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Abstract. We examine the role of UA(1) symmetry and its breaking/restoration in two

complete chiral multiplets consisting of the nucleon and the Roper and their two “chiral

mirror” odd-parity resonances. We base our work on the recent classification of the chiral

SUL(2) × SUR(2) transformation properties of the two (Ioffe) independent local tri-quark

nucleon interpolating fields in QCD [1].

1 Introduction

Over the past five years there has been considerable activity on the question if
the chiral UA(1) symmetry restoration is in any way related to the (purported)
parity doubling in the nucleon spectrum [2,3]. In the previous additions to the
literature [2], following an old and to a large extent formal example by Ben Lee
[4], it was assumed that the nucleons admitted only certain specific linear non-
Abelian chiral transformation properties - no assumptions were made about the
Abelian ones, however.

Rather than guess at the chiral properties of the nucleon, we use the results of
our study [1] of the SUL(2)×SUR(2) andUA(1) (the non-Abelian and the Abelian
chiral symmetries, respectively) transformations of the over-complete set of (five)
three-quark non-derivative (local) nucleon interpolating fields. We showed that
the two independent nucleon fields form two different irreducible UA(1) repre-
sentations: one with the axial baryon number minus one (the Abelian “mirror”
field), and another with three (the Abelian triply “naive” nucleon in the parlance
of Ref. [5]).

For odd-parity nucleons, on the other hand, the inclusion of at least one
space-time derivative is natural. Once we allow for a derivative to exist in the
interpolating field, we find two nucleon fields with chiral properties opposite to
the non-derivative ones, e.g. the non-Abelian chiral properties of the derivative
fields are “mirror” compared to the “naive” non-derivative ones. Thus, altogether
we have four independent nucleon fields constructed from three quarks with or

⋆ Talk delivered by V. Dmitrašinović
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without one derivative. They can be classified as being non-Abelian “naive” or
“mirror” and similarly for the Abelian chiral transformation properties.

As an illustrative example, we identify these four specific nucleon fields with
the four lowest-lying nucleon resonances: the nucleon-Roper even-parity pair
and the N∗(1535), N∗(1650) pair of odd-parity resonances, and construct an ef-
fective Lagrangian with the UA(1) and SUL(2) × SUR(2) symmetries. We show
that, after spontaneous symmetry breakdown to SU(2)V , the mass splitting in-
duced by this effective interaction can reproduce all four nucleon’s masses even
without explicit UA(1) symmetry breaking. This is an explicit counter-example to
the statement in the literature that the parity doubling in the nucleon spectrum is
related to the restoration of the UA(1) symmetry.

Our method applies equally well to any, and not just the low-lying, UA(1)

chiral quartet, i.e., pair of nucleon parity doublets. Of course, this result is subject
to the assumption of three-quark nature of the corresponding nucleon states.

2 Three-quark nucleon interpolating fields

We start by summarizing the transformation properties of various quark trilin-
ear forms with quantum numbers of the nucleon as shown in Ref. [1]. It turns
out that every nucleon, i.e., spin- and isospin 1/2 field, besides having same non-
Abelian transformation properties, comes in two varieties: one with “mirror” and
another with “triple-naive” Abelian chiral properties. This allows us to address

the old (Ioffe) problem of duplication/ambiguity of nucleon fields: For JP = 1
2

+

nucleons there is only one non-Abelian representation allowed, the (1
2
, 0)⊕(0, 1

2
),

but with the two afore-mentioned Abelian chiral properties, thus lending phys-
ical distinction to Ioffe’s two nucleon fields: the nucleon ground state, the two
odd-parity resonances and the Roper are the four mutually orthogonal admix-
tures of the Abelian “mirror”- (so called Ioffe current), the Abelian “triple naive”-
and their non-Abelian mirror fields.

Table 1. The Abelian axial charges (+ sign indicates “naive”, - sign “mirror” transformation

properties) and the non-Abelian chiral multiplets of JP = 1
2

+
nucleon interpolating fields

in the Lorentz group representation D( 1
2
, 0) without derivatives. In the last column we

show the Fierz identical fields, see [1].

