Univerza v Ljubljani, Fakulteta za elektrotehniko University of Ljubljana, Faculty of Electrical Engineering 26. SEMINAR OPTIČNE KOMUNIKACIJE Ljubljana, 25. do 27. januarja 2023 ZBORNIK 26TH SEMINAR ON OPTICAL COMMUNICATIONS Ljubljana, 25 to 27 January 2023 PROCEEDINGS UREDILA/EDITORS: Tomi Mlinar, Boštjan Batagelj ____________________________________________________ Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID 138957827 ISBN 978-961-243-446-5 (PDF) ____________________________________________________ URL: https://sok.fe.uni-lj.si/zborniki Copyright © 2023 Založba FE. All rights reserved. Razmnoževanje (tudi fotokopiranje) dela v celoti ali po delih brez predhodnega dovoljenja Založbe FE prepovedano. Založnik: Založba FE, Ljubljana Izdajatelj: Fakuleta za elektrotehniko, Ljubljana Urednik: prof. dr. Sašo Tomažič Kraj in leto izida: Ljubljana, 2023 1. elektronska izdaja Gradivo za interno uporabo na 26. seminarju Optične komunikacije SOK 2023. Material for internal use at the 26th Seminar on Optical Communications SOK 2023. Uredila / Editors: Tomi Mlinar, Boštjan Batagelj ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 1/451 Predgovor Od izuma svetlobnega vlakna mineva že 50 let, pravi razmah gradnje optičnih omrežij do slehernega doma pa se je začel pred skoraj dvajsetimi leti. To velja tudi za Slovenijo, ki je po uporabi optičnih tehnologij že vsa leta v koraku z najbolj razvitimi državami sveta. Optična tehnologija je vodilna in vseprisotna v optičnih komunikacijskih omrežjih, pa tudi na drugih področjih. Optična vlakna so nepogrešljiv gradnik celičnih brezvrvičnih omrežij, saj si današnje pete generacije (5G) brez njih niti ne moremo predstavljati. Zahteve po zmogljivostih so enostavno prevelike za druge tehnologije. Ločevanje celičnih radijskih komunikacij po generacijah je prisotno že desetletja (trenutno se gradi 5G), v zadnjem času pa tudi fiksna omrežja ločujemo na podoben način. Tudi pri fiksnih omrežjih gradimo trenutno četrto generacijo, ki jo označujemo z F4G. Prenosne hitrosti dosegajo nekaj 100 Mbit/s, tudi simetrično. Naslednja generacija (F5G) naj bi končnim uporabnikom brez težav omogočala hitrosti dosti preko 1 Gbit/s, kar bo ob nizkih zakasnitvah in veliki zanesljivosti delovanja omogočalo uvedbo npr. video-storitev 8K, storitve navidezne resničnosti in izjemno interaktivno uporabniško izkušnjo tudi na velikih zaslonih. Sodobna optična tehnologija je zelo varčna. Za prenos enega bita informacije porabi le tisočinko energije, potrebne za prenos po brezžični zvezi. V bodoče pa si v optičnih komunikacijskih sistemih obetamo še nadaljnje izboljšanje spektralne učinkovitosti. To naj bi se zgodilo z vpeljavo optičnih gradnikov na osnovi mikrovalovne fotonike in integrirane optike. Razvoj področja optoelektronike in optičnih komunikacij je spodbudil prve začetke in kasnejši razvoj nove izobraževalne dejavnosti na Fakulteti za elektrotehniko Univerze v Ljubljani že okoli leta 1980, torej precej prej, preden so se začele optične komunikacije uvajati tudi komercialno. Sledilo je oblikovanje predmeta Optične komunikacije na dodiplomskem in podiplomskem študiju. Strokovne seminarje Optične komunikacije je zasnoval zasl. prof. dr. Jožko Budin pod okriljem projekta TEMPUS JEN-04202 že davnega leta 1993. Pri uvajanju začetnih tečajev in pozneje seminarjev je bilo zasl. prof. dr. Jožku Budinu v pomoč večletno sodelovanje s partnerskimi organizacijami projekta, in sicer Mednarodnim centrom za teoretično fiziko (ICTP) v Trstu, Univerzo v Trstu, Univerzo v Padovi, Univerzo Strathclyde v Glasgowu in drugimi. Sodelovanje se je kasneje razširilo tudi na druge univerze in institucije po vsem svetu. Nobenega dvoma ni, da je seminar Optične komunikacije v preteklih desetletjih bistveno prispeval k strokovnemu izpopolnjevanju telekomunikacijskih strokovnjakov. Njegov osnovni namen je bil in je še razširjanje, izpopolnjevanje in osveževanje znanja o optičnih tehnologijah ter dvig strokovnosti zaposlenih na področju telekomunikacij v Sloveniji. Imel je ključno vlogo tudi pri uvajanju tehnologije optičnega vlakna v slovenski prostor. Osemindvajset prispevkov v tokratnem zborniku 26. seminarja Optične komunikacije naslavlja mnoge zanimive teme, opozoriti pa velja na pasivna optična omrežja naslednje generacije, uporabo optičnega vlakna v senzorske namene, pospešen razvoj kvantnih komunikacij in vpeljavo strojnega učenja v optične komunikacije. V uvodnem prispevku prvega dne Boštjan Batagelj povzema novosti na področju optičnih komunikacij in nas uvede v kvantno informacijsko-komunikacijsko tehnologijo. Sledi prispevek o regulaciji optičnih omrežij Žana Knafelca in dva prispevka predstavnikov slovenskih telekomunikacijskih operaterjev, Gorazda Penka iz T-2 in Andreja Pučka iz Telekoma Slovenije. Prvi opisuje prehod na pasivno optično omrežje naslednje generacije, PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 1/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 2/451 drugi pa prenos sinhronizacije preko optičnega omrežja za potrebe mobilnega omrežja 5G. Milorad Sarić osvetljuje izzive, ki jih lahko pričakujemo pri gradnji pasivnih optičnih omrežij naslednje generacije. Drugi sklop prispevkov prvega dne je namenjen predstavitvi raziskovalne dejavnosti Fakultete za elektrotehniko, Instituta Jožef Stefan in Fakultete za matematiko in fiziko. Rok Žitko in Anton Ramšak povzemata izvedbo izmenjave kvantnega ključa med tremi državami in predstavita nov evropski projekt EuroQCI, v okviru katerega se bo gradila kvantna infrastruktura v Sloveniji. Sledi sklop treh povezanih prispevkov ekipe raziskovalcev, Janeza Krča, Andraža Debevca, Miloša Ljubotine in Marka Topiča, ki obdelujejo integrirano fotoniko za kvantne aplikacije, načrtovanje optičnih adiabatnih sklopnikov in polarizacijske razcepnike z dielektričnimi metamateriali v silicijevih fotonskih integriranih vezjih. Zadnji sklop zaključujejo prispevki doktorskih raziskovalcev Vesne Eržen, Kristjana Vuka Baliža in Andreja Lavriča. Uvodni prispevek drugega dne seminarja je pregledni prispevek Matjaža Vidmarja o optičnih modulacijah. Nadaljuje Klaus Samardžić s prispevkom o vlogi distribuiranih prevezovalnikov OTN v komunikacijskih omrežjih. Sledi sklop treh prispevkov Uroša Petriča, Gorazda Mandlja in Milorada Sarića, ki opisujejo tehnologijo in primere uporabe optičnega vlakna kot porazdeljenega senzorja. Drugi sklop prispevkov drugega dne obdeluje različne načine uporabe optičnih tehnologij. Prispevek Jiříja Štefla govori o optičnih kabelskih sistemih za podatkovne centre in uporabo v vojaške namene, prispevek Petra Lukana opisuje izzive pri razvoju vlakenskih laserjev visokih moči v Sloveniji, Marija Mrzel Ljubič pa predstavlja arhitekturo in zmogljivosti optičnih vlaken v strelovodni vrvi energetskih operaterjev. Zadnji prispevek v tem sklopu je o vse bolj popularnih hitrih vtičnih modulih Petra Reinhardta. Zadnji dan seminarja vsebuje šest prispevkov tujih vabljenih predavateljev. Edvin Škaljo iz Univerze v Sarajevu predstavlja uporabo optičnih vlaken v senzorskih aplikacijah, sledi Jakup Ratkoceri s prispevkom o programsko krmiljenih pasivnih optičnih omrežjih in Igor Milojević o uporabi tehnologije prihodnosti F5.5G. Z dvema prispevkoma sledi Darko Zibar iz Tehniške univerze na Danskem. Prvi njegov prispevek je o osnovah strojnega učenja, drugi pa o uporabi strojnega učenja v optičnih komunikacijah, Zadnji prispevek seminarja opisuje generiranje kvantnih naključnih števil na podlagi časov zaznavanja fotonov, ki ga je pripravil Ágoston Kristóf Schranz iz Univerze za tehnologijo in ekonomijo v Budimpešti. Kakovostna izvedba dosedanjih tečajev in seminarjev, sodelovanje priznanih vabljenih strokovnjakov in znaten interes udeležencev utrjuje naše prepričanje, da je redno strokovno spopolnjevanje strokovnjakov na naglo razvijajočem se področju optičnih komunikacij koristno in potrebno. Organizatorji seminarja se zahvaljujemo vsem predavateljem za neprecenljiv prispevek, prav tako pa tudi podjetjem in posameznikom za sodelovanje in pomoč pri pripravi ter izvedbi seminarja. Zahvala gre odgovornim v naših podjetij in institucijah, ki so svojim strokovnjakom omogočili udeležbo na seminarju in s tem podprli to dejavnost. Želiva vam, da v zborniku 26. seminarja Optične komunikacije najdete uporabne vsebine, ki vam bodo koristile v vašem poslovnem in osebnem življenju. Tomi Mlinar in Boštjan Batagelj, urednika Ljubljana, januarja 2023 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 2/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 3/451 Foreword 50 years have passed since the invention of optical fiber, but the real boom in the construction of optical networks to every home began almost twenty years ago. This also applies to Slovenia, which has been keeping up with the most developed countries in the world for years after using optical technologies. Optical technology is leading and ubiquitous in optical communication networks, as well as in other areas. Optical fibers are an indispensable building block of cellular wireless networks, as today's fifth generation (5G) cannot even be imagined without them. The performance requirements are simply too much for other technologies. Separation of cellular radio communications by generation has been present for decades (5G is currently being built), and recently fixed networks have also been separated in a similar way. We are also currently building the fourth generation of fixed networks, which we call F4G. Transfer speeds reach some 100 Mbit/s, even symmetrically. The next generation (F5G) is supposed to enable end users with speeds well over 1 Gbit/s without any problems, which, with low delays and high operational reliability, will enable the introduction of e.g. 8K video service, virtual reality services and an extremely interactive user experience even on large screens. Modern optical technology is very economical. To transmit one bit of information, it consumes only a thousandth of the energy required for wireless transmission. In the future, however, we expect a further improvement in spectral efficiency in optical communication systems. This should happen with the introduction of optical building blocks based on microwave photonics and integrated optics. The development of the field of optoelectronics and optical communications stimulated the first beginnings and the subsequent development of a new educational activity at the Faculty of Electrical Engineering of the University of Ljubljana already around 1980, i.e. much earlier, before the commercial introduction of optical communications. This was followed by the creation of the Optical Communications course for undergraduate and postgraduate students. Professional seminars on optical communications were designed by professor emeritus dr. Jožko Budin as part of the TEMPUS JEN-04202 project back in 1993. During the introduction of initial courses and later seminars, prof. dr. Jožko Budin worked with partner organizations from the project, namely the International Center for Theoretical Physics (ICTP) in Trieste, the University of Trieste, the University of Padova, the University of Strathclyde in Glasgow and others. The cooperation was later extended to other universities and institutions around the world. There is no doubt that the Optical Communications seminar has significantly contributed to the professional development of telecommunications experts over the past decades. This seminar also played a key role in the introduction of fiber optic technology in Slovenia. Twenty-eight articles in this year's proceedings of the 26th Optical Communications Seminar address many interesting topics. The following topics should be noted: passive optical networks of the next generation, the use of optical fiber for sensor purposes, the accelerated development of quantum communications and the introduction of machine learning in optical communications. In the introductory article of the first day, Boštjan Batagelj summarizes the innovations in the field of optical communications and introduces us to quantum information and communication technology. This is followed by a paper on the regulation of optical networks by Žan Knafelec and two papers by representatives of Slovenian telecommunications operators, Gorazd Penko from T-2 and Andrej Pučko from Telekom Slovenije. The first PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 3/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 4/451 describes the transition to a next-generation passive optical network, while the second describes the transfer of synchronization over the optical network for the needs of the 5G mobile network. Milorad Sarić illuminates the challenges that can be expected in the construction of passive optical networks of the next generation. The second set of papers on the first day is dedicated to present the research activities of the Faculty of Electrical Engineering, the Jožef Stefan Institute and the Faculty of Mathematics and Physics. Rok Žitko and Anton Ramšak summarize the execution of the quantum key exchange between the three countries and present the new European project EuroQCI, within the framework of which quantum infrastructure will be built in Slovenia. Then follows a set of three related articles by a team of researchers: Janez Krč, Andraž Debevc, Miloš Ljubotina and Marko Topič, who deal with integrated photonics for quantum applications, the design of optical adiabatic couplers and polarization splitters with dielectric metamaterials in silicon photonic integrated circuits. The last section concludes with the contributions of doctoral researchers Vesna Eržen, Kristjan Vuk Baliž and Andrej Lavrič. The introductory paper on the second day of the seminar is an overview on optical modulations by Matjaž Vidmar. Klaus Samardžić continues with a paper on the role of distributed OTN transporters in communication networks. Then follows a set of three articles by Uroš Petrič, Gorazd Mandelj and Milorad Sarić, which describe the technology and examples of the use of optical fiber as a distributed sensor. The second set of papers on the second day deals with different ways of using optical technologies. Jiří Štefl's contribution talks about optical cable systems for data centers and for military use, Peter Lukan's contribution describes the challenges in the development of high-power fiber lasers in Slovenia, and Marija Mrzel Ljubič presents the architecture and capabilities of optical fibers embedded in ground wire. The last paper in this series is about the increasingly popular fast plug-in modules, presented by Peter Reinhardt. The last day of the seminar contains six contributions by invited foreign lecturers. Edvin Škaljo from the University of Sarajevo presents the use of optical fibers in sensor applications, followed by Jakup Ratkoceri with a paper on software-controlled passive optical networks and Igor Milojević on the use of future F5.5G technology. Darko Zibar from the Technical University of Denmark follows with two contributions. His first paper is Tutorial on machine learning, and the second is Application of machine learning techniques to optical communications. The last paper of the seminar describes the generation of quantum random numbers based on photon detection times, prepared by Ágoston Kristóf Schranz from the Budapest University of Technology and Economics. The high-quality performance of previous courses and seminars, the participation of renowned invited experts and the significant interest of the participants reinforces our belief that regular professional development of experts in the rapidly developing field of optical communications is useful and necessary. The organizers of the seminar would like to thank all the lecturers for their invaluable contribution, as well as companies and individuals for their cooperation and help in the preparation and implementation of the seminar. Thanks go to those responsible in our companies and institutions who enabled their experts to participate in the seminar and thus supported this activity. Editors hope that in the proceedings of the 26th Optical Communication Seminar you wil find useful content that will benefit you in your business and personal life. Tomi Mlinar and Boštjan Batagelj, editors Ljubljana, January 2023 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 4/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 5/451 Seznam prispevkov Avtor(ji) Naslov predavanja Stran Uvodno predavanje "Novosti v optičnih komunikacijah 1 Boštjan Batagelj 10 in uvod v kvantne komunikacije" 2 Žan Knafelc Regulacija optičnih omrežij 25 Nadgradnja P2P FTTH in GPON dostopovnih omrežij v 3 Gorazd Penko 35 PON omrežja naslednje generacije Prenos sinhronizacije omrežja 5G v največjem in 4 Andrej Pučko 57 najsodobnejšem optičnem omrežju v Sloveniji 5 Milorad Sarić NextGEN PON technologies and challenges they bring 66 Demonstracije kvantne izmenjave šifrirnih ključev med 6 Rok Žitko, Anton Ramšak 82 tremi državami in evropski projekt EuroQCI Janez Krč, Andraž Debevc, Miloš Ljubotina, 7 Integrirana fotonika za kvantne aplikacije 99 Boštjan Batagelj, Janez Trontelj in Marko Topič Miloš Ljubotina, Andraž Debevc, Marko Topič in Načrtovanje optičnih adiabatnih sklopnikov za 8 120 Janez Krč integracijo gradnikov kvantne fotonike s platformo SiN Andraž Debevc, Miloš Ljubotina, Marko Topič in Polarizacijski razcepnik z dielektričnimi metamateriali v 9 131 Janez Krč silicijevih fotonskih integriranih vezjih Sistem stabilizacije injekcijske vklenitve Fabry-Perotove 10 Vesna Eržen 140 laserske diode za uporabo v omrežjih WDM-PON Uporaba ločnega priključka mikroobročnega Kristjan Vuk Baliž, Andraž Debevc, Boštjan 11 resonatorja za stabilizacijo enobočnega vlakenskega 148 Batagelj, radijskega oddajnika Merjenje faznega šuma oscilatorja s pomočjo optičnega 12 Andrej Lavrič, Boštjan Batagelj, Matjaž Vidmar 163 kasnilnega voda 13 Matjaž Vidmar Optične modulacije 180 Vloga OTN distribuiranih prevezovalnikov v regionalnih 14 Klaus Samardžić 195 komunikacijskih omrežjih Next generation optical access networks, automation 15 Alfonso Domesi, Vratislav Blažek of testing procedures, complete visibility in QoE and 205 QoS 16 Uroš Petrič Optično vlakno kot senzor 229 Linijsko merjenje temperature v industriji z optičnimi 17 Gorazd Mandelj 240 vlakni Fiber sensing technologies for critical infrastructure 18 Milorad Sarić 248 monitoring New cabling system for Data Centres and cables for 19 Jiří Štef 267 military use 20 Peter Lukan Izzivi pri razvoju vlakenskih laserjev visokih moči 291 21 Marija Mrzel Ljubič OPGW - arhitektura in zmogljivosti 301 22 Peter Reinhardt Hitri vtični moduli (100 - 800 Gbit/s) 307 23 Edvin Škaljo The use of telecom fibre optics in senzor applications 323 24 Jakup Ratkoceri Software-defined passive optical network evolution 337 25 Igor Milojević Stride to F5.5G 348 26 Darko Zibar Tutorial on machine learning 363 Application of machine learning techniques to optical 27 Darko Zibar 390 communications Quantum random number generation based on the 28 Ágoston Kristóf Schranz 425 times of photon detections PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 5/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 6/451 Seznam plakatov Avtor(ji) Naslov plakata Stran Sebastjan Zorzut, Dejan Tinta, Manuel P1 Reference clock transfer system with fs phase stability 447 Cargnelutti P2 Andrej Lavrič, Boštjan Batagelj, Matjaž Vidmar Analogna optična zveza za merjenje faznega šuma 448 P3 Luka Podbregar, Luka Zmrzlak, Aljaž Blatnik Laserski prenos zvočnega signala 449 P4 Luka Zmrzlak, Luka Podbregar, Aljaž Blatnik Žarek ujet v vodnem curku 450 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 6/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 7/451 Table of contents Author(s) Article Page Introductory lecture "Novelties in optical 1 Boštjan Batagelj communications and introduction to quantum 10 communications" 2 Žan Knafelc Regulation of optical networks 25 Upgrade of P2P FTTH and GPON access networks to 3 Gorazd Penko 35 next-generation PON networks Transmission of 5G network synchronization in the 4 Andrej Pučko 57 largest and most modern optical network in Slovenia 5 Milorad Sarić NextGEN PON technologies and challenges they bring 66 Demonstrations of quantum encryption key exchange 6 Rok Žitko, Anton Ramšak between three countries and the European EuroQCI 82 project Janez Krč, Andraž Debevc, Miloš Ljubotina, 7 Boštjan Batagelj, Janez Trontelj in Marko Integrated photonics for quantum applications 99 Topič Miloš Ljubotina, Andraž Debevc, Marko Design of optical adiabatic couplers for integration of 8 120 Topič in Janez Krč quantum photonics building blocks with SiN platform Andraž Debevc, Miloš Ljubotina, Marko Polarization splitter with dielectric metamaterials in 9 131 Topič in Janez Krč silicon photonic integrated circuits Fabry-Perot laser diode injection lock stabilization 10 Vesna Eržen 140 system for use in WDM-PON networks Kristjan Vuk Baliž, Andraž Debevc, Boštjan Using the drop port of a micro-ring-resonator to 11 148 Batagelj stabilize a single sideband radio-over-fiber transmitter Andrej Lavrič, Boštjan Batagelj, Matjaž Measuring oscillator phase noise using an optical delay 12 163 Vidmar line 13 Matjaž Vidmar Optical modulations 180 The role of OTN distributed cross-connects in regional 14 Klaus Samardžić 195 communication networks Next generation optical access networks, automation of 15 Alfonso Domesi, Vratislav Blažek 205 testing procedures, complete visibility in QoE and QoS 16 Uroš Petrič Optical fiber as a sensor 229 Line temperature measurements with optical fibers in 17 Gorazd Mandelj 240 industrial applications Fiber sensing technologies for critical infrastructure 18 Milorad Sarić 248 monitoring New cabling system for Data Centres and cables for 19 Jiří Štef 267 military use Challenges in the development of high-power fiber 20 Peter Lukan 291 lasers 21 Marija Mrzel Ljubič OPGW - architecture and performance 301 22 Peter Reinhardt Fast plug-in modules (100 - 800 Gbps) 307 23 Edvin Škaljo The use of telecom fibre optics in senzor applications 323 24 Jakup Ratkoceri Software-defined passive optical network evolution 337 25 Igor Milojević Stride to F5.5G 348 26 Darko Zibar Tutorial on machine learning 363 Application of machine learning techniques to optical 27 Darko Zibar 390 communications Quantum random number generation based on the 28 Ágoston Kristóf Schranz 425 times of photon detections PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 7/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 8/451 Posters Author(s) Poster Page Sebastjan Zorzut, Dejan Tinta, Manuel Reference clock transfer system with fs phase 1 447 Cargnelutti stability Analog optical connection for phase noise 2 Andrej Lavrič, Boštjan Batagelj, Matjaž Vidmar 448 measurement 3 Luka Podbregar, Luka Zmrzlak, Aljaž Blatnik Laser transmission of audio signal 449 4 Luka Zmrzlak, Luka Podbregar, Aljaž Blatnik A light beam caught in a water jet 450 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 8/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 9/451 PRISPEVKI ARTICLES I. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 9/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 10/451 Novosti v optičnih komunikacijah in uvod v kvantne komunikacije Novelties in optical communications and introduction to quantum communications Boštjan Batagelj Univerza v Ljubljani, Fakulteta za elektrotehniko bostjan.batagelj@fe.uni-lj.si Povzetek backbone to broadband access in the user's home, Sodobna optična omrežja, ki se raztezajo od visoko are far from saying the last word of development zmogljivih podmorskih optičnih povezav v neither in the research sphere nor in industry. In hrbtenici do širokopasovnega dostopa v the coming years, we will witness record uporabnikovem domu, še zdaleč niso rekla zadnje investments in submarine optical cables owned by besede razvoja niti v raziskovalni sferi in niti v Internet giants. High-performance optical industriji. V prihodnjih letih bomo priča rekordnim communication links, conditioned by the optical investicijam v podmorske optične kable, katerih fiber (communication channel), the transceiver and lastniki bodo spletni velikani. Zmogljive optične its electronics, and the type of transmission signal, komunikacijske zveze, ki jih pogojuje uporabljeno move to the user's home. Optical connections are optično vlakno (komunikacijski kanal), oddajno- becoming more and more powerful, secure and sprejemna oprema in njena elektronika ter vrsta seamless. The latest technological achievements of prenosnega signala, pa se selijo do uporabnikovega quantum information technology and artificial doma. Optične zveza postajajo vse bolj zmogljive, intelligence contribute to this. In the field of varne in brezhibne. Prav k temu pa pripomorejo security, quantum encryption techniques are najnovejši tehnološki dosežki kvantnih paving the way in optical networks. Integrated informacijskih tehnologij in umetne inteligence. optics makes a major contribution to the field of Na področju varnosti si v optičnem omrežju utirajo optical communication devices. New pot tehnike kvantnega šifriranja. Integrirana optika communication techniques include coherent daje glavni doprinos na področju optičnih communications, multidimensional modulation komunikacijskih naprav. Nove komunikacijske formats and multiplexing techniques, and take tehnike vključujejo koherentne komunikacije, advantage of artificial intelligence. večdimenzionalne modulacijske formate in tehnike Biografija avtorja multipleksiranja ter s pridom uporabljajo umetno Boštjan Batagelj je izredni inteligenco. profesor na Fakulteti za elektrotehniko Univerze v Abstract Ljubljani, kjer predava predmete Modern optical networks, which range from high- optične komunikacije, radijske performance submarine optical links in the komunikacije in satelitske PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 10/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 11/451 komunikacije. Raziskovalno delo opravlja v Laboratoriju za sevanje in optiko, kjer se med drugim ukvarja z fizičnim nivojem prenosnih in dostopovnih telekomunikacijskim omrežji zasnovanih na radijski in optični tehnologiji. Je avtor več kot 300 člankov, desetih patentnih prijav in sodeluje v domačih ter mednarodnih raziskovalnih projektih s področja optičnih in radijskih komunikacij. Author's biography Boštjan Batagelj is an associate professor at the Faculty of Electrical Engineering of the University of Ljubljana, where he teaches the subjects of optical communication, radio communication and satellite communication. He performs his research work in the Radiation and Optics Laboratory, where he deals, among other things, with the physical level of portable and access telecommunication networks based on radio and optical technology. He is the author of more than 300 articles, ten patent applications and participates in domestic and international research projects in the field of optical and radio communications. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 11/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 12/451 Novosti v optičnih komunikacijah in uvod v kvantne komunikacije izr. prof. dr. Boštjan Batagelj bostjan.batagelj@fe.uni-lj.si 25. januar 2023 http://lso.fe.uni-lj.si 2 / 26 bostjan.batagelj@fe.uni-lj.si Vsebina predstavitve � Novosti v optičnih komunikacijah � Kako povečati zmogljivost? � Kaj prinaša integrirana optika? � Kaj se dogaja na področju zlivanja optičnega in radijskega dostopovnega omrežja? � Kako bo pripomogla umetna inteligenca? � Uvod v kvantne komunikacije � Zakaj moramo narediti optične komunikacije bolj varne? � Kako bo zgledala kvantna prihodnost? � V čem se kvantno omrežje razlikuje od običajnega omrežja? � Kako bo pripomogla integrirana optika? PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 12/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 13/451 3 / 26 Vlakno na najdaljših razdaljah bostjan.batagelj@fe.uni-lj.si � Podoceanski optični kabli so od satelitov povsem prevzeli promet med kontinenti. � Svetlobni ojačevalniki so ključna tehnologija za DWDM prenos. � Trenutno je več kot 100 podmorskih zvez z zmogljivostjo večjo od Tbit/s. � Februarja 2018 je bila dokončana do tedaj najbolj zmogljiva medkontinentalna povezava MAREA dolžine 6.644 km s skupno zmogljivostjo 160 Tbit/s, ki sega www.submarinecablemap.com med ZDA (Virginia Beach) in Španijo (Bilbao). � 8 vlakenskih parov * 25 DWDM kanalov * 400 Gbit/s na posamezni kanal = 160 Tbit/s � Uporaba modulacijskega formata 16-QAM s 4 bit/simbol Q � Dosežena spektralna učinkovitost 6,41 bit/s/Hz. I Vir: https://www.submarinenetworks.com/systems/trans-atlantic/marea in https://acacia-inc.com/product/ac1200/ 4 / 26 Podoceanski optični kabli bostjan.batagelj@fe.uni-lj.si vir: https://en.wikipedia.org/wiki/Grace_Hopper_(submarine_communications_cable) � Grace Hopper (Google) 2022 � 16 vlakenskih parov * 22 Tbit/s / vlakno = 352 Tbit/s vir: https://en.wikipedia.org/wiki/Oman_Australia_Cable � Oman Australia Cable (OAC) � september 2022 � 45 Tbit/s � unikatna trasa vir: https://www.submarinenetworks.com/en/systems/euro-africa/equiano � Equiano (14. podoceanski kabel, ki ga je financiral Google) � v pogon bo spuščen začetek 2023 � uporabljal bo tehnologijo prostorskega multipleksiranja (angl. space-division multiplexing – SDM) � 12 vlakenskih parov * 12 Tbit/s / vlakno = 144 Tbit/s � 20x večja zmogljivost od trenutnega kabla na zahodni obali Afrike PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 13/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 14/451 5 / 26 Vlakno kot senzor bostjan.batagelj@fe.uni-lj.si � Odsluženi podoceanski kabli postanejo senzorji. � Optično vlakno je zelo zanimiv senzor tudi na drugih področjih. 6 / 26 Razvoj fiksnega omrežja v dostopu bostjan.batagelj@fe.uni-lj.si 10 Gbit/s F5G 1 Gbit/s F4G 100 Mbit/s F3G 20 Mbit/s 10 Mbit/s F2G 1 Mbit/s 100 kbit/s 64 kbit/s F1G 10 kbit/s 1980 1990 2000 2010 2020 2030 2040 vir: ETSI, Fifth Generation Fixed Network (F5G) https://www.etsi.org/technologies/fifth-generation-fixed-network-f5g Boštjan Batagelj, Digitalni polet na krilih pete generacije, Delo, 23. 1. 2021 https://www.delo.si/novice/znanoteh/digitalni-polet-na-krilih-pete-generacije/ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 14/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 15/451 7 / 26 bostjan.batagelj@fe.uni-lj.si Novost v optičnih komunikacijah optični elementi (integracija) in komunikacijski kanal hitre elektronske naprave (nova vlakna in načini razvrščanja) vrsta prenosnega signala (modulacije) smeri razvoja širokopasovni dostop (pasivna optična omrežja, konvergenca optičnih in radijskih omrežij) visoko zmogljive in varne optične povezave vir: Boštjan Batagelj, “Research challenges in optical communications towards 2020 and beyond” Informacije MIDEM, sep. 2014, letn. 44, št. 3, str. 177-184. 8 / 26 bostjan.batagelj@fe.uni-lj.si Uporaba umetne inteligence (angl. Artificial Intelligence – AI) in strojnega učenja (angl. Machine Learning – ML) v optičnih komunikacijah kvalitetnejše načrtovanje izboljšanje nastavitve optičnega omrežja avtomatski optičnih gradnikov nadzor omrežja (oddajnika, ojačevalnika, AI in ML na sprejemnika) izboljšanje kvalitete prenosa fizični ravni porazporeditev (rekonfiguracija) nadzor parametrov omrežja optičnega omrežja omrežja (OSNR, CD, PMD, n ) (optični prenos) 2 izboljšanje delovanja ublažitev vlakenskih optičnega omrežja nelinearnosti prepoznavanje modulacijskih formatov Vir: JavierMata, et al. "Artificial intelligence (AI) methods in optical networks: A comprehensive survey" Optical Switching and Networking Volume 28, April 2018, pp. 43-57. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 15/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 16/451 9 / 26 Kvantna IKT bostjan.batagelj@fe.uni-lj.si � Kvantna informacijsko-komunikacijska teorija je širši pojem od klasične Shannonove informacijske teorije. kvantna informacijsko- komunikacijska tehnologija klasična informacijsko- Kvantna IKT omogoča: komunikacijska tehnologija � kvantno generiranje naključnih števil � kvantno šifriranje (šumno šifriranje) � prenos ključa s pomočjo prepletenosti � kvantno računalništvo � kvantni internet � kvantno steganografijo (skrivanje podatkov) � kvantno teleportacijo � kvantno senzoriko vir: Boštjan Batagelj, “Varnost v bodočih optičnih komunikacijskih � kvantno sinhronizacijo sistemih“, Avtomatika, 2018, št. 167, str. 10-14, https://www.researchgate.net/publication/329363712 � kvantno strojno učene (algoritmi) 10 / 26 Kvantno generiranje naključnih bostjan.batagelj@fe.uni-lj.si števil v Samsung S20 � Samsung Galaxy A71 5G (S20) je bil prvi telefon s čipom za kvantno generiranje naključnih števil. (angl. Quantum Random Number Generator – QRNG) � Čip Quantis QRNG IDQ250C2 je kompatibilen s standardom NIST 800-90. � Naključna števila se uporablja za različne postopke ugotavljanje avtentičnosti, denimo za 2FA (Two-Factor Authentication), biometriko, blockchain, generiranje ključev itd. Quantis QRNG IDQ250C2 Povsem nepredvidljiva naključna števila generira s pomočjo šuma na fototipalu. Ta šum se pretvori v zaporedje števil, vir: https://www.monitor.si/novica/samsung-bo-ponudil-prvi-telefon-s-kvantno-tehnologijo kar je vnos za algoritem za generiranje naključnih števil. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 16/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 17/451 11 / 26 bostjan.batagelj@fe.uni-lj.si Oblikovalci I. kvantne revolucije (1/2) Max Planck je leta 1900 zapisal postulat, da je elektromagnetno energijo mogoče izsevati v obliki kvantov. (Energija je lahko zgolj celoštevilski večkratnik osnovne enote – kvanta.) W N � W N � h � f 34 kvant h 6,625�10 Js Albet Einstein je leta 1905 pojasnil fotoefekt s pomočjo kvantiziranosti svetlobne energije, kjer je povedal, da z večanjem energije vpadne svetlobe (od določene frekvence dalje) narašča število kvantov energije – fotonov, z večanjem frekvence pa se povečuje energija posameznega fotona. Robert Millikan je leta 1914 dokazal kvantno naravo elektronov, določil osnovni električni naboj elektrona, točno določil Planckovo konstanto. d Pri toku 1 A skozi presek žice v 1 s steče -e v 1,60219�1019 elektronov. A Q n � e n=± 1, ± 2, ± 3, ... e = 1,60219�10-19 C 12 / 26 bostjan.batagelj@fe.uni-lj.si Oblikovalci I. kvantne revolucije (2/2) � Werner Karl Heisenberg je leta 1927 zapisal eno od temeljnih načel kvantne mehanike – Heisenbergovo načelo nedoločenosti, ki v kvantni fiziki določa, da je nemogoče istočasno s poljubno natančnostjo poznati določene pare spremenljivk, kot sta na primer lega ali gibalna količina izbranega delca. x ' � G ' h � Pomemben doprinos na področju kvantne mehanike je imel tudi Erwin Schrödinger, ki je znan po razlagi superpozicije z miselnim paradoksom poskusa z mačko in njegovi Schrödingerjevi valovni enačbi. � Tehnološko so se ideje I. kvantne revolucije uporabile za izdelavo sodobnih elektronskih naprav, kot so elektronska vezja, sončna celica, laser, atomska ura, slikanje z magnetno resonanco, elektronski ter tunelski mikroskop,.. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 17/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 18/451 13 / 26 Superpozicija na primeru bostjan.batagelj@fe.uni-lj.si kladivo Schrödingerjevega paradoksa pri miselnem radioaktivna strup snov poskusu z mačko Geigerjev števec material ne material razpade / razpade / mačka ostane mačko ubije živa strup živa mačka mrtva mačka 14 / 26 bostjan.batagelj@fe.uni-lj.si Od bitov do kubitov � V kvantni mehaniki se za opis stanja dvonivojskih sistemov uporablja Blochova sfera. � Točka na krogli predstavlja stanje dvonivojskega sistema. � Klasični biti lahko zavzamejo eno od dveh diskretnih vrednosti – bodisi logično enico »1« (južni pol) ali logično ničlo »0« (severni pol). � Če sta stanji zastopani z enako verjetnostjo, imamo opravka z verjetnostnimi biti (angl. probability bits – pbits). � Kvantne informacije uporabljajo kvantne bite ali kubite, ki so v superpoziciji obeh stanj istočasno, kar pomeni, da so hkrati v logičnem stanju »1« in »0«. Ko je meritev izvedena, se superpozicija uniči in kubit je potisnjen v klasično stanje. � Kubit istočasno obstaja na katerikoli točki krogle. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 18/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 19/451 15 / 26 II. kvantna revolucija bostjan.batagelj@fe.uni-lj.si � V drugi kvantni revoluciji znanstveniki uporabljajo kvantna pravila za osnovne ideje informacijsko-komunikacijske tehnologije. � 1981 ameriški fizik (tudi nobelovec) Richard Feynman zatrdi, da klasični številski računalniki nikoli ne bodo zmogli v celoti simulirati kvantnih pojavov. � Predlaga (podpre) idejo kvantnega računalnika, ki bo zmožen simulacije fizikalnih kvantnih pojavov. � leta 1994 Peter Shor zapiše kvantni algoritem, ki lahko rešili problem faktorizacije v doglednem času. � Kvantni računalnik z nekaj deset tisoč kubiti lahko nalogo praštevilske faktorizacije opravi v minuti. � To omogoča enostavno razbitje RSA (Rivest–Shamir–Adleman) asimetričnega šifrirnega postopka, ki temelji na javnem in privatnem ključu. Odpre se področje kvantne komunikacije, ki na daljavo s pomočjo kvantnega tehnologije prenese šifrirni ključ (angl. Quantum Key Distribution – QKD) za simetrični šifrirni postopek. 16 / 26 Prevlada kvantnih računalnikov bostjan.batagelj@fe.uni-lj.si � superračunalniki lahko izvaja 1018 operacij s plavajočo vejico na sekundo (FLOPS) � ekvivalenten kvantni računalnik potrebuje � 208 kubitov v IQP vezju (Instantaneous Quantum Polynomial-Time circuit) � 420 kubitov v QAOA vezju (Quantum Approximate Optimization Algorithm circuit) en kubit izvede dva izračuna hkrati dva kubita povezana s kvantnim učinkom prepletenosti, lahko izvedeta 22 = 4 izračune hkrati trije kubiti lahko izvedejo 23 = 8 izračunov hkrati … 300 kubitov lahko izvedejo več izračunov, kot je atomov v nam poznanem vesolju vir: Charles Q. Choi, “How Many Qubits Are Needed for Quantum Supremacy?“, IEEE Spectrum, maj 2020, https://spectrum.ieee.org/tech-talk/computing/hardware/qubit-supremacy PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 19/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 20/451 17 / 26 bostjan.batagelj@fe.uni-lj.si Težavnost matematičnih postopkov računanja 1020 n! fakultetni problemi 1018 1016 1014 1012 1010 108 2n 106 eksponentni problemi 104 n2 polinomski problemi 102 1 n 0 5 10 15 20 20 let kvantnega računalništva 18 / 26 bostjan.batagelj@fe.uni-lj.si vir: https://www.statista.com/chart/17896/quantum-computing-developments/ vir: https://en.wikipedia.org/wiki/IBM_Eagle 1998 2 kubita vir: https://en.wikipedia.org/wiki/D-Wave_Systems 2000 5 kubitov 2000 7 2006 12 2008 28 D-Wave Systems (Kanada) 2011 128 D-Wave Systems (Kanada) 2017 50 2018 49 Intel 2018 72 Google 2019 128 Rigetti 2021 127 IBM (Eagle) 2022 100 PASQAL 2022 433 IBM (Osprey) 2023 1.121 IBM (Condor) 2024 1.386 IBM (Flamingo) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 20/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 21/451 19 / 26 Kako še naprej zagotoviti varne komunikacije? bostjan.batagelj@fe.uni-lj.si � Inženirski ukrepi: � Podaljšanje ključev, ki jih uporabljamo pri sedanjih tehnikah šifriranja. � Uporaba kvantnih protokolov za kvantni prenos šifrirnih ključev (BB84, B92, E91) � Uporaba novih matematičnih algoritmov, ki jih ni mogoče razbiti s pomočjo kvantnih algoritmov, ki se izvajajo na kvantnih računalnikih. � Postopki, ki so nezlomljivi s pomočjo kvantnih računalnikov (angl. Post-Quantum Cryptography - PQC) � Šifriranje na osnovi rešetk (angl. Lattice-based cryptography) � Šifriranje na osnovi kode (angl. Code-based cryptography) - McEliece algoritem � Šifriranje na osnovi multivarijant (angl. Multivariate cryptography) časovnica NIST nacionalni inštitut za standarde in tehnologijo (NIST) 20 / 26 bostjan.batagelj@fe.uni-lj.si Kvantna komunikacija Osnovna fizikalna principa kvantne komunikacije sta: � superpozicija (vsota dveh različnih rešitev problema je tudi rešitev), � prepletenost (z določitvijo stanja enega delca je popolnoma definirano stanje drugega). Superpozicija na primeru Neckerjeve kocke Prepletenost na primeru Neckerjevih kock PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 21/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 22/451 21 / 26 Številska (digitalna) zveza bostjan.batagelj@fe.uni-lj.si � Danes uporabljamo številske (digitalne) zveze. nivo logičnega simbola s1s 0 0 1 0 1 1 0 nivo logičnega simbola s0s tema tema svetloba tema svetloba svetloba tema 0 fotonov 0 fotonov 1000 ali 0 fotonov 1000 ali 1000 ali 0 fotonov več več več fotonov fotonov fotonov � Za večjo varnost (težje prisluškovanje) zmanjšujemo število oddanih fotonov. zveza s posameznimi delci 1 foton 1 foton 1 foton 1 foton 1 foton 1 foton 1 foton � Kot tehnološko najbolj izvedljivo se kaže, da bi kvantni računalniki uporabljali spine elektronov ali atomov, medtem ko se bo za prenos kvantnih informacij najverjetneje uporabljala svetloba. Vir: C.H.Bennet, Quantum cryptography using any two nonorthogonal states, Physical 22 / 26 bostjan.batagelj@fe.uni-lj.si Review Letters, Vol.68, 1992, str. 3121-3124 Praktična izvedba B92 v LSO � Kodiranje bitov s spreminjanjem faze. � Osnova je Mach-Zehnderjev vlakenski interferometer vir: J. TRATNIK, B. BATAGELJ, “0” ODDAJNIK SPREJEMNIK Predstavitev ideje kvantnega šifriranja in laser pregled osnovnih “1” tehnik kvantnega I I A B razdeljevanja detektorja ključa. Elektrotehniški vestnik, letn. 75, št. 5, str. 257-263, 2008. vir: TRATNIK, Jurij. Poskus uporabe optičnega interferometra za varen prenos šifrirnega ključa: diplomsko delo. Ljubljana, 2007. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 22/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 23/451 23 / 26 Nobelova nagrada za kvantno prepletenost bostjan.batagelj@fe.uni-lj.si 2022 Nobel Prize lectures in physics https://youtu.be/a9FsKqvrJNY John Clauser Anton Zeilinger Alain Aspect vir: https://www.quantamagazine.org/pioneering-quantum-physicists-win-nobel-prize-in-physics-20221004 24 / 26 vir: Artur K. Ekert, "Quantum cryptography based on Bell’s theorem", bostjan.batagelj@fe.uni-lj.si Physical review letters, vol. 67, no. 6, pp. 661-663, 1991. Kvantno razdeljevanje ključa s kvantno prepletenostjo po protokolu E91 (Artur Ekert, 1991) centralni izvor � Protokol E91 temelji na kvantno prepletenih parih delcev. prepletenih fotonov � Pare prepletenih fotonov oddaja centralni izvor (angl. Spontaneous parametric down-conversion - SPDC), ki je ločen od uporabnikov. � Prepletena fotona razdeli med uporabnika. � Prepletena stanja so popolnoma korelirana. � Rezultat posamezne meritve seveda ostaja povsem uporabnik 1 naključen in posledično nepredvidljiv. � Vsakršen poskus prisluškovanja uniči omenjeno korelacijo, kar je mogoče tudi zaznati. uporabnik 2 � Kvantno prepletenost je mogoče izrabljati za sinhronizacijo. P. Kormar, “A quantum network of clocks”, nature physics 10, 582 (2014). PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 23/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 24/451 25 / 26 Načrtovalski kompromisi pri bostjan.batagelj@fe.uni-lj.si omrežju za razdeljevanje kvantnih ključev varnost razširljivost učinkovitost razpoložljivost interoperabilnost zanesljivost omrežje za QKD združljivost komponent kompatibilnost stroškovna učinkovitost združljivost signalov prilagodljivost 26 / 26 bostjan.batagelj@fe.uni-lj.si vir:https://www.delo.si/novice/znanoteh/prek- kvantne-komunikacije-povezali-tri-mesta vir: https://www.e5.ijs.si/siquid-project/ vir: https://digital- strategy.ec.europa.eu/en/policies/european- quantum-communication-infrastructure-euroqci PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 24/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 25/451 Regulacija optičnih omrežij Regulation of fibre networks Žan Knafelc Agencija za komunikacijska omrežja in storitve Republike Slovenije zan.knafelc@akos-rs.si Povzetek V Sloveniji že več kot polovica gospodinjstev za dostop do interneta uporablja optično omrežje, ki Biografija avtorja Žan Knafelc je na Agenciji je ključno za nadaljnji razvoj infrastrukturne za komunikacijska omrežja konkurence. Zaradi vse večje prisotnosti in storitve RS je zaposlen od konkurenčnih infrastruktur se predhodna (ex ante) leta 2007, zadnjih šest let kot regulacija tako postopoma umika s posameznih vodja oddelka za regulacijo upoštevnih trgov in ostaja samo na geografskih trga elektronskih območjih, kjer še ni vzpostavljene učinkovite komunikacij. Pred tem si je izkušnje nabiral pri konkurence, ki je pogoj za večjo izbiro, inovacije mobilnem operaterju na področju razvoja in uvajanja in nižje cene storitev za končne uporabnike. V storitev. Ima univerzitetno izobrazbo s tehničnega in prispevku so predstavljeni glavni trendi na trgu in ekonomskega področja. zadnji naloženi korektivnih ukrepi s pogledom v Author's biography prihodnost. Žan Knafelc has been employed at Agency for communication networks and services RS since 2007, Abstract the last six years as a head of market regulation In Slovenia, more than half of all households department for electronic communications. Prior to already use a fibre network to access the internet, that, he gained experience working for a mobile which is key to the further development of operator in the product management. He holds degrees infrastructure competition. As a result of the in technical and economics area. growing presence of competing infrastructures, ex ante regulation is thus gradually being withdrawn from individual relevant markets and remains only in geographic areas where effective competition has not yet been established, which is a prerequisite for greater choice, innovation and lower prices for end-users. This paper presents the main trends in the market and the latest corrective measures imposed with a view to the future. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 25/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 26/451 Regulacija optiēnih omrežij SOK 2023 Žan Knafelc, AKOS Ljubljana, 25. januar 2023 Stanje omrežne infrastrukture v Sloveniji PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 26/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 27/451 Stanje optiēne infrastrukture v Sloveniji Stanje optiēne infrastrukture v Sloveniji PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 27/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 28/451 Maloprodajni trg širokopasovnega dostopa Maloprodajni trg širokopasovnega dostopa PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 28/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 29/451 Maloprodajni trg širokopasovnega dostopa Odvisnost kasnejših vstopnikov od drugih omrežij PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 29/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 30/451 Reguliran dostop do omrežja Telekoma Slovenije Veleprodajni dostop do OŠO in drugih omrežij PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 30/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 31/451 Predhodna (ex ante) regulacija dostopa • Regulacija operaterja s pomembno tržno moējo (142. ēlen ZEKom-2) • Za SMP operaterja doloēen Telekom Slovenije (z regulativno odloēbo naložene obveznosti – korektivni ukrepi) • Kriterija za geografsko segmentacijo upoštevnih trgov 1 in 3b (ob upoštevanju prirejenega „Greenfield“ pristopa – brez regulacije): – Prvotni operater (Telekom Slovenije) manj kot 40 % in dva kasnejša vstopnika z najmanj po 10 % maloprodajnim tržni delež v naselju – Vsak od treh operaterjev s pokritostjo najmanj 65 % gospodinjstev (baker, optika in kabel) Predhodna (ex ante) regulacija dostopa Lokalni dostop (veleprodajni upoštevni trg 1) • Nacionalni trg (baker in optika) • Kabel ni del trga (ni zamenljiv, ni zadostnega indirektnega pritiska) • Geografska segmentacija ukrepov (15 naselij – 5,3% gospodinjstev brez cenovnih obveznosti, letno posodabljanje seznama) • Dostop do fiziēne infrastrukture (vkljuēno s stavbno) za fiksne storitve • Fiziēna in virtualna razvezava (VULA) • Backhaul (povezava od robnega do dostopovnega vozlišēa) • Veleprodajne cene temeljijo na preizkusu ekonomske ponovljivosti (ERT) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 31/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 32/451 Predhodna (ex ante) regulacija dostopa Osrednji dostop (veleprodajni upoštevni trg 3b) • Ni veē na seznamu Priporoēila o upoštevnih trgih (2020) • 3CT (preizkus treh meril) Æ nujna nadaljnja regulacija • Geografska segmentacija trga Æ reguliran (baker in optika) in dereguliran del trga (430 naselij – 42,5% gospodinjstev, letno posodabljanje seznama) • Kabel ni del trga (ni zamenljiv, ni zadostnega indirektnega pritiska) • Bitni tok (regijski in nacionalni nivo) • Veleprodajne cene temeljijo na preizkusu ekonomske ponovljivosti (ERT) Predhodna (ex ante) regulacija dostopa Visokokakovostni dostop (veleprodajni upoštevni trg 4) • Na seznamu Priporoēila o upoštevnih trgih (2020) kot upoštevni trg 2 • Nacionalni trg (baker in optika) • Kabel ni del trga (ni zamenljiv že na maloprodajnem trgu) • Zakupljeni vodi (tradicionalni in Ethernet vmesniki) • Visokokakovostni bitni tok • SLA (vkljuēno z odpravo napake najmanj naslednji delovni dan) • Dostop do zakljuēnega segmenta omrežja (robna in dostopovna vozlišēa) • Veleprodajne cene temeljijo na stroškovnih cenah (LRIC+) • Analiza uēinkov regulacije (se izvaja) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 32/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 33/451 Predhodna (ex ante) regulacija dostopa Postopen umik regulacije upoštevnih trgov (deregulacija) • Priporoēilo o upoštevnih trgih (2003) – 18 upoštevnih trgov • Priporoēilo o upoštevnih trgih (2020) – 2 upoštevna trga • Nadaljnja regulacija mogoēa le ob izpolnjevanju 3CT (preizkusa treh meril) • Na zaēetku regulirani tudi maloprodajni trgi • Geografska segmentacija ukrepov (cenovna deregulacija dela trga) • Geografska segmentacija trga (deregulacija dela trga) • Deregulacija celotnega trga • Predhodna (ex ante) regulacija do vzpostavitve uēinkovite konkurence na maloprodajnem trgu • Naslednje Priporoēilo o upoštevnih trgih – 1 upoštevni trg (dostop do fiziēne infrastrukture)? Simetriēna regulacija, skupna uporaba in gradnja Simetriēna regulacija (136., 137. in 138. ēlen ZEKom-2) • Skupna uporaba komunikacijskih objektov (zaradi varstva okolja, javnega zdravja, javne varnosti ali prostorskih ureditev) • Skupna uporaba stavbne fiziēne infrastrukture • Skupna uporaba napeljav, kablov in skupnih zmogljivosti v stavbah Skupna uporaba GJI (139. in 140. ēlen ZEKom-2) • Dostop do obstojeēe fiziēne infrastrukture • Dostop do neuporabljenih optiēnih vlaken (druga GJI) Skupna gradnja (12. ēlen ZEKom-2) • Obveznost objav novih gradenj na portalu infrastrukturnih investicij PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 33/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 34/451 Veē informacij in povezave do portalov agencije • Analize upoštevnih trgov – https://www.akos- rs.si/telekomunikacije/raziscite/regulacija-upostevnih-trgov • eAnalitik – https://eanalitik.akos-rs.si/ • Geoportal – https://gis.akos-rs.si/ • Portal infrastrukturnih investicij – https://investicije.akos-rs.si/ • AKOS test net – https://www.akostest.net/sl/ • Ponudba operaterjev – https://www.primerjajoperaterje.si/ • Portal za medijsko in informacijsko pismenost – https://www.mipi.si/ Email: zan.knafelc@akos-rs.si PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 34/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 35/451 Nadgradnja P2P FTTH in GPON dostopovnih omrežij v PON omrežja naslednje generacije Upgrade of P2P FTTH and GPON access networks to next-generation PON networks Gorazd Penko T-2, d.o.o. gorazd.penko@t-2.com Povzetek are described. An approach to network planning V prispevku so predstavljeni razlogi za prehod with associated simulations and calculations is podjetja T-2 iz iz koncepta arhitekture omrežja also given. The basic building blocks of xPON P2P FTTH (točka-točka FTTH) v P2MP FTTH networks such as OLT, ONU, splitter, CEx (točka-več točk FTTH). Podana je standardizacija (coexistence element), different types of SFP tehnologij xPON z osnovnimi principi delovanja in modules and their basic technical characteristics pripadajočo arhitekturo, ki temelji na referenčnem are presented. The advantages and disadvantages modelu ITU-T. Nadalje je opisan pristop k of P2MP compared to P2P FTTH are set forth. In načrtovanju omrežja PON s pripadajočimi the continuation of the paper the technical simulacijami in izračuni ter osnovne tehnične possibilities of upgrading the existing GPON karakteristike in funkcije gradnikov omrežij tipa technology with XGS-PON or NG-PON2 are PON, kot so: OLT, ONU, razdelilnik, različni tipi presented. NG-PON2 offers the technical modulov PON SFP, itd. V prispevku so possibility of a multioperator environment on the predstavljene tehnične možnosti nadgradnje same FTTH physical infrastructure. The paper obstoječega omrežja GPON s tehnologijo XGS- concludes with the optical part of the lecture, the PON in možnosti, ki jih ponuja tehnologija NG- concept of introducing the XGS-PON »Pay as you PON2. Opisan je tudi koncept podatkovnega grow« technology. statističnega multipleksa v dostopovnem omrežju. V zaključku je opisan koncept uvajanja tehnologije XGS-PON »Pay as you grow«. Biografija avtorja Abstract Gorazd Penko je vodja oddelka In this presentation the reasons for T-2's transition Referenčnnega laboratorija from the point-to-point (P2P) to point-tomultipoint telekomunikacijskega operaterja (P2MP) FTTH concept are presented. The T-2, d.o.o, pristojnega za standardization of xPON technologies with the tehnološki razvoj fiksnih basic principles of operation and the associated dostopovnih omrežij P2P/FTTH, architecture based on the ITU-T reference model xDSL in P2MP/FTTH, ter CPE IAD naročniških naprav. Diplomiral je na Univerzi v Ljubljani, Fakulteti PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 35/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 36/451 za elektrotehniko. V letu 1998 se je iz področja VDSL1 and VDSL2 broadband technology (among the vzdrževanja podatkovnih omrežij pridružil razvojnemu first ones in Europe). He participates in many oddelku Telekoma Slovenije na področju razvoja in International Conferences in the field of komercialne uvedbe tehnologije ADSL v Sloveniji telecommunications, such as Broadband World Forum (kasneje tudi ADSL2+). Leta 2006 se je pridružil Europe, FTTH Council, Smart Home conferences etc. In podjetju T-2, d.o.o. Od leta 2007 do 2010 je bil vodja 2022, he participated in the international conference oddelka xDSL, kjer je sodeloval pri razvoju, FOAN (Fiber Optics Access Networks) with the author's načrtovanju in upravljanju omrežij xDSL. Pred tem je presentation "GPON / XGS-PON / NG-PON2 Evolution delal kot operater omrežja. Njegova naloga je bila With a Comparison of Wi-Fi 6 Mesh Versus Wi-Fi 5 razvoj, nadzor, upravljanje in uvajanje novih Mesh in a Residential Building - Experience and T-2". širokopasovnih tehnologij VDSL1 in VDSL2 (med He was and still is a project manager of many projects, prvimi v Evropi). Sodeluje na številnih mednarodnih including GPON, XGS-PON and next generation access konferencah na področju telekomunikacij, kot so networks. Broadband World Forum, FTTH Council, Smart Home konferencah itd. V letu 2022 se je udeležil mednarodne konference FOAN (Fiber Optics Access Networks) z avtorsko prezentacijo »GPON / XGS-PON / NG-PON2 Evolution With a Comparison of Wi-Fi 6 Mesh Versus Wi-Fi 5 Mesh in a Residential Building - Experience in T-2«. Bil je in je še vedno projektni vodja številnih projektov, vključno z dostopovnimi omrežji GPON, XGS-PON in dostopovnimi tehnologijami naslednjih generacij. Author's biography Gorazd Penko is curently working as Head Of Reference Laboratory for development P2P/FTTH, xDSL, P2MP/FTTH, xDSL and CPE IAD at T-2 telecommunication company. He graduated at University of Ljubljana, Faculty of electrical engineering. His work in telecommunications development department area started in 1998, at Telekom Slovenije with the development and commercial introduction of ADSL technology (the latter ADSL2+) In 2006 he joined T-2. From 2007 to 2010 he was Head of xDSL department, where he has been involved in development, planning and management of xDSL networks. Before that (2006-2007) he worked as a Network operator; his task included development, supervision, management and introduction of new PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 36/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 37/451 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana Nadgradnja P2P FTTH in GPON dostopovnih omrežij v PON omrežja naslednje generacije GORAZD Penko T-2 d.o.o., Verovškova 64A, Ljubljana GORAZD Penko 25.Januar 2023 Vsebina • O podjetju T-2 d.o.o. • Splošen tehniēni pregled podroēja GPON • Standardizacija, splošen referenēni model, • Osnovna terminologija, osnovni tehniēni podatki • Tehniēni elementi omrežja • Simulacija dosegov • Možnost uporabe tehniēnih podatkov • Primer: kontrola kvalitete • XGS-PON / NG-PON2 Evolucija in T-2 praksa • Nadgradnja / Sobivanje GPON / XGS-PON / NG-PON2, • Veēoperatersko okolje na isti FTTH pasivni infrastrukturi, • T-2 Pay as You Grow model • T-2 Pay as You Grow model • GPON & XGS-PON Simulacija dosegov z razliēnimi SFP moduli • ITU-T-REC-G.9804.3 - 50 Gbit/s - PON • Zakljuēek • Vprašanja 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 37/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 38/451 predani zaposleni, osredotočeni na zadovoljstvo naše stranke T-2, tehnologije prihodnosti danes 1st 430+ 150.000 100 Prvi slovenski operater s predanih zaposlenih, gospodinjstev in millionov EUR ponudbo lastnega osredotoþenih na 18.000 poslovnih prometa optiþnega omrežja zadovoljstvo uporabnikov letno* uporabnikov *Vir: T-2, Letno poroþilo, 2021 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana T-2, skrb za odliēno uporabniško izkušnjo • T-2 je operater z najbolj zadovoljnimi naroþniki v Sloveniji zadnjih osem let* • Nudimo jim vrhunsko ponudbo storitev, združenih v pakete, ki ustrezajo njihovim potrebam - storitve Quad play (internet, televizija, fiksna in mobilna telefonija) • Odliþen TV vmesnik (napredne oglaševalske storitve, personalizacija vsebin) • Naš paradni konj so storitve, ki jih ponujamo v lastnem dostopovnem omrežju FTTH *Episcenter research, 2022 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 38/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 39/451 T-2, synonymous with excellent optical services 1st 84% 41% 35% Prvi slovenski operatet s Slovenskih Slovenskih Tržni delež optiþnih ponudbo storitev prek gospodinjstev ima gospodinjstev ima dostopov ima T-2 FTTH dostop do optiþni dostop do (Q3 2022)* gospodinjstvom širokopasovnega intreneta (Q3 2022)* interneta (Q3 2022)* Source: AKOS Slovenia (Agencija za komunikacijska omrežja in storitve RS), https://www.akos-rs.si/ 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana T-2 dostopovno omrežje – glavni tehniēni mejniki • Med prvimi v Evropi: • Priþetek z lasnim optiþnim dostopovnim omrežjem v letu 2004 (P2P rešitev) z 1 Gbit/s linkom • Izpustili smo tehnologijo ADSL in ADSL2+, ter priþeli s ponudbo storitev v bakrenem dostopobnem omrežju z tehnologijo VDSL1 • V letu 2007, smo predstavili tehnologijo VDSL2 • Prva testiranja dostopovnih optiþnih tehnologij XGS-PON in NGPON2 smo izvedli v letu 2017 z nekaj vkljuþenimi testnimi uporabniki • V letu 2018 smo priþeli z migracijo P2P FTTH v GPON P2MP FTTH in je še v izvajanju (GPON = 40%, P2P FTTH = 60%) • V letu 2021 smo priþeli ponovno z intenzivnejšim testiranjem XGS-PON z veþjim številom testnih uporabnikov • Q3 2022 – Testiranje XGS-PON tehniþne rešitve „Combo“ in implementacija v Q1/2023 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 39/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 40/451 Splošen tehniēni pregled podroēja GPON • Standardizacija, splošen referenēni model, • Osnovna terminologija, osnovni tehniēni podatki • Tehniēni elementi omrežja • Simulacija dosegov • Možnost uporabe tehniēnih podatkov • Primer: kontrola kvalitete 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana GPON ITU-T Recommendations series G.984.x • G.984.1: General characteristics • G.984.5: Enhancement band • Parameter description of GPON network • Coexistence with future WDM PON technology • Requirements of protection switch-over networking n the same medium • G.984.2: Physical Media Dependent (PMD) layer specification • G.984.6: Reach extension • Specifications of ODN parameters • Architecture and interface parameters for GPON • Specifications of 2.488Gbps downstream optical port systems with extended reach using a physical layer reach • Specifications of 1.244Gbps upstream optical port extension device such as a regenerator or optical amplifier • Overhead allocation at physical layer in the fibre link between the optical line termination (OLT) • G.984.3: Transmission convergence layer specification and optical network termination (ONT). The maximum • Specifications of TC layer in the GPON system reach is up to 60 km • GTC multiplexing architecture and protocol stack • GTC frame • G.984.7: Long reach • ONU registration and activation • Extending the maximum differential fibre distance • DBA specifications of a G-PON system to 40 km versus the conventional • Alarms and performance 20 km defined in G.984.1 • G.984.4: ONT management and control interface specification • G.988: ONU management • OMCI message format • and control interface (OMCI) specification • OMCI device management frame • OMCI working principle 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 40/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 41/451 Osnovna primerjava P2MP (GPON) proti P2P-FTTH P2MP(GPON) 1. Splitter 2. Splitter Central Office FTTH FTTH Optical Line Termination Unit P2P(FTTH) Optical FTTH L2 Aggregation Switch 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana GPON Referenēni model omrežja (ITU-T G.994.1) ONU Optical Network Unit WDM Wavelength Division Multiplex Module ONT Optical Network Terminal NE Network Element ODN Optical Distribution Network SNI Service Node Interface OLT Optical Line Terminal UNI User Network Interface AF Adaptation Function (Sometimes, it may be included in the ONU.) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 41/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 42/451 Osnovna terminologija GPON (1) ONU Optical Network Unit WDM Wavelength Division Multiplex Module ONT Optical Network Terminal NE Network Element ODN Optical Distribution Network SNI Service Node Interface OLT Optical Line Terminal UNI User Network Interface • adaptation function (AF): AF Adaptation Function (Sometimes, it may be included in the ONU.) • Je dodatna oprema ali funkcionalnost, ki na strani uporabnika vmesnik ONU/ONT prilagodi uporabniku – vmesnik UNI (User Network Interface). AF se uporablja tudi za spremembo OLT omrežnega vmesnika na vmesnik SNI (Service Network Interface), ki ga uporablja operater. • differential fibre distance: • Na OLT je prikljuþenih veþ ONU/ONT. Diferencialna optiþna razdalja je optiþna razdalja med najbližjim in najbolj oddaljenim ONU/ONT od OLT. • logical reach: • Logiþni doseg je opredeljen kot najveþja razdalja, ki jo je mogoþe doseþi za prenosni sistema GPON, ne glede na optiþni t.i.“power budget“. • optical access network (OAN): • Je niz optiþnih dostopovnih povezav, ki si jih delijo vmesniki optiþnega sistema na strani omrežja. V praksi je OAN skupek ODN prikljuþenih na isti OLT. 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana Osnovna terminologija GPON (2) ONU Optical Network Unit WDM Wavelength Division Multiplex Module ONT Optical Network Terminal NE Network Element ODN Optical Distribution Network SNI Service Node Interface OLT Optical Line Terminal UNI User Network Interface • optical distribution network (ODN): AF Adaptation Function (Sometimes, it may be included in the ONU.) • V kontekstu PON je ODN skupek povezanih dostopovnih optiþnih vlaken v t.i. drevo dopolnjeno z razdelilniki moþi ali valovne dolžine, filtri ali drugimi pasivnimi optiþnimi napravami • optical line termination (OLT): • je naprava, na katero ja vkljuþena skupna toþka ODN in izvaja GPON protokol definiran v ITU-T G.994, ter prilagaja „upload“ PDUs (Protocol Data Units) servisnem vmesniku ponudnika storitev SNI. • optical network termination (ONT): • Je naprava na strani uporabnika, katera terminira GPON protokol, ter izvede prilagoditev storitvam na strani uporabnika. • optical network unit (ONU): • ONU je poseben primer ONT, ki lahko vsebuje tudi funkcionalnosti veþih naroþniških naprav. • physical reach: • Fiziþni doseg je opredeljen kot najveþja fiziþna razdalja, ki je možen za doloþen prenosni sistem. 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 42/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 43/451 Osnovni tehniēni podatki GPON (1) • Podatkovna hitrost (Bit Rate): • Veēina komercialnih sistemov: 1.2 Gbit/s up, 2.4 Gbit/s down; • Opcija: 2.4 Gbit/s up, 2.4 Gbit/s down • Logiēni doseg (Logical Reach): • Maksimalen logiēni doseg opredeljen z ITU-T priporoēilom je 60 km, • Fiziēen doseg (Physical Reach): • 10 in 20 km (do 40 km) • Diferencialna optiēna razdalja (Differential fibre distance): • 20 km (40 km – long reach) • Delilna razmerja (Split Ratio): • Do 1:128 (1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128) • Valovne dolžine: • Downstream: 1490 nm 1,488 Gbit/s • Upstream: 1310 nm 1,244 Gbit/s Osnovni tehniēni podatki GPON (2) Do 60 km Do 20 km Downstream: 1490 nm, 2,488 Gbit/s ONU Upstream:: 1390 nm, 1,244 Gbit/s Downstream video: 1550 nm OLT ONU „Splittanje WDM ONU “ do 128 ONU Video Tx ONU 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 43/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 44/451 OLT – Optical Link Termination OLT SNI IF PON 1G bit/s GPON Port 1 1G bit/s GPON Port 2 1G bit/s GPON Port 3 GPON Port 4 10 Gbit/s 10 Gbit/s GPON Port N 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana OLT + ODN (Optical Distribution Network) OLT ODN IF PON SNI IF PON 1G bit/s GPON Port 1 1G bit/s GPON Port 2 1G bit/s GPON Port 3 GPON Port 4 10 Gbit/s 10 Gbit/s GPON Port N Splitter 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 44/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 45/451 OLT + ODN + ONT (ONU) (Optical Network Termination) OLT ODN ONT IF PON ONT SNI IF UNI PON ONT ONT ONT UNI ONT ONT ONT ONT 1G bit/s UNI GPON Port 1 ONT ONT UNI ONT ONT ONT 1G bit/s GPON Port 2 ONT ONT ONT ONT 1G bit/s GPON Port 3 ONT ONT GPON Port 4 ONT ONT 10 Gbit/s ONT ONT ONT 10 Gbit/s GPON Port N ONT Splitter 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana GPON – „Downstream“ princip delovanja 1 ʄ = 1490 nm ONU 1 1 2 3 1 2 3 2 Splitter ONU 2 OLT 3 Broadcast mode ONU 3 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 45/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 46/451 GPON – „Upstream“ princip delovanja 1 ʄ = 1310 nm ONU 1 1 2 3 2 2 Splitter ONU 2 OLT 3 TDMA mode Time-division multiple access ONU 3 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana Logiēna shema povezave OLT / ONT ONU-1 OLT GEM-Port GEM-Port GEM-Port GEM-Port GEM-Port GEM-Port GEM-Port GEM-Port ONU T-CONT GEM-Port GEM-Port n 1 1 GEM-Port ck GEM-Port o ctio Bl n no Fu GEM-Port ti n GEM-Port ta ONU NT GEM-Port p ctio O 2 a 2 e GEM-Port n T-C n Co rvice Ad ss GEM-Port Funkcionalni bloki za o n GEM-Port Se Cr ONU prilagoditev storitev mapirajo GEM-Port NT Prikljuēki za storitve n O t.i. Payload podatke, kateri se GEM-Port T-C prenašajo skozi GEM port. 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 46/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 47/451 GPON – Simulacija dosega tehnologije 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana T-2 Kontrola kvalitete in napak (GPON) Kontrola kvalitete Splitter Splitter dela monterjev in 1:64 <= 1:32 napak optiþnih vlaken, Average 3,92% konektorjev je definirana kot minimalna sprejemna Installers Quality Control through moþ na lokaciji m minimum 1490 uporabnika nm power 2 dB-2 1,87% Sprejemna moþ ONU m 0,87% (1490 nm) se lahko m 4 dB meri z optiþnim -2 6 dB merilnikom moþi -2 signala in se lahko meri tudi prek OLT tehniþnih podatkov 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 47/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 48/451 GPON dostopovni statistiēni multipleks (n=987) Internet Paket Število uporabnikov 16port GPON OLT typical unicast data 500 Mbit/s - 100 Mbit/s 418 traffic 1 Gbit/s - 200 Mbit/s 215 100 Mbit/s - 20 Mbit/s 208 brez interneta (TV, telefon) 37 100 Mbit/s - 10 Mbit/s 33 50 Mbit/s - 20 Mbit/s 28 10 Mbit/s - 10 Mbit/s 19 300 Mbit/s - 50 Mbit/s 8 750 Mbit/s - 150 Mbit/s 6 24 urni podatkovni promet "Upload" / "Download" 200 Mbit/s - 20 Mbit/s 4 na GPON OLT omrežnem elementu (N=1000 uporabnikov) 4,50 100 Mbit/s - 100 Mbit/s 3 4,00 20 Mbit/s - 20 Mbit/s 3 3,50 500 Mbit/s - 100 Mbit/s 2 3,00 200 Mbit/s - 50 Mbit/s 1 2,50 50 Mbit/s - 10 Mbit/s 1 2,00 50 Mbit/s - 50 Mbit/s 1 1,50 GPON OLT podatkovni promet naroēnikov (n= 987) 1,00 Skupaj 987 minimum povpreēje maksimum 0,50 0,00 Download (Gbit/s) 1,060 2,170 3,900 Upload (Gbit/s) 0,038 0,130 0,045 Download (Gbit/s) Upload (Gbit/s) Vsota prodanih naroēniških paketov (n=987) Splitter 1:64 – typical unicast data traffic povpreēje maksimum Download (Gbit/s) 464,320 458,290 Upload (Gbit/s) 93,710 92,500 GPON OLT podatkovni promet splitter 1 :64 minimum povpreēje maksimum Download (Gbit/s) 0,104 0,239 0,715 Upload (Gbit/s) 0,001 0,005 0,083 GPON poda Internet Paket Št tk evilo ovni t uporabnikov ok – dostopovni st 16 a por tis t GPO ti N O ē LT ni multiplek typical unicast data s 500 Mbit/s - 100 Mbit/s 418 traffic 1 Gbit/s - 200 Mbit/s 215 100 Mbit/s - 20 Mbit/s 208 brez interneta (TV, telefon) 37 100 Mbit/s - 10 Mbit/s 33 50 Mbit/s - 20 Mbit/s 28 10 Mbit/s - 10 Mbit/s 19 300 Mbit/s - 50 Mbit/s 8 750 Mbit/s - 150 Mbit/s 6 24 urni podatkovni promet "Upload" / "Download" 200 Mbit/s - 20 Mbit/s 4 na GPON OLT omrežnem elementu (N=1000 uporabnikov) 4,50 100 Mbit/s - 100 Mbit/s 3 4,00 20 Mbit/s - 20 Mbit/s 3 3,50 500 Mbit/s - 100 Mbit/s 2 3,00 200 Mbit/s - 50 Mbit/s 1 2,50 50 Mbit/s - 10 Mbit/s 1 2,00 50 Mbit/s - 50 Mbit/s 1 1,50 GPON OLT podatkovni promet naroēnikov (n= 987) 1,00 Skupaj 987 minimum povpreēje maksimum 0,50 0,00 Download (Gbit/s) 1,060 2,170 3,900 Upload (Gbit/s) 0,038 0,130 0,045 Download (Gbit/s) Upload (Gbit/s) Vsota prodanih naroēniških paketov (n=987) Splitter 1:64 – typical unicast data traffic povpreēje maksimum Download (Gbit/s) 464,320 458,290 Upload (Gbit/s) 93,710 92,500 GPON OLT podatkovni promet splitter 1 :64 minimum povpreēje maksimum Download (Gbit/s) 0,104 0,239 0,715 Upload (Gbit/s) 0,001 0,005 0,083 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 48/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 49/451 P2MP (GPON) versus P2P FTTH • Prednosti: • Bistveno nižja cena od P2P FTTH, • Manjša poraba prostora v optiþnih centralah, • Manjše število lokacij z aktivno opremo, • Manjša poraba elektriþne energije – 10x pa tudi do 20x manjša poraba • 1024 GPON Customers = 150W • 1024 P2P Customers = app. 1.500W (odvisno od tipa opreme • ….. • Slabosti: • Isti fiziþni medij si deli veliko število uporabnikov, • V fiziþnem delu dostopovnega omrežja je implementirano statistiþno multipleksiranje podatkovnega prometa, • Zahteva veþ naþrtovanja,… • Bolj zapleteno odpravljanje napak na "physical layer"…… • .... 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana XGS-PON / NG-PON2 Evolucija in T-2 praksa • Nadgradnja / Sobivanje GPON / XGS-PON / NG-PON2, • Veēoperatersko okolje na isti FTTH pasivni infrastrukturi, • T-2 Pay as You Grow model • T-2 Pay as You Grow model • GPON & XGS-PON Simulacija dosegov z razliēnimi SFP moduli • ITU-T-REC-G.9804.3 - 50 Gbit/s - PON PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 49/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 50/451 XGS-PON ITU-T Recommendations series G.984.x • XG-PON (10 / 2,5 Gbit/s) • G.987: 10-Gigabit-capable passive optical network (XG-PON) systems: Definitions, abbreviations and acronyms • G.987.1: General requirements • G.987.2: Physical media dependent (PMD) layer specification • G.987.3: Transmission convergence (TC) layer specification • G.987.4: Reach extension • XGS-PON (10 / 10 Gbit/s) • G.9807.1: 10-Gigabit-capable symmetric passive optical network (XGS-PON) • G.9807.2: 10 Gigabit-capable passive optical networks (XG(S)-PON): Reach extension 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana NG-PON2 ITU-T Priporoþila • G.989: 40-Gigabit-capable passive optical networks (NG-PON2): Definitions, abbreviations and acronyms • G.989.1: General requirements • G.989.2: Physical media dependent (PMD) layer specification • G.989.3: Transmission convergence layer specification 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 50/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 51/451 Soobstoj PON tehnologij na isti fiziēni optiēni infrastrukturi • Kaj potrebujemo ? • Standardiziran "wavelength bandplan„ • Dodatne pasinne elemente omrežja: • CEx (Coexistence element) • WM (Wavelength Multiplekser) • Standardizirano aktivno opremo standardiziranih razliþnih PON tehnologij: • GPON, XGS-PON, NG-PON2 (OLT, ONU/ONT) • Optiþno in pasivno infrastrukturo(vlakna, razcepnike, opt. delilnike,..) 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana Standardizirani CEx and WM (nekateri) (vir ITU-T G.984.5) 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 51/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 52/451 GPON – struktura Splitter GPON 1490 nm Æ Å 1310 nm ڔ1 ڔ OLT 1 ڔ1 GPON ONU ڔ1 GPON ONU 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana Nadgradnja / koeksistenca GPON in XGS-PON technologije CEx Splitter Coexistence element GPON 1490 nm Æ Å 1310 nm ڔ1 ڔ OLT 1 ڔ1….ڔ2 GPON ONU ڔ1….ڔ2 XGS-PON ڔ XGS-PON ONU 1577 nm Æ Å 1270 nm 2 ڔ OLT 2 GPON ONU XGS-PON ONU 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 52/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 53/451 Nadgradnja / koeksistenca GPON / XGS-PON / NG-PON2 CEx Splitter Coexistence element GPON 1490 nm Æ Å 1310 nm ڔ1 ڔ OLT 1 ڔ1….ڔ10 GPON ONU ڔ1….ڔ10 XGS-PON ڔ XGS-PON ONU 1577 nm Æ Å 1270 nm 2 ڔ OLT 2 NG-PON2 ONU 1596 - 1544 nm Æ Å 1524 – 1602 nm ڔ3 r ڔ4 lekse GPON ONU ڔ ip 5 lt mu NG-PON2 ڔ6 ڔ3….ڔ10 XGS-PON ONU gth OLT ڔ n 7 le NG-PON2 ONU ڔ8 ave W ڔ – 9 MW ڔ10 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana NG-PON2 in veþoperatersko okolje na isti pasivni infrastrukturi CEx Splitter Coexistence element ڔ1….ڔ10 GPON 1490 nm Æ Å 1310 nm ڔ1 ڔ OLT 1 ڔ1 GPON ONU ڔ1….ڔ10 ڔ2 SGS-PON ڔ XGS-PON ONU 1577 nm Æ Å 1270 nm 2 ڔ OLT 2 ڔ3 NG-PON2 ONU 1596 - 1544 nm Æ Å 1524 – 1602 nm Operater-1 ڔ3 ڔ4 NG-PON2 ONU r Operater-2 ڔ4 lekse ڔ5 ip NG-PON2 ONU Operater-3 ڔ5 lt ڔ Operater-4 ڔ mu 6 ڔ3….ڔ10 6 NG-PON2 ONU gth ڔ n 7 le ڔ2 XGS-PON ONU ڔ8 ave W ڔ – 9 MW Operater-8 ڔ10 Veēje število med seboj neodvisnih valovnih dolžin omogoēa tudi uporabo NG-PON2 in XGS-PON v veē - operaterskem okolju na isti pasivni infrastrukturi 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 53/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 54/451 Combo PON TEHNINA REŠITEV CEx Splitter GPON SFP Modul Coexistence element GPON OLT 1490 nm Æ Å 1310 nm ڔ1 ڔ1 ڔ1….ڔ2 GPON ONU XGS-PON SFP Modul XGS-PON OLT ڔ1….ڔ2 ڔ XGS-PON ONU 1577 nm Æ Å 1270 nm 2 ڔ2 GPON ONU XGS-PON ONU Combo PON OLT = GPON + XGS-PON ڔ1….ڔ2 GPON ONU ڔ1….ڔ2 1490 nm Æ Å 1310 nm XGS-PON ONU 1577 nm Æ Å 1270 nm COMBO PON TEEHNINA REŠITEV ! GPON ONU XGS-PON ONU 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana Trenutno stanje podroþja XGS-PON (Combo) • Zakljuþen pilotni projekt: • Combo PON instaliran v centralah (mestih) • Pokritost = „Raste“ • Število vkljuþenih uporabnikov v zakljuþni Combo pilotni projekt: • Cca. 1600 GPON uporabnikov na Combo OLT • Cca. 140 XGS-PON uporabnikov na Combo OLT • Vprašanje: • Ali naroēniki dejansko potrebujejo podatkovne hitrosti ki jih omogoēa XGS-PON ?! • Trenutno ni nobenih zahtev naroēnikov za višje hitrosti 1 Gbit/s • Trenutno: XGS-PON = „TEKMA“ PODROIJ MARKETINGA IN PRODAJE ! 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 54/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 55/451 T-2 Pay as You Grow model implementacije • T-2 Tehniþna odloþitev: Pay As You Grow • optimalna porazdelitev RU investicije glede na tržne E gy in razmere loonch +175% • Tehniþna izvedba: LT Te O • Priþetek z Combo PON OLT obm + 20...30% HW (strojno opremo) o C LT / • z GPON SFP moduli O T i m e t in • ….. en • Nadomešþanje GPON SFP vestmIn modulov z Combo SFP moduli 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana GPON & XGS-PON Simulacija dosegov z razliēnimi SFP moduli 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 55/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 56/451 ITU-T-REC-G.9804.3 - 50 Gbit/s - PON Vir: ITU-T G.9804.3 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana Zakljuēek GORAZD Penko Head Of Reference Laboratory T-2 d.o.o. Verovškova 64A,1000 Ljubljana Slovenia e-mail: gorazd.penko@t-2.com phone: +386 64 113 000 Hvala… 26. Seminar optiþne komunikacije – SOK 2023, Fakulteta za elektrotehniko, Ljubljana PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 56/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 57/451 Prenos sinhronizacije omrežja 5G v največjem in najsodobnejšem optičnem omrežju v Sloveniji Transmission of 5G network synchronization in the largest and most modern optical network in Slovenia Andrej Pučko Telekom Slovenije andrej.pucko@telekom.si Povzetek sisteme DWDM in SDH. Je skrbnik omrežja v jedrnem V prispevku je predstavljeno optično dostopovno in dostopovnem omrežju in nudi podporo ključnim omrežje Telekoma Slovenije (TS). Uvodoma so poslovnim uporabnikom Telekoma Slovenije. Ukvarja opisani trendi, strategijo in razvoj optičnega se tudi z raziskavami in razvojem novih transportnih storitev. omrežja TS. V nadaljevanju so podrobneje opisani naslednji sklopi: optično hrbtenično omrežje TS, Author's biography izvedba in delovanja tehnologije DWDM v Andrej Pučko graduated from the Faculty of Electrical omrežju TS in sinhronizacija (GM Clock), kjer je Engineering of the University of Maribor. He has been poudarek na podpori za PTP, NTP, SyncE in employed at Telekom Slovenije for 20 years. His field of sinhronizaciji 5G preko DWDM. work includes DWDM and SDH systems. He is the network administrator in the core and access network Abstract and provides support to key business users of Telekom The paper presents the optical access network of Slovenije. He is also involved in research and Telekom Slovenije (TS). In the introduction, the development of new transport services. trends, strategy and development of the TS optical network are described. The focus is on the following topics: TS optical backbone network, implementation and operation of DWDM technology in the TS network and synchronization (GM Clock), focusing on support for PTP, NTP, SyncE and 5G synchronization over DWDM. Biografija avtorja Andrej Pučko je diplomiral na Fakulteti za elektrotehniko Univerze v Mariboru. V Telekomu Slovenije je zaposlen že 20 let. Njegovo delovno področje obsega PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 57/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 58/451 Prenos sinhronizacije omrežja 5G v največjem in najsodobnejšem omrežju v Sloveniji Andrej Pučko 26. seminar optične komunikacije Optično dostopovno omrežje Telekoma Slovenije 26. seminar optične komunikacije 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 58/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 59/451 Trendi • Giga Home evolucija • Rast podatkovnega prometa in NGA priključkov • Internet stvari • Mobilnost • Pospešena FTTH gradnja • Konvergenca 5G in FTTH • Novi poslovni modeli (Smart-x) in ekosistemi • Varnost in zasebnost • Kakovost in odlična uporabniška izkušnja • Infrastrukturna konkurenca • Nove tehnologije in višje potrebe po pasovni hitrosti • Opuščanje bakrenih omrežij 3 26. seminar optične komunikacije Razvoj omrežja in storitev Telekoma Slovenije skozi čas 4 26. seminar optične komunikacije PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 59/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 60/451 Širokopasovna strategija države • 2016: Načrt NGN 2020 (do leta 2020 zagotoviti 100Mbit/s dostop 96 % gospodinjstev; preostalim 4 % pa 30Mbit/s) • 2018: Dodatek k Načrtu NGN 2020 ¾ do leta 2025: šole, univerze, prometna središča 1Gbit/s simetrično ¾ do leta 2025: vsa gospodinjstva 100Mbit/s z možnostjo nadgradnje na 1Gbit/s ¾ do leta 2025: urbana območja ter pomembnejše ceste in železnice neprekinjeno pokrite s 5G Gradnja FTTH Telekoma Slovenije: • FTTH gradnja od leta 2007. • Trenutno pokrivamo 440.000 gospodinjstev (53 % od 824.000). • Odprto omrežje, pod enakimi pogoji za vse. • Pokritost gospodinjstev: 26 % na ruralu, 43 % na suburbanih in 55 % na urbanih področjih. • 43 % zgrajene optične infrastrukture Telekoma Slovenije na področjih, kjer je gostota naseljenosti pod 500 prebivalcev/km2. 5 26. seminar optične komunikacije Trendi FTTH omrežij Avg DS (Mbit/s) 10000 1000 100 10 1 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Vir: Telekom Slovenije Vir: https://www.academia.edu/38090047/Fiber_Home_GPON_Solutions 6 26. seminar optične komunikacije PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 60/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 61/451 DWDM omrežje Telekoma Slovenije 26. seminar optične komunikacije 7 DWDM omrežje: Slovenija in ROO 8 26. seminar optične komunikacije PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 61/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 62/451 DWDM omrežje: Slovenija in ROO Routing valovnih dolžin vsepovsod Fixed OADM C-F expandable in CDC-F: is an agility service to CD-F Compact, cost bottleneck effective, and easy to configure iROADM-4 iROADM-9 iROADM-20 Enables ROADM Enables C-F and CD- Enables CDC-F in metro F ROADM with higher number of degrees 9 26. seminar optične komunikacije DWDM omrežje: Slovenija in ROO Routing valovnih dolžin vsepovsod DWDM: DWDM zasedba: • > 250 NEs • Lambda 10G – 280 • 13 OTN NEs • Lambda 40G – 7 • 34 ILA sites • Lambda 100G – 93 • > 7000 km optičnih vlaken • Lambda 200G – 43 • > 60 OMS 44-kanalni • > 80 OMS 96-kanalni • > 50 NEs za Sync (5G) 10 26. seminar optične komunikacije PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 62/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 63/451 Cezijeva ura kot vir PRC (G.811) PRTC (G.8272) Frequency Frequency + Phase ePRTC (G.8272.1) Frequency + Phase Cs as backup PRC : Cs or GNSS PRTC P : GNSS GNS GNS GN S SS Combiner Cs SSU Packet Master Clock Packet Master Clock Sync Sync Network Network Sync Network SSU Packet Slave Clock Packet Slave Clock NE NE NE NE NE NE NE NE NE PRC (PRECISION REFERENCE CLOCK) PRTC (PRIMARY REFERENCE TIME CLOCK) ePRTC (ENHANCED PRIMARY REFERENCE TIME CLOCK TE DO 100NS TE DO 50NS 11 26. seminar optične komunikacije Mobilna distribucija faze G8275.1 z uporabo PTP • Phase Delivery (LTE-A and LTE-TDD base stations) • Ethernet multicast - Sync-E + G.8275.1 profile GNSS Slave PTP PT P P+Sy TP+S n y c nc-E Grandmaster Slave PTP +Sync-E GNSS BC BC BC BC BC & Sync-E & Sync-E & Sync-E & Sync-E & Sync-E Ethernet Multicast Slave PTP+Sync-E PTP Grandmaster 12 26. seminar optične komunikacije PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 63/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 64/451 NQMS – fiber nadzor optičnih vlaken 13 26. seminar optične komunikacije Scenariji nadzora Both Active (In-Service) and Passive (Dark) Fibre Monitoring • All testing will be in a ‘round robin’ sequence • Priority can be given to specific ports if required 14 26. seminar optične komunikacije PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 64/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 65/451 Razvoj se nadaljuje • Telekom Slovenije danes omogoča priklop na svoje optično omrežje več kot 440.000 gospodinjstvom v Sloveniji, kar je več kot polovici vseh gospodinjstev v državi. • Ob tem nadaljujemo z aktivnostmi za nadgradnjo svojega optičnega omrežja s tehnologijo XGS-PON, kar bo omogočilo hitrosti prenosa do deset gigabitov v sekundi. • V letu 2022 smo na svoje optično omrežje priključili 42.150 dodatnih gospodinjstev. V letu 2023 na ravni skupine načrtujemo investicije v višini 205,5 milijonov evrov (poleg vlaganj v širitev in nadgradnjo optičnega dostopovnega omrežja ter nadaljnji razvoj in modernizacijo mobilnega omrežja znesek vključuje tudi investicije v programske pravice in kapitalizacijo najemnin). • Obstoječi in novi naročniki na optičnem omrežju Telekoma Slovenije lahko nadgradijo hitrosti svojega interneta na do 2 gigabita na sekundo v smeri do uporabnika. • DWDM, prehod na „čisti“ koherentni prenos, 96 kanalov po sekciji (OMS), vključitev valovnih dolžin hitrosti do 400G. 15 26. seminar optične komunikacije Hvala. Telekom Slovenije, d.d. facebook.com/TelekomSlovenije Cigaletova 15 @TelekomSlo 1000 Ljubljana youtube.com/TelekomSlovenije www.telekom.si E: info@telekom.si @telekom_slovenije PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 65/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 66/451 NextGEN PON technologies and challenges they bring Milorad Sarić IBIS Instruments milorad.saric@ibis-instruments.com Abstract Demand for higher bitrates is constantly growing and limitations with current G-PON are getting more and more noticeable. During next year 10G PON technologies will out-deploy GPON. New PON architectures are also emerging to increase cascading capability and scalability. PON technologies coexistence will ease the required transition, but besides numerous benefits NextGEN PON will offer, there are some new challenges to consider along with the old maintenance challenges inherited from GPON. Author's biography Milorad Sarić is technical support engineer with 15 years’ experience in presales and postsales support of test and measurement solutions. He is employed at IBIS Instruments since 2018. He is member of IBIS technical T&M team and responsible for wireline communications solutions (Access Copper, CATV and Optical Networks) and General-Purpose instruments. Milorad graduated in 2007. at the Faculty of Electrical Engineering in Belgrade. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 66/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 67/451 NextGEN PON technologies and challenges they bring Milorad SariÉ Technical support forr Wireline portfolio January 2023 Agenda Is G-PON N technologyy already obsolete? XGS-PON N and new 25/50 G-EPON NG-PON22 deploymentt blockers Current and Next Generationn PON Challenges Best Practices inn FTTx testing PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 67/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 68/451 Is G-PON technology already obsolete? Demand for higher bitrates is growing Source: Nokia PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 68/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 69/451 Global broadband subscriptions by speed Source Omdia Market View Source: Omdia Wireline Access July 2020 � 10G G PON technologies will out-deploy GPON and EPON � Strong growth for Next Gen PON (XGS-PON) from 2021 onwards � 10G EPON will stay flat � NG-PON2 more expensive; low adoption G/EPON XGS-PON 20xx 2016 2019 2020 2021 2022 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 69/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 70/451 Existing PON Architectures according ITU-T G.984 (2003) • The larger the split ratio, the more attractive for the service provider. • Split ratio of up to 1x64 is largely deployed and is realistic for the physical layer, with the current technology 1x32 Hub/drop ONT Splitter Terminal PON OLT Optimized speed per customer Single Split Hub/drop 1x8 or 1x8 Terminal ONT PON OLT 2x8Splitter Splitter Densification but limited bit rate per 1x8 customer Splitter 1:32 78Mbps down 1x4 Hub/drop 1x16 Splitter Terminal ONT Cascaded Split PON OLT Splitter 1:64 39Mbps down 1x4 Splitter New Architectures Unbalanced 1x8Splitter 1x8Splitter ONT 1x8Splitter ONT 1x8Splitter ONT 1x2 Splitter PON OLT 10/ 10/ 10/ 15/ 90 90 90 85 1x8Splitter ONT 1x8Splitter ONT 1x8Splitter ONT 1x8Splitter ONT Uneven splitting ratio to 20/ 30/ 40/ 70 increase cascading capability 80 60 and scalability. South America Increase densification in standard Densification 1x4 1x8 1x4 PON architectures Splitter Splitter Splitter Hub/drop PON OLT Terminal ONT but limited bit rate per customer. 1:32 78Mbps down 1:64 39Mbps down 128 splits 1:128 19Mbps down PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 70/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 71/451 XGS-PON and new 25/50 G-EPON Next-Generation PON Standards • Limitations with current G-PON/GE-PON standards • Standards have been defined by ITU-T & IEEE: G-PON XGS-PON NG-PON2 G-EPON G-EPON 10G-EPON 10G-EPON 25/5 25/ 0 5 G-EP E O P N (sym) ITU-T ITU-T ITU-T IEEE IEEE IEEE IEEE IEEE IEEE Standards G.984 G.9807.1 G.989 802. 