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Abstract

The Pancake graph is well known because of the open Pancake problem. It has the
structure that any l–cycle, 6 6 l 6 n!, can be embedded in the Pancake graph Pn, n > 3.
Recently it was shown that there are exactly n!

6 independent 6–cycles and n!(n−3) distinct
7–cycles in the graph. In this paper we characterize all distinct 8–cycles by giving their
canonical forms as products of generating elements. It is shown that there are exactly
n!(n3+12n2−103n+176)

16 distinct 8–cycles in Pn, n > 4. A maximal set of independent 8–
cycles contains n!

8 of these.
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1 Introduction
The Pancake graph Pn = (Symn, PR), n > 2, is the Cayley graph on the symmetric
group Symn of permutations π = [π1π2 . . . πn], where πi = π(i) for any 1 6 i 6 n, with
the generating set PR = {ri ∈ Symn : 2 6 i 6 n} of all prefix–reversals ri reversing the
order of any substring [1, i], 2 6 i 6 n, of a permutation π when multiplied on the right, i.e.
[π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn]. It is a connected vertex–transitive (n−1)-
regular graph of order n!. This graph is well known because of the combinatorial Pancake
problem which was posed in [4] as the problem of finding its diameter. The problem is still
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open. Some upper and lower bounds [5, 6] as well as exact values for 2 6 n 6 19 [1, 2]
are known. One of the main difficulties in solving this problem is the complicated cycle
structure of the Pancake graph. This graph is hamiltonian [11] and the following result is
also known.

Theorem 1.1. [7, 10] All cycles of length l, where 6 6 l 6 n!, can be embedded in the
Pancake graph Pn, n > 3, but there are no cycles of length 3, 4 or 5.

An explicit description of cycles is gradually being developed. The first results concern-
ing cycle characterization in the Pancake graph were obtained in [8] where the following
cycle representation via a product of generating elements was used. A sequence of prefix–
reversals Cl = ri0 . . . ril−1

, where 2 6 ij 6 n, and ij 6= ij+1 for any 0 6 j 6 l − 1, such
that πri0 . . . ril−1

= π, where π ∈ Symn, is called a form of a cycle Cl of length l. A cycle
Cl of length l is also called an l–cycle, and a vertex of Pn is identified with the permuta-
tion which corresponds to this vertex. It is evident that any l–cycle can be presented by
2l forms (not necessarily different) with respect to a vertex and a direction. The canonical
form Cl of an l–cycle is called a form with a lexicographically maximal sequence of in-
dices i0 . . . il−1. By using this description, the results characterizing 6– and 7–cycles were
obtained in [8].

Theorem 1.2. [8] The Pancake graph Pn, n > 3, has n!
6 independent 6–cycles of the

canonical form C6 = r3r2r3r2r3r2 and n!(n− 3) distinct 7–cycles of the canonical form
C7 = rkrk−1rkrk−1rk−2rkr2, where 4 6 k 6 n. Each of the vertices of Pn belongs to
exactly one 6–cycle and 7(n− 3) distinct 7–cycles.

The main result of this paper is the following theorem.

Theorem 1.3. Each of vertices of Pn, n > 4, belongs to N = n3+12n2−103n+176
2 distinct

8–cycles of the following canonical forms:

C1
8 = rk rj ri rj rk rk−j+i ri rk−j+i, 2 6 i < j 6 k − 1, 4 6 k 6 n, (1.1)

C2
8 = rk rk−1 r2 rk−1 rk r2 r3 r2, 4 6 k 6 n, (1.2)

C3
8 = rk rk−i rk−1 ri rk rk−i rk−1 ri, 2 6 i 6 k − 2, 4 6 k 6 n, (1.3)

C4
8 = rk rk−i+1 rk ri rk rk−i rk−1 ri−1, 3 6 i 6 k − 2, 5 6 k 6 n, (1.4)

C5
8 = rk rk−1 ri−1 rk rk−i+1 rk−i rk ri, 3 6 i 6 k − 2, 5 6 k 6 n, (1.5)

C6
8 = rk rk−1 rk rk−i rk−i−1 rk ri ri+1, 2 6 i 6 k − 3, 5 6 k 6 n, (1.6)

C7
8 = rk rk−j+1 rk ri rk rk−j+1 rk ri, 2 6 i < j 6 k − 1, 4 6 k 6 n, (1.7)

C8
8 = r4 r3 r4 r3 r4 r3 r4 r3. (1.8)

There are two corollaries of Theorem 1.3, which will be proven in the final section of
this paper.