UA(1) SUA(2) SUV (2) × SUA(2) Fierz identical

N1 −N2 −1 +1 ( 1
2
, 0) ⊕ (0, 1

2
) N3, N4

N1 +N2 +3 +1 ( 1
2
, 0) ⊕ (0, 1

2
) N5

We can construct nucleon fields with “opposite” chiral transformations to
those shown above by replacing γµ with i∂µ: for example we may use the follow-
ing two nucleon interpolating fields involving three quarks and one derivative

N
′−
1 = ǫabci∂µ(q̃aqb)γµγ5qc, (1)

N
′−
2 = ǫabci∂µ(q̃aγ

5qb)γµqc. (2)
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They are odd-parity, spin 1/2 and isospin 1/2 fields, i.e. they describe (some)
nucleon resonances. A prime in the superscript implies that the fields contain a
derivative, and we show below that therefore they have opposite, i.e., “mirror”
non-Abelian chiral transformation properties to those of the corresponding non-
derivative fields.

Taking the symmetric and antisymmetric linear combinations of two nucleon

fields N
′−
1,2 as the new canonical fields

N
′−
m =

1√
2
(N

′−
1 +N

′−
2 ) (3)

N
′−
n =

1√
2
(N

′−
1 −N

′−
2 ), (4)

their Abelian chiral transformation properties read

δ5N
′−
m = −3iaγ5N

′−
m (5)

δ5N
′−
n = iaγ5N

′−
n , (6)

whereas the non-Abelian ones remain “mirror”

δ5N
′−
m,n = −iγ5τ · aN ′−

m,n. (7)

In summary, we have explicitly constructed four independent nucleon fields: two
fields with “naive” and two fields with “mirror” Abelian and non-Abelian chiral
transformation properties. In the present paper, we identify these fields with the
nucleon ground state N(940) and its resonances N(1440), N(1535) and N(1650).
We summarize the properties of the four fields in Table.2. With these fields we
can construct the “naive-mirror” interactions.

Table 2. The axial charges of the nucleon fields.

Interpolating fields UA(1) SUA(2) Assigned states

Nm −1 +1 N(940)

Nn +3 +1 N(1440)

N′

n +1 −1 N(1650)

N′

m −3 −1 N(1535)

3 TheUA(1) symmetry in baryons

The UA(1) symmetry’s explicit breaking due to the triangle anomaly and topo-
logically non-trivial configurations in QCD has only a few firmly established
observable consequences, all of which are in the flavor-singlet spin-less meson
sector, see Ref. [11] and references therein, with lots of recent speculation about
its role in the baryon sector (“parity doubling”), especially with regard to its al-
leged/purported “restoration high up in the hadron spectrum” Ref. [2]. This sce-
nario has effectively been disproven in the meson case in Refs. [2].



20 V. Dmitrašinović

The baryon case is much more difficult to handle, due to, inter alia, a funda-
mental lack of knowledge of the baryon chiral transformation properties. In the
baryon sector, the empirically observed parity doubling has been quantitatively
analyzed by Jaffe et. al. [3], who proposed that the physics behind that might be
the (explicitly broken) UA(1) symmetry. In the absence of direct lattice measure-
ments the best one can do is resort to chiral models.

Lee, DeTar, Kunihiro, Jido, Oka and others [4,5] have developed a Lagran-
gian formalism based on one pair of “naive” and “mirror” opposite-parity nu-
cleon fields. They did not consider theUA(1) symmetry, however. Christos [8] has
shown that there are two independent cubic interactions for each parity doublet
that preserve both UA(1) and SU(2)L × SU(2)R symmetry. However Christos did
not include Abelian chiral mirror fields, so he obtained vanishing off-diagonal
πNN∗ couplings. Our strategy was first to construct the SUL(2) × SUR(2) chi-
ral invariant interaction(s) for two pairs of nucleon (N+

m,n and N
′−
m,n) fields; and

then to include the UA(1) symmetry [12]. We have classified these terms accord-
ing to the power of the meson fields. We found that besides the linear (in meson
fields) interactions there are also quadratic and cubic ones. The form of these in-
teractions is uniquely dictated by the UA(1) symmetry; higher-order terms may
appear only as products of these three lower-order ones. That allows altogether
six interactions: four diagonal ones in the two doublets and two “inter-doublet”
ones. Furthermore, we included all quadratic terms allowed by the non-Abelian
“mirror” properties of the baryons. Then we found that one does not need any
UA(1) symmetry breaking to describe the nucleon mass spectrum, provided one
uses a complete set of interactions.

