1,3-Dipolar Cycloadditions of ($4 R^{*}, 5 R^{*}$) -1-Arylmethylide-ne-4-benzamido-3-oxo-5-phenylpyrazolidin-1-ium-2-ides to Di-(-)-menthyl Maleate

Lidija Pezdirc, David Bevk, Samo Pirc and Jurij Svete*
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, P.O. Box 537, SI-1000 Ljubljana, Slovenia
* Corresponding author: E-mail: jurij.svete@fkkt.uni-lj.si

Received: 16-09-2008
Dedicated to Professor Branko Stanovnik on the occasion of his $70^{\text {th }}$ birthday

Abstract

1,3-Dipolar cycloadditions of racemic $\left(1 Z, 4 R^{*}, 5 R^{*}\right)$-arylmethylidene-4-benzamido-5-phenyl-3-pyrazolidinon-1-azomethine imines 3 to enantiopure di-(-)-menthyl maleate (4) afforded mixtures of diastereomeric cycloadducts $5 / 5^{\prime}-7 / 7^{\prime}$. Selectivity as well as stereochemistry of cycloadditions were dependent on the substituents at the 1 '-Ar residue of dipoles 3. Thus, reactions of dipoles $\mathbf{3 a - j}$ with at least one free ortho-position gave either di-(-)-menthyl $\left(1 R^{*}, 2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}\right)$-3-aryl-6-benzamido-7-oxo-5-phenylhexahydropyrazolo[1,2-a]pyrazole-1,2-dicarboxylates 5/5' (the endo-isomers) and/or di-(-)-menthyl ($1 S^{*}, 2 R^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-3-aryl-6-benzamido-7-oxo-5-phenylhexahy-dropyrazolo[1,2-a]pyrazole-1,2-dicarboxylates 6/6' (the exo-isomers) with syn-oriented 3-H and 5-H, whilst reactions of $\mathbf{4}$ with ortho-disubstituted dipoles $\mathbf{3 k}, \mathbf{l}$ gave $\left(1 S^{*}, 2 R^{*}, 3 S^{*}, 5 R^{*}, 6 R^{*}\right)$-diastereomers $7 / 7^{1} \mathbf{k}, \mathbf{l}$ with anti-oriented 3-H and 5-H. Separation of diastereomeric cycloadducts $5 / 5^{\prime}-7 / 7^{\prime}$ by crystallization and/or MPLC furnished isomerically pure compounds $5 \mathbf{5 a}, \mathbf{b}, \mathbf{d}, \mathbf{g}, \mathbf{5}^{\prime} \mathbf{b}, \mathbf{d}, \mathbf{h}, \mathbf{6 c}, \mathbf{d}, \mathbf{j}$, and $\mathbf{6} \mathbf{\prime} \mathbf{c}, \mathbf{d}, \mathbf{f}$ and purified mixtures of diastereomers $\mathbf{5 / 5} \mathbf{\prime} \mathbf{e}, \mathbf{6} / \mathbf{6}^{\prime} \mathbf{e}, \mathbf{h}$, and $7 / \mathbf{7}^{\prime} \mathbf{k}, \mathbf{l}$ in $1-42 \%$ yields. The relative configuration of the pyrazolo[1,2-a] pyrazolone structural element in the products $5 / 5^{\prime}-7 / 7^{\prime}$ was determined by NMR.

Keywords: 1,3-dipolar cycloadditions, (-)-menthol, pyrazolidin-3-ones, azomethine imines, pyrazolo[1,2-a]pyrazoles, stereochemistry

1. Introduction

1,3-Dipolar cycloadditions are powerful methods for the preparation of five-membered heterocycles, since they enable access to various polyfunctionalized chiral compounds with multiple asymmetric centres, usually with excellent stereocontrol. ${ }^{1}$ Within this context, several examples of asymmetric cycloadditions in cyclic chiral azomethine imine series have also been reported. Generally, these reactions were accompanied by high facial and endo/exo-selectivity and afforded the corresponding fused pyrazolines with a bridgehead $\mathrm{N}-\mathrm{N}$ structural element. ${ }^{2-14}$

2-Aminopyrazolo[1,2-a]pyrazole-7-carboxylate moiety belongs to a family of heterocyclic conformationally constrained peptide mimetics. ${ }^{15}$ It is a constituent of biologically active compounds, such as Eli-Lilly's γ-lac-
tam antibiotics LY 186826, LY 193239, and LY 255262 (Figure 1). ${ }^{4,15}$

In this context, we have previously reported preparation and synthetic utilization of $\left(4 R^{*}, 5 R^{*}\right)$-4-benzamido-5-phenyl-3-pyrazolidinone (1) and azomethine imines $\mathbf{3}$ derived from $\mathbf{1}$ and aromatic aldehydes $\mathbf{2}$. These studies

LY 186826 ($\mathrm{R}=\mathrm{COMe}$)
LY 193239 ($\mathrm{R}=\mathrm{SO}_{2} \mathrm{Me}$)
LY 255262 ($\mathrm{R}=\mathrm{CN}$)

Figure 1.
were particularly focused on regioselective and stereoselective 1,3-dipolar cycloadditions of ($1 Z, 4 R^{*}, 5 R^{*}$)-1-aryl-methylidene-4-benzamido-5-phenyl-3-pyrazolidinon-1azomethine imines 3 leading to polysubstituted pyrazo-lo[1,2-a]pyrazoles. ${ }^{6,10-14,16,17}$ Generally, these cycloadditions were highly selective and stereochemistry was controlled by the stereodirecting group in the chiral dipole, by the ortho-substituents at the 1'-Ar group, and by the structure of the dipolarophile. ${ }^{6,10-14}$ In extension, stereoselective combinatorial cycloadditions of these azomethine imi-
nes to maleimides ${ }^{11}$ and β-keto esters ${ }^{12}$ have also been reported. All these cycloadditions were carried out with racemic dipoles 3 and gave the corresponding racemic cycloadducts. In continuation, we aimed also at preparation of enantiopure pyrazolo[1,2-a]pyrazoles. This could be done in two ways, either by cycloaddition of enantiopure azomethine imines $\mathbf{3}$ to achiral dipolarophiles, or by cycloaddition of racemic dipoles 3 to enantiopure dipolarophiles followed by separation of the so formed diastereomeric cycloadducts. Since there is, to the best of our

pure isomers 5 and/or 5' and/or 6 and/or 6' (see Table 2)

Ar: 2 ortho-substituents

Scheme 1.
knowledge, no general method for the preparation of enantiopure 4-acylamino-3-pyrazolidinone derivatives, we decided to explore cycloadditions of racemic dipoles 3 to enantiopure dipolarophiles, followed by separation of diastereomeric cycloadducts. Because previous studies showed that cycloadditions to dimethyl maleate were highly stereoselective regardless the structure of dipole, ${ }^{10}$ di-(-)-menthyl maleate (4) ${ }^{18}$ has been chosen as its chiral enantiopure analogue. Accordingly, $\mathbf{4}$ should react stereoselectively as well to furnish two diastereomeric cycloadducts, which would be then separated by crystallization or by chromatography. Herein, we report the results of this study, i.e. preparation of some enantiopure cycloadducts by this synthetic approach.

2. Results and Discussion

Azomethine imines 3a-l were prepared by parallel acid-catalyzed treatment of $\left(4 R^{*}, 5 R^{*}\right)$-4-benzamido-5-phenyl-3-pyrazolidinone (1) ${ }^{6}$ with benzaldehydes 2a-l according to the literature procedure. ${ }^{11,12}$ Racemic dipoles 3a-l were then treated with one equiv. of di-(-)-menthyl maleate (4) ${ }^{18}$ in refluxing anisole followed by thorough evaporation and subsequent purification of the crude reaction mixture by flash chromatography (FC) to afford partially purified mixtures of isomeric cycloadducts $5 / \mathbf{5}^{\prime}-7 / 7^{\prime}$. On the basis of previous results ${ }^{10}$ we expected, that all 12 dipoles 3a-l would react stereoselectively to give two diastereomeric cycloadducts. To our surprise, however, this was the case only in reactions of seven dipoles ($\mathbf{3}, \mathbf{,}, \mathbf{b}, \mathbf{i} \mathbf{i} \mathbf{-}$), while the other five dipoles ($\mathbf{3 c}-\mathbf{f}, \mathbf{h}$) gave mixtures of four diastereomers $\mathbf{5 / 5} / \mathbf{6} / \mathbf{6} \mathbf{c} \mathbf{c} \mathbf{f}, \mathbf{h}$ as a consequence of diminished endo/exo-selectivity. Thus, among azomethine imines 3a-j with at least one free ortho-position at the 1 '-Ar group, only dipoles $\mathbf{3 a}, \mathbf{b}, \mathbf{g}$ gave the expected 1:1 mixtures of the endo-diastereomers $\mathbf{5 / 5} \mathbf{5} \mathbf{a}, \mathbf{b}, \mathbf{g}$, while cycloadditions of dipoles $\mathbf{3 c} \mathbf{- f}, \mathbf{h}$ gave mixtures of
the major endo-isomers $\mathbf{5 / 5} \mathbf{c} \mathbf{- f} \mathbf{f}$ h and the minor exo-isomers $\mathbf{6} / \mathbf{6} \mathbf{c} \mathbf{- f}, \mathbf{h}$, and reactions of dipoles $\mathbf{3 i}$ and $\mathbf{3 j}$ afforded the exo-diastereomers $\mathbf{6} / \mathbf{6}^{\prime} \mathbf{i} \mathbf{j} \mathbf{j}$. On the other hand, both ort-ho-disubstituted dipoles, $\mathbf{3 k}$ and $\mathbf{3 1}$, reacted selectively to afford the expected ($1 S^{*}, 2 R^{*}, 3 S^{*}, 5 R^{*}, 6 R^{*}$)-diastereomers 7/7'k,l (Scheme 1, Table 1).

To obtain enantiopure cycloadducts, two methods were employed for preparative separation of these mixtures of diastereomeric cycloadducts, crystallization and medium pressure liquid chromatography (MPLC). First, each mixture of diastereomers was crystallized from methanol. It has to be mentioned here, that attempts to obtain pure isomers by crystallization from other solvents were not successful. Upon crystallization from methanol, however, isomerically pure compounds $\mathbf{5 a}, \mathbf{b}, \mathbf{5}^{\mathbf{\prime}} \mathbf{b}, \mathbf{6 c} \mathbf{j}$, and 6'f were obtained in $1-42 \%$ yields. This method of separation was the most effective in the case of a mixture of 3-(4-nitrophenyl) substituted cycloadducts $\mathbf{5 / 5} \mathbf{} \mathbf{b}$, since it furnished both diastereomers, $\mathbf{5 b}$ and $\mathbf{5} \mathbf{5} \mathbf{b}$, in pure form. Next, the non-resolved isomeric mixtures, including filtrates obtained upon successful crystallizations, were purified by MPLC to furnish isomerically pure compounds $\mathbf{5 d}, \mathbf{5}^{\prime} \mathbf{d}, \mathbf{h}, \mathbf{6 d}$, and $\mathbf{6}^{\prime} \mathbf{c}, \mathbf{d}$, and purified mixtures of isomers $\mathbf{5 / 5} \mathbf{e}, \mathbf{i}, \mathbf{6} / \mathbf{6}^{\mathbf{e}} \mathbf{e}$,h, and $\mathbf{7 / 7} \mathbf{7} \mathbf{k}, \mathbf{l}$ (Scheme 1, Table 2).