Corollary 1.4. There are n!(n3+12n2−103n+176)
16 distinct 8–cycles in Pn, n > 4.

Corollary 1.5. A maximal set of independent 8–cycles in Pn, n > 4, contains n!
8 of these.

The proof of Theorem 1.3 is based on the hierarchical (recursive) structure of the Pan-
cake graph which can be presented as follows. The graph Pn, n > 3, is constructed
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from n copies of Pn−1(i), 1 6 i 6 n, such that each Pn−1(i) has the vertex set Vi =
{[π1 . . . πn−1i], where πk ∈ {1, . . . , n}\{i} : 1 6 k 6 n − 1}, |Vi| = (n − 1)!, and the
edge set Ei = {{[π1 . . . πn−1i], [π1 . . . πn−1i] rj} : 2 6 j 6 n− 1}, |Ei| = (n−1)!(n−2)

2 .
Any two copies Pn−1(i), Pn−1(j), i 6= j, are connected by (n − 2)! edges presented as
{[iπ2 . . . πn−1j], [jπn−1 . . . π2i]}, where [iπ2 . . . πn−1j]rn = [jπn−1 . . . π2i]. Prefix–
reversals rj , 2 6 j 6 n − 1, define internal edges in all n copies Pn−1(i), 1 6 i 6 n,
and the prefix–reversal rn defines external edges between copies. Copies Pn−1(i), or just
Pn−1 when it is not important to specify the last element of permutations belonging to the
copy, are also called (n− 1)–copies.

Since P3
∼= C6 and due to the hierarchical structure, P4 has four copies of P3, each of

which obviously cannot contain 8–cycles. However, P4 has 8–cycles consisting of paths
within copies of P3 together with external edges between these copies. In general, any
8–cycle of Pn, n > 4, must consist of paths within subgraphs that are isomorphic to Pk−1
for some 4 6 k 6 n, joined by external edges between these subgraphs. Hence, all
8–cycles of Pn, n > 4, could be found recursively by considering 8–cycles within each
Pk, 4 6 k 6 n, consisting of vertices from some copies of Pk−1. This approach is used
in the proof of Theorem 1.3. To get the main result, we also need some technical lemmas
concerning paths of length three between vertices of a given form. So, in the next section
we introduce additional notations and prove two small lemmas. In Section 3 we prove
Theorem 1.3 and its corollaries.

2 Technical lemmas
A segment [πi . . . πj ] of a permutation π = [π1 . . . πi . . . πj . . . πn] consists of all elements
that lie between πi and πj inclusive. Any permutation can be written as a sequence of
singleton and multiple segments. We use characters from {p, q, s, t} to denote singletons
and characters from {α, β, γ,A,B,C} to denote multiple segments. If π = [αβ], where
α = [π1π2 . . . πi] and β = [πi+1 . . . πn], then πr|α| = [αβ], where |α| is the number of
elements in a segment α, and α is the inversion of a segment α. It is obvious that α = α.
Note that we allow empty segments where this does not contradict the initial definitions.

An independent set D of vertices in a graph is called an efficient dominating set if each
vertex not in D is adjacent to exactly one vertex in D [3]. It is known [9] that Dp =
{[pπ2 . . . πn] : πj ∈ {1, . . . , n}\{p}, 2 6 j 6 n}, |Dp| = (n − 1)!, 1 6 p 6 n, are
efficient dominating sets in Pn, n > 3. Let us note that external edges of Pn are incident to
vertices from different efficient dominating sets of Pn. The distance d = d(π, τ) between
two vertices π, τ in Pn is defined as the least number of prefix–reversals transforming π
into τ , i.e. πri1ri2 . . . rid = τ .

The next lemma gives a full list of paths of length three between two vertices of the
same efficient dominating set.

