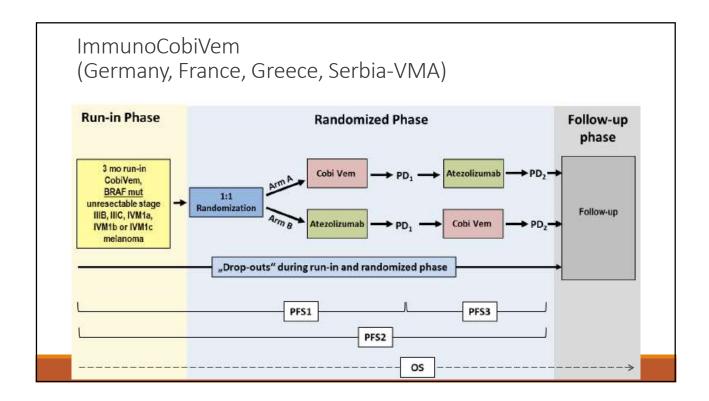

	3-year OS rate	4-year OS rate	5-year OS rate
Dabrafenib trametinib	45	37	34
Pembrolizumab	51	45	40
Nivolumab	51	45	-
Nivolumab+ipilimumab	58	52	-

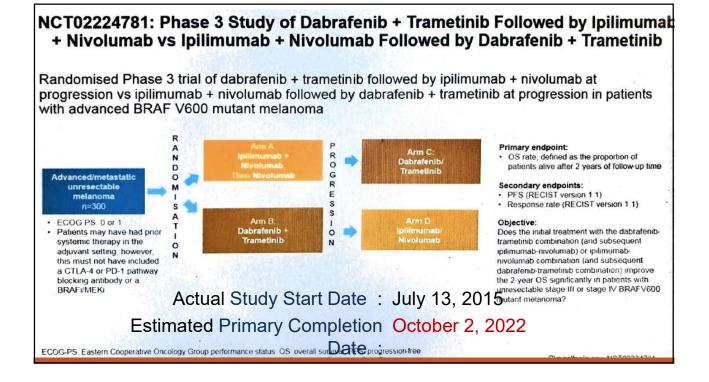


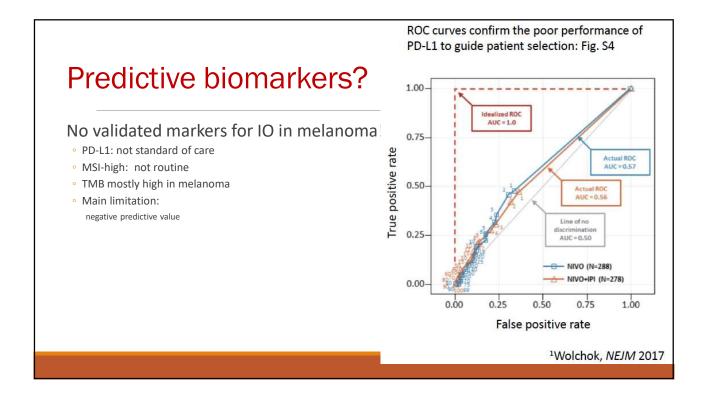


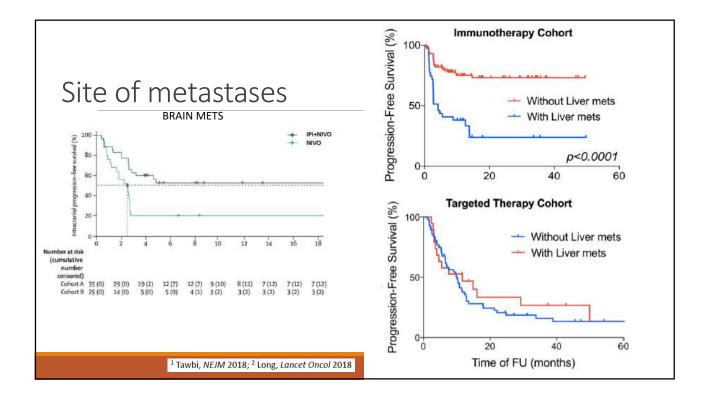

Sequencing and treatment outcome

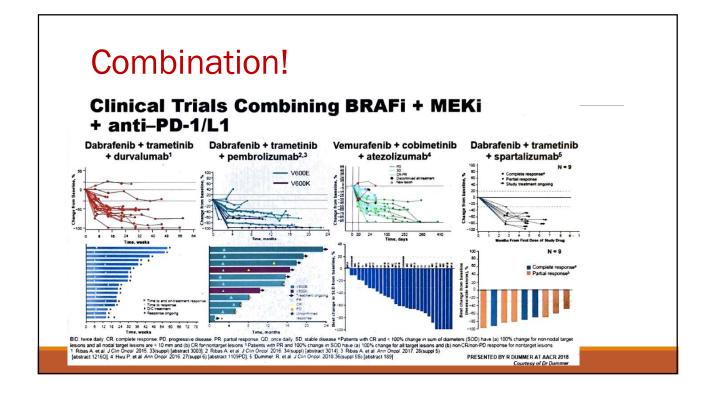

- Only retrospective data available!
- Biased data due to the preference that for high tumor burden BRAFi+MEKi should be the 1st treatment option

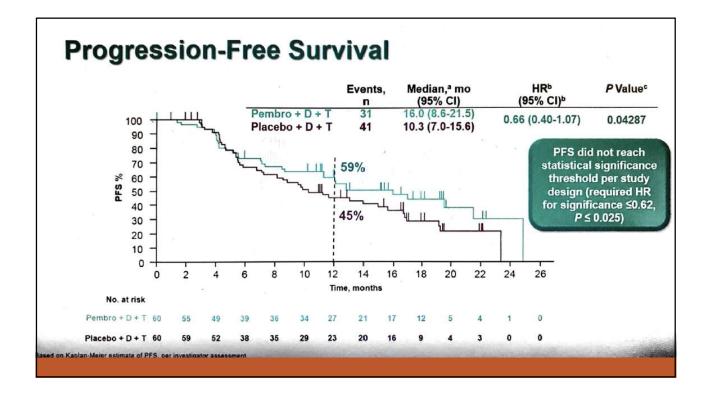


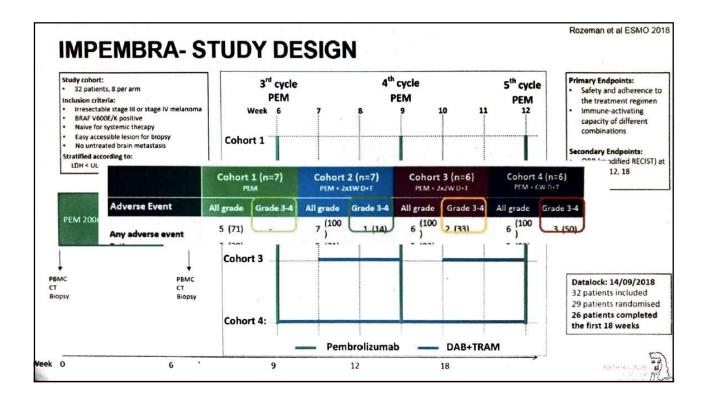


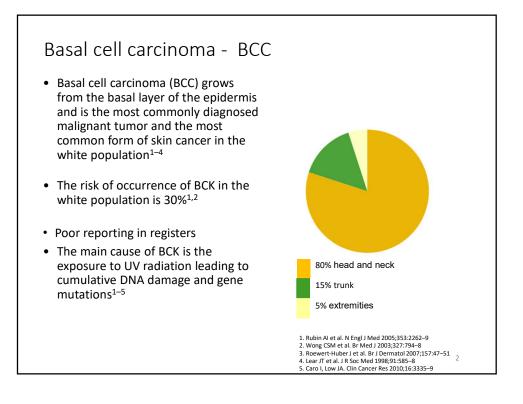


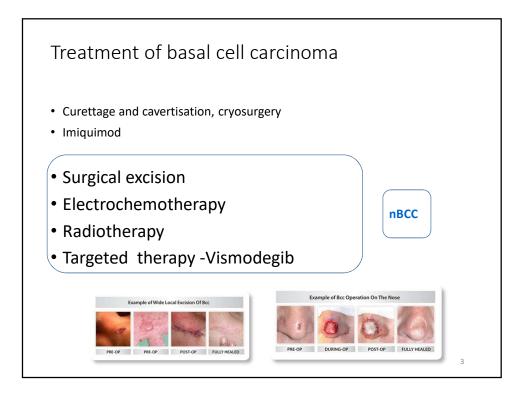


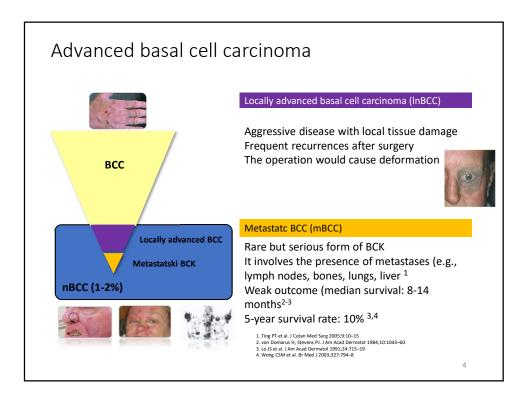


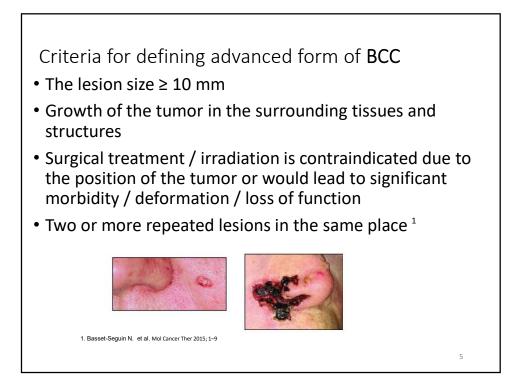




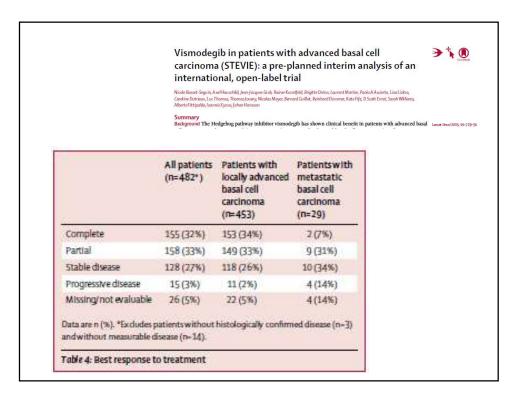

Conclusion

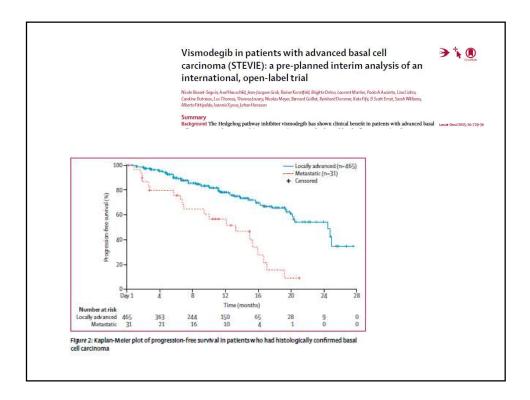

- Long term follow up revealed similar rates of OS between targeted therapy and immunotherapy
- · Prospective data are needed for a clear picture trials underway
- What do we know? Not much...
 - In patients with liver metastases opt for targeted therapy first?
 - In patients with brain mets for the choice of immunotherapy opt for combination anti-CTLA4+anti-PD1
 - In high-volume disease: combination immunotherapy after debulking with BRAF+MEK?
 - Need for prospective data

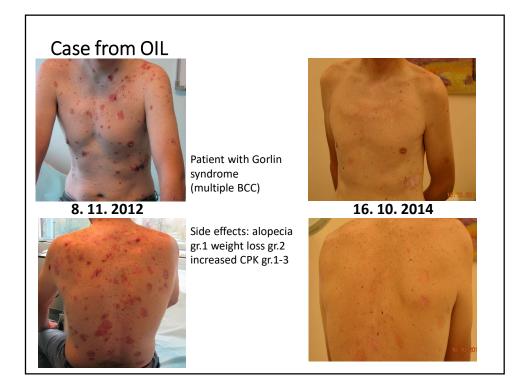

Systemic treatment of non-melanoma skin cancer

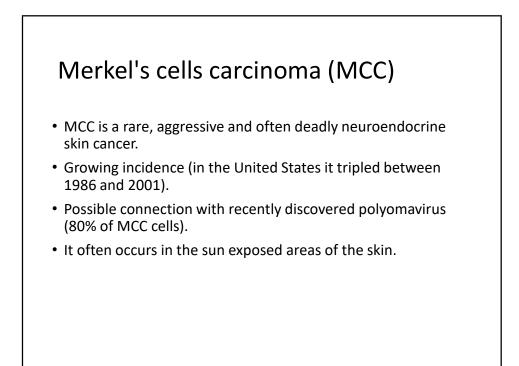

Janja Ocvirk Institute of Oncology Ljubljana

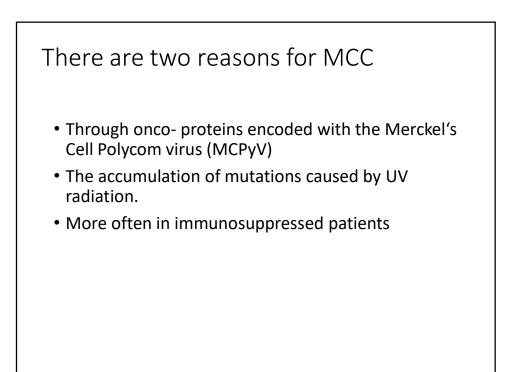
Ljubljana, 5.9.2019

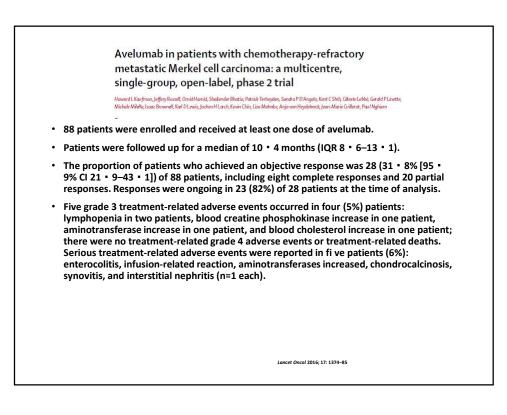


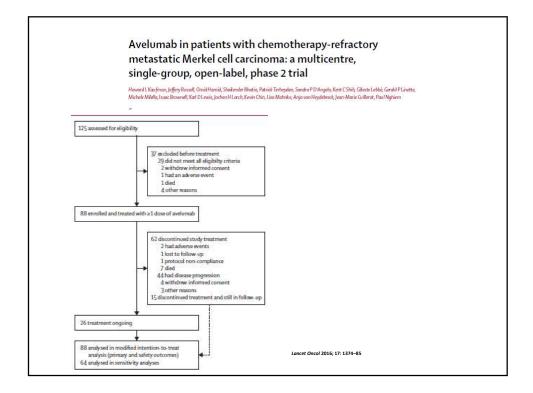


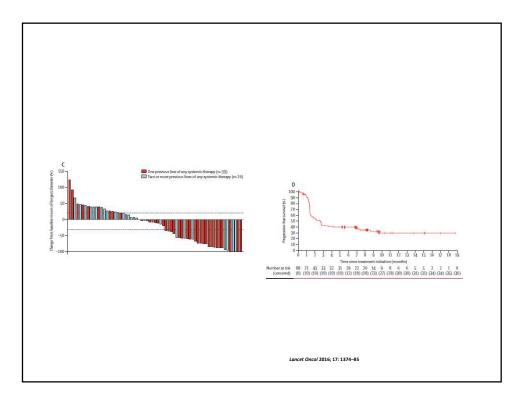

Table 1. Risk facto	rs for requirence [†]	
Table 1. Hisk factor	Clinical	Histological
Location	Low risk: trunk and limbs Intermediate risk: forehead, cheek, chin, scalp and neck High risk: nose and periorificial areas on the head and neck	Aggressive subtype*: – Morpheaform – Infiltrating – Basosquamous – Multifocal
Size (largest tumor diameter)	>1 cm for high-risk location >2 cm for low- or intermediate-risk location	
Clinical aspect	III-defined lesions or morpheaform subtypes	
Disease status	Recurrent	
	based on case–control studies). are associated, global prognosis depends on the component with the poores) from [26].	it prognosis.