Low endo/exo-electivity of cycloadditions of orthounsubstituted dipoles $\mathbf{3 c - f} \mathbf{f} \mathbf{h}$ and ortho-monosubstituted dipoles $3 \mathbf{i}, \mathbf{j}$ to di-(-)-menthyl maleate (4) was not in agreement with high endo-selectivity observed previously in cycloadditions of $\mathbf{3 a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$ to dimethyl maleate. ${ }^{10}$ We do not have a firm explanation for this loss of endo/exo-selectivity in reactions of dipoles $\mathbf{3}$ with di-(-)-menthyl maleate (4), however, a similar phenomenon has already been observed previously in cycloadditions of ortho-unsubstituted dipoles 3a,b,e to maleimides, which were exo-selective. ${ }^{11}$ Therefore, stereocontrol in cycloadditions of dipoles $\mathbf{3 a} \mathbf{a} \mathbf{j}$ to di-(-)-menthyl maleate (4) could be explained in analogous way. The dipoles $\mathbf{3 a} \mathbf{-} \mathbf{j}$ with at least one free ortho-position can adopt a planar conformation $\mathbf{3}$ ' where

Table 1. Selectivity of Cycloadditions. ${ }^{a}$

Reactants \rightarrow Isomers formed	Ar	5:5':6:6'
$3 \mathrm{a}+4 \rightarrow 5 \mathrm{a}, 5 \mathrm{a}$	phenyl	56:44:0:0
$\mathbf{3 b}+4 \rightarrow 5 \mathrm{~b}, 5$ 'b	4-nitrophenyl	54:46:0:0
$3 \mathrm{c}+4 \rightarrow 5 \mathrm{c}, 5$ 'c, 6c, $\mathbf{6}^{\prime} \mathrm{c}$	4-methylphenyl	39:37:13:11
3d $+\mathbf{4} \rightarrow \mathbf{5 d}$, 5'd, 6d, 6'd	4-methoxyphenyl	31:29:20:20
$3 \mathrm{e}+4 \rightarrow 5 \mathrm{e}, 5{ }^{\prime} \mathrm{e}, 6 \mathrm{e}, 6^{\prime} \mathrm{e}$	3,4,5-trimethoxyphenyl	39:26:18:17
$\mathbf{3 f}+\mathbf{4} \boldsymbol{\rightarrow} \mathbf{5 f}$, 5'f, 6f, $\mathbf{6}$ 'f	4-dimethylaminophenyl	43:27:16:14
$3 \mathrm{~g}+4 \rightarrow 5 \mathrm{~g}, 5$ g	2-furyl	50:50:0:0
$\mathbf{3 h}+4 \rightarrow 5 \mathrm{~h}, 5 \mathbf{h}, 6 \mathrm{~h}, 6 \mathrm{~h}$	2-methoxyphenyl	28:25:25:22
$\mathbf{3 i}+\mathbf{4} \boldsymbol{\rightarrow 6 i}, 6{ }^{\text {' }} \mathbf{i}$	3-fluorophenyl	0:0:51:49
$\mathbf{3 j}+\mathbf{4} \mathbf{6 j}$, 6'j	2,4-dichlorophenyl	0:0:50:50
Reactants \rightarrow Isomers formed	Ar	7:7 ${ }^{\prime}$
3k+4>7k, 7'k	2,6-dichlorophenyl	51:49
31+4>71, 7’1	2,4,6-trimethylphenyl	56:44

[^0]Table 2. Selected Experimental Data for Compounds 5, 5', 6, 6', and 7/7’.

Reactants \rightarrow Isolated Isomers ${ }^{a}$	Ar	Separation Method ${ }^{\text {b }}$	Yield (\%)				
			5	5 ,	6	${ }^{6}$	7/7 ${ }^{\prime}$
$3 \mathrm{a}+4 \rightarrow 5 \mathrm{a}$	phenyl	A	29				
$3 \mathrm{~b}+4 \rightarrow 5 \mathrm{~b}+5$ ' b	4-nitrophenyl	A	32	42			
$3 \mathrm{c}+4 \rightarrow \mathbf{6 c}+6$ 'c	4-methylphenyl	A, B			1	2	
$3 \mathrm{~d}+4 \rightarrow 5 \mathrm{~d}+5^{\prime} \mathrm{d}+6 \mathrm{~d}+6^{\prime} \mathrm{d}$	4-methoxyphenyl	B	7	3	5	8	
$3 \mathrm{e}+4 \rightarrow 5 / 5$ ' $+6 / 6$ ' ${ }^{\text {e }}$	3,4,5-trimethoxyphenyl	B	$22^{\text {c }}$		11^{c}		
$3 \mathrm{f}+4 \rightarrow 6 \mathrm{f}$	4-dimethylaminophenyl	A				5	
$3 \mathrm{~g}+4 \rightarrow 5 \mathrm{~g}$	2-furyl	A	6				
$3 \mathrm{~h}+4 \rightarrow 5 \mathrm{~h}+6 \mathrm{~h}$	2-methoxyphenyl	B		6	$2^{\text {c }}$		
$3 \mathrm{i}+4 \rightarrow \mathbf{6 / 6}$ ' i	3-fluorophenyl	B			$22^{\text {c }}$		
$3 \mathrm{j}+4 \rightarrow 6 \mathrm{j}$	2,4-dichlorophenyl	A			21		
$3 \mathrm{k}+4 \rightarrow 7 / 7$ ' k	2,6-dichlorophenyl	B					31
$3 \mathrm{l}+4 \rightarrow 7 / 7 \times 1$	2,4,6-trimethylphenyl	B					9

${ }^{a)}$ Isolated isomers upon crystallization and/or chromatographic separation.
${ }^{\text {b) }}$ A: crystallization; B: MPLC.
${ }^{c)}$ Yield of a mixture of diastereomers 5/5' and/or 6/6'.

Scheme 2.
the (1'Si)-face is hindered by the phenyl group at position 5. In terms of facial selectivity, preferential approach of the dipolarophile from the less hindered ($1^{\prime} R e$)-face is favored. In terms of endo/exo-selectivity, the endo-approach of the dipolarophile is not preferred any more, due to steric hindrance between two bulky ($1^{\prime} R, 2^{\prime} S, 5^{\prime} R$)-2-iso-propyl-5-methylcyclohexyl groups in the dipolarophile 4 and the benzoylamino group in the dipole 3. Accordingly, formation of isomeric mixtures $\mathbf{5 / 5} / \mathbf{6} / \mathbf{6}$ is explainable by the concerted 1,3-dipolar cycloaddition mechanism via
mixed endo/exo-approach of 4 from the less hindered (1'Re)-face of the (Z)-dipoles 3f-j (Scheme 2).

On the other hand, selective formation of cycloadducts $7 / 7 \mathbf{7}$,l was in agreement with stereocontrol in cycloadditions of ortho-disubstituted dipoles $\mathbf{3 k} \mathbf{k}, \mathbf{l}$ to dimethyl maleate ${ }^{10}$ and maleimides. ${ }^{11}$ Since ortho-disubstituted dipoles $\mathbf{3 k}$ and $\mathbf{3 1}$ cannot adopt a planar conformation 3', stereocontrol and mechanism of these two cycloadditions could be explained in two ways. According to the concerted 1,3-dipolar cycloaddition mechanism, the
dipoles would adopt a preferable conformation $\mathbf{3 k}, \mathbf{l}$, where the ($1^{\prime} R e^{*}$)-face is strongly shielded by the ortho-substituent facing the dipole's terminal nitrogen atom. The reaction would then proceed via preferential endo-attack of the dipolarophile from the less hindered ($1^{\prime} \mathrm{Si}^{*}$)-face of the (Z)-dipole (Path A, Scheme 3). Alternatively, formation of cycloadducts $7 / 7^{\prime} \mathbf{k}, \mathbf{l}$ is also explainable by a twostep addition-cyclization mechanism. ${ }^{10,11}$ In the mesomeric structures $\mathbf{3} \mathbf{" k}, \mathbf{l}$, rotation around the exocyclic $\mathrm{C}-\mathrm{N}$ bond leads to the conformers $\mathbf{3}$ "'k,l, where the bulky aryl groups are twisted away from each other. Michael-type anti-addition of the dipolarophile 4 to the conformer $3^{\prime \prime \prime}$ gives the zwitterion (or a biradical) $\mathbf{8 / 8} \mathbf{8}^{1},{ }^{19}$ which then cyclizes into the final product 7/7' (Path B, Scheme 3).
while identities of $\mathbf{6 j}$ and 7/7'l were confirmed by EI-MS.
Unfortunately, we were not able to determine the absolute configuration of the isolated optically pure compounds. This should be done unambiguously by X-ray structural determination of the representative compounds 5 and/or 5^{\prime} and 6 and/or $\mathbf{6}^{\prime}$, however, all attempts to prepare suitable monocrystals failed. Nevertheless, the discrimination between the diastereomers within each diastereomeric pair $5 / \mathbf{5}^{\prime}-\mathbf{7 / 7}$ ' was possible by ${ }^{1} \mathrm{H}$ NMR on the basis of chemical shifts. To differentiate between the corresponding isomers 5-7 and 5'-7', the isomers with lower chemical shift for 2-H were assigned as the 'first' isomers 5-7, while isomers with higher chemical shift for 2-H were assigned as the 'second' (adjacent) isomers 5'-7'. Next,

Scheme 3.

3. Structure Determination

Structures of compounds $\mathbf{5 / 5} \mathbf{5} \mathbf{a} \mathbf{h}, \mathbf{6} / \mathbf{6}^{\mathbf{\prime}} \mathbf{c}-\mathbf{f}, \mathbf{h}-\mathbf{j}$, and 7/7'k,l were determined by spectroscopic methods (IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR, NOESY spectroscopy, MS) and by elemental analyses for C, H, and N . Compounds $\mathbf{5 a}, \mathbf{b}, \mathbf{d}$, $\mathbf{5}^{\prime} \mathbf{b}, \mathbf{d}, \mathbf{6 c}, \mathbf{d}$, and $\mathbf{6} \mathbf{c}, \mathbf{d}, \mathbf{f}$ were prepared in isomerically pure form. The isomers $\mathbf{5 c}, \mathbf{f}, \mathbf{h}, \mathbf{5}^{\prime} \mathbf{a}, \mathbf{c}, \mathbf{f}, \mathbf{g}, \mathbf{6 f}$, and $\mathbf{6}^{\prime} \mathbf{j}$ were not isolated and were characterized only by ${ }^{1} \mathrm{H}$ NMR. Compounds $\mathbf{5 / 5} \mathbf{\prime}, \mathbf{6} / \mathbf{6}^{\prime} \mathbf{e}, \mathbf{h}, \mathbf{i}$, and $\mathbf{7 k}, 1$ were isolated and characterized as mixtures of isomers. Compounds $\mathbf{5 b}, \mathbf{6 d}, \mathbf{j}$, and 7/7'I were not prepared in analytically pure form. The identity of $\mathbf{5 b}$ was confirmed by EI-MS and ${ }^{13} \mathrm{C}$ NMR,
relative configuration at the newly formed chiral center at position 3 in compounds $5 \mathbf{d}, \mathbf{5}^{\prime} \mathbf{d}, \mathbf{6 d}, \mathbf{j}$, and $\mathbf{6}^{\prime} \mathbf{d}$ were determined by NOESY spectroscopy. A strong NOE between $3-\mathrm{H}$ and $5-\mathrm{H}$ was in agreement with the syn-orientation between these two nuclei (Figure 2).

The relative configuration at the other chiral centers were determined on the basis of chemical shifts for protons at positions $1-3,5$, and 6 and on the basis of vicinal coupling constants, ${ }^{3} J_{\mathrm{H} 1-\mathrm{H} 2},{ }^{3} J_{\mathrm{H} 2-\mathrm{H} 3}$, and ${ }^{3} J_{\mathrm{H} 5-\mathrm{H} 6}$. In cycloadducts $\mathbf{5 / 5}$ ' and $\mathbf{7 / 7}$ ', the chemical shifts for protons at positions $1-3,5$, and 6 , as well as coupling constants, ${ }^{3} J_{\mathrm{H} 1-\mathrm{H} 2},{ }^{3} J_{\mathrm{H} 2-\mathrm{H} 3}$, and ${ }^{3} J_{\mathrm{H} 5-\mathrm{H} 6}$ were in agreement with the data for their close dimethyl analogues. ${ }^{10}$ Similarly, NMR

5d, 5'd

Compounds 5/5'a-h
($\mathrm{R}=\mathrm{COOMnt}$)

6d, 6'd

Compounds 6/6'c-f,h-j
($\mathrm{R}=\mathrm{COOMnt}$)

Compounds 7/7'k,I ($\mathrm{R}=\mathrm{COOMnt}$)

Figure 2. Structure Determination by NMR Methods.
data for the exo-isomers 6/6' were in agreement with the literature data for structurally related exo-cycloadducts (Figure 2, Table 2). ${ }^{11}$

In conclusion, this study showed, that optically active di-(-)-menthyl 3-aryl-6-benzamido-7-oxo-5-phenyl-perhydropyrazolo[1,2-a]pyrazole-1,2-dicarboxylates are available via cycloaddition of racemic ($1 \mathrm{Z}, 4 R^{*}, 5 R^{*}$)-1-arylmethylidene-4-benzamido-5-phenyl-3-pyrazolidinon1 -azomethine imines 3 to di-(-)-menthyl maleate (4) followed by separation of diastereomeric cycloadducts. From the practical point of view, this method was not very efficient, because (a) loss of endo/exo-selectivity often resulted in formation of four (instead of two) isomeric cycloadducts; (b) separation of diastereomers was usually complicated, and (c) the yields of the isolated optically active cycloadducts were generally low. On the other hand, this study also indicated, that the selectivity and stereocontrol in cycloadditions to azomethine imines $\mathbf{3}$ may vary significantly with increasing steric demand of the dipolarophile.