Lemma 2.1. Two permutations π, τ ∈ Dp, 1 6 p 6 n, are at distance three from each
other in Pn, n > 3, if and only if:
1) either τ = πrjrirj , 2 6 i < j 6 n, where π = [ABγ], τ = [ABγ];
2) or τ = πrjriri−j+1, 2 6 j < i 6 n, where π = [pABγ], τ = [pBAγ].

Proof. We consider π ∈ Dp such that π = [pαqβk], πj = q. Let us find other vertices
from Dp being at the distance three from π. Let π1 = πrj = [qαpβk], where π1

j = p, 2 6
j 6 n. An application of a prefix–reversal ri, 2 6 i 6 n, i 6= j, to the permutation π1

gives us two cases: either i < j or i > j.
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1) If i < j then π2 = π1ri = [α2qα1pβk], where π2
j = p, α = α1α2 and |α2| = i− 1,

and then τ = π2rj = [pα1qα2βk]. Hence τ = πrjrirj and we get π = [ABγ], τ = [ABγ]
by setting A = pα1, B = α2q, γ = βk. Note, that using rj is the only way to restore p to
the first position and thus to end at an element of Dp after reaching π2.

2) If i > j then π2 = π1ri = [β1pαqβ2k], where π2
i−j+1 = p, β = β1β2 and

|β1| = i− j, and then τ = π2ri−j+1 = [pβ1αqβ2k]. Hence τ = πrjriri−j+1 and we get
π = [pABγ], τ = [pBAγ] by setting A = αq, B = β1, γ = β2k. Note, that using ri−j+1

is the only way to restore p to the first position and thus to end at an element of Dp after
reaching π2.

The next lemma gives a description of paths of length three defined on internal edges
of the graph between vertices of given forms.

Lemma 2.2. Let permutations π and τ be presented as:
1) π = [γ1ABγ2] and τ = [γ1ABγ2], where |γ1| > 1, |A| > 2. Then:

a) there exists a unique path of length three:

τ = πr|γ1|+|A|r|A|r|γ1|+|A|, (2.1)

provided that either |γ1| > 2 and |A| > 2, or |γ1| = 1 and |A| > 3;
b) there are two paths of length three:

τ = πr2r3r2, τ = πr3r2r3, (2.2)

provided that |γ1| = 1 and |A| = 2;
2) π = [γ1ABγ2] and τ = [γ1BAγ2], where |γ1| > 0, |A| > 1, |B| > 1. Then:

a) there is a unique path of length three:

τ = πr|γ1|+2r2r|γ1|+2, (2.3)

provided that |γ1| > 2, and |A| = |B| = 1;
b) there is a unique path of length three:

τ = πr|γ1|+|A|r|γ1|+|A|+|B|r|γ1|+|B|, (2.4)

provided that |γ1| = 1, and |A| 6= 1 or |B| 6= 1;
c) there are two paths of length three:

τ = πr2r3r2 = πr3r2r3, (2.5)

provided that |γ1| = |A| = |B| = 1;
d) there is a unique path of length three:

τ = πr|A|r|A|+|B|r|B|, (2.6)

provided that |γ1| = 0 and |A| > 2, |B| > 2.
There are no other paths of length three between π and τ of these types.
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Proof. 1) If π = [γ1ABγ2] and τ = [γ1ABγ2], then (2.1) is checked by a direct verifica-

tion: [γ1ABγ2]
r|γ1|+|A|→ [Aγ1Bγ2]

r|A|→ [Aγ1Bγ2]
r|γ1|+|A|→ [γ1ABγ2]. Suppose that there

is one more path of length three. Then these two paths should form a 6–cycle. In part (a),
either |γ1| > 2 and |A| > 2, or |γ1| = 1 and |A| > 3, so r|γ1|+|A| = rm for some m > 4,
but by Theorem 1.2, no 6–cycle includes rm with m > 4 in its form. Therefore, the given
path is the only one in this case. In part (b), |γ1| = 1 and |A| = 2, so m = 3 and the
condition of Theorem 1.2 holds, hence we obtain two distinct paths of stated forms (2.2).