802.3ah 802. 802.3av 802.3c 802. a 3av 3c (2 ( 009) 2009) (2003) (2016) (2015) (2004) (2004) (2020 (2020) US / DS 1.25 / 2.5 10 / 10 10 / 40/ 80 1.25 1.25 / 1.25 1.25 10 / 10 / 10 10 25/25 or 25/25 or 50/50 50/50 Data Rates Gbps Gbps Gbps Gbp Gb s p Gbp Gb s p Gbp Gb s p up to 1:64 Splitting Ratio up to 1:128 (256) up to up t 1:64 1:64 up to up t 1:128 1:128 up to up t 1:128 1:128 (128) Fiber Type G.652 G.652 / G.657 (for new inst.) G.652 G.652 G.652 / G.657 (f G.652 / G.657 ( or ne fo w r ne inst.) inst.) Max Loss 32 dB 32 dB 35 dB 35 dB 35 dB 35 dB 29 dB 29 dB 29 dB 29 dB 33 dB 33 dB Co-existence N/A YES with G-PON N/A N/ Yes with GE-PON Yes with GE-PON PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 71/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 72/451 PON Spectrum: WAVELENGTH EVOLUTION PLAN � Today’s GPON systems utilize 2 wavelengths for communication � Downstream 2.5 Gbps at 1490 nm & upstream 1.25 Gbps at 1310 nm � Overlay of 2 new λ for 10 Gbps services of XGS-PON � Downstream 10 Gbps at 1577 nm & upstream 10 Gbps at 1270 nm � NG-PON2 supports multiple 10Gbps wavelengths � Downstream 4/8 x 10 Gbps at 4/8 TWDM wavelengths between 1596 – 1603 nm � Upstream 4/8 x 2,5 Gbps at 4/8 TWDM wavelengths between 1524 – 1544 nm � Additional window for high speed P2P WDM channels: 1603 – 1625 nm � RF overlay at 1550 nm is not impacted by PON service � Wavelength window for in-service testing (OTDR): 1650 nm – 1675 nm NG-PON2 XGS-PON NG-PON2 Up Down Down RF XGS-PON GPON GPON Pt P P tP Future Proof OTDR wavelength Up OTDR Up Down WD W M D = 1650 to 1675 1260 260 1280 1280 1290 1330 1480 1500 1524-154 1524-15 1 4 44 1575-158 1575- 1 158 1 1596-1603 1596- 1603 1603-162 1603- 5 162 5 1625 - 1675 1550 Source: FTTH EMEA D&O Committee FTTH Poland 2015 PON Coexistence Architecture (Similar for EPON) 12 Mobile Backhaul GPON Downstream Upstream 1490nm 1550nm 1310nm Data Center Central Office or Head End Exchange Drop Terminal RF Video CEx Splitter 1 Office Park GPON OLT Drop Terminal Local Community OTDR monitoring Splitter 2 1650-1675 CEx: Coexistence Element Cel Tower OLT-Optical Line Terminal ONU/ONT-Optical Network Unit/Terminal Residential PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 72/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 73/451 PON Coexistence Architecture (Similar for EPON) Mobile 13 Backhaul GPON XGS-PON Downstream Upstream Downstream Upstream 1490nm 1550nm 1310nm 1577nm 1270nm Data Center Central Office or Head End Exchange Drop Terminal RF Video CEx Splitter 1 Office Park GPON OLT Drop Terminal XGS-PON OLT Local Community OTDR monitoring Splitter 2 1650-1675 Cell Tower CEx: Coexistence Element OLT-Optical Line Terminal ONU/ONT-Optical Network Unit/Terminal Residential PON Coexistence Architecture (Similar for EPON) 14 Mobile Backhaul GPON XGS-PON NG-PON2 Downstream Upstream Upstream Downstream Downstream Upstream 1490nm 1550nm 1310nm 1578nm 1270nm 1596-1603 nm 1524-1544 nm Data Center Central Office or Head End Exchange Drop Terminal RF Video CEx Splitter 1 Office Park GPON OLT Drop Terminal XGS-PON OLT Local Community OTDR monitoring Splitter 2 1650-1675 4/8O WM NGPON2 OLT (TWDM) Cel Tower 4/8O CEx: Coexistence Element OLT-Optical Line Terminal ONU/ONT-Optical Network Unit/Terminal WM: Wavelength Multiplexer Residential PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 73/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 74/451 25/50 G-EPON according to IEEE 802.3ca Approvedin June 2020 Standard Terminology Bandwidth Wavelengths Core applications 25G/50G -EPON 2 x 10G Up Low O band Up High Speed EPON Business services/MDU 2 x 25G Up IEEE 802.3 ca High O band Down 5G Transport 2 x 25G Down Allows symetrical operation 25/25 or 50/50 Gbps as well as asymetrical 25/50 Gbps. Used fixed wavelengths, instead of tunable wavelengths, and wideband optics in O-band without dispersion compensation are main advantages in comparison with NG-PON2. 25/50 G-EPON is designed to enable symmetrical 10G to coexist with either symmetrical 25G or 50G traffic on the same fiber as well. See various coexistence scenarios. XGS-PON XGS-PON 25/25 G-EPON MDU Multiple Dwelling Unit XGS-PON 50/50 G-EPON Source: Calix 50/50 G-EPON No coexistence NG-PON2 deployment blockers PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 74/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 75/451 NG-PON2 Spectrum � NG-PON2 supports multiple 10 Gbps wavelengths � Downstream 4/8 x 10 Gbps at 4/8 TWDM wavelengths between 1596 – 1603 nm � Upstream 4/8 x 2,5 Gbps at 4/8 TWDM wavelengths between 1524 – 1544 nm NG-PON2 blockers: • Multi-wavelength NG-PON2 requires tunable optics at the ONU (Optical Network Unit) endpoint. • NG-PON2 is very sensitive to macrobendings mainly in house cabling. It requires G.657B/C cabling instalations. Upgrade of older G-PON networks to NG-PON2 requires also upgrade of in house cabling (from G.652 to G.657B/C)! NG-PON2 XGS-PON NG-PON2 Up Down Down RF XGS-PON GPON GPON PtP Up Up Down WDM Source: FTTH EMEA D&O Committee FTTH Poland 2015 1260 1280 1290 1330 1480 1500 1524-154 1524-15 4 44 1575-1581 1596-1603 1596- 1603 1603-162 5 1625 - 1675 1550 Current and Next Generation PON Challenges PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 75/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 76/451 Main Physical Points of Vulnerability or Issues in an FTTH network Access Feeder Primary Distribution Secondary Drop Customer Node FCP FCP Premise Low vulnerability Low to Medium High vulnerability But will affect many vulnerability Many interactions customers ONT ONT Dirty Dirty Alien/Rogue Connec Conne t ctor or ONTs! Microbend ONT ONT Cross Connection ONT ONT Splitter Damaged Damaged Drop Central 1 Terminal / Dirty / Dirty Office Connec Conne t ctor or OLT Bad Faulty Mac Ma r crobend obend Splice Splitter Fiber Break Cross Connection FCP=fiber connection point Bending Constraints – Impact on NG-PON Fiber loss due to macro bending vs wavelength G.652D 1.5 R=10 mm G.657B 1.0 R=7.5 mm (dB) ion 0.5 According to tenuat G.657B At Verizon, radius 0.25 R=10 mm around corners can G.652D go down <10 mm 0 R=15 mm 1270 1310 1490 1550 1577 1600 1625 Wavelength (nm) G-PON NG-PON2 XGS-PON NG-PON2 DS US DS DS • XGS-PON or NG-PON2 new construction is similar to G-PON with a special focus on loss induced by fiber bending • Longer wavelengths > higher sensitivity to macrobend (in house cabling!) • Use of G.657B bend insensitive fiber (works down to 10 mm radius) • Characterization at 1625/1650 nm wil become a strongg requirement PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 76/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 77/451 Spectral attenuation Attenuation (dB/km) 5 a = +aabsorption Rayleighh 4 Scattering OH- Absorption Peak 3 Infrared absorptionn loss 2 1 Low waterr peak fiber (G652D) 0 Wavelenght (wm) 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Fiber Management is Key Looking for small changes – fiber management matters! 4 5 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 77/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 78/451 PON Service Activation Testing • Wavelength selective power measurements ¾ PON-OPM NG-PON2 • Upstream channel only activated by downstream signal NG-PON2 ¾ Through h modee testing Central Office G-PON RF Video GPON OLT CE litte r XGS-PON Sp OLT NGPON2 OLT (TWDM) CE: coexistence element G-PON XGS-PON Patching Customers Correctly Issue with Customer ID…? OLT-1 Implement a continuity test during installation phase. Viavi FC solution. OLT-2 If continuity is not checked during installation phase: Incorrect connections will not be found until ONT is turned-up - dispatch A customer who has been patched incorrectly might be brought down - customer dissatisfaction Continuity tests reduce OPEX and customer dissatisfaction PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 78/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 79/451 What are PON-ID and Activation Status? • Transmitted in GPON/XGS-PON frames downstream & upstream signals carrying PON specific information. • Keyy to confirming that end user is connected and accepted on correct OLT port. OLP-88 Power meter NSC-100 (Companion) ITU-T G.984.3 TELECOMMUNICATION Amendment 3 STANDARDIZATION SECTOR OF ITU (04/2012) PCBd GTC Payload 302A Psync Ident PLOAMd BIP Plend Upstream Plend (4 bytes) (4 bytes) (13 bytes) (1 byte) (4 bytes) BWmap (4 bytes) (N * 8 bytes) 303A PON-ID type OLT TX level ONU-ID MSG-ID PON-ID CRC (1 byte) (2 bytes) (1 byte) (1 byte) (7 bytes) (1 byte) PON-ID PLOAM message PLOAM = Physical Layer Operations, Admin’ & Maint’ Inspect Before You ConnectTM � Contamination is #1 source of high IL and RL in connectors � Many connectors in FTTx installations � Sources of contamination are everywhere! ??? VS Follow this simple “INSPECT BEFORE YOU CONNECT” process to ensure fiber end faces are clean Dirt, oil, pits, scratches not seen SUBJECTIVE INSPECTION prior to mating connectors FAIL 3.0um VS 2.4um 8.6um OBJECTIVE INSPECTION PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 79/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 80/451 Contamination - Standards and Zones IEC 61300-3-35 Ed.2.0 – “Fibre Optic Connector Endface Visual and Automated Inspection” has been updated (June 2015). It’s designed as an interoperability standard for connector manufacturers and users. � ZONES are used to prioritize evaluation criteria (SM fiber example). Zone A: Core Zone (0 to 25ʅm) Zone B: Cladding Zone (25 to 115ʅm) Zone C: Adhesive Zone (115 to 135ʅm) Zone D: Contact Zone (135 to 250ʅm) � Different failure criteria for defects and scratches are specified for each zone: • Quantity and Size • Location relative to core Zone A Zone B Zone C Zone D Best Practices in FTTx testing PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 80/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 81/451 Last Mile FTTx Best Practice Test Checklist (IPQT) Inspection & Cleaning for both fiber cable and bulkhead connectors Power Measurement to verify the right light to ONT Qualification of the Fiber and Its Elements up to the first splitter (connectors, splices) Throughput to ONT/Gateway and WiFi in the home Construction Installs, Activations, Repairs Questions? viavisolutions.com © 2022 VIAVI Solutions Inc. 30 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 81/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 82/451 Demonstracije kvantne izmenjave šifrirnih ključev med tremi državami in evropski projekt EuroQCI Demonstrations of quantum encryption key exchange between three countries and the European EuroQCI project Rok Žitko, Anton Ramšak Institut Jožef Stefan Univerza v Ljubljani, Fakulteta za matematiko in fiziko rok.zitko@ijs.si Povzetek participated in the exchange of quantum keys. The Avgusta 2021 je uspela prva javna demonstracija lecture presents some technical details about the meddržavnega kvantnega komunikacijskega use of the public optical network and the omrežij, ki ga je vzpostavila skupina raziskovalcev establishment of dedicated optical connections and s šifrirano komunikacijo med Italijo, Slovenijo in a secure hub in Postojna. This achievement will be Hrvaško. Na slovenski strani so pri izvedbi the foundation for the further development of izmenjave kvantnih ključev sodelovali fiziki s quantum key exchange solutions, which will Fakultete za matematiko in fiziko Univerze v continue within the framework of the European Ljubljani. V predavanju bo predstavljenih nekaj project EuroQCI, which aims to establish a secure tehničnih podrobnosti o uporabi javnega optičnega quantum network with terrestrial and satellite omrežja in vzpostavitvi namenskih optičnih optical links that will connect all the members of povezav ter varnega vozlišča v Postojni. Ta the European Union. dosežek bo temelj za nadaljnji razvoj rešitev za kvantno izmenjavo ključev, ki se bo nadaljevala v okviru evropskega projekta EuroQCI, katerega cilj Biografija avtorja Izredni profesor dr. Rok je vzpostaviti varno kvantno omrežje z Žitko je doktor fizike, zemeljskimi in satelitskimi optičnimi povezavami, raziskovalec na Institutu ki bo povezalo vse članice Evropske unije. "Jožef Stefan" in izredni Abstract profesor na Fakulteti za In August 2021, the first public demonstration of matematiko in fiziko an international quantum communication network, Univerze v Ljubljani. Raziskovalno pot je začel v established by a group of researchers with laboratoriju za tunelsko mikroskopijo na IJS, kasneje pa presedlal na teorijo večdelčnih kvantnih sistemov ter encrypted communication between Italy, Slovenia razvoj numeričnih metod na Odseku za teoretično fiziko and Croatia, was successful. On the Slovenian IJS, še vedno pa rad zavije v kakšen laboratorij. Danes side, physicists from the Faculty of Mathematics se največ ukvarja z drobnimi elektronskimi elementi, and Physics of the University of Ljubljana kvantnimi pikami, priključenimi na kontakte iz PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 82/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 83/451 superprevodnih materialov, kot eno izmed zelo obetavnih platform za izdelavo različnih kvantnih naprav, denimo kvantnih računalnikov. Author's biography Associate Professor Dr. Rok Žitko is a doctor of physics, a researcher at the "Jožef Stefan" Institute and an associate professor at the Faculty of Mathematics and Physics of the University of Ljubljana. He began his research career in the laboratory for tunnel microscopy at the IJS, and later moved to the theory of multi-particle quantum systems and the development of numerical methods at the Department of Theoretical Physics at the IJS, and he still likes to visit a laboratory. Today, he mostly deals with tiny electronic elements, quantum dots connected to contacts made of superconducting materials, as one of the very promising platforms for the production of various quantum devices, such as quantum computers. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 83/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 84/451 Demonstracija kvantne izmenjave šifrirnih kljuev med tremi državami in evropski projekt EuroQCI Rok Žitko, Anton Ramšak Institut Jožef Stefan, Ljubljana Fakulteta za matematiko in fiziko, Univerza v Ljubljani 26. seminar optine komunikacije, 25. jan 2023 “Nikoli ne opravljamo poizkusov z enim samim elektronom ali atomom ali (majhno) molekulo. V miselnih eksperimentih vasih predpostavimo prav to, pa zato vedno znova pridemo do trapastih zakljukov. (…) Zato je treba priznati, da ne moremo eksperimentirati s posameznimi delci ni bolj, kot lahko vzgajamo ihtiozavre v živalskih vrtovih.” E. Schrödinger (1952) David J. Wineland in Serge Haroche Nobelova nagrada za Aziko 2012 “za prelomne eksperimentalne metode, ki omogoajo merjenje in nadzor nad posameznimi kvantnimi sistemi, pri emer se ohranijo njihove kvantne lastnosti, kar se je predhodno smatralo kot nemogoe” Vir slike: Wikipedia (javna last; CCA - photo by Bengt Nyman) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 84/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 85/451 2 ∂ 2 ψ( x, t) ∂ψ( x, t) − + V ( x, t) ψ( x, t) = i 2 m ∂x 2 ∂t Erwin Schrödinger (1926) SUPERPOZICIJA ψ( x, t) = α ψ 1( x, t) + β ψ 2( x, t) STANJ Vir slike: Wikipedia (javna last) kubit Informacija je neloljivo povezana s svojim Azinim zapisom. Rolf Landauer (1996) raunska baza: | 0 , | 1 z |ψ = α| 0 + β| 1 e verjetnostni amplitudi y q θ θ x α = cos β = eiφ sin 2 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 85/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 86/451 kvantne naprave • danes: atomske ure generatorji nakljunih števil kvantna distribucija kljuev za šifriranje manjši kvantni raunalniki • prihodnost: | 0 | 1 inercijska navigacija natanna gravimetrija simulacije kvantnih sistemov (molekul) globalni kvantni internet kvantni raunalniki z veliko kubiti https://qt.eu http://www.qutes.si Sre anje ministrov za digitalno politiko skupine G20 Trst, 5. 8. 2021 demonstracija kvantno šifriranega prenosa podatkov med tremi državami (Italija-Slovenija-Hrvaška) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 86/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 87/451 Univerza v Trstu Tehnina izvedba: Nacionalni institut za optiko (CNR-INO) QTI (spin-off CNR-INO) Tehni na univerza na Danskem (DTU) Telsy Fakulteta za matematiko in Eziko UL Optina infrastruktura: TIM Institut Ruer Boškovi, Zagreb Sparkle Fakultata za prometne vede, Uni. Zagreb Telekom Slovenije OIV - Digitalni signali in omrežja Stelkom Lightnet Podpora: predsedstvo G20 2021 italianski ministrstvi MiSE, MAECI PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 87/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 88/451 BB84 (Bennett, Brassard) Tittel et al., Physics World, marec 1998 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 88/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 89/451 BB84, time-bin encoding scheme, 1-decoy state method Dve temni vlakni: - kvantni signal standardne InGaAs fotodiode - servisni signal (sinhronizacija) D. Ribezzo et al., Adv. Quant. Tech. 2200061 (2022) D. Ribezzo et al., Adv. Quant. Tech. 2200061 (2022) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 89/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 90/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 90/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 91/451 3.1 kb/s 610 b/s D. Ribezzo et al., Adv. Quant. Tech. 2200061 (2022) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 91/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 92/451 Koncert preko navideznega zasebnega omrežja (VPN) Akademija za glasbo UL, Akademija za glasbo UZ, konservatorij "Giuseppe Tartini" iz Trsta Z uporabo videokonferen nega sistema OpenMeetings PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 92/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 93/451 knjižnica FMF Laboratorij za kvantno optiko in kvantno optomehaniko (FMF) Projekt EuroQCI PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 93/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 94/451 EuroQCI • projekt Evropske komisije in ESA • komercialna opti na omrežja + namenski komunikacijski sateliti • evropska digitalna suverenost, industrijska konkuren nost • kibernetska varnost EU za prihodnja desetletja Siquid • Konzorcij: UL FMF (koordinator), IJS, Beyond Semiconductor, Urad vlade RS za varovanje tajnih podatkov (UVTP), Urad vlade RS za informacijsko varnost (URSIV) • Cilji: • pilotska povezava med IJS in UL FMF • povezava državnih organov (7 lokacij v Ljubljani) • povezave do državnih meja PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 94/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 95/451 Izzivi • razli na (nezdružljiva) infrastruktura • razli ni operaterji • razli ni ponudniki opreme • razli ni standardi oz. standardi v nastajanju • razli ni QKD protokoli • potreba po varnih vozliš ih • omejitve zaradi atenuacije signala MAY 15, 1935 PHYSICAL REVIEW VOLUME 47 Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935) In a complete theory there is an element corresponding to quantum mechanics is not complete or (2) these two each element of reality. A sufficient condition for the reality quantities cannot have simultaneous reality. Consideration of a physical quantity is the possibility of predicting it with of the problem of making predictions concerning a system certainty, without disturbing the system. In quantum on the basis of measurements made on another system that mechanics in the case of two physical quantities described by had previously interacted with it leads to the result that if non-commuting operators, the knowledge of one precludes (1) is false then (2) is also false. One is thus led to conclude the knowledge of the other. Then either (1) the description of that the description of reality as given by a wave function is reality given by the wave function in not complete. OCTOBER 15, 1935 PHYSICAL REVIEW VOLUME 47 Can Quantum-Mechanical Description of Physical Reality be Considered Complete? N. BOHR, Institute for Theoretical Physics, University, Copenhagen (Received July 13, 1935) It is shown that a certain "criterion of physical reality" formulated in a recent article with the above title by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity when it is applied to quantum phenomena. In this connection a viewpoint termed "complementarity" is explained from which quantum-mechanical description of physical phenomena would seem to fulfill, within its scope, all rational demands of completeness. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 95/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 96/451 E91 (Ekert) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 96/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 97/451 Wang et al., Nat. Photonics, 16 154 (2022) Kvantni spomin z atomi Wr Read ite Input Output Eugene Polzik, Kopenhagen Nicolas Gisin, Ženeva Julien Laurat, Sorbonne PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 97/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 98/451 Laborator za ziko hladnih atomov Foto: Marjan Ver PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 98/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 99/451 Integrirana fotonika za kvantne aplikacije Integrated photonics for quantum applications Janez Krč, Andraž Debevc, Miloš Ljubotina, Boštjan Batagelj, Janez Trontelj in Marko Topič Univerza v Ljubljani, Fakulteta za elektrotehniko janez.krc@fe.uni-lj.si Povzetek used in the field of quantum applications. In our Integrirana fotonska vezja (PIC) se dandanes paper, we cover the directions and present some of uporabljajo že v mnogih sodobnih aplikacijah, med the initial results of the "uTP4Q" project from the njimi v optičnih komunikacijah, senzoriki in QuantERA tender, where our partners strive to procesiranju signalov. Svetlobo oziroma fotone implement the heterogeneous integration of lahko koristno uporabimo tudi na področju selected quantum photonic building blocks (single-kvantnih aplikacij. V našem prispevku bomo photon sources, modulators, single-photon osvetlili usmeritve in predstavili nekatere photodetectors, coupling, connecting and other izhodiščne rezultate projekta »uTP4Q« iz razpisa passive building blocks) into a quantum photonic QuantERA, kjer si partnerji prizadevamo za integrated circuit (QPIC). The individual building izvedbo heterogene integracije izbranih gradnikov blocks will be fabricated on different photonic kvantne fotonike (enofotonski viri, modulatorji, platforms (indium-gallium-arsenide, lithium-enofotonski fotodetektorji, sklopni, povezovalni in niobate, superconducting nanowires) and placed ostali pasivni gradniki) v kvantno fotonsko on a common, low-loss SiN-based platform using a integrirano vezje (QPIC). Posamezni gradniki bodo microtransfer printing process. The final QPIC izdelani na različnih fotonskih platformah (indij- experiment goes towards providing device-galij-arzenidni, litij-niobatni, superprevodne independent quantum key distribution (DI-QKD) nanožičke) in s postopkom mikroprenosnega tiska functionality for secure communications. nameščeni na skupno, nizkoizgubno platformo na osnovi SiN. Poskus končnega QPIC-a gre v smeri zagotavljanja funkcionalnosti od naprave Biografija avtorja neodvisne kvantne distribucije ključev (DI-QKD) Dr. Janez Krč je redni profesor na za varne komunikacije. Fakulteti za elektrotehniko Univerze v Ljubljani in namestnik Abstract Photonic integrated circuits (PICs) are already vodje Laboratorija za fotovoltaiko in optoelektroniko na Katedri za used in many modern applications, including elektroniko. Njegovo raziskovalno optical communications, sensors and signal delo sega na področje opto-elektronskih simulacij, processing. Light, or photons, can also be usefully načrtovanja in karakterizacije sončnih celic, organskih PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 99/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 100/451 in perovskitnih svetlečih diod in fotonskih integriranih vezij. Author's biography Dr. Janez Krč is a full professor at the Faculty of Electrical Engineering, University of Ljubljana, Slovenia, and a deputy chair of Laboratory of Photovoltaics and Optoelectronics at the Department of Electronics. His research work covers opto-electrical simulations, design and characterization of solar cells, organic and perovskite light emitting diodes and photonic integrated circuits. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 100/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 101/451 Integrirana fotonika za kvantne aplikacije Janez Krč, Andraž Debevc, Miloš Ljubotina, Boštjan Batagelj, Janez Trontelj in Marko Topič Univerza v Ljubljani, Fakulteta za elektrotehniko UL FE Tržaška 25, 1000 Ljubljana janez.krc@fe.uni-lj.si Vsebina predstavitve ¾ Kvantne tehnologije ¾ Fotonska integrirana vezja - PIC ¾ Kvantna fotonska integrirana vezja - QPIC ¾ Aktivnosti UL FE in QuantERA projekt PTP4Q integrirana fotonika za kvantne komunikacije J. Krč SOK 2023 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 101/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 102/451 J. Krč SOK 2023 3 Kvantne tehnologije Courtesy of dr. Heike Riel, IBM, SPIE 2022 conference J. Krč SOK 2023 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 102/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 103/451 Kvantno računstvo Courtesy of dr. Heike Riel, IBM, SPIE 2022 conference J. Krč SOK 2023 5 Kvantno računstvo IBM 2020 65 qubits Courtesy of dr. Heike Riel, IBM, SPIE 2022 cobference J. Krč SOK 2023 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 103/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 104/451 Kvantna komunikacija Želimo vzpostaviti varno komunikacijo med Alice in Bob-om pasivni prisluškovalec aktivni prisluškovalec J. Krč SOK 2023 7 Fotonska integrirana vezja J. Krč SOK 2023 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 104/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 105/451 Elektronsko integrirano vezje - IC Fotonsko integrirano vezje - PIC - elektroni - - fotoni - ¾ pasivne in aktivne fotonske komponente ¾ različne tehnologije (gl. naprej) ¾ možna uporaba tehnoloških korakov procesa CMOS ¾ znatno manjša poraba moči pri prenosu VF signala ¾ možno izredno hitro procesiranje J. Krč SOK 202323 9 Integracija optičnih komponent PIC ¾ majhno, lahko kombiniramo z IC ¾ kompaktnost, funkcionalnost ¾ odpadejo ohišja posameznih komponent ¾ uniformnost (enakost) komponent ¾ večja zanesljivost ¾ omejitve glede stopnje integracije J. Krč SOK 202323 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 105/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 106/451 Tehnologije (material svetlovodne plasti) Si, SiOx , Si4N4 , InP, GaAs, LiNbO3 , polimeri, GFP (Si, Ge, Sn) ¾ ... ¾ telecom, datacom ¾ optično procesiranje ¾ senzorika, metrologija ¾ kvantne tehnologije ¾ mikroskopija ¾ … J. Krč SOK 2023 11 Primeri osnovnih gradnikov PIC (Si) pasivni aktivni Integrirani laserji – uporaba direktnih polprevodnikov! W. Shi et al.: Scaling capacity of fiber-optic transmission systems, Nanophotonics 2020; 9(16): 4629–4663 J. Krč SOK 202323 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 106/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 107/451 Kvantna fotonska integrirana vezja - QPIC J. Krč SOK 2023 13 QPIC ¾ kvantno računstvo ¾ kvantne komunikacije ¾ kvantne simulacije ¾ kvantna senzorika Source: QPIC position paper 2022 J. Krč SOK 2023 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 107/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 108/451 QPIC Source: QPIC position paper 2022 J. Krč SOK 2023 15 Aktivnosti na področju PIC na UL FE ¾ Laboratorij za fotovoltaiko in optoelektroniko - LPVO ¾ Laboratorij za mikroelektroniko - LMFE ¾ Laboratorij za sevanje in optiko - LSO Sodelovanja: Univerza v Ghentu – imec, TU Delft, Nanofotonski Center v Valenciji, CSEM Švica, NBI Danska, ... J. Krč SOK 202323 16 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 108/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 109/451 Tehnologija J. Krč SOK 202323 17 Slike prvih izdelanih struktur iz Si3N4 na FE (LMFE) 320 Pm 15 Pm 1 Pm J. Krč SOK 202323 18 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 109/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 110/451 Optična karakterizacija J. Krč SOK 202323 19 Precizne mizice za sklopitev vlakna s svetlovodom na PIC ¾ročna ločljivost: 100 nm (s piezzo aktuatorji ~ 20 nm) ¾omogoča horizontalno (na slikah) in vertikalno sklopitev vlaken izhodno vlakno čip čip vhodno vlakno izhodno vlakno vhodno vlakno J. Krč SOK 202323 20 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 110/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 111/451 Primer vezave merilnega sistema Microscope camera SMF SMF SMF Power meter / Tunable laser and EDFA Polarization control PIC Optical spectral analyzer Polarization control Tunable laser & EDFA Optical spectral analyzer J. Krč SOK 202323 21 Primer vezave merilnega sistema Microscope camera izhodno o vlakno vlak vhodno vlakno Si svetlovod na PICu SMF SMF SMF Power meter / Tunable laser and EDFA Polarization control PIC Optical spectral analyzer Polarization control Tunable laser & EDFA Optical spectral analyzer J. Krč SOK 202323 22 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 111/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 112/451 Nov avtomatski merilni sistem za PIC (v naročanju) J. Krč SOK 202323 23 Načrtovanje J. Krč SOK 202323 24 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 112/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 113/451 SiN testni PIC-i w=1.2 w=1.0 R=40, α=10° L=57.5 R=40, α=°20° amorfni Si testni PIC R=40, α=45° L=115.0 R=60, α=10° R=60, α=20° L=172.5 R=60, α=45° w=1.0 w=2.0 R=100, α=10° L=270.0 R=100, α=20° R=100, α=45° Si testni PIC L=540.0 R=40, α=20° R=60, α=20° L=810.0 w=2.0 w=1.2 R=100, α=10° dL=50.0 R=100, α=15° dL=250.0 R=60, α=0° w=1.0 w=1.2 w=2.0 w=10.0 L=2x25000 rectangular_gc w=1.0 w=2.0, R1=50.51, R2=48.88 α=40° P=1.4 P=1.0, 1.2, 1.3, 1.4, 1.5, dL=100.0 dL=100.0 L=540.0 1.6 dL=25.0 focusing_gc Y-split2 L=10000 R1=40.05, R2=39.92, R3=39.79 α=30° P=1.0, 1.2, L=6000 dL=100.0 1.3, 1.4, 1.5, w=1.2 1.6 w=2.0, dL=50.0 L=3600, r_b=5 P=1.4 taper L=3600, r_b=10 inv_taper L=3600, r_b=20 cro cr ss2 L=3600, r_b=40 L=3600, r_b=80 R=100, α=0° cro cr ss1 oss o rro cr w=2.0 Y- Y-sp s lit1 t 4” rezina J. Krč SOK 202323 25 predstavitev A. A. A Debevc Debevc et al. al. SOK 2023 2023 J. Krč SOK 202323 26 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 113/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 114/451 Projekti J. Krč SOK 202323 27 Quantum PIC (QPIC) J. Krč SOK 202323 28 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 114/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 115/451 Quantum PIC (QPIC) J. Krč SOK 202323 29 Micro-transfer printing basics Device processing, release, pick-up & print J. Krč SOK 202323 30 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 115/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 116/451 Single photon sources In(Ga)As quantum dots 122 MHz GaAs G Single-photons In(Ga)As Fixed excitation spot ~930 nm @ 10 K QD dipole Lodahl et al, Rev. Mod. Phys. 87, 347 (2015). Uppu et al, Science Advances 6, 50 (2020) Fixed collection spot Uppu et al, Nat. Comm. 11, 3782 (2020) J. Krč SOK 202323 31 Single photon detectors - NbN superconducting nanowires KIRCHHOFF - INSTITUT Au contacts FÜR PHYSIK NbN nanowire SiN waveguide J. Krč SOK 202323 32 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 116/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 117/451 Modulators, switches, wavelength converters from LN ͳͲߤ݉ J. Krč SOK 202323 33 SiN platform offers low losses Europractice & imec webinar on SiN MPW, 2022 J. Krč SOK 202323 34 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 117/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 118/451 Importance of efficient coupling between components to to SiN and to optical fibers Top view on GaAs taper: 5 μm 35 μm PTP4Q target Cross-section: for fabricated devices 200 nm 60 nm 115 nm Misalignment parameter GaAs GaAs 170 1 0 nm BCB C SiN 300 nm BOX 3 μm predstavitev predstavitev M. M Ljubotina . Ljubotina et et al. al. SOK 2023 2023 J. Krč SOK 202323 35 Device independent sending/ receiving stations Goal of WP5 (if we dare to dream a little) Each station (Alice or Bob) contains - 2 QD sources (or 1 source, demultiplexed) - A reconfigurable 2x2 Unitary gate - Two SNSPD - Some polarization-diversity grating with fiber coupling Difficult because: - Birth-to-death efficiency should be higher than ~85%. - Indistinguishability between QD1/QD2 should be >95% E. Ruiz et al, PRA 106, 102222, 2022 J. Krč SOK 202323 36 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 118/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 119/451 Zahvala Fotovoltaika in elektronika (P2-0415) QuantERA II JTC 2021 project p j uTP4Q (št. pogodbe C3330-22-252001). J. Krč SOK 202323 37 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 119/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 120/451 Načrtovanje optičnih adiabatnih sklopnikov za integracijo gradnikov kvantne fotonike s platformo SiN Design of optical adiabatic couplers for integration of quantum photonics building blocks with SiN platform Miloš Ljubotina, Andraž Debevc, Marko Topič in Janez Krč Univerza v Ljubljani, Fakulteta za elektrotehniko, Laboratorij za fotovoltaiko in optoelektroniko milos.ljubotina@fe.uni-lj.si Povzetek for the correct operation of the entire circuit is an Uporaba fotonskih integriranih vezij (PIC) na efficient optical assembly of integrated področju kvantnih aplikacij zahteva zelo components. In our paper, we focus on the design učinkovite fotonske strukture. Za največjo of adiabatic couplings between the quantum učinkovitost posameznih gradnikov kvantne building blocks and the underlying SiN platform. fotonike je potrebno izkoristiti različne materialne The simulation results of the designed clutches are platforme, ki služijo izdelavi (kvantnih) PIC. shown. Gradnike, izdelane na različnih platformah, je z ustreznimi postopki heterogene integracije mogoče Biografija avtorja fizično združiti s skupno temeljno platformo. Miloš Ljubotina je leta 2020 Ključen dejavnik za pravilno delovanje celotnega končal magistrski študijski vezja je učinkovit optičen sklop integriranih program Elektrotehnika na gradnikov. V našem prispevku se bomo posvetili Fakulteti za elektrotehniko načrtovanju adiabatnih sklopnikov med kvantnimi Univerze v Ljubljani. Istega leta se gradniki in temeljno platformo SiN. Prikazali je na tej fakulteti vpisal v doktorski študijski program in postal mladi raziskovalec bomo rezultate simulacij načrtanih sklopnikov. v Laboratoriju za fotovoltaiko in optoelektroniko, kjer Abstract se ukvarja s področjem integrirane fotonike. Njegova The use of photonic integrated circuits (PICs) in primarna raziskovalna dejavnost vključuje načrtovanje, the field of quantum applications requires highly optično modeliranje in karakterizacijo fotonskih efficient photonic structures. For the maximum integriranih vezij. efficiency of the individual building blocks of Author's biography quantum photonics, it is necessary to use different Miloš Ljubotina received his MSc in Electrical material platforms that serve to manufacture Engineering at the Faculty of Electrical Engineering, (quantum) PICs. Building blocks built on different University of Ljubljana, Slovenia, in 2020. He is platforms can be physically combined to a common continuing his studies as a PhD candidate at the same underlying platform through appropriate faculty and a member of the Laboratory of heterogeneous integration processes. A key factor Photovoltaics and Optoelectronics since October 2020. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 120/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 121/451 His main research activities include design, optical modelling, and characterisation of photonic integrated circuits in the field of integrated photonics. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 121/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 122/451 Načrtovanje optičnih adiabatnih sklopnikov za integracijo gradnikov kvantne fotonike s platformo SiN Miloš Ljubotina, Andraž Debevc, Marko Topič in Janez Krč University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Photovoltaics and Optoelectronics (LPVO), Tržaška 25, 1000 Ljubljana, Slovenia Vsebina 1. Kratek uvod v tematiko in obravnavane strukture (adiabatni sklopnik med GaAs in SiN za enofotonske vire, hrapav valovod GaAs) 2. Simulacije optičnih izgub pri širjenju EM valovanja zaradi hrapavosti stranic valovoda GaAs (hrapavost je posledica litografskega postopka) 3. Preliminarni rezultati simulacij vpliva hrapavosti stranic valovoda GaAs na adiabatno sklapljanje med GaAs in SiN M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 122/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 123/451 Vsebina 1. Kratek uvod v tematiko in obravnavane strukture (adiabatni sklopnik med GaAs in SiN za enofotonske vire, hrapav valovod GaAs) 2. Simulacije optičnih izgub pri širjenju EM valovanja zaradi hrapavosti stranic valovoda GaAs (hrapavost je posledica litografskega postopka) 3. Preliminarni rezultati simulacij vpliva hrapavosti stranic valovoda GaAs na adiabatno sklapljanje med GaAs in SiN M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 3 Motivacija (projekt μTP4Q) � Razvoj enotne platforme za QPIC za kvantno komunikacijo in računstvo S. Ferrari et al., Nanophotonics, vol. 7, no. 11, Art. no. 11, Nov. 2018. M. Davanco et al., Nat Commun, vol. 8, no. 1, Art. no. 1, Oct. 2017. SiN QuantERA 2021 uTP4Q project proposal QuantERA 2021 uTP4Q project proposal M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 123/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 124/451 Mikroprenosen tisk (micro-transfer printing - μTP) � μTP omogoča heterogeno integracijo več materialnih platform � Točnost poravnave pod ±1.0 μm (3σ) QuantERA 2021 uTP4Q project proposal 6th ePIXfab Silicon Photonics Summer School, 2021 M. Ljubotina M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 5 Adiabatni sklopnik med GaAs in SiN za enofotonske vire � Adiabatni sklopnik služi učinkovitemu Primer sklopnika prenosu EM valovanja (iz GaAs v SiN) � Pomembno je upoštevati realne pogoje (neidealna poravnava, hrapavost valovodov, …) Hrapav valovod GaAs M. Davanco et al., Nat Commun, vol. 8, no. 1, Art. no. 1, Oct. 2017. M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 124/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 125/451 Vsebina 1. Kratek uvod v tematiko in obravnavane strukture (adiabatni sklopnik med GaAs in SiN za enofotonske vire, hrapav valovod GaAs) 2. Simulacije optičnih izgub pri širjenju EM valovanja zaradi hrapavosti stranic valovoda GaAs (hrapavost je posledica litografskega postopka) 3. Simulacije vpliva hrapavosti stranic valovoda GaAs na adiabatno sklapljanje med GaAs in SiN M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 7 Simulacije izgub hrapavega valovoda GaAs (FDTD) 300 nm � Vakuumska valovna dolžina 930 nm Prečni presek: Zrak 170 nm GaAs � Stranice valovoda so spremenjene na podlagi naključno generiranega šuma določene Vzdolžni presek: Vhod Izhod efektivne vrednosti (RMS) in korelacijske dolžine RMS Prehod med gladkim in � Okvirne empirične vrednosti parametrov (NBI): Smer širjenja EMV hrapavim › valovodom RMS hrapavosti: ~4.7 nm Korelacijska › Korelacijska dolžina: ~200 nm (velika std. dev.) dolžina › Izgube: 50-70 dB/cm Y. Wang et al., Appl. Phys. Lett., vol. 118, no. 13, 2021. M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 125/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 126/451 Simulacije izgub hrapavega valovoda GaAs (FDTD) 300 nm � Določamo odvisnost izgub od: Prečni presek: Zrak › Korelacijske dolžine (zaradi negotovosti meritev) 170 nm GaAs › RMS hrapavosti (kako majhen RMS je potreben za izgube okvirno 10 dB/cm?) Vzdolžni presek: Vhod Izhod › Valovne dolžine (možna optimizacija izgub) RMS Prehod med gladkim in Smer širjenja EMV hrapavim valovodom Korelacijska dolžina M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 9 Odvisnost izgub hrapavega valovoda GaAs od korelacijske dolžine hrapavosti (FDTD) RMS = 5 nm Širina valovoda = 300 nm ~70 dB/cm približno pri korelacijski dolžini 350 nm Velik raztros Dodatna točka pri korelacijski dolžini 1000 nm M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 126/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 127/451 Možna bolj podrobna (Fourierova) analiza raztrosa izgub Izgube proti korelacijski dolžini Vzdolžni presek valovoda Frekvenčni spekter hrapavosti V spodnjem primeru je spekter pomaknjen proti višjim prostorskim frekvencam M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 11 Odvisnost izgub hrapavega valovoda GaAs od RMS hrapavosti (FDTD) Korelacijska dolžina, pri kateri se rezultati simulacij okvirno ujemajo z izhodiščno vrednostjo izgub ~10 dB/cm približno pri RMS 2 nm M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 127/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 128/451 Izgube hrapavega valovoda GaAs pri daljši valovni dolžini (FDTD) Primerjava odvisnosti izgub od korelacijske dolžine dveh valovodov 1. Valovod (enako kot prej): › Valovna dolžina 930 nm › Širina 300 nm 2. Valovod (daljša valovna dolžina): › Valovna dolžina 1300 nm › Širina 450 nm Porast izgub pri krajših korelacijskih dolžinah je za 2. valovod veliko manjša M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 13 Vsebina 1. Kratek uvod v tematiko in obravnavane strukture (adiabatni sklopnik med GaAs in SiN za enofotonske vire, hrapav valovod GaAs) 2. Simulacije optičnih izgub pri širjenju EM valovanja zaradi hrapavosti stranic valovoda GaAs (hrapavost je posledica litografskega postopka) 3. Preliminarni rezultati simulacij vpliva hrapavosti stranic valovoda GaAs na adiabatno sklapljanje med GaAs in SiN M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 128/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 129/451 Adiabatni sklopnik med GaAs in SiN (Razmik) G. Roelkens et al. , IEEE J. Sel. Top. Quantum Electron. , vol. 29, no. 3: Photon. Elec. Co-Inte. and Adv. Trans. Print., pp. 1–14, May 2023 M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 15 Vpliv hrapavosti valovoda GaAs na adiabatno sklapljanje med GaAs in SiN (FDTD) Transmisija osnovnega rodu TE proti razmiku � RMS = 3 nm, korelacijska dolžina = 1 μm, 4 različne začetne vrednosti generatorja psevdo-naključnih števil � Transmisija pri m = 0,75 μm pade z -0,3 dB na -2,0 dB M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 16 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 129/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 130/451 Zahvala Leonardo Midolo, Inštitut Niels Bohr, Danska Dries Van Thourhout in Jasper De Witte, Univerza v Gentu, Belgija Fotovoltaika in elektronika (P2-0415) QuantERA II JTC 2021 project uTP4Q (št. pogodbe C3330-22-252001). M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 17 Hvala za pozornost M. Ljubotina et al. SOK 2023, 25 – 27 January 2023 18 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 130/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 131/451 Polarizacijski razcepnik z dielektričnimi metamateriali v silicijevih fotonskih integriranih vezjih Polarization splitter with dielectric metamaterials in silicon photonic integrated circuits Andraž Debevc, Miloš Ljubotina, Marko Topič in Janez Krč Univerza v Ljubljani, Fakulteta za elektrotehniko, Laboratorij za fotovoltaiko in optoelektroniko andraz.debevc@fe.uni-lj.si Povzetek we present a new concept of an integrated Fotonska integrirana vezja (PIC) na osnovi silicija polarization splitter, which splits the mixed se že dandanes komercialno uporabljajo v sistemih polarization at the input into TE-polarization at za optični prenos podatkov znotraj podatkovnih one output and TM-polarization at the other centrov s hitrostmi do 400 Gbit/s in v mnogih output. The polarization splitter is based on sub-drugih aplikacijah. V splošnem so lastnosti wavelength structures of dielectric metamaterials gradnikov Si PIC odvisne tudi od polarizacije with the help of which we can achieve high svetlobe. Zato pri večini aplikacij potrebujemo performance. gradnike za kontrolo polarizacije. V našem prispevku bomo predstavili nov koncept Biografija avtorja integriranega polarizacijskega razcepnika, ki Andraž Debevc je leta 2017 mešano polarizacijo na vhodu razdeli na TE- končal magistrski študijski polarizacijo na enem izhodu, in TM-polarizacijo na program Elektrotehnika na drugem izhodu. Polarizacijski razcepnik temelji na Fakulteti za elektrotehniko podvalovnodolžinskih strukturah dielektričnih Univerze v Ljubljani. Istega leta metamaterialov s pomočjo katerih lahko dosežemo se je na tej fakulteti vpisal na visoko zmogljivost. doktorski študij in postal mladi raziskovalec v Laboratoriju za fotovoltaiko in optoelektroniko. Abstract Trenutno deluje kot raziskovalec in asistent. Pri Silicon-based photonic integrated circuits (PICs) raziskovalnem delu se ukvarja s področjem fotonike. are already commercially used today in optical Njegova primarna raziskovalna dejavnost vključuje data transmission systems within data centers at načrtovanje, optično modeliranje in karakterizacijo speeds up to 400 Gbit/s and in many other fotonskih integriranih vezij. applications. In general, the properties of Si PIC Author's biography components also depend on the polarization of Andraž Debevc received his MSc in Electrical light. Therefore, in most applications we need Engineering at the Faculty of Electrical Engineering, polarization control building blocks. In our paper, University of Ljubljana, Slovenia, in 2017. In October 2017 he became a PhD student and a member of the PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 131/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 132/451 Laboratory of Photovoltaics and Optoelectronics. He is currently working as a researcher and teaching assistant. His research work is related to photonics. The main research activities include design, optical modelling and characterization of photonic integrated circuits. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 132/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 133/451 Polarizacijski razcepnik z dielektričnimi metamateriali v silicijevih fotonskih integriranih vezjih Andraž Debevc, Miloš Ljubotina, Marko Topič in Janez Krč Laboratorij za fotovoltaiko in optoelektroniko - LPVO Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška 25, 1000 Ljubljana Vsebina predavanja � Uvod › Silicijeva fotonska integrirana vezja (PIC) › Polarizacijska odvisnost komponent v fotonskih integriranih vezjih › Dielektrični metamateriali � Polarizacijski razcepnik – koncept � Metode � Rezultati › Simulacije › Eksperimentalni rezultati A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 133/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 134/451 Fotonska integrirana vezja � Integrirane fotonske komponente→ Fotonska integrirana vezja (PIC) � Materiali: › Si, Si3N4, SiO2 ,InP, LiNbO3, polimeri,... P. I. C. Magazine, https://picmagazine.net/article- gen/109911 Margalit et al., Appl. Phys. Lett., vol. 118, no. 22, p. 220501 (2021) A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 3 Silicijeva fotonika � Možnost uporabe CMOS tehnologije za izdelavo ‘Silicon photonics: to SOI and beyond!’, Yole Group. https://www.yolegroup.com/press-release/silicon-photonics-to-soi-and-beyond/ A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 134/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 135/451 Dielektrični metamateriali � Periodično izmenjavanje dveh (ali več) Koncept: materialov z različnimi lomnimi količniki � Anizotropnost lomnega količnika→vpliv na vodenje svetlobe � Strukture se da izdelati s standardnimi tehnološkimi procesi (CMOS) Valovod z oblogo iz dielektričnega metamateriala Halir et al. , Proceedings of the IEEE, vol. 106, no. 12, pp. 2144–2157(2018) A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 5 Polarizacijska odvisnost Si valovodov � Valovodi in posledično tudi gradniki na Si PIC TE- rod so izrazito polarizacijsko odvisni � Za obvladovanje te polarizacijske odvisnosti |E| (a.u.) so ključnega pomena gradniki za manipuliranje polarizacije � Večina Si PIC aplikacij zahteva visoko zmogljive polarizacijske razcepnike, ki TM- rod mešano polarizacijo na vhodu razdelijo na TE- in TM-rod |E| (a.u.) A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 135/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 136/451 Koncept PBS-1 A. Debevc, M.Topič, J.Krč, Opt. Express, Dec. 2022, doi: 10.1364/OE.476333 � TM-rod se sklopi iz zgornjega valovoda v spodnji valovod, TE-rod ostane v zgornjem valovodu � Thru izhodu dodamo TE-polarizator, da dosežemo večje slabljenje TM rodu A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 7 Koncept PBS-2 A. Debevc, M.Topič, J.Krč, Opt. Express, Dec. 2022, doi: 10.1364/OE.476333 � Struktura PBS-2 je načrtana z namenom doseganja večje pasovne širine A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 136/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 137/451 Metode � Simulacijske metode Mreža FEM › FEM analiza rodov › 3-D FDTD simulacije � Izdelava čipa na SOI rezini › Litografija z elektronskim žarkom in RIE jedkanje (Applied Nanotools Inc.) � Optična karakterizacija A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 9 Rezultati simulacij (FDTD) � IL < 1 dB, ER > 35 dB � BWPBS-1 = 163 nm, BWPBS-2 = 263 nm A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 137/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 138/451 Izdelava in eksperimentalni rezultati � Gradnik PBS-2 je bil izdelan na SOI rezini uporabo 100 keV litografije z elektronskim žarkom (Applied nanotools, Inc.) � ER > 30 dB, BW > 140 nm (omejeno območje meritve zaradi valovnodolžinskega območja laserja) � IL < 2 dB A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 11 Občutljivost na tolerance pri izdelavi � Variacija velikosti vseh struktur v razponu +/- 10 nm ne vpliva na zmogljivost gradnika PBS-2 A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 138/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 139/451 Zahvala Fotovoltaika in elektronika (P2-0415) A. Debevc 26. seminar optične komunikacije , Ljubljana, 25. 1. 2023 13 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 139/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 140/451 Sistem stabilizacije injekcijske vklenitve Fabry-Periot laserske diode za uporabo v WDM-PON Fabry-Periot laser diode injection lock stabilization system for use in WDM-PON Vesna Eržen Univerza v Ljubljani, Fakulteta za elektrotehniko vesna.erzen@scsl.si Povzetek important. For this purpose, the presentation Cenena in dobro poznana Fabry-Periot laserska describes the system that has a potential to ensure dioda niha na več vzdolžnih (longitudinalnih) the stability of optical injection locking. rodovih. S tehniko injekcijske vklenitve lahko Fabry-Periotov laser deluje kot enorodovni laser. Za zagotovitev stabilne optične vklenitve Fabry- Biografija avtorja Periotovega laserja mora biti pri vzbujevalni Vesna Eržen je po končani svetlobi zagotovljenih več pogojev. Predstavljeno gimnaziji študij nadaljevala na tehniko stabilizacije je mogoče uporabiti v sistemu Visoki šoli za varnostne vede WDM-PON, ki je privlačna tehnologija optičnega Univerze v Mariboru. Kasneje se je dostopa. Za praktično izvedbo WDM-PON so zelo iz družboslovnih ved preusmerila pomembni poceni komunikacijski viri svetlobe. V na področje naravoslovja in se po ta namen je v prispevku opisan sistem, ki ima končanem študiju varnostnih ved (l. 2006) vpisala na potencial za zagotavljanje stabilne vklenitve. Fakulteto za elektrotehniko Univerze v Ljubljani. Leta 2012 je diplomirala iz področja optičnih komunikacij, Abstract njeno delo pa se je nanašalo na podaljševanje dosega The inexpensive and well-known Fabry-Periot zveze v pasivnih optičnih omrežjih. Od 2012 do 2016 je laser diode oscillates on several longitudinal lines. bila zaposlena kot raziskovalka na projektu v With the injection locking technique, the Fabry- Laboratoriju za sevanje in optiko na Fakulteti za Periot laser can operate like a single longitudinal elektrotehniko. Od 2017 poučuje na srednji šoli za line laser. To ensure stable optical locking of the strojništvo. Leta 2020 si je na Filozofski fakulteti pridobila še pedagoško-andragoško izobrazbo. Trenutno Fabry-Periot laser, several conditions for the poučuje strokovne predmete tudi kot predavateljca na operation of an injection-locking system must be Višji šoli za strojništvo Škofja Loka in je doktorska met. The presented stability technique can be used študentka na Fakulteti za elektrotehniko Univerze v in WDM-PON system which is an attractive optical Ljubljani. Je avtorica in soavtorica več strokovnih access technology. For the practical člankov s področja optičnih komunikacij in poučevanja implementation of a WDM-PON, low-cost strokovnih predmetov po principih reševanja communications light-source units are very problemov. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 140/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 141/451 Author's biography After finishing high school, Vesna Eržen continued her studies at the University of Maribor School of Security Sciences. She later switched from the social sciences to the field of natural sciences and after completing her studies in safety sciences (2006) enrolled at the Faculty of Electrical Engineering of the University of Ljubljana. In 2012, she graduated in the field of optical communications. Her work related to extending the communication range in passive optical networks. From 2012 to 2016, she was employed as a project researcher in the Radiation and Optics Laboratory at the Faculty of Electrical Engineering. Since 2017, he has been teaching at a high school for mechanical engineering. In 2020, she obtained a pedagogic and andragogic education at the Faculty of Arts. She currently teaches professional courses as a lecturer at the Škofja Loka College of Mechanical Engineering and is a doctoral student at the Faculty of Electrical Engineering of the University of Ljubljana. She is the author and co-author of several professional articles in the field of optical communications and teaching professional subjects based on the principles of problem solving. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 141/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 142/451 Sistem stabilizacije injekcijske vklenitve Fabry- Periot laserske diode za uporabo v omrežjih WDM-PON Vesna Eržen, Boštjan Batagelj Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška 25, 1000 Ljubljana, Slovenija , E-pošta: vesna.erzen@scsl.si, bostjan.batagelj@fe.uni-lj.si Vsebina X Pasivna optiĆna omrežja z valovno-dolžinskim razvršĆanjem (WDM-PON) X Uporaba injekcijsko vklenjene FP-LD v WDM-PON omrežjih X Princip optiĆne (injekcijske) vklenitve laserjev X ZnaĆilnosti optiĆne vklenitve laserjev X Predstavitev tehnike za stabilizacijo FP-LD s pomoĆjo zunanje resonanĆne votline in opazovanja RF spektra X Sklep Motivacija: iskanje dovršene tehniēne rešitve za dolgotrajno samodejno stabilizacijo injekcijske vklenitve FP-LD, kii bii bila uporabna v realnem, terenskem okolju v WDM-PON omrežjih PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 142/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 143/451 WDM-PON X Passive Optical Network - PON X Topologija: toĆka-veĆ toĆk X Gigabitni PON = GPON X Dva naĆina dostopa do komunikacijskega kanala: 1. TDM (Ćasovno razvršĆanje) 2. WDM (valovnodolžinsko razvršĆanje X Prednost WDM-PON: � lasten valovnodolžinski kanal � ves Ćas na voljo vsakemu uporabniku � veĆja pasovna širina, nižje zakasnitve Motivacija: Iskanje tehnološke rešitve za cenovno dostopno in enako oprema za vse porabniške enote ONU. X Centrala (Optical Line Terminal – Uporaba FP-LD v WDM-PON OLT) vsebuje: • Optiēni oddajnik za oddajo dotoēnih signalov (od ʄ1 do Ũ8) • Centralni svetlobni vir za vzbujanje in vklenitev FP-LD (od ʄ9 do Ũ16) • Sprejemniki odtoēnega prometa v OLT (od ʄ9 do Ũ16 ) Injekcijsko vklenjena FP-LD omogoēa delovanje na enem vzdolžnem rodu. V optiēnih komunikacijah se uporablja kot brezbarvni optiēni oddajnik Nizkocenovna alternativa dragim brezbarvnim (nastavljivim – TLS) laserjem. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 143/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 144/451 Fizikalni pojav optiĆne vklenitve X Optiēna vklenitev = frekvenēna in fazno uskladitev dveh laserjev X Optiēne ali injekcijska vklenitev (angl. Injection locking – IL) X Vloga nadrejenega (angl. Leader, Primary) in podrejenega (angl. Follower, Secondary ) laserskega vira X Fabry-Periot laserska dioda (FP-LD) v vlogi podrejenega vira X Fazna in frekvenēna vklenitev FP-LD je posledica vzbujanja z nadrejenim laserjem X Možnost vklenitve pod toēno doloēeno izbranima parametroma frekvence vzbujalnega laserja in optiēne moēi na FP-LD. Injekcijsko vklenjena FP-LD za uporabo v WDM-PON omrežjih Slika 1: FP-LD v splošnem ne omogoĆa brezbarvnosti za uporabo v WDM-PON omrežjih. OptiĆni spekter FP-LD v „prostem teku“: slika 1. Centralni svetlobni vir usmerjen v FP-LD omogoĆa injekcijsko vklenitev na doloĆeno valovno dolžino pod doloĆenimi pogoji. OptiĆni spekter vklenjene FP- LD: slika 2. Spremenijo se lastnosti oddajanja: FP-LD omogoĆa brezbarvnost: slika 2. Slika 2: Vklenitev podrejenega (FP-LD) z nadrejenim laserjem omogoĆa uporabo FP-LD v enotah ONU v WDM-PON sistemu. Vklenjeno FP-LD v WDM-PON uporabimo za oddajo odtoĆnih signalov na toĆno doloĆenih valovnih dolžinah v vseh uporabniških modulih. Predstavlja tehnološko in cenovno privlaĆno rešitev za uporabo v WDM-PON sistemih. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 144/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 145/451 X Nadrejeni laser (TLS) niha na enem vzdolžnem rodu, podrejeni FP laser pa pred vklenitvijo na veē rodovih. Princip optiēne vklenitve X Vzbujalna svetloba doloēene frekvence potuje: • od nastavljivega laserskega vira (TLS) preko polarizatorja (PC) do optiēnega cirkulatorja (OC) • do prikljuēka 1 (OC) na prikljuēek 2 do podrejenega laserja v prostem teku • vklenitev samo pod skrbno doloēenima pogojema vhodne optiēne moēi in frekvenēnega razmika • svetloba vklenjene FP-LD se odbije in potuje nazaj proti OC na prikljuēek 2 X Na prikljuēku 3 opazujemo optiēni spekter na OSA X Vklenitev povzroēa nihanje na enem od rodov podrejenega laserja X Pojav injekcijske vklenitve je polarizacijsko odvisen (slabost) Znaēilnosti optiēne vklenitve � Poveēana frekvenēna stabilnost podrejenega laserja. � Parametra vklenitve: optiēna moē nadrejenega laserja in frekvenēni odmik (ȴʘ) (dovolj blizu skupaj) � zemljevid vklenitve (angl. Locking map) => nelinearen pojav � Vklenitveno podroēje narašēa z narašēanjem vhodne optiēne moēi. � Znotraj vklenitvenega podroēja je stabilna in nestabilna vklenitev. � Asimetriēno podroēje stabilnosti � Pri nizkih vhodnih moēeh je stabilna vklenitev možna le za negativne vrednosti frekvenēne razlike � z višanjem vhodne moēi se podroēje stabilnosti poveēuje; zajame tudi pozitivno frekvenēno razliko. � Temperaturna odvisnost laserskega ēipa; spremeni se valovna dolžina => laser ni veē vklenjen � Izziv: stabilizacija vklenitve s kontrolnim vezjem PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 145/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 146/451 Kontrola injekcijske vklenitve X Bistveno za uēinkovito uporabnost pojava sinhronizacije (injekcijske vklenitve) so dodelane tehnike nadzora stabilizacije X Prepreēevanje nestabilne vklenitve zaradi temperaturne odvisnosti laserskega ēipa => realno okolje. Sistem stabilizacije injekcijske vklenitve Fabry-Periot laserske diode za uporabo v WDM-PON omrežjih Sistem za opazovnje X Sistem za soĆasno opazovanje signala na OSA in RF spektra. optiĆne vklenitve X Konstantna injicirana optiĆna moĆ (2 dBm na FP-LD) X Sprememba vrednosti frekvenĆnega odmika od negativnega proti pozitivnemu podroĆju X SoĆasno opazovanje SMSR na OSA in dušenje RF komponent na RFSA X Vloga MZM: amplitudna in fazna modulacija za opazovanje signala na RFSA X Nizko-odbojni optiĆni reflektor (konektor) na razdalji 1 m od FP-LD. X FrekvenĆne komponente vidne na RFSA so posledica zunanje resonanĆne votline (angl. External Cavity) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 146/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 147/451 Idejna zasnova sistema za stabilizacijo Fabry-Periot laserske diode ZAKLJUąEK X Nizkocenovna Fabry-Periot laserska dioda niha na več vzdolžnih (longitudinalnih) rodovih. X S tehniko injekcijske vklenitve lahko Fabry-Periotov laser deluje kot enorodovni laser. X Optična vklenitev FP-LD zahteva izpolnitev več pogojev pri vzbujevalni svetlobi X Predstavljeno tehniko stabilizacije je mogoče uporabiti v sistemu WDM-PON X Za praktično izvedbo WDM-PON so zelo pomembni poceni komunikacijski viri svetlobe. X V ta namen je bil predstavljen sistem, ki ima potencial za zagotavljanje stabilne vklenitve. X Prii stabilni optiēni vklenitvi se RF komponente (na RFSA) popolnoma zadušijo. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 147/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 148/451 Uporaba ločnega priključka mikroobročnega resonatorja za stabilizacijo enobočnega vlakenskega radijskega oddajnika Using the drop port of a micro-ring-resonator to stabilize a single sideband radio-over-fiber transmitter Kristjan Vuk Baliž in Boštjan Batagelj Univerza v Ljubljani, Fakulteta za elektrotehniko, Laboratorij za sevanje in optiko kristjan.vuk-baliz@fe.uni-lj.si Andraž Debevc Univerza v Ljubljani, Fakulteta za elektrotehniko, Laboratorij za fotovoltaiko in optoelektroniko Povzetek resonator where we exploit the drop port to Velik apetit modernih komunikacijskih omrežij po establish a closed-loop regulation system to pasovni širini je porodil tehnologijo za vlakenski stabilize a radio-over-fiber link. prenos radijskega signala v milimetrskem valovnem območju. Pri uporabi intenzitetne modulacije v izvedbi z zunanjim elektroptičnim Biografija avtorja modulatorjem se zaradi barvne razpršitve Kristjan Vuk Baliž je leta optičnega vlakna lahko pojavi kvarni učinek 2019 magistriral na Fakulteti frekvenčno odvisnega presihanja moči. V izogib za elektrotehniko Univerze v slednjemu predlagamo koncept vlakenskega Ljubljani. Trenutno je oddajnika z vključenim mikroobročnim zaposlen na delovnem mestu resonatorjem, katerega drop port izkoristimo za (pedagoškega) asistenta na Fakulteti za elektrotehniko v Ljubljani. Interesna vzpostavitev zaprtozančenga regulacijskega področja njegovega raziskovanja vključujejo vlakenske sistema za stabilizacijo vlakenske radijske zveze. komunikacije, mikrovalovno fotoniko in integrirano Abstract fotoniko. The ever increasing demand for bandwidth in Author's biography modern communication networks has led to radio- Kristjan Vuk Baliž received his master’s degree from over-fiber technology in the millimeter wave the Faculty of electrical engineering, University of region. When intensity modulation using an Ljubljana, Slovenia, in 2019. He is currently employed external electro-optic modulator is applied, a as an assistant teacher at the Faculty of Electrical chromatic-dispersion-induced phenomenon of Engineering in Ljubljana. His research interests include frequency dependent power fading might arise. To fiber communication, microwave photonics and integrated photonics overcome the latter, we propose a novel concept of fiber optic transmitter, featuring a micro-ring PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 148/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 149/451 lMBp2`x p GDm#HDMB 6FmHi2i x 2H2FìQi2?MBFQ lTQ`# HQÍM2; T`BFHDmÍF KBF`QQ#`QÍM2; `2bQMiQ`D x bi#BHBx+BDQ 2MQ#QÍM2; pHF2MbF2; `/BDbF2; Q//DMBF ÈBbiDM omF "HBʈ M/`ʈ .2#2p+ "QȒiDM "i;2HD RfR8 oHF2MbF `/BDbF xp2x p KK TQ/`QÍDm Problem : S( λ) Δ τ; = 2 D|Δ λ|L Izziv , motivacija : S`2bB?MD2 KQÍB M K2bim hs x`/B EQM+BTBìB `Q#mbi2M Q//DMBF p v(0) g v(1) g Δ ϕ = 2 πf τ g `xT`ȒBip2 bFmTBMbFB? ?BìQbiB pHF2MbFB xp2xB FBHQK2ìbFB? BxK2` p KBHBK2ìbF2K UpHQpMQ/QHʈBMbF2KV TQ/`QÍDm h`B@iQMbFBf#`pMB bB;MH Δ ϕ #`2x mMBÍmDQÍ2; T`2bB?MD KQÍB lÍBMFQpBi Q//DMBF, λ 0 − Δ λ λ 0 λ 0 + Δ λ λ, f Ç B QTiX → 0 C = B log2 (1 + Ps BN ) 0 Ç P QTiX QTiBKHM C[simbolov / s] @ xKQ;HDBpQbi xp2x2 Ç B _6 → ∞ B[(T)Hz] @ TbQpM ȒB`BM Ç #`2x FQKT2Mx+BD2 p _s P s @ KQÍ bB;MH n 2 hs n 1 T`2MQbM TQi _s n 2 G _6 S( f) Ç TbQpM ȒB`BM Ç `xT`ȒBi2p → p2ÍTQiD2 f S. Ç BMi2`72`2M+2 Ç bH#HD2MD2 UaJ6, JwJ ≥ 0 . 2 dB / kmV hGa kfR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 149/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 150/451 AxxBp, S`2bB?MD2 _6 KQÍB p pHF2MbFB xp2xB PFQHBȒÍBM2, S( λ) Δ τ; = 2 D|Δ λ|L Izziv , motivacija : Ç ìB#`pMB QTiBÍMB bB;MH EQM+BTBìB `Q#mbi2M Q//DMBF p v(0) g v(1) g Δ ϕ = 2 πf τ g Ç #`pM `xT`ȒBi2pc pHQpMQ /QHʈBMbFQ Q/pBbM pHF2MbFB xp2xB FBHQK2ìbFB? bFmTBMbF ?BìQbi BxK2` p KBHBK2ìbF2K Ç SQDp Q/pBb2M Q/ T`K2ìQp QTiBÍM2 xp2x2, UpHQpMQ/QHʈBMbF2KV TQ/`QÍDm h`B@iQMbFBf#`pMB /QHʈBM T`2MQbM2 TQiB UpHFMV- KQ/mH+BDbF bB;MH Δ ϕ #`2x mMBÍmDQÍ2; T`2bB?MD KQÍB 7`2Fp2M+- /BbT2`xBpMQbi K2/BD- HQKMB λ 0 − Δ λ FQHBÍMBF λ 0 λ 0 + Δ λ λ, f Ç S`QiBmF`2TB, FQKT2Mx+BD /BbT2`xBD2- xp2x p C = B log2 (1 + Ps BN ) 0 AAX oHQpM2K QFMm- MBx2F T`Q/mFi BL- T`2MQb C[simbolov / s] @ xKQ;HDBpQbi xp2x2 x /pQ#`pMBK bB;MHQK B[(T)Hz] @ TbQpM ȒB`BM P s @ KQÍ bB;MH n 2 aJ6 hs n 1 ≈ 1 , 5 _s n Tb 2 D ≈ 17MK · FK G _6 S( f) f S. JwJ S`2bB?MD2 _6 KQÍB, P P 0[ dB] = 10 log10 cos 2 ( πf RF D 2Δ λL) hGa 10 log λ 20 10 cos 2 2 π Df 2 c 0 RF L jfR8 _2ȒBip2, FQKT2Mx+BD #`pM2 `xT`ȒBip2 h2?MBF2 x T`2KQȒÍMD2 T`2bB?MD KQÍB- FB Q?`MDDQ ìB#`pMB bB;MH- p2M/` TQiQK FQKT2Mx+BD2 `xT`ȒBip2 TQbF`#BDQ- / bi Q# KQ/mH+BDbF #QF M K2bim bT`2D2K bQ7xMX .BbT2`xBDbFQ FQKT2Mx+BDbFQ pHFMQ p UpbF2KV _s D SMF · L SMF + D DCF · L DCF = 0 D SMF@1550 nm ≈ 17 ps /(nm · km) _6 S( λ) S( λ) S( f) S( λ) λ λ f n 2 λ aJ6 JwJ n 1 ≈ 1 , 5 .*6 Tb hGa n 2 D ≈ 17 S. MK · FK G S`BH;Q/HDBpB KQ/mH x FQKT2Mx+BDQ /BbT2`xBD2 Uh.*JV p UpbF2KV _s _6 S( λ) S( λ) S( f) S( λ) λ λ f n 2 λ aJ6 JwJ h.*J n 1 ≈ 1 , 5 Tb hGa n 2 D ≈ 17 S. MK · FK G AG:w- J2?K2i HT- olE "GAʇ- ÈBbiDM- "h:1GC- "QȒiDMX ~2tB#H2 TT`Q+? iQ +QK#iBM; +?`QKiB+ /BbT2`bBQM BM +2MìHBx2/ 8: M2irQ`FX PTiQ@2H2+ìQMB+b `2pB2rX kyky- pQHX k3- MQX R- bìX j8@9k- BHmbìX AaaL R3Ne@jd8dX ?iiT,ffDQm`MHbXTMXTHf/HB#`fTm#HB+iBQMfRjk9N3f2/BiBQMfRR8deef+QMi2Mi 9fR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 150/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 151/451 _2ȒBip2, /pQ#`pMB bB;MH h2?MBF2 x T`2KQȒÍMD2 T`2bB?MD KQÍB- FB bB;MH T`2p2/2DQ M /pQiQMbFB bB;MHX .pQDMQ F`KBHD2MB JwJ x QìQ;QMHMBK bB;MHQK @ Fp/ìm`MB K2ȒHMBF S( λ) S( λ) S( λ) f ∼ λ λ n 2 λ aJ6 JwJ n 1 ≈ 1 , 5 Tb hGa n 2 D ≈ 17 S. MK · FK 90 ◦ G PTiBÍMQ bBiQ p hs _6 S( λ) S( λ) S( f) S( λ) λ λ f n 2 λ aJ6 JwJ n 1 ≈ 1 , 5 Tb hGa n 2 D ≈ 17 S. MK · FK G 8fR8 _1ȑAh1o, S`2?Q/ M /pQ#`pMB bB;MH x J__ S`2?Q/ M UFpxBV/pQ#`pMB bB;MH x pFHDmÍBipBDQ KBF`QQ#`QÍbi2; `2bQMiQ`D p _Q6 Q//DMBFmX S( λ) S( λ) _6 S( f) ER λ λ f n 2 aJ6 JwJ n 1 ≈ 1 , 5 hGa J__ n 2 S. S( λ) λ G S`2?Q/ M UFpxBV/pQiQMbFB bB;MH x EQMÍM TbQpM ȒB`BM 7QiQMbF2; pFHDmÍBipBDQ KBF`QQ#`QÍbi2; bBi UJ__V @ QK2D2M TbQpM `2bQMiQ`D p _Q6 Q//DMBFmX _s L ȒB`BM KQ/mH+BDbF2; bB;MH 1 B RF H( λ) _s L 2 hs S( λ) S( λ) aJ6 λ, f LN _s SA* J__ Δ λ Δ λ λ Δ λ Δ λ λ efR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 151/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 152/451 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 x J__ PTiBÍM T`2pDHM 7mMF+BD UPh6V Q/ J__ Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 pHF2MbFB ER = k9 /" TQH`BxiQ` JwJ F SR = 4 , 6 MK B = 0 , 9 MK hGa 1.6 J__ oL ìB#`pMB bB;MH- /pQ#`pMB bB;MH- Ph6 y-ek8 R-k8 k-8 S. ∼ 31 /" (FK) .* ∼ 24 /" 8 Ry ky Pa dfR8 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 x J__ PTiBÍM T`2pDHM 7mMF+BD UPh6V Q/ J__ Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 pHF2MbFB ER = k9 /" TQH`BxiQ` JwJ F SR = 4 , 6 MK B = 0 , 9 MK hGa 1.6 J__ ER = k9 /" oL ìB#`pMB bB;MH- /pQ#`pMB bB;MH- Ph6 y-ek8 R-k8 k-8 S. ∼ 31 /" (FK) F SR = 4 , 6 MK B = 0 , 9 MK .* ∼ 24 /" 8 Ry ky Pa dfR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 152/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 153/451 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 x J__ PTiBÍM T`2pDHM 7mMF+BD UPh6V Q/ J__ Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 pHF2MbFB ER = k9 /" TQH`BxiQ` JwJ F SR = 4 , 6 MK B = 0 , 9 MK hGa 1.6 J__ ∼ 31 /" oL ìB#`pMB bB;MH- /pQ#`pMB bB;MH- Ph6 y-ek8 R-k8 k-8 ∼ 24 /" S. ∼ 31 /" (FK) .* ∼ 24 /" 8 Ry ky Pa dfR8 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 S`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 P P s 21( L) |f RF=39GHz 0 + 2 , M( L) = 20 log a/lL s 21 |L=0 ,f RF=39GHz }#2` δ J = 4 /" TQH`Bx JwJ δ[ dB] = max {P P 0[ dB] } − min {P P 0[ dB] } hGa 1.6 J__ S`2bB?MD2 _6 KQÍB FQi UT`2pDHMV 7mM+iBQM oL KQ/mH+BDbF2 7`2Fp2M+2 P P s 21( f RF) |L=20km 0 , M( f RF) = 20 log s 21 |L=0 ,fRF=39GHz y-ek8 R-k8 k-8 S. (FK) .* 8 Ry ky Pa EX oX "HBʈ- X .2#2p+- CX ÈÍ M/ "X "i;2HD- ǴSQr2`@7/BM;@KBiB;iBQM TT`Q+? BM M BMi2MbBiv@KQ/mHi2/ `/BQ@Qp2`@}#2` HBMF mbBM; bBM;H2 BMi2;ì2/ KB+`Q@`BM; `2bQMiQ`-Ǵ PTiB+H 6B#2` h2+?MQHQ;v- pQHX dj- TX Ryjyy3- kykkX 3fR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 153/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 154/451 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 S`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 P P s 21( L) |f RF=39GHz 0 + 2 , M( L) = 20 log a/lL s 21 |L=0 ,f RF=39GHz }#2` δ J = 4 /" TQH`Bx JwJ δ[ dB] = max {P P 0[ dB] } − min {P P 0[ dB] } hGa 1.6 J__ S`2bB?MD2 _6 KQÍB FQi UT`2pDHMV 7mM+iBQM oL KQ/mH+BDbF2 7`2Fp2M+2 P P s 21( f RF) |L=20km 0 , M( f RF) = 20 log s 21 |L=0 ,f RF =39GHz y-ek8 R-k8 k-8 S. (FK) .* 8 Ry ky Pa EX oX "HBʈ- X .2#2p+- CX ÈÍ M/ "X "i;2HD- ǴSQr2`@7/BM;@KBiB;iBQM TT`Q+? BM M BMi2MbBiv@KQ/mHi2/ `/BQ@Qp2`@}#2` HBMF mbBM; bBM;H2 BMi2;ì2/ KB+`Q@`BM; `2bQMiQ`-Ǵ PTiB+H 6B#2` h2+?MQHQ;v- pQHX dj- TX Ryjyy3- kykkX 3fR8 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 S`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 P P s 21( L) |f RF=39GHz 0 + 2 , M( L) = 20 log a/lL s 21 |L=0 ,f RF=39GHz }#2` δ J = 4 /" TQH`Bx JwJ δ[ dB] = max {P P 0[ dB] } − min {P P 0[ dB] } hGa 1.6 J__ S`2bB?MD2 _6 KQÍB FQi UT`2pDHMV 7mM+iBQM oL KQ/mH+BDbF2 7`2Fp2M+2 P P s 21( f RF) |L=20km 0 , M( f RF) = 20 log s 21 |L=0 ,f RF =39GHz y-ek8 R-k8 k-8 S. (FK) .* 8 Ry ky Pa EX oX "HBʈ- X .2#2p+- CX ÈÍ M/ "X "i;2HD- ǴSQr2`@7/BM;@KBiB;iBQM TT`Q+? BM M BMi2MbBiv@KQ/mHi2/ `/BQ@Qp2`@}#2` HBMF mbBM; bBM;H2 BMi2;ì2/ KB+`Q@`BM; `2bQMiQ`-Ǵ PTiB+H 6B#2` h2+?MQHQ;v- pQHX dj- TX Ryjyy3- kykkX 3fR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 154/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 155/451 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 S`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 P P s 21( L) |f RF=39GHz 0 + 2 , M( L) = 20 log a/lL s 21 |L=0 ,f RF=39GHz }#2` δ J = 4 /" TQH`Bx JwJ δ[ dB] = max {P P 0[ dB] } − min {P P 0[ dB] } hGa 1.6 J__ S`2bB?MD2 _6 KQÍB FQi UT`2pDHMV 7mM+iBQM oL KQ/mH+BDbF2 7`2Fp2M+2 P P s 21( f RF) |L=20km 0 , M( f RF) = 20 log s 21 |L=0 ,f RF =39GHz y-ek8 R-k8 k-8 S. (FK) .* 8 Ry ky Pa EX oX "HBʈ- X .2#2p+- CX ÈÍ M/ "X "i;2HD- ǴSQr2`@7/BM;@KBiB;iBQM TT`Q+? BM M BMi2MbBiv@KQ/mHi2/ `/BQ@Qp2`@}#2` HBMF mbBM; bBM;H2 BMi2;ì2/ KB+`Q@`BM; `2bQMiQ`-Ǵ PTiB+H 6B#2` h2+?MQHQ;v- pQHX dj- TX Ryjyy3- kykkX 3fR8 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 S`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 P P s 21( L) |f RF=39GHz 0 + 2 , M( L) = 20 log a/lL s 21 |L=0 ,f RF=39GHz }#2` δ J = 4 /" TQH`Bx JwJ δ[ dB] = max {P P 0[ dB] } − min {P P 0[ dB] } hGa 1.6 J__ S`2bB?MD2 _6 KQÍB FQi UT`2pDHMV 7mM+iBQM oL KQ/mH+BDbF2 7`2Fp2M+2 P P s 21( f RF) |L=20km 0 , M( f RF) = 20 log s 21 |L=0 ,f RF =39GHz y-ek8 R-k8 k-8 S. (FK) .* 8 Ry ky Pa EX oX "HBʈ- X .2#2p+- CX ÈÍ M/ "X "i;2HD- ǴSQr2`@7/BM;@KBiB;iBQM TT`Q+? BM M BMi2MbBiv@KQ/mHi2/ `/BQ@Qp2`@}#2` HBMF mbBM; bBM;H2 BMi2;ì2/ KB+`Q@`BM; `2bQMiQ`-Ǵ PTiB+H 6B#2` h2+?MQHQ;v- pQHX dj- TX Ryjyy3- kykkX 3fR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 155/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 156/451 J2`BHM FQM};m`+BDc K2`Bip2 J2`QbHQpMQ Qp`2/MQi2MD2 `/BDbF2 pHF2MbF2 xp2x2 S`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 Ç T`2bB?MD2 _6 KQÍB p Q/pBbMQbiB Q/ /QHʈBM2 pHFM pHFM Ç _6 T`2pDHM 7mMF+BD xp2x2 P P s 21( L) |f RF=39GHz 0 + 2 , M( L) = 20 log a/lL s 21 |L=0 ,f RF=39GHz i2KT2ìm`M 89 TKfE UM2Vbi#BHMQbi\5 }#2` δ J = 4 /" TQH`Bx JwJ δ[ dB] = max {P P 0[ dB] } − min {P P 0[ dB] } hGa 1.6 J__ i2KT2ìm`M UM2Vbi#BHMQbi\5 S`2bB?MD2 _6 KQÍB FQi UT`2pDHMV 7mM+iBQM oL KQ/mH+BDbF2 7`2Fp2M+2 P P s 21( f RF) |L=20km 0 , M( f RF) = 20 log s 21 |L=0 ,fRF=39GHz y-ek8 R-k8 k-8 S. (FK) .* 8 Ry ky Pa EX oX "HBʈ- X .2#2p+- CX ÈÍ M/ "X "i;2HD- ǴSQr2`@7/BM;@KBiB;iBQM TT`Q+? BM M BMi2MbBiv@KQ/mHi2/ `/BQ@Qp2`@}#2` HBMF mbBM; bBM;H2 BMi2;ì2/ KB+`Q@`BM; `2bQMiQ`-Ǵ PTiB+H 6B#2` h2+?MQHQ;v- pQHX dj- TX Ryjyy3- kykkX 3fR8 wTìQxMÍMB `2;mH+BDbFB bBbi2K S`BM+BT /2HQpMD *HQb2/@HQQT +QMìQH @ *G* Ç HQÍMB T`BFHDmÍ2F x;QiQpB T`Q+2bMQ bT`2K2MHDBpFQ `2;mH+BDbF2Km bBbi2Km Ç `2;mH+BDbFB bBbi2K m;HȒmD2 bBbi2K UMT`X pHQpMQ /QHʈBM Hb2`DV b +BHD2K MDp2ÍD2; /mȒ2MD bìMbF2; #QF S( λ) *2M2M 7QiQ/BQ/\ λ S. J__ *G* /`QT // BMTmi i?`Qm;? JwJ hGa S( λ) S( λ) ER λ λ NfR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 156/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 157/451 _m#`BF ǴMBpMQǴ S`Q+2b, MHQ;2M pb22H2FìBÍ2M bBbi2K wTìQxMÍMB `2;mH+BDbFB bBbi2K _*@*_ "S6 KTHBim/2 /2i2+iQ` .B72`2MiBiQÙ.V S`QTQìBQMH USV AMi2;ìQÙAV Ĝ Ĝ Y Y Ĝ Y LGP:, ox/`ʈ2piB UT`pBV Q/pQ/ T`Q+2bM2 bT`2K2MHDBpF2 Mf#HBxm MmHBX RyfR8 wTìQxMÍMB `2;mH+BDbFB bBbi2K *G* T`Q+2b ϑ( i) i λ( ϑ) BM( t) JwJ BMTmi /`QT i Qmi( t) h1* hGa J__ LHQ; *G* i Qmi( i BM) d i i dt Qmi < 0 d dt Qmi > 0 d d i i di Qmi > 0 di BM BM Qmi < 0 d i ↓ i dt BM < 0 ↑ i BM BM d ↓ i ↑ TQp2ÍD xKMDȒD i i dt BM > 0 BM BM i BM i BM Hi2`MB`D i BM λ@ λ+ λ i Y BM RRfR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 157/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 158/451 *G*, :`/MBFB AMp2ìB`DQÍB QDÍ2pHMBF USV Ĝ Y RkfR8 *G*, :`/MBFB AMp2ìB`DQÍB QDÍ2pHMBF USV Ĝ AMp2ìB`DQÍB Y BMi2;ìQÙAV Ĝ Y RkfR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 158/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 159/451 *G*, :`/MBFB AMp2ìB`DQÍB QDÍ2pHMBF USV AMp2ìB`DQÍB Ĝ AMp2ìB`DQÍB /B72`2M+BiQÙ.V Y BMi2;ìQÙAV Ĝ Ĝ Y Y RkfR8 *G*, :`/MBFB AMp2ìB`DQÍB QDÍ2pHMBF USV AMp2ìB`DQÍB Ĝ AMp2ìB`DQÍB /B72`2M+BiQÙ.V Y BMi2;ìQÙAV Ĝ Ĝ Y a+?KBii@Qp Y T`QʈBHMBF Y Ĝ RkfR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 159/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 160/451 S`QiQiBTMB *G*, 2H2FìBÍMB MÍì RjfR8 1FbT2`BK2MiHMB bBbi2Kc T`2BxFmb *G* Qb+BHQbFQT T`Q+2b Pa ϑ( i) i λ( ϑ) BM( t) JwJ i Qmi( t) BMTmi /`QT h1* hGa J__ i Qmi( i BM) LHQ; *G* d d i i i Qmi < 0 d i Qmi > 0 di Qmi > 0 d di BM BM Qmi < 0 dt dt d i ↓ i dt BM < 0 ↑ i BM BM TQp2ÍD xKMDȒD d i BM > 0 ↓ i ↑ i BM BM i dt BM i BM λ@ λ+ λ i Y BM Hi2`MB`D i BM R9fR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 160/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 161/451 1FbT2`BK2MiHMB bBbi2Kc T`2BxFmb *G* Qb+BHQbFQT T`Q+2b Pa ϑ( i) i λ( ϑ) BM( t) JwJ i Qmi( t) BMTmi /`QT h1* hGa J__ i Qmi( i BM) LHQ; *G* d d i i i Qmi < 0 d i Qmi > 0 di Qmi > 0 d di BM BM Qmi < 0 dt dt d i ↓ i dt BM < 0 ↑ i BM BM TQp2ÍD xKMDȒD d i BM > 0 ↓ i ↑ i BM BM i dt BM i BM λ@ λ+ λ i Y BM Hi2`MB`D i BM R9fR8 1FbT2`BK2MiHMB bBbi2Kc T`2BxFmb *G* Qb+BHQbFQT T`Q+2b Pa ϑ( i) i λ( ϑ) BM( t) JwJ i Qmi( t) BMTmi /`QT h1* hGa J__ i Qmi( i BM) LHQ; *G* d d i i i Qmi < 0 d i Qmi > 0 di Qmi > 0 d di BM BM Qmi < 0 dt dt d i ↓ i dt BM < 0 ↑ i BM BM TQp2ÍD xKMDȒD d i BM > 0 ↓ i ↑ i BM BM i dt BM i BM λ@ λ+ λ i Y BM Hi2`MB`D i BM R9fR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 161/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 162/451 1FbT2`BK2MiHMB bBbi2Kc T`2BxFmb *G* Qb+BHQbFQT T`Q+2b Pa ϑ( i) i λ( ϑ) BM( t) JwJ i Qmi( t) BMTmi /`QT h1* hGa J__ i Qmi( i BM) LHQ; *G* d d i i i Qmi < 0 d i Qmi > 0 di Qmi > 0 d di BM BM Qmi < 0 dt dt d i ↓ i dt BM < 0 ↑ i BM BM TQp2ÍD xKMDȒD d i BM > 0 ↓ i ↑ i BM BM i dt BM i BM λ@ λ+ λ i Y BM Hi2`MB`D i BM R9fR8 wFHDmÍ2F Ç _Q6 Q//DMBF x J__, TQi2M+BHM `2ȒBi2p T`2bB?MD KQÍB p KQ/2`MB? pHF2MbFB? `/BDbFB? xp2x? Ç pT`ȒMD2 i2KT2ìm`M2 UM2Vbi#BHMQbiB UHb2`- J__- im/B JwJV Ç FQM+2Ti mTQ`#2 HQÍM2; U/`QTV T`BFHDmÍF J__ x xTìQxMÍMQ `2;mH+BDQ U*G*V Ç `xpQD- xbMQp T`QiQiBT BM T`2BxFmb *G* p `2HM2K FQMi2Fbim Ç M/HDMD2 FiBpMQbiB, QTiBKBx+BD *G*- FpMiBiiBpMQ Qp`2/MQi2MD2, pTHBp *G* M T2`7Q`KM+2 _Q6 xp2x2 R8fR8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 162/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 163/451 Merjenje faznega šuma oscilatorja s pomočjo optičnega kasnilnega voda Measuring oscillator phase noise using an optical delay line Andrej Lavrič, Boštjan Batagelj, Matjaž Vidmar Univerza v Ljubljani, Fakulteta za elektrotehniko, Laboratorij za sevanje in optiko andrej.lavric@fe.uni-lj.si Povzetek Univerze v Ljubljani in leta 2019 magistriral s področja Razvoj mikrovalovne fotonike je prinesel nove informacijsko-komunikacijskih tehnologij. V času rešitve za merjenje in generiranje študija je en semester obiskoval na Fakulteti za visokofrekvenčnih signalov z uporabo elektrotehniko in informacijske tehnologije na Univerzi Cirila in Metoda v Skopju, ter eno leto na Oddelku za optoelektronskih postopkov. Posebej zanimiv je elektrotehniko in računalništvo Univerze na Cipru, kjer postopek merjenja faznega šuma s kasnilnim se je podrobneje spoznal s tehnologijo mikrovalovne vodom, kjer kot kasnilni vod služi analogna fotonike, katera je bila tudi osrednje tema njegove optična zveza. V prispevku je predstavljena magistrske naloge »Uporaba frekvenčnega realizacija merilne postavitve primerna za uporabo diskriminatorja z optično kasnilno linijo za merjenje zunaj laboratorijskega okolja. faznega šuma«, za katero je prejel Univerzitetno Prešernovo nagrado. V času študija je sodeloval v več Abstract študentskih projektih in bil del zmagovalne ekipe, ki je The development of microwave photonics has osvojila prvo mesto na študentskem tekmovanju v brought new solutions for the measurement and načrtovanju »High-Performance Optoelectronic generation of high-frequency signals using Oscillator« na »International Microwave Symposium« v optoelectronic processes. Of particular interest is Bostonu leta 2019. V študijskem letu 2019/2020 se je a process for measuring phase noise with a delay vpisal na doktorski študijski program Elektrotehnika na line, where an analogue optical link is used as the Fakulteti za elektrotehniko, Univerze v Ljubljani. delay line. This lecture presents the realisation of a Njegovo raziskovalno področje zajema mikrovalovno measurement set-up suitable for use outside the fotoniko s poudarkom na optoelektronskemu oscilatorju, laboratory environment. pri čemer za povečanje občutljivosti meritev faznega šuma oscilatorjev predlaga uporabo optične kasnilne linije. Trenutno je gostujoči raziskovalec na University Duisburg-Essen. Biografija avtorja Author's biography Andrej Lavrič je po končani After graduating from the Electrical and Computer Elektrotehniško-računalniški High School in Ljubljana in 2013, Andrej Lavrič gimnaziji v Ljubljani leta continued his education at the Faculty of Electrical 2013 šolanje nadaljeval na Engineering of the University of Ljubljana and in 2019 Fakulteti za elektrotehniko obtained a master's degree in the field of information PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 163/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 164/451 and communication technologies. During his studies, he attended one semester at the Faculty of Electrical Engineering and Information Technology at Cyril and Methodius University in Skopje, and one year at the Department of Electrical Engineering and Computer Science at the University of Cyprus, where he learned more about microwave photonics technology, which was also central the topic of his master's thesis titled "Using a frequency discriminator with an optical delay line for phase noise measurement", for which he received the University Prešeren Prize. During his studies, he participated in several student projects and was part of the winning team that won first place in the student competition in the design of "High-Performance Optoelectronic Oscillator" at the "International Microwave Symposium" in Boston in 2019. In the academic year 2019/2020, enrolled in the electrical engineering doctoral study program at the Faculty of Electrical Engineering, University of Ljubljana. His research area covers microwave photonics with an emphasis on the optoelectronic oscillator, where he proposes the use of an optical delay line to increase the sensitivity of oscillator phase noise measurements. He is currently a visiting researcher at the University Duisburg-Essen. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 164/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 165/451 Merjenje faznega šuma oscilatorja s pomočjo optičnega kasnilnega voda Andrej Lavrič izr. prof. dr. Boštjan Batagelj, prof. dr. Matjaž Vidmar Univerza v Ljubljani, Fakulteta za elektrotehniko, Laboratorij za sevanje in optiko 1/12 Redosled • Fazni šum • Merjenje faznega šuma • Postopek s kasnilnim vodom • Umerjanje merilnika z optičnim vodom • Rezultati 2/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 165/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 166/451 Fazni šum oscilatorja v( t) = V 0[1 + α( t)] cos[2 πf 0 t + φ( t)] v( t) t 3/12 Fazni šum oscilatorja amplitudni šum v( t) = V 0[1 + α( t)] t cos[2 πf 0 t + φ( t)] t Sφ( f) = |F{φ( t) }| 2 rad2 / Hz fazni šum v( t) log Sφ( f) t log f 3/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 166/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 167/451 Fazni šum oscilatorja amplitudni šum v( t) = V 0[1 + α( t)] t cos[2 πf 0 t + φ( t)] t Sφ( f) = |F{φ( t) }| 2 rad2 / Hz fazni šum (Žal) se v praksi uporablja L z merskimi enotami dBc/Hz v( t) IEEE log Std. Sφ( f) 1139: L ( f) = 1 S 2 φ( f ) Smiselen zgolj v logaritmski skali log10 L ( f) = log t 10 Sφ( f ) − 3 dB log f 3/12 Merjenje faznega šuma • Neposredni postopek • Postopek s faznim detektorjem • Postopek s kasnilnim vodom • Residualni postopek • Križna korelacija 4/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 167/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 168/451 Merjenje faznega šuma preprost SA napačen! • Neposredni postopek uporaba v sili! • Postopek s faznim detektorjem • Postopek s kasnilnim vodom • Residualni postopek • Križna korelacija 4/12 Merjenje faznega šuma • Neposredni postopek • Postopek s faznim detektorjem • Postopek s kasnilnim vodom • Residualni postopek dvovhodna vezja • Križna korelacija 4/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 168/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 169/451 Merjenje faznega šuma • Neposredni postopek • Postopek s faznim detektorjem • Postopek s kasnilnim vodom • Residualni postopek dvovhodna vezja • Križna korelacija komercialni inštrumenti 4/12 Merjenje faznega šuma • Neposredni postopek poudarek predstavitve • Postopek s faznim detektorjem • Postopek s kasnilnim vodom • Residualni postopek dvovhodna vezja • Križna korelacija komercialni inštrumenti 4/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 169/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 170/451 Postopek s faznim detektorjem DUT FFT REF PLL 5/12 Postopek s faznim detektorjem kvadratura: sin( ωt + φ DUT( t)) · cos( ωt) = kφ [sin( φ DUT( t)) + sin(2 ωt + φ DUT( t))] DUT ≈ kφφ DUT( t) FFT REF PLL 5/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 170/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 171/451 Postopek s faznim detektorjem kvadratura: sin( ωt + φ DUT( t)) · cos( ωt) = kφ [sin( φ DUT( t)) + sin(2 ωt + φ DUT( t))] DUT ≈ kφφ DUT( t) FFT REF Omejitve: |φ REF( t) | |φ DUT( t) | hiter ali počasen PLL? PLL 5/12 Križna korelacija PLL REFA FFT DUT XCORR Sφ, meritev = Sφ, DUT + Sφ, A+ Sφ, B √m FFT REFB PLL Holzworth HA7062C/D, Keysight E5052B, Rohde&Schwarz FSWP8/26/50 6/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 171/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 172/451 Postopek s kasnilnim vodom τ DUT FFT 7/12 Postopek s kasnilnim vodom τ kvadratura: sin( ωt + φ( t)) · sin( ω( t − τ) + φ( t − τ)) ≈ kφ [ φ( t) − φ( t − τ)) DUT FFT 7/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 172/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 173/451 Postopek s kasnilnim vodom τ kvadratura: sin( ωt + φ( t)) · sin( ω( t − τ) + φ( t − τ)) ≈ kφ [ φ( t) − φ( t − τ)) DUT Fourier FFT Sv( f) = k 24 φ | sin πτ f | 2 Sφ( f ) log |H( f) | 2 |H( f) | 2 | τf = 1 log f 7/12 Postopek s kasnilnim vodom τ kvadratura: sin( ωt + φ( t)) · sin( ω( t − τ) + φ( t − τ)) ≈ kφ [ φ( t) − φ( t − τ)) DUT Fourier FFT fazni šum Sv( f) = k 24 φ | sin πτ f | 2 Sφ( f ) log |H( f) | 2 |H( f) | 2 | • zakasnitev τ • kvadratura • kφ • ADC + FFT τf = 1 log f 7/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 173/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 174/451 Merilnik z optičnim kasnilnim vodom τ FFT DUT 8/12 Merilnik z optičnim kasnilnim vodom analogna τ optična zveza 1996, 2005 FFT DUT 8/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 174/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 175/451 Merilnik z optičnim kasnilnim vodom analogna τ optična zveza 1996, 2005 Sφ( f) = Sv( f) 4 k 2 φ| sin πτf| 2 FFT PM DUT k 2 φ = P cal 2Δ = v 2cal MC m 2 f cal control skočni mehanizem Lavrič, A.; Batagelj, B.; Vidmar, M. Calibration of an RF/Microwave Phase Noise Meter with a naše delo: avtomatsko umerjanje Photonic Delay Line. Photonics 2022, 9, 533. https://doi.org/10.3390/photonics9080533 8/12 +15V +15V 33k 3k3 10k 10k Cf 68k 10k 100k 10k U3 zhod -15V U1 mešalnika U2 10k +15V 68k U4 10k 33k 3k3 10k -15V -15V +Vtune nezakasnjena pot signala -15V 9/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 175/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 176/451 mehanizem za uklepanje kvadrature +15V +15V 33k 3k3 10k 10k Cf 68k 10k 100k 10k U3 zhod -15V U1 mešalnika U2 10k +15V 68k U4 10k 33k 3k3 10k -15V -15V +Vtune nezakasnjena pot signala fazni sukalnik -15V 9/12 v +15V +15V skočni mehanizem 33k 3k3 10k 10k Cf 68k 10k 100k 10k U3 zhod -15V U1 mešalnika t U2 10k +15V 68k U4 10k 33k 3k3 10k integrator -15V -15V +Vtune nezakasnjena pot signala -15V 9/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 176/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 177/451 v DUT( t) = V 0 cos[2 πf 0 t + φ( t) + m 2 cos(2 πf cal t)] k 2 φ = P cal 2Δ = v 2cal MC m 2 -1.0 25 Vmod -1.5 20 15 -2.0 t (°) 10 -2.5 5 Phase shif Insersion loss (dB) -3.0 0 -3.5 -5 0 5 10 15 20 25 30 Modulation voltage (V) 10/12 Rezultat DFB laser photodiode LNA EOM FG LPF LNA optical fiber FFT spectrum fcal VPS LNA mixer analyzer LNA ϕ ϕ DUT phase modulator MSA quadrature PRBS lock control source Lavrič, A.; Batagelj, B.; Vidmar, M. Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line. Photonics 2022, 9, 533. https://doi.org/10.3390/photonics9080533 11/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 177/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 178/451 Rezultat DFB laser photodiode LNA EOM FG LPF LNA optical fiber FFT spectrum fcal VPS LNA mixer analyzer LNA ϕ ϕ DUT phase modulator ! MSA quadrature PRBS lock control source Lavrič, A.; Batagelj, B.; Vidmar, M. Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line. Photonics 2022, 9, 533. https://doi.org/10.3390/photonics9080533 11/12 Rezultat VCXO -60 OEO -80 -100 -120 Phase noise (dBc/Hz) -140 -160102 103 104 105 Frequency oset (Hz) Lavrič, A.; Batagelj, B.; Vidmar, M. Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line. Photonics 2022, 9, 533. https://doi.org/10.3390/photonics9080533 11/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 178/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 179/451 ! Vprašanja? 12/12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 179/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 180/451 Optične modulacije Optical modulations Matjaž Vidmar Univerza v Ljubljani, Fakulteta za elektrotehniko matjaz.vidmar@fe.uni-lj.si Povzetek področje dela je mikrovalovna elektronika, ki obsega V predavanju bodo sprva predstavljene omejitve področja od letalske industrije do optičnih komunikacij. optične prenosne poti, nato pa omejitve svetlobnih Author's biography oddajnikov in sprejemnikov. Osrednji del bo Matjaž Vidmar received his PhD in 1992 from the namenjen različnim izvedbam optičnih modulacij University of Ljubljana, for developing a single od preproste jakostne modulacije do koherentnih in frequency GPS ionospheric correction receiver. Mr. polarizacijskih optičnih zvez. Vidmar is currently teaching undergraduate and postgraduate courses in Electrical Engineering at the Abstract University of Ljubljana, where he serves as head of the This lecture will initially present the limitations of Radiation and Optics Laboratory (LSO) at the the optical transmission path, and then the department for Electrical Engineering (FE). His current limitations of light transmitters and receivers. The research interests include microwave and high speed central part will be dedicated to various electronics ranging from avionics to optical‐fiber implementations of optical modulations, from communications. Under his leadership, the LSO simple power modulation to coherent and developed most of the 10Gbps electronics (pulse modulator, clock recovery) used in the Ester (ACTS polarization optical links. 