4. Experimental

4. 1. General Procedures

Melting points were determined on a Kofler micro hot stage. The NMR spectra were obtained on a Bruker Avance DPX 300 at 300 MHz for ${ }^{1} \mathrm{H}$ and 75.5 MHz for ${ }^{13} \mathrm{C}$ nucleus, using DMSO- d_{6} and CDCl_{3} as solvents and TMS as the internal standard. Mass spectra were recorded
on an AutoSpecQ spectrometer and IR spectra on a Per-kin-Elmer Spectrum BX FTIR spectrophotometer. Microanalyses were performed on a Perkin-Elmer CHN Analyzer 2400. Column chromatography (CC) was performed on silica gel (Fluka, silica gel 60, 40-60 $\mu \mathrm{m}$). Medium pressure liquid chromatography (MPLC) was performed with a Büchi isocratic system with detection on silica gel (Merck, silica gel 60, $1535 \mu \mathrm{~m}$); column dimensions (dry filled): $15 \times 460 \mathrm{~mm}$; backpressure: $10-15$ bar; detection: UV 254 nm ; sample amount: $100-150 \mathrm{mg}$ of isomeric mixture per each run. Ratio of isomers and d.e. were determined by ${ }^{1} \mathrm{H}$ NMR.
($4 R^{*}, 5 R^{*}$)-4-Benzamido-5-phenyl-3-pyrazolidinone (1), ${ }^{6}$ azomethine imines $\mathbf{3 a}-\mathbf{l}^{11,12}$ and di-(-)-menthyl maleate (4) ${ }^{18}$ were prepared according to the literature procedures.

Source of chirality: (-)-Menthol (Fluka AG), product number 636600, puriss. p.a., terpene standard for $\mathrm{GC}, \geq 99.0 \%$ (sum of enantiomers, GC), $[\alpha]_{\mathrm{D}}{ }^{20}-54.5 \pm 1$ ($c=10 \%$, EtOH), $\mathrm{mp} \sim 43^{\circ} \mathrm{C}$, e.e. $\geq 98.0 \%$.

4. 2. General Procedure for the Preparation and Separation of Isomeric Cycloadducts 5/5'-7/7'

A mixture of azomethine imine 3 (1 mmol), di-(-)menthyl maleate (4) (1 mmol), and anisole (10 mL) was heated under reflux for 4 h . Volatile components were evaporated in vacuo ($80^{\circ} \mathrm{C}, 2-5 \mathrm{mbar}$). The residue was puri-

Table 3. Correlation of NMR data for compounds $5 / \mathbf{5}^{\prime}, \mathbf{6 / 6}$, and 7/7’.

$\left(1 R^{*}, 2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}\right)$-Isomers 5/5'								
Compound	δ [ppm]					${ }^{3} J_{\mathrm{H}-\mathrm{H}}[\mathrm{Hz}]$		
	1-H	2-H	3-H	5-H	6-H	1-2	2-3	5-6
5 a	4.73	3.79	4.39	4.28	5.63	8.3	11.1	12.1
5'a	4.74	3.81	4.38	4.30	5.57	8.5	11.0	12.3
5b	4.77	3.73	4.55	4.31	5.68	8.2	11.0	12.2
5'b	4.78	3.77	4.54	4.35	5.61	8.3	11.1	12.2
5 c	a	3.75	a	a	a	8.3	11.0	a
5'c	a	3.79	a	a	a	8.5	11.0	a
5d	4.71	3.74	4.34	4.26	5.61	8.3	11.1	12.0
5'd	4.72	3.76	4.33	4.27	5.56	8.5	11.1	12.0
5 e	4.70	3.7^{a}	4.33	4.26	5.68	8.2	11.1	12.1
5'e	4.72	3.75	4.34	4.29	5.68	8.2	11.1	12.2
5 f	4.70	3.76	4.29	4.25	5.58	8.3	11.1	12.0
5'f	4.71	a	a	4.26	5.53	8.4	${ }^{\text {a }}$	12.0
5g	4.75	4.14	4.51	4.31	5.48	8.4	11.1	12.1
5'g		4.17	4.54	4.39	5.36	8.5	11.1	12.0
5h	4.73	4.08	4.96	4.31	5.45	8.3	11.1	12.0
5'h	4.76	4.09	4.97	4.30	5.40	8.6	11.1	11.7

$\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}\right.$)-Isomers 6/6'								
Compound	δ [ppm]					${ }^{3} J_{\mathrm{H}-\mathrm{H}}[\mathrm{Hz}]$		
	1-H	2-H	3-H	5-H	6-H	1-2	2-3	5-6
6c	5.04	3.47	4.17	4.69	5.67	6.4	9.2	9.2
6 'c	5.12	3.56	4.17	4.39	4.86	7.1	9.3	8.6
6d	5.04	3.46	4.15	4.69	5.66	6.5	9.2	9.4
6'd	5.12	3.54	4.15	4.38	4.86	7.3	9.5	9.0
6 e	5.08	3.51	4.24	4.41	4.84	7.5	9.5	9.3
6'e	5.15	3.54	4.29	4.40	4.78	6.5	8.6	8.1
6 f	5.10	3.59	4.17	4.40	4.80	5.9	8.7	6.9
6'f	5.11	3.54	4.08	4.38	4.86	7.2	9.4	8.3
6h	5.10	3.65	a	4.47	4.93	3.9	6.8	6.6
6'h	5.11	3.69	a	4.43	5.00	4.8	7.4	7.0
$6 i$	5.12	3.55	4.25	4.41	$\sim 4.8{ }^{\text {a }}$	7.1	9.3	9.4
6'i	5.16	3.61	4.32	4.41	$\sim 4.8{ }^{\text {a }}$	5.9	8.7	7.6
6j	5.12	3.61	4.86	4.44	5.05	4.8	7.0	7.7
6'j	5.14	3.64	a	4.46	4.97	4.6	6.8	6.7
$\left(1 S^{*}, 2 R^{*}, 3 S^{*}, 5 R^{*}, 6 R^{*}\right)$-Isomers 7/7								
Compound	δ [ppm]					${ }^{3} J_{\mathrm{H}-\mathrm{H}}[\mathrm{Hz}]$		
	1-H	2-H	3-H	5-H	6-H	1-2	2-3	5-6
7k	5.83	4.80	5.29	4.31	5.09	9.6	8.2	9.8
7’k	5.91	4.84	5.30	4.36	5.09	9.7	8.3	10.2
71	č4.9 ${ }^{\text {a }}$	4.19	5.07	4.38	$\sim 4.9^{a}$	9.4	10.7	4.7
7’1	5.03	4.24	$\sim 4.9^{a}$	4.35	$\sim 4.9^{a}$	8.6	10.5	6.2

${ }^{a}$ Overlapped by other signals.
fied by flash chromatography (FC, silica gel, EtOAc-hexanes, 1:2). Fractions containing the isomeric products were combined and evaporated in vacuo to give mixtures of isomeric cycloadducts $\mathbf{5 / 5} \mathbf{5} \mathbf{a}, \mathrm{b}, \mathrm{g}, \mathbf{5} / \mathbf{5}^{\prime} / \mathbf{6} / \mathbf{6}^{\prime} \mathbf{c}-\mathbf{f}, \mathbf{h}, \mathbf{6} / \mathbf{6}^{\prime} \mathbf{i}, \mathbf{j}$, and $7 / 7^{\prime} \mathbf{k}, \mathbf{l}$. These isomeric mixtures were then separated by crystallization from methanol or/and MPLC (EtOA-c-hexanes) to give isomerically pure compounds $\mathbf{5 a}, \mathbf{b}, \mathbf{d}, \mathbf{g}, \mathbf{5}^{\prime} \mathbf{b}, \mathbf{d}, \mathbf{h}, \mathbf{6 c}, \mathbf{d}, \mathbf{j}$, and $\mathbf{6}^{\prime} \mathbf{c}, \mathbf{d}, \mathbf{f}$ and purified mixtures of isomers 5/5'e,i, 6/6'e,h and 7/7'k,l.

The following compounds were prepared in this manner:

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] (1R*, $2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3,5-diphenyl-7-oxo-hexahydropyrazolo[1,2-a]pyrazole-1,2-dicarboxylate 5/5'a. Prepared from 4 and dipole 3a ($369 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathbf{5 a}: \mathbf{5} \mathbf{' a}=56: 44$, crystallization of $\mathbf{5 / 5} \mathbf{' a}$ from methanol afforded isomerically pure compound $\mathbf{5 a}$.

Data for compound 5a. Yield: $211 \mathrm{mg}(29 \%)$ of a white solid; mp $220-224^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}{ }^{21}-61.6$ $\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.34,0.47,0.81$, $0.87,0.91,0.95(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times$ MeCH); 0.55-1.85 (16H, m, 16H of menthyl); 1.93-2.04
(1H, m, 1H of menthyl); 2.26-2.35 (1H, m, 1H of menthyl); 3.79 ($1 \mathrm{H}, \mathrm{dd}, J=8.3,11.1 \mathrm{~Hz}, 2-\mathrm{H}$); 4.28 ($1 \mathrm{H}, \mathrm{d}, J$ $=12.1 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.39(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.54(1 \mathrm{H}$, $\left.\mathrm{dt}, J=4.4,10.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.73(1 \mathrm{H}, \mathrm{dd}, J=0.8,8.3 \mathrm{~Hz}$, $1-\mathrm{H}) ; 4.81\left(1 \mathrm{H}, \mathrm{dt}, J=4.3,10.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.63(1 \mathrm{H}, \mathrm{dd}, J$ $=8.5,12.1 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.54(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH})$; $6.93-7.03(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}$ of Ph$) ; 7.07-7.20(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of $\mathrm{Ph}) ; 7.34-7.41(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.43-7.49(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph); 7.68-7.74 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph). (Found: C, 73.99; H, 7.93; N, 5.51. $\mathrm{C}_{47} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires: C, 74.08; H, 7.80; N, 5.51.); IR, $v_{\max }(\mathrm{KBr}): 3368(\mathrm{NH}), 2952,2928,2867$, 1729 (C=O), 1648 (C=O), 1521, 1457, 1385, 1184, 960, $764,694 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathrm{H}$ NMR data for compound $\mathbf{5}^{\mathbf{\prime}} \mathrm{a} .{ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.61,0.70,0.78,0.86,0.89,0.94(18 \mathrm{H}, 6 \mathrm{~d}$, $1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times M e \mathrm{CH}) ; 3.81(1 \mathrm{H}, \mathrm{dd}, J=8.5$, $11.0 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.30(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.38(1 \mathrm{H}, \mathrm{d}$, $J=11.0 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.74(1 \mathrm{H}, \mathrm{dd}, J=0.7,8.5 \mathrm{~Hz}, 1-\mathrm{H})$; $5.57(1 \mathrm{H}, \mathrm{dd}, J=8.2,12.3 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.55(1 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz}, \mathrm{NH})$.

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] ($1 R^{*}, 2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(4-nitrop-henyl)-7-oxo-5-phenylhexahydropyrazolo[1,2-a]pyra-zole-1,2-dicarboxylate 5/5'b. Prepared from 4 and dipole $\mathbf{3 b}(414 \mathrm{mg}, 1 \mathrm{mmol}), \mathbf{5 b}: \mathbf{5}^{\prime} \mathbf{b}=54: 46$, crystallization from methanol afforded isomerically pure compound $\mathbf{5 b}$. Subsequent evaporation of the filtrate gave isomerically pure compound $\mathbf{5}^{\prime} \mathbf{b}$.

