© Strojni{ki vestnik 50(2004)12,623-630 © Journal of Mechanical Engineering 50(2004)12,623-630 ISSN 0039-2480 ISSN 0039-2480 UDK 621.182:519.61/.64 UDC 621.182:519.61/.64 Strokovni ~lanek (1.04) Speciality paper (1.04) Numeri~na simulacija toka delovne teko~ine v razpoki stene cevi uparjalnikove membrane parnega kotla Numerical Simulation of Working-Fluid Flow Cut in a Tube of a Steam-Boiler Membrane-Wall Evaporator Namir Neimarlija - Nagib Neimarlija Prispevek prikazuje problem neustaljenega prenosa toplote in napetosti v cevi stene uparjalnikove membrane parnega kotla s predpostavko nenadne zaustavitve toka delovne tekočine skozi eno od njegovih cevi. Gre za skrajen primer, v katerem je konvektiven prenos toplote s stene cevi na delovno tekočino nenadno ustavljen. Opravljena je dvorazsezna analiza z metodo končnih prostornin ob predpostavki, da je material termoelastično zvezno telo. Analiza je pokazala razmeroma hitro dosego kritične vrednosti napetosti. © 2004 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: kotli parni, uparjalniki, prenos toplote, metode numerične) This paper presents the problem of transient heat transfer and the stress in the tube of a steam-boiler membrane-wall evaporator, assuming a sudden cut of the working-fluid flow through one of its tubes. Thus, an extreme case was considered in which the convective heat transfer from the tube wall to the working fluid was suddenly cut. The 2D analysis was carried out using a finite-volume method and with the assumption that the material is a thermo-elastic continuum. The analysis showed that the critical stress values were achieved relatively quickly. © 2004 Journal of Mechanical Engineering. All rights reserved. (Keywords: steam boilers, evaporators, heat transfer, numerical methods) 0 UVOD Obravnavan je dejanski dogodek v termoelektrarni Kakanj, in sicer v njegovi enoti 7 z močjo 230 MW. V decembru leta 2000 je tam nastala okvara na cevi uparjalnika parnega kotla, ki je bila več ali manj usmerjena vzdolžno. Deformacija je bila največja na višini cevi 17 in 18 metrov [1]. Inženirji v elektrarni so mnenja, da se je zgodila kot posledica zastoja delovnega medija v poškodovani cevi. Zares je bil tu ob demontaži poškodovane cevi najden material, ki je zapiral šobo na izhodu uparjalnikove cevi. Material je bil tam puščen po napaki med remontom sistema šob. V nadaljevanju je bil opazen stalen problem zagotovitve uravnovešenega pretoka delovne tekočine skozi cevi uparjalnika v kotlu, potrjen z merjenjem z ultrazvočnim inštrumentom. Rezultati kažejo odstopanja v toku delovne tekočine v območju ± 60 % od imenske vrednosti [1]. Poleg težav zagotovitve ustaljenega pretoka delovne tekočine so se slabšali pogoji delovanja uparjalnika zaradi razpoke v toplotno zaščitnem materialu v delu uparjalnika, posebno na stropu zgorevalne komore. 0 INTRODUCTION A real event that occurred in the thermal power plant Kakanj, i.e., in its thermal unit 7, with a power of 230 MW, was analysed. In December 2000, there was a breakdown of the steam boiler’s evaporator tube, which was more or less deformed lengthways. The deformation was the largest at tube heights of 17 and 18 meters [1]. Engineers in the plant assumed that it happened due to a cut in the working-medium flow in a damaged tube. Indeed, while disassembling the damaged tube, a material was found, which blocked a nozzle at the inlet of the evaporator tube. The material was left behind by mistake during an overhaul of the nozzle system. In addition, there was a constant problem regarding provision of a balanced working-fluid flow through the evaporator tubes in this boiler, which was confirmed by measurements using ultrasonic instrument. The results showed certain deviations in the working-fluid flow reaching ± 60 % of the nominal value [1]. Besides the problem with the provision of a balanced working-fluid flow, the evaporator working conditions were worsened due to a lack of heat-protection material in some parts of the evaporator, especially at the ceiling of the flame gfin^OtJJIMISCSD 04-12 stran 623 |^BSSITIMIGC Neimarlija N., Neimarlija N.: Numeri~na simulacija toka - Numerical Simulation of Working-Fluid Sl. 1. Poškodovana cev Fig. 1. Damaged tube Slika 1 prikazuje poškodbo cevi, nastalo v območju najvišjih temperatur zaradi zaustavitve pretoka delovne tekočine. Delovna tekočina je demineralizirana voda, ki vstopa v uparjalnik v stanju nasičene kapljevine. Vzdolž cevi se stanje tekočine nadalje spreminja prek stanja mokre pare v nasičeno paro. Postopek uparjanja vode v uparjalniku parnega kotla je urejen tako, da je nasičena voda gnana iz rezervoarja uparjalnika skozi cevi uparjalnika v uravnovešenem toku. Nadaljnje gretje v uparjalniku vodi v postopno uparjanje nasičene vode, dokler se v celoti ne upari v nasičeno paro. Točka celotne preobrazbe iz kapljevite v parno fazo se imenuje kritična točka in je za ta uparjalnik približno 18 metrov. Tipično za to območje je nenadno povišanje temperature stene, kateremu sledi postopno povišanje temperature v smeri toka pare. Hkrati pade vrednost koeficienta prenosa toplote na strani delovne tekočine. Območje intenzivnega uparjanja nasičene vode, to je območje mokre pare, ima značilno visoko vrednost koeficienta prenosa toplote na strani delovne tekočine, to je 10 kW/m2K [2]. Teoretično (v ustaljenem stanju) kritična točka vedno zavzame isto vrednost. V resničnih razmerah v elektrarni se kritična točka premika. Če pomični gradient ni prevelik, je pričakovati, da toplotne napetosti, povzročene s tem pomikanjem, niso nad dovoljeno mejo. Premik kritične točke navzgor ali navzdol lahko povzročijo različni razlogi. Za primer: upočasnitev pare delovne tekočine skozi cevi uparjalnika vodijo k znižanju kritične točke proti dnu kurišča kotla. Do izredne situacije pride v primeru celotne in trenutne ustavitve toka pare delovne tekočine v cevi, ko kapljevina delovne tekočine uparja zelo hitro. To je napovedano stanje v numerični simulaciji. 