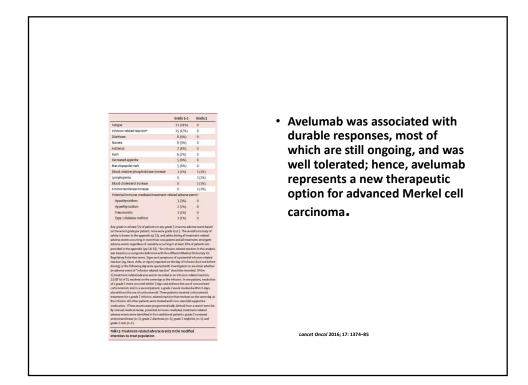


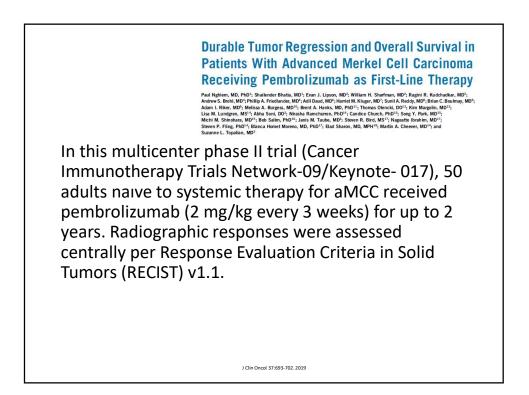

	Nicole Baset-Seguin Anel Hauschid, Jean-Jacques Geb, Bainer Konstfeld, Brighte Drins, Laurent Martier, Peolo A Ascienta, Lina Lictera, Cardine Durinera, Luc Thomas, Thomas Johan, Nicolas Mayer, Barnard Gollidt, Reinhard Dummer, Kate Fife, D Scatt Ernat, Santh Williams, Albertof Tetipalda, Icannic Xynas, Johan Hansson Summary Background The Hedgehog pathway inhibitor vismodegib has shown clinical benefit in patients with advanced basal					
	AllTEAEs		Grade 3-5 TEAEs			
	<12 months' exposure (n=314)	≥12 months' exposure (n=185)	<12 months' exposure (n=314)	≥12 months exposure (n=185)		
Any TEAE	307 (98%)	184 (99%)	130 (41%)	84 (45%)		
Muscle spasms	169 (54%)	148 (80%)	21 (7%)	17 (9%)		
Alopecia	154 (49%)	153 (83%)	1(<1%)	1(<1%)		
Dysgeusia	139 (44%)	130 (70%)	8(3%)	3 (2%)		
Weight loss	80 (25%)	82 (44%)	4(1%)	14 (8%)		
Asthenia	76 (24%)	65 (35%)	9 (3%)	5 (3%)		
Decreased appetite	74(24%)	52 (28%)	7 (2%)	4 (2%)		
Ageusia	75 (24%)	37 (20%)	6 (2%)	5 (3%)		
Fatigue	50 (16%)	30(16%)	9(3%)	3 (2%)		
Nausea	38 (12%)	42 (23%)	0	1(<1%)		
Diamhoea	32 (10%)	51(28%)	1(<1%)	2 (1%)		

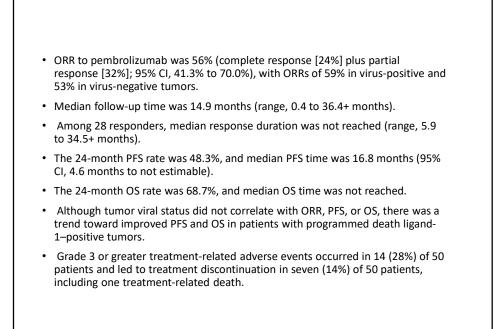


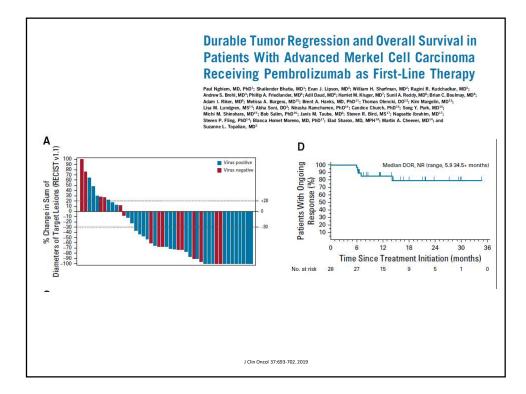

PRINCIPLES OF SYSTEMIC THERAPY¹ Loc al Disease: Adjuvant chemotherapy not recommended Regional Disease: • Clinical trial (preferred) Adjuvant chemotherapy not routinely recommended as survival benefit has not been demonstrated in available retrospective studies, but could be used on a case-by-case basis if clinical judgement dictates) Cisplatin ± etoposide Carboplatin ± etoposide Disseminated Disease: Clinical trial (preferred) Avelumab² Pembrolizumab² Nivolumab² As clinical judgment dictates for patients with contraindications to checkpoint immunotherapy: Cisplatin ± etoposide Carboplatin ± etoposide Topotecan > (CAV): Cyclophosphamide, doxorubicin (or epirubicin), and vincristine ¹When available and olinically appropriate, enrollment in a clinical trial is recommended. The literature is not directive regarding the specific ohemotherapeutic agent(s) offering superior outcomes, but the literature does provide evidence that Merkel cell carcinoma is chemos ensitive, atthough the responses are not durable, and the agains listed above have been used with some success. ²Preliminary data from non-randomized trials in patients with MCC demonstrate that rates of durable response are improved with PD-1/PD-L1 blockade compared with cyclockic therapy. Thes areful profiles to cleak point immunotherapies are significantly different from cyclockic therapies. Concut prescribing information for original for safe administration of oheokpoint immunotherapies are significantly different from cyclockic therapies. Clinician and patient education is critical for safe administration of oheokpoint immunotherapies.

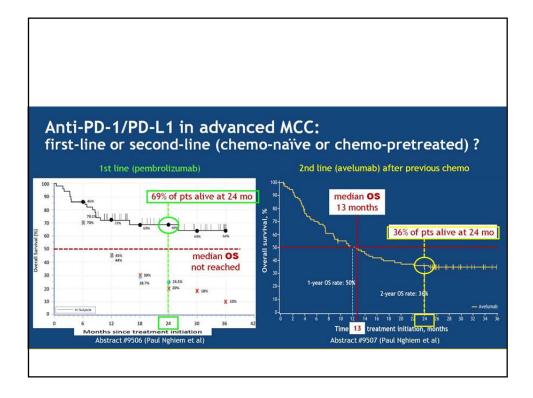


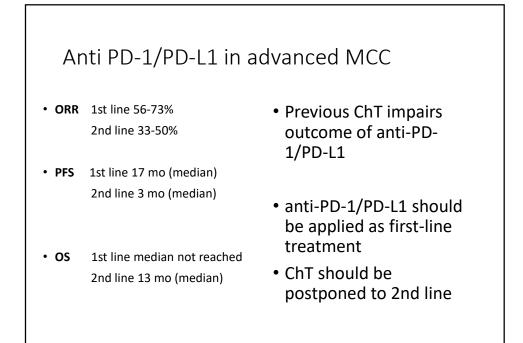

- PD-L1 is expressed in MCC tumor cells and infiltrates of adjacent immune cells¹
- Dysfunction of MCPyV-specific T cells²
 - -Levels of CD8 T cells increase with a higher tumor load -Exhausted phenotype (PD-1 +, Tim-3 +)
- MCPyV-negative tumors have a higher burden on mutations and neoanthigens³

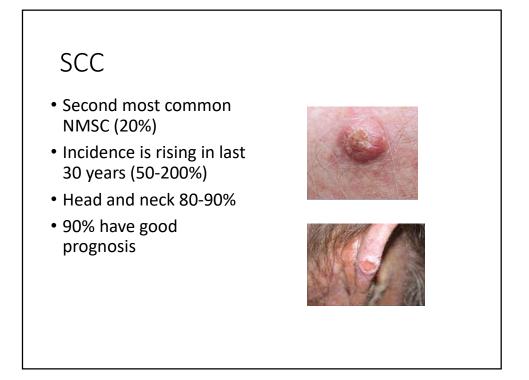

1. Lipson EJ, et al. Cancer Immunol Res. 2013;1(1):54-63; 2. Afanasiev O, et al. Clin Cancer Res. 2014;19(19):5351-60; 3. Goh G, et al. Oncotarget. 2016;7(3):3403-15.



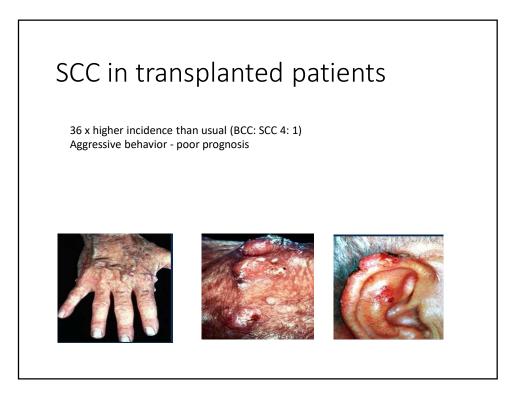


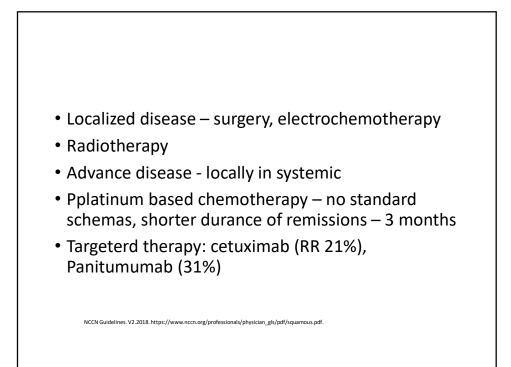

In patients with aMCC receiving first-line anti– programmed cell death-1 therapy - Pembrolizumab demonstrated durable tumor control, a generally manageable safety profile, and favorable OS compared with historical data from patients treated with first-line chemotherapy.

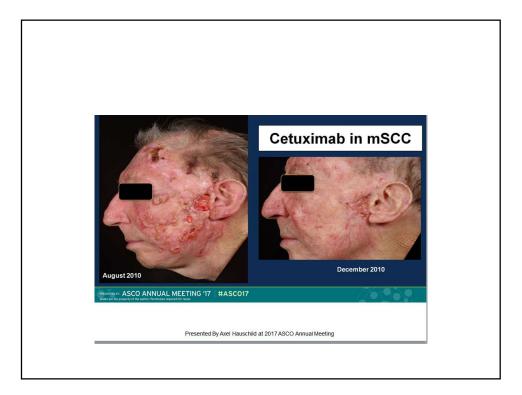

J Clin Oncol 37:693-702. 2019

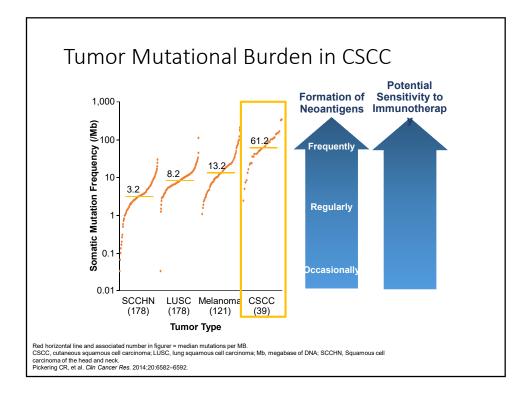

		REVIEW	
			(2) Death for upsides
		Immune evasion mechanisms and imm cell carcinoma	une checkpoint inhibition in advanced merkel
		Dirk Schadendorf ^e , Paul Nghiem ^b , Shailender Bhatia ^c , Subramanian Hariharan ⁹ , and Howard L. Kaufman ^h	Axel Hauschild ^d , Philippe Saiag ^e , Lisa Mahnke ^f ,
able 2. Summary of data from trials of immunotherapy for the treatme	-	Avelumab Study ⁸	
Parameter	Pembrolizumab Study ⁷	Aveiumab Study	-0.
Patient population N	26 *	Chemotherapy refractory (second-line or later treatment) 88	
Primary end point	Objective response rate by RECIST v1.1	Confirmed best overall response by independent review committee per RECIST v1.1	
Patient and disease characteristics			
Median age (range), years	68 (57-91)	73 (33–88)	
Stage IIIB MCC, n (%) Stage IV MCC, n (%)	2 (8) 24 (92)	88 (100)	
Prior lines of systemic therapy, n (%)	24 (92)	oo (100)	
0	26 (100)	0	
1	0	52 (59)	
> 2	0	36 (41)	
Median baseline extent of disease (range), mm	69 (13-182)	79 (16-404)	
MCPyV-positive, n (%)	17 (65)	46 (52) b	
Median duration of follow-up (range), months	7.6 (1.6-12.2)	10.4 (6-19)	
Minimum duration of follow-up, months	1.6	6	
Objective response rate			
Overall, % (95% Cl)	56 (35-76)	32 (22–43) ^c	
MCPyV-positive, % (n/N1) d	62 (10/16)	26 (12/46)	
MCPyV-negative, % (n/N1)	44 (4/9)	36 (11/31)	
Response durability		82 (23/28)	
Number of patients with ongoing response at data cutoff, % (n/N1)			
Median duration of response (range), months ^a Kaplan-Meier estimate of proportion of responses with ≥ 6 months duration. % (95% CI)	Not reached (2+ to 10+) Not reported	Not reached (3+ to 18+) 92 (70-98)	
Durable response rate, % (95% CI) *	Not reported	29 (20-39) °	
Progression-free survival			
Median, months (95% CI)	9 (5-not reached)	2.7 (1.4-6.9)	
6-month rate, % (95% CI) Overall survival	67 (49-86)	40 (29–50)	
Median, months (95% CI)	Not reported	11.3 (7.5-14.0)	
6-month rate, % (95% CI)	Not reported	69 (58-78)	
Treatment-related AE, n (%)		62 (70)	
Treatment-related AE, n (%) Any grade	20 (77)		
	20 (77) 2 (8) 2 (8)	4 (5) 0 (0)	

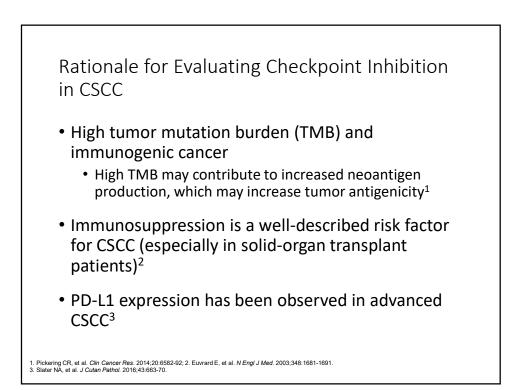
Immune (Checkpoint	Inhibition	Trials in MCC:
Advanced	Metastatic	: Disease	

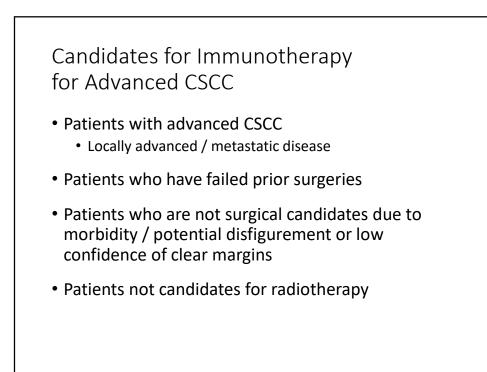

Drug / Trial	Target	n	Prior chemo	Objective response	Median follow-up	Median PFS	Median OS
Pembrolizumab first-line ¹ (NCT02267603) CITN-09	PD-1	26	No	56%	8 mo	Not reached	Not reached
Avelumab first-line ² (NCT02155647) JAVELIN Merkel 200	PD-L1	29	No	63%	3 mo	Not reached	Not reached
Nivolumab first/second-line ³ (NCT02488759) CheckMate-358	PD-1	15 10	No Yes	73% 1st-L 50% 2nd-L	3+ mo	Not reached	Not reached
Avelumab <mark>second-line^{4,5}</mark> (NCT02155647) JAVELIN Merkel 200	PD-L1	88	Yes	33%	16 mo	3 mo	13 mo