Data for compound 5b. Yield: 224 mg (32\%) of a yellowish solid; mp $207-209{ }^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}{ }^{23}$ -24.7 $\left(c=0.012, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. EI-MS: $m / z=807\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.41,0.49,0.81,0.87,0.92,0.96(18 \mathrm{H}$, $6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times \mathrm{MeCH}) ; 0.71-1.83$ (16 H , $\mathrm{m}, 16 \mathrm{H}$ of menthyl); 1.91-2.04 (1H, m, 1H of menthyl); $2.23-2.32(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of menthyl); $3.73(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $11.0 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.31(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.55(1 \mathrm{H}, \mathrm{d}$, $J=11.0 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.56\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$; $4.77(1 \mathrm{H}, \mathrm{dd}, J=0.7,8.2 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.81(1 \mathrm{H}, \mathrm{dt}, J=4.4$, $\left.10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.68(1 \mathrm{H}$, dd, $J=8.4,12.2 \mathrm{~Hz}, 6-\mathrm{H})$; $6.52(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{NH}) ; 6.96-7.03(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of $\mathrm{Ar}) ; 7.16-7.23$ ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar); 7.30-7.42 (4H, m, 4H of Ar$) ; 7.45-7.50(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ar$) ; 7.66-7.73(2 \mathrm{H}, \mathrm{m}$, 2 H of Ar$) ; 7.84-7.91(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar$) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.08,16.14,20.85,21.44,22.27,22.42$, 23.13, 25.61, 25.77, 31.91, 32.00, 34.26, 34.53, 40.89, $41.15,47.22,58.08,58.26,60.60,70.07,76.31,78.59$, 79.58, 123.37, 127.67, 128.51, 128.54, 128.84, 129.24, $129.48,132.23,133.78,134.20,142.74,148.03,164.69$, 166.45, 167.62, 167.96. (Found: C, 68.85; H, 7.83; N, 7.08. $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires: C, 69.95; H, 7.24; N, 6.94.); IR, $v_{\text {max }}$ (KBr): 3433 (NH), 2957, 2929, 2868, 1724 (C=O), 1652 ($\mathrm{C}=\mathrm{O}$) , 1524, 1456, 1349, 1206, 1177, 1110, 980, 954, 851, $697 \mathrm{~cm}^{-1}$.

Data for compound $\mathbf{5}^{\mathbf{\prime}} \mathbf{b}$. Yield: 297 mg (42\%) of a yellowish solid; mp $120-123{ }^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}{ }^{23}$
$-67.6\left(c=0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.60,0.67$, $0.81,0.86,0.95,0.96(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6$ $\times \mathrm{MeCH}) ; 0.71-1.79(16 \mathrm{H}, \mathrm{m}, 16 \mathrm{H}$ of menthyl); 2.10-2.22 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); $3.77(1 \mathrm{H}, \mathrm{dd}, J=8.3$, $11.1 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.35(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.54(1 \mathrm{H}, \mathrm{d}$, $J=11.1 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.56\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$; $4.78(1 \mathrm{H}, \mathrm{dd}, J=0.7,8.3 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.81(1 \mathrm{H}, \mathrm{dt}, J=4.4$, $\left.10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.61(1 \mathrm{H}, \mathrm{dd}, J=8.5,12.2 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.52$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH}) ; 6.96-7.03(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ar$)$; 7.16-7.23 (2H, m, 2H of Ar); 7.30-7.42 (4H, m, 4H of Ar); 7.43-7.50 (1H, m, 1H of Ar); 7.66-7.73 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar); 7.84-7.91 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph). (Found: C, 69.93; H, 7.56; N, 6.83. $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires: C, 69.95; H, 7.24; N, 6.94.); IR, $v_{\max }(\mathrm{KBr}): 3429$ (NH), 2955, 2929, 2868, 1735 (C=O), 1671 (C=O), 1525, 1457, 1348, 1208, 980, $953,851,697 \mathrm{~cm}^{-1}$.

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] ($1 R^{*}, 2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(4-methylp-henyl)-7-oxo-5-phenylhexahydropyrazolo[1,2-a]pyra-zole-1,2-dicarboxylate $5 / 5^{\prime} \mathrm{c}$ and $\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 5 R^{*}\right.$, 6R*)-isomer 6/6'c. Prepared from 4 and dipole 3c (383 $\mathrm{mg}, 1 \mathrm{mmol}), \mathbf{5 c}: \mathbf{5} \mathbf{c}: \mathbf{6 c}: \mathbf{6} \mathbf{c}=39: 37: 13: 11$, crystallization from methanol afforded isomerically pure compound $\mathbf{6 c}$. Evaporation of the filtrate followed by separation by MPLC afforded isomerically pure compound $\mathbf{6} \mathbf{\prime} \mathbf{c}$.
${ }^{1} \mathrm{H}$ NMR data for compound 5c. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 3.75(1 \mathrm{H}, \mathrm{dd}, J=8.3,11.0 \mathrm{~Hz}, 2-\mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR data for compound $5^{\prime} \mathrm{c}$. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 3.79(1 \mathrm{H}, \mathrm{dd}, J=8.5,11.0 \mathrm{~Hz}, 2-\mathrm{H})$.

Data for compound $\mathbf{6 c}$. Yield: $10 \mathrm{mg}(1 \%)$ of a white solid; mp 200-206 ${ }^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}{ }^{23}-130.9$ ($c=0.008, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.65,0.74,0.82$ ($9 \mathrm{H}, 3 \mathrm{~d}, 1: 1: 1, J=6.9 \mathrm{~Hz}, 3 \times \mathrm{MeCH}) ; 0.78-0.97(13 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{MeCH}$ and 4 H of menthyl); $0.97-1.60(8 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}$ of menthyl); 1.61-1.78 (3H, m, 3 H of menthyl); 1.94-2.12 (3H, m, 3H of menthyl); 2.19 (3H, s, MeAr); $3.47(1 \mathrm{H}, \mathrm{dd}, J=6.4,9.2 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.17(1 \mathrm{H}, \mathrm{d}, J=9.2$ $\mathrm{Hz}, 3-\mathrm{H}) ; 4.69(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.71$ and 4.89 ($\left.2 \mathrm{H}, 2 \mathrm{dt}, 1: 1, J=4.3,10.7 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{H}\right) ; 5.04(1 \mathrm{H}, \mathrm{d}, J=$ $6.4 \mathrm{~Hz}, 1-\mathrm{H}) ; 5.67(1 \mathrm{H}, \mathrm{dd}, J=7.9,9.2 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.84$ $(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{NH}) ; 7.09(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.19-7.28\left(5 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{4}$ and 3 H of Ph$)$; $7.30-7.38(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}$ of Ph$) ; 7.39-7.47(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph). (Found: C, 74.49; H, 8.22; N, 5.67. $\mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires: C, 74.29; H, 7.92; N, 5.41.); IR, $v_{\max }(\mathrm{KBr}): 3423$ (NH), 2954, 2928, 2866, 1732 (C=O), 1656 (C=O), 1521, 1456, 1372, 1231, 1182, 1099, 1150, 983, 819, $704 \mathrm{~cm}^{-1}$.

Data for compound 6'c. Yield: $18 \mathrm{mg}(2 \%)$ of a white solid; mp $240-242{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-28.6(c=0.005$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.56,0.65,0.83,0.90,0.92$, $0.93(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times \mathrm{MeCH})$; $0.75-1.60(12 \mathrm{H}, \mathrm{m}, 12 \mathrm{H}$ of menthyl); $1.60-1.70(3 \mathrm{H}, \mathrm{m}$, 3 H of menthyl); 1.95-2.09 (3H, m, 3H of menthyl); 2.20 (3H, s, MeAr); $3.56(1 \mathrm{H}, \mathrm{dd}, J=7.1,9.3 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.17$ $(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.39(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 5-\mathrm{H})$;
4.68 and $4.84\left(2 \mathrm{H}, 2 \mathrm{dt}, 1: 1, J=4.3,10.7 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{H}\right)$; $4.86(1 \mathrm{H}, \mathrm{dd}, J=7.0,8.6 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.12(1 \mathrm{H}, \mathrm{d}, J=7.1$ $\mathrm{Hz}, 1-\mathrm{H}) ; 6.71(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{NH}) ; 6.89(2 \mathrm{H}, \mathrm{d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.06\left(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$; $7.11-7.19(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.31-7.37(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of $\mathrm{Ph}) ; 7.38-7.46(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.47-7.54(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph); 7.75-7.81 (2H, m, 2H of Ph). (Found: C, 74.43; H, 8.17; N, 5.41. $\mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires: C, 74.29; H, 7.92; N, 5.41.); IR, $v_{\max }(\mathrm{KBr}): 3443$ (NH), 2955, 2920, 2866, $1732(\mathrm{C}=\mathrm{O}), 1679(\mathrm{C}=\mathrm{O}), 1524,1454,1389,1233,1182$, $1113,1150,953,700 \mathrm{~cm}^{-1}$.

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] ($1 R^{*}, 2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(4-methoxyp-henyl)-7-oxo-5-phenylhexahydropyrazolo [1,2-a]pyra-zole-1,2-dicarboxylate $5 / 5$ 'd and $\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 5 R^{*}\right.$, $\mathbf{6} \boldsymbol{R}^{*}$)-isomer 6/6'd. Prepared from $\mathbf{4}$ and dipole 3d (399 $\mathrm{mg}, 1 \mathrm{mmol}$), 5c:5'c:6c:6'c = 31:29:20:20, separation by MPLC afforded isomerically pure compounds $5 \mathbf{d}, \mathbf{5} \mathbf{d}$, $\mathbf{6 d}$, and $\mathbf{6}^{\prime} \mathbf{d}$.

Data for compound 5d. Yield: $56 \mathrm{mg}(7 \%)$ of a white solid; $\mathrm{mp} 196-200{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}-50.1(c=0.06$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.34,0.48,0.81,0.88,0.90$, $0.95(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times \mathrm{MeCH})$; $0.75-1.64$ ($13 \mathrm{H}, \mathrm{m}, 13 \mathrm{H}$ of menthyl); 1.65-1.85 (3H, m, 3 H of menthyl); $1.90-2.06(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of menthyl); $2.25-2.36(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of menthyl); $3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; $3.74(1 \mathrm{H}, \mathrm{dd}, J=8.3,11.1 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.26(1 \mathrm{H}, \mathrm{d}, J=12.0$ $\mathrm{Hz}, 5-\mathrm{H}) ; 4.34(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.53(1 \mathrm{H}, \mathrm{dt}, J=$ $\left.4.4,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.71(1 \mathrm{H}, \mathrm{dd}, J=0.7,8.3 \mathrm{~Hz}, 1-\mathrm{H})$; $4.79\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.61(1 \mathrm{H}, \mathrm{dd}, J=8.5$, $12.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.53\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.57$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH}) ; 6.96-7.06\left(5 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{4}$ and 3 H of Ph$) ; 7.13-7.21(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.33-7.41$ $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.42-7.50(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph$)$; 7.67-7.75 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph). (Found: C, 72.90; H, 8.00; $\mathrm{N}, 5.27 . \mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires: C, 72.79; H, 7.76; N, 5.31.); IR, $v_{\text {max }}(\mathrm{KBr}): 3429(\mathrm{NH}), 2955,2931,2868$, $1727(\mathrm{C}=\mathrm{O}), 1647(\mathrm{C}=\mathrm{O}), 1518,1456,1381,1249,1189$, 1119, 1134, $957,694 \mathrm{~cm}^{-1}$.

Data for compound $\mathbf{5}^{\prime} \mathbf{d}$. Yield: 25 mg (3\%) of a white solid; $\mathrm{mp} 175-178{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}-43.7(c=0.012$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.62,0.72,0.79,0.86,0.94$, $0.95(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times \mathrm{MeCH})$; 0.69-1.64 (14H, m, 14H of menthyl); 1.65-1.77 (2H, m, 2 H of menthyl); 2.10-2.22 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); 3.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$); 3.76 ($1 \mathrm{H}, \mathrm{dd}, J=8.5,11.1 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.27$ $(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.33(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, 3-\mathrm{H})$; $4.50\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.72(1 \mathrm{H}, \mathrm{dd}, J=0.7$, $8.5 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.82\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,11.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.56$ $(1 \mathrm{H}, \mathrm{dd}, J=8.5,12.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.54(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, 2 H of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.60(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{NH}) ; 6.96-7.06(5 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{H}$ of $\mathrm{C}_{6} \mathrm{H}_{4}$ and 3 H of Ph$) ; 7.15-7.22(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of $\mathrm{Ph}) ; 7.33-7.41(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.42-7.50(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph); 7.67-7.74 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph). (Found: C, 72.89; H, 7.95; N, $5.30 \mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires: $\mathrm{C}, 72.79 ; \mathrm{H}, 7.76 ; \mathrm{N}$,
5.31.); IR, $v_{\max }(\mathrm{KBr}): 3397$ (NH), 2951, 2930, 2866, 1732 (C=O), 1642 (C=O), 1516, 1457, 1370, 1254, 1206, 1175, 1030, 959, 826, $706 \mathrm{~cm}^{-1}$.