1 MATEMATIČNI MODEL 1.1 Vodilne enačbe Glede na zgoraj navedeno je uporabljen dvorazsežni napetostni postopek. V vodilnih enačbah chamber. Figure 1 illustrates the tube damage that occurred in the maximum temperature zone as a consequence of a cut in working-fluid flow. The working fluid is a decarbonized water, which enters the evaporator in the state of a saturated liquid. Along the tube this state is subsequently followed by the states of wet and then saturated steam. The process of water evaporation in the steam-boiler evaporator is thus organized so that saturated water is forced from the steam drum through the tubes in a balanced flow. Further heating in the evaporator leads to gradual evaporation of the saturated water until it completely evaporates into saturated steam. The point of complete transformation from the liquid phase to the gas phase is the so-called critical point, and for this boiler it is above 18 meters. Typical for this area is a sudden increase in tube-wall temperature, which is then followed by a gradual temperature increase in the steam flow direction. At the same time, the heat-transfer coefficient decreases on the working-fluid side. The area of intensive evaporation of saturated water, i.e., the wet steam zone, has a significantly high heat transfer coefficient on the working fluid side e.g., 10 kW/m2K [2]. Theoretically (in the steady state), the critical point always takes the same position. However, in real plant conditions the critical point is movable. If the moving gradient is not too large, it can be expected that the thermal stresses caused by this movement are not above the allowed limit. Different reasons can lead to displacement of the critical point upwards or downwards. For example, a slow down of the working-fluid stream through the evaporator pipes leads to a lowering of the critical point towards the boiler flame chamber bottom. An extreme situation occurrs in the case of a complete and immediate interuption of the working-fluid stream in the pipe when the total liquid working fluid evaporates very quickly. This is an anticipated situation in the numerical simulation. 1 MATHEMATICAL MODEL 1.1 Governing equations Based on the above, the 2D strain concept was adopted. In the governing equations of linear 2 jgnnatäüllMliBilrSO | | ^SsFÜWEIK | stran 624 Neimarlija N., Neimarlija N.: Numeri~na simulacija toka - Numerical Simulation of Working-Fluid gibalne količine in ohranitve energije so zanemarjene prostorninske sile in deformacijsko delo. Tako imajo enačbe v dvorazsežnem kartezijevem koordinatnem sistemu obliko: momentum and energy conservation the volume forces and the deformation work were neglected. Thus, in the Cartesian 2D coordinate system the equations are: d\u dV=\ dr d dr dr du , | du dv 2jU— + Ä — + — 8x ydx dy 3 K ß DT nx+M du dv \r — dV=\\ju — + —ln J J I I dx dy dv . (du dv 2jU — + Ä — + — dy \dx dy dy dx 3 K ß DT dS dS Ur cp t dV = \(k J C dT dT — n+k — n ) dS dx dy (1) y(2) (3), kjer so: V - prostornina, S - robna površina, n in n - normalni vektorji katezijevih komponent, l in jiy - Lamejevi konstanti, K - elastični modul (l, m in K so definirani v viru [3]), c - specifična toplota, k - toplotna prevodnost in b - prostorska toplotna razteznost. Prostorski koordinati x in y, kakor tudi čas t so neodvisne spremenljivke, medtem ko so u, v in T odvisne spremenljivke, ki pomenijo kartezijeve komponente pomika (u, v) in temperaturo (T). 1.2 Robni pogoji Z namenom podaje popolne matematične razlage problema, so podani Neumannovi robni pogoji za enačbo gibalne količine na robnem območju, podane so sile, kakor je prikazano spodaj: where V is volume, S is the system boundary area, n and n are the Cartesian normal vector components, l and m are Lame’s constants, K is the elasticity module (l, m and K are defined in reference [3]), c is the specific heat, k is the thermal conductivity and b is p the coefficient of linear thermal expansion. The space coordinates, x and y, as well as the time t are independent variables, whereas u, v and T are dependent variables representing Cartesian displacement components (u, v) and temperature (T) respectively. 1.2 Boundary conditions In order to give a full mathematical explanation of the problem, boundary conditions of the Neumann type were given to the linear momentum equation at the boundary domain, i.e., the forces were given as shown below: JN-n dS = \f dS SS (4), kjer so: N - napetostni tenzor, n - vektor v smeri normale, f - podan vektor sil na robu S. Robni pogoji druge in tretje vrste so prav tako uporabljeni v primeru energijske enačbe: where N is the stress tensor, n is the normal vector, and f is the given force vector on the boundary S. Boundary conditions of the second and third kind were also used in the case of the energy equation q=-k T na/on S1 dT dn -a(T-Tf ) na/on S2 (5) (6), kjer je q znana vrednost toplotnega toka na delu roba S1 medtem, ko so na delu roba S2 podane vrednosti: a - toplotna prestopnost na strani delovne tekočine, T - temperatura stene, Tf -povprečna temperatura delovne tekočine, ki pomeni temperaturo nasičene vode. Prav tako je treba navesti, da je S=S1