4 Results

In the following discussion, it is convenient to group the four nucleon fields as fol-
lows; Ψ = (N+

m, N
′−
n ) for the pair of the single Abelian charge (the single-Abelian

doublet), and Φ = (N+
n , N

′−
m ) for that of the triple Abelian charge (the triple-

Abelian doublet).We emphasize that the two nucleons in each of these pairs are in
”mirror” relations to each other, with regard to both the Abelian and non-Abelian
chiral symmetries. Manifestly, the identification of fields, or their admixtures,
with actual resonances viz.N(940), R(1440),N∗(1535) andN∗(1650) is not unique.
In this brief review we consider only one choice; another scenario is considered
in Ref. [12]. A substantial body of QCD sum rule evidence is pointing towards
N(940) being the “Ioffe current” N+

1m. Together with the lowest negative parity
nucleon N(1535) in the partner of the parity doublet, we have Ψ = (N+

m, N
′−
n ) =

(N(940), N(1535)) and consequently Φ = (N+
n , N

′−
m ) = (N(1440), N(1650)).

The nucleon mass matrix is already in a simple block-diagonal form when
the nucleon fields form the following 1×4 row/column “vector”:

(Ψ,Φ) = (N+
m, N

′−
n , N+

n , N
′−
m ) → (N+

m, γ5N
′−
n , N+

n , γ5N
′−
m ) ,
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lim
UA(1)symm.

M =




g1fπ m12γ5 0 g5fπγ5

m12γ5 g2fπ g6fπγ5 0

0 g6fπγ5 g3fπ m34γ5

g5fπγ5 0 m34γ5 g4fπ


 . (8)

Note that only the parity-changing interaction g5,6 mixes these two new equal
parity doublets. Without inter-doublet interactions (g5,6 = 0) one can immedi-
ately read off the eigenvalues following Ref. [5]. We determine the coupling and
mass parameters and show them in Table 3 and Fig. 1.

Table 3. Coupling constants obtained from the nucleon masses with doublets

(N(940), N∗(1535)), (R(1440), N∗(1650)) and the decay widths N∗(1535) → πN(940) and

N∗(1650) → πR(1440).

constant g1 g2 m12 g3 g4 m34

value 10.4 16.8 270 MeV 14.6 16.8 503 MeV
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Fig. 1. The nucleon masses as functions of 〈σ〉0 .

Manifestly, the good UA(1) symmetry limit is sufficient to reproduce the nu-
cleon spectrum. Thence ourmain conclusion: the mass degeneracy of opposite-parity
nucleon resonances is not a consequence of the explicit UA(1) symmetry (non) breaking.
This conclusion was also reached by Christos [8], albeit for one parity doublet and
without mirror fields, which means that his N∗(1535) can not decay into N(940)

by π emission.

5 Summary and Discussion

We have analyzed the UA(1) symmetry in the nucleon-Roper-two-odd-parity-
nucleon-resonances system, under the assumption that the above four nucleon
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states are described by a particular set of independent interpolating fields. The
four nucleon fields naturally split into two “parity doublets” due to their UA(1)

symmetry transformation properties.

Our analysis has been based on the Born approximation: Higher-order (one-,
two-, etc. meson loop) corrections belong to the O(1/Nc) corrections, that have
been studied only intermittently in chiral quark models of the nucleon and then
only in certain simple models with one kind of nucleon. In principle, instanton
effects are expected to vanish in the large-Nc limit, which justifies our assumption
of good UA(1) symmetry, ex post facto. The extracted value of the “bare mirror”
nucleon mass (m12=270 MeV, see also Ref. [6]) is something that can be checked
on the lattice, now that the interpolating fields have been specified for the mirror
nucleons.

The insight that the nucleon and the Roper fields may form two different
representations of the UA(1) symmetry, and that their mass difference can be
viewed as a consequence of UA(1) symmetry conservation and not of the sym-
metry breaking, are the main results of this work. A corollary of this result is that
the parity-doublet mass splittings are not entirely determined by the UA(1) sym-
metry breaking, as was conjectured in the literature [3]. Moreover, the nucleon-
Roper mass difference in some calculations, such as the one of Ref. [10] in the NJL
model, are not a consequence of the broken UA(1) symmetry in that model.

UA(1) symmetry in nucleon spectra has been discussed before, most notably
by Christos [8], who used only one parity doublet (N(940) and N∗(1535)), how-
ever. He argued that the parity doublet mass difference is proportional to a par-
ticular ηNN∗ coupling constant, which is in close agreement with our results. He
did not try to relate other mass differences, such as the Roper-nucleon one, to this
mechanism, as he did not know of an alternative (“mirror”) set of fields, which
is a novel feature/contribution of our paper. Consequently his N∗(1535) can not
decay into N(940) by π emission, in blatant conflict with experiment.
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