Data for compound 6d. Yield: 37 mg (5\%) of a white solid; $\mathrm{mp} 91-94{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}-18.7 \quad(c=0.062$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.65,0.74,0.82,(9 \mathrm{H}, 3 \mathrm{~d}$, $1: 1: 1, J=6.9 \mathrm{~Hz}, 3 \times M e \mathrm{CH}) ; 0.90,0.91,0.94,(9 \mathrm{H}, 3 \mathrm{~d}$, $1: 1: 1, J=6.6 \mathrm{~Hz}, 3 \times M e \mathrm{CH}) ; 0.79-1.52(12 \mathrm{H}, \mathrm{m}, 12 \mathrm{H}$ of menthyl); 1.62-1.79 (3H, m, 3H of menthyl); 1.93-2.13 $(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of menthyl); $3.46(1 \mathrm{H}, \mathrm{dd}, J=6.5,9.2 \mathrm{~Hz}, 2-$ H); 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$); $4.15(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.69$ $(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.71$ and $4.89(2 \mathrm{H}, 2 \mathrm{dt}, 1: 1, J=$ $4.4,10.9 \mathrm{~Hz}, 2 \times 1$ '-H); $5.04(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 1-\mathrm{H}) ; 5.66$ (1H, dd, $J=7.9,9.4 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.84(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, $\mathrm{NH}) ; 6.81\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.19-7.38$ $\left(11 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{4}$ and 9 H of Ph$) ; 7.39-7.47(1 \mathrm{H}, \mathrm{m}$, 1 H of Ph). (Found: $\mathrm{C}, 72.29$; H, 8.04; N, 5.31. $\mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires: C, $72.79 ; \mathrm{H}, 7.76 ; \mathrm{N}, 5.31$.); IR, $v_{\text {max }}(\mathrm{KBr}): 3441(\mathrm{NH}), 2955,2928,2868,1734(\mathrm{C}=\mathrm{O})$, 1655 (C=O), 1516, 1457, 1370, 1251, 1179, $704 \mathrm{~cm}^{-1}$.

Data for compound 6'd. Yield: $60 \mathrm{mg}(8 \%)$ of a white solid; $\mathrm{mp} 215-218{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{26}-18.7(c=0.008$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.56,0.66,0.84,(9 \mathrm{H}, 3 \mathrm{~d}$, $1: 1: 1, J=6.8 \mathrm{~Hz}, 3 \times \mathrm{Me} \mathrm{CH}) ; 0.90,0.92,0.94,(9 \mathrm{H}, 3 \mathrm{~d}$, $1: 1: 1, J=6.5 \mathrm{~Hz}, 3 \times \mathrm{MeCH}) ; 0.72-1.28(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{H}$ of menthyl); 1.37-1.54 (3H, m, 3H of menthyl); 1.60-1.78 $(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of menthyl); 1.95-2.09 (3H, m, 3H of menthyl); $3.54(1 \mathrm{H}, \mathrm{dd}, J=7.3,9.5 \mathrm{~Hz}, 2-\mathrm{H}) ; 3.68(3 \mathrm{H}, \mathrm{s}$, OMe); $4.15(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.38(1 \mathrm{H}, \mathrm{d}, J=9.0$ $\mathrm{Hz}, 5-\mathrm{H}) ; 4.68$ and $4.84(2 \mathrm{H}, 2 \mathrm{dt}, 1: 1, J=4.4,10.8 \mathrm{~Hz}, 2$ $\left.\times 1^{\prime}-\mathrm{H}\right) ; 4.86(1 \mathrm{H}, \mathrm{dd}, J=6.8,9.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.12(1 \mathrm{H}, \mathrm{dd}$, $J=0.5,7.3 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.62(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.72(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{NH}) ; 7.09(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.10-7.18(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.28-7.35$ $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.37-7.46(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$)$; 7.47-7.54 $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph$) ; 7.74-7.81(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph). (Found: C, 72.97; H, 7.92; N, 5.33. $\mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires: C, 72.79; H, 7.76; N, 5.31.); IR, $v_{\text {max }}$ (KBr): 3447 (NH), 2957, 2928, 2868, 1731 (C=O), 1678 (C=O), 1517, 1456, 1387, 1250, 1176, 1031, 953, 829, $702 \mathrm{~cm}^{-1}$.

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] ($1 R^{*}, 2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-7-oxo-5-phenyl-3-(3,4,5-trimethoxyphenyl)hexahydropyrazolo [1,2-a]pyrazole-1,2-dicarboxylate $5 / 5^{\prime} \mathrm{e}$ and ($1 S^{*}, 2 R^{*}, 3 R^{*}$, $5 R^{*}, 6 R^{*}$)-isomer 6/6'e. Prepared from 4 and dipole 3 e ($459 \mathrm{mg}, 1 \mathrm{mmol}$), 5e:5'e:6e:6'e = 39:26:18:17, separation by MPLC afforded purified mixtures of isomers $5 / \mathbf{5}^{\prime} \mathrm{e}$ and 6/6'e.

Data for a mixture of compounds 5/5'e. Yield: 189 $\mathrm{mg}(22 \%)$ of a white solid, $\mathbf{5 e}: \mathbf{5}^{\prime} \mathbf{e}=50: 50 ; \mathrm{mp} 91-94^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{26}-49.6\left(c=0.082, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found: C, 70.69; H, 8.02; $\mathrm{N}, 4.77 \mathrm{C}_{50} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires: C, 70.48; H, 7.69; N, 4.93.); IR, $v_{\text {max }}$ (KBr): 3374 (NH), 2955, 2930, 2870, 1732 ($\mathrm{C}=\mathrm{O}$), 1669 (C=O), 1593, 1535, 1508, 1459, 1371, 1234, 1184, 1126, 1009, 912, 845, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR data for compound 5e. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.37-0.96(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.72-1.64(10 \mathrm{H}, \mathrm{m}$, 10 H of menthyl); 1.65-1.77 (4H, m, 4H of menthyl); 1.91-2.02 (1H, m, 1H of menthyl); 2.07-2.23 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); $2.25-2.34(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of menthyl); 3.66, $3.69,3.70(9 \mathrm{H}, 3 \mathrm{~s}, 1: 1: 1,3 \times \mathrm{OMe}) ; 3.7(1 \mathrm{H}$, overlapped by OMe signals, $2-\mathrm{H}) ; 4.26(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, 5-\mathrm{H})$; $4.33(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.55(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.6$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.70(1 \mathrm{H}, \mathrm{dd}, J=0.5,8.2 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.82(1 \mathrm{H}$, $\left.\mathrm{dt}, J=4.4,10.6 \mathrm{~Hz}, 1^{\prime} \mathrm{c}-\mathrm{H}\right) ; 5.68(1 \mathrm{H}, \mathrm{dd}, J=8.5,12.1 \mathrm{~Hz}$, $6-\mathrm{H}) ; 6.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{2}\right) ; 6.60(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH})$; $6.99-7.06(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ar$) ; 7.16-7.24(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of $\mathrm{Ph}) ; 7.32-7.42(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.43-7.50(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph$) ; 7.68-7.75(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$)$.
${ }^{1} \mathbf{H}$ NMR data for compound 5 'e. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.37-0.96(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.72-1.64(10 \mathrm{H}, \mathrm{m}$, 10 H of menthyl); 1.65-1.77 (4H, m, 4 H of menthyl); $1.91-2.02(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of menthyl); 2.07-2.23 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); 2.25-2.34 ($1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of menthyl); 3.66, $3.69,3.70(9 \mathrm{H}, 3 \mathrm{~s}, 1: 1: 1,3 \times \mathrm{OMe}) ; 3.75(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $11.1 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.29(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.34(1 \mathrm{H}, \mathrm{d}$, $J=11.1 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.55\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$; $4.72(1 \mathrm{H}, \mathrm{dd}, J=0.5,8.2 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.82(1 \mathrm{H}, \mathrm{dt}, J=4.4$, $\left.10.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.68(1 \mathrm{H}, \mathrm{dd}, J=8.5,12.2 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.35$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{2}\right) ; 6.63(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH}) ; 6.99-7.06$ $(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.16-7.24(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$)$; $7.32-7.42(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.43-7.50(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of $\mathrm{Ph}) ; 7.68-7.75(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$)$.

Data for a mixture of compounds 6/6'e. Yield: 96 $\mathrm{mg}(11 \%)$ of a white solid, $\mathbf{6 e}: \mathbf{6}^{\mathbf{\prime}} \mathbf{e}=40: 60 ; \mathrm{mp} 206-212$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}-31.8\left(c=0.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found: C, $70.68 ; \mathrm{H}$, 7.99; N, $4.90 \mathrm{C}_{50} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires: $\mathrm{C}, 70.48 ; \mathrm{H}, 7.69$; N, 4.93.); IR, $v_{\max }(\mathrm{KBr}): 3438(\mathrm{NH}), 3359(\mathrm{NH}), 2956$, 2929, 2868, 1734 (C=O), 1712 (C=O), 1667 (C=O), 1597, 1537, 1509, 1462, 1427, 1371, 1327, 1236, 1204, 1128, $957,700 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR data for compound $6 \mathrm{e} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.56-0.96(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.68-1.64(11 \mathrm{H}, \mathrm{m}, 11 \mathrm{H}$ of menthyl); 1.63-1.76 (4H, m, 4H of menthyl); 1.81-2.13 ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of menthyl); $3.51(1 \mathrm{H}, \mathrm{dd}, J=7.5,9.5 \mathrm{~Hz}, 2-$ H); 3.62 and $3.69(9 \mathrm{H}, 2 \mathrm{~s}, 2: 1,3 \times \mathrm{OMe}) ; 4.24(1 \mathrm{H}, \mathrm{d}, J=$ $9.5 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.41(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.72$ and 4.84 $\left(2 \mathrm{H}, 2 \mathrm{dt}, 1: 1, J=4.4,10.9 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{H}\right) ; 4.84(1 \mathrm{H}, \mathrm{dd}, J=$ $7.0,9.3 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.08(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.40(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{2}\right) ; 6.75(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{NH}) ; 7.11-7.23(3 \mathrm{H}, \mathrm{m}$, 3 H of Ph$) ; 7.28-7.46(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of Ph$) ; 7.47-7.55(1 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ of Ar$) ; 7.74-7.82$ ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph).
${ }^{1} \mathrm{H}$ NMR data for compound $6 \mathbf{~} \mathrm{e}$. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 3.54(1 \mathrm{H}, \mathrm{dd}, J=6.5,8.6 \mathrm{~Hz}, 2-\mathrm{H}) ; 3.61$ and 3.71 $(9 \mathrm{H}, 2 \mathrm{~s}, 2: 1,3 \times \mathrm{OMe}) ; 4.29(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.40$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 5-\mathrm{H}) ; 5.15(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 1-\mathrm{H})$; $4.78(1 \mathrm{H}, \mathrm{dd}, J=7.2,8.1 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{2}\right)$; $6.82(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{NH})$.