2) If π = [γ1ABγ2] and τ = [γ1BAγ2], and |γ1| > 2, |A| > 1, |B| > 1, then there is
the following path of length four between these vertices:

π = [γ1ABγ2]
r|γ1|+|A|→ [Aγ1Bγ2]

r|γ1|+|A|+|B|→ [Bγ1Aγ2]
r|γ1|+|B|→

[γ1BAγ2]
r|γ1|→ [γ1BAγ2] = τ. (2.7)

Suppose there is also a path of length three between π and τ . By Theorem 1.1, there
are no cycles of length 3 or 5, and hence no paths of lengths 3 and 4 exist between two
fixed vertices unless the paths are disjoint. This means that these two paths should form
a 7–cycle, including the sequence rm+arm+a+brm+brm, where |γ1| = m, |A| = a and
|B| = b. By Theorem 1.2, this is possible only in the case when m = k − 2, k > 4, and
a = b = 1, which implies that a unique path of length three has the form rm+2r2rm+2 that
corresponds to (2.3).

Putting |γ1| = 1 in (2.7), a path τ = πr|γ1|+|A|r|γ1|+|A|+|B|r|γ1|+|B|, corresponding
to (2.4), is obtained. Taking |γ1| = m, |A| = a and |B| = b, the obtained path is presented
as rm+arm+a+brm+b. Suppose that there is one more path of length three between π and
τ . Then these two paths should form a 6–cycle. By Theorem 1.2, this is possible only in
the case when m = a = b = 1, which gives us the paths τ = πr2r3r2 and τ = πr3r2r3,
corresponding to (2.5).

Putting |γ1| = 0 in (2.7), a path τ = πr|A|r|A|+|B|r|B|, corresponding to (2.6) with
|A| > 2, |B| > 2, is obtained. Suppose there is one more path of length three between
π and τ . Then these two paths should form a 6–cycle. By the conditions of Lemma,
|A| + |B| > 4, hence r|A|+|B| = rm for some m > 4, but by Theorem 1.2, no 6–cycle
includes rm with m > 4 in its form. Therefore, the given path is the only one in this case.
If |A| = 1 or |B| = 1, then the path above is transformed into a 2–path or an edge. This
completes the proof of the lemma.

3 Proof of Theorem 1.3
To find all 8–cycles passing through the same vertex in Pn, n > 4, we use its hierarchical
structure by considering recursively 8–cycles within each copy Pk, 4 6 k 6 n, consisting
of vertices from copies of Pk−1. It is assumed that any copy of Pk−1 has at least two
vertices, since each vertex has a unique external edge. We obtain canonical forms of 8–
cycles and count their numbers.

Case 1: an 8–cycle within Pk has vertices from two copies of Pk−1

Suppose that an 8–cycle is formed on vertices from copies Pk−1(p) and Pk−1(s), 1 6
p 6= s 6 k. It was shown in [8] that if two vertices π and τ , belonging the same (k − 1)–
copy, are at the distance at most two, then their external neighbours π and τ should belong
to distinct (k−1)–copies. Hence, an 8–cycle cannot occur in situations when its two (three)
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πs1 = [pαqβs]

πs2 = [qαpβs] [α2qα1pβs] = πs3

[pα1qα2βs] = πs4

πp1 = [sβqαp]

πp2 πp3

[sβα2qα1p] = πp4

rkrk

Pk−1(p)

Pk−1(s)

��

�� ��
��

��

��
��

��

rj ri rj

case 1

πs1 = [pαqβs]

πs2 = [qαpβs] [β1pαqβ2s] = πs3

[pβ1αqβ2s] = πs4

πp1 = [sβqαp]

πp2 πp3

[sβ2qαβ1p] = πp4

rkrk

Pk−1(p)

Pk−1(s)

��

�� ��
��

��

��
��

��

rj ri ri−j+1

case 2

Figure 1: (4 + 4)–situation.

vertices belong to one copy and six (five) vertices belong to another one. Therefore, such
an 8–cycle must have four vertices in each of the two copies.