063) project and many 40Gbps circuits used in the ATLAS (IST 10626) project: EAM drivers, transmitter Biografija avtorja clock distribution, 40Gbps and 80Gbps clock‐recovery Matjaž Vidmar je doktoriral leta circuits and 40Gbps PMD compensation receiver 1992 z naslovom teme »Metoda electronics. Mr. Vidmar also developed and built korekcije ionosferskih pogreškov satellite hardware flown in space in 1990 on the pri satelitski navigaciji in prenosu Microsat mission and in 2000 on the AMSAT‐P3D časa«. V ZDA je razvijal satelitske satellite.). oddajnike za organizacijo AMSAT. V sklopu sodelovanja z AMSAT‐om je sodeloval pri razvoju komunikacijske in navigacijske opreme za satelit “AMSAT‐Phase‐3D”, ki je bil uspešno izstreljen v novembru 2000. Profesor Vidmar trenutno poučuje dodiplomske in podiplomske predmete s področja telekomunikacij na Fakulteti za elektrotehniko. Njegovo PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 180/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 181/451 ĀȀ !"#$%&'(!)*+%,&#!/)$ 0&%/'1%2#!Ā34Ā5 6 Ā7Ā8 9*+%,&#!$):0;'1%2# <'+2'=!? %:$'( !!!@#A&'$!";%/ B!!! @;%/'!6!C!D'"+&)"+%!"E#+;)F&#G '!E;'/&' @;%/'!Ā!C!D'"+&)"+%!"E# +;)F&%H!%AE)() E @;%/'!8!C!I0&'&2%!$):0;'+)(2%!"E#+;)F# @;%/'!J!C!@*#/+( ';&'!G)"+) +'!K0$ ' @;%/'!3!C!L )*;) +&%!%&!A(&'+%!K0$ @;%/'!Ȁ!C!M'A$#(2#!N!%&!*)G)" +&)"+!&'*'/ @;%/'!5!C!9F,0+;2%E)"+! OPQ!R! SOT!"* (#2#$&%/' @;%/'!U!C!T)$#+!OPQ!"*(#2#$& %/' @;%/'!V!C!W'/)"+&'!$) : 0;'1%2'!9QR9XXY!QMI!';%! S@Z![S$*;%+0:#4 @H%\+!Z#]%&G^ @;%/'!67!C!O'"%E&)!9*+%, &)!9 $(#=2#![O9Q^ @;%/'!66!C!@%G&';!%& !K0$ !E!)2',# E'&%!"E#+;)F&%!AE#A% @;%/'!6Ā!C!?#,&%E)2"/'!$): 0;'1%2'!OS, % >, !&Ȁ&&& '&#()*&+ ='+-(' +';0+<Ȁ8"- 8 > = % >= #&&& Ȁ, -. / &+ ?#%'+Ȁ;'@Ȁ)1A'+';0+<Ȁ8"- 8 >? % >? !&Ȁ&&& Ȁ!-. + $538%)Ȁ-#18 10+")"4(ȀA' ? DCȀ(345 1 '612 Ā#!/0 2"%Ȁ("'+(#18Ȁ? BCȀ!! 0 Ā!12 ?+ȀG D 0#0'5"()' E4#&%)Ȁ-#18 ĀF'((#( G Ȁ!7345. ;'F"-')# -"58#(1AȀ ĀȀ4$#%('FȀ8+#18D#!(3891 . 4#*"4 : >, 6!C!D'"+&)"+%!"E#+ ;)F&#G'!E;'/&' :>, HI >, J'+(Ȁ@' %!!/ ? Ȁ . K/> . Ȁ!!/ 2 . Ȁ!/. 10#(8'(# Ā!!-. ? : '/ L '#!()* . XO!;'"#( 2 : Ā!!-. ? !&Ȁ- 9, :, MMM L ȀĀ:)* . TX_RT_M!;'"#( A#%"$ 2 L 6!()* Ā!C!D'"+&)"+%!"E#+;)F&%H!%AE)()E PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 182/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 183/451 940%Ȁ83*(Ȁ ,E, KȀ2$ = Ȁ!()* ' ' 3&'1(# Ā#12 NF#* .;F#* ? ! O KȀ2$ ' < BȀ O KȀ2$ O ' < O B/ #; O B, Ȁ"; !'91 < O Ā; &&& "; O ? /9, O '; &&& #; NF#* ? = "!()* ' .;F#* 3&'1(# Ȁ#12 /9, .(!'91? 2 O O 8!C!I0&'&2%!$):0;'+)( 2%!"E#+;)F# ? 2 L 2 ! F 6&6Ā6!,!Ȁ#Ȁ!'" =. B"F(ȀA' P /%"A8+#(ȀA' ;+'5)" P D'*Ȁ# B#0%#8(Ȁ <34 2 ! A=B Ā-"8%#$' ?%'(@A#- "&Ā7)* ;'A#( J!C!@*#/+(';&'!G)"+)+'!K0$' A=Ȁ&'%!6"$Ȁ!Ā' => PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 183/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 184/451 O 8 @*)(),%;)!F(#A!K0$' O 8 @' $)!A(&'+%!K0$ ,#*3%'@Ȁ)'2DE ?9,R 2 7!!!!!7!!!!!!6!!!!!!7!!!!!!6!!!!!6!!!!!!7 7!!!!!7!!!!!!6!!!!!!7!!!!!!6!!!!!6!!!!!!7 8 2 8 L#8#0#4(#S"-'%A' O 8 @'$ ) !+)*;)+&%!K0$ O 8 L)*;)+ &%!%&!A( &'+%!K0$ Ā Ā Ȁ OȀ 9?> 7!!!!!7!!!!!!6!!!!!!7!!!!!!6!!!!!6!!!!!!7 7!!!!!7!!!!!!6!!!!!!7!!!!!!6!!!!!6!!!!!!7 Ā Ā 8 ! O ! 8 ?.2 Q O Ȁ O ! 1Ȁ&('% <34 3!C!L)*;)+ &%!%&!A( &'+%!K0$ Ȁ! 6 M' A$#(2#!"%G &' ;RK0$ Q O Ȁ O ! 674Ā Ȁ =/D Ȁ ! Ā?@AB Q Ā Q 674J *=Ā!CDE Ȁ! Q _eM Ā Ȁ ! '6 ; ?AA ?@AB T ? 3Ā *3 674Ȁ T Q 6&&&, O Ā "#! ; 674U 674V "(Ȁ@' 2 " Ȁ"!! (Ȁ5%' 2 " ! 67467 O ED29B. ȀĀ ; ?AA 6746Ā 7!!!!!!!6!!!!!!!!Ā!!!!!!!!8!!!N!!J!!!!!!!!3!!!!!!!!Ȁ!!!!!!!5 !&, 2 "(Ȁ@' 2 " L Ā!!! #! U "( Ȁ@ Q RF%+!f!6777!\)+)&)ERF%+ \! Ȁ!C!M'A$ #(2#!N!%&!*)G)"+&)"+!&'*'/ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 184/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 185/451 X)+):%):' L)*;)+&%!K0$ @E#+;)F&% G* G# !&#-F "%G&'; 9 VV V? O M 9 O G B '!!> Ȁ * g!!!!!C G# O !&, !!!!!!!h I 9 2',#E';&%/ I( &'+%!K 0$ 67b CDE G 6b 345. 677< 2DE =/D Ȁ!$&&& Ȁ!ȀĀ B+'(1Ȁ40"*'(5(Ȁ DC 67< Q 6&&& , ,12 CDE ? 12 Ȁ##!/ 6< CU7!!!!!C57!!!!!!CȀ7!!!!!C37!!!!!CJ7!!!!!C87!!!!!CĀ7!!!!!C67 5!C!9F,0+;2%E)"+!OPQ!R! SOT!"*(#2#$&%/' CȀ7!!!!C37!!!!CJ7!!!!!C87!!!!CĀ7!!!!!C67!!!!!!7!!!!!g67!!!!!gĀ7!!!!g87 7/$ <) , i:_$j J7/$ +R" 2DE Ȁ##!/ U7/$ +R" 'R;k7 Ā3:_R/$ 6Ā7/$ 677#$Ȁ8"A4"<'()' A#F"+"(8(Ȁ K O ( "A#F"+"(8(Ȁ " / Ā Ā ? K ?Ā S$ *;%+ 0:&%!K0$!D9t Ȁ $538%)Ȁ-#18 M L) ,&'!\ (#/E#&1'!D9t Ā Ā"%"A8Ȁ-(#18 M @/;':&)"+!*);'( %A'1%2#t ' ,#*3%'@Ȁ)"M 63!C!Z)H#(#&+&%! "E#+;)F&%!"*(#2#$ &%/ TE#!#&'/% C!!!!!g \)+):%):% !!!!!!!h I " / O);'(%A'1%2't Ā " / K !e;#/+(%,&% Ā @E#+ ;)F&% )2',#E';&%/ "%G&'; " / Ā VVV? ! O Ā / @/;)*&%/ D 37R37 g " / Ā" / K Ā C!!!!h " / g!!!!!C _ K !!!!!!!h I D)/';&%!)"1%;'+)( X(#/E#&1't [TX_! DS@eM^ O ! Ā " / Ā" / K Ā" / Ā" / K Ā _O@Zp87!\) +)&)ERF%+ O !Ā G? " / Ā" / K H 9:K+#E'&2# !K0$'!D9s 6Ȁ!C!_';'&,&%!"E#+;)F&%!"*(#2#$&%/ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 189/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 190/451 @%$#+(%,&%! _O@Z![_%4OH'"#!@H%\ +!Z#]%&G^ [S#*'8(Ȁ 0#&#)< g!!!!!C Ā 2 '12 M M M 4 !!!!!!!h I % 4 4 !IȀIĀI'I"I#&&& GȀ B$Ȁ8 Ā G O ! " / Ā" / Ā L " Ā" / Ā Ā " / Ā Ȁ!"()* Y G "!(345 1 6U!C!T%\#(#&1%';&'!:#$ ):0;'1%2'!_O@Z O !G? " / Ā" / Ā H PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 190/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 191/451 `+%(%!#&'/# O);'(%A'1%2't \)+) :%):# @E#+;)F&% T#;%;&%/ @/;)*&%/ "%G&'; 37R37 37R37 " / % VVV? Ā Ā . Ā %K D O;'&'( &) (#/E#&1' g )*+%,&)!E#A2# #:\ % C!!!!h " / Ā " _ K T#;%;&%/ @/;)*&%/ D)/'; &% !)"1%;'+)( 37R37 37R37 % [TX_!DS@eM^ K Q%,#;&'!$ O)*('E#/!\(#/E#&1# Q E!1#&#&%!#;#/+( )&%/% &%,#;&#!$#:\( #/E#&1#s 6V!C!ZE':( '+0(&%! [NO@ZRN S< ^!"E#+;)F&%!"*( #2#$&%/ @/;)*&%/ P4TSLS!g!_PS@ !!!37R37 NO@Z % [NS< T#;%;&%/ Ā 37R37 P4 LJK> < G =Ā345 F),&% F),&% *'" *'" JM:" LM:Ȁ6 < G ="345 Ā7!C!`+%(%\'A&'!$):0;'1%2'!NO@Z![N0':( %4OH'"#!@H%\+! Z#]%&G^ ';%!NS, M Mq6Ā7 ȀĀ! Ā8!C!O(#/))1#'&"/%!/'F#;!6Ā7!/'&';)E!*)!677bF%+ R"!ĀaNS<6Ȁ O;'&'(& )!)*+%,&)!E#A2#!Scb ĀJ!C!Z(#+&%1#!A!E';)E):&)!('AE("+%+E#&)!"+(0/+0()! Sc b [S((']#:!c ' E#G0%:#!b('+%&G^ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 193/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 194/451 d%+ (%!E+%,&%!$ ):0;%!A'!e+H#(&#+ !w!&'2*)G)"+#2K#!+#H&%,&#!(#K%+ E#B Q'2*)G)"+ #2K'!$):0;'1%2'!OSODU0->ODU2->ODU3->ODU4->OTU4) znaša približno 4,7 μs in pri eno nivojskem multipleksiranju direktno iz ODU0 v ODU4 je zakasnitev približno 2,3 μs. Slika 2. Ciena platforma 6500 za realizacijo L1 OTN storitev Distribuirani prevezovalniki omogočajo uporabo funkcionalnosti OTN na vseh vozlišč v omrežju. Na trgu so na razpolago namenska ohišja za OTN prevezovalnik ali moduli za OTN prevezovanje, ki se vgrajujejo v več funkcijska ohišja. Tokrat je izbran modul OTN prevezovalnika z matriko velikosti 1,2 Tbit/s kar omogoča dva linijska signala kapacitete 400 Gbit/s in dva linijska signala kapacitete 200 Gbit/s. Izbira uporabniških vmesnikov je od Ethernet 1, 10, 25, 50, 100 Gbit/s, do SDH STM-1 in STM-4 ter OTN OTU-2 in OTU-4. Nadgraditev na večje kapacitete prenosa je enostavna z dodajanjem OTN modulov v ohišje. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 202/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 203/451 Omrežni sloj za procesiranje IP paketov Pomen in funkcionalnosti enega od treh slojev so se v zadnjem desetletju večkrat spreminjali. Od uporabe vseh treh slojev do uporabe IPoWDM (Internet Protocol over Wavelength Division Multiplexing). Argumentov za uporabo samo dveh slojev pri IPoWDM je kar nekaj. Zagovorniki takšne rešitve pogosto omenijo, da gre za poenostavljeno arhitekturo saj so se znebili enega sloja. Morda je naključje, da so se znebili sloja, ki bi lahko imel najbolj pomembno vlogo pri transportnih omrežjih. Naj še enkrat omenim dve ključne funkcionalnosti, ki naj bi jih transportno optično omrežje vsebovalo: multipleksiranje in prevezovanje signalov v digitalni hierarhiji. Brez OTN električnega sloja transportno omrežje tega ne zmore in je naslednji korak integracija sloja IP usmerjanja v integralno napravo. V bistvu gre za hrbtenični usmernik z linijskimi vmesniki visoke hitrosti. Tukaj se postavi vprašanje smiselnosti procesiranja posameznih IP paketov na modulu, ki zagotavlja linijsko kapaciteto recimo 400 Gbit/s. Pri tem gre za regionalno omrežje, pri katerem je statistika prometa za razliko od LAN omrežja predvidljiva in prometne poti določene s strani operaterja. S tem funkcija statističnega multipleksiranja zgubi na pomenu. Iz izkušenj vodilnih operaterjev je ugotovljeno, da večina prometa v tako realiziranem regionalnem omrežju poteka med linijskimi vmesniki. Kar pomeni, da je večina funkcionalnosti procesiranja signala IP usmernika paketov neuporabljena. V nekaterih hrbteničnih omrežjih, recimo ‘backhaul’ omrežja 5G je funkcionalnost IP usmerjanja nujna zaradi zagotovitve prilagodljivosti različnim storitvam. V ‘midhaul’ omrežju 5G zadostuje prilagodljivost, ki jo ponudi sodobna distribuirana OTN funkcionalnost. V predlagani arhitekturi so funkcionalnosti na optičnem WDM sloju, OTN električnem sloju in sloju IP usmerjanja realizirani v ločenih napravah. Prvi pomembni argument za takšno razdelitev funkcionalnosti je naslednji. Smo priče hitremu spreminjanju protokolov, ki se uporabljajo v regionalnih IP omrežjih. Različne verzije Multiprotocol Label Switching – MPLS, od IP/MPLS, preko MPLS-TP(Transport Profile) do najbolj obetavne različice, ki uporablja Segment Routing na osnovi MPLS funkcionalnosti se uporabljajo v 5G omrežjih. ‘Življenjsko okno’ IP usmernikov je krajše kot ‘življenjsko okno’ transportnih naprav v optičnih regionalnih sistemih. Tehnologija WDM se najbolj počasi spreminja. Drugi argument je kibernetska varnost sistema. V napravah, ki uporabljajo IP pakete pri prenosu vedno obstaja možnost skritih ‘vrat’ ali poti za dostop do kritičnih funkcijskih blokov naprav iz omrežja. Sodoben NMS kot nujni pogoj učinkovitega in zanesljivega delovanja omrežja Lastniki omrežja, ki se uporablja za delovanje kritične infrastrukture ali so ponudniki javnih komunikacijskih storitev želijo poenostaviti, pospešiti in avtomatizirati omrežne postopke-procese. Nekateri proizvajalci komunikacijske opreme že imajo komunikacijske naprave na posameznih nivojih integrirane v centralni nadzorni sistem (Network Management System) in je možna sledljivost in kreiranje storitev iz enega NMS centra. V primeru izbire različnih proizvajalcev za naprave na različnih nivojih omrežja se naprave drugih proizvajalcev integrirajo v NMS sistem, ki je najbolj razvit. Danes so najbolj razviti nadzorni sistemi, ki uporabljajo Software-Defined Networking (SDN) z domenskim krmilnikom. Sodobni domenski krmilnik z večslojnim SDN nadzorom infrastrukture in storitev v kombinaciji z integriranim spletnim načrtovanjem in optimizacijo s pomočjo "ene same steklene plošče" GUI (Graphical User Interface) zagotavlja planiranje, nadzor, krmiljenje in konfiguracijo storitev v omrežju. Tako je mogoče operativne poteke dela od začetka do konca zaključiti izjemno učinkovito. Omrežnim operaterjem se ni treba učiti in iskati podatke po različnih orodjih za ločene tehnološke plasti omrežja. Sodoben SDN center zagotavlja enoten pogled na optično, optično transportno (OTN) in IP usmerniško omrežje. Omogočeno je kreiranje PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 203/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 204/451 Slika 3. SDN nadzorni sistem za integralni nadzor storitev v omrežju Sklep Podana je rešitev regionalnega transportnega omrežja, ki se lahko prilagaja pomenu, namenu in obsegu omrežja skozi čas. To je doseženo z ločenimi gradbenimi elementi za posamezne OSI ( Open Systems Interconnection model) nivoje. Poudarek je na uporabi funkcionalnost na nivoju OTN električnega procesiranja signala. V slovenskem prostoru ni potrebe po večji uporabi ROADM (Reconfigurable Optical Add Drop Multiplexer) elementov. S tem se poenostavi arhitektura na optičnem sloju omrežja in nadzor ter konfiguracija storitev na različnih nivojih OSI modela v omrežju. IP usmerniška funkcionalnost se uporabi v tistih segmentih omrežja kje je to optimalno. OTN tehnologija procesiranja elektronskega signala vsebuje funkcionalnosti, ki zagotovijo učinkovito in prilagodljivo ponujanje storitev v regionalnih transportnih omrežjih. Tehnologiji OTN v regionalnih omrežjih je zagotovljena prihodnost, saj omogoča varen, zanesljiv in učinkovit način za prenos velikih količin podatkov na velike razdalje. Prav tako je verjetno, da se bo tehnologija OTN sčasoma še naprej razvijala in izboljševala, v cilju prilagoditve sodobnim in novim komunikacijskim storitvam. Avtor: Klaus Samardžić https:/ si.linkedin.com/in/klaus-samardzic-86a9201a Viri: https:/ chat.openai.com/auth/login https:/ www.oiforum.com https:/ www.itu.int/en/ITU-T/Pages/default.aspx https:/ www.3gpp.org PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 204/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 205/451 Next generation optical access networks, automation of testing procedures, complete visibility in QoE and QoS Alfonso Domesi, Vratislav Blažek EXFO alfonsko.domesi@exfo.com vratislav.blazek@exfo.com Abstract evolution of transmission technologies, from the voice Each home, school, business, or customer has frequency analog modem to the current G.fast and different requirements regarding upstream and optical fibers interfaces. He currently holds the position downstream broadband speeds delivered over of EMEA Business Development Manager, with a dedicated focus on assessing new markets and fiber—from essential to ultra-fast. Service technologies for EXFO’s Physical Layer product providers are deploying both next-generation (XG- portfolio. PON, XGS-PON, 10G-EPON, and NG-PON2) and legacy (GPON, EPON) passive optical Vratislav Blažek has technologies to provide the right requested speed international executive record by overlaying multiple new wavelengths on of working for telco, existing fibers. The coexistence of multiple services multinational test and becomes challenging for field technicians because measurement solution and for each stage of the network lifecycle— services companies and deployment, activation, and troubleshooting—the technology suppliers. His specialties are test & correct tools and techniques can differ. Last but measurement, telco transport technologies, not least, automation and service monitoring are wireless 2G, 3G, LTE, IT software and service becoming more and more important as society is industry for technology suppliers in CEE, Russia & increasingly dependent on high-quality services. CIS Region. His current position is Regional Sales This session examines the latest trends in PON Manager at EXFO inc. for Eastern Europe, Russia technologies and techniques for deploying and & CIS. He finished Czech Technical University maintaining these fiber optic networks as and received grade dipl. ing. in efficiently as possible. Telecommunication Engineering. Authors' biography Alfonso Domesi started his career in the telecommunications market in 1991 as a hardware and software development engineer. Over the years, he has tracked the PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 205/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 206/451 NEXT GEN OPTICAL ACCESS Ljubljana, 26th January 2023 Vratislav Blazek Regional Sales Manager Alfonso Domesi Business Development Manager - EMEA 35+ 100+ No.1 The test, years of pioneering inventions in optical test essential solutions protected by solutions and technologies patents monitoring & analytics experts 1,900 95%+ employees in 250+ 25 countries assurance of leading and customers systems deployed service providers in 120 countries using EXFO © 2022 EXFO Inc. 20210125 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 206/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 207/451 T&M portfolio Intelligent and automated solutions Lab, manufacturing Physical layer Transport and Field test automation and research field testing datacom testing and software © 2022 EXFO Inc. 20210125 3 1 PON overview Agenda 2 Anatomy of the FTTH infrastructure 3 Best practices and recommended MOPs © 2022 EXFO Inc. 20210125 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 207/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 208/451 PON overview © 2022 EXFO Inc. 20210125 5 PON Overview Source: Ovum © 2019 EXFO Inc. 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 208/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 209/451 PON Overview 10G PON vs GPON GPON XGS-PON NG G PON2 EPON 10G G EPON Standards ITU-T G.984 ITU-T G.9807.1 ITU-T G.989 IEEE 802.3ah IEEE 802.3av Residential 5G DS/US Data Rates 2.4 / 1.2 10 / 10 40 /10 1.25 / 1.25 10 / 10 S Mobile Mo m bile all Cells (Gbps) Front Fron h t a h ul au Splitter Ratio Up to 64 Gi G gE g /1 / 0 1 Up to G 0 i G 1gE g 28 Up to 128 Up to 64 Up to 128 Data Center Downstream (DS) λ 1490nm ±10 1577nm +2/-3 1596-1603nm 1490nm ±10 1577nm +2/-3 Interconnect Busines iness Upstream (US) λ 1310nm ± 20 Se S rvi v c ic 1270nm e ervice ± s 10 1524-1544nm 1310nm ± 20 1270nm ±10 © 2022 © E 2022 XFO I O n I c nc. All rights t r s rese serve v d. d. 7 1260 1360 1460 1530 1565 1625 1670 Original Extended Short Conventional Long Ultralong O E S C L U CWDM 1 18 10G / 10G DWDM 200G / 100G NG-PON2 40G / 10G 1G-EPON1 1.25G / 1.25G G-PON 2.5G / 1.25G 10G/1G-EPON 10G / 1.25G 10G/10G-EPON 10G / 10G XG-PON1 10G / 2.5G XGS-PON 10G / 10G 25GS-PON 25G / 25G Video overlay RFoG Water peak Monitoring 7 4 4 2 7 5 6 3 44 1524 1544 1577 1596 1603 1260 1271 1280 1286 1290 1300 1310 1330 1358 1371 1383 1391 1411 1480 1490 1500 1521.017 1527.994 1550 1567.952 1577.025 1600 1605.744 1611 1620 1650 1670 O (in nm) h1 h72 h62 h12 h 1 h18 -C -C -C -C -C -C CW DW DW DW DW CW CWDM (coarse wavelength division multiplexing ) – G.694.1 - G.671 – ITU grid G.694.2 DWDM (dense wavelength division multiplexing ) – G.671 – ITU grid G.694.1 40G NG-PON2 - G.989.2 25GS-PON – ext of G.9807.1 Upstream Downstream ©2021 EXFO Inc. 20210237 8 XGS-PON - G.9807.1 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 209/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 210/451 1260 1360 1460 1530 1565 1625 1670 Original Extended Short Conventional Long Ultralong O E S C L U CWDM 1 18 10G / 10G DWDM 200G / 100G NG-PON2 40G / 10G 1G-EPON1 1.25G / 1.25G G-PON 2.5G / 1.25G 10G/1G-EPON 10G / 1.25G 10G/10G-EPON 10G / 10G XG-PON1 10G / 2.5G XGS-PON 10G / 10G 25GS-PON 25G / 25G Video overlay RFoG Water peak Monitoring 7 4 4 2 7 5 6 3 44 1524 1544 1577 1596 1603 1260 1271 1280 1286 1290 1300 1310 1330 1358 1371 1383 1391 1411 1480 1490 1500 1521.017 1527.994 1550 1567.952 1577.025 1600 1605.744 1611 1620 1650 1670 O (in nm) h1 h72 h62 h12 h 1 h18 -C -C -C -C -C -C CW DW DW DW DW CW CWDM (coarse wavelength division multiplexing ) – G.694.1 - G.671 – ITU grid G.694.2 DWDM (dense wavelength division multiplexing ) – G.671 – ITU grid G.694.1 40G NG-PON2 - G.989.2 25GS-PON – ext of G.9807.1 Upstream Downstream ©2021 EXFO Inc. 20210237 9 XGS-PON - G.9807.1 G-PON & XGS-PON Overlay 1550nm 155 1550nm 0 1490nm 149 4490nm 1577nm 157 1577nm With new services using higher O, the use of 1650nm for testing purpose is more important than ever © 2022 EXFO Inc. All rights reserved. 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 210/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 211/451 What about 25G PON? 25GS-PON MSA Group © 2022 EXFO Inc. All rights reserved. 11 Anatomy of the FTTH infrastructure © 2022 EXFO Inc. 20210125 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 211/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 212/451 FTTH PON - infrastructure ONT & ONU designate the same element • ONT is an ITU-T term • ONU is an IEEE term User Optical Network Terminal ONT cables Optical Line Terminal Splitter 1:x switches OLT ONT repeaters Splitter 1:y wireless CO Router F1 - Feeder F2 - Distribution Drop Upstream Downstream Optical Distribution Network (ODN) FTTH Copper/WiFi G-PON (1G) and/or XGS-PON (10G) 100M/1G & WiFi 2.4/5 1310 1490 1270 1577 © 2022 EXFO Inc. 20210125 13 Key Physical Parameters © 2022 EXFO Inc. 20210125 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 212/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 213/451 FTTH PON - Critical parameters Loss Budget It is critical to minimize the loss (attenuation) across the fiber cable and components. For every 3dB of loss you suffer a 50% penalty. Connector cleanliness Loss Power Loss Power Macrobend % Remaining Optical Splitter % 0.10 dB 2% 98 % 0.20 dB 4.5% 95.5% ONT OLT Connector Reflection 0.5 dB 11% 89% Splice IL (ORL) 1 dB 19% 79% 3 dB 50% 50 % 6 dB 75% 25 % Non reflective events inducing high loss depending on 10 dB 90% 10 % the ratio 20 dB 99% 1 % 30 dB 99.9 % 0.1 % 40 dB 99.99% 0.01% 50 dB 99.999 % 0.001 % © 2022 EXFO Inc. 20210125 15 Optical Splitter Optical Splitter Classic symmetrical splitter Special unbalanced splitter Choice based on the network design and topology Splitter 1:4 ~2dB Expansion ~7dB ~7dB Same building ~16dB ~7dB ~16dB ~7dB ~16dB First building Splitter 1:4 ~16dB Splitter 70:30 © 2022 EXFO Inc. 20210125 16 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 213/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 214/451 Attenuation - Intrinsic Extrinsic Wavelength dependent. Caused by outside influences ences Absorp o ti rp on Bac Ba k c sc k a sc t a te t r • Microbend • Macrobend Laser • Splices Source • Fiber Endface Connection Connectors - Loss Splicing Misalignment Mismatch © 2022 EXFO Inc. 20210125 18 Macrobends Going towards Next GPON technologies, it becomes even more important as the wavelengths used are higher and therefore more sensitive to macrobending. 3x Bending Loss Increase Type of fiber © 2022 EXFO Inc. 20210125 19 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 214/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 215/451 Optical Return Loss – ORL What if you have excess ORL? NOISE! HIGH LOW ORL is span reflection Reflection is the measurement of reflection at a single point such as a connector. We want -40dB or better. -50dB is better than -40dB. © 2022 E © 2020 XFO I O n I c. All rights t s rese s rve v d. 20 Reflection vs ORL Reflection ORL Light Is Reflected at Each End Face ORL is the reflected light that returns to the source. TX RX Glass Air Glass UPC APC Optical Return Length ORL <-55dB Reflection <-65dB Reflection Loss of Single 1 Meter 70 dB 0.001% return 0.0001% return Mode Fiber vs 10 Meters 60 dB Length 100 Meters 50 dB 1000 Meters 40 dB Infinity 32 dB © 2022 EXFO Inc. All rights reserved. 21 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 215/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 216/451 Best practices and recommended MOPs © 2022 EXFO Inc. 20210125 22 Optical fiber is fragile and assembling multiple 1 4 pieces together increases risk of problems and network failures To characterize the fiber link with its multiple 2 connection points in order to ensure networks important are future-proof reasons To ensure that transmission-system requirements 3 for testing are met (design, loss budgets, standards, etc.) To avoid delays during system turn-up, 4 and costly repeat jobs © 2022 EXFO Inc. 20210125 23 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 216/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 217/451 Testing strategy for a quality deployment FTTH deployments 1 2 3 4 Connector endface Fiber-link Link verification and Speed test cleanliness characterization Service activation verification Fiber inspection scope iOLM/OTDR/OFM PM, Optical Fiber Multimeter Service tester © 2022 EXFO Inc. 20210125 24 What’s inside tech’s toolbox? B A Measurements Test equipment Inspection of the connector Fiber microscope (FIP) Insertion loss (IL) OTDR/OFM1/OLTS Distance OTDR/OFM1/OLTS2 Splice and connector’s attenuation OTDR/OFM1 Splitter presence and functionality OTDR/OFM1 Connector’s return loss (RL) OTDR/OFM1 Fiber optical return loss (ORL) OTDR/OFM1/OLTS2 Level of received power PM/OFM Speedtest Service tester 1OFM is the new Optical Fiber Multimeter category launched by EXFO. 2EXFO OLTS tool provides fiber length and ORL values too. © 2022 EXFO Inc. 20210125 25 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 217/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 218/451 1 Optical connectors: the weakest point Why are connectors dirty or Real y sensitive to dust and skin oil damaged? Mishandling: Everyone handling fiber optic should be properly trained on how to manipulate them to avoid contamination Plastic covers: Well protected connectors can be contaminated by their own dust cap due to electrostatic. Even new connectors must be inspected. © 2022 EXFO Inc. 20210125 27 1 Optical connectors: the weakest point Dirty connectors are ar the no.1 cause of f network failures DAMAGED = REPLACE Cleaning a damaged connector is worthless! Replace the connector if damage is critical In a P2MP environmen ironme t nt, 1 damaged/dirty y conne co c nne tor = or = 8+ connections s a ffe aff c e t c ed ed © 2022 © 20 E 22 EXFO I O n Inc. 20210125 . 20210125 28 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 218/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 219/451 1 Optical connectors: the right inspection tool ONT DWDM Aggreg ROADM router OLT Fiber connector inspect pection on A fiber inspection scope is the only tool that EXFO FIP-500 can help technicians validate connectors and make the right decision. In a multi-fiber installations, optical performance, accuracy and repeatability are Accurate & Zero-button Easiest tip more important than ever. repeatable automation swap FIP-500 © 2022 EXFO Inc. All rights reserved. 29 What is an OTDR? OTDR = Optical Time Domain Reflectometer Laser Coupler Connector Definition Detector An OTDR is a complex device that: 1. Sends a pulse of light toward the fiber under test Control er and data 2. Detects and measures difference between the launching time and analysis the time of arrival of the returned signal OTDR operation Display 3. Determines the distance between the launching point and the event 4. Displays the received data for further analysis An OTDR uses the Rayleigh scattering and Fresnel reflection effects that are present in an optical fiber link. © 2022 EXFO Inc. 20210125 30 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 219/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 220/451 OTDR approach. Complex task... OTDR setup changes depending on the event that we want to characterize. Testing > Setting the correct parameters Result > Understanding the details What length? For how long? ? ? ? What is the best pulse width (PW)? • Short PW - Best resolution but low dynamic Advanced reflectometry: Dynamic and automatic multi- • Long PW - Low resolution but large dynamic pulse acquisitions, tailored to the measured link and device specs © 2022 EXFO Inc. 20210125 31 2 Fiber-link characterization Testing through Splitter: iOLM Optical Splitter ONT OLT Suggested testing direction Receive cord OTDR PON optimized OTDR is the preferred EXFO MAX-730C technology to characterize each element, and locate anything potentially impacting total budget loss (dB), such as macrobends, splices, bad connectors, fiber breaks, etc. Important to select a device that handles unbalanced splitters in reliable, easy and quick mode. © 2022 EXFO Inc. 20210125 32 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 220/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 221/451 3 Last Mile Fiber Verification Optical Splitter ONT OLT In a live testing with service overlay, it is important to use a filtered test equipment. The OX1-PPM allows you to measure the power level of the single service and verify the fiber without any service disruption. Optical fiber multimeter (OFM) What if you can use a single tool helping the technician EXFO OX1 in the verification and troubleshooting process during instal ation and activation processes? Power Loss ORL Length Splitter ONT check detection © 2022 EXFO Inc. 20210125 33 Best Way to Drop a Fiber to the Home Va V lidat alid e at all e wa w y a do d w o n w t n o t o basement b an asement d an d gu g aran uara te ntee: e 1 2 3 Horizont izon a t l cabling lin Good conne Good c c onne t c or in or i opt p ica c l a outlet e in Ha in allway Liv Li i v ng ng uni un t 1 it 1 Poin P t of oint of Entry Entry Decrease of expert network engineer's involvement in simple Ris Ri e sers r i s n i 80% No Break in r side e t he living g u g nit n it cond conduit ui t B2B tasks = more time for serious or ou o ts r ou ide 2 tside 2 wall wa s ll problems* No Bad a splice nor fa r u fa ltlt left in the living g unit bu t t al t a so in i fu f l pa l th pa wa w y a up to up to Patch Patc pan h p e an l i el n in MTR MTR base ba m se e m nt e 3 Feeder Feeder *Data from a survey done with a group of OX1 users. © 2022 EX E F X O O Inc. c Al ri l gh ri ts s rese s rved. d 34 34 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 221/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 222/451 3 Service Activation Scenario Possible Testing Scenario Validate Power Cross Connect Fiber Level -27dBm or Typical xPON Link better ONT Validate Validate Terminal Splitter Service Activated! Terminal Splitter Slack Verify continuity OX1 test from home to Splitter OX1 verify power level at Splitter © 2020 EXFO Inc. All rights reserved. 35 Maintenance & Fault Finding Scenario Measure ORL Measure po Run Link Maw p e p r er (noise) =>25dB Po P ssible Testing Scenario level wi . (bet th Splw i een tter Was a splitter (higher value is -11 and det -27d ectio B n m) detected? less noise) Typical xPON Link Measure power ONT level. Val V ildat d e t mechanical connection Sp S litter Splitte Splitter Spplitter Slack OX1 test from home to Splitter © 2020 EXFO Inc. All rights reserved. 36 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 222/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 223/451 4 Service activation: speed test Service tester EXFO EX10 Final verification of available speed rate and Wi-Fi coverage needs a dedicated service layer tester that uses standard Ookla speedtest to align with real customer expectation. The tester must be able to run the test over copper Ethernet port, GPON and XGS-PON interfaces, and Wi-Fi up to 6/6e standard. EXFO EX10 Multi-gigabit port (up to 10G) is a must to verify the full service. © 2022 EXFO Inc. 20210125 37 New technologies 1 New adoptions can lead to new problems that require the right experiance Fiber characterisation and connector inspection Conclusion 2 lead to a trouble-free deployment Fol ow industry best practices and standards & comments Proper testing tools and MOPs can help in 3 deploying quality FTTH networks with time and cost efficiency Choosing intelligent apps not only accelerates deployment but makes it more reliable for you and most importantly – your customers © 2022 EXFO Inc. 20210125 38 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 223/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 224/451 RFTS /FMS uses cases FTTX QUALITY NEW CUSTOMER SELF-INSTALL FAULT ISOLATION REAL-TIME FIBER ASSURANCE ACTIVATION READINESS AND REPAIR MONITORING • Birth certificate • Audit P2P links (F1, F2s) • Verify link availability • Enables testing from • 24/7 proactive • Actual link loss vs and quality from the NOC/SOC monitoring • Audit PON links (e2e budgeted desk access) • Ticket issued to the • Flags issues, • Troubleshooting on the • Self-install quality proper resource– based degradation and • Birth certificate of spot assessment on measurements for security issues (tapping) network upon intelligent dispatch contractor handoff • Proof of activation and • Proactive Service ties to the service • Ad-hoc testing for fiber Assurance for • Flags fraudulent testing address (when techs with mobile app improved customer • Compare plan with build integrated) experience QA Build Turn-Up Monitor & troubleshoot Network lifecycle RTU-2 related Hardware Monitorr TAM kit 1U Couple OTDR testing and live traffic Scale RTUe-9120: Optical switches: 2U c Scale testing capacity up to 1024 links (256/switch) Test RTU-2 : Remote test unit 1U c Modular platform controlled via cloud- c native system (FMS) for PON/P2P links PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 224/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 225/451 Cloud-native architecture Unleash EMS control – Integrated d workflowss with Microservices Nova Fiber Nova Fiber Third party Roadmap User interface Web client mobile app OSS GIS Web UI Mobile app (client) RESTful API Third-party Inventory-GIS Messaging+results+alarms+… Micro-services (IQGeo, OSP insight) Test functions Fiber Guardian (P2P) RTU-2 (P2P+PON) FTTx Build and Connect Test 1 F1 feeder baselining Test 22 Splitter characterization Test 3 Di D stribution to Drop terminal Test 4 Drop cables to ONT (E2E) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 225/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 226/451 FTTx Build and Connect The Nova Fiber mobile application enables tech to remotely access OTDR testing capabilities via the cloud-native central controller. The high-reflection demarcation filters leaves a signature on the OTDR trace that allows location of the tester. Field testing FMS mobile application Topology service REST API (typ with operator vpn) FMS Optical switch Optical test head (OTH) - OTDR w/ permanent HRD 100% fault detection and isolation FTTx Monitor & Troubleshoot Detect fiber faults and degradations automatically and accelerate MTTR. Alarms are defined by the system administrators according to severity, degradation value or a combination of customizable thresholds. Monitoring test Baseline (link events, loss, lengths ..) (link events, loss, lengths ..) FMS PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 226/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 227/451 Monitoring with Open source Deviation in reflectance (e.g.,open terminations) Nova Fiber Mobile _1/2 Nova Fiber mobile application Field technicians remote-testing tool Nova Fiber mobile application empowers field technicians to remotely trigger OTDR testing. This is orchestrated via the central server (FMS). From E2E link loss measurements, to link continuity, OTDR link characterization is accessible at the touch of a button with contextual diagnostics available for users on the spot. High-reflection demarcation testing main topic of release 7.6 Toned signal can also be triggered with the mobile app to verify Field Technician Nova Fiber HRD that the technician is working on the right fiber (Live fiber mobile detector needed). Ideal for managed services Link loss (E2E) Nova Fiber mobile enables multiple instances of connection and authentication, ideal for managed services Link length Link Pass/Fail status PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 227/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 228/451 Nova Fiber Mobile _2/2 Mobile app client functionalities Test any connectorized interface onto a PON • Menus • Search routes or terminals • Single action for testing • Pass status with values • Configurable FAIL based on calculated budget loss or fix value (e.g., 30dB) Thank you! Alfonso Domesi Vratislav Blazek alfonso.domesi@EXFO.com vratislav.blazek@exfo.com PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 228/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 229/451 Optično vlakno kot senzor Optical fibre as a sensor Uroš Petrič MI-line, d. o. o. uros.petric@mi-line.si Povzetek popotovanju in poje v pevskem zboru. Trenutno je Prispevek povzema osnovne lastnosti delovanja in zaposlen v podjetju MI-line d.o.o., kot vodja projektov. področja uporabe optičnega vlakna kot tipala. Author's biography Predstavljena je rešitev podjetja Prisma Photonics. Uroš Petrič was born in 1971 in Ljubljana. After Kot primer uporabe je prikazana rešitev za graduating in the field of telecommunications at the detekcijo padajočega kamenja na Slovenskih Faculty of Electrical Engineering of the University of železnicah. Ljubljana, he began his professional career in the field of analog and digital PMR systems. He participated in Abstract the TETRA pilot system (MNZ RS), and was also the This paper summarizes the basic performance head of the AIS project for the needs of monitoring characteristics and areas of application of optical shipping traffic in the northern Adriatic Sea (Maritime fiber as a sensor. The Prisma Photonics solution is Administration of the RS). In addition to radio systems, presented. As an example of use, a solution for the he also worked with optical transmission systems, detection of falling stones on the Slovenian application solutions for mobile operators and Railways is shown. measurement technology during his career. In his spare time, he enjoys hiking, traveling, and singing in a choir. He is currently employed at MI-line d.o.o. as a project Biografija avtorja manager. Uroš Petrič je rojen leta 1971 v Ljubljani. Po diplomi s področja telekomunikacij na Fakulteti za elektrotehniko Univerze v Ljubljani, je začel svojo poklicno kariero na področju analognih in digitalnih PMR sistemih. Sodeloval je pri pilotnem sistemu TETRA (MNZ RS), bil je tudi vodja projekta AIS za potrebe nadzora ladijskega prometa v severnem jadranskem morju (Uprava RS za pomorstvo). Poleg radijskih sistemov se je na svoji poklicni poti ukvarjal tudi z optičnimi prenosnimi sistemi, aplikativnimi rešitvami za mobilne operaterje in z merilno tehnologijo.V prostem času uživa v pohodništvu, PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 229/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 230/451 • • • •• • • PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 230/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 231/451 Since 2017 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 231/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 232/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 232/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 233/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 233/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 234/451 uporabe ••••••• PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 234/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 235/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 235/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 236/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 236/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 237/451 •••• •••• Železniška postaja Laze PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 237/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 238/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 238/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 239/451 Višina Železniški Sistemski Detekcija Test# Teža (kg) (m) Cestni promet promet Datum čas signala 2.1 10 4 DA NE 20.09.2022 12:34:09 DA Železniški Višina Železniški Sistemski Detekcija Test# prag (m) Cestni promet promet Datum čas signala 2.1 1 4 NE DA 20.09.2022 12:48:14 DA Vlak Prag PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 239/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 240/451 Linijsko merjenje temperature z optičnimi vlakni v industriji Line temperature measurements with optical fibers in industrial applications Gorazd Mandelj GM Projekt, d. o. o. gorazd@gmprojekt.si v Povzetek liceniran varnostni menedžer in pooblaščeni inženir V prispevku je prikazan osnovni princip delovanja varnostnih sistemov s strani MNZ in IZS. Na povabilo optičnega vlakna kot senzorja temperature. zbornice ZRSZV je tudi strokovni predavatelj sistemov Prikazano je nekaj najbolj splošnih področij tehničnega varovanja za različne nacionalne poklicne kvalifikacije varnostnega osebja. uporabe iz industrije ter implementirana rešitev v avtocestnih predorih v Sloveniji. Author's biography Gorazd Mandelj graduated from the Faculty of Abstract Electrical Engineering in Ljubljana in 1998 and The lecture shows the basic principle of operation received his master's degree in 2005 in the field of iris of an optical fiber as a temperature sensor. Some recognition biometrics. After holding managerial of the most general areas of use from industry are positions in project management and management in shown, as well as an implemented solution in different companies until 2014, he is now employed in motorway tunnels in Slovenia. his own company GM PROJEKT d.o.o., where, in addition to project management, safety engineering with risk assessment and consulting, he also deals with high-Biografija avtorja tech solutions in the field of iris recognition biometrics Gorazd Mandelj je na Fakulteti za and line temperature measurement. Gorazd Mandelj is elektrotehniko v Ljubljani a certified expert in the field of biometrics and in line diplomiral leta 1998 in magistriral temperature measurement by the international leta 2005 s področja biometrije companies, and licensed Safety Manager and razpoznavanja očesne šarenice. Po authorized Safety Systems Engineer by MNZ and IZS. vodstvenih pozicijah projektnega Upon the invitation of the ZRSZV chamber, he is also an vodenja in menedžmenta v gospodarstvu do leta 2014, expert lecturer on technical security systems for various je sedaj zaposlen v lastnem podjetju GM PROJEKT national professional qualifications of security d.o.o., kjer se, poleg projektnega vodenja, varnostnega personnel. inženiringa z ocenjevanjem tveganj in svetovanja, ukvarja tudi z visokotehnološkimi rešitvami s področja biometrije razpoznavanja očesne šarenice in linijskega merjenja temperature. Gorazd Mandelj je certificiran strokovnjak za področje biometrije in linijskega merjenja temperature s strani mednarodnih podjetij, ter PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 240/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 241/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 241/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 242/451 sto Jak PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 242/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 243/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 243/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 244/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 244/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 245/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 245/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 246/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 246/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 247/451 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 247/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 248/451 Fiber Sensing technologies for Critical Infrastructure monitoring Milorad Sarić IBIS Instruments milorad.saric@ibis-instruments.com Abstract Distributed Fiber Optic Sensing presents a different use of optical fiber. Fiber is traditionally used as telecommunication medium, but with this technology it converts into thousands of virtual sensors. The underlying solution leverages specific Optical Time Domain Reflectometer technology to sense subtle changes in the fiber optic cable index of refraction that is a result of changes in the cabling temperature, vibration and/or lateral strain. Numerous applications range across industries and allow early detection and location of fiber aging, overstressed cable detection, pipeline leakage, hotspot/icing, ground movement impact, third party intrusion, electrical arcing or flashover. Author's biography Milorad Sarić is technical support engineer with 15 years’ experience in presales and postsales support of test and measurement solutions. He is employed at IBIS Instruments since 2018. He is member of IBIS technical T&M team and responsible for wireline communications solutions (Access Copper, CATV and Optical Networks) and General-Purpose instruments. Milorad graduated in 2007. at the Faculty of Electrical Engineering in Belgrade. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 248/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 249/451 Fiber Sensing technologies for Critical Infrastructure monitoring Miloradd Sarić Technicall supportt forr Wirelinee portfolio Januaryy 2023 Agenda OTDRss & & Opticall Fiberr Sensing Monitoringg applicationss andd Hardware DTSS basics Strainn measurementss overr installedd telecom m networks Cable Health Monitoring - Use Cases PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 249/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 250/451 OTDRs & Optical Fiber Sensing Distributed Fiber Optic Sensing: A different use of fiber Optical fiber as an array of thousands virtual sensors Jan-23 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 250/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 251/451 OTDRs & Optical Fiber Sensing Using standard Single optical fibre: Pulses of light are sent The Backscattered light is received The backscatter is interrogated for: Fibre Changes in characteristics is the Caused by external stimulus Sensor OTDRs & Optical Fiber Sensing Rayleigh Anti-Stokes Stokes Brillouin DTSS Raman Brillouin DTS Raman TNHN TNHN TN |1445nm |1549,91nm |1550,09nm |1655nm 1550nm Wavelength(nm) Distributed Fiber Optic Sensing derived from OTDR using Direct or Coherent technologies Rayleigh OTDR o Fiber Monitoring - Loss, Reflections & Failures Raman OTDR o Distributed Temperature Sensing (DTS) Brillouin OTDR o Distributed Temperature & Strain Sensing (DTSS) Coherent Rayleigh OTDR o Distributed Vibration/Acoustic Sensing (DVS/DAS) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 251/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 252/451 Monitoring applications and Hardware Passive sensor : The sensor is just the fiber • Advantages 9 Just light sent into the sensing fiber from one side ( interrogator can be at several km from the sensing area. Fiber sensor doesn’t need any electrical sources 9 One fiber cable becomes a sensor , enabling monitoring on a truly distributed basis 9 Immune to radiation, EMI , ESD , … ( Optical fiber ) 9 Compatible with ATEX zone (ATmospheres Explosives). 9 Compatible with harsh environments ( dust, …) • Some examples of applications in Process Productivity & Safety : � Process temperature monitoring � Pipe & tank monitoring ( liquid & gas storage where leakage is not an option) � Structural monitoring, ground movement detection � Early detection of overheating, hot spot or fire � Power cable temperature monitoring PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 252/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 253/451 Monitoring applications and Hardware Distributed Temperature Sensing (DTS) Buildings & Infrastructure Fire Detection Pipelines Leak Detection Power Cables Hot Spots | Depth of Cover | RTTR/Ampacity | Smart Grid Oil Wells Downhaul Process Monitoring | Thermal oil recovery | Reservoir monitoring Distributed Strain & Temperature Sensing (DTSS) Buildings, Bridges, Pipelines Pile Load | Structural Health Monitoring | Seismic areas Mining & Tailings Dams/Dikes Landslides Monitoring Power & Telecom Cables Asset Health Monitoring |Overstressed fiber identification/Fiber aging/Icing Monitoring applications and Hardware Distributed Acoustic Sensing (DAS) Power & Telecom Cables Asset Protection/TPI/Excavation | Electrical arcing/Flashover | Anchor Drag (subsea) Pipelines Pipeline Integrity Management | Leak Detection | Hot Tapping | PIG Tracking Equipment health Electrical SubStation & Three-phase switch Monitoring | Fan/Conveyor belt Operations Security Perimeter Security | Border Security Smart Cities Intelligent Transport (Rail, Road, …) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 253/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 254/451 Monitoring Solution Automatic Monitoring & Alarm Management Optical Fault Location sent to the technician by Email Maintenance ONMSi Server X Monitored Fiber Jan-23 DTSS basics PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 254/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 255/451 Optical Time Domain Reflectometer (OTDR) Regular OTDRs measure all backscattered radiation without filtering the spectrum Laser Pulses Optical Fiber Backscattered Light Pulse generator Laser Diode Fiber under test Coupler I/O Connector Time Base 0.2dB/km @ 1550nm t Photodiode A/D G DSP Converter Amplifier to CPU & interfaces distance Jan-23 Distributed Temperature & Strain Sensing (DTSS) Brillouin OTDR (B-OTDR) Laser Pulses Anti-Stokes Optical Fiber Rayleigh Stokes Backscattered Light Rayleigh Anti-Stokes Stokes Brillouin Brillouin T y T y H y H y |1549,91nm |1550,09nm 1550nm Jan-23 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 255/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 256/451 Backscattered Light Spectrum +50°C 0,33 %/°C +30°C +10°C -10°C 1 1,06 MHz/°C (A.U.) Power 0 10,8G 10,9G Frequency Shift (Hz) (86pm) -1000PH 0PH +1000PH +2000PH 0,048 MHz/PH 1 -0,000807 %/PH (A.U.) Power 0 10,8G 10,9G 11,0G Frequency Shift (Hz) Jan-23 Measurements, Measurands, Coefficients and Offsets B-OTDR measures Rayleigh � Brillouin n Frequencyy Shiftt vs Timee (pulse launched at t=0) � Bril ouin n Powerr vs Time � Rayleigh h Powerr vs Time Anti-Stokes Stokes Brillouin Brillouin T y T y H y H y |1549,91nm | Temperature & Strain vs Position 1550,09nm 1550nm � Time o Distance � Brillouin Frequency o linearly dependent to Temperature & Strain (two coefficients, one offset) � Brillouin Power o linearly dependent to Temperature & Strain (two coefficients, one offset) � Rayleigh Power o Fiber Losses Jan-23 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 256/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 257/451 VIAVI B-OTDR Modes of Operation Temperaturee only Brillouin Frequency Shift and ࡯ࢀࣖ ൌ ૚ǡ ૙૟ ࡹࡴࢠȀι࡯ Strainn only Brillouin Frequency Shift and ࡯ࢿࣖ ൌ ૙ǡ ૙૝ૡ ࡹࡴࢠȀࣆࢿ • Temperaturee & & Strain οࣖ ࡯ࢿ ࡯ࢀ ࡮ ࢿ ൌ ࣖ ࣖ οࡼ ࡯ࢿ ࢀ οࢀ ࡼ ࡯ࡼ ߴ஻ Brillouin Frequency ࡼ ܲ Brillouin/Rayleigh Power Ratio ࢌሺࢇ࢚࢚ࢋ࢔࢛ࢇ࢚࢏࢕࢔ሻ Landau-Placzek Ratio o ൌ ࡾࢇ࢟࢒ࢋ࢏ࢍࢎ ൌ ൌ ࢌ ߝǡ ܶ ࡼ࡮࢘࢏࢒࢒࢕࢛࢏࢔ ࢌ ఌǡ்ǡࢇ࢚࢚ࢋ࢔࢛ࢇ࢚࢏࢕࢔ ߝ Strain ܶ Temperature ܥ் ௉ ൌ Ͳǡ͵͵ ΨȀιC H ܥ௉ ൌ െͲǡͲͲͲͺͲ͹ ΨȀPH VIAVI B-OTDR Unique Decorrelation Method )PH ain ( Str T (°C) Fiber distance (m) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 257/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 258/451 What are the different units? Measures elongation at every point along the sensing fiber L 'L 'L Elongation ൌ L Temperature & Strain units f Temperature is given in ° Celsius f Strain is given in microstrain, μƐ f 1 μƐ = it’s an elongation or compression of 1μm for a distance of 1 m, f also in percentage 1 μƐ = 0,0001% f Brillouin Shift : f 1 MHz= 1°C = 20μƐ = 0,002% for a fiber Strain measurements over installed telecom networks PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 258/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 259/451 Why measure strain over installed telecom networks? • Fiber manufactures guarantee a long term operation if fibers are maintained under 0.2% elongation (20% of the production proof test) • A large number of installation are over 20 years old • Recent installations are lighter cable structures (ADSS), no metal, low cost, higher fiber counts and bend-insensitive fibers • Since G652D (<2008), attenuation is no longer a good indicator of strain. In other words the fiber integrity can be threatened while optical transmission still works fine. • Bend-insensitive e fibers indeed,, yett still madee off glass • Safe Stress: 20kpsi=2000μH or 0,2% • Rupture Point is 4% How much strain can be applied on a fiber ? • Standard fibers are proof-tested at 100kpsi (~1kg, ~1% elongation) • Fiber will achieve a long life if maintained below 0.2% elongation � 125 μm • Telecommunications cables are designed as per IEC 60794-3-20 standard which defines: «For 1% proof-tested fibres, the fibre strain att Maximum m Al owablee Tension shall not exceed 20% of this fibre proof strain (equal to absolute 0.2 % strain)» 0.2 % only 200g ! EXTRINSIC STRENGTH MEASUREMENTS AND ASSOCIATED MECHANICAL RELIABILITY MODELING OF OPTICAL FIBER, Robert J. Castilone, G. Scott Glaesemann, Thomas A. Hanson, 16th Annual National Fiber Optic Engineers Conference, Denver CO. August 27-30, 2000. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 259/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 260/451 Strain is an issue, BOTDR measures Strain • 400 yearr fiber lifetimee onlyy iff stresss levell iss maintainedd below w 20% % off thee prooff testt (20% of 100kpsi corresponds to 2000μH)- Corning • B-OTDRR testt alreadyy becomingg aa Topicc inn ITU U • Draft revised Recommendation ITU-T L.310 (ex L.53) (for Consent, 26 February 2016). TD 538 Rev. 2 (PLEN/15). Strain is measured in microstrain, μƐ 1 μƐ = is the elongation or compression of 1μm for a distance of 1m or in percentage 1 μƐ = 0,0001% Attenuation vs Elongation Comparison of OTDR and B-OTDR Measurements Standard OTDR Brillouin OTDR Attenuation & Reflections Strain Measurements on same 50km long Urban Underground Cable Jan-23 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 260/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 261/451 Measuring Strain o Detecting Fiber Aging Cables under “High” Strain need preventive Maintenance 0.73% tensile strain oprobability 3 years life expectancy Ref. Lutchenko and Bogachkov 2020 J. Phys.: Conf. Ser. 1441 012045 Jan-23 Cable Health Monitoring - Use Cases PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 261/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 262/451 Aerial Cables Health Monitoring OPGW / ADSS cables Strain � Installation loads / quality � Objects on cables � Ice loads � Wind loads � OPGW cable Ground & towers/piles movements � Seasonal thermal loads Temperature � Hot Spots (e.g. OPGW near HV) 1. 60km Aerial OPGW Cable Eastern Europe Mountains OPGW H) <0.2% tensile strain (μ ain Str 6 measurements same time each night 15°C re (°C) atuerp Tem Distance (m) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 262/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 263/451 Russia 2. 100km Aerial Line Extreme Cold Climate 48 OF Cable One year old H)μ > 0.25% ain ( Str Distance (m) Russia 2. 100km Aerial Line OTDR traces Extreme Cold Climate 48 OF Cable One year old )Bd er (w Po No loss detected at strain events Distance (m) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 263/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 264/451 Australia 3. 65km Aerial Line Extreme Hot Climate Cable Unknown 0.2% on average Fiber is strain-free at splice trays thanks to coupling loops ain (%) Str Good test about strain relief effectiveness of loops Distance (m) Fiber is strain-free on first span (buried) 4. 85km Aerial Line East Europe Mountains Cable Unknown Problem at each section extremity Fiber strain-free at slack coupling loops 0.4% ain (%) Str Distance (m) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 264/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 265/451 Over/Underground Cables Health Monitoring Ducted or Buried Cables Strain Monitoring � Installation and commissioning � Ground movements � Construction works Temperature Monitoring � Burial depth � Fire detection in ducts � Leak detection (e.g. water pipes) Jan-23 1. 50km Urban Buried Underground Cable Russia Buried Urban 16 OF Cable 58m over 0.2% (x16 fibers in cable) 0.73% elongation! 3 years life expectancy for this fiber ain (%) Str Distance (m) No detected loss at strain events Ref. Lutchenko and Bogachkov 2020 J. Phys.: Conf. Ser. 1441 012045 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 265/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 266/451 1. 50km Urban Buried Underground Cable Russia Buried Urban 16 OF Cable )Bd Standard OTDR er (w Attenuation & Reflections Po Brillouin OTDR ain (%) Strain Str Jan-23 Distance (m) 2. 10km Urban Ducted Underground Cable Russia Ducted Urban No Cable Details ain (%) Str )°C re ( 90°C water leak in cable duct! atuerp Tem Distance (m) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 266/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 267/451 New cabling system for Data Centres and cables for military use Jiří Štefl OPTOKON, Czech Republic stefl@optokon.com Abstract is a representative of the Czech Republic in the This article covers the latest standards of fiber- European Committee for Standardization - CENELEC optic cables and connectors in data centers and for in the field of optical connectors and passive military applications. The Vysočina Data Center components. From 2021 Mr. Štefl is Chairman of the Board, OPTOKON, a.s. & OPTOKON Group, including near Prague, which is built according to the most the company operating the new VYSOČINA DATA modern standards, is briefly described. The CENTER - OptoNet Communication spol. s.r.o., architecture of the center is designed to withstand OPTOKON Pacific SDN. BHD operating OPTOKON the most serious technical incidents, without calibration laboratories in Malaysia and the production customers worrying about the availability of companies OPTOKON Middle East Industries Co. in services. The basic element of the internal optical Kingdom of Saudi Arabia, OPTOKON Elektronik, structured cabling is a unique concept using pre- Limited Şirketi in Turkey and OPTOKON Kable Co., connected cables fibed with a new standard of Ltd., s.r.o. in the Czech Republic. high-density SN connectors and 24-fiber MPO connectors. Author's biography Jiří Štefl received the title Ingineer in 1985 from the Czech Technical University in Prague, Faculty of Electrical Engineering with a focus on technology and telecommunications. He worked as a standalone development engineer in the field of fiber optics company Tesla Jihlava for five years. In 1991 he joined the OPTOKON company and worked as a factory manager, and for the next three years as Sales Director. From 1996 he worked as CEO of OPTOKON, responsible for all activities of the group OPTOKON - including accrediated calibration laboratories in Malaysia and a brand new company, OPTOKON KABLE, Co., Ltd, in the Czech Republic. Since 2000 he PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 267/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 268/451 PT1")#*.+*,1#(+))2*#1#+*=2(16+ (ctr#(*!#*.#*!=&2(&*=(+3*# *!?#/$1 (=H"#.)* PT1"*2.6=PNPQ #12(' PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 268/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 269/451 3 = • • +**1+.0=(00)(#0 • (*!)*1601)0 • ,(#11.0==* • 114+.'-2#,)*1 • 01-2#,)*1 • .0"*3#.+*)*1,1#(14+.' • • (#.1#+*(+.1+.6 • "*#(*1),.12.101#*! • 0)#B*"+#"). • H (* %$H%(*%(/=)* $ , ) %$ (1.+)!*1#+),1##(#16DE=(#)1#*)"*#(1010? PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 269/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 270/451 )* $ , ) %$ • ,1#((0"*#(010 • ,1#((0*3#.+*)*1(010 • 1010)1#*!BBRTO • ),.12.(#)1#1010 " )%"+* %$ ) 5$) */0#%+"()/)*#1"1*(01"-2#'* +01B 1#3)00#*01((1#+*+ ,.B1.)#*1(00)(#0? 1.2*'00)(#0((+4 +.,.B1.)#*1(0('1+01+.* 02.#*0#1""+20#*!0#*1")&+.#16+ 0*.#+0? PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 270/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 271/451 I "#(+ .)0B2(1# #.+**1#3#16,1#+*0< • #1"#*.0#*!*4#1")*0=6+2)201.#0+31+6@001*.0? • 53)$-)%"+* %$).*+12#(1 +.4"16+2* 1+6=214"16+24#((*1+)+..+4? • &"*%(# )#%+"(0 5$) */0(!5#%+$*)%"+* %$0#!* +. 1*1.0=*1.(+ #0="*0*01.212.(#*!*14+.'0? • "1".02,,+.1#*!#*.)*1(!.+41"+. 2((B0(,(+6)*1=+2. 0+(21#+*0(#3.+,1#)( #.)*!)*1#**061+20=0((,(1 +.)? *$*(*(+*+(H $98))** PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 271/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 272/451 *(+*+(H)9(+$"H) %$,$* %$H,)H $ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 272/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 273/451 #&H )*(+*+(H $- * 8CIH $ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 273/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 274/451 8%$$*%( Simplifying Leaf-Spine • ,1+OTB #.0#*0#*!(.+4 Cross-connections • )+**1+. ++1,.#*10+**1+. • "#*201.6@0"#!"01*0#16+**1+. • P?U5*0.1"*BOT • O?Q5*0.1"*BQP • PNN)#.+*.+(((B.#+*+),1#( • *0.1#+*(+00)5?N?QS)5. I/)*# $+)- *%$$*%() • 1#30#7.21#+*+),.1+2,(5 • 0#!* +.AB.'+21,,(#1#+* • .+3*O?PS)) ..2(1"*+(+!6 • R2,(5+**1+.0D1+1(VB #.0E#*AB ++1,.#*1 • O?T))&'1( • .*+))1#*!. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 274/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 275/451 8$%+* • 2(1# #.(01.)#*1#+* • .(((+,1#01.*0)#00#+*0601)0 • ,1+OT #.01.)#*1#+* 8$%+* • 2(1# #.(01.)#*1#+* • .(((+,1#01.*0)#00#+*0601)0 • ,1+PR #.01.)#*1#+* $) */$'+ " $)*HH • .1.)#*1 $) */ (%&* )/)*# +."#!"0,*14+.'0 • #%,)%$5) *(# $* %$0#)) ,"/(+ $** #('+ (*% $)*"" • C;G'+ !(*% $)*"" +3.1.#1#+*(,.1.)#*1 #.+,1#0 • )/)*#)+&&%(*)+*+(*($)# )) %$)%?;; *$<;; *4 )%$ • #((,.+3#2,1+OOSPAOSQT+.0#*O2+ .'0,DP))#)1. (0B*+0,(#1.60=(0#.#*1*1.6*0#. #.B01+,,#*!E PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 275/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 276/451 .H$*&(%(# • + .0&(*(# $*0&(5*)*" $!)1"151" ,. +.)*.-2#.)*10 • 011OQON*OSSN*)+.#*!VNP?Q0JBPNOU* RNNBR • (5"""/%4#1"1".-2#.0") 5)I/)*# $H+)4 • #*!()+ABBABDB=BE #. 1.2*'0H&2),.04#1")5 %;2>;&(%$$*%( • ABC4#1")5 %;2@;&(#%+" • B)+2(04#1")5 %;2@;&(#%+" • ,1.,(10 • 2),.04#1")5 %;2=;&(%$$*%( PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 276/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 277/451 <) - * • +.'#*!4#1"#**WNNO-2(#16.!#)+*1.+(0-2(#16.#!"1 .+)1" 01.1 • +$ '+<;;G*)* $&(%(## • *(2#*!ONNZ#*1. .+)1.101#*! • +#*1H3(+,)*1 • #*301)*1#**4(3(+,)*1*.#1101#*!#3#0#+*#*1"7",2(# • G0+*1.+(0-2(#16((1"461".+2!"1" 8) - * • ,,.+3*21"+.#0*-2(# # #(#1#0D7"= ('1.+*#'#*2.'6=#(01#** # ##*(60#E? I*$*(H • *++.#01.#21#+*( +.1*1.(601)0 1*1.(WTDV\OPE 1*1.(WTDT\OTE PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 277/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 278/451 I*$*(H CG6"#%+$*&* H )*( +* %$(#%(*$*() • 0#!* +.(+.)#.+1201.)#*1#+* • +),1.+2010#!* • (#B+210"( ,.+3#02*.01.#100 • "*!( .+*1,*(=3.#+20,1.0 • +2,(#*!,1.0)+2*1+*1" .+*1,*(+.#*,*(0 • +))+102,1+OSQT #.0#*O.'2*#1 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 278/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 279/451 $) */- *8:CI ()&(%$$*%(; 8C8EJF8F (# $* %$%(EJF ()&(&$H 8F%$$*%():CI ();&(&*( 8I&*() EJF () $%$&$H PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 279/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 280/451 I "+),+**1#00,# #((6*!#*.1+4+.'#*+*&2*1#+*4#1" 1"+1".+),+**10#*1",(1 +.).02(1#*!#*4+.(B(00 01.212. #.(#*!0601)? . #+#$) * )%(04$5%$$*%()1 A AC D,1.5+**1+.5 #.E D,1.5+**1+.5 #.E D,1.5+**1+.5 #.E O]WT #.DPR5R5OE OPO]PVVB #.DPR5O5OPE A (6=?.?.;? (6>A.?.;B= (6?C.?.;B= (6DA.?.)==) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 283/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 284/451 8DFB8=8DFB8 +H* (&* H *%+($%-(*( • *"(=(#!"14#!"1 • 2(1# #.B+**1+.0101#*! • +*+21,1"+.0.-2#. • #*!(+.2(43(*!1" • *2(04#1"#*!1".+2!"(( #.0+.6()+ • *+*1.+((.)+1(63# LK PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 284/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 285/451 LK LK PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 285/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 286/451 LK LK PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 286/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 287/451 *$*()+( */ $) * ,)*(** %$" The new FOTAS System uses a unique fiber optic cable for Acoustic Sensing Systems produced by OPTOKON Kable. The cable is suitable for installation on the fence and into underground grooves with a silica sand bed. * H (%&* H) SUPPLIER OF NATO ARMED FORCES FOR MORE THAN 24 YEARS NATO supplier code: 1583G PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 287/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 288/451 +( H */%*** HH) • High resistance to water, UV radiation, chemicals, microorganisms, and mold • Mechanical resistence, resistant to being cut by a sharp object or punctured. • High flexibility • Designed for very low temperatures • Highly mechanically, chemically, and thermally resistant Polyamide 12, which protects the optical fiber from mechanical damage #(#1.6( 1*.( ,.1#*!1),.12..*! BSSK1+[VSK BPNK1+[TNK +),.00#301.*!1"4#1"+21"*!#* SNNN FOSNN 11*21#+* +),.00#301.*!1"4#1".3.0#(),#*! WSNN FPNNN ),1.0#01* PN) FS) (5##(#16 ONN=_OSNNN6(0 PN=ONN6(0 * H (%&* H) In addition to the standard cable construction, a variant with a second sheath is also available to further increase cable resistance. Cable variant with one jacket Cable variant with two jackets Outer casing Outer casing Kevlar Kevlar inner casing Optical fiber in secondary protection Kevlar PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 288/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 289/451 /( * HH) • Two simplexes with SM or MM optical fiber • Tight secondary shield • 2 x 16 AWG tinned copper wires with FEP (Fluoroethylene Propylene) insulation. • Protection against penetration of moisture by water-swelling materials. • Cable sheath from polyurethane, with high flexibility and mechanical resistance. Outer casing (1*0#(01.*!1" SNN ,.1#*!1),.12..*! BRNK1+[UNK Optical fiber +),.00#301.*!1" OSNNAON) 013+(1!+ +*21+.0 PNNN +.O"+2.1PNK CuSn conductor AWG 16 2*.41. Kevlar Simplex &* HH)%(#% H$** H+) • #..0#01* ^OQ=U;A') • 5?+),.00#3(+#*! OSNN • 5?),1(+#*! OS?) • #*?*.#20 S5 • ),. . 12. . 12. *! . *! RN1 RN +[UNK 1+[UN PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 289/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 290/451 8%$$*%( • 3*5,*)1"*+(+!6 • BBVQSPT0,# #1#+* • .),".+#1##*1.+**1#+* B*+,1+.0*00.6 • ,1+R #."**(0+. • 2!! #(.,#.(+**1+.0#!* PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 290/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 291/451 Izzivi pri razvoju vlakenskih laserjev visokih moči Chellenges in the development of high-power fiber lasers Peter Lukan LUMENTUM peter.lukan@lumentum.com Povzetek account the basic physical limitations, and the V zadnjem desetletju so vlakenski laserji zaradi quality material properties of the optical fibers, svojih izjemnih lastnosti postali prevladujoč tip which result from the fiber manufacturing process, laserjev za industrijske aplikacije, ki zahtevajo are important. This presentation gives an overview visoke optične moči. Trend potreb po še višjih of the development challenges of such lasers, močeh se nadaljuje in ta narekuje tudi razvojne focusing on both aspects mentioned above. zahteve in izzive. Nekateri pomembni parametri, ki jih tovrstni laserji morajo dosegati, so visok optični izkoristek, majhna stopnja fotopotemnitve in dobra Biografija avtorja Peter Lukan je mag. fizike, mag. kvaliteta svetlobe. Za doseganje teh parametrov sta humanistike in doktorat iz filozofije pomembna tako optična arhitektura, ki mora znanosti. Zaposlil se je v upoštevati osnovne fizikalne omejitve, kot slovenskem podjetju Optacore kvalitetne materialne lastnosti optičnih vlaken, ki d.o.o., kot vodja merilnega izhajajo iz procesa izdelave vlakna. V tej laboratorija. Podjetje je leta 2017 predstavitvi je narejen pregled osrednjih razvojnih kupilo ameriško podjetje za fotoniko Lumentum, da bi izzivov pri razvoju takšnih laserjev s poudarkom razvijalo laserska vlakna za lastne potrebe. Vodi na obeh omenjenih vidikih. skupino Specialty Fiber R&D, ki se osredotoča predvsem na razvoj vlaken za laserske in Abstract telekomunikacijske aplikacije. In the last decade, fiber lasers have become the dominant type of lasers for industrial applications Author's biography Peter Lukan's background is MSc. in Physics, MSc. in that require high optical powers due to their Humanities and PhD. in Philosophy of science. He exceptional properties. The trend of the need for started his employment working at Slovenian company even higher powers continues and this also Optacore d.o.o. as measurement lab lead. The company dictates development requirements and challenges. was acquired by a US owned photonics company Some of the important parameters that such lasers Lumentum in 2017 in order to develop laser fibers for must achieve are high optical efficiency, low internal needs. He is leading the Specialty Fiber R&D degree of photodarkening and good quality of group, mainly focusing on development of fibers for light. In order to achieve these parameters, both laser applications and telecom applications. the optical architecture, which must take into PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 291/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 292/451 Development challenges of high power fiber lasers Peter Lukan January 2023 Overview ¾ Advantages of fiber lasers ¾ Fiber laser applications ¾ Optical architecture of fiber laser ¾ Triple clad fiber structure ¾ Important performance parameters ¾ Some physical limitations TACO preform ¾ Areas of development work: waveguide design and glass development ¾ Fiber fabrication process steps ¾ Some achievements © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 292/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 293/451 Advantages of fiber lasers ¾ Belong to solid state lasers, but differ from solid state bulk lasers ¾ Efficiencies of > 30% (electrical to optical) ¾ Laser light already coupled in optical fiber Æ easy delivery ¾ High surface-to-volume ratio of active material Æ easy cooling at very high powers ¾ Compact, monolithic setup (fiber can be coiled) ¾ Decreased sensitivity to vibrations, thermal drifts, dust ¾ Large gain bandwidth Æ wide wavelength tuning, temperature stabilization of pump diodes TACO preform not critical ¾ Diffraction limited beam quality (when using single mode fibers) ¾ Very high powers (> 3kW) in combination with high beam quality © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 3 Fiber laser applications Battery industry Cutting Drilling Welding Dental, medical Aerospace (dissimilar metals) Marking Engraving Ablation Electronics Automotive © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION Jewelery 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 293/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 294/451 Fiber laser applications ¾ Pulsed lasers, „ultrafast lasers“ ¾ High power: >100W average power ¾ Micromachining = scribing, cutting, and drilling for production processes of: • integrated circuits, • LEDs, • crystalline Si and thin-film solar cells ¾ Continuous wave (CW) lasers, „kilowatt lasers“ • rigid or flexible PCBs ¾ High power: 4kW from single module • phone glass ¾ ¾ Industrial precision cutting and welding of sheet Surface ablation, cleaning metal TACO plates preform for: • automotive, • aircrafts, • commercial and consumer appliances © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 5 Optical architecture of fiber laser Pigtailed high power laser diodes (915nm or 976nm in case of Yb-doped active fiber) Active fiber End cap to remove residual pump light Seed (signal) source, usually FBG fiber laser Passive fiber Amplifier Laser output Delivery fiber High power pump (passive) Pump and combiner ((6+1)x1, signal light (16+1)x1,…) delivery fibers ¾ Overall the optical waveguide consists of many different fibers in a stream ¾ Matching of refractive index and geometry of fibers is crucial and has to be finely targeted © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 294/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 295/451 Triple clad fiber structure WHOLE FIBER DIAMETER 600-700 μm STANDARD RI COATINGLOW RI COATING OPTICAL CORE 25-50 μm FIRST CLADDING NA 0.06-0.09 SECOND CLADDING NA 0.22-0.26 430-480 μm POLYMER COATINGS SILICA GLASS NA > 0.48 480-530 μm FIBER STRUCTURE > 560 μm REFRACTIVE INDEX PROFILE © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 7 Important performance parameters ������ �� ������� ���������� ሺሻ ൌ ����� Τ ����� ���� ����� ������ǣ͹ͲǦ͹ͷΨ̷Ͷ� ������������� ሺ����� ����ሻ ������ǣͳǡͷǦ͵Ψ̷ͳͲͺͲ�� TACO preform ��� ������� ���������ሺሻ ������ǣ̱ͳǤͲ������ ̷Ͷ�ǡͳͲͺͲ�� © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 295/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 296/451 Some physical limitations – non-linear effects ¾ Photodarkening: ¾ Decreases OOE during laser operation ¾ Is an optical material related property (Æ fiber related) ¾ Stimulated Raman scattering: ¾ Induces a parasitic wavelength Æ degrades beam quality and OOE ¾ Heating management TACO preform ¾ Transverse mode instabilities ¾ Pulse distortions (pulsed lasers) Parasitic wavelengths Monochromatic light © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 9 Areas of development work ¾ Waveguide design and glass development: ¾ Proper active glass composition mitigates photodarkening effect Æ glass composition recipe development ¾ Finely tuned Yb doping level of specific fibers guarantees targeted active fiber absorption ¾ Finely tuned refractive index profile of specific fibers ¾ Finely tuned geometry of specific fibers (diameter, eccentricity) TACO preform © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 296/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 297/451 Fiber fabrication process steps Define core NA, material Define final clad/core diameter Target final fiber diameters. properties (attenuation, ratio, ensure centricity, other absorption, photodarkening..) cladding properties. © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 11 Fiber fabrication process steps – examples © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 297/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 298/451 Core rod fabrication (MCVD process) Motorized tailstock for preform Headstock stretching with rotation Sootbox Inlet tube Substrate Exhaust tube tube for Rotary seal precise pressure control Heated tube O2 + SiCl4 Heat source – O2/H2 burner Exhaust fumes or furnace Carrier connection gas (O2) to waste treatment Gas cabinet containing at least 3 (scrubber) bubblers (SiCl4, GeCl4, POCl3), MFCs, pneumatic valves, vent Dip tube Glass-working connection, electrical cabinet lathe © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 13 Core rod fabrication (MCVD process) No deposition, soot moves radially Deposition area, longitudinal deposition Deposition only due to gravitation and towards the center of the tube thickness profile shown further in text brownian motion of agglomerated particles HOT ZONE T gas < T tube Tsoot < Ttube T soot > T tube T gas = T tube O2 + SiCl4 GeCl4, POCl3 BCl3 SF6, He Exhausted reaction products Particles: SiO2 and dopant oxides Inlet taper region Deposited glass layer: SiO2 Rotating substrate tube SiO2 soot particle trajectories Traversing heat source Reaction initiated © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 298/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 299/451 Rare earth doping – chelate deposition system (CDS) © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 15 Jacketing/stretching process and fiber draw process stretch separate glass handle Insert rod in tube TACO preform Furnace vacuum pump © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 16 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 299/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 300/451 Lumentum Slovenia capabilities Glass working lathe (MCVD + CDS) Fiber draw tower Measurement lab for fiber characterization © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 17 Some achievements Excellent beam quality, M2 = 1.13 - 1.19 Photodarkening better than commercially available fibers ¾ Low background loss in active fibers: 5-10 dB/km Æ good optical efficiency, ~75 @ 4kW ¾ Fiber gallery: © 2018 Lumentum Operations LLC | LUMENTUM CONFIDENTIAL AND PROPRIETARY INFORMATION 18 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 300/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 301/451 OPGW - arhitektura in zmogljivosti OPGW - architecture and performance Marija Mrzel Ljubič ELES mojca.mrzel@eles.si Povzetek Elektrodistribucijska in prenosna podjetja uporabljajo za gradnjo komunikacij za potrebe Biografija avtorja Marija Mrzel-Ljubič je od leta 1994 obratovanja in vodenja energetskih omrežij najbolj zaposlena v podjetju ELES. Šolanje pogosto kar lastno infrastrukturo. Optične vodnike je zaključila na Fakulteti za tako nameščajo na nadzemne daljnovode kot elektrotehniko Univerze v Ljubljani. samonosilne kable, jih ovijajo okoli strelovodnih V Elesu je sodelovala pri ali faznih vodnikov ter zamenjajo strelovodno vrv digitalizaciji komunikacijskega ali fazni vodnik s tako, ki ima vgrajena optična omrežja, izgradnji optičnega, SDH, IP in WDM vlakna. Najbolj pogost način gradnje optičnega omrežja. Trenutno je zaposlena kot specialist za omrežja na visokonapetostnih daljnovodih (110 kV telekomunikacije. Zadolžena je za izgradnjo in ali več) je v tehnologiji OPGW (Optical Power obratovanje optičnega omrežja ter kot nadzorni inženir Ground Wire), kjer so optična vlakna umeščena v sodeluje pri izgradnji daljnovodov in razdelilnih postaj. strelovodni vrvi daljnovoda. Author's biography Marija Mrzel-Ljubič has been employed at ELES since Abstract 1994. She completed her education at the Faculty of Power distribution and transmission companies Electrical Engineering of the University of Ljubljana. At most often use their own infrastructure to ELES, she participated in the digitization of the establishe communications for the needs of communication network, the construction of an optical, operating and managing energy networks. Optical SDH, IP and WDM network. She is currently employed fibers are installed on overhead power lines as as a telecommunications specialist. She is responsible self-supporting cables, wrapped around ground for the construction and operation of the fiber optic wire or phase conductor, or the conductor or network and as a supervising engineer participates in ground wire have built-in optical fibers. The most the construction of transmission lines and distribution stations. common way of building an optical network on high-voltage transmission lines (of 110kV or more) is OPGW (Optical Power Ground Wire), where optical fibers are placed in the ground wire of the power line. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 301/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 302/451 OPGW OPTIČNI KABEL V STRELOVODNI VRVI (Optical Ground Wire) ARHITEKTURA IN ZMOGLJIVOST VSEBINA KDO SMO SHEMA DV IN OPTIČNEGA OMREŽJA ELES OPTIKA V ELES ZNAČILNOSTI OPGW PRIMER OPGW zahteve in izvedba PREDNOSTI IN SLABOSTI OPGW SOVRAŽNIKI OPGW PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 302/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 303/451 KDO SMO https://www.eles.si/ ELES je sistemski operater prenosnega elektroenergetskega omrežja Slovenije. Temeljna dejavnost in poslanstvo družbe ELES je varno in zanesljivo obratovanje elektroenergetskega sistema Republike Slovenije. ELES SHEMA DV IN OPTIČNEGA OMREŽJA ELES OPTIKA SKUPAJ: NA DV IN ZEMELJSKA 2058,4km 1498 km OPGW –zaščitna vrv z vgrajenimi optičnimi vlakni 70 km OPPC- fazni vodnik z vgrajenimi optičnimi vlakni 14 km OPWR –nekovinski optični kabel ovit okoli žic 0,4 km ADSS –nekovinski samonosilni optični kabel 476 km ZOK –zemeljski optični kabel DALJNOVODOV(DV) SKUPAJ: 3113 km 828 km na 400 kV 328 km na 220 kV 1957 km 110 kV (31km kablovodov) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 303/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 304/451 OPTIKA V ELES Optična vlakna so na cca 80% Elesovih daljnovodnih trasah 77% optičnih kablov je na DV (OPGW, OPWR, OPPC), od tega je 95% OPGW Optične povezave s sosednjimi operaterji, distribucijo, ostalimi infrastrukturnimi operaterji (DARS, SŽ) in telekomunikacijskimi operaterji Uporaba optičnih vlaken predvsem za lastno TK omrežje za obratovanje energetskega sistema, viški za trg ZNAČILNOSTI OPGW Po osnovi je to strelovodna vrv daljnovoda in izpolnjuje osnovne konstrukcijske zahteve le-teh Sestavljen je iz enega ali več slojev žic iz aluminijeve zlitine ter jekla, žice v slojih so različnih oblik (okrogle, trapez) Ena ali več cevk v notranjih slojih so z vlakni z do 5‰ naddolžine vlaken v cevki Št. vlaken pogojuje konstrukcija DV (obremenitev vpliva na presek): v Elesu je to od 24 do 108 Specialna obesna oprema, antivibratorji, specialni stroji za razvlek in način razvleka Standardi OPGW: SIST EN 60794-4 in SIST EN 60794-4-10, VLAKNA: ITU.T-652D (in 655C) Spojke: lega odvisna od stebrov (na zateznih), od bližine elektro objektov, max. možnega navitja na boben (do 5km); spaja se na tleh in ni potrebnega izklopa DV Proizvajalcev OPGW je veliko: NKT, Fujikura, Lumpi… PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 304/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 305/451 PRIMER OPGW zahteve in izvedba Spojka na stebru PREREZ OPGW Primer obešanja na steber: nosilno: KONSTRUKCIJSKE ZAHTEVE Spojka na stebru Spojka IZVEDBA Na RAZVLEKA portalu OPGW PREDNOSTI IN SLABOSTI OPGW PREDNOSTI V PRIMERJAVI Z ZEMELJSKIM KABLOM Cenejša in hitrejša izvedba: ni kopanja, služnosti, hitreje se izvede Manj poškodb: ni glodavcev, ni gradbenih poškodb pri kopanju Krajše trase in manjše slabljenje: DV imajo običajno ravne linije SLABOSTI V PRIMERJAVI Z ZEMELJSKIM KABLOM Dražji material: kabel je dražji, dodatni obesni material Sanacija poškodb je daljša: zahteva izklop DV, zamenjava vrvi, zamenjava stebrov – več dni Manjša fleksibilnost pri dodatnih vzankanjih: ni možno dodajati dodatnih spojk, brez zamenjave dela OPGW PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 305/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 306/451 PREDNOSTI IN SLABOSTI OPGW PREDNOSTI V PRIMERJAVI Z OPPC, OPWR, ADSS Manj poškodb v primerjavi z ADSS, OPWR (odpornost materiala) Lažje spajanje OPGW kot OPPC: OPGW spojka se spusti na tla, ni izklopa DV, pri OPPC je spajanje v izolatorju Več rezerve kabla za ponovna spajanja je na OPGW kot na OPPC SLABOSTI V PRIMERJAVI Z OPPC, OPWR, ADSS OPGW kabel je dražji kot ADSS in OPWR Sanacija poškodb je daljša kot pri ADSS (v obeh primerih je izklop DV) Za razvlek in sanacijo OPGW ali ADSS je potreben izklop vseh DV sistemov na stebru, pri OPWR ali OPPC pa samo tistega na katerem je OPPC ali OPWR SOVRAŽNIKI OPGW Pretrg žic zunanjega sloja Zaradi udara strele ŽLED VREME (npr.žled) STRELNO OROŽJE DIREKTNI UDAR STRELE PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 306/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 307/451 Hitri vtični moduli (100 - 800 Gbit/s) Fast plug-in modules (100 - 800 Gbps) Peter Reinhardt XENYA peter.reinhardt@xenya.si Povzetek 400GZR+. Requirements of optical transport Predavanje obsega prestavitev novih tehnologij, networks that allow efficient use of these modules standardov in industrijskih dogovorov, ki are presented together with diagnostics procedures omogočajo izvedbo kompaktnih vtičnih modulov that enable establishing fast connections on long (QSFP,QSFP-DD and OSFP), ki podpirajo distances. There are discussed future trends and prenosne hitrosti nad 100 Gb/s. Obravnavane so types of modules which cover devices that will novosti glede upravljanja modulov (CMIS, C- support communications speeds of up to 3.2Tbps. CMIS) in glavne optične lastnosti nekaterih tipov A short description of packet transport system that modulov, ki so namenjeni za vzpostavitev povezav uses these high speed connections is also covered. na večje razdalje. Glavni poudarek je na pregledu Biografija avtorja lastnosti koherentnih modulov 400G ZR in 400G Peter Reinhardt je veteran na ZR+. Predstavljene so zahtevane lastnosti optičnih področju elektronike in transportnih sistemov, ki omogočajo izvedbo računalništva, s 25 leti razvojno povezav s temi moduli, ter diagnostika teh raziskovalnega dela na Institutu povezav. Opisana je zasnova paketnega Jožef Stefan, in za tem prek 20 let transportnega sistema, ki uporablja te povezave. V v podjetju Xenya d.o.o. Z mrežami zaključku so omenjene še predvidene lastnosti se ukvarja še iz časov DECNet-a. Z IP omrežji ima že bodočih tipov (hitrejših) modulov, ki bodo več kot 30 letne izkušnje ter več kot 20 letne izkušnje z podpirali prenosne hitrosti vse do 3,2 Tb/s. optičnimi komunikacijami. Sodeloval je pri zasnovah in postavitvi vrste javnih in poslovnih omrežij, optičnih Abstract povezav ter računskih centrov v Sloveniji. Ukvarja se s In this paper an overview of technologies, transportnimi optičnimi omrežji, IP omrežji, z standards and industrial agreements that enabled arhitekturo omrežij in podatkovnih centrov, ter z design and production of high speed compact načrtovanjem naprav in optičnih sistemov ter meritvami pluggable modules (QSFP,QSFP-DD and OSFP) na področju optičnih komunikacij in v podatkovnih is given. This includes design concepts and omrežjih. management of these modules including CMIS and Author's biography C-CMIS. An overview of main optical properties is Peter Reinhardt is a veteran in the field of electronics discussed with emphasis on properties of modules and computing, with 25 years of development and using coherent transmission - 400G ZR and research work at the J. Stefan Institute, followed by over PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 307/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 308/451 20 years at Xenya d.o.o. He has been working with networks since the DECNet days. He has more than 30 years of experience with IP networks and more than 20 years of experience with optical communications. He participated in the design and installation of a number of public and business networks, optical connections and computer centers in Slovenia. He deals with transport optical networks, IP networks, the architecture of networks and data centers, as well as the planning of devices and optical systems, as well as measurements in the field of optical communications and data networks. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 308/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 309/451 Hitri vtiēni moduli – 100Gb do 800Gb in hitreje Pregled stanja tehnologije in novosti pri vtiēnih modulih visokih hitrosti Jan. 2023 Peter Reinhardt, peter.reinhardt@xenya.si Poudarki predstavitve • Tehnologije, ki omogoēajo izvedbo hitrih vtiēnih modulov • Spremembe pri upravljanju modulov CMIS, C-CMIS • Pregled osnovnih tipov najbolj pogosto uporabljenih modulov za lokalne povezave • Pregled glavnih lastnosti modulov za dolge povezave (400G-ZR in 400G-ZR+) -E • Pregled zahtev, ki jih morajo izpolnjevati optiēni transportni sistemi, za uspešno delo na dolge razdalje programom DALL AI z • Diagnostika dolgih povezav, Paketni transportni sistemi • Novosti glede vtiēnih modulov Slike ozadja generirane PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 309/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 310/451 FEC – korekcija napak • Bistvena funkcija za izvedbo uporabnih hitrih vtiēnih modulov – Cenovno najbolj ugodna rešitev za poveēanje zanesljivosti hitrih prenosov • FEC na linijski strani je FEC nujen – Efektivno izboljša dinamiko prenosa za 4-11,6 dB – Standarni BER brez FECa se gibljejo med 2.0E-5 do 2.0E-2 – Prva generacija: G.709, LL-FEC – Druga generacija ST-FEC, SD-FEC, CFEC, – Tretja generacija: oFEC, RS-BCH – oFEC, nepogrešljiv za 400Gb in hitrejše prenose na veēje razdalje • FEC algoritm, ki bazira na korekciji (PCS) blokov podatkov z dodatno tro-stopensko SD (Soft Decision) korekcijo • 11.6dB efektivnega ojaēanja (za DP-16QAM) • Korigira BER 2.0E-2 pred FEC na BER 10E-12 ali boljšo • Latenca prehoda prek obeh strani <3us • Za 400Gb prenosa zahteva DSP najnovejše generacije (7nm geometrija, visoka poraba) • FEC na elektriēni strani – Visoke hitrosti povzroēijo visoka dušenja na kratkih poteh (28-30dB), kar zniža SNR – Zaradi uporabe PAM4 se SNR na elektriēni strani še dodatno zniža in BER poveēa – potrebna korekcija – 25Gb: Brez ali z RS-KR-FEC [RS(528,514,t=7, N10)], – 50Gb: RS-KP-FEC [RS(544, 514, t=15, N10)] – IEEE 802.3 Clause 91 Vmesniki in modulacije na klientni strani ..... • Na klientni (elektriēni) strani morajo biti prenosi izvedeni prek veē vzporednih poti 1,2,4,8,16 ker so hitrosti podatkov previsoke, da bi bilo mogoēe prenašati te signale povsem serijsko MAC • Zaradi paralelnih prenosov in velikih hitrosti so potrebni dodatni protokolni nivoji – PCS (Physical Coding Sublayer) • MII (64) Pretvorba iz 64/66 kodiranja na MII nivoju v bolj uēinkovito 256/257 kodiranje v PCS nivoju, GMP (gearbox funkcije), ki omogoēajo kompatibilnost s poēasnejšimi kodiranji in ava) sinhronizacijo pri razliēno hitrih urah na obeh straneh • vstavljanje OH, AM1, ki omogoēajo sinhronizaciji med potmi in identifikacijo zaēetka PCS bloka, PCS • FEC korekcijo (), ki je potrebna zaradi znižanega SNR zaradi uporabe PAM4 enkodiranja RS(544,514) • Za 400Gb IEEE802.3bs c. 119, PHY – PMA (Physical Medium Attachment) t (K. Napr PMA • Pretvorba 16 NRZI kanalov v 8 PAM4 (16>8PAM4) • Za 400Gb IEEE802.3bs c.120 Klijen • Pri izvedbi hitrejših protokolov se kombinira in ponovno uporablja protokole AUI 400 GAUI8 nižjih hitrosti s ēim manj dodatki – 2x GMP100 za prenos 200Gb, 2x 200Gb za prenos 400Gb, 2x400Gb PCS za prenos 800Gb ... – To omogoēa lažjo implementacijo, ponovno uporabo že razvitih in preizkušenih komponent PMA in kompatibilnost s poēasnejšimi protokoli • PHY Vtiēni modul in komunikacijska naprava sta na PMA nivoju povezana prek PCS AUI vmesnika (Attachement Unit Interface). Za Ethrnet signale: ēni modul – do 28Gbit je to CAUI vmesnik: 25Gb/pot; prim.: 100 CAUI-4 -100Gb NRI, Vti FEC RS-(528,514, T=7, N=10) kot opcija (RS-KR FEC) MDI – do 56Gbit je to GAUI vmesnik: 50Gb/pot; prim: 400 GAUI-8 – 400Gb PAM4, obvezen FEC RS(544,514, T=15, N=10) (RS-KP FEC) – Medij Do 112Gb: do56Gbaud+ PAM4 -OIF-CEI-112G-MR Meadium reach ali OIF-CEI-112G-LR Long Reach Interface + PAM4 z ES-KP FEC – Do 224Gb: do 112Gb + PAM4 so specifikacije še v pripravi 1 OH-overhead bits, AM-Alignments Marker PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 310/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 311/451 Standardi in dogovori • IEEE v okviru 802.3 grupe zagotavlja standarde, ki doloēajo lastnosti raznih tipov komunikacijskih vmesnikov. • Žal standardi veēinoma zaostajajo za dejanskimi produkti, ki so že na voljo in se uporabljajo v praksi • OIF dopolnjuje te standarde z implementacijskimi dogovori, ki so obiēajno izdani hitreje IEEE 802.3 standardi, ki regulirajo 50-400GE vmesnike • Nekateri novejši pomembni Standardi in dogovorjena pravila (MSA) za hitre vtiēne module – OIF1-400ZR-Implementation agreement, OIF CMIS Common Management Interface V5.5, Coherent extension C-CMIS V1.2, OIF-CEI – Common Electrical I-O – OpenZR+ MSA Specifications, v2.0 – QSFP-DD-Hardware-Rev6.3-final, SNIA SFF Specifications (SFF-8636 ….), SFP-DD Specification V5.1 – IEEE: Za 100-400Gb IEEE802.3bs, za 800Gb in 1.6Tb IEEE 802.3df Ethernet aliance 1 IOF – Optical Internetworking Forum Pakiranje vtiēnih modulov in glavne lastnosti poti Tipi vmesnika Podprte Ethernet hitrosti 2 Ime pakiranja Slika (lanes) Max s. h./pot Max. [W] [Gbaud] na strani klienta [Gb] Št. par. Disipacija SFP28 1 28 CAUI-1 5.5 1, 10, 25 SFP SFP112 1 1121 112LR-1 5.5 100 SFP-DD 2 56 CAUI-2, GAUI-2 5.5 50, 100 SFP-DD112 2 112 GAUI-2, 112LR-2 5.5 100, 200 SFP-DD SFP-DD QSFP28 4 28 CAUI-4 6 4x1,4x10,4x25,2x50,50,100 QSFP56 4 56 CAUI-4, 2xGAUI-2, GAUI-4 6 4x1,4x10,4x25,2x50,50,100,200 QSFP QSFP-DD 8 28 4x CAUI-2, 2x CAUI-4, CAUI-8 14, 24 8x25,4x50,100,200 QSFP-DD 4x CAUI-2, 2x CAUI-4, CAUI-8 QSFP-DD800 8 56 14, 24 8x25,4x50,100,200,400,800 800 4x GAUI-2, 2x GAUI-4, GAUI-8 4x CAUI-2, 2x CAUI-4, CAUI-8 OSFP(800) 8 56 30 100, 200, 400, 800 4x GAUI-2, 2x GAUI-4, GAUI-8 OSFP OSFP1600 100, 200, 400, 800, 16 112 GAUI-16, 112LR-16, 224LR-8 40 OSFP-XD 1600, 3200 1 Hitrejši moduli podpirajo tudi vse poēasnejše prenose 2 Poraba je doloēena v 4 do 8 razredih porabe, tu je naveden najvišji fiksni razred in najvišja poraba, ki jo lahko specificira modul v variabilnem razredu PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 311/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 312/451 Glavne lastnosti novih tipov pakiranja • Primerjava velikosti: QSFO-DD OSFP OSFP1600 OSFP-XD SFP-DD SFP • OSFP: – Veēja dovoljena disipacija (30W) – Boljše vodenje hitrih signalov, hitrejši vmesniki do 224Gb – Dvo funkcijski (3 nivijski) poēasni signali – Še vedno podpira vgradnjo 32 modulov v 1U stikalu – Možen Adapter QSFP-DD v OSFP • OSFP-XD – 16 vzporednih poti – Veēja dovoljena disipacija (40W) SFP-DD xSFP-DD konektor SFP • SFP-DD, SFP-DD112 : • Primerjav Primerja a v va elikosti: QSFO-DD QSFP28 in SFP-DD – Veēja dovoljena disipacija (5.5W) – Hitrejši klijentni vmesniki (28, 56, 112 Gb) – Vtiēno mesto podpira vgradnjo SFP28, SFP+ in SFP modulov – Uporabljen predvsem v deljenih AOCin bakrenih kabih – Omogoēa izvedbo 48 200Gb prikljuēkov v 1U napravi • SFP112: – Veēja dovoljena disipacija (5.5W) – Vtiēno mesto podpira vgradnjo vseh poēasejšh SFPx modulov – SFP-DD 2 poti Uporabljen predvsem v deljenih AOC in bakrenih kabih Deljeni 100Gb prikljuēki – 4x 25Gb, 2x50Gb • Pakiranja SFP/SFP+/SFP28 – 1 sled, do 25Gb/s – SFP prenos do 100Mb/s- 4Gb/s – SFP+ prenos 8Gb/s, 10Gb/s, 16Gb/s – SFP28 – prenos do 25Gb/s – SFP112 – prenos do 100Gb/s • SFP-DD : SFP56-DD, SFP112-DD – 2 sledi, 2x25Gb/s ali 2x 50Gb/s ali 2x 100 Gb/s izvedene z dvojnim konektorjem razporejenim po globini – prenos 50,100,200 Gb/s – Poraba do 3.5W – Predvsem uporabljen za deljene povezave 200Gb/s QSFP28 na 2x 100Gb SFP-DD, veēinoma kot DAC kabel • Prikljuēek stikala je lahko kompatibilen s starejšimi vtiēnimi moduli – QSFP28 prikljuēek z • SFP: 1-4G, (1,2,4 FC) • SFP+:, 10G, (8G,16G FC), • SFP28: 25G – SFP-DD prikljuēek z • SFP/SFP+QSFP28: z vsemi zgoraj naš j tetimi in • SFP-DD: 50Gb (2x25Gb, 1x50Gb) in n 100Gb (2x50Gb) 100Gb (2x50Gb) SFP-DD dve poti PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 312/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 313/451 Upravljanje vtiēnih modulov • Stari tipi modulov: SFP, SFP+, QSFP+, QSFP28, QSFP56 – Upravljanje prek spominsko mapiranih registrov v emuliranem I2C eepromu, 256 znaakov razdeljenih na 2 strani • spodnja za identifikacijo, pomembne parametre, nadzorujejo delovanje modula in del diagnostike, vedno dostopna, zgornja mapira veē (prek page registra) strani za razširjene funkcije, diagnostiko... • diagnostika se prikauje kot registri za branje v istem pomnilniku • Zašēita je veēinoma le geslo, ki dovoljujejo pisanje/branje doloēenih delov pomnilnika – Veēina parametrov opisanih v SNIA dokumentih (npr. SFF-8636 .... ) • Novi tipi modulov: SFP-DD, QSFP-DD, OSFP, OSFP-XD – Upravljanje prek CMIS protokola (Common Management Interface Specification)1 – CMIS protokol za komunikacijo z modulom še vedno uporablja I2C protokol, in emuliran spominski vmesnik (256 znakov, 2 strani...) – Lokacije diagnostiēnih registrov so razliēne kot registri z isto funkcionalnostjo v starih tipih modulov – Zadnja verzija je V5.2. Izvedbe z verzijo V3.0 in nižje niso skladne z V4.0 in višjimi. Nekatere funkcije med glavnimi verzijami prav tako niso skladne 1 OIF-CMIS-05.2 – Common Management Interface Specification (CMIS) Revision 5.2 (April 2022) CMIS – Modul predstavi svoje sposobnosti napravi prek Advertising funkcij – Isti Modul lahko podpira veē razliēnih naēinov dela (t.i. Aplikacij) – V opisu Aplikacije se lahko loēeno doloēa naēin dela na klientni strani in naēin dela na linijski strani – Odvisno od modula je lahko hkrati aktivnih veē aplikacij – Podpira izvedbo CDB ukazov, ki lahko prenašajo parametre in izvajajo kompleksne funkcije. Nekaj standardnih CDB ukazov: • Nadgradnja FW modula • Veē nivojev detaljne diagnostike • BERT testi .... • Specifiēne funkcije za posameznega proizvajalca • Modul ima stanje spanja in aktivno stanje med katerimi prehaja v skladu s konēnim avtomatom modula (MSM) prikazanim levo. Nekatere funkcije so podprte le v doloēenih stanjih modula. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 313/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 314/451 CMIS Koherentnih modulov – Koherentni moduli podpirajo dodatne nastavitve in diagnostiēne funkcije, ki se jih krmili pr krm ek ukazov specificiranih v C-CMIS1 specifik sp aciji. – Trenutno v Tre eljavna verzija C-CMIS je V1.2 – Doda Do tni Ukazi podpirajo: • Nastavitve parametrov koherentne modulacije • Nastavitve pragov optiēnih nivojev za alarmiranje • Izbor FEC algoritmov tako na strani klijenta kot na strani linije • Detaljni diagnostiēni parametri linije (za vsako pot loēeno) med njimi: – Prikaz Optiēnih moēi oddajnih in sprejemnih signalov, prage za alarme .... – Prikaz Izmerjene CD linije in DGD signla – Odstopanje dejanske valovne dolžine od standardne vrednosti kanala – Izmerjeno Pol. Odv. duš. (PDL) linije – Izmerjen OSNR linije – Izmerjen SNR na elektriēni strani (ESNR) – Prikaz SNR za posamezne poti na klijentni (elektriēni) strani – Statistiko napak FEC vkljuēno z številom popravljenih napak, in BER pred FECom na linijski in klientni strani2 – Hitrost rotacije polarizacije signala • .... 1 OIF-C-CMIS-01. OIF C CMIS 01 2 2 – Implementation I l t ti Agreement for A t f Coherent C h t CMIS CMIS (March 2022 (M h ) 2022 2 Po intervalih, v 64bitnih števcih, k.naprava raēuna skupno statistiko Kompatibilnost modulov in kablov • Poleg parametrov, ki vplivajo na delovanje modula je v krmilnem lahko delu zapisna še dodatna vsebina ki jo proizvajalec preverja : – Proizvajalec – Oznaka modula – Serijska številka – Specifiēni parametri – Dodatna vsebina specifiēna za proizvajalca komunikacijske opreme • V redkih primerih je modul spremenjen tudi na strojnem nivoju • Vsi zgoraj našteti parametri in vsebine moraj biti pravi, da komunikacijska naprava zazna modul kot lasten (kompatibilen) modul. e ga ne, ne deluje v opremi ali deluje z omejeno funkcionalnostjo ali ne zagotavlja tehniēne podpore za opremo (tudi ēe delovanje modula ni sporno) • Pri standardnih generiēnih modulih je mogoēe vsebino modula spreminjati z ustreznim programatorjem (tudi na terenu), tako da se vsebino enega generiēnega modula lahko prilagodi zahtevam razliēnih proizvajalcev • Pri modulih velikih hitrostih so nekateri proizvajalci opreme loēili kompatibilnost modula od licenc za pasovno širino in dovoljujejo uporabo vseh skladnih modulov • Drugi proizvajalci napovedujejo da bodo priēeli vpisovati digitalne certifikate v module – kar zahteva vgradnjo dodatnega identifikacijskega ēipa v sam modul (Brocade) PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 314/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 315/451 Generiēne IEEE oznake tipov vtiēnih modulov • Modulacija (NRZ), PAM4, Koherentni • Pakiranje (SFP, SFP28,SFP-DD,SFP56-DD, QSFP28-DD, QSFP56-DD, OSFP,OSFP112) • Hitrost prenosa (25, 50, 100, 200, 300, 400, 800 Gb, 1.6T, 3.2T) • Standardni tipi modulov z IEEE oznako tipa (beli del): G- Hitrost Doseg Število kanalov 10 100 SR , PMM 100m P (MM) 25 200 DR, PSM 500m P (SM) število nosilcev: 50 400 FR 2 km V Parov (P) optiēnih vlaken ali Število valovnih dolžin (V) 800 LR 10 km V (1),2,4,8,16 ER 40 km V ZR 80 km + V Pregled tipov hitrih modulov del standardnih nekoherntnih modulov • Kabli – Bakreni (DAC): pasivni, aktivni (uporaba zaradi: cene, zakasnitve) • Direktni prikljuēek–prikljuēek : 100Gb (CAUI) do 3m, 200Gb (GAUI) do 2m, 200Gb (112LR) do 1m, ēe stikalo podpira AN & LT1 • Deljeni Y - En prikljuēek na veē delnih prikljuēkov – Aktivni optiēni kabli AOC • Direktni razdalje do 100m in veē • Deljeni Y - En prikljuēek na veē delnih prikljuēkov, • Deljeni H - Veē delnih se križno vežejo na veē delnih prikljuēkov (uporaba v RC Spine/Leaf povezavah) • Širokopasovni Moduli – Vtiēni moduli za kratke povezave (<40km, ena povezava /par ali veē parov) • 100g: SR4 (100m), PSM4 (500m), FR4 (2km), LR4 (10km), CWDM4 (2,10km) • 200g: SR4 (100m), SR8 (100m), PSM8 (2km,10km), FR4 (2km), LR8 (10km,20km) • 400g, 800g: SR8 (100m), PSM8 (500m,2km,10km), FR8 (2km), LR8 (10km,20km,) – Široko pasovni vtiēni moduli za daljše povezave (ш40km, ena povezava/par) • 100Gb: CWDM4 (40km), ER4 (40km), ZR4 (80km), 4WDM-10 (120km) • Moduli, ki z eno od WDM tehnologij omogoēajo prenos veējega števila povezav prek ene fiziēne povezave (optiēnega vlakna ali para) – WDM (NRZ), • 25Gb DWDM (15km) – PAM4 DWDM (80km), – O Band DWDM (80km) , 1 Line Training –Protokol, ki prilagodi parametre premphasis karakteristokam medija. Je nujen Za 112 Gbaud prenos na veēje razdalje. (IEE802.3 clause 162 za 112G SerDes ) – Koherentni moduli v nadaljevanju PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 315/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 316/451 Standardne oznake prikazane v tabeli Primeri: QSFP, QSFP28, QSFP56 NRZ Primeri nekaterih širikopasovnih 100Gb, 200Gb vtiēnih modulov • • Paralelne Valovne dolžine: Nadgradnja QSFP+ 4x10Gb/s • SR4 100m-2km, • QSFP28 – 4x25Gb/s -100Gb • LR4 (2-10)km, ER4 (20-40km) • • QSFP56 – 4x25Gb/s -200Gb FR4, ZR4 4 val. dolžine v bližini 1310nm CWDM, NWDM (60- – MM -100m, brezbarvni LX, 2, 10Km 100km, 100Gb) – • paralelne parice 1-8 CWDM (okoli 1310nm) – 2km do 10km • PMM veērodne (100m) Tip in hitrost Doseg Ohišje Konektor Vlakno • PSM enorodne (500m) 100G SR4 100 m QSFP28 MPO MMF 100G MM Duplex 100 - 300 m QSFP28 MPO MMF • O-Band DWDM 200GHz, 150GHz 100G eSR4 300 m QSFP28 MPO MMF razmik do 12 kanalov (do 3 povezave 100G PSM4 500 m QSFP28 LC SMF prek ene parice) 100G DR/DR+ 500m, 2km QSFP28 LC SMF 100G CWDM4 2 km QSFP28 LC SMF 100G FR1 2 km QSFP28 MPO SMF 100G LR4 and LR1 10 km QSFP28 LC SMF 100G 4WDM10 10 km QSFP28 LC SMF 100G 4WDM20 20 km QSFP28 LC SMF 100G ER4-Lite 30 km QSFP28 LC SMF 100G ER4 40 km QSFP28 LC SMF 100G ZR4 80 km QSFP28 LC SMF 200G SR4 100 m QSFP56 MPO MMF 200G FR4 3 km QSFP56 MPO SMF PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 316/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 317/451 QSFP28, 100G ZR4, NRZ Primer parametrov modula za povezave do 80km: XQSLN9-80L QSLN9-80 Y-QSFP28 LY-QSFP28 Parameter Enote Min Typ Max Signaling Speed per Lane Gb/s 25.78125 ± 100 ppm 1294.53 1296.59 1299.02 1301.09 Wavelengths nm 1303.54 1305.63 1308.09 1310.19 Oddajnik Total Average Launch Power dBm 8 12.5 Average launch power, each lane dBm 2 4 6.5 • Brezbarvni Difference in launch power between dBm 3 any two lanes (Average and OMA) (~1290-1310 nm) Extinction Ratio (ER) dB 6 • Dinamika >30dB, RIN OMA (~ TX OSNR) dB/Hz -130 Doseg 80Km Sprejemnik Average receiver power, each lane dBm -28 -7 • Pd<5.5W Receiver power, each lane (OMA) dBm -7 • QSFP28 Receiver sensitivity Average1, each lane dBm -28 Max Power consumption W 5 5.5 1 Rx Obēutljivost pri BER@5E-5 kar nam z uporabo RS-FEC zagotovi BER<10E-12 QSFP28 100G - PAM4 (Inphy ColorZ) • PAM4: 100Gb DWDM: – Dva nosilca znotraj standardnega 100GHz pasu (ʄc±25GHz) – Oddajni nivo -10dBm na nosilec, Sprejemni nivo -2dB na nosilec – Ne deluje brez zunanjega optiēnega ojaēanja – Zahteva precizno kompenzacijo kromatske disperzije. Preostala disperzija max +-100ps. – Zahteva OSNR > 31dB – Uporablja PAM4 prenos in dva optiēna nosilca znotraj standardnega 100GHz DWDM kanala – Omogoēa cenovne ugodne izvedbe sistemov ki prenašajo od 3 do 40 povezav po 100Gb med lokacijama oddaljenima do 80km – Pakiran v QSFP28 ohišje s ohišj por e s p abo orab med o med 3.5 do 5W 3.5 , kar omogoēa delovanje v veēini st s andar t dnih andar stik dnih s alih tikalih PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 317/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 318/451 Koherentni vtiēni moduli • Edina resna alternativa za WDM prenos na veēje razdalje na valovnih dolžinah izven O pasu (1310nm) • Prvotno so bile koherentne rešitve na voljo le v CFP pakiranjih predvsem zaradi visoke porabe (do30W) in nizke integracije. • V zaēetku 2020 so se pojavile prve izvedbe Koherentnih modulov v QSF-DD pakiranju. Te danes prevladujejo. Nove instalacije uporabljajo v veē kot 90% prav koherentne 400G ZR ali 400G ZR+ QSFP-DD vmesnike. CFP moduli so sedaj smiselni le za posebne aplikacije (OTN prenos). • Sedaj sta dobavljiva Dva glavna tipa QSFP-DD koherentnih modulov: – 400Gb ZR prva verzija specificirana v OIF Implementation agreement 400ZR (marec 2020), deluje samo v 400Gb naēinu z CFEC z DP-16QAM modulacijo – 400Gb ZR+ združuje iniciative OpenROADM in definiran v OpenZR+ MSA Spec. V2.0, prviē objavljena verzija V1 Sept. 2020 16QAM • Skupne Lastnosti vseh koherentnih modulov – Uporaba nastavljivega laserja kot lokalnega oscilatorja – omogoēa nastavljanje kanala na keterem deluje sprejem in oddaja – Uporaba kompleksnih modulacij, ki prenašajo veē bitov (3,4,..) v simbolu in tako bolj uēinkovito izkorišēa pasovno širino vlakna – PMA in PMD Prenos samo Ethernt protokolov, opušēeni so OTN protokoli – Implemntacija veēine podatkovnih protokolov zvedena v DSP, izven je le je PCS, optiēni del v obliki photonskeg IC, ki implementira laser in quad. pot modulatorje/demodulatorje in optiēno mutipleksiranje. – Sposobni kompenzirati visoke nivoje kromatske disperzije, PDL, SOP in drugih deformacij signala, ki se zgodijo v optiēnem vlaknu, zato lahko delujejo v sistemih brez zunanjih kompenzaciskih naprav n adolge razdalje – Moduli veēinoma še vedno zahtevajo zunanje optiēno ojaēanje ZR podatkovna – V veēini je degradacija OSNR tista, ki omejuje doseg teh modulov 400G Koherentni 400G ZR - glavne lastnosti Parameter Vrednost Komentar • Deluje le v enem naēinu dela: 50 GHz Mreža / 100 GHz in 75GHz z modulacijo DP-16QAM za prenos Valovne dolžine delovanja 400Gb/s 75 GHz Pas. Širina mreža podprti • Vmesnik proti stikalu podpira tudi en Modulacija Liniska stran , DP-16QAM sam naēin dela 400G GAUI-8 Baud Rate 59.84375 Gbaud/s • OSNR toleranca 8dB > majhno število Za 0.1nm pasovne širine TX OSNR znotraj pasu 34 dB ojaēevalnih stopenj predno je OSNR (12.5 GHz) toleranca omejitev dosega Znotraj celotnega TX OSNR izven pasu 23 dB • Dodatno znižanje OSNR tolerance za do frekvenēnega podroēja 2.8dB možno zaradi mejne vrednost Line side Lane, FEC SC-FEC OSNR (B-B) = 26 dB CD<2400, mejne vrednosti PMD<10ps, velike razlike dušenja odvisne od Tx Output Power, Typ -9 dBm -10 dBm min polarizacije (PDL<3.5dB), velike hitrosti 53.125 Gbps, PAM4 vrtenja polarizacijskih ravnin Vmesnik klijenta 400 GAUI8 KP4 RS FEC (SOP<50Krad) (OIF CEI 56-MR) • Odpornost na CD omejuje doseg na Rx OSNR Toleranca 26 dB najveē 120km -18 dBm razširjen obseg, • Sprejemna obēutljivost -12dBm, da ohrani OSNR toleranco Rx Obēutljivost -12dBm TYP s slabšo OSNR toleranco, omejen s šumom • Brez optiēnega ojaēanja lahko dosega le okoli 20-km dosega, zato to ni smiselna CD toleranca 2400 ps/nm do 120 km G.652 cable uporaba Frekvenēni pas 191.3 to 196.1 THz 75 or 100 GHz raster • Visok šum izven delovnega pasu – Temperatura ohišja 0 to 75ӑC koristno uporabiti pasovno filtriranje Total Power Consumption ч 19 W Temp. ohišja 75ӑC • Na voljo je tudi HiPower verzija 400G ZR, lahko oddaja z 0DBm moēi, Napajanje 3.135 V to 3.465 V ostaleparametre pa ima enake ta ima doseg brez optiēnega ojaēanja od 60- 80km PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 318/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 319/451 400G ZR+ • Združene izbrane funkcije iz dveh preverjenih projektov: OpenROADM in 400ZR • Dobimo modul, ki je sposoben prenašati Ethernet protokole s hitrostmi od 100, 200, 300 in 400Gb in to bolj zanesljivo zaradi uporabe bolj uēinkovitih posopkov korekcije napak • Sodobni koherentni moduli (OpenZR+) uporabljajo bolj kompleksne modulacije in oFEC korekcijo – za linijsko hitrost 100Gb in 200Gb tipiēno DP-QPSK, DP-8QAM – za linijsko hitrost 300 Gb tipiēno DP-8QAM – za linijsko hitrost 400 Gb tipiēno DP-16QAM 400G ZR+ glavne lastnosti primerjava Specifikacije Standardega OpenZR+ in specifikacij dejanske izvedbe 400G ZR+ (Xenopt XKDT84-J0LY) • Djanske izvedbe OpenZR+ kot 400G ZR+ lahko presegajo predpisane mejne •DWDM C-Band delovanje z vrednoti v OpenZR MSA, poleg tega pa lahko izvajajo še dodatne funkcije kot so nastavljivim kanali npr. Skadnost z 400G ZR in optiēno ojaēanje TX signala ... •Vsak ZR+ modul lahko deluje v naslednjih naēinih: Skupne lastnosti: • 400G – 400G GAUI8 Vrednost Vrednost • 400G – 4x100G GAUI2 Parameter Komentar po OpenZR+ (Xenopt Hi power) • 400G – 2x 200G Frekvenēni obseg C-Band: 191.3 to 196.1 THz • 300G – 3x 100G GAUI2 Val. dolžina Flex grid 6.25 GHz resolution Podprt 75 in100 GHz spacing • 200G – 1x 200G GAUI4 Min pasovna širina Minimalna razmik • 200G – 2x 100G GAUI4 ali 75 GHz kanala kanalov 75 GHz CAUI4 400Gb-CFEC-16QAM (400G 16QAM ZR) • 100G – 1x 100G GAUI4 ali (samo Xenopt), CAUI4 Podprti naēini delana 400Gb-OFEC-16QAM (400G 16QAM ZR+), Deluje z drugimi OIF ZR in •OpenZR+ specifikacija ne linijski strani 300Gb-OFEC-8QAM (400G 8QAM ZR+), Open ZR+ skladnimi moduli zahteva skladnosti z 400G 200Gb-OFEC-QPSK (200G QPSK ZR+), ZR, ker ne zahteva podpore 100Gb-OFEC-QPSK (100G QPSK ZR+) CFEC, kljub temu je veēina Linijski FEC oFEC, cFEC izvedb 400G ZR+ skladna 400GE: 400 GAUI-8, tudi z 400G ZR 4x100GE: 4x100GAUI-2, Naēini dela Po IEEE Std 802.3 [5], 3x 100GE: 3x100GAUI-2, vmesnika klijenta Annex 83E, Table 83E–7 2x200GE: 2x GAUI-4, 100GE: 100GAUI-2,100GE: CAUI-4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 319/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 320/451 400G ZR+ glavne lastnosti (nadaljevanje) Vrednost Vrednost Parameter Komentar po OpenZR+ (Xenopt Hi power) • OSNR toleranca 8dB > majhno Linijski FEC oFEC, cFEC število ojaēevalnih stopenj predno je OSNR toleranca TX Moē -13 to -9 dBm -6 to 1 dBm +-1db tolerance omejitev dosega TX Moē typ -10dBm 0dBm • OSNR toleranca je boljša pri 400Gb ZR+ kot pri nižjih hitrostih TX OSNR (in band) 34dB/0.1nm 40dB/0.1nm in znaša 10 / 15 dB TX OSNR izven kanala 23 dBm 35 dBm • OpenZR+ MSA predvideva nizkek OSNR izven kanala, ki znaša le 23 RX obēutljivost, -12, -15, -18, -18 -23, -26, -30, -32 OSNR >35dB/0.1nm, 400G dB (11dB manjši kot v kanalu zato 400G, 300G, 200G, 100G dBm je za standardne module še bolj (OpenZR+ ne doloēa dBm 16QAM pomembni zagotoviti filtriranje ne ojaēan signal verjetno je višja) tudi za neojaēane povezave RX obēutljivost • Dodatno znižanje OSNR tolerance -12, -15, -18, -18 za do 2.8dB možno zaradi mejne 400G, 300G, 200G, 100G -18 to 0 dBm Za OSNR znotraj spodnjih meja dBm vrednost CD<2400, mejne ojaēan signal vrednosti PMD<10ps, velike RX OSNR toleranca Za standardne RX razlike dušenja odvisne od 24, 21, 16, 12,5 25.0, 23.5, 15.0, 12.0 polarizacije (PDL<3.5dB), velike 400G, 300G, 200G, 100G vhodne nivoje, hitrosti vrtenja polarizacijskih dB/0.1nm dB/0.1nm ojaēan signal ravnin (SOP<50Krad) • Do 120 km prek G.652 v ZR Odpornost na CD v v obeh CD Tolerance (ZR) +-2400 ps/nm +-2400 ps/nm primerih velika, tako da bo domet naēinu obiēajno omejen z OSNR Xenopt do 650 km prek G.652 dinamiko CD Tolerance (ZR+) 20000,40000, 12000,18000, • OpenZR+ do 1100 km Brez optiēnega ojaēanja lahko 400G, 300G, 50000,100000 24000,48000 standardni ZR+ dosega le okoli za 400G 16QAM, prek G.652 okoli 30km dosega, zato to ni 200G, 100G ps/nm ps/nm na nižjih hitrostih veē smiselna uporaba za direktne povezave. Specifikacija OpenZR+ ne specificira bolše obēutljivosti Poraba Ni doloēena 22W (19W Typ) ob najboljšem možnem OSNR, zato je ta razdalja le ocena. • Hi power ZR+ omogoēa 23 dB dinamike v neojaēanem naēinu dela, kar omogoēa delo na razdalje od 80 do 100km brez ojaēanja. Ukrepi za prilagoditev optiēnega sitema za uspešno izvedbo ZR+ povezav DEM UX R A A MUX A • Optiēno ojaēanje je potrebno zagotoviti z nizkim dodanim šumom – Izraēunati vpliv optiēnih ojaēevalcev na OSNR e je ta pod OSNR toleranco modulov je potrebno Zmanjšati vpliv ojaēevalcev na OSNR z naslednjimi ukrepi • Povišati nivoje signalov na vhodih – Poveēati moē na oddaji – Zmanjšati število kanalov • ēe to ni mogoēe skrajšati trase, oz dodati vmesne lokacije za optiēno ojaēanje • ēe to ni ogoēe je potrebno na kritiēnih mestih uporabiti kombinacijo RAMAN in EDFA ojaēevalcev • Upoštevati je potrebno dejanski vpliv CD, PDL, PMD na poslabšanje OSNR – Dovoljene Mejne vrednosti vsakega od teh parametrov znižujejo OSNR odpornost za 0.5 do 2.3dB • Odstraniti je potrebno vse komponente, ki ne zagotavljajo vsaj 75GHz pasovne širine kanala ( kanalizirane Bgagg DCM module, 50GHz filtre, interleaverje ...) • Poskrbeti, da ne prihaja do presluhov iz drugih kanalov • Poskrbeti da ne prihaja do nelinearnih pojavov (Briulin, Raman, intermodulacija) • Tudi v neojaēanih sistemih je koristno uporabiti 100GHz filtre, da izloēimo motnje izven pasu. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 320/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 321/451 Diagnostika povezav Primer dela izpisa statistike priklju«ka: PCS statistics Seconds Bit errors 0 • Diagnostiko lahko izvajamo Errored blocks 12 Ethernet FEC Mode : FEC91-RS544 direktno na komunikacijski Ethernet FEC statistics Errors opremi, ki jo 400G ZR/ZR+ FEC Corrected Errors 179 FEC Uncorrected Errors 12 povezuje FEC Corrected Errors Rate 0 FEC Uncorrected Errors Rate 0 – CLI ukazi, ki prikažejo parametre, Optic FEC Mode : CFEC ki kažejo na kvaliteto optiēne Optic FEC statistics: Corrected Errors 20548530872257 povezave Uncorrected Words 0 – Corrected Error rate 490045240 SNMP, orkestracija Uncorrected Error rate 0 – Na veēini stikal dostopna tudi Corrected Error Ratio (46063 seconds average) 9.99e-04 PRBS Mode : Disabled programsko kot json ali Interface transmit statistics: Disabled Netconf/Yang ... Link Degrade : Link Monitoring : Disable • Razliēen postopek za aktiviranje in Del izpisa opti«nih parametrov koherentnega modula za nadzor Lane 0 • Laser bias current : 251.496 mA Prioritetni vrstni red indikatorjev Laser output power : 0.169 mW / -7.71 dBm – Laser temperature : 65 degrees C / 149 degrees F Error rate (post FEC) Laser receiver power : 0.048 mW / -13.14 dBm – Lane chromatic dispersion : 0.0 ps/nm Pre FEC error rate Lane differential group delay : 3.0 ps – OSNR na liniji Lane carrier frequency offset : -54.0 MHz Lane polarization dependent loss : 0.3 dB – OSNR na klientni strani Lane snr : 17.7 dB Lane Optical signal-to-noise ratio : 36.4 dB Diagnostika povezav (2) Del izpisa detaljnega izpisa opti«nih parametrov Tunable param init: true Wavelength Tunable: true Tunable(fc contrl): false • Nekatera stikala podpirajo ukaze, ki (prek CMIS MDB Tunable(wl contrl): false ukazov) podpirajo generiraje testnih (PRBS) tokove Tunable(First 100 Freq[THz]): 191.3 prometa pri polni hitrosti medija Tunable(Last 100 Freq[THz]): 196.1 Tunable(First 100 ch): -18 • Iz diagnostiēnih izpisov lahko vidimo dejanske Tunable(Last 100 ch): 30 vrednosti parametrov linije, ki vplivajo na znižanje Tunable(First 75 freq[THz]): 191.3 OSNR tolerance in na osnovi tega bolj natanēno Tunable(Last 75 freq[THz]): 196.1 Tunable(First 75 ch): -72 izraēunamo rezervo pri OSNR. Tunable(Last 75 ch): 120 • Glede na nivoje optiēne moēi signalov, nivoje OSNR Tunable(First 6.25 freq[THz]): 191.275 ter pogostost napak lahko sklepamo na vzrok. Tunable(Last 6.25 freq[THz]): 196.125 Tunable(First 6.25 ch): -292 • e prihaja do napak preverimo da so: Tunable(Last 6.25 ch): 484 – optiēni nivoji znotraj meja Grid Spacing[Ghz]: 100 – temperature modula znotraj dovoljenih Encoded Range: 0 Tuned Frequency[THz]: 193 – modul spoznan in oznaēen kot delujoē (da na moduli ni Tuned Wavelength[nm]: 1553.33 aktivnega alarma) Pending Wavelength[nm]: 1553.33 – OSNR nad minimalno zahtevanim Wavelength Is Pending?: 0 – Pre FEC rate pod pragom sposobnosti FEC algoritma Tuned Channel Raw: -1 Config Channel 2s Compl: 1 – Pri spremembah na liniji prvo opazujemo spremembo Chromatic Dispersion[ps/nm]: 4 FEC statistike, Potem OSNR SOPMD[ps^2]: 31 – Zelo majhne spremebe OSNR lahko povzroēijo velike Pdl[dB]: 0.3 spremebe v narašēanju ali padanju števila napak Carrier Frequency Offset[MHz]: -312 (popravljivih in nepopravljivih) Diff Group Delay[ps]: 1 • Pri delujoēi liniji imamo veē stopenj zgodnjih opozoril, Electrical SNR[dB]: 17.3 Optical SNR[dB]: 36.4 ki kažejo na slabšanje kvalitete povezave veliko prej, Rx Power[mW]: 0.042 predno lahko to vpliva na samo komunikacijo. Tx Power[mW]: 0.1674 root@acx-test:pfe> PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 321/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 322/451 IPoDWDM paketni transportni sistemi • Trend izgradnje paketnih transportnih sistemov, ki prenašajo le IP promet in nadomešēajo klasiēne L1 transportne sisteme • Povezave Toēka-Toēka z DWDM hitrimi vtiēnimi moduli (Nx 100 do Nx400Gb/s ...) • Moduli vtaknjeni direktno v komunikacijska stikala, brez transponderjev. • Dodan le optiēni del transportnega sistema (mux/demux, ojaēevalniki) in pasivni optiēni sistem, ki zagotavlja premošēanje sosednjih usmerjevalnikov z nekaj povezavami, klahko zagotovijo dodatno stopnjo redundantnosti • Stikala poganjajo usmerjevalni protokol (tipiēno BGP in/ali OSPF), ki zagotavlja redundantnost povezav • Uporabniške povezave zagotovljene ali s tuneliranjem L2 ali L3 tunelov prek L3 omrežja (VXLAN, EVPN) ali z MPLS EVPN povezavami. • Orkestracija omrežja zagotavlja hitro samodejno vzpostavitev logiēno loēenih L2 in L3 povezav • Nadgradnja pasovne širine s postopnim dodajanjem dodatnih DWDM povezav, brez motenj delovanja transportnega sistema • Možna uporaba cenovno ugodnih stikal namenjenih uporabi v podatkovnih centrih z doloēenimi omejitvami glede strukture prometa, ki omogoēajo izogibanje ozkim nastanku ozkih grl. Ta stikala zagotavljajo ugodno ceno glede na prenosno hitrost in nizke zakasnitve Zakljuēek • Hitri vtiēni moduli, posebno koherentni, so kompleksne naprave, ki jih je potrebno uporabiti pravilno, da delajo dobro in zanesljivo prenašajo promet brez napak. Pri pravi uporabi lahko opozorimo na slabšanje linije preden to povzroēi prekinitev komunikacije • Sedaj so klasiēni transportni sistemi postali manj relevantni, še posebno ēe rabimo le paketne prenose podatkov • Izgradnja paketnih transpornih sistemov s popolno diagnostiko in je postala bistveno cenejša in bolj enostavna. Taki sistemi so lahko bolj robustni in bolj zanesljivi od klasiēnih. Pasovna širina je z novimi moduli postala bistveno cenejša, postopno prilagajanje narašēanju potreb pa lažje. • Razvoj teh modulov se je šele dobro zaēel (<2 leti) in trenutno smo še v zaēetni fazi zelo hitrega razvoja, ki ga spodbujajo najveēji porabniki (cloud providerji), in nove aplikacije v podatkovnih centrih (AI). Trenutno so ozko grlo prej ponudniki hitrih stikal kot kapaciteta prenosa. Na vidiku pa so rešitve za vmesnike za dolge linije s hitrostmi 800 Gb, 1600 Gb in 3200Gb, ki so videti rešljive že s sedanjo tehnologijo hitrih vtiēnih modulov. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 322/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 323/451 The use of telecom fiber optics in sensor applications Edvin Škaljo University of Sarajevo, Department of Physics, BiH sklajo@hotmail.com Abstract of Professional association of electronic, automatics This SMM and MM fibers are the two most and telecommunications engineers and vice-chairman common varieties of fiber in use in of Engineer chamber of engineers of the Federation of telecommunications. Because the cost of fiber and Bosnia and Herzegovina. He is a senior member of IEEE, Optica and SPIE. In addition, he has served as associated equipment is continually falling, it is chairman of the International Workshop on Fiber now available for laboratory research outside of Optics in Access Networks (FOAN), since its founding. telecom. In this articel there is explained three types of sensor applications: 1) sensor applications with direct light passages, 2) sensor applications based on reflected light, 3) sensor application in combinations of MM and SM fibers. Mathematical models and experimental setups are also discussed. Author's biography Edvin Skaljo, has more than 20 years of experience in telecommunications. He received his Ph.D. from the University of Tuzla, Bosnia and Herzegovina. Dr. Skaljo has held several management positions at BH Telecom, the leading telecom operator in Bosnia and Herzegovina. He has pioneered the implementation of numerous projects and new services in the field of fiber optics communications and related broadband technologies. He is the author of many international presentations in this field. Dr. Skaljo is also an associate professor at the University of Sarajevo, and an Associate Editor of the international journal Fiber and Integrated Optics. He is a president PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 323/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 324/451 The use of telecom fiber optics in sensor applications #( # !%#(!! % &# Ā % Ā 4 ! 4 4 ! 4 !! Ā!"" PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 324/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 325/451 Ā $#++ Ā #! $! Ā 5998)%&!!%!$"#")$! #")!#&!")#!#))))#, Ā " Ā $#!""!# &#"$!""#!")! #")#!"$!#"-#! $##", Ā !"##!#"!(%0"! !"!"##""##!")$##) $#"!"./ Ā """###!--!'!2!"01!#!##"1 (, Ā $!!"## "!"#!#&!""! #"""#&!"* Ā !#!%!64!"!$##"" Ā ))"!!"* " BIH &,9>=Ā#$Ā57<Ā90 &'",%Ā 5BG5CACC5 *+.'#Ā#!"(%- @/;/Ā6+3.Ā+<Ā 799 89 :+;=Ā90Ā=2/Ā:;94/-= Ā *;94/-=Ā3<Ā$(Ā98Ā)98=Ā '?/;/<= Ā %#"!#""""#'- "##!"""$#!#* Ā !#""!$$"+#&#")!) %!$#)$!!!%!)"""!#" (,'"'&(.'-"'",("5 )-"%%"',-%%BA2+, ( Ā !""###"# -"#"+ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 325/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 326/451 & #$## -"(' & ! '"#%!!)## "# "'(+& "'(+&-"(' "'(+&-"(' & ! '"%$ %,'-&"'-(+ ! ',(+ )()%'(+ 100 + "& &!"'<(&).-+,= ',(+!(,-"% '/"+('&'- ,+," '% (0+ %(& '(+&-"(' + "& ('(+-0("+, ()(0+ " Ā Ā Ā + Ā & Ā!( 4 Ā#$ PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 326/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 327/451 & """$&(#$"#"$ 2 - & $($#$"374$"# $"%,$## "%)/ " # " # 7?2 ?3714 & $ '$##$$%$ " ##,#$'%# , #$7, Ā + & $"$&)" C "+()-"%(&&.'"-"(''!+%2"& "'0"-!(.- '-"+%-"('%2+ :* C %-"('%(,,",+.0!'''-"+%-"/%2+",.,8 'B 'C !"+,-"(+,',"' 7 .82 # $( -!++-"/"'1<'C=!' ,.-(,(&'-.+%)!'(&'('5<,-&)+-.+588 ,# '' "-'&,.+.,"' '"',-+.&'-,<(+= %##1 & )!"""$&( " #9$ ;#- & "(!, (""")!#)( 650 1)45650 850 1)45250 1310 1)44680 1550 1)44400 C ,'B)'('0/%' -!5"-&',-!- %,()'('0/%' -!7 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 327/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 328/451 'D4 & "# "+(+ '2 $$ %$ $ (-!+ %"' 'C,%0",(/+2 '((%",/,$ Ȁ)%(( : BGCB .-"-0,,+"2'!%; JIE8 & $ '"#! %$$" ' '. Ā 850&13101550 Ā 13101550 Ā 1280)$) & ##!!$ . Ā 6501800 & 79767;;6 '%# 1#$ %$ 1#$## !!$ !"+,-"(+,',"' 7 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 328/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 329/451 Ā & " # !"+,-"(+,',"' 7 !'"%(+(+)+,,.+'&(/"+, "# ! $ # & ""#&"#$$"#, & #$$"" %#&")$)!"$#3@7 076'&$4#!" $) ) #$$"/ '"+()-",/+2(2$'(0, & '&$- & !!''&$###$ % " !"$ & )#$$"#'&$!$. & ĀȀ%$ #!"#$$"(@7,$#$(" %6,7 & #$$"$7976#8(#"$#$$$7;;6 & $$"'$#$$"! $ #&$" " " '"! $ ")# #$$"/ !"+,-"(+,',"' 7 -!++,(&)+-"%,<,)(%%.-"('5%(((&)(''-,5=(.-("+-!' ' 0"%%)'('-! '.&+()+-"%,""&-+()+-"%,",,/+%-"&,%,,-!'0/%' -!6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 329/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 330/451 Ā! ! 4 "! (/&#Ā2 1#(#*%/&ĀĀ+$Ā/&#Ā('%&/ 2 1#Ā) /"&#.Ā/&#Ā$-#,0#*"3Ā /Ā2&'"& #(#"/-+*.Ā'*Ā/&#Ā /+).Ā+$Ā/& /Ā) /#-' ( 1'!- /#Ȁ 4 !$+$ ! ! !!+ !"+,-"(+,',"' 7 ,(+)-"(',,',(+&!'",&'.,(+--"('()(%%.-"(',(+)+-"%,%+ +-!'A5AB&& (+--"('"'!.&'%((59AB2+/79169,38Ȁ%$!Ā=9Ā"!!! Ā " % Ā Ā ( Ā % Ā -&+ ,&& Ā +() Ā *(( (+%(' ",-',',"' 7 -!)-"'-&2(.-F$&028 !",1&)%!,'()+-"%/%.5-! "&(-!(, ,%"",-(,!(!(0,',(" 2"+ ,!(.%%(($, PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 330/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 331/451 -'+"+,7 ! .%-"&(: C FA9BCF(+GC5F9BCFμ& C ; A8C; A8D ##%#. & $" " 1#$""$)!#- & #$",%# "/ & ,#$! ""$+ & $$%$ # # & %$6/<0$=;6 & " " $ " $,# ## "#$&# PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 331/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 332/451 '-%(&"+7 %" !- ("' !"+!,)+"&+2(-"' 8-,+(%", -(&$"+,-+(' +5!(0/+-!+", ('&(++(%7 .-(.-%" !-(+&%"' 'DL'C !'-(-% +%-"('0"%%" (.+ & " $"$"% 76 # !" % 'D4 "+(+'2 (-!+ %"' 'C; "+'(F-(H0,(.++.,D"-"('% (''-(+,#("'-0,-0'%,+'0-+-'$8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 333/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 334/451 Ā !#" "$ Ā % )%"--+(+ Ā % .,-"+(.-(% Ā # ! Ā $ "+%0"-! Ā ('(+&(+(+, - , , , & Ā # % - & * < = ) <= ('.--!1)+"&'-0"-!-0(0-+-'$,.,"' ('%2"+ ',)%"--+B7C5'"-0(+$7 ( <= Ā "* *30& Ā ""&" + 36 ' <= Ā ""& * 42) Ā Ā Ā Ā Ā "" ('-+,--0'0"''0-+ '"-"%+,+!"'"-,-!- (*.%"-2'"'-"" 1)',"/0"'",&(+,"&"%+-( /+2)+",%28 0-+-!'"'1)',"/0"'8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 334/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 335/451 & &$# Ā $$$ Ā " & "$"*$ . Ā $&) Ā ! ' Ā ""% " ! 4 " " ! "!) 4 ! !! ! 4 !! ! 4 %% !# " ! 0(',.-('% PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 335/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 336/451 4 #! "!$! ! ! !% !#% "% !) 4 ! !* & !"$'&$#$"$& $ & $"'#$#$ & "$)!. " 4 $!* & ! %$"#%"$ & $$"# "!$ $" --'.-"('0"%% "'+,%(' 0"-! ",-',"- +(0,-( &(+-!'C10",- ",-'8 Ā ! Ā -"#"$!# Ā &%#"!874#5874 Ā &!"$'""!" Ā ! Ā# " 1+(&1 ''(07 "+-(-!(&!"': "+-(-!0"'++%6 "+-(-!!"/, 888 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 336/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 337/451 Software-defined passive optical network evolution Jakup Ratkoceri Technetix, The Netherlands & UBT-Higher Education Institute, Republic of Kosovo jakupratkoceri@hotmail.com Boštjan Batagelj Univerza v Ljubljani, Fakulteta za elektrotehniko Abstract (2G, 3G, and 4G) into virtualized, software-based The need for a sustainable, flexible, and future- network functions (VNFs). The VNF architecture is proof network has become a must for telecoms and hardware independent and can be hosted on any cable industry. Passive optical networks (PON) hypervisor and hardware. This enables fast and have become a technology of choice as future dynamic deployment, less complex hardware proof solution, however traditional PON with lifecycle management, and lower costs. Second, proprietary active solution still poses some Software Defined Networking (SDN) is used to challenges in providing flexibility and scalability. decouple the user plane from the control plane and This reinforces the idea of using open software and enable centralized management and white-box hardware converged with software- programmability of network resources through defined networking and network function SDN controllers. The convergence of the fixed and virtualization (NVF) to add flexibility and mobile network will be possible will the help of scalability to the passive optical network. With the SDN and NFV. advent of 5G mobile and the role that PON must play in the x-haul of 5G networks, this scalability Author's biography and flexibility becomes even more important. Jakup Ratkoceri was born in Looking at the mobile network, where the trend Pristna, Kosovo, in 1983. He toward flexibility and simplicity also appeared in received BSc and MSc from the the radio access network (RAN) as an open radio University of Prishtina, Faculty access network (Open RAN) a few years ago, these of Electrical and Computer trends are also evident in the optical access Engineering. He received PhD network. In the Open RAN of the 5G network, there from University of Ljubljana, Faculty of Electrical are two primary technological requirements that Engineering, under supervision of associate. professor provide flexibility and simplicity to the network. dr. Bostjan Batagelj. Currently he is with Technetix in First, network function virtualization (NFV) Netherlands, as director of FTTx products and assistant abstracts the legacy, purpose-built network professor at UBT Colleague, in Pristina, Kosovo. hardware functions used in previous generations PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 337/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 338/451 Software-defined passive optical network evolution Jakup Ratkoceri Technetix, The Netherlands UBT-Higher Education Institute, Republic of Kosovo Bostjan Batagelj University of Ljubljana, Faculty of Electrical Engineering, Slovenia Commercial in confidence | © 2021 Technetix 1 Motivation � Dissagregation the software from the access node hardware, eliminating specific hardware platform monopoly � Flexible and scalable infrastructure for rapid growth in traffic demand � Access network that goes beyond broadband to support fixed-mobile convergence applications Commercial in confidence | © 2021 Technetix 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 338/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 339/451 Passive optical networks (PON) Commercial in confidence | © 2021 Technetix 3 PON Technology � Passive Optical Network (PON) is well-known and standardized optical fiber communication technology in optical access networks. � PON enables point-to-multi-point connections (P2MP) to end-users in fiber-to-the-home (FTTH) installations, where optical fiber is used from a central office directly to individual households. neighborhood house downstream 1490 nm network central upstream 1310 nm office ONT VoIP phone (optional) analog video OLT overlay 1550 nm PCs backbone network standard single-mode 1:64 IPTV optical optical fiber splitter WiFi gaming ONT passive optical distribution network (ODN) securit up to 20 km y Commercial in confidence | © 2021 Technetix 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 339/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 340/451 PON Generations in Standards Commercial in confidence | © 2021 Technetix 5 Software Defined Networks (SDN) Commercial in confidence | © 2021 Technetix 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 340/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 341/451 SDN � The increasing capability and availability of cloud infrastructure is being leveraged to remove control plane functions from network elements. � Software Defined Networking (SDN) virtualizes configuration and control of network elements (NE), generally with a controller located in the cloud or data center communicating with network elements via a protocol such as OpenFlow. � There are many control and management functions required for broadband access, which, similar to SDN, can migrate from embedded firmware in dedicated network equipment into software controllers running on commodity hardware in a private or public cloud, saving costs while increasing capabilities. K. Kerpez and G. Ginis, "Software-Defined Access Network (SDAN)," 2014 48th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 2014, pp. 1-6, doi: 10.1109/CISS.2014.6814134. Commercial in confidence | © 2021 Technetix 7 Software-Defined Access Networks (SDAN) � The SDAN is built on a common control plane that virtualizes the infrastructure, separating the control plane from the data plane. � The SDAN provides a common interface and a unified touch point for policy, control, and management. � A number of trends are converging to drive the development of the SDAN Commercial in confidence | © 2021 Technetix 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 341/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 342/451 Industrial view of the importance of open access netowrks � Digitalization and ubiquitous connectivity with everything and everyone define this era. It is driven by: � A huge increase in data traffic: Potentially up to 100x more capacity will be required. � New services and users’ demands: Consumers demand new types of mobile services to enjoy anywhere: virtual or augmented Reality, video 360º, 4K or 8K , connected cars or smart cities. � IoT explosion: A vast array of networked machines that will digitize our world. � Digitalization: Consumers are demanding services that they can provision in real-time to enjoy faster personalized services. � Open Access architecture: This is a necessary evolution in order to deploy 5G, XGS-PON networks and CPEs in a sustainable way. Our access network will be transformed into an open and standard based access network. Natively built as a software- based solution with multivendor components integrated in a whitebox node. (Telefonica) J. Montalvo, J. Torrijos, D. Cortes, R. Chundury and M. St. Peter, "Journey toward software-defined passive optical networks with multi-PON technology: an industry view [Invited]," in Journal of Optical Communications and Networking, vol. 13, no. 8, pp. D22-D31, August 2021, doi: 10.1364/JOCN.423034. Commercial in confidence | © 2021 Technetix 9 Technetix MicroOLT ecosystem Commercial in confidence | © 2021 Technetix 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 342/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 343/451 Moving towards open architecture Commercial in confidence | © 2021 Technetix 11 Next generation PON Traditional PON chassis MicroPlug OLT solution Now any switch can be an OLT! “Old “ school” Old proprietary school” proprietary fixed access fixed Open, disaggregated, scalable xPON access Commercial in confidence | © 2021 Technetix 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 343/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 344/451 Virtual OLT Commercial in confidence | © 2021 Technetix 13 Simplifying PON � Clearly Separate PON & Switch Domains � Micro OLT integrates all 10G PON MAC and PHY capabilities into a standards based, SFP+ pluggable transceiver module. � Remove Proprietary Switching Layers � In creating an Ethernet-pluggable OLT device, MicroOLT connects directly into commercially available 10G Ethernet switches. � Enable Modular Scalability: � port, switch host, management needs � Implement Virtualized, Cloud-based Management � By concentrating all PON-specific MAC & PHY hardware functionality within the MicroPlug OLT itself, it allows PON management to exist as a true cloud-based solution – implemented only in software, hosted on commercially available servers, SDN-ready, and flexibly located anywhere in a carrier network. � Implement ‘Interoperability by Design’ � OLT-to- ONT/ONU interoperability should be part of the core design of OLT solutions. This often has the single largest impact on per-line cost for carriers, and yet is extremely difficult to implement on legacy OLT solutions that bury OMCI engines deep inside complex architectures Commercial in confidence | © 2021 Technetix 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 344/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 345/451 Technetix FTTx software solution � FTTx management � BISDN system integration partner � pOLTA – Pluggable OLT Abstraction � Pre integrated with Technetix FTTx systems � Symphonica and UMBOSS for Orchestration and Service Assurance pOLTA controls pluggable XGS-PON Symphonica - Multi-service orchestration & UMBOSS - network management and OLTs and switch hardware as activation service assurance utility. a conventional “chassis/frame/port” • Zero/minimal touch provisioning • Fault Management OLT system • Life cycle management • Performance Management • Cloud native • Resource Inventory Management • Residential, business and network services • Service Quality Management • FTTx end to end service configuration. • Reporting Commercial in confidence | © 2021 Technetix 15 pOLTA – Pluggable OLT Abstraction System � pOLTA software stack for an easy and cloud-based management of pluggable XGS-PON OLTs. � pOLTA can be integrated with third-party switch hardware. � It creates a topology abstraction into a single virtual multi-port OLT exposing a BBF TR 383/385 NETCONF/YANG interface � Can be used with externally managed switches such as rOLT and Modular OLT or with fully integrated whitebox switches (virtual multi-port, multi-frame OLT). � pOLTA is a flexible, scalable software stack that controls pluggable XGS-PON OLTs and switch hardware and exposes this as a conventional “chassis/frame/port” OLT system. � The entire stack can be run on the switch as an integrated OLT solution or, alternatively, the pOLTA stack can be deployed in a public or private cloud and manage the OLTs remotely Commercial in confidence | © 2021 Technetix 16 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 345/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 346/451 Deployment and integration options Commercial in confidence | © 2021 Technetix 17 Control & Management Commercial in confidence | © 2021 Technetix 18 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 346/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 347/451 Integrated solution for FTTx '488 34(WI5FWY^ Tech-assist (85&UUQNHFYNTSX 8^XYJRX App 4UJS&5.X 8JW[NHJ4WIJW )JXNLS 2FSFLJW 9JXY2FSFLJW 8YZINT 8JW[NHJ 8JW[NHJ 7JXTZWHJ4WIJW 3TYNKNHFYNTS .S[JSYTW^ (FYFQTL 2FSFLJW 8JW[NHJ REST / HTTP / CLI / SNMP / NETCONF NETCONF / YANG pO p L O TA Network Controller REST / HTTP / CLI / SNMP / JSON / NETCONF rOLT Residential Other Other Modular OLT Mobile L3 Traffic Mgmt. L2 Switch. Vendor X Vendor Y 48 P Switch OLT Business Commercial in confidence | © 2021 Technetix 19 Thank You! Commercial in confidence | © 2021 Technetix 20 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 347/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 348/451 Stride to F5.5G Igor Milojević Huawei CEE & Nordics igor.milojevic@huawei.com Abstract In this article technologies and architectures enabling the F5.5G era are presented. The emphasis is given to innovation and breakthroughs in all optical networking. The objective is to bring 10 Gbps everywhere with F5.5G. F5.5G will speed up the digital upgrade of industries, for example in digital power grids for production control or in smart factory for precision manufacturing. Author's biography Igor Milojevic is the CTO of Huawei CEE & Nordics Carrier Business driving ICT solution programs and projects with leading operators in 28 countries of CEE & Nordics, addressing technology, architecture transformation and service innovation. He is responsible for Huawei’s regional competence across fixed, mobile, cloud and digital. Igor is also a consultant to Huawei’s R&D and global ICT organization in technology, market, product strategy and development. He is an active contributor to industry, European and national initiatives in 5G, networking technology standardization and AI. He is currently focused on helping operators in target architectures, digital transformation and developing 5G capabilities and ecosystem. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 348/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 349/451 Stride to F5.5G Igor Milojevic CTO of Carrier Business Huawei CEE & Nordics Gigabit has Arrived, Moving Towards 10Gps Gigabit Era, 3 Years Ahead Bringing New Businesses Government Driving Gigabit era @2022 Diversified Home Services 40% digital economy accounts for GDP in 47 countries 49% Carriers 6% Carriers Source͹CAICT Gigabit Service 10Gigabit Service Very High Capacity Networks (Fiber & 5G) 3 years ahead Gigabit Era Gigabit Era Project Gigabit @ 2025 @ 2022 Infrastructure Investment and 2019 forecast Now Jobs Act Gigabit means >= 500Mbps Dual-Gigabit Networks Action Plan Source͹Omdia, Aug/2022 Source͹Internet PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 349/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 350/451 All-Optical Connectivity, Towards the Full-Fiber Era 5G eFBB 4G (Enhanced fixed broadband) 2G 3G Gaming 1G Social networking Desktop cloud GAO RRL Safe City Intelligent manufacturing (Real-time Changing lifestyles Changing society (Green agile optical network) resilient link) ////// 10 Gbps Everywhere Smart home Telemedicine F1G Enterprise F2G Voice cloudification FFC GRE F3G Web (Guaranteed reliable Video F4G Online education Cloud VR (Full-fiber connection) experience) 4K F5G/F5.5G OSV VR/Gigabit era (Optical sensing & visualization) 2019.06 2019.12 2020.10 2021.10 2022.09 F5G first proposed New work item for F5G F5G Generation Definition 100+ members, 30 use cases F5G Advanced Paper at MWC Shanghai approved by ETSI Release #1, 14 use cases Released Proposed the idea of Fiber to Everywhere ETSI ISG F5G Technical Innovation Landscape Business Success Business Services: One fiber for multi-service 1. Business PON + Industry PON 2. Mobile + Fixed network synergy 3. Mesh Wi-Fi + Smart home 8K Management & Control: Autonomous network + SDN 1. Autonomous provisioning, operation & management Management & Control (routing planning, AI, Telemetry, Big Data…) Management Control Analytics F5G 2. SDN Network layer: Ultimate experience 1. FMC enhancement 2. E2E network KQI/KPI Network & Services ˈtelemetry 3. Full stack slicing 4. Edge AI/Computing Security Network E2E KQI&KPI 5. OTN Physical Layer: Flexible & Agile 1. Low latency PON, FTTR 2. Quick ODN, ODN visualization Physical Layer 3. Wi-Fi 6 enhancement, Wi-Fi 7 Infrastructure Optical IP OLT ODN ONT 4. WDM network PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 350/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 351/451 New Demands and Scenarios for 2025 Beyond Pursuit of Ultimate Quality OT & ICT Convergence True-to-Life Experience Becomes Possible Enable Industry Digital Transformation Deterministic Unmanned Port remote control Optical Connection @us-level latency, Smart mine Industrial Internet @ns-level Jitter Safe production 3D QC XR 8K 3D 60frame XR 16K 3D 120frame Industry 4K 360 60frame Holography 64K 120frame Digitalization Infrastructure and 100M~1Gbps 1~5Gbps Energy/transportation Lean Environment @20ms @5ms Intelligent control Manufacturing Digitalization New Hard pipe@99.9999% Oil/Gas pipeline unattended inspection Trends “0”Wait “0” Failure “0” Touch Revenue from Experience E-commerce experience Net Zero in 2030 for 47% average reduction in absolute @self service own emissions, 2040 emissions (tCO2e) for scope 1, 2 Precision marketing for its supply chain & and 3 by 2030 and net zero by 2040 @Multi-dimensional profile customer emissions. Automation Intelligence High efficient O&M Experience self-optimization @ Intent Driven Carbon-neutral by 2025, 25 years Self-Configure Self-Heal Self-Optimize Self-Heal on prediction “net zero” by 2040 ahead of EU's objective @ knowledge graph Green & Low Emission Autonomous Networks Enable Industry Sustainable Development Bandwidth Operation -> Experience Operation Bringing 10 Gbps Everywhere with F5.5G eFBB 10x higher bandwidth, 10 Gbps everywhere GAO RRL Green Agile Optical Network Real-time Resilient Link 10x energy efficiency, 0.03W/Gbps per site ////// F5.5G μs-level deterministic latency, 99.9999% reliability Fiber to Everywhere FFC GRE 10x connections, 1 mn/km2 Level 4 ADN, from diagnosable to self-optimization OSV Optical Sensing & Visualization 1 meter positioning precision, 99% sensing accuracy PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 351/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 352/451 From Telecoms to Industrial Use, F5.5G will Speed up the Digital Upgrade of Industries Digital power grids: Production control Smart factory: Precision manufacturing Dispatching Centerr Manufacturing Execution System (MES) Power plant Substation Solar/Wind power Production IT network ms-level deterministic latency Production OT network SCADA SCADA Machine vision Robot μs-level dispatching dispatching deterministic Thermal power latency SCADA dispatching frequency: 10x Production network reliability: 99.999% Æ 99.9999% SCADA Dispatching Di t hi dispatching center Hitless services: Synchronization, caching, and multi-system ASON Timeslot: 125 μs Dense-TDM timeslot (4 μs) From Communication to Sensing, F5.5G will Unlock Unlimited Potential of Fiber Networks Earthquake warnings Oil & gas pipeline inspection: Manual Unmanned Fiber sensor Fiber sensor Fire warnings Gas detection Excavators Heavy trucks Manual excavation … Vibratio Vibr b ati n o Intensity Frequency Valve Fiber Oil & gas pipelines Vibration (Rayleigh scattering) Temperature (Raman scattering) Stress (Brillouin scattering) Optical sensing: 1 meter positioning precision, 99% sensing accuracy PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 352/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 353/451 ETSI “F5G Advanced and Beyond” WP Published in September Main features for F5G Advanced (6) Key technologies for F5G Advanced (7 areas) Network Technologies Distributed computing technologies • 800G OTN • Elastic resource scaling • 50G-PON • Latency aware process dispatching • Wi-Fi 6e/7 • Network and processing optimization Fiber to everywhere Autonomous network • FTTRoom • Intent-based service modelling • FTTOffice • Knowledge graph for fault management • FTTMachine (manufacturing) • Improved network information gathering Latency control technologies Network-based sensing ¾ Faster: Increasing bandwidth • Deterministic networking • Fiber cable digitization ¾ Quicker: Reducing latency • End to end slicing • Distributed optical fiber sensing ¾ Wider: Increasing the number of endpoints Energy efficiency technologies • Wi-Fi sensing ¾ Greener: Enhancing energy efficiency • Energy aware switching/routing ¾ More Aware: Integrating computing • Power saving equipment modes ¾ Smarter: Improving network operations • Dynamic load shifting F5.5G-Oriented All-Optical Network in Practice Home Broadband Premium Home- Premium Enterprise Coverage Improvement Broadband Private Line Innovative Metro & DC-Centric All- Access Network Optical Network PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 353/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 354/451 Fixed Broadband is Moving to Bandwidth + Experience Revenue Fixed-Mobile Convergence is Accelerating Num. of FMC carriers 3 User Experience Source: Huawei MI 200+ Selling eco-system chain: FTTH Connection + Home 100+ Network + Service 20+ Bandwidth 2012 2018 2021 2Selling connection & Service Digital Life Era Eco-system for 1 Connectivityty Video Era digital intelligent life Better connection & Service Cooper-> Fiber SMS Voice Broadband Era Coverage 10Mbps 500~1Gbps 1G~10Gbps Devices/HH Devices/HH Devices/HH Devices/HH Penetration 1 x3 x5 x30 China: Dual-Gigabit Action Plan, by 2023 Bahrain: TRA released NTP5 target EU: 2030 Digital compass, 700 billion euro 400M HP 30M Subs 100 Cities ready to upgrade to 1000 Mbps for all homes 95%HP 100% Enterprise 100% Fiber to site Fast Construction with DQ ODN: High Quality and Visible Management Fast Construction Fast Provisioning Fast Troubleshooting One Push Connection One Scan Management One Click Maintenance No Reopening ODN Visualizer Digital Image acquisition Intelligent Recognition identification Insert & rotate 45e Big data Remote fault Auto-root Real-time modeling demarcation cause analysis optical detection Splicing free Resource Demarcation connect in 10 seconds Real-time auto-synchronization Minute and Meter Level 30% TTM Saving 100% Accurate Resource ↓ 40% Truck Roll Operator P Practice Operator C Practice Operator E Practice PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 354/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 355/451 Fiber Iris Digital and Intelligent ODN Fiber Iris oDSP + AI Algorithm Individual label for each port 99.99% accurate identification of signal features ID1 ID2 ONU1 Phase ... ONU2 Amplitude Channel ID8 ONU8 Lighting up ODN, 100% resource accuracy, fast TTM & precise investment 50G PON is the Next Generation FTTH POC @ 2022 Commercial Pilot @ 2024 50Gbps@10km → 50Gbps@20km+ 50G Symmetric 50GPON Combo Optical power density 10 → 20 gigawatts/m3 50G PON Standard 32dB+ Tx power transceiver Release: 2021 10G PON Lower Uplink latency, toH→toB Standard Release: 2012 Time GPON Deployment 125us 125us*M Dense-TDM Timeslot Time 250us → 15.6us 2008 2017 2025 Time 15.6us 125us/N 125us PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 355/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 356/451 50G PON Ultra-Broadband Access Development Towards 40km coverage, same as GPON &10GPON GPON & 10G-PON & 50G-PON combo Taper Amplifier Tx Power:3dB GPON 1490/1310nm ONU Combo Module 1577/1270nm 10GPON upstream ONU Compact MUX/DMUX assembly Resonant Super- 1342/1286nm 50GPON surface Absorption ONU APD sensitivity: 3dB Ultra-high precision mounting ODN “0” Change to 50G-PON, 10 Gbit/s Everywhere Premium Home-Broadband, b Accelerating and, Acce Network Monetization FTTR, Optimal Full Fiber Home Network Solution Smart Home New Tools & Proactive QoE Platform Fibers Mgmt. 100% Wifi Speed rate > Roaming Coverage 1000Mbps <20ms Slave FTTR Master FTTR Slave FTTR 200+ IoT 20mins Minute-level Connections installation/room fault locating ARPU 60% Churn 60% PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 356/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 357/451 FTTR R Redefines High Quality y withh 1Gbps Everywhere Traditional HBB Challenge Huawei FTTR (Fiber To The Room) Solution Benefits with FTTR Poor User Experience Expe x rience GIGA Wi-Fi Everywhere, Extreme Experience Improving ARPU BW: 100 M ↓ 0 churn 60% 40% ↑ • Insufficient Wi-Fi co c verage over v agee • 60% Complaints Relate Relat at d e to ed t Wi o -Fi -Fi High OAM AM costs Lower OPEX Fewer home visits $50/time 30%↓ • Wi-Fi not manageable Edge FTTR • Relying on home visit Homogenization Competition Lower Power Consumption Now >90% ?% Fiber vs PLC/ETH cable Main FTTR Open Market (100+) Operators Market 30%↓ PLC / ETH Cable FTTR Networking Networking Connections: 128 Wi-Fi > 1 Gbps Roaming: 200msÆ20 ms FTTR Centralized Wi W -Fi Access Network (C C-WAN) C-WAN provides premium & consistent Wi-Fi experience Conventional Wi-Fi Network C-WAN DWM Algorithm Intelligent FBA Algorithm SRCN Technology Throughput: 50% Multiple concurrency : 4x Seamless roaming: <20ms DWM: Dynamic Wi-Fi Management FBA: Frequency Band Adjustment SRCN: Seamless Roaming Coordinate Network PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 357/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 358/451 Premium Enterprise Private Line, New Growth for 2B Services OLT+OTN, Offer 4 Premium Services OSU, the next-generation OTN ODUk OSU CO OTN + OLT 1.25G/2.5G/10G/40G/100G 2M~100G flexible adjustment Band Bandwid wi th t wa h waste st r e atio Bandw Band i width/user rati d ODUk Vs OSU ODUk ~1000M ~100 20% 20% Vs Vs 0% 0% ~500M 60% Vs 0% ~200M 84% Vs 0% Large Medium enterprise enterprise SMEs Home ~50M 96% Vs 0% 1 OTN P2P 2 OTN P2MP 3 FTTR-B 4 FTTR-H Deliver high-quality connectivity with high diversity and affordability Elastic bandwidth, Zero waste, Connections ↑ 10 times The 400G Era for Optical Backbone High-performance 400G 400G 3D-Mesh Backbone network Cost per bit ↓30% , same performance with 100G/200G Super C+L band + C120 L120 Extend C band to Super L band, ↑25% High Bandwidth, High Reliability, E2E OXC, non-blocking all-optical switching Optimal per-bit cost ROADM OXC Footprint ↓80% , Power Consumption ↓20%-60% , Ultra low latency PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 358/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 359/451 Catching Up with the Shannon Limit Since we are approaching the theoretical limit, how can we further improve the single-fiber capacity? Higher modulation format ? Wider available spectrum (bits/s/Hz) 4.8 THz 6 THz 8 800G G 64QAM 800G 64QAM 400G 16QAM HW Super C l efficiency 4 200G e16QAM Industry C 200G QPSK Commercial capability rate 400G 16QAM 9.6 THz 12 THz Spectra 2 100G QPSK 0 10 20 30 200G QPSK Industry C+L Huawei Super C+L SNR Capacity 0.8T 8T 32T of single fiber 16T 24T 48T 96T 10G 100G 200G 200G 400G 400G 800G C Band Super C Super C + Super L Super C+L: Increasing Fiber Value and Lower the TCO per Bit Super C+L Increase the Fiber Capacity to Lower the TCO per Bit 25% ↑ Industry system: Fiber Spectrum Huawei system: Available fiber spectrum: 9.6 THz Available fiber spectrum: 12 THz C96 (4.8 THz) C96 (4.8 THz) C120 (6 THz) L120 (6 THz) Innovative EDFA Ensures the Transmission Performance of Super C+L Common erbium-doped fiber New EDFA SiO2 SiO2 New doping element X Er2O3 Er2O3 New doping element Y Huawei European Research Center 10,000+ rare earth material technique experiments PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 359/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 360/451 Super 400G/800G Continues to Lead the Optical Industry Super C 400G Super C+L 800G and Beyond Capacity 40%↑ Distance 20%↑ Fiber Capacity 40%↑ Transmission Reach 13%↑ Huawei 24Tbps Huawei Huawei 96Tbps Huawei 1100km 1280km 100GHz Spacing 800G Industry 970km Industry 17Tbps Industry Industry 68Tbps 1120km (*) Raman + G.654E 112.5GHz Spacing Encoding and Spectrum By Chief Mathematician Vertical Integrations 130G+ Baud World Record 800G 1,100km Industry’s 1st 1.6T Shaping p g High Speed Photonics 5G Polar Code, Probabilistic constellation HiSilicon Photonic Chip 2021.03 Demonstrated with DT shaping and Faster than Nyquist 400G 400G algorithm breakthrough Factory in Wuhan The channel spacing 50GHz 50GHz 75GHz 100GHz 100GHz+ can be adjusted ADM ... 100G 200G 400G 400G 800G RO (oriented to 400G/1T) Flexgrid Optical Layer is Foundation for Smooth Evolution to 400G+ Era F5.5G will make networks much greener with optical fiber Electrical cross-connection (EXC) cal cross-connection (E C) XC X Æ Copper access Copper access Æ All-optical cross-connection (OXC) pticcaal cross-connection XC OX (O All-optical access All-optical access 337 W/Tbps 32 W/Tbps 0.03 kWh/TB 0.006 kWh/TB A hub site: Energy consumption ↓ 90% HD video playback: Carbon emissions ↓ 80% Cell Cell Sit Site ... Home H Enterprise Transport: FlexRate + FlexGrid + FlexOSU + FlexADN Access: FTTH + FTTR + FTTO + FTTM PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 360/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 361/451 E2E OXC Enable One-Hop Architecture and Premium Experience 3D lattice algorithms, fiber density 35% New LCoS materials, response speed 1x Conventional ROADM OXC Light Source Switching Polarizers Liquid P32 P32C COMS Crystal 60% Power consumption 90% space Energy-saving Network for Business Sustainable Growth ESG 3-Layer Green Indicator System More Bits, Less Watts Visible, Manageable, and Optimizable NCIe 1 Carbon emission volume Unified Indicator System NCIe = Total traffic kgCO2e/TB Operation ITU-T L.1333 3-lay 3 er layer Architecture Architecture Solution NEE Network NEE RAN Simplified All-optical Intelligent Gbps / W GB / kWh 3. 3. Green Green 2. Green Network Operation Operation Network Indicator Inddicato manageme r managem nt me Indoor outdoor Highly integrated New materials TEE SEE PUE Traffic Traf affic ctrl fic cctrl & analy anal sis design si ys User User er operations op operations 1. Green Site GB / kWh % Ratio Site NCIe: NCIe: Network Netw Carbon Carbon Intensity, nt In e refers to scope 2 of carbon emission. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 361/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 362/451 Together, We Stride to 1 2 3 4 5 6 7 8 50G Super Fiber PON OXC Super C+L C+L OSU FTTR ADN Iris PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 362/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 363/451 Tutorial on machine learning Darko Zibar DTU - Technical University of Denmark dazi@dtu.dk Abstract was a part of the team that won the HORIZON 2020 In this tutorial article, basic concepts with machine prize for breaking the optical transmission barriers learning such as learning data-driven models for (2016). regression and classification are covered. Moreover, key concepts within machine learning such as overfitting, underfitting and generalization are explained and demonstrated using numerical examples. Author's biography Darko Zibar is Professor at the Department of Photonics Engineering, Technical University of Denmark and the group leader of Machine Learning in Photonics Systems (M-LiPS) group. He received M.Sc. degree in telecommunication and the Ph.D. degree in optical communications from the Technical University of Denmark, in 2004 and 2007, respectively. His research efforts are currently focused on the application of machine learning techniques to advance classical and quantum optical communication and measurement systems. Some of his major scientific contributions include: record capacity hybrid optical-wireless link (2011), record sensitive optical phase noise measurement technique that approaches the quantum limit (2019) and design of programmable ultrawide band arbitrary gain Raman amplifier (2020). He is a recipient of European Research Council (ERC) Consolidator Grant (2017) and Alexander von Humboldt Bessel Research Award (2022). Finally, he PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 363/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 364/451 Introduction to machine learning and regression models Darko Zibar dazi@fotonik.dtu.dk 29 October 2020 DTU Fotonik 34366 - Intro to ML Today’s agenda • Part I – Linear models for classification (~60 min) – What is machine learning? – Applications of machine learning – Types of machine learning – Learning the linear model – Learning the nonlinear model – What is a neural network – The simplest neural network (Rosenblatt perceptron) – Learning logical gates (AND, OR and XOR) – Break (~15 min) • Part II – Problem solving session 1 (~120 min) • Part III – Solution to exercises (~40 min) 1 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 364/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 365/451 Material 1. Simon Haykin, Neural Networks and Learning Machines • Introduction 1, • Chapter 1 2. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2006 • Introduction (pp. 1-12) • Chapter 3 (pp. 137-144) http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf https://www.academia.edu/34757446/Neural_Networks_and_Learning_Mac hines_3rd_Edition 29 October 2020 DTU Fotonik 34366 - Intro to ML Machine learning applications DNA sequence classification pattern and image self-driving car recognition cyber fraud detection (anomaly detection) recommendation spam filtering systems medical diagnosis medical diagnosis 29 October 2020 DTU Fotonik 34366 - Intro to ML 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 365/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 366/451 29 October 2020 DTU Fotonik 34366 - Intro to ML System identification Unkown di system + Input signal xi ei 6 - Neural yi Network 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 366/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 367/451 What is machine learning according to definitions? “Field of study that gives computers the ability to learn Learn from data without being explicitly programmed” (A. Samuel, 1959) “A computer program is said to learn from experience E with respect to some task T and some performance Learning from experience measure P, if its performance on T, as measured by improves task’s performance P, improves with experience E.” (T. Mitchell, 1998) A.L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” in IBM Journal of Research and Development, vol. 3, no. 3, pp. 210-229, July 1959. T.M. Mitchell, “Machine Learning,” McGraw-Hil International Editions Computer Science Series) 1st Edition, 1998 29 October 2020 DTU Fotonik 34366 - Intro to ML 7 When should we use ML? Take 10min to discuss it with your neighbour. Please remember to respect social-distancing! When it is difficult or infeasible to develop a conventional algorithm for effectively performing the task 29 October 2020 DTU Fotonik 34366 - Intro to ML 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 367/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 368/451 What is machine learning today? https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463 29 October 2020 DTU Fotonik 34366 - Intro to ML 9 Let’s go back to the beginning… “A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.” (T. Mitchell, 1998) Example: You want to apply machine learning to improve your spam filter • What is T? • What is E? • What is P? T.M. Mitchell, “Machine Learning,” McGraw-Hill International Editions Computer Science Series) 1st Edition, 1998 29 October 2020 DTU Fotonik 34366 - Intro to ML 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 368/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 369/451 An example of ML problem Handwritten Digit Recognition 29 October 2020 DTU Fotonik 34366 - Intro to ML 11 Task, experience, performance… Task: correctly recognize the hand-written digits Experience: manually recognized digits Performance: the machine correctly interprets the digits Associated Training hand-labelling Training set Target vector (࢚) ࢚ = ݐଵ, ݐଶ, … , ݐே Input vectors ( “3” ࢞) 28 pixels ࢞ = ݔଵ, ݔଶ, … , ݔே 28 pixels 29 October 2020 DTU Fotonik 34366 - Intro to ML 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 369/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 370/451 Training a model Tuni T ng the uning adaptiv the adapt e model Adaptiv Adapti t e v ࢞ = ݔ “3” ଵ, ݔଶ, … , ݔே ࢚ = ݐଵ, ݐଶ, … , ݐே model model o Training or learning phase 29 October 2020 DTU Fotonik 34366 - Intro to ML 13 Testing a model Fixed parameter Final model ࢞ = ݔ ො ଵ, ݔଶ, … , ݔே ࢚ ࡼ࢘ࢋࢊ࢏ࢉ࢚࢏࢕࢔ ݕ(ݔ) Testing phase: how well does the model generalize? Generalization: the ability to correctly categorize a new example 29 October 2020 DTU Fotonik 34366 - Intro to ML 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 370/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 371/451 The three key components of ML • Data Æ Your experience used to train your model • Feature Æ The important parameters/variables in your data. These can be known in advance or may need to be extracted. • Algorithms Æ The specific method you apply to solve a given problem. 29 October 2020 DTU Fotonik 34366 - Intro to ML 15 Machine learning algorithms Supervised learning Regression Predict Given data x and associated value y, learn y = f(x) or p(y|x) outcomes Classification Clustering Unsupervised learning Describe Given data x learn useful data properties: p(x) Density estimation Reinforcement learning Learning system Feedback based optimization ard ion Improve with interaction reward wre act Environment 29 October 2020 DTU Fotonik 34366 - Intro to ML 16 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 371/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 372/451 Supervised learning In supervised learning, the “right answers” (e.g. “labels” for training) are known. Example: house pricing / square meter ? 2.5 90 29 October 2020 DTU Fotonik 34366 - Intro to ML 17 Regression vs. classification House pricing prediction Spam filter SPAM Important email 29 October 2020 DTU Fotonik 34366 - Intro to ML 18 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 372/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 373/451 Regression vs. classification – checking… Regression problems predict continuous valued outputs Classification problems predict discrete valued outputs 29 October 2020 DTU Fotonik 34366 - Intro to ML 19 Reinforcement learning (RL) MATLAB Reinforcement learning e-book 20 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 373/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 374/451 RL for controlling robot motion MATLAB Reinforcement learning e-book 21 29 October 2020 DTU Fotonik 34366 - Intro to ML RL for controlling robot motion MATLAB Reinforcement learning e-book 22 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 374/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 375/451 Actions represented by neural-network MATLAB Reinforcement learning e-book 23 29 October 2020 DTU Fotonik 34366 - Intro to ML Where does machine learning excel? • Learning complex direct mappings: • Learning complex inverse mappings: • Learning decision rules for complex mappings: Use neural networks to learn and 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 375/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 376/451 Learning complex functions 1. Given a training data-set (input and output values): 2. For new input compute 3. Analytical expression unknown, must be learned from: Use machine learning to build a model that represents the data set 29 October 2020 DTU Fotonik 34366 - Intro to ML True model and observable data Typically, a “true” model is given by continuous function: The measured (observed) data is discrete and corrupted by noise: Noise assumed to be Gaussian: 26 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 376/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 377/451 Learning the (linear ) model Our assumptions (guesses) on the model : Or Or General linear model: Once we have chosen the model the task is to determine the weights: Procedure: choose a model then determine the weights 27 29 October 2020 DTU Fotonik 34366 - Intro to ML Topology of the linear model = 1 28 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 377/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 378/451 Determining the weights Gradient descent for weights update: Defining the mean square error: Computing the gradient: for i = 1 : L_iter for k = 1 : L_train grad = de(k)dw; W = W + eta*grad; end 1 e(i) = mean(e.^2); end 29 29 October 2020 DTU Fotonik 34366 - Intro to ML Performance evaluation on training data-set 30 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 378/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 379/451 Determining the weights in one step The output is expressed as: The weights are computed as Moore-Penrose pseudo inverse: If is square and invertible: 31 29 October 2020 DTU Fotonik 34366 - Intro to ML Gather input/output data: Training data: Test data: Split the data Select the model: neural network, polynomial, etc Learn the model parameters: Evaluate the error: Evaluate the model: 32 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 379/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 380/451 Key performance metric: generalization 12 Training Test (generalization) 10 8 Overfitting zone 6 Error [a.u] 4 2 Generalization gap 0 0 5 10 15 20 Effective Neural network size [a.u.] 29 October 2020 DTU Fotonik 34366 - Intro to ML Evaluating the learned the model Assumed polynomial model order M=2 Assumed polynomial model order M=3 Assumed polynomial model order M=9 (too simple model: underfitting) (the right model) (too complex model: overrfitting) Use learned weights to compute: where 34 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 380/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 381/451 Evaluating different models on test data Underfitting region Overfitting region 35 29 October 2020 DTU Fotonik 34366 - Intro to ML Cross-validation • Typically, the true mode is unknown • We only have access to noisy observable data (data set) • Observable data needs to be used for training and test • Split the observable data into folds for training and test • Perform weights estimation (learning) and testing for each fold • Compute average test error as a function of model size Acquired data-set Training Testing Training Testing Training Training Testing Training Testing Training 36 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 381/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 382/451 10-fold cross validation Noise variance 0.0001 Noise variance 0.09 Employ averaging over different test sets to find the model order 37 29 October 2020 DTU Fotonik 34366 - Intro to ML Nonlinear model (neural-network) = 1 Weights that need to be learned: 1 The problem of determining the weights becomes nonlinear: We can no longer perform matrix inversion to find the weights! 38 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 382/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 383/451 Random weight initialization trick Assign random weights to by sampling from a normal distribution with variance: identity matrix standard deviation of the weights (tuning parameter) Finally, we use Moore-Penrose pseudo inverse to compute the outer weights: 39 29 October 2020 DTU Fotonik 34366 - Intro to ML Typical one-layer neural network architecture 1 1 Common approach is to use single type basis function and very their number 40 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 383/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 384/451 Examples of common basis/activation functions Threshold function: Sign function: Sigmoid function: Tangents function: 29 October 2020 DTU Fotonik 34366 - Intro to ML Learn the mapping using neural-network w10=bk 1 w11 w’ w 11 20=bk x(n) w’12 w y(n) 21 w30=bk w w’ 31 13 w’10 1 Objective: learn the coefficients (central problem in machine learning): 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 384/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 385/451 Inverse system learning 1 #1 Problem statement: #2 Train neural network to learn inverse mapping (from X to Y): A physical system describing 1 X relation between input X and Physical Y T output Y is given. The objective system is to determine input X that Y e X T X would result in a targeted Use e to adjust X output T. #3 Train neural network to learn forward mapping (from X to Y): #4 Perform final optimization: X Y X’ T’ T T - e Use e to adjust X’ [1] D. Zibar et al., ”Inverse system design using machine learning: the Raman amplifier case,” Journal of Lightwave technology, 2019 29 October 2020 DTU Fotonik 34366 - Intro to ML Learning to transmit and receive data over complex channels 1101 1101 1 1 1 0 1 1 1010 Optical 1 0 1 1010 fibre [1] R.Jones, M. Yankov, D. Zibar et al., ”End-to-end learning of GMI optimized constellation shapes,” ECOC 2019 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 385/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 386/451 Can we learn mappings between categorical variables? A B C 0 0 0 0 1 0 1 0 0 1 1 1 AND gate True model Learned model 45 29 October 2020 DTU Fotonik 34366 - Intro to ML Rossenblatt perceptron (simplest neural network) Hard limiter 6 +1 . -1 . . 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 386/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 387/451 Linearly separable classes Class 2 Class 1 Class 2 Class 1 (a) Linearly separable classes (b) Linearly non-separable classes The perceptron only works for linearly separable classes 29 October 2020 DTU Fotonik 34366 - Intro to ML Decision boundary x2 Class 1 Class 2 x1 Decision boundary: w1x1+w2x2+b=0 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 387/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 388/451 Decision Boundaries (DB) (0,1) (1,1) (0,1) (1,1) (0,1) (1,1) Output=1 Output=1 Output=0 2 2 2 x x x put put put Output=1 In Output=0 In In Output=0 Output=0 Input x1 (0,0) (1,0) Input x1 (0,0) (1,0) Input x1 (0,0) (1,0) AND gate OR gate XOR gate (Linear DB) (Linear DB) (Nonlinear DB) 29 October 2020 DTU Fotonik 34366 - Intro to ML Perceptron learning algorithm [1] Simon Haykin, Neural Networks and Learning Machines, pp. 54 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 388/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 389/451 Categorical functions learning A B C A B C A B C 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 AND gate OR gate Exclusive OR gate 1. Specify the length of the training and test data set 2. Generate data sets by uniform sampling from one of the tables 3. Run the perceptron learning algorithm and learn the weights 4. Run the validation on the test data 29 October 2020 DTU Fotonik 34366 - Intro to ML In this lecture we have learned…. • What machine learning is • How to build linear and nonlinear models from data • Difference between training and test set • How to estimate the weights for linear and nonlinear models – Gradient descent – Matrix inversion • How to evaluate learned model • Rosenblatt perceptron • How to learn logical gates 52 29 October 2020 DTU Fotonik 34366 - Intro to ML PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 389/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 390/451 Application of machine learning techniques to optical communications Darko Zibar DTU - Technical University of Denmark dazi@dtu.dk Abstract was a part of the team that won the HORIZON 2020 In this article, applications of machine learning to prize for breaking the optical transmission barriers programmable ultra-wideband optical amplifier (2016). design, geometrical shaping and laser phase noise measurement are introduced and demonstrated. The focus of the lecture is on deep neural networks and Bayesian estimation. Author's biography Darko Zibar is Professor at the Department of Photonics Engineering, Technical University of Denmark and the group leader of Machine Learning in Photonics Systems (M-LiPS) group. He received M.Sc. degree in telecommunication and the Ph.D. degree in optical communications from the Technical University of Denmark, in 2004 and 2007, respectively. His research efforts are currently focused on the application of machine learning techniques to advance classical and quantum optical communication and measurement systems. Some of his major scientific contributions include: record capacity hybrid optical-wireless link (2011), record sensitive optical phase noise measurement technique that approaches the quantum limit (2019) and design of programmable ultrawide band arbitrary gain Raman amplifier (2020). He is a recipient of European Research Council (ERC) Consolidator Grant (2017) and Alexander von Humboldt Bessel Research Award (2022). Finally, he PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 390/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 391/451 Application of machine learning in optical communication systems Darko Zibar Machine Learning in Photonic Systems (M-LiPS) group DTU Fotonik, Department of photonics Engineering Technical university of Denmark Email: dazi@fotonik.dtu.dk DTU Fotonik Acknowledgments Technical University of Denmark, Denmark Francesco Da Ros, Uiara C. de Moura, Metodi P. Yankov, Stenio M. Ranzini, Ognjen Jovanovic, Mehran Soltani, Ali Cem, Thyago M. Sá Pinto, Rasmus T. Jones, Simone Gaiarin , Giovanni Brajato Politecnico di Torino, Italy Andrea Carena, Ann M.R. Brusin NICT, Japan Ruben Luis, Georg Rademacher, Ben J. Puttnam Chalmers University of Technology, Sweden Magnus Karlsson, Victor Torres-Company University of Santa Barbara, USA John E. Bowers Nokia Bell Labs, Germany Henning Bülow, Vahid Aref, Roman Dischler Aston University, UK Sergei Turitsyn, Wladek Forysiak, Md Asif Iqbal, Morteza Kamalian, Lukasz Krzczanowicz DTU Fotonik 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 391/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 392/451 Machine Learning in Photonic Systems Group 13 Group members 12 Nationalities 1 Professor 1 Senior researcher 1 postdoc 10 PhD students DTU Fotonik OSA Optics & Photonics News feature article DTU Fotonik PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 392/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 393/451 Where does machine learning excel? • Learning complex direct mappings: • Learning complex inverse mappings: • Learning decision rules for complex mappings: Use neural networks to learn and DTU Fotonik 1 Problems that could benefit from ML • Communication over the nonlinear fiber-optic channel: – Channel highly complex – Capacity unknown? – Optimum receiver architecture unknown – Optimum modulation and pulse-shapes unknown • Optical amplifiers for multiband-wavelength and SDM systems: – Complex relation between pumps and gain – Optimization of pump powers and wavelengths for target gain profiles – Optimization of pump powers and wavelengths for target mode dependent • Design of optical components (inverse system design): – Given laser bandwidth and noise find the physical parameters – Given modulator BW find the physical parameters – Instead of running time-consuming simulation build fast ML based models • Noise characterization of lasers and frequency combs: – Amplitude and phase tracking at the quantum limit – Extraction of noise correlation matrices, e.e amplitude, phase, amplitude-phase – Macroscopic comb parameters, i.e. timing jitter, amplitude jitter, carrier envelope offset DTU Fotonik 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 393/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 394/451 Research topics and collaborations Machine learning enabled ultra-wideband amplifier design Unifying framework for lasers and frequency combs noise characterization Machine learning techniques for communicate over complex channels Optical technologies to accelerate AI Quantum phase tracking and communication Highly-sensitive fiber based sensing systems DTU Fotonik 3 Inverse system learning 1 #1 Problem statement: #2 Train neural network to learn inverse mapping (from X to Y): A physical system describing 1 X relation between input X and Physical Y T output Y is given. The objective system is to determine input X that Y e X T X would result in a targeted Use e to adjust X output T. #3 Train neural network to learn forward mapping (from X to Y): #4 Perform final optimization: X Y X’ T’ T T - e Use e to adjust X’ [1] D. Zibar et al., ”Inverse system design using machine learning: the [2] U. C. de Moura et al., ”Multi-band programmable Raman amplifier,” Raman amplifier case,” Journal of Lightwave technology, 2019 Journal of Lightwave technology, 2020 DTU Fotonik 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 394/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 395/451 Learning to communicate over complex channels 1101 1101 1 1 1 0 1 1 1010 Optical 1 0 1 1010 fibre [1] R. Jones, et al., ECOC 2018 [2] R. Jones, et al., ECOC 2019 [3] S. Gaiarin et al., JLT, 2020 [4] O. Jovanovic et al., et al, JLT 2021 DTU Fotonik 5 [1] D. Zibar et al., PTL 2019 [2] G. Brajatto et al, Optics Express, 2020 DTU Fotonik 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 395/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 396/451 State-of-the-art New topics anno 2020-2021: • Photonic reservoir computing1 • Optical amplifier and laser design2-3 • End-to-end learning4 • Back-propagation learning5 • Optical network optimization6-7 • Frequency comb noise characetrization8 • Photonic component design [1] S. Ranzini, “Tuneable optoelectronic…” JSTQE 2020 [2] D. Zibar, “Inverse system