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] $\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}\right)$-6-benzamido-3-(4-dimethyla-
minophenyl)-7-oxo-5-phenylhexahydropyrazolo[1,2-a]pyrazole-1,2-dicarboxylate $6 / 6^{\prime} \mathrm{f}$ and $\left(1 R^{*}, 2 S^{*}, 3 R^{*}\right.$, $\mathbf{5} \boldsymbol{R}^{*}, \mathbf{6} \boldsymbol{R}^{*}$)-isomer 5/5'f. Prepared from 4 and dipole $\mathbf{3 f}$ ($412 \mathrm{mg}, 1 \mathrm{mmol}$), 5f:5'f:6f:6'f = 43:27:14:16, crystallization from methanol afforded a pure isomer 6'f.
${ }^{1} \mathrm{H}$ NMR data for compound 5f. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $2.79\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right) ; 3.76(1 \mathrm{H}, \mathrm{dd}, J=8.3,11.1 \mathrm{~Hz}, 2-\mathrm{H})$; $4.25(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.29(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}$, $3-\mathrm{H}) ; 4.53\left(1 \mathrm{H}, \mathrm{dt}, J=4.2,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.70(1 \mathrm{H}, \mathrm{dd}, J$ $=0.5,8.3 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.79\left(1 \mathrm{H}, \mathrm{dt}, J=4.2,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$; $5.58(1 \mathrm{H}, \mathrm{dd}, J=9.0,12.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.35(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.60(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{NH})$.
${ }^{1} \mathrm{H}$ NMR data for compound 5 'f. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 2.78\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right) ; 4.26(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, 5-\mathrm{H})$; $4.71(1 \mathrm{H}, \mathrm{dd}, J=0.5,8.4 \mathrm{~Hz}, 1-\mathrm{H}) ; 5.53(1 \mathrm{H}, \mathrm{dd}, J=8.4$, $12.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.36\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.59$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{NH})$.
${ }^{\mathbf{1}} \mathrm{H}$ NMR data for compound $\mathbf{6}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 2.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right) ; 3.59(1 \mathrm{H}, \mathrm{dd}, J=5.9,8.7 \mathrm{~Hz}, 2-\mathrm{H})$; $4.17(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.40(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 5-$ H); $4.73\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.67 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.80(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 6-\mathrm{H}) ; 4.86\left(1 \mathrm{H}, \mathrm{dt}, J=4.4,10.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.10$ $(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.47(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.76(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{NH})$.

Data for compound 6'f. Yield: $41 \mathrm{mg}(5 \%)$ of a white solid; $\mathrm{mp} 231-234{ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH} ;[\alpha]_{\mathrm{D}}{ }^{23}-12.9(c$ $\left.=0.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.56,0.65,0.84$, $0.90,0.92,0.93(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times$ $\mathrm{MeCH}) ; 0.78-1.64$ ($6 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}$ of menthyl); 1.37-1.78 $(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{H}$ of menthyl); 1.96-2.09 (3H, m, 3H of menthyl); $2.82\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right) ; 3.54(1 \mathrm{H}, \mathrm{dd}, J=7.2,9.4 \mathrm{~Hz}, 2-$ H); $4.08(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.38(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $5-\mathrm{H}) ; 4.67\left(1 \mathrm{H}, \mathrm{dt}, J=4.3,10.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.84(1 \mathrm{H}, \mathrm{dt}, J$ $\left.=4.3,10.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.86(1 \mathrm{H}, \mathrm{dd}, J=6.8,8.3 \mathrm{~Hz}, 6-\mathrm{H})$; $5.11(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.43(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.71(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{NH}) ; 7.01(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.08-7.21(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$)$; $7.33-7.47(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of Ph$) ; 7.47-7.55(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of $\mathrm{Ph}) ; 7.74-7.84(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$)$. (Found: C, 73.17; H, 8.14; N, $6.91 \mathrm{C}_{49} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires: C, 73.10; H, 8.01; N, 6.96.); IR, $v_{\max }(\mathrm{KBr}): 3427$ (NH), 2957, 2931, 2868, 1732 (C=O), 1680 (C=O), 1616, 1526, 1452, 1362, 1274, 1231, 1186, 1099, 953, 812, $704 \mathrm{~cm}^{-1}$.
$\operatorname{Bis}[(1 R, 2 S, 5 R)$-2-isopropyl-5-methylcyclohexyl] (1R*, $2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(2-furyl)-7-oxo-5phenylhexahydropyrazolo [1,2-a]pyrazole-1,2-dicarboxylate 5/5'g. Prepared from 4 and dipole $\mathbf{3 g}$ ($359 \mathrm{mg}, 1$ $\mathrm{mmol}), \mathbf{5 g}: 5 \mathrm{~g}=50: 50$, crystallization from methanol afforded isomerically pure compound $\mathbf{5 g}$.

Data for compound 5 g . Yield: $45 \mathrm{mg}(6 \%)$ of a white solid; $\mathrm{mp} 204-207{ }^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}{ }^{23}-41.8$ $\left(c=0.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.47,0.68,0.80$, $0.89,0.92,0.94(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=6.7 \mathrm{~Hz}, 6 \times$ $\mathrm{MeCH}) ; 0.73-1.76$ (15H, m, 15H of menthyl); 1.79-1.89 $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of menthyl); 1.94-2.07 $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of men-
thyl); 2.22-2.31 (1H, m, 1H of menthyl); 4.14 (1H, dd, $J=$ $8.4,11.1 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.31(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.51$ $(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, 3-\mathrm{H}) ; 4.59(1 \mathrm{H}, \mathrm{dt}, J=4.3,10.9 \mathrm{~Hz}$, 1'-H); $4.75(1 \mathrm{H}, \mathrm{dd}, J=0.5,8.4 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.78(1 \mathrm{H}, \mathrm{dt}, J$ $\left.=4.3,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 5.48(1 \mathrm{H}, \mathrm{dd}, J=8.4,12.0 \mathrm{~Hz}, 6-\mathrm{H})$; $5.86(1 \mathrm{H}, \mathrm{dd}, J=0.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}$ of furan); $5.94(1 \mathrm{H}, \mathrm{dd}$, $J=1.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}$ of furan $) ; 6.51(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\mathrm{NH}) ; 7.07-7.17(4 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of $\mathrm{Ph}, 1 \mathrm{H}$ of furan); 7.19-7.27 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph); 7.35-7.43 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of $\mathrm{Ph}) ; 7.44-7.52(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph$) ; 7.68-7.76(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph). (Found: C, 71.92; H, 7.81; N, 5.45. $\mathrm{C}_{45} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires: C, 71.88; H, 7.64; N, 5.59.); IR, $v_{\text {max }}(\mathrm{KBr}): 3462$ (NH), 2951, 2926, 2868, 1728 (C=O), 1645 (C=O), 1523, $1389,1188,1129,694 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR data for compound 5^{\prime} g. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCsl}_{3}\right): \delta 4.17(1 \mathrm{H}, \mathrm{dd}, J=8.5,11.1 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.39$ $(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.54(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 3-\mathrm{H})$; $5.36(1 \mathrm{H}, \mathrm{dd}, J=8.4,12.0 \mathrm{~Hz}, 6-\mathrm{H})$.
$\operatorname{Bis}[(1 R, 2 S, 5 R)$-2-isopropyl-5-methylcyclohexyl] (1R*, $2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(2-methoxyop-henyl)-7-oxo-5-phenylhexahydropyrazolo[1,2-a]pyra-zole-1,2-dicarboxylate $5 / 5$ 'h and $\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 5 R^{*}\right.$, $\mathbf{6} \boldsymbol{R}^{*}$)-isomer 6/6'h. Prepared from $\mathbf{4}$ and dipole 3h (399 $\mathrm{mg}, 1 \mathrm{mmol}$), $\mathbf{5 h}: \mathbf{5} \mathbf{h}: \mathbf{6 h}: \mathbf{6}^{\mathbf{\prime}} \mathbf{h}=28: 25: 25: 22$, separation by MPLC afforded a pure isomer $5^{\prime} \mathbf{h}$ and a purified mixture of isomers $\mathbf{6} / \mathbf{6}^{\prime} \mathbf{h}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR data for compound 5 h . ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.32,0.52,0.81,0.86,0.92,0.95(18 \mathrm{H}, 6 \mathrm{~d}$, $1: 1: 1: 1: 1: 1, J=6.9 \mathrm{~Hz}, 6 \times \mathrm{MeCH}) ; 3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; $4.08(1 \mathrm{H}, \mathrm{br}$ dd, $J=8.3,11.1 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.31(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.51\left(1 \mathrm{H}, \mathrm{dt}, J=4.3,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.73$ $(1 \mathrm{H}, \mathrm{dd}, J=0.5,8.3 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.78(1 \mathrm{H}, \mathrm{dt}, J=4.3,10.9$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.96(1 \mathrm{H}$, br d, $J=11.1 \mathrm{~Hz}, 3-\mathrm{H}) ; 5.45(1 \mathrm{H}$, dd, $J=8.5,12.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.55(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH})$.

Data for compound $5^{\prime} \mathbf{h}$. Yield: 41 mg (6%) of a white solid; $\mathrm{mp} 95-97{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}-40.4 \quad(c=0.06$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. EI-MS: $m / z=792\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $0.53,0.62,0.80,0.87,0.94,0.96(18 \mathrm{H}, 6 \mathrm{~d}, 1: 1: 1: 1: 1: 1, J=$ $6.9 \mathrm{~Hz}, 6 \times \mathrm{MeCH}) ; 0.67-1.60(13 \mathrm{H}, \mathrm{m}, 13 \mathrm{H}$ of menthyl); 1.62-1.79 ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of menthyl); 2.14-2.28 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); $3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; 4.09(1 \mathrm{H}, \mathrm{brt}, J=9.5 \mathrm{~Hz}$, $2-\mathrm{H}) ; 4.30(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.47(1 \mathrm{H}, \mathrm{dt}, J=4.5$, $\left.10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.76(1 \mathrm{H}, \mathrm{dd}, J=0.7,8.6 \mathrm{~Hz}, 1-\mathrm{H}) ; 4.84$ $\left(1 \mathrm{H}, \mathrm{dt}, J=4.5,10.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; 4.97(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.1$ $\mathrm{Hz}, 3-\mathrm{H}) ; 5.40(1 \mathrm{H}, \mathrm{dd}, J=8.3,11.7 \mathrm{~Hz}, 6-\mathrm{H}) ; 6.43(1 \mathrm{H}$, d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.53(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}) ;$ $6.69\left(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.90-7.00(4 \mathrm{H}, \mathrm{m}$, 4 H of Ph$) ; 7.10-7.18(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph$) ; 7.21$ (1 H , br d, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}$ of Ar$) ; 7.34-7.42(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar$)$; 7.43-7.50 $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ar$) ; 7.67-7.75(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar). (Found: C, 73.10; H, 8.13; N, $5.06 \mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires: C, $72.79 ; \mathrm{H}, 7.76$; N, 5.31.); IR, $v_{\max }(\mathrm{KBr}): 3423$ $(\mathrm{NH}), 1735(\mathrm{C}=\mathrm{O}), 1672(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Data for a mixture of compounds $\mathbf{6 / 6} \mathbf{h}$. Yield: 14 $\mathrm{mg}(2 \%)$ of a white solid, $\mathbf{6 h}: \mathbf{6}^{\prime} \mathbf{h}=50: 50 ; \mathrm{mp} 81-84^{\circ} \mathrm{C}$.
(Found: C, 72.50; H, 8.11; N, $5.22 \mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires: C, 72.79 ; H, 7.76; N, 5.31.).

NMR Data for compound 6h. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $0.60-0.95(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.73-1.60(13 \mathrm{H}, \mathrm{m}, 13 \mathrm{H}$ of menthyl); 1.63-1.76 (3H, m, 3 H of menthyl); 1.98-2.09 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); $3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; $3.65(1 \mathrm{H}$, dd, $J=3.9,6.8 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.47(1 \mathrm{H}, \mathrm{d}, J=6.6$ Hz, 5-H); 4.69-4.87 (3H, m, $\left.2 \times 1^{\prime}-\mathrm{H}, 3-\mathrm{H}\right) ; 4.93$ (1H, dd, $J=5.7,6.6 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.10(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.65$ $\left(1 \mathrm{H}, \mathrm{dd}, J=0.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.74-6.82(1 \mathrm{H}, \mathrm{m}$, 1 H of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.04-7.30(5 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of Ar and NH$)$; $7.37-7.56(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{H}$ of Ar$) ; 7.60-7.67(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of $\mathrm{Ar}) ; 7.82-7.90$ (2H, m, 2H of Ph).

NMR Data for compound 6'h. 0.60-0.95 (18H, m, $6 \times \mathrm{Me} \mathrm{CH}) ; 0.73-1.60(13 \mathrm{H}, \mathrm{m}, 13 \mathrm{H}$ of menthyl); $1.63-1.76(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of menthyl); 1.98-2.09 (2H, m, 2 H of menthyl); $3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; 3.69(1 \mathrm{H}, \mathrm{dd}, J=4.8,7.4$ $\mathrm{Hz}, 2-\mathrm{H}) ; 4.43(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.69-4.87(3 \mathrm{H}$, $\left.\mathrm{m}, 2 \times 1^{\prime}-\mathrm{H}, 3-\mathrm{H}\right) ; 5.00(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.11(1 \mathrm{H}$, d, $J=4.8 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.69(1 \mathrm{H}, \mathrm{dd}, J=0.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 6.74-6.82\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.04-7.30(5 \mathrm{H}$, $\mathrm{m}, 4 \mathrm{H}$ of Ar and NH$) ; 7.37-7.56(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{H}$ of Ar$)$; $7.60-7.67(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ar$) ; 7.82-7.90(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of $\mathrm{Ph})$.