(4 + 4)–situation. Suppose that four vertices of such an 8–cycle belong to a copy
Pk−1(s), and other four vertices belong to a copy Pk−1(p). Herewith, four vertices of
Pk−1(s) should form a path of length three whose endpoints should be adjacent to vertices
from Pk−1(p), which means both vertices should belong to the efficient dominating set
Dp. So, one vertex of Pk−1(s) that is adjacent to a vertex of Pk−1(p) must have the form
[pαqβs]. By Lemma 2.1, it is not hard to see that this gives rise to two possible forms for
the remaining vertices of Pk−1(s). These are given in Figure 1, where |α| = j − 2 and so
|β| = k − j − 1. In the first case we also have α = α1α2 and |α2| = i − 1 > 1, while in
the second case we also have |β1| = i− j > 1 and |β2| = k − i− 1.

Denote γ1 = sβ, A = qα2, B = α1, γ2 = p, where |γ1| = |β| + 1 > 1, |A| > 2,
|B| > 0, then in the first case πp1 , πp4 have the forms [γ1ABγ2] and [γ1ABγ2]. By
Lemma 2.2 (case 1a), there is a unique path of length three between these permutations if
|γ1| = |β| + 1 = k − j > 1 and |A| = |α2| + 1 = i > 3, or k − j > 2 and i > 2,
and by Lemma 2.2 (case 1b), there are two distinct paths if k − j = 1 and i = 2. Hence,
such an 8–cycle has the form C1

8 = rk−j+irirk−j+irkrjrirjrk, with 2 6 i < j 6 k − 1,
4 6 k 6 n, the canonical form of which corresponds to (1.1). The case of k − j = 1 and
i = 2 by symmetry gives one additional form C2

8 = rk−1r2rk−1rkr2r3r2rk, the canonical
form of which corresponds to (1.2).

Denote γ1 = sβ2, A = β1, B = qα, γ2 = p, where |γ1| = |β2|+ 1 > 1, |A| = |β1| >
1, |B| = |α|+1 > 1, then in the second case we have πp1 = [γ1ABγ2], πp4 = [γ1BAγ2].
By Lemma 2.2 (case 2a), there is a unique path of length three between πp1 and πp4 if
|γ1| = k − i > 2, |A| = |β1| = i− j = 1 and |B| = |α|+ 1 = j − 1 = 1. Hence, j = 2,
i = 3, and for k > 5 an 8–cycle has the form rk−1r2rk−1rkr2r3r2rk, corresponding again
to the canonical form (1.2).

By Lemma 2.2 (case 2b), there also exists a unique path of length three between πp1
and πp4 if |γ1| = k − i = 1, |A| = |β1| = i − j > 1, |B| = |α| + 1 = j − 1 > 1. This
means that i = k−1, and such an 8–cycle has the formC4

8 = rkrk−jrk−1rjrkrk−jrk−1rj ,
2 6 j 6 k− 2, the canonical form of which corresponds to (1.3), if we set j = i. So, there
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[qαpβs] = πs2

[pαqβs] = πs1

πq1 = [sβpαq]

πq2

πq3

[pαsβq] = πq4

[sβqαp] = πp1

πp2 = [qβsαp]

��

��
��

��

��

��

��

��

Pk−1(s) Pk−1(q)

Pk−1(p)

ri

rk−i+1

rk

rk

rk

Figure 2: (2 + 2 + 4)–situation.

is a unique path of length three under the conditions listed, unless |A| = |B| = 1 when by
Lemma 2.2 (case 2c) this path is not unique. So, k = 4, j = 2, i = 3 and 8–cycles take
forms r2r3r2r4r3r2r3r4 and r3r2r3r4r3r2r3r4, corresponding to forms (1.2) and (1.1).

Thus, all 8–cycles occurring in the case of two copies are found.

Case 2: an 8–cycle within Pk has vertices from three copies of Pk−1

Suppose an 8–cycle is formed on vertices from copies Pk−1(p), Pk−1(q), Pk−1(s),
where 1 6 p 6= q 6= s 6 k. There are following possible situations in this case.