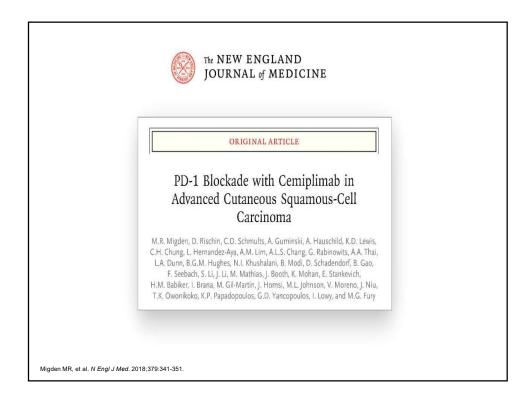


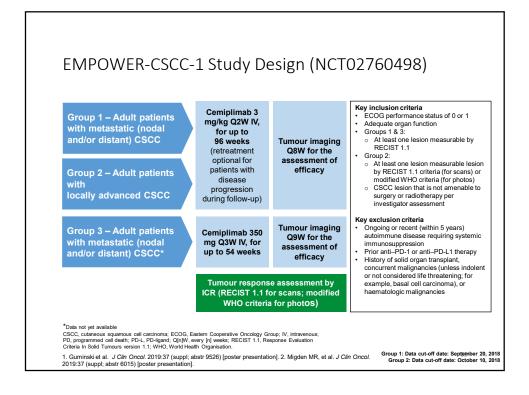




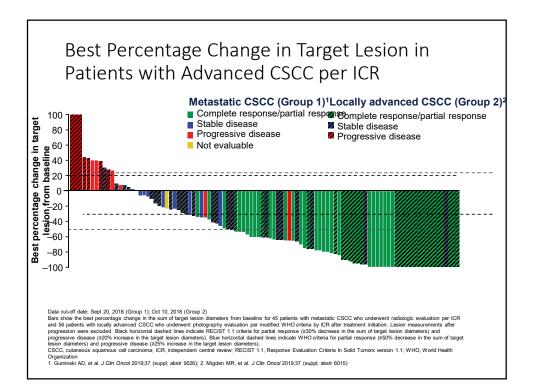


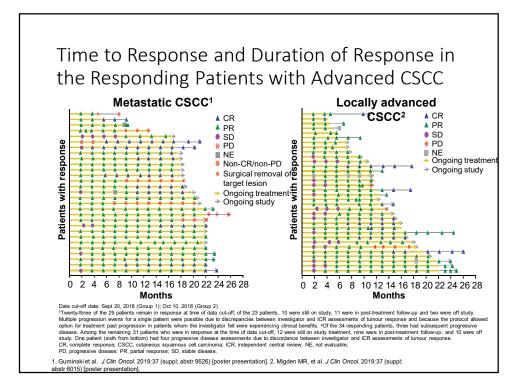


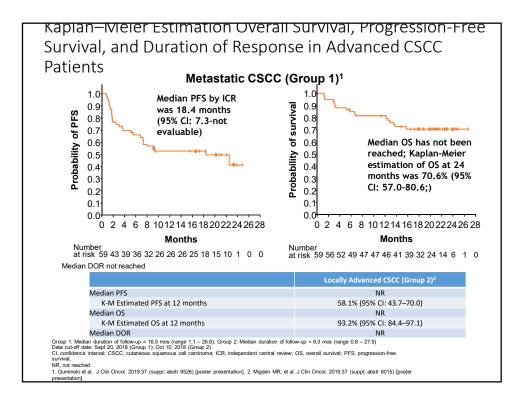




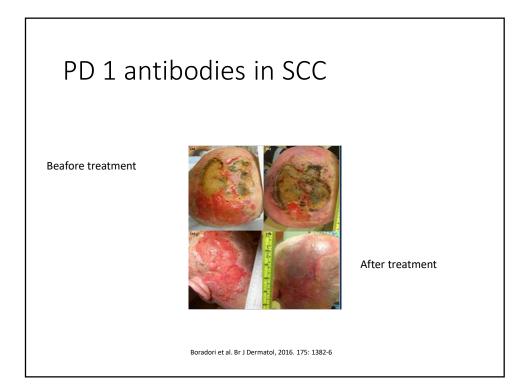
Baseline Characteristics in EMPOWER-CSCC-1 with Advanced CSCC (Group 1 and Group 2)

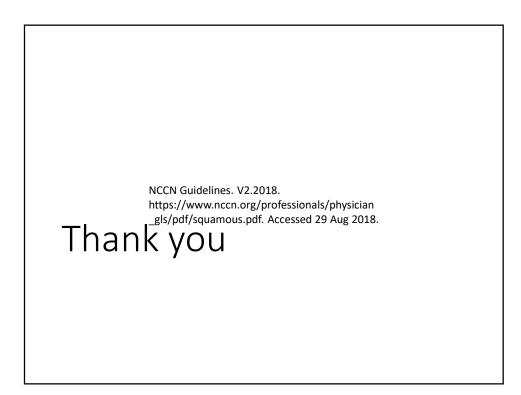

	Metastatic CSCC (N=59) ¹	Locally advanced CSCC (N=78) ²
Median age, years (range)	71 (38–93)	74 (45–96)
≥ 65 years, n (%)	43 (72.9)	59 (75.6)
Male sex, n (%)	54 (91.5)	59 (75.6)
ECOG performance status, n (%)		
0/1	23 (39.0) / 36 (61.0)	38 (48.7) / 40 (51.3)
Primary CSCC site, n (%)		
Head/neck	38 (64.4)	62 (79.5)
Extremity	12 (20.3)	14 (17.9)
Trunk	9 (15.3)	2 (2.6)
Prior systemic therapy for CSCC, n (%)		
Any	33 (55.9)	12 (15.4)
1	22 (37.3)	10 (12.8)
≥2	11 (18.6)	2 (2.6)
Prior radiotherapy for CSCC, n (%)	50 (84.7)	43 (55.1)
Median duration of follow-up, months (range)	16.5 (1.1–26.6)	9.3 (0.8-27.9)


Data cut-off date: Sept 20, 2018 (Group 1)1; Oct 10, 2018 (Group 2) CSCC, cutaneous squamous cell carcinoma; ECOG PS, Eastern Cooperative Oncology Group texcludes ear and temple i Findudes amniShand legs/fet 1. Guminski et al. J Clin Oncol. 2019:37 (suppl; abstr 9526) [poster presentation]. 2. Migden MR, et al. J Clin Oncol. 2019:37 (suppl; abstr 6015) [poster presentation].


Tumor Response Assessment by Independent Central Review in Patients with Advanced CSCC (Group 1 and 2)

	Metastatic CSCC (N=59) ¹	Locally Advanced CSCC (N=78) ²
Median duration of follow-up, months range)	16.5 (1.1 – 26.6)	9.3 (0.8 – 27.9)
Best overall response, n (%)		
Complete Response (CR)	10 (16.9)	10 (12.8)
Partial Response	19 (32.2)	24 (30.8)
Stable Disease	9 (15.3)	28 (35.9)
Non-CR/non-PD ⁺	4 (6.8)	0
Progressive Disease (PD)	10 (16.9)	9 (11.5)
Not evaluable [‡]	7 (11.9)	7 (9.0)
Objective response rate (ORR), % (95% CI)	49.2 (35.9–62.5)	43.6 (32.4–55.3)
ORR by INV % (95% CI)	49.2 (35.9-62.6)	52.6 (40.9-64.0)
Complete Response / Partial Response	4 (6.8) / 25 (42.3)	13 (16.7) / 28 (35.9)
Disease control rate, % (95% CI)	71.2 (57.9–82.2)	79.5 (68.8–87.8)
Durable disease control rate, % (95% CI)§	62.7 (49.1–75.0)	62.8 (51.1–73.5)
Median observed time to response, months range) [¶]	1.9 (1.7–9.1)	1.9 (1.8–8.8)


INV investigator assessment 1 Curvine's al / Clin Opport 2019;37 (suppl: abstr 9526) [poster presentation] 2 Minden MR et al / Clin Opport 2019;37 (suppl: al



atment-emergent ibution, in Patien			. ,,	Regardle	ss of	
	Group 1 Metastatic CSCC (N=59) ¹		Group 2 Locally advanced CSCC (N=78) ²		Overall (N=137) ³	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥
Any	59 (100.0)	30 (50.8)	78 (100.0)	34 (43.6)	137 (100.0)	64 (46.7
Serious	24 (40.7)	20 (33.9)	23 (29.5)	19 (24.4)	47 (34.3)	39 (28.5
Led to discontinuation	6 (10.2)	4 (6.8)	6 (7.7)	5 (6.4)	12 (8.8)	9 (6.6)
Metastatic CSCC (Group 1) ¹ Grade ≥3 TEAEs occurring in >1 patient • Cellulitis (n=4; 6.8%) • Anemia, dyspnea, hypercalcemia, new primary CSCC, pleural effusion, and pneumonia (each n=2; 3.4%) Grade ≥3 TEAEs leading to treatment discontinuation • Pneumonitis (n=3; 5.1%) • Aseptic meningitis, confusional state, and neck pain (all in the same patient: n=1; 1.7%)			Locally advanced CSCC (Group 2) ² Grade 23 TEAEs occurring in >1 patient > Hypertension (n=6; 7.7%) > Pneumonia (n=4; 5.1%) > Hyperglycemia and cellulitis (each n=3; 3.8%) > Breast cancer, fall, hyponatremia, lymphopenia, muscular weakness, pneumonitis, sepsis, and urinary tract infection (each n=2; 2.6%) Grade 23 TEAEs leading to treatment discontinuation > Pneumonits (n=2; 2.6%) > Encephalitis, hepatitis, increased aspartate aminotransferase, pneumonia, and proctitis (each n=1; 1.3%)			

- NMSC the most common cancer
- Incidence is rising
- Numerous mutations in UV-induced cancer
- Surgery is a standard therapy for non-complicated cases
- Limited role of radiotherapy despite radiosensitivity in MCC

ONKOLOŠKI INŠTITUT INSTITUTE OF ONCOLOGY LIUBLIANA

SKIN TOXICITY OF IMMUNOTHERAPY CASE PRESENTATION

1st Summer School in medical oncology Vermiglio Lucija, MD Dr. Mesti Tanja, MD

PRESENTATION

- History of illness Ø PS WHO 1

B. L., male, 58 years

- July 2017 painful mass in the right armpit (12x10x9cm) Biopsy - Malignant melanoma metastasis
- Primary tumour Ø
- t S-100, normal LDH BRAF +
- PET-CT

FIRST LINE TREATMENT

- BRAF/MEK inhibitors: vemurafenib 960mg/12h/cont + cobimetinib 60mg/day/3weeks July to Oct 2017 Tumor size ↓ 50%
- November 2017 Axillary lymph node resection. 50% \downarrow (3x3x3cm), R2 resection, N(9/22)
- December 2017 BRAF/MEK inhibitors
- January March 2018, RT TD 60Gy

SECOND LINE TREATMENT

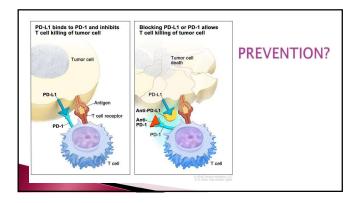
- May 2018 PD on PET-CT
- Immunotherapy Pembrolizumab 200 mg
- Palliative RT TD 15Gy
- June 2018 the last application of immunotherapy

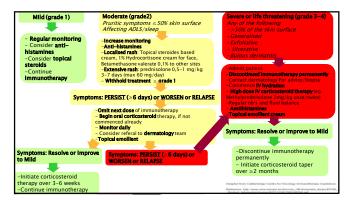
Locoregional status

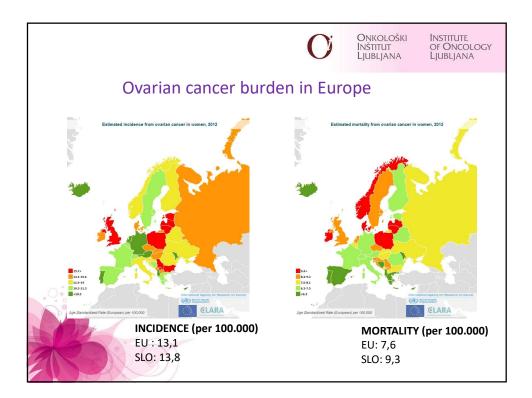
June 2018:

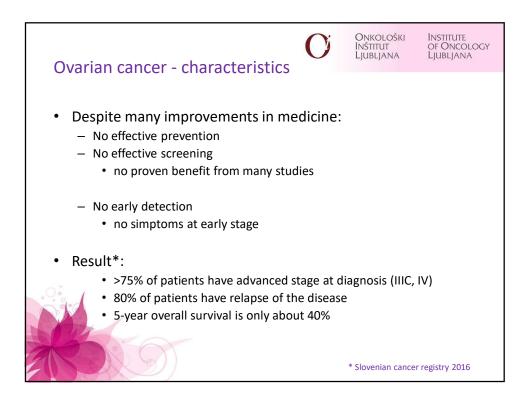
- Ax3cm painfull mass in the right armpit, exulcerated, purulent discharge, right arm red, swollen + osteolitic areas in the right humerus, no fracture
 US arm no DVT
- Amoxycillin + clavulanic acid
- Antibiogram: Aerobic (Enterococcus faecalis, Staphylococcus lugdunensis, Staphylocccus arguateria (Corvebacterium simulans) + Anaerobic bacteria (Prevotella bivia, Peptoniphilus harei, Finegoldia magna, Veilonella atypica)
 Vancomycin + Metronidazol + Ciprofloxacin
- Severe generalized epidermolysis bullosa (50 60%)
- lulv 2018 ICU
- Septic shock and multiorganic failure

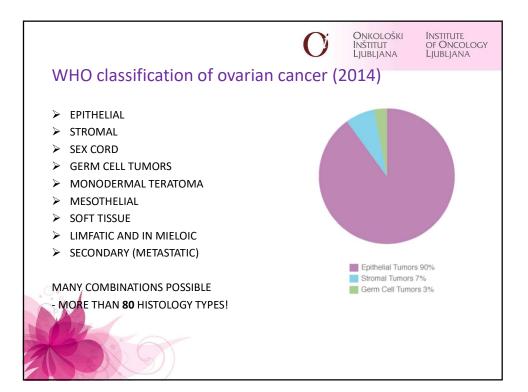
SKIN BIOPSY

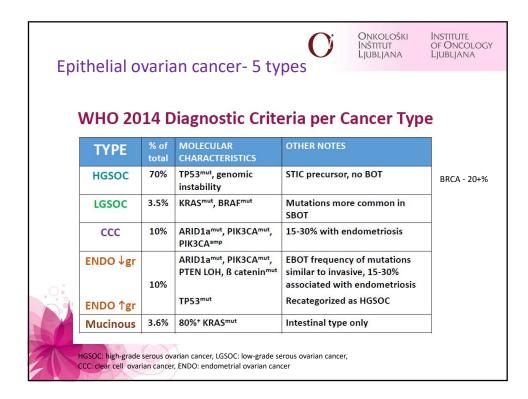

- > Total necrosis of the epidermis toxic epidermal necrolvsis
- Immunofluorescence analysis: IgA mediated Epidermolysis bullosa
- Negative anti BP180 and anti BP230 (pemphigus bullosa)
- Possible anti-P450 pemphigus bullosa or pemphigus
- bullosa mediated by anti-Plectin Ab