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] ($1 S^{*}$, $2 R^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(3-fluorophenyl)-7-oxo-5-phenylhexahydropyrazolo [1,2-a]pyrazole-1,2dicarboxylate 6/6'i. Prepared from 4 and dipole 3i (387 $\mathrm{mg}, 1 \mathrm{mmol}$), $\mathbf{6 i}: \mathbf{6}^{\prime} \mathbf{i}=51: 49$, purification by MPLC afforded a purified mixture of isomers $\mathbf{6 / 6} \mathbf{6} \mathbf{i}$.

Data for a mixture of compounds 6/6'i. Yield: 170 $\mathrm{mg}(22 \%)$ of a white solid, $\mathbf{6 i}: \mathbf{6}^{\prime} \mathbf{i}=55: 45, \mathrm{mp} 95-99^{\circ} \mathrm{C}$; $[\alpha]_{D}{ }^{23}-38.4\left(c=0.047, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found: C, $72.49 ; \mathrm{H}$, 7.79; N, 5.34. $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{FN}_{3} \mathrm{O}_{6}$ requires: C, 72.37; $\mathrm{H}, 7.50$; N, 5.39.); IR, $v_{\text {max }}(\mathrm{KBr}): 3361(\mathrm{NH}), 2957,2929,2871$, $1734(\mathrm{C}=\mathrm{O}), 1656(\mathrm{C}=\mathrm{O}), 1536,1489,1454,1371,1267$, $1228,1186,1150,982,956,785,696 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR Data for compound $6 \mathbf{i}$. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.56-0.98(22 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}$ and 4 H of menthyl); $0.99-1.56(8 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}$ of menthyl); $1.61-1.78(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of menthyl); 1.93-2.13 (2H, m, 2H of menthyl); $3.55(1 \mathrm{H}$, dd, $J=7.1,9.3 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.25(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, 3-\mathrm{H})$; $4.41(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.66-4.90(3 \mathrm{H}, \mathrm{m}, 2 \times 1$ '-H, $6-\mathrm{H}) ; 5.12(1 \mathrm{H}, \mathrm{dd}, J=0.5,7.1 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.74-6.87(2 \mathrm{H}$, $\mathrm{m}, 1 \mathrm{H}$ of $\mathrm{Ar}, \mathrm{NH}) ; 6.87-7.10(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ar$)$; 7.12-7.23 (3H, m, 3H of Ar); 7.27-7.34 $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of $\mathrm{Ar}) ; 7.35-7.45(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ar$) ; 7.46-7.55(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ar); 7.74-7.11 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar).
${ }^{1} \mathrm{H}$ NMR data for compound 6 'i. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.56-0.98(22 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}$ and 4 H of menthyl); $0.99-1.56(8 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}$ of menthyl); 1.61-1.78 (4H, m, 4H of menthyl); 1.93-2.13 (2H, m, 2H of menthyl); $3.61(1 \mathrm{H}$, dd, $J=5.9,8.7 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.32(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 3-\mathrm{H})$; $4.41(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.66-4.90\left(3 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{H}\right.$, $6-\mathrm{H}) ; 5.16(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.74-6.87(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$
of Ar, NH); 6.87-7.10 (3H, m, 3H of Ar); 7.12-7.23 (3H, $\mathrm{m}, 3 \mathrm{H}$ of Ar$) ; 7.27-7.34(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ar$) ; 7.35-7.45$ $(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ar$) ; 7.46-7.55(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ar$)$; 7.74-7.11 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar).

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] (1R*, $2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(2,4-dichlorop-henyl)-7-oxo-5-phenylhexahydropyrazolo[1,2-a]pyra-zole-1,2-dicarboxylate 6/6'j. Prepared from $\mathbf{4}$ and dipole $\mathbf{3 j}$ ($438 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathbf{6 j}: \mathbf{6}^{\mathbf{\prime}} \mathbf{j}=50: 50$, crystallization from methanol afforded isomerically pure compound $\mathbf{6 j}$.

Data for compound $\mathbf{6 j}$. Yield: $174 \mathrm{mg}(21 \%)$ of a white solid; $\mathrm{mp} 210-213{ }^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}{ }^{21}-32.3$ $\left(c=0.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. EI-MS: $m / z=792\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.70(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{MeCH}) ; 0.75-1.15$ $(17 \mathrm{H}, \mathrm{m}, 17 \mathrm{H}$ of menthyl); 1.22-1.60 $(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{H}$ of menthyl); 1.61-1.76 (5H, m, 5H of menthyl); 1.83-2.17 (2 H , $\mathrm{m}, 2 \mathrm{H}$ of menthyl); $3.61(1 \mathrm{H}, \mathrm{dd}, J=4.8,7.0 \mathrm{~Hz}, 2-\mathrm{H})$; $4.44(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.70-4.84\left(2 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\right.$ $\mathrm{H}) ; 4.86(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 3-\mathrm{H}) ; 5.05(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $6-\mathrm{H}) ; 5.12(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, 1-\mathrm{H}) ; 7.01(1 \mathrm{H}, \mathrm{d}, J=7.4$ $\mathrm{Hz}, \mathrm{NH}) ; 7.07(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$ of Ar$)$; $7.18-7.23(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ar$) ; 7.36-7.57(7 \mathrm{H}, \mathrm{m}, 7 \mathrm{H}$ of Ar); 7.79-7.87 (2H, m, 2H of Ar). (Found: C, 67.46; H, 6.86; N, 5.17. $\mathrm{C}_{47} \mathrm{H}_{57} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires: C, 67.94; H, 6.91; N, 5.06.); IR, $v_{\text {max }}(\mathrm{KBr}): 3445$ (NH), 2955, 2927, 2868, $1734(\mathrm{C}=\mathrm{O}), 1676(\mathrm{C}=\mathrm{O}), 1526,1478,1456,1372,1273$, $1232,1194,1151,1100,982,955,793,702 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR data for compound $6 \mathbf{} \mathbf{j} \mathbf{j} \cdot{ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 3.64(1 \mathrm{H}, \mathrm{dd}, J=4.6,6.8 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.46(1 \mathrm{H}, \mathrm{d}, J=$ 6.7 Hz, 5-H); 4.97 (1H, t, $J=7.0 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.14(1 \mathrm{H}, \mathrm{d}, J$ $=4.6 \mathrm{~Hz}, 1-\mathrm{H})$.

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] ($1 S^{*}$, $2 R^{*}, 3 S^{*}, 5 R^{*}, 6 R^{*}$)-6-benzamido-3-(2,6-dichlorop-henyl)-7-oxo-5-phenylhexahydropyrazolo [1,2-a]pyrazole-1,2-dicarboxylate 7/7'k. Prepared from 4 and dipole $\mathbf{3 k}(438 \mathrm{mg}, 1 \mathrm{mmol}), 7 \mathbf{k}: 7 \mathbf{k}=51: 49$, purification by MPLC afforded a purified mixture of compounds 7/7'k.

Data for a mixture of compounds 7/7'k. Yield: 258 $\mathrm{mg}(31 \%)$ of a white solid, $7 \mathbf{k}: 7^{\prime} \mathbf{k}=51: 49, \mathrm{mp} 109-113$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}-43.8\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found: C, 67.64; H, 7.16; $\mathrm{N}, 5.08 . \mathrm{C}_{47} \mathrm{H}_{57} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires: $\mathrm{C}, 67.94 ; \mathrm{H}, 6.91$; N, 5.06.); IR, $v_{\max }(\mathrm{KBr}): 3441(\mathrm{NH}), 2957,2930,2870$, 1733 (C=O), 1662 (C=O), 1536, 1450, 1370, 1290, 1204, 1098, 954, 773, $697 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR data for compound $7 \mathbf{k} .{ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.57-0.96(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.70-1.65(13 \mathrm{H}, \mathrm{m}$, 13 H of menthyl); 1.66-1.77 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); $1.92-2.19(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of menthyl); $4.31(1 \mathrm{H}, \mathrm{d}, J=9.8$ $\mathrm{Hz}, 5-\mathrm{H}) ; 4.52-4.68\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right) ; 4.75-4.86\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\right.$ $\mathrm{H}) ; 4.80(1 \mathrm{H}, \mathrm{dd}, J=8.2,9.6 \mathrm{~Hz}, 2-\mathrm{H}) ; 5.09(1 \mathrm{H}, \mathrm{dd}, J=$ $7.90,9.8 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.29(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 3-\mathrm{H}) ; 5.83$ $(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.45(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{NH})$; $7.01-7.20(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}$ of Ar$) ; 7.23-7.31(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of

Ar); 7.34-7.42 (2H, m, 2H of Ar); 7.43-7.52 (1H, m, 1H of Ar); 7.66-7.74 (2H, m, 2H of Ar).
${ }^{\mathbf{1}} \mathrm{H}$ NMR data for compound $7 \mathbf{\prime} \mathbf{k} .{ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.57-0.96(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.70-1.65(13 \mathrm{H}, \mathrm{m}$, 13 H of menthyl); 1.66-1.77 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of menthyl); 1.92-2.19 (3H, m, 3H of menthyl); $4.36(1 \mathrm{H}, \mathrm{d}, J=10.2$ $\mathrm{Hz}, 5-\mathrm{H}) ; 4.52-4.68\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right) ; 4.75-4.86\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\right.$ H); $4.84(1 \mathrm{H}, \mathrm{dd}, J=8.3,9.7 \mathrm{~Hz}, 2-\mathrm{H}) ; 5.09(1 \mathrm{H}, \mathrm{dd}, J=$ $7.9,10.2 \mathrm{~Hz}, 6-\mathrm{H}) ; 5.30(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 3-\mathrm{H}) ; 5.91$ $(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, 1-\mathrm{H}) ; 6.50(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{NH})$; 7.01-7.20 (6H, m, 6H of Ar); 7.23-7.31 $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ar); 7.34-7.42 (2H, m, 2H of Ar); 7.43-7.52 (1H, m, 1H of Ar); 7.66-7.74 (2H, m, 2H of Ar).

Bis[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] (1R*, $2 S^{*}, 3 R^{*}, 5 S^{*}, 6 S^{*}$)-6-benzamido-7-oxo-5-phenyl-3-(2,4 , 6-trimethylphenyl)hexahydropyrazolo[1,2-a]pyrazole-1,2-dicarboxylate 7/7'l. Prepared from 4 and dipole 31 ($412 \mathrm{mg}, 1 \mathrm{mmol}$), $7 \mathbf{k}: 7 \mathbf{k}=56: 44$, purification by MPLC afforded a purified mixture of compounds 7/7'l.