(2 + 2 + 4)–situation. The distribution of vertices among the copies is presented by
Figure 2. Let πs1 = [pαqβs] where πs1i = q with |α| = i − 2, |β| = k − i − 1. Then
πs2 , πp1 , πp2 , πq1 and πq4 are straightforward to define. Vertices πq1 and πq4 differ in the
order of segments sβ and pα, hence they have the forms [γ1ABγ2] and [γ1BAγ2], where
γ1 is empty, A = sβ, B = pα, γ2 = q and |A| = |β| + 1 > 1, |B| = |α| + 1 > 1.
By Lemma 2.2 (case 2d), between πq1 and πq4 there exists a unique path of length three
provided that |A| = k − i > 2, |B| = i − 1 > 2, and no path of this length if |A| = 1
or |B| = 1. Thus, an 8–cycle has the form C4

8 = rkrk−i+1rkri−1rk−1rk−irkri, where
3 6 i 6 k − 2, k > 5, the canonical form of which corresponds to (1.4).

(2 + 3 + 3)–situation. The distribution of vertices among the copies is presented by
Figure 3. Let πs1 = [pαqβs], where |α| = i − 2 and |β| = k − i − 1. Then πs2 , πp1
and πq1 are straightforward to define. Since πp3 and πq3 are joined by an external edge,
πp31 = q. Moreover, πp1 and πp3 should be joined by a path of length two that can be
obtained by two ways:

πp1 = [sβqαp]→

{
[β2sβ1qαp]→ [qβ1sβ2αp] = πp

1
3 , where |β2| 6= 0.

[α2qβsα1p]→ [qα2βsα1p] = πp
2
3 , where |α2| 6= 0.

From the other side, πq3 and πp3 are joined by an external edge, hence πq31 = p, and there
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[pαqβs] = πs1 πs2 = [qαpβs]

[sβpαq] = πq1

πp1 = [sβqαp]

πp2

πp3

πq2

πq3

��

��

��

��

��

��

��

��

Pk−1(s)

Pk−1(q)Pk−1(p)

rk

ri
rk

rk

Figure 3: (2 + 3 + 3)–situation.

should be a path of length two between πq1 and πq3 such that:

πq1 = [sβpαq]→

{
[β2sβ1pαq]→ [pβ1sβ2αq] = πq

1
3 , where |β2| 6= 0.

[α1pβsα2q]→ [pα1βsα2q] = πq
2
3 , where |α1| 6= 0.

Analysis of non–empty segments in these permutations shows that external edges occur
between: πp

1
3 and πq

2
3 , if |α2| = 0, |β1| = 0; πp

2
3 and πq

1
3 , if |α1| = 0, |β1| = 0; πp

2
3 and

πq
2
3 , if |β| = 0. There is no external edge between πp

1
3 and πq

1
3 since they have the same

order of elements in the segment sβ2.
Since |α| = i − 2, |β| = k − i − 1, then using the edge between πp

1
3 and πq

2
3 , where

|α2| = 0, |β1| = 0, we have |α| > 1, |β| > 1, and such an 8–cycle has the form
C5

8 = rkrk−irk−i+1rkri−1rk−1rkri, with 3 6 i 6 k − 2, 5 6 k 6 n, the canoni-
cal form of which corresponds to (1.5). Using the external edge between πp

2
3 and πq

1
3 ,

where |α1| = 0, |β1| = 0, we have |α| > 1, |β| > 1, and such an 8–cycle has the form
rkrk−1ri−1rkrk−i+1rk−irkri, where 3 6 i 6 k − 2, the canonical form of which also
corresponds to the form (1.5). Finally, using the external edge between πp

2
3 and πq

2
3 , where

|β| = 0, we have i = k − 1, |α1| = j > 1, |α2| = k − 3 − j > 1, so there is one more
8–cycle of the form C6

8 = rkrk−j−1rk−j−2rkrj+1rj+2rkrk−1, where 1 6 j 6 k − 4,
5 6 k 6 n, the canonical form of which corresponds to (1.6), if we put j = i− 1.

Thus, all 8–cycles occurring in the case of three copies are found.

Case 3: an 8–cycle within Pk has vertices from four copies of Pk−1

The distribution of vertices among the copies is presented by Figure 4. Let πq1 =
[sαtβpγq], where |α| > 0, |β| > 0, |γ| > 0. There are two cases.