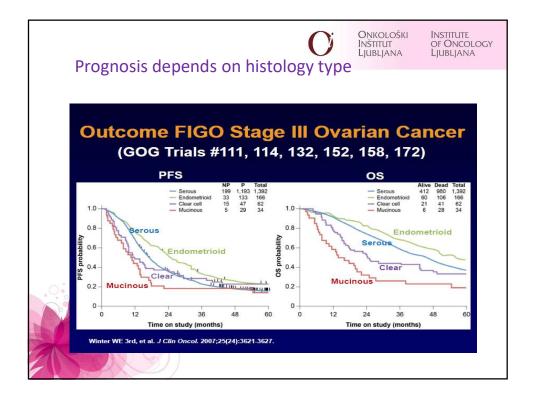


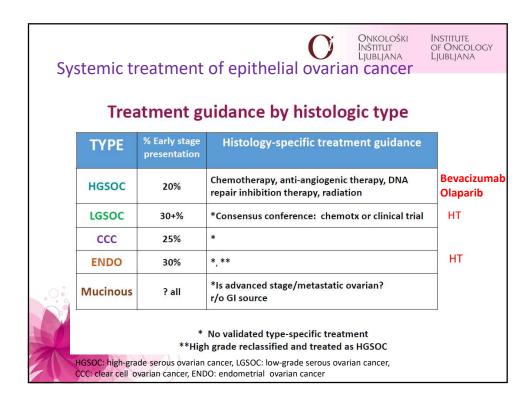


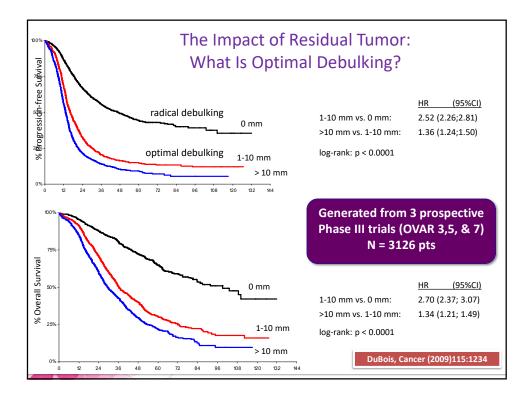


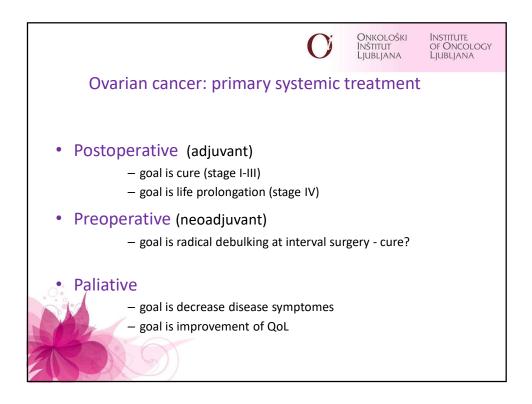


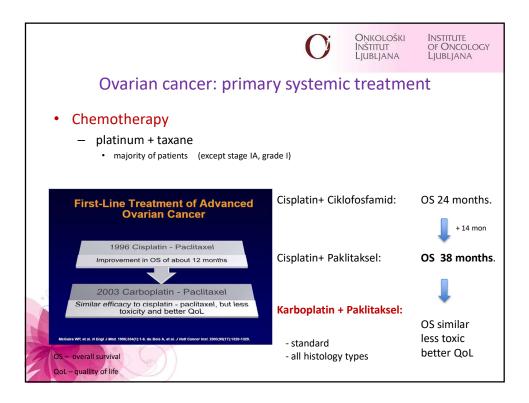

Thank you

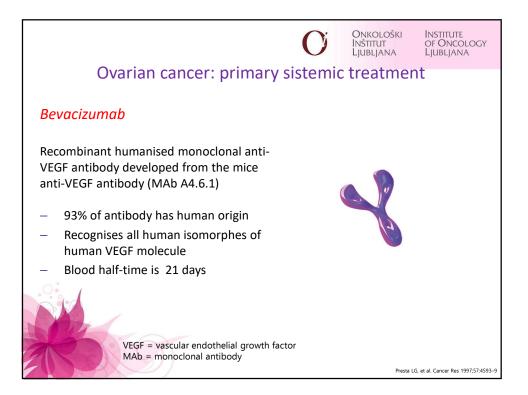


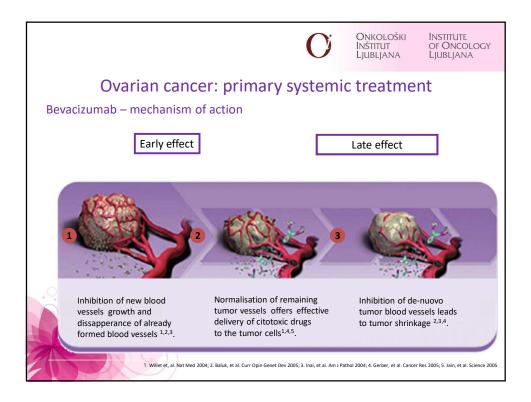


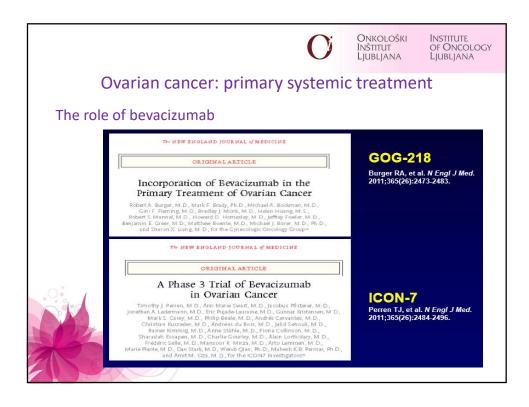


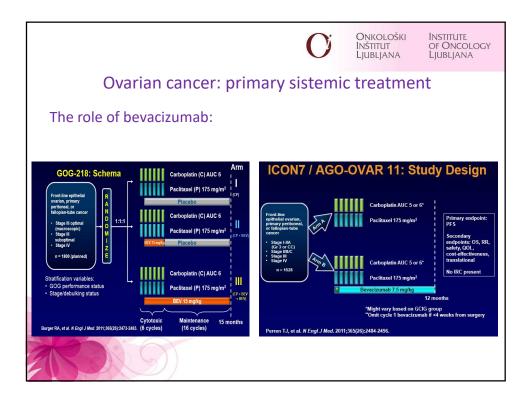


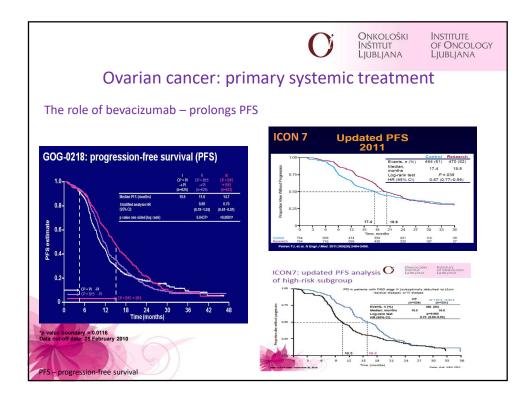


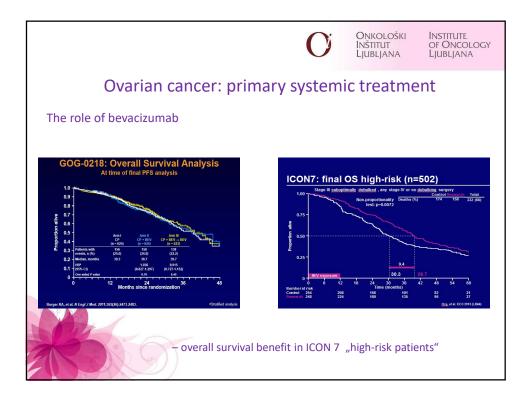


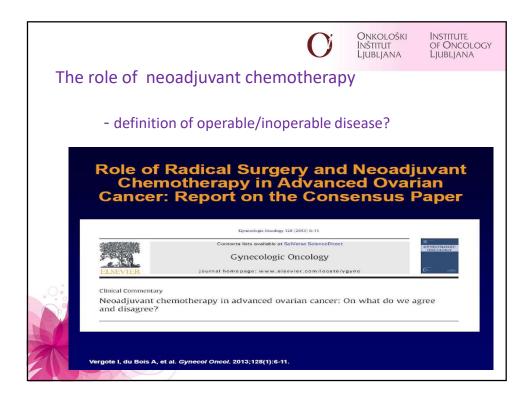


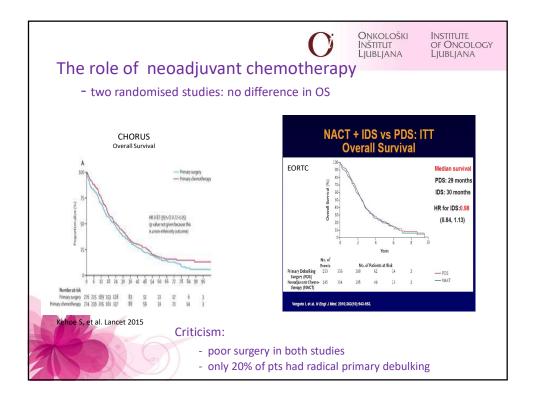


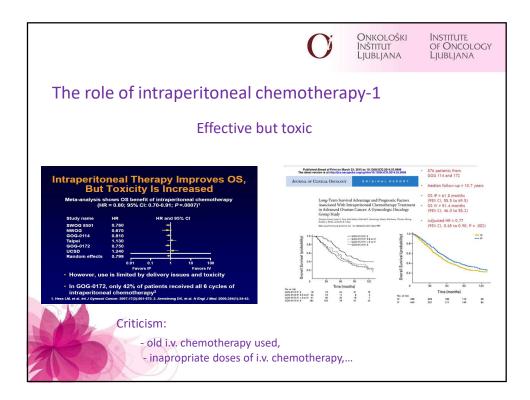


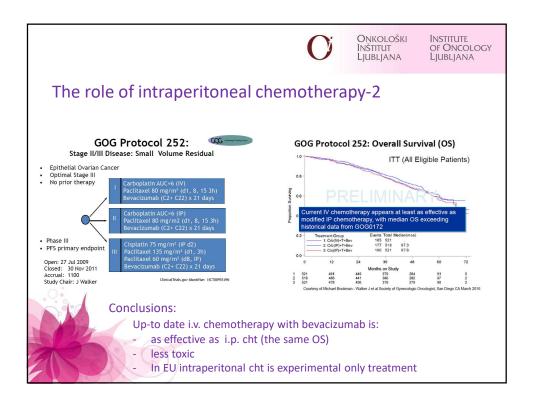


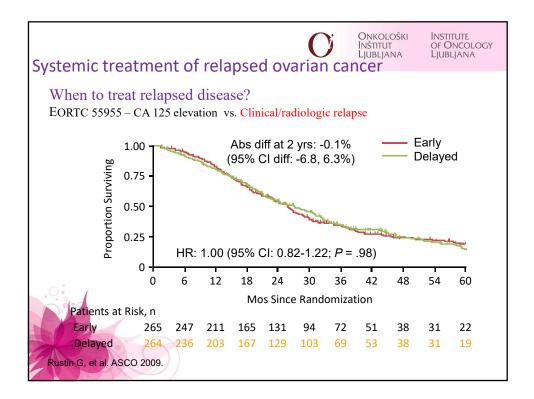


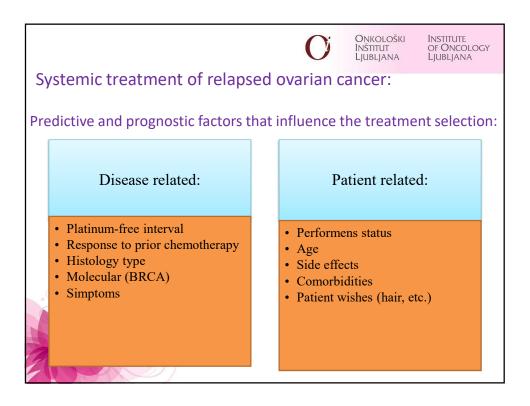


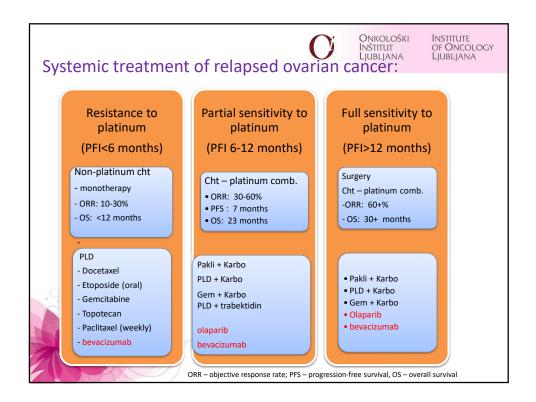


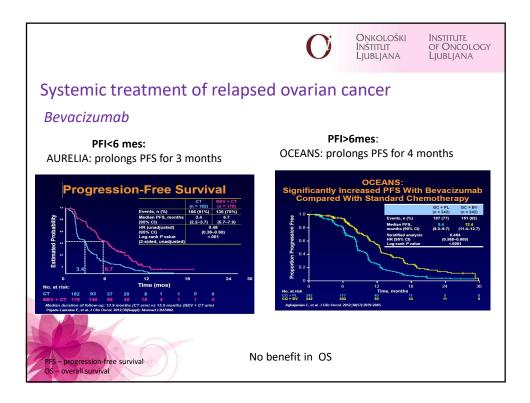


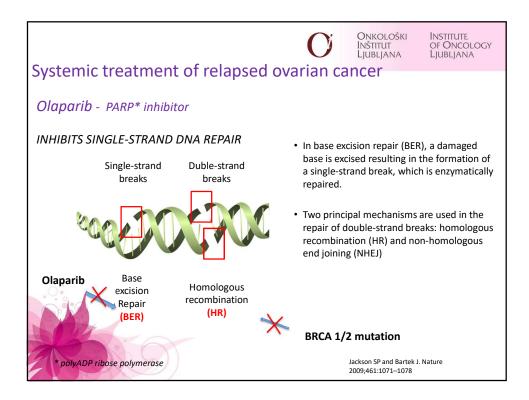


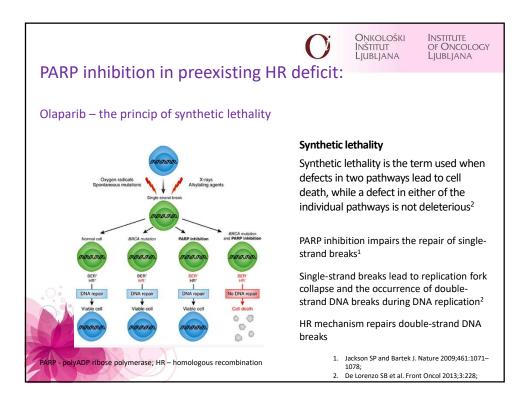


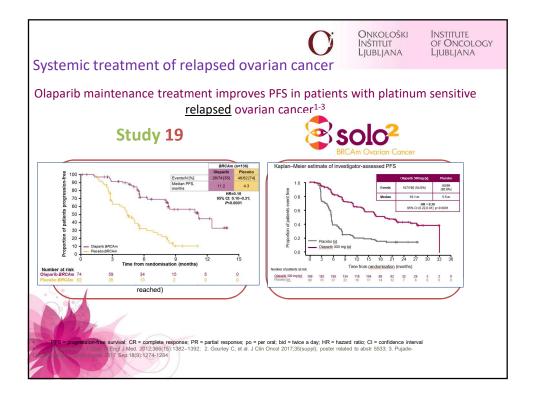


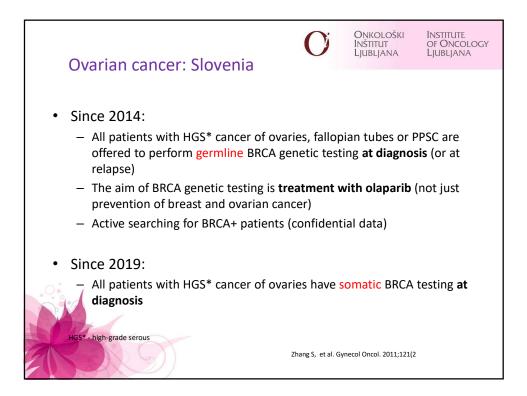


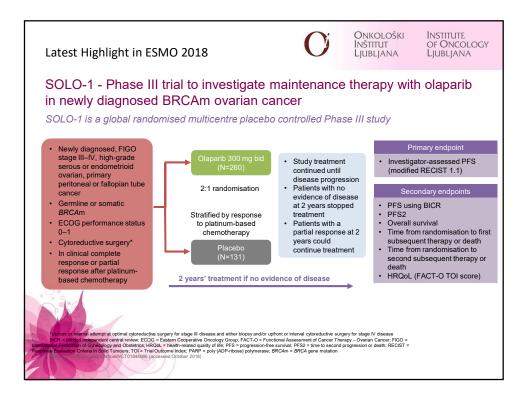


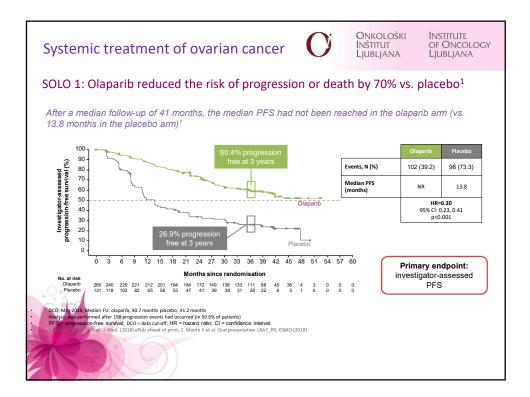


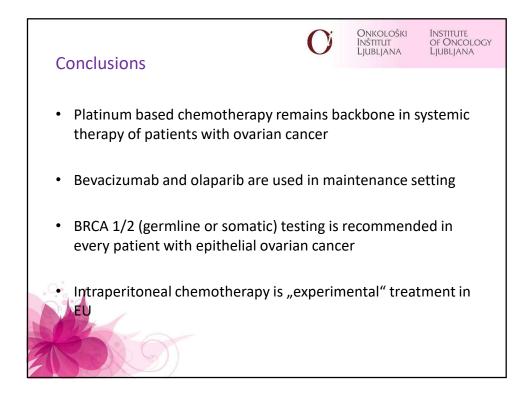












APPROACH TO THE PATIENT WITH CANCER AND RENAL IMPAIRMENT/INSUFFICIENCY

Tomaž Milanez Institute of Oncology Ljubljana University Medical Center Ljubljana

Epidemiology: renal impairment in patients with cancer

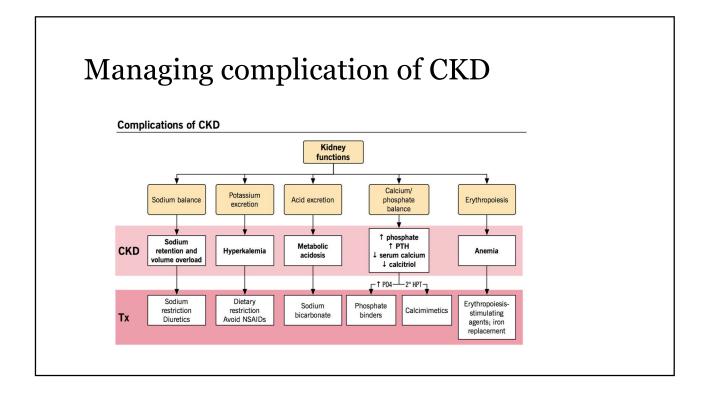
- Elderly patients (65)-higher rate of chronic kidney disease
 - Despite normal serum creatinine levels prevalence of renal in most of those patients is high
 - IRMA study- 65% of patients had renal insufficiency
- NHANES III study -30% (age 53) of patients had renal insufficiency
- IRMA-2 study-
 - renal insufficiency (MDRD eGFR<60 ml/min/1.73m²) is independent risk factor for reduced survival
 - Renal insufficiency in the whole was associated with 8.6 reduced median survival compared with normal function (16.4 vs. 25 months: HR = 1.27; p<.0002)

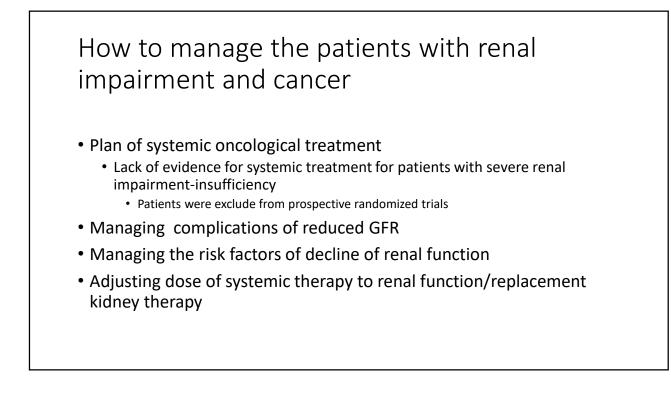
Patients with cancer and renal insufficiency

- Acute kidney injury
- Renal impairment
- Chronic kidney disease (CKD)/Renal insufficiency
 - End stage kidney disease (ESKD)
 - Patients with renal failure on renal replacement therapy
 - Hemodialysis/Peritoneal dialysis
 - Kidney transplantation

How to manage patients with renal impairment

- Acute kidney injury
 - Determining the cause of impairment
 - Managing the life treating features (hyperkaliemia, overhydration/hypervolemia, acidosis, uremic pericarditis)
 - Look for and treat the reversible conditions
 - Lower urinary tract obstruction
 - Intrarenal toxic effects of systemic treatment
 - Avoiding (further) toxic factors
- Chronic renal impairment


How to monitoring renal function in patients with cancer


- Glomerular filtration rate (GFR)
 - Estimation GFR (eGFR)
 - Reference method
 - Different equations (mathematical models)
 "New model" of eGFR/cisplatin/carboplatin
- Estimating creatinine clearance (CrCl)
- Serum creatinine level

Stages of chronic kidney disease and complications

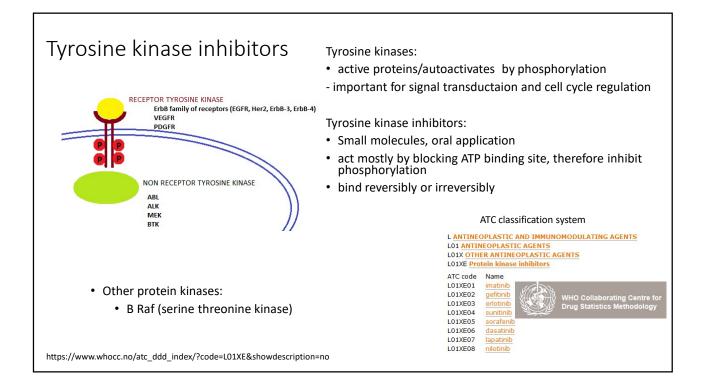
Stage	Description	eGFR (mL/min)	Potential complications of reduced GFR (in alphabetical order)
1	Kidney damage with normal or †GFR	≥90	 Anemia, including functional iron deficiency Blood pressure increases
2	Kidney damage with mild ↓ GFR	60-89	Calcium absorption decreases
3	Moderate 🖡 GFR	30–59	 Dyslipidemia /heart failure/volume overload
4	Severe + GFR	15–29	 Hyperkalemia Hyperparathyroidism
5	Kidney failure	<15 or dialysis	Hyperphosphatemia Left ventricular hypertrophy Metabolic acidosis Malnutrition potential (late)

L | Adapted from Identification, Evaluation and Management of Chronic Kidney Disease (www.health.gov.bc.ca/gpac/pdf/ckd.pdf)

Patients with cancer and renal insufficiency

- Acute renal failure
 - definition
- Chronic kidney disease (CKD)
 - End stage kidney disease (ESKD)
 - Patients with renal failure on renal replacement therapy
 - Hemodialysis
 - Peritoneal dialysis
 - Kidney transplantation

Profile of cancer patients with renal insufficiency/CKD


- Definition
 - Guidelines of CKD (KDOQI)
- Risk factors (CKD)
 - Comorbidities
- Kidney failure
 - Chronic dialysis treatment (hemodialysis/peritoneal dialysis)
 - Kidney transplant treatment
- · Agents known to adversely affect renal function
- "Polypharmacy"

Conclusions

- · Follow the goal of systemic oncological treatment-clinical end points/ extend meaning
- · Preserve kidney function/capacity of organs/maintain organ function
- · Lack of guidelines for systemic treatment in patients with severe renal impairment (recommendation)
- Adjust systemic treatment to renal function
 - <u>Use the most appropriate equation for estimating GFR (systemic treatment derivatives of platinum)</u>
 - Estimate and monitor renal function (patients with renal failure/insufficiency)/modalities
 - Pharmacokinetics of systemic drugs (guidelines/recommendation)
 - · Adjust systemic treatment to replacement therapy i.e. dialysis (recommendation)
- · Managing comorbidities and complication of CKD
- Avoiding/replace potential renal toxic drugs/agents
- Looking for reversible factors during the treatment
- Balancing/weighing between potential effectiveness and harm in patients with severe renal impairment (case reports, retrospective analysis)

Toxicity of tyrosine kinase inhibitors and the management

Urška Bokal, MD, Institute of Oncology, Ljubljana 1st Summer School of Medical Oncology, 6. 9. 2019

On and off target toxicity

- On target:
 - due to inhibition of the desired target (mechanism based)
 - · class effect: shared with all agent that inhibit specific target
 - VEGFR TKI: hypertension
 - EGFR TKI: rash
- Off target:
 - due to inhibiton of other unintended targets
 - sunitib: hematologic toxicity (FLT3 inhibition)

CA Cancer J Clin. 2013;63:249-79

The good news: toxicity may correlate with response/better survival

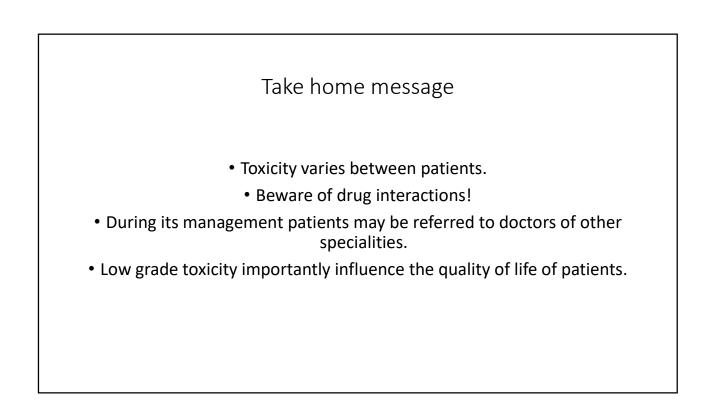
- rash due to EGFR TKI in lung cancer
- hypertension and hypothyroidism due to VEGFR inhibitors in renal cell carcinoma

PLoS One. 2013;8(1):e55128. doi: 10.1371/journal.pone.0055128. Epub 2013 Jan 30.
Skin rash could predict the response to EGFR tyrosine kinase inhibitor and the prognosis for
patients with non-small cell lung cancer: a systematic review and meta-analysis.
Liu HB¹, Wu Y, Lv TF, Yao YW, Xiao YY, Yuan DM. Song Y <u>I Nati Cancer Inst.</u> 2011 May 4;103(9):763-73. doi: 10.1093/jnci/djr128. Epub 2011 Apr 28. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated
with sunitinib.

Cancer, 2011 Feb 1;117(3):534-44. doi: 10.1002/cncr.25422. Epub 2010 Sep 15.

Hypothyroidism in patients with renal cell carcinoma: blessing or curse?

Schmidinger M¹, Vogl UM, Bojic M, Lamm W, Heinzl H, Haitel A, Clodi M, Kramer G, Zielinski CC.


Liu S et al. Cancer Treat Rev. 2014; 40: 883-91

Compound	Target in bibition	Constific towisity
Compound	Target inhibition	Specific toxicity
erlotinib	1 st generation EGFR TKI	
gefitinib	(mutant EGFR, reversible)	skin related toxicity
afatinib	2 nd generation EGFR TKI	(rash, acne, pruritus, dry
dacomitinib	(EGFR, Her2 and Her4,	skin)
	irreversible)	diarrhea
osimertinib	3 rd generation EGFR TKI	interstitial pneumonitis
	(mutant EGFR including	
	mutation T790M, irreversible)	
lapatinib	EGFR and Her2, reversible	diarrhea
		nausea, vomiting
neratinib	EGFR, Her2 and Her4,	rash
	irreversible	cardiomyopathy

	Compound	Target inhibition	The most common toxicity (incidence of all grades)	Other toxicity
	crizotinib		nausea, vomiting, diarrhea, constipation,	neutropenia,
	(+ ROS1,		edema, fatigue, ↓ appetite, neuropathy,	QT prolongation,
	cMET)	1 st	dizziness	bradycardia, cardiac failure,
anti ALK tyrosine		generation ALK TKI	hepatotoxicity, vision disorder, (≥ 25%)	GIT perforation, renal
	ceritinib	ALK I KI	nausea, vomiting, diarrhea, constipation,	impairment QT prolongation,
kinase inhibitors	(+ ROS1)		fatigue, 1 appetite, 1 weight, abdominal pain,	bradycardia,
	(1 1031)		hepatotoxicity, ↑ creatinine, rash, anemia,	hyperglycemia, ↑ amylase
			esophageal disorder (≥ 10%)	and lipase
CPK – creatine		1		Verse i verse satori verse dere eta i
phosphokinase	alectinib	2 nd		hepatotoxicity, 个 CPK,
AP – alkaine phosphatase	(+ RET)	generation	constipation, edema, myalgia (≥ 20%)	bradycardia,
		ALK TKI		photosensitivity
	brigatinib		↑ glucose, insulin, CPK, lipase, amylase, AP,	bradycardia visual disturbance
	(+ ROS1)		aPTT, ↓ lymphocytes, phosphate, leucocytes,	visual disturbance
			anemia, nausea, diarrhea, fatigue, cough,	
ALL: interstital lung			headache, rash, vomiting, dyspnea,	
disease!!			hypertension, myalgia, peripheral	
uisease!!			neuropathy (≥ 25%)	
	lorlatinib	3rd	hyperlipidemia, peripheral neuropathy,	10. 10. 510
	(+ ROS1)	generation	cognitive effects, edema, fatigue, weight	↑ amylase, lipase,
		ALK TKI	increase, diarrhea, arthralgia (≥ 20%)	AV block, LVEF decrease

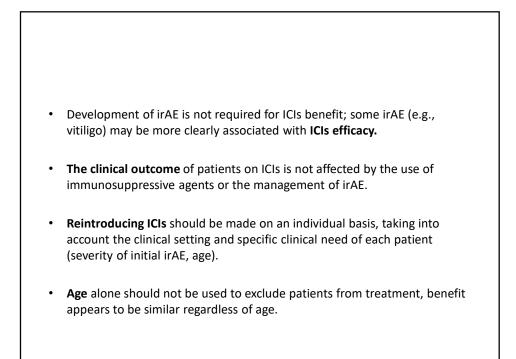
anti VEGFR tyrosine kinase inhibitors

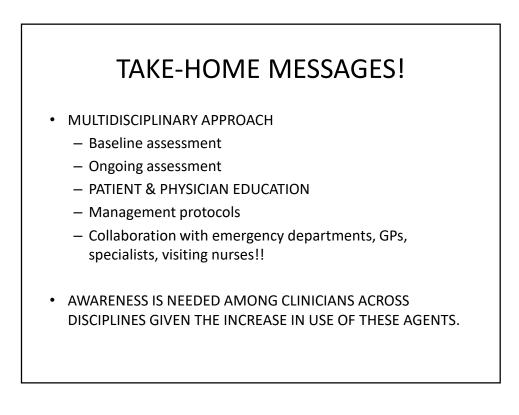
Compound	Specific toxicity
sunitinb	
pazopanib	thyroid dysfunction, dysphonia,
axitinib	palmar-plantar erythrodysaesthesia syndrome
tivozanib	thromboembolism, hypertension, cardiac failure,
cabozanitib	QT prolongation
sorafenib	hemorrhages, GIT perforation/fistulas, impaired
regorafenib	wound healing
1,2172	liver toxicity, proteinuria, fatigue, taste disorder

IMMUNE-RELATED ADVERSE EVENTS OF IMMUNE CHECKPOINT INHIBITORS

Nežka Hribernik, MD Martina Reberšek, MD, PhD Institute of Oncology Ljubljana

1st Summer School in Medical Oncology September 2019


Characteristics of irAE


- They are reversible if treated promptly
- If left untreated they progress to more severe state
- If treated early, severity and duration decreases
- Any organ can be affected
- Average 6 12 weeks after initiation of therapy
- Can occur
 - Within days of the first dose
 - After several months of therapy
 - After discontinuation of therapy

Pre-treatment evaluation and diagnostic tests to consider

- WHO PS
- History
 - Detailed questioning for autoimmune, infectious disease, endocrine and organ-specific disease history (NOT contraindication, but should be well controlled!)
 - History of base line bowel habit (frequency of bowel movements, usual stool consistency)
- Blood tests:
 - CBC, CMP, TSH/T3/T4, HbA1c, total CK
 - Infectious disease screen: HBsAg/sAb/cAb,HCAb, CMV Ab, HIV Ab/Ag p24
- Dermatologic examination
- Pulmonary test (SaO₂), cardiac tests (ECG, Trop I/T)
- Additional screening tests recommended in patients with pre-existing organ disease/at risk of organ-specific toxicity (8 am ACTH, cortisol, NT pro-BNP, 6MWT ...)

Grade	Management	ICI	Notes
1	Supportive measures Close monitoring	Continue (exept some: pneumonitis/ neurological/ cardias irAEs)	Outpatient
2	Corticosteroids Immediate vs delayed	Withhold ICI (continued once AEs \leq G1)	Outpatient with close team contact or inpatient
3	Immediate corticosteroids and additional IMA if required	Withhold or discontinue ICI	Inpatient (except some: skin/ hepatitis)
4	Immediate corticosteroids With early use of additional IMA	Discontinue ICI	Inpatient Consider transfer to experienced centre!

APENDIX:

Dr. Dobrila: Systemic treatment of metastatic gastric cancer (Tuesday 03.09.)

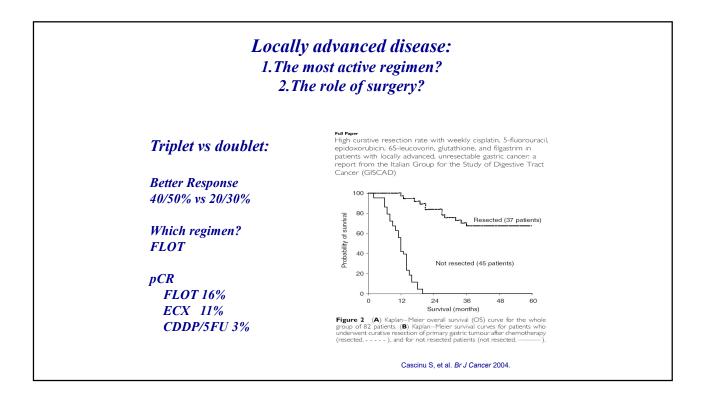
Dr. Pleština: Systemic treatment of metastatic colorectal cancer (Tuesday 03.09.)

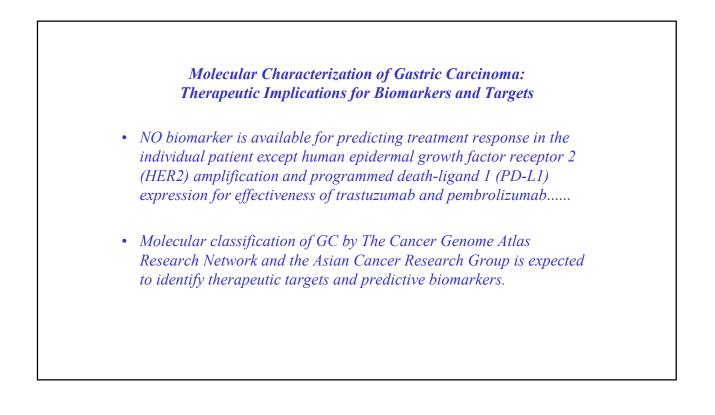
Dr. Škrbinc: Systemic treatment of germinal tumors

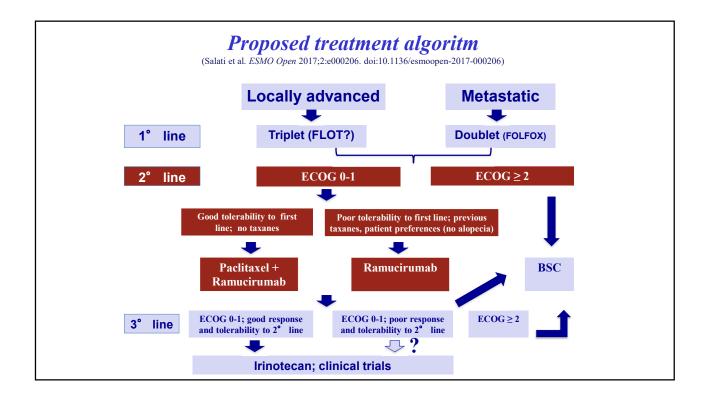
(Wednesday 04.09.)

Systemic treatment in advanced gastric cancer

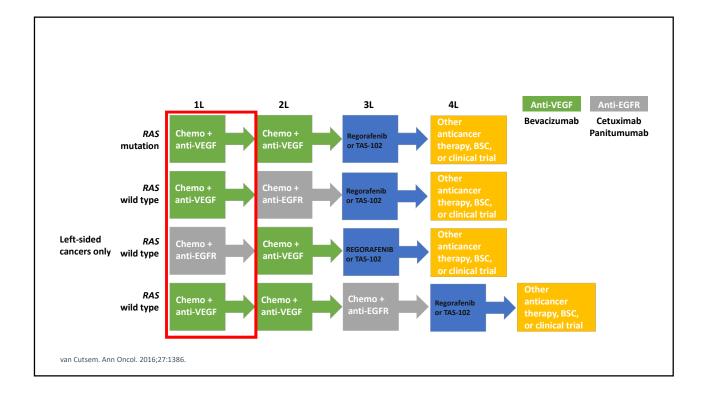
Prof. Renata Dobrila-Dintinjana, MD.PhD. Clinical Hospital Center, Rijeka School of Medicine, Rijeka Croatia

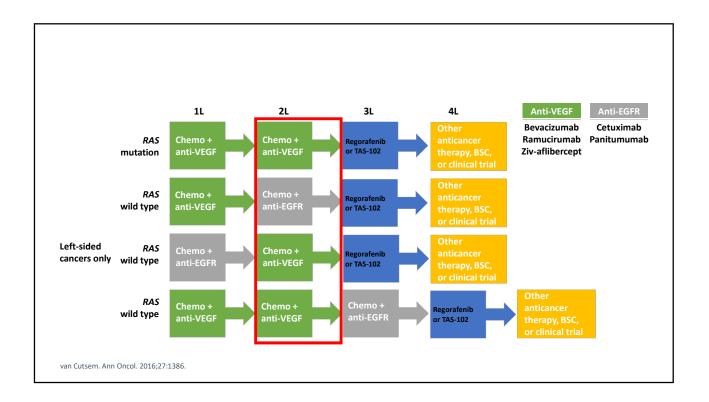

Advanced Gastric Cancer

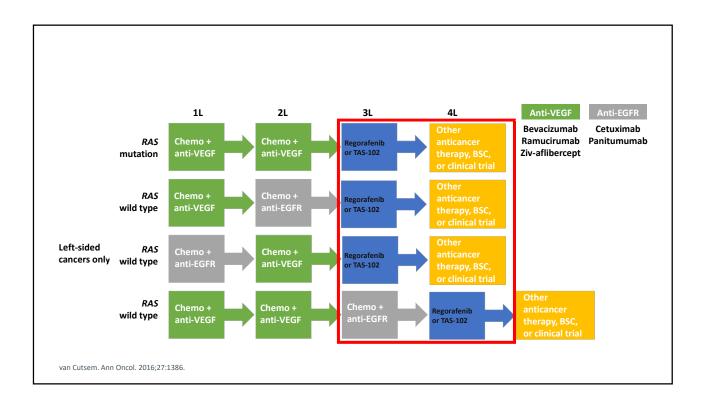

Locally advanced OS: 11 months Resectability (Same survival of initially resectable patients) A 3-drug regimen (tumor response)


Metastatic OS: 3 months Palliation QoL; Survival A 2-drug regimen (no toxic regimen)

Cascinu S, et al. Br J Cancer 2004.


Subtypes	Targets	Targeted Agents
EBV	PIK3CA	Idelalisib, Taselisib
	<i>PD-L1/L2</i>	Pembrolizumab, Nivolumab, Durvalumab, Avelumab, Atezolizumab
MSI	MLH1 silencing	Pembrolizumab, Nivolumab, Durvalumab, Avelumab, Atezolizumab
	PIK3CA,	Idelalisib, Taselisib
	EGFR	Erlotinib, Gefitinib
	ERBB2	Trastuzumab
	ERBB3 PD-L1	Pertuzumab Pembrolizumab, Nivolumab, Durvalumab, Avelumab, Atezolizumab
		Temoronzamao, mronamao, Darvatamao, metamao, metamao
CIN	EGFR	Erlotinib, Gefitinib
	VEGFA	Bevacizumab, Ramucirumab
	CCNE1, CCND1, C	DK6 Palbociclib, Ribociclib, Abemaciclib
GS	RHOA -	
0.0	CLDN18 -	

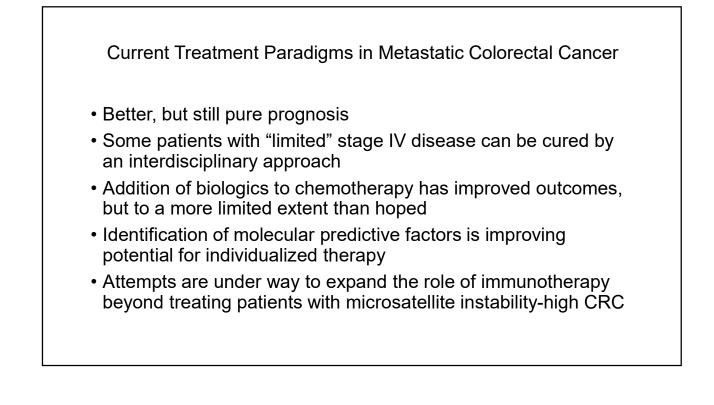


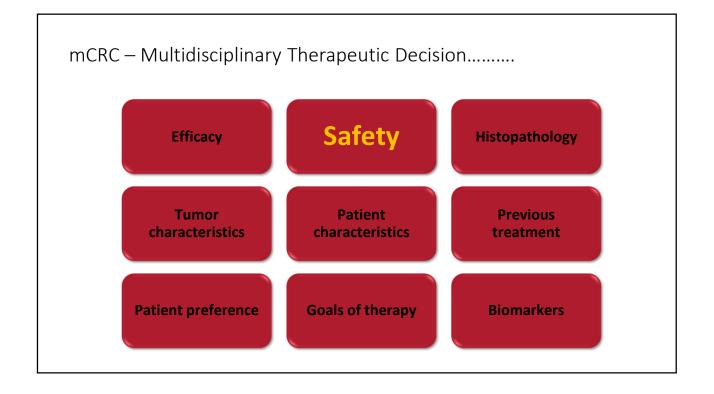


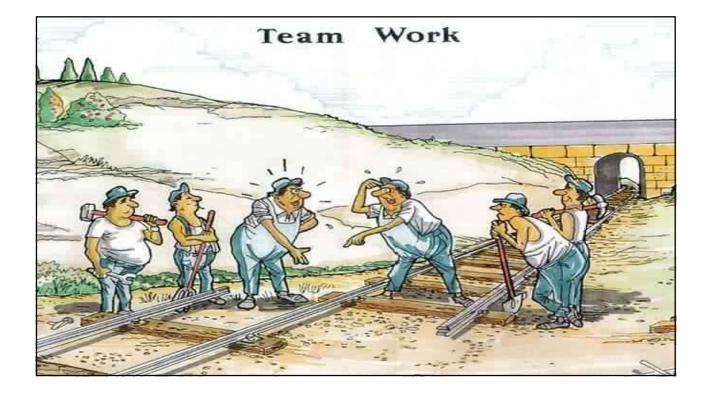
Systemic treatment of metastatic colorectal cancer

prof.dr.Stjepko Pleština Department of Oncology UHC Zagreb, Croatia

- · A wealth of evidence indicates that primary tumour location is prognostic
 - Patients with left-sided tumours have longer survival outcomes than patients with right-sided tumours
 - · The prognostic value appears independent of chemotherapy backbone
- · Genetic differences between right- and left-sided tumours may account for some of the prognostic effect

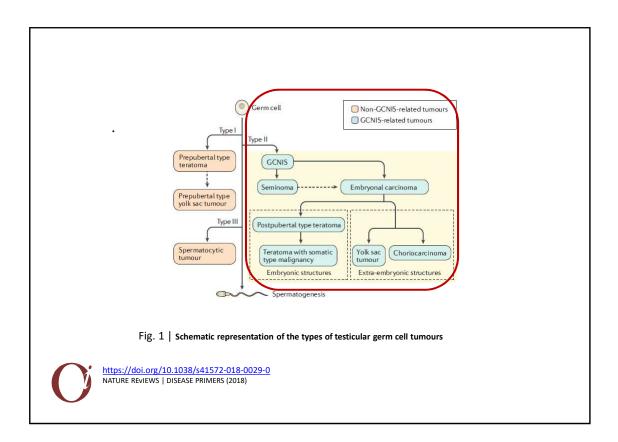

 - Right-sided primary tumours occur more frequently with increasing age and are more likely to have concomitant genetic features associated with poor outcomes: BRAF MT, MSI-H, and increased methylation
- · Both clinical trial and real-world data suggest that bevacizumab provides clinical benefit regardless of primary tumour location

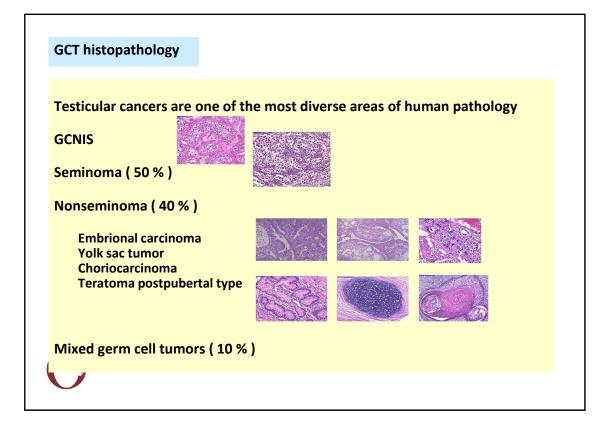

The totality of data suggests that cetuximab and panitumumab have efficacy in left-sided CRC, but EGFR inhibitors are • not equaly beneficial to patients with right-sided primary tumours

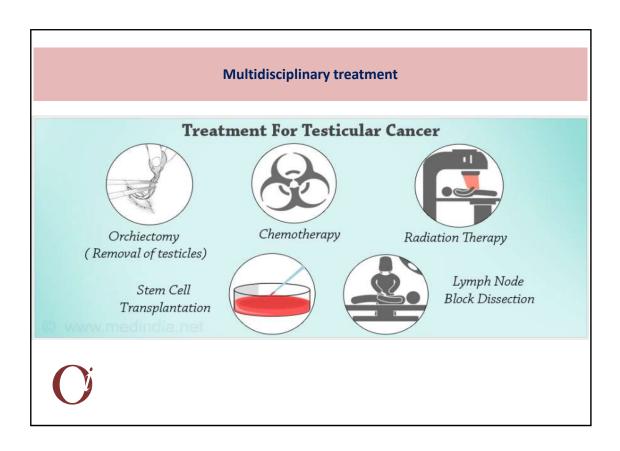

The NCCN guidelines draw the same conclusion that bevacizumab works regardless of tumour location whereas anti-EGFRs are only effective in left-sided tumours: "only patients whose primary tumours originated on the left side of the colon (splenic flexure to rectum) should be offered cetuximab or panitumumab in the first-line treatment of metastatic disease'

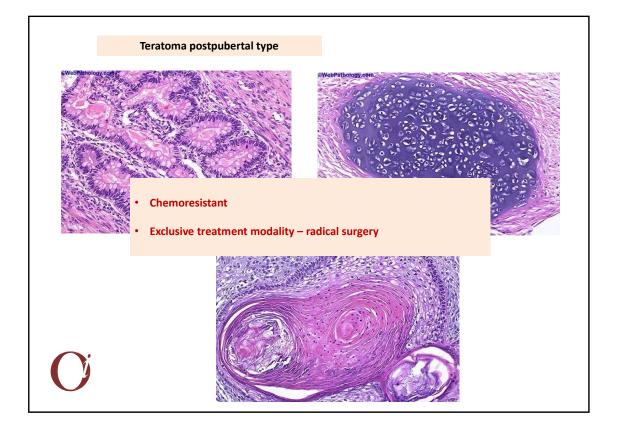
						REKO
/erview	of CN	NS Pred	ictive Data i	n mCRC		
CALGB80405	1st line	RAS wild-type	e RCT (n=392)	FOLFOX-cetuximab vs. FOLFOX bevacizumab	CMS1 > OS with FOLFOX-bevacizumab, CMS2 > OS with FOLFOX-cetuximab	Almac Xcell FFPE
FIRE-3	1st line	RAS wild-type	e RCT (n=385)	FOLFIRI-cetuximab vs. FOLFIRI bevacizumab	CMS4 > OS with FOLFIRI-cetuximab	Custom Nanostring FFPE
CAIRO2	1st line	all-comers	RCT (n=311)	CAPOX-bevacizumab vs. CAPOX-bevacizumab- cetuximab	CMS2/CMS3 > OS with cetuximab (<i>RAS/BRAF</i> wt)	IHC FFPE
мах	1st line	all-comers	RCT (n=237)	Capecitabine +/- mitomycin +/- bevacizumab	CMS2/CMS3 > PFS with bevacizumab	Almac Xcell FFPE
Japan	1st line	all-comers	Retrospective (n=193)	Oxaliplatin vs. Irinotecan	CMS4 > PFS and OS with Irinotecan	Agilent FF
CORRECT	3rd line	all-comers	RCT (n=)	Regorafenib vs placebo	CMS4 > OS with Regorafenib	Affimetrix Array FFPE

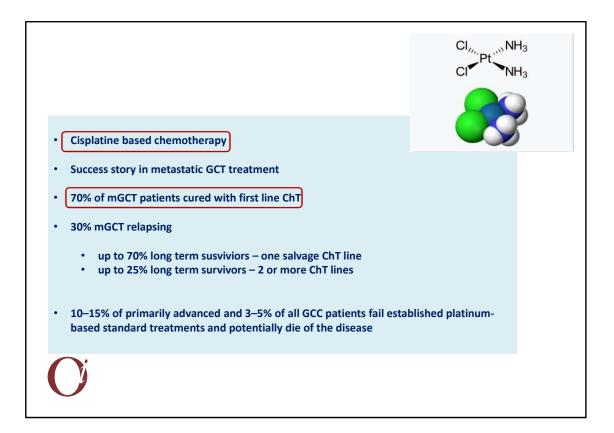
Okita A, et al, Oncotarget, 2018;9:18698-18711; Teufel M, et al, J Clin Oncol, 2015;33(suppl: abstr 3558).

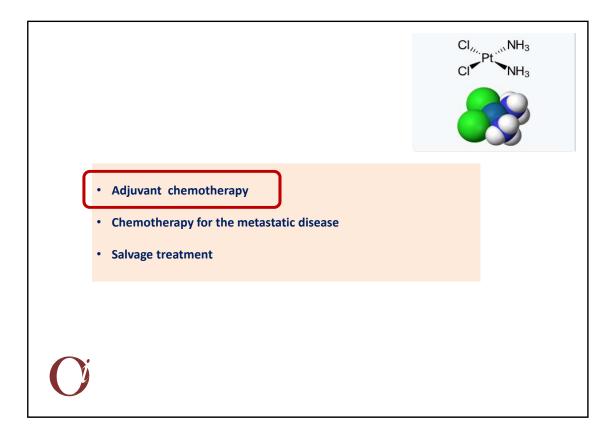


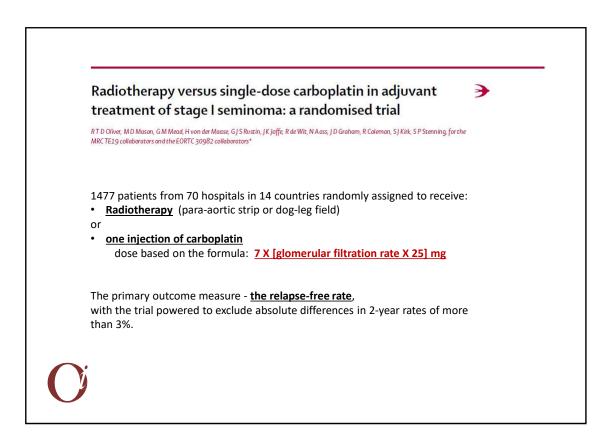



ESMO 2017 GUIDELINES

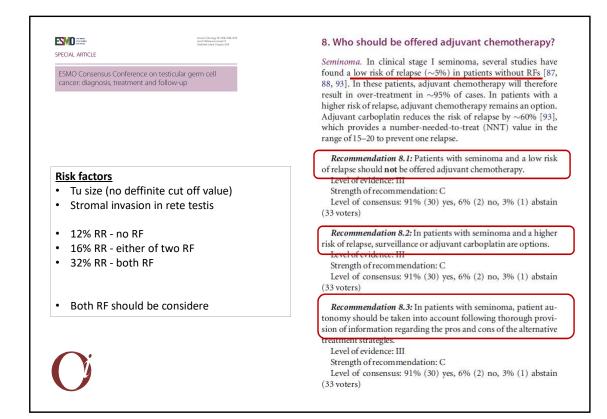

Cabanan				Fit patients			Unfit	
Category		rit patients					May be unfit	Unfit
Treatment goal	Cytore	duction (tumor shrinkag	e)	Disease con	trol (control of progressi	on)	Palliation	
Molecular profile	RAS WT	RAS MT	BRAF MT	RAS WT	RAS MT	BRAF MT	Any	Any
First line								
Preferred choice(s)	ChT doublet + EGFR antibody	ChT doublet + bevacizumab	FOLFOXIRI + bevacizumab	ChT doublet + bevacizumab or ChT doublet + EGFR antibody	ChT doublet + bevacizumab	FOLFOXIRI +/- bevacizumab	FP + bevacizumab	BSC
Second choice(s)	FOLFOXIRI +/- bevacizumab	FOLFOXIRI +/- bevacizumab	ChT doublet + bevacizumab	FP + bevacizumab		ChT doublet + bevacizumab	Reduced-dose ChT doublet	-
Third choice(s)	ChT doublet + bevacizumab	FOLFOXIRI	FOLFOXIRI				If RAS WT may consider EGFR antibody therapy	-
Maintenance								
Preferred choice	FP + bevacizumab	FP + bevacizumab	FP + bevacizumab	FP + bevacizumab	FP + bevacizumab	FP + bevacizumab	FP + bevacizumab	-
Second choice	Pause	Pause	Pause	Pause	Pause	Pause	FP	-
Second line								
Preferred choice(s)	ChT doublet + bevacizumab	ChT doublet + bevacizumab	ChT doublet + bevacizumab	ChT doublet + bevacizumab or ChT doublet + EGFR antibody	ChT doublet + bevacizumab	ChT doublet + bevacizumab		-
Second choice(s)	ChT doublet + EGFR antibody or FOLFIRI + aflibercept/ramucirumab	FOLFIRI + aflibercept/ ramucirumab	FOLFIRI + aflibercept/ ramucirumab	FOLFIRI + aflibercept/ramucirumab	FOLFIRI + aflibercept/ ramucirumab	FOLFIRI + aflibercept/ramucirumab		-
Third line								
Preferred choice(s)	ChT doublet + EGFR antibody or irinotecan + cetuximab	Regorafenib or trifluridine/tipiracil	Regorafenib or trifluridine/tipiracil	ChT doublet + EGFR antibody or irinotecan + cetuximab	Regorafenib or trifluridine/tipiracil	Regorafenib or trifluridine/tipiracil		-
Second choice(s)	EGFR antibody monotherapy			EGFR antibody monotherapy				-
Third choice(s)	Regorafenib or trifluridine/tipiracil			Regorafenib or trifluridine/tipiracil				-

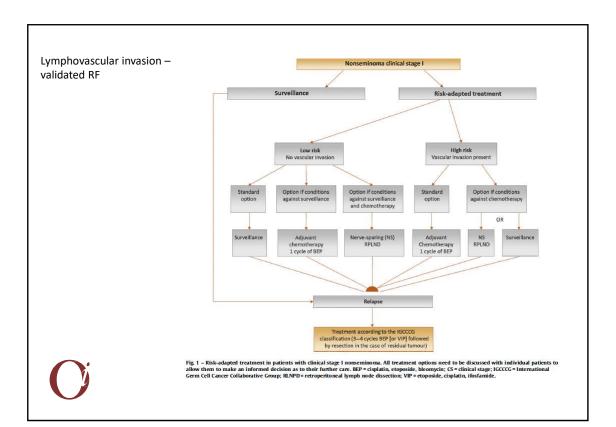


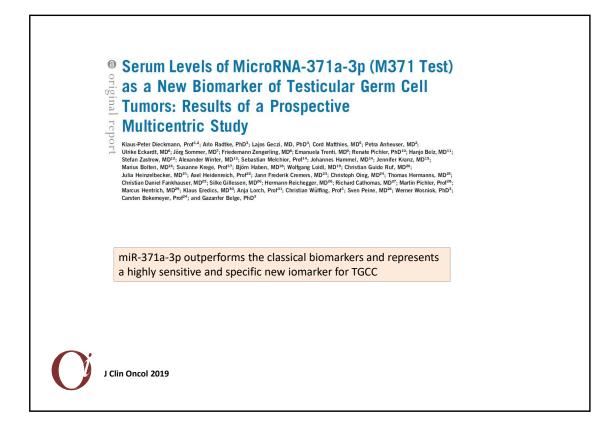


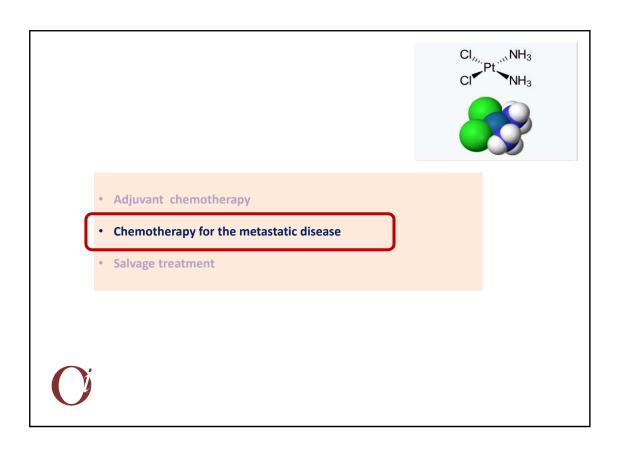


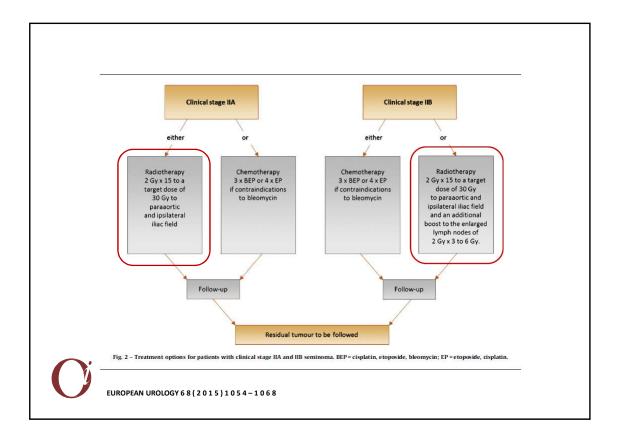




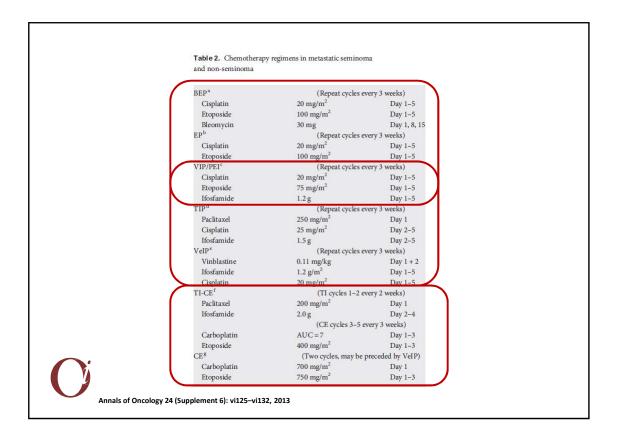


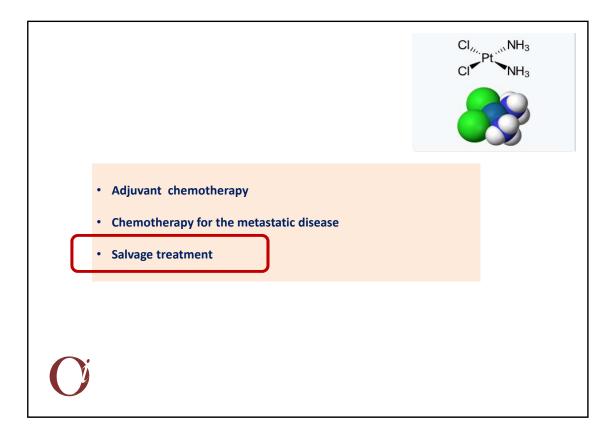


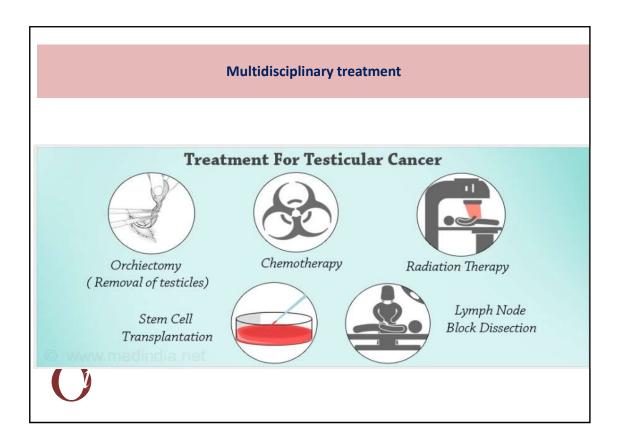


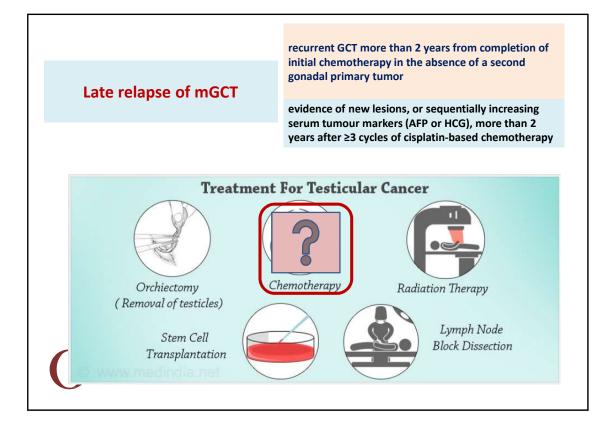

veillance for pT1-pT3 tumors ferred)		
		Figure 1: Stage I RT Field
•	Repeat elevated serum tumor marker measurement and assess with chest/abdominal/pelvic CT (with contrast) to scan for evaluable disease ^{p.q}	
	gle-agent carboplatin ^{I,m} C=7 x 1 cycle or AUC=7 x 2 cycles) I (20 Gy, preferred or 26.5 Gy) ^o	

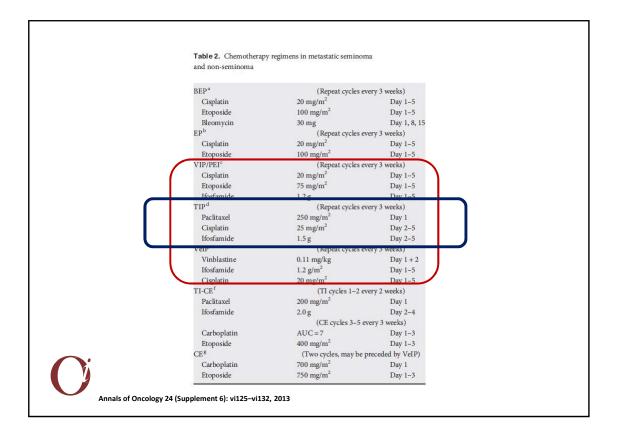
NCCN National Comprehen: Cancer Network*	SIVC	N Guidelines Version 1.2 icular Cancer	2019	NCCN Guidelines Index Table of Contents Discussion
		RISK CLASSIFICATION FOR AD		
F	Risk Status	Nonseminoma	Seminoma	1
G	Good Risk	Testicular or retroperitoneal primary tumor and No nonpulmonary visceral metastases and <u>Postorchiectomy markers</u> - all of: AFP < 1,000 ng/mL hCG < 5,000 iu/L LDH < 1.5 x upper limit of normal	Any primary site and No nonpulmonary visceral metastases and Normal AFP Any hCG Any LDH	_
	ntermediate Risk	Testicular or retroperitoneal primary tumor and No nonpulmonary visceral metastases and <u>Postorchiectomy markers</u> - any of: AFP 1,000–10,000 ng/mL hCG 5,000–50,000 iu/L LDH 1.5–10 x upper limit of normal	Any primary site and Nonpulmonary visceral metastases and Normal AFP Any hCG Any LDH	
F	9oor Risk	Mediastinal primary tumor or Nonpulmonary visceral metastases or <u>Post-orchiectomy markers</u> - any of: AFP > 10,000 ng/mL hCG > 50,000 iu/L LDH > 10 x upper limit of normal	No patients classified as poor prognosis	
CI	assification: A P	rom the International Germ Cell Cancer Collabo rognostic Factor-Based Staging System for Met 33. Reprinted with permission of the American S	astatic Germ Cell Cancers. J Clin Oncol	us <mark>-</mark>
Markers used for risk classif	fication are post	-orchiectomy.		
Note: All recommendations are o		otherwise indicated. ement of any patient with cancer is in a clinical trial. Par	tionation in almical trials is associably appauraged	1


Table 1 | Serum AFP and hCG levels in GCTs²²

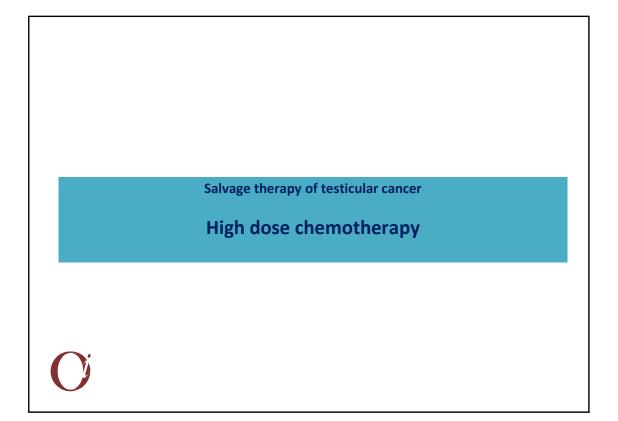

GCT histological subtype	AFP	hCG
Yolk sac tumour	++	-
Seminoma	5-2 C	±
Embryonal carcinoma	±	±
Choriocarcinoma	12	++
Teratoma	±	-

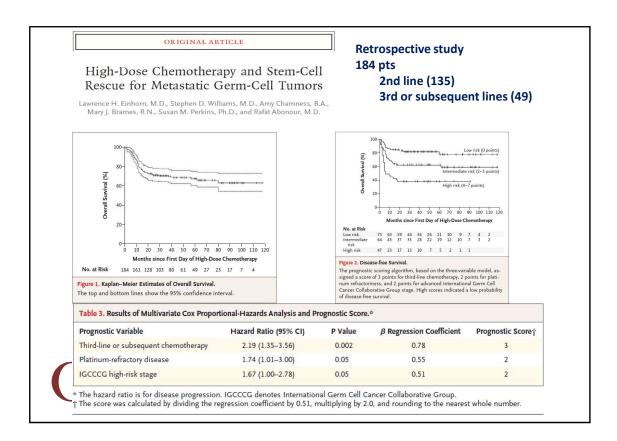

AFP, α -fetoprotein; GCT, germ cell tumour; hCG, human chorionic gonadotrophin. ++, strongly positive levels; \pm , levels may be negative or moderately positive; –, negative levels.

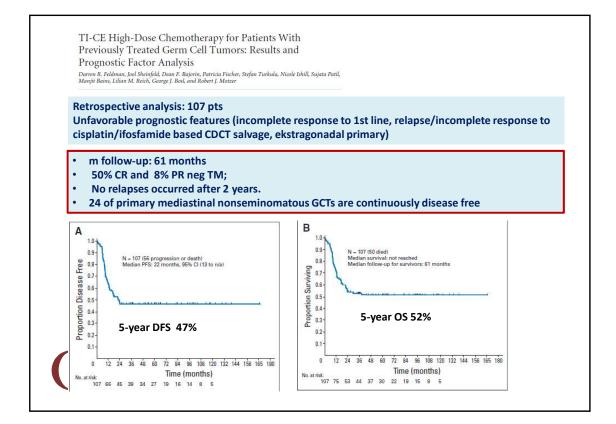

C

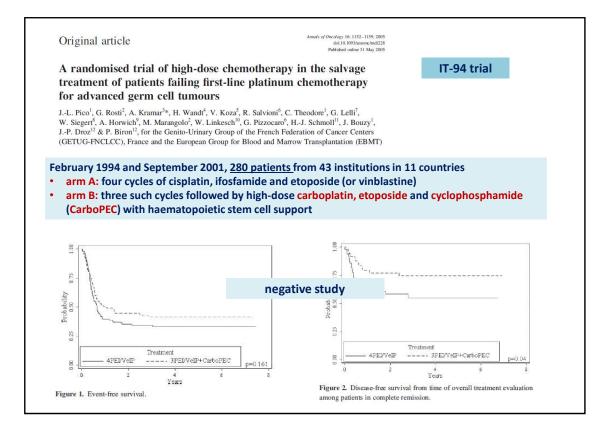

NATURE REVIEWS | UROLOGY VOLUME 13 | DECEMBER 2016

A phase II trial of TIP (paclitaxel, ifosfamide and cisplatin) given
as second-line (post-BEP) salvage chemotherapy for patients with
metastatic germ cell cancer: a medical research council trial


GM Mead^{*1}, MH Cullen³, R Huddart³, P Harper⁴, GJS Rustin³, PA Cook⁶, SP Stenning⁶ and M Mason⁷ on behalf of the MRC Testicular Tumour Working Party⁴ //Medicd Ronolgy Unit, C Level West Wing, Sudamption General Hospital, Stathamption 5016 47D, UK² University Hospital Birmingham NHS Foundation Trait Rimingham B137H, UK², Repail Maschen Hospital, Starto JS FT, UK⁶, Sudy Hospital, Hontow H46, 2RN, UK⁶, ⁴MRC Clinical Traits Unit, London NW1 2DA, UK² ¹Veindre Hospital, Candiff CF4 7XL, UK


43 eligible pts (relaps after BEP 1st line for mGCT) TIP x 4 (G-CSFgiven at the discretion of the investigator) <u>Primary outcomme measure</u> – response to TIP


 Table 2
 Response rates, FFS and overall survival


Il patients 8 (19%) 18 (42%) 5 (12%) 8 (19%) 4 (9%) 60% (44-75) 72% (56-85) 38% (23-53) 70% (56-85)	Group	CR	PR MK-ve	Complete resection of viable malignancy CR(S)	IR	Treatment failure/early death	Favourable (CR+PR) response rate (FFR _p) (95% CI)	Favourable (CR+PR+CR(S) response rate (FFR _c) (95% CI	FFS rate	l-year overall survival rate (95% Cl)
	All patients	8 (19%)	18 (42%)	5 (12%)	8 (19%)	4 (9%)	60% (44-75)	72% (56-85)	38% (23–53)	70% (56–84)

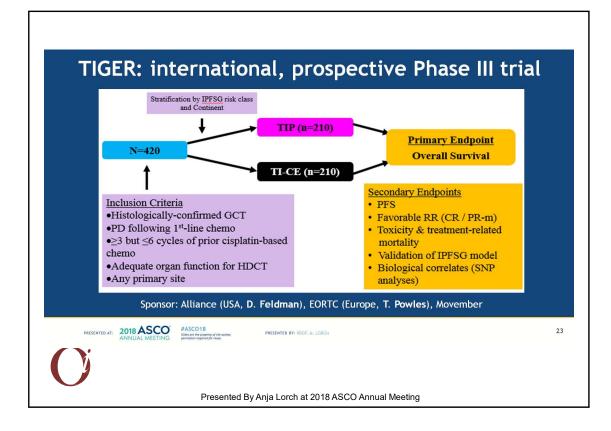
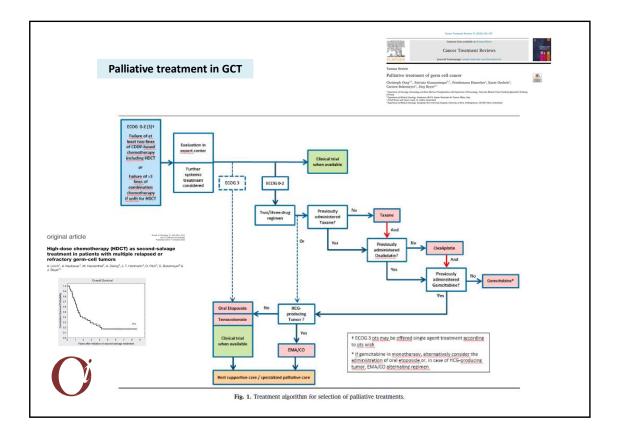
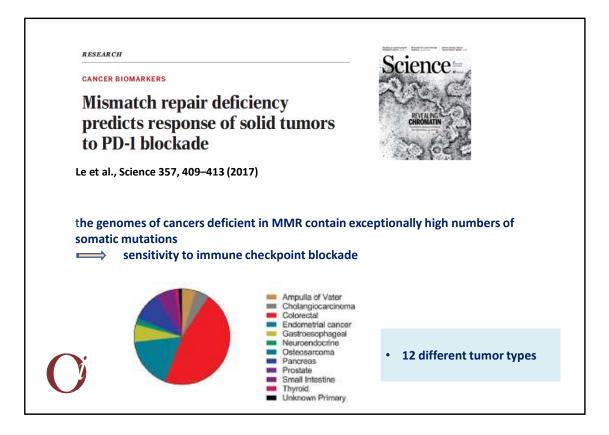
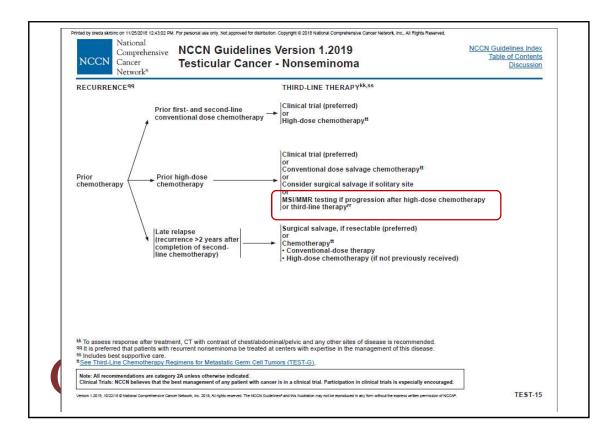

			Response	e (N, %)			4					
Group	CR	PR MK-ve	Complete re of viable mal CR(S)	ignancy	IR	Treatment failure/early death		R) rate	Favourable (CR+PR+CR(S)) response rate (FFR _c) (95% CI)	FFS rate	l-year overa survival rate (95% Cl)	
MSKCC good risk 7	(19%) (27%) (6%)	18 (42%) 12 (46%) 6 (35%)	5 (12% 2 (8%) 3 (18%	· · · · ·	8 (19%) 3 (12%) 5 (29%)	4 (9%) 2 (8%) 2 (12%)	60% (44- 73% (52- 41% (18-	-88)	72% (56–85) 81% (61–93) 59% (33–82)	43% (23-63))
CR = complete respon	se; PR =	partial respo	nse; IR=incomp	lete respor	nse; FFS =	failure-free surv	val; 95% CI =	95% cc	onfidence interval.			
Table 3. Patient			ound to be Pre ate Analysis	dictive of	Surviva	l in				© 2005 Car	ncer Research	UK
Characteristic	c .	No. of Patients	No. Alive	Median S (mont		P			Supri	val by risk grou	ID	
All patients		58	17	11		NA	1.0		1	rai by non grou	-P	-1
Primary tumor site						.04	0.9	9 -				
Gonadal		51	16	12			0.0	в -	- <u> </u>	1 year OS 8	31% pts	
Extragonadal		7	1	3			.0.1 0	7 .	1	h - m	i i i	-
Retroperitoneal me	tastase	s				.08	Survival rate	5 -	-1			
No		21	3	9			N. O.	5 -		- I		
Yes		37	14	12			NING O.	4 -		<u>'</u>		
Prior best response	9					.04	0.3	3 -		-1		
Incomplete		36	8	8			0.:	2 .			1-1	
Complete		22	9	24			0.1	1	1 year OS 53	% pts		
Refractory status ¹⁰						.04	0.0			ole hi		
Absolute refracte	ory	12	3	7				0	12	24	36	48
Refractory		21	3	7					Months fro	om the start of	TIP	
Relapsed		25	11	24			nbers at risk					
Pretreatment HCG continuous va	riable	58	NA	NA	4	.03	Good	26 17	20 9	10 4	5 1	2
Abbreviation: N	IA, not	applicable.				Figu	re 4 Survi	val by	risk amun			

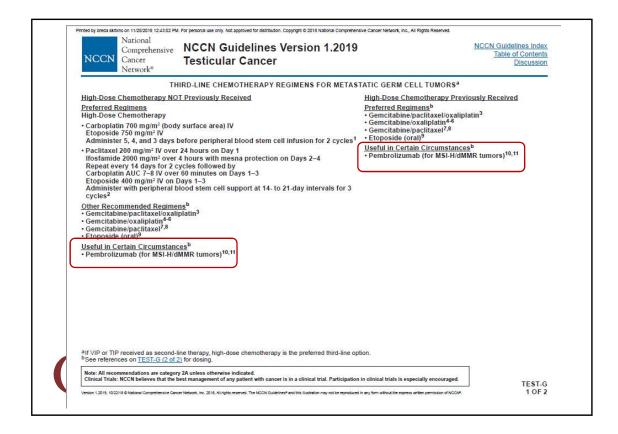
Table 4. Relapse Parameter	d GCC: Interna	roup classification [1]		
I al ameter	0	1	2	3
Primary site	Gonadal	Extragonadal	141	Mediastinal
				non-seminoma
Prior response	CR/PRm-	PRm+/SD	PD	<u>u</u>
PFI, months	>3	3	-	
AFP salvage	Normal	≤1000	>1000	
hCG salvage	≤1000	>1000		
Score sum (valu	and the second			
Second and the construction	699 (0311) - Colorado (1993)	es: (0) = 0; (1 or 2) =	10.8	
No. of the second s		seminoma = -1; non		ton metalational and an o
		low risk; 0 = low risl	k; 1 = intermedi	ate risk; 2 = high risk;
3 = very high ris	0.5 1	comission: CCC. an	m cell concer i	rCG, human chorionic
		isease; PFI, progress 1+, partial remission,		; PRm-, partial s; SD, stable disease.

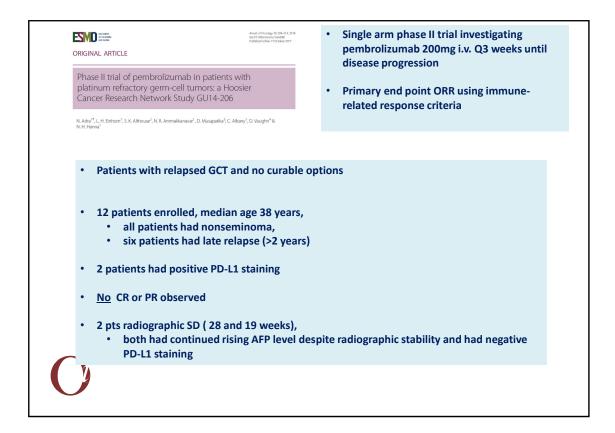

insufficient evidence to determine whether CDCT or HDCT produces superior outcomes as first-salvage chemotherapy either CDCT or HDCT acceptable options for firstsalvage chemotherapy

C


Single agent							
Regimen	Dose	Schedule	Reference				
Gemcitabine	1000 mg/m ² 1200 mg/m ²	d1, 8, 15 q3w d1, 8, 15 q3w	[241] [242]				
Oxaliplatin	60 mg/m ² or 85 mg/m ²	d1, 15 q4w	[243]				
Paclitaxel	170 mg/m ² 225 mg/m ² 250 mg/m ² 250 mg/m ²	d1, q3w d1, q3w d1, q3w d1, q3w d1, q3w	[244] [245] [246] [247]				
Oral etoposide	50 mg/m²/day	Continuously	[248]				
Two drug comb	inations						
Regimen	Dose	Schedule	Reference				
Gemcitabine Oxaliplatin	1000 mg/m ² or 1250 mg/m ² 130 mg/m ²	d1, 8 q3w d1, q3w	[249-251]				
Gemcitabine Paclitaxel	1000 mg/m ² 100 mg/m ²	d1, q5w d1, 8, 15 q4w	[252, 253]				
Three drug com	binations						
Regimen	Dose	Schedule	Reference				
Gemcitabine Oxaliplatin Paclitaxel	800 mg/m ² 130 mg/m ² 80 mg/m ²	d1, 8 q3w d1, q3w d1, 8 q3w	[254]				
Gemcitabine Cisplatin Paclitaxel	800 mg/m ² 50 mg/m ² 80 mg/m ²	d1, 8 q3w d1, 8 q3w d1, 8 q3w	[255]				




Annals of Oncology 29: 1658–1686, 2018



	Phase I /	Il studies	
Kollmansberger C	trastuzumab	HER2/neu expressing GCT	Ann Oncol 1999
Rick O	talidomid	platinum refract .	Eur J Cancer 2006
Feldman DR	sunitinib	relapse actory	Invest New Drugs 2010
Feldman DR	tivantinib	results d or refractory	Invest New Drugs 2013
Einhorn LH	tivantinib imatinibmesila negative	CTX refractory GCT expressing KIT	J Clin Oncol 2006
Necchi A	pazor	relapsed or refractory GCT	Ann Oncol 2017
Fenner M	Jimus	multiply relapsed GCT	Journal of Cancer Research and Clinical Oncology, 2018
Adra N	pembrolizumab	multiply relapsed GCT, no other treatment option	Annals of Oncology, 2018

#1. SUMMER SCHOOL IN MEDICAL ONCOLOGY IS SPONSORED BY:

PLATINUM SPONSORS:

GOLDEN SPONSOR:

U NOVARTIS

OTHER SPONSORS:

SANOFI GENZYME 🎝

IIII PHARMASWISS