Data for a mixture of compounds 7/7'l. Yield: 69 $\mathrm{mg}(9 \%)$ of a white solid, $7 \mathbf{k}: 7^{\prime} \mathbf{k}=47: 53, \mathrm{mp} 105-109$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}-42.2\left(c=0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. EI-MS: $m / z=803$ $\left(\mathrm{M}^{+}\right)$. (Found: C, 74.13; H, 8.40; N, 5.13. $\mathrm{C}_{50} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires: C, 74.69; H, 8.15; N, 5.23.); IR, $v_{\text {max }}$ (KBr): 3429 (NH), 2956, 2929, 2870, 1734 (C=O), 1665 (C=O), 1533, 1456, 1371, 1288, 1180, 1096, 955, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR data for compound 71. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.36-0.99(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.63-2.30(18 \mathrm{H}, \mathrm{m}$, 18 H of menthyl); $1.38,2.15,2.16(9 \mathrm{H}, 3 \mathrm{~s}, 1: 1: 1,3 \times$ MeAr); 4.19 ($1 \mathrm{H}, \mathrm{dd}, J=9.4,10.7 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.38$ ($1 \mathrm{H}, \mathrm{d}$, $J=4.7 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.43-4.57\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right) ; 4.80-4.97(3 \mathrm{H}$, $\mathrm{m}, 1^{\prime}-\mathrm{H}, 1-\mathrm{H}$, and $\left.6-\mathrm{H}\right) ; 5.07(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, 3-\mathrm{H})$; $6.66(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{NH}) ; 6.46$ and $6.74(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}$, $\left.1: 1, \mathrm{C}_{6} \mathrm{H}_{2}\right) ; 7.07-7.14(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph$) ; 7.15-7.29(3 \mathrm{H}$, $\mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.35-7.45(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.45-7.55$ $(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph$) ; 7.68-7.78$ ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of Ph).
${ }^{1} \mathrm{H}$ NMR data for compound 7 'l. ${ }^{1} \mathrm{H}$ NMR (CDC$\left.1_{3}\right): \delta 0.36-0.99(18 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{MeCH}) ; 0.63-2.30(18 \mathrm{H}, \mathrm{m}$, 18 H of menthyl); $1.50,2.56,2.57(9 \mathrm{H}, 3 \mathrm{~s}, 1: 1: 1,3 \times$ MeAr); 4.24 ($1 \mathrm{H}, \mathrm{dd}, J=8.6,10.5 \mathrm{~Hz}, 2-\mathrm{H}) ; 4.35(1 \mathrm{H}, \mathrm{d}$, $J=6.2 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.43-4.57\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right) ; 4.80-4.97(3 \mathrm{H}$, $\mathrm{m}, 1^{\prime}-\mathrm{H}, 3-\mathrm{H}$, and $\left.6-\mathrm{H}\right) ; 5.03(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 1-\mathrm{H})$; $6.60(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{NH}) ; 6.46$ and $6.74(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}$, $\left.1: 1, \mathrm{C}_{6} \mathrm{H}_{2}\right) ; 7.07-7.14(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph$) ; 7.15-7.29(3 \mathrm{H}$, $\mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.35-7.45(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.45-7.55$ ($1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of Ph); 7.68-7.78 (2H, m, 2H of Ph).

5. Acknowledgements

The financial support from the Ministry of Science and Technology, Slovenia through grants P0-0502-0103, P1-0179, and J1-6689-0103-04 is gratefully acknowledged. We acknowledge with thanks the financial support from pharmaceutical companies Krka d.d. (Novo mesto,

Slovenia) and Lek d.d., a new Sandoz company (Ljubljana, Slovenia).

The authors wish to express their gratitude to the Alexander von Humboldt Foundation, Germany, for the donation of a Büchi medium pressure liquid chromatograph.

6. References

1. (a) 1,3-Dipolar Cycloaddition Chemistry; Vol. 1 (Ed.: A. Padwa), John Wiley \& Sons, Inc., New York, 1984. (b) 1,3-Dipolar Cycloaddition Chemistry; Vol. 2 (Ed.: A. Padwa), John Wiley \& Sons, Inc., New York, 1984. (c) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, (Ed.: A. Padwa, W. H. Pearson), John Wiley \& Sons, Inc., Hoboken, New Jersey, 2003. (d) V. K. Gothelf, K. A. Jørgensen, Asymmetric Reactions in Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, (Ed.: A. Padwa, W. H. Pearson), John Wiley \& Sons, Inc., Hoboken, New Jersey, 2003, pp. 817-899.
2. (a) R. Grashey, Azomethine Imines in 1,3-Dipolar Cycloaddition Chemistry, Vol. 1 (Ed.: A. Padwa), John Wiley \& Sons, Inc., New York, 1984, pp. 733-814. (b) J. G. Schantl, Azomethine Imines in Science of Synthesis, Houben-Weyl Methods of Organic Transformations; Vol. 27, Georg Thieme Verlag, Stuttgart, 2004, pp. 731-824.
3. (a) B. Stanovnik, Tetrahedron 1991, 47, 2925-2945. (b) M. Žličar, B. Stanovnik, M. Tišler, Tetrahedron 1992, 48, 7965-7972. (c) M. Žličar, B. Stanovnik, M. Tišler, J. Heterocycl. Chem. 1993, 30, 1209-1211. (d) B. Stanovnik, B. Jelen, M. Žličar, Il Farmaco 1993, 48, 231-242. (e) B. Stanovnik, B. Jelen, C. Turk, M. Žličar, J. Svete, J. Heterocycl. Chem. 1998, 35, 1187-1204.
4. (a) L. N. Jungheim, S. K. Sigmund, J. W. Fisher, Tetrahedron Lett. 1987, 28, 285-288. (b) L. N. Jungheim, S. K. Sigmund, J. W. Fisher, Tetrahedron Lett. 1987, 28, 285-288. (c) L. N. Jungheim, S. K. Sigmund, J. Org. Chem. 1987, 52, 4007-4013. (d) J. M. Indelicato, C. E. Pasini, J. Med. Chem. 1988, 31, 1227-1230. (e) R. J. Ternansky, S. E. Draheim, Tetrahedron Lett. 1990, 31, 2805-2808. (f) R. E. Holmes, D. A. Neel, Tetrahedron Lett. 1990, 31, 5567-5570.
5. (a) F. Roussi, M. Bonin, A. Chiaroni, L. Micouin, C. Riche, H.-P. Husson, Tetrahedron Lett. 1999, 40, 3727-3730. (b) F. Roussi, A. Chauveau, M. Bonin, L. Micouin, H.-P. Husson, Synthesis 2000, 1170-1179. (c) A. Chauveau, T. Martens, M. Bonin, L. Micouin, H.-P. Husson, Synthesis 2002, 1885-1890.
(d) F. Chung, A. Chauveau, M. Seltki, M. Bonin, L. Micouin, Tetrahedron Lett. 2004, 45, 3127-3130.
6. J. Svete, A. Prešeren, B. Stanovnik, L. Golič, S. Golič Grdadolnik, J. Heterocycl. Chem. 1997, 34, 1323-1328.
7. T.-H. Chuang, K. B. Sharpless, Helv. Chim. Acta 2000, 83 , 1734-1743.
8. I. Panfil, Z. Urbañczyk-Lipkowska, K. Suwiñska, J. Solecka, M. Chmielewski, Tetrahedron 2002, 58, 1199-1212.
9. A. Suarez, C. W. Downey, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11244-11245.
10. L. Pezdirc, V. Jovanovski, D. Bevk, R. Jakše, S. Pirc, A. Meden, B. Stanovnik, J. Svete, Tetrahedron 2005, 61, 3977-3990.
11. L. Pezdirc, J. Cerkovnik, S. Pirc, B. Stanovnik, J. Svete, Tetrahedron 2007, 63, 991-999.
12. L. Pezdirc, D. Bevk, U. Grošelj, A. Meden, B. Stanovnik, J. Svete, J. Comb. Chem. 2007, 9, 717-723.
13. L. Pezdirc, U. Grošelj, A. Meden, B. Stanovnik, J. Svete, J. Heterocycl. Chem. 2008, 45, 181-188.
14. L. Pezdirc, B. Stanovnik, J. Svete, Z. Naturforsch. 2008, 63b, 375-383.
15. S. Hanessian, G. McNaughton-Smith, H.-G. Lombart, W.-D. Lubell, Tetrahedron 1997, 53, 12789-12854.
16. For partial reviews see: (a) B. Stanovnik, J. Svete, Targets Heterocycl. Syst. 2000, 4, 105-137. (b) J. Svete, J. Heterocycl. Chem. 2002, 39, 437-454. (c) J. Svete, ARKIVOC 2006 (vii), 35-46.
17. (a) S. Zupančič̌, J. Svete, B. Stanovnik, J. Heterocycl. Chem. 1999, 36, 607-610. (b) A. Prešeren, J. Svete, B. Stanovnik, J. Heterocycl. Chem. 1999, 36, 799-801. (c) B. Stanovnik, J. Svete, Heterocycles 1999, 51, 2073-2078. (d) C. Turk, J. Svete, B. Stanovnik, L. Golič, A. Golobič, L. Selič, Org. Lett. 2000, 2, 423-424. (e) C. Turk, L. Golič, L. Selič, J. Svete, B. Stanovnik, ARKIVOC 2001 (v), 87-97. (f) C. Turk, J. Svete, B. Stanovnik, L. Golič, S. Golič Grdadolnik, A. Golobič, L. Selič, Helv. Chim. Acta 2001, 84, 146-156. (g) U. Grošelj, S. Rečnik, A. Meden, B. Stanovnik, J. Svete, Acta Chem. Slov. 2006, 53, 245-256. (h) L. Pezdirc, U. Grošelj, A. Meden, B. Stanovnik, J. Svete, Tetrahedron Lett. 2007, 48, 5205-5208.
18. A. Wassermann, Liebigs Ann. Chem., 1931, 488, 211-241.
19. (a) R. Huisgen, 1,3-Dipolar Cycloadditions-Introduction, Survey, Mechanism in 1,3-Dipolar Cycloaddition Chemistry; Vol. 1 (Ed.: A. Padwa), John Wiley \& Sons, Inc., New York, 1984, pp 1-176. (b) K. N. Houk, K. Yamaguchi, Theory of 1,3-Dipolar Cycloadditions in 1,3-Dipolar Cycloaddition Chemistry; Vol. 2 (Ed.: A. Padwa), John Wiley \& Sons, Inc., New York, 1984, pp 407-450.

Povzetek

1.3-Dipolarne cikloadicije racemnih $\left(1 Z, 4 R^{*}, 5 R^{*}\right)$-1-arilmetiliden-4-benzamido-5-fenil-3-pirazolidinon-1-azometin iminov 3 na optično aktivni dipolarofil, di-(-)-mentil maleat (4), so vodile do zmesi diastereomernih cikloaduktov 5/5'-7/7'. Selektivnost in stereokemija cikloadicij sta bili odvisni od substituentov na arilni skupini na položaju 1' dipolov 3. Tako so reakcije dipolov 3a-j z vsaj eno prosto orto-pozicijo vodile do zmesi dveh ali štirih izomernih cikloaduktov, bis[(1'R,2'S,5'R)-2-izopropil-5-metilcikloheksil] ($1 R^{*}, 2 S^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-3-aril-6-benzamido-5-fenil-7-oksoheksahidropirazolo $[1,2-a]$ pirazol-1,2-dikarboksilatov $5 / \mathbf{5}^{\prime}$ (endo-izomerov) in/ali bis[($\left.1^{\prime} R, 2^{\prime} S, 5^{\prime} R\right)$-2-izopropil-5-metilcikloheksil] ($1 S^{*}, 2 R^{*}, 3 R^{*}, 5 R^{*}, 6 R^{*}$)-3-aril-6-benzamido-5-fenil-7-oksoheksahidropirazolo[1,2-a]pirazol-1,2-dikarboksilatov 6/6' (ekso-isomerov) s sin-orientacijo med protonoma na položajih 3 in 5 . Pri reakcijah dipolarofila $\mathbf{4}$ z orto-disubstituiranima dipoloma $\mathbf{3 k}, \mathbf{l}$ pa so nastale zmesi $\left(1 S^{*}, 2 R^{*}, 3 S^{*}, 5 R^{*}, 6 R^{*}\right)$-diastereomerov $\mathbf{7 / 7} \mathbf{7} \mathbf{k}, \mathbf{l} \mathrm{z}$ anti-orientiranima protonoma 3 in 5. Ločbe diastereomernih cikloaduktov $\mathbf{5 / 5} \mathbf{5}^{\prime}-\mathbf{7 / 7}$ ' smo izvajali s kristalizacijo in/ali s preparativno tekočinsko kromatografijo (MPLC), pri čemer smo izolirali izomerno čiste spojine $\mathbf{5 a}, \mathbf{b}, \mathbf{d}, \mathbf{g}, \mathbf{5}^{\prime} \mathbf{b}, \mathbf{d}, \mathbf{h}, \mathbf{6 c}, \mathbf{d}, \mathbf{j}$ in $\mathbf{6}^{\prime} \mathbf{c}, \mathbf{d}, \mathbf{f}$ ter očiščene zmesi diastereomerov $5 / \mathbf{5}^{\prime} \mathbf{e}, \mathbf{6 / 6}$ 'e,h in $7 / 7^{\prime} \mathbf{k}, \mathbf{I}$ z nizkimi do zmernimi izkoristki. Relativno konfiguracijo na pi-razolo[1,2-a]pirazolonskem strukturnem elementu produktov 5/5'-7/7' smo določili z NMR spektroskopijo.

[^0]: ${ }^{\text {a) }}$ Determined by ${ }^{1} \mathrm{H}$ NMR from the spectra of the product mixtures upon FC.