1) Suppose that πq1 is adjacent to πs1 , and πq2 is adjacent to πt1 . Since there is only one
cycle edge within each copy, hence this edge is uniquely defined and all vertices’ labels are
straightforward to obtain (see Figure 4, case 1). Thus, we end up with πp1 = [sαtβqγp],
πp2 = [tαsβqγp]. If an 8–cycle does exist, then πp1 , πp2 should be incident to the same
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πq1 = [sαtβpγq] [tαsβpγq] = πq2

r|α|+2

[qγpβtαs] = πs1
πt1 = [qγpβsαt]

[pγqβtαs] = πs2

r|γ|+2

πt2 = [pγqβsαt]

r|γ|+2

πp1 = [sαtβqγp]
[tαsβqγp] = πp2

rk rk

rkrk

Pk−1(q)

Pk−1(t)

Pk−1(p)

Pk−1(s)

��
��

��

��

��
��

��

��

case 1

πq1 = [sαtβpγq] [pβtαsγq] = πq2

r|α|+|β|+3

[qγpβtαs] = πs1
πp1 = [qγsαtβp]

[tβpγqαs] = πs2

r|β|+|γ|+3

πp2 = [tαsγqβp]

r|α|+|γ|+3

πt1 = [sαqγpβt]
[pβqγsαt] = πt2

rk rk

rkrk

Pk−1(q)

Pk−1(p)

Pk−1(t)

Pk−1(s)

��
��

��

��

��
��

��

��

case 2

Figure 4: (2 + 2 + 2 + 2)–situation.

internal edge, and hence, there should exist a prefix–reversal transforming πp1 into πp2 ,
namely, r|α|+2. If we set |α| = i−2, |β| = j−i−1, |γ| = k−j−1, where 2 6 i < j < k,
then such an 8–cycle is presented by the form C7

8 = rkrk−j+1rkrirkrk−j+1rkri, where
2 6 i < j 6 k − 1, 4 6 k 6 n, the canonical form of which corresponds to (1.7).

2) Suppose that πq1 is adjacent to πs1 , and πq2 is adjacent to πp1 (see Figure 4, case
2), then we end up with πt1 = [sαqγpβt], πt2 = [pβqγsαt]. In this case, an internal edge
between vertices πt1 and πt2 does exist only if |α| = |β| = |γ| = 0, which means that
k = 4 and such an 8–cycle takes the form (1.8).

Therefore, all canonical forms for 8–cycles in Pn, n > 4, are obtained.
Now we count the total number N =

∑8
i=1NCi8 of distinct 8–cycles passing through

a given vertex, where NCi8 corresponds to the number of distinct 8–cycles described by the
canonical form Ci8, 1 6 i 6 8. Let us note that any canonical form of an l–cycle describes
l cycles (not necessarily distinct) for a given vertex. Among all canonical forms (1.1)–
(1.8), there is the only one, namely the form (1.5), which describes eight distinct 8–
cycles. In other cases, identical forms occur. For example, from the canonical form C8

8 =
r4r3r4r3r4r3r4r3 one can get two forms, namely, r4r3r4r3r4r3r4r3 and r3r4r3r4r3r4r3r4
which are identical because they describe the same 8–cycle. Thus, the canonical form C8

8

gives the only 8–cycle, hence, NC8
8
= 1. In other cases, it can be shown in the same

manner (by taking into account identical forms) that the numbers NCi8 , 1 6 i 6 7, are

given as follows: NC1
8
= (n−3)(n−2)(n−1)

3 , NC2
8
= 4(n − 3), NC3

8
= (n − 2)(n − 3),

NC4
8
= NC6

8
= 2(n− 3)(n− 4), NC5

8
= 4(n− 3)(n− 4), NC7

8
= (n−3)(n−2)(n−1)

6 . Thus,
the total number is given by

N =
n3 + 12n2 − 103n+ 176

2
,

which completes the proof of the theorem.
The total number of distinct 8–cycles in Pn, n > 4, is given by n!(n3+12n2−103n+176)

16
since there are n! vertices in the graph each of which belongs to N distinct 8–cycles. This
proves Corollary 1.4.
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A maximal set of independent 8–cycles in Pn, n > 4, contains n!
8 of these, since P4

has three independent 8–cycles, and there are n!
24 copies of P4, each of which consists of

exactly three independent 8–cycles. This proves Corollary 1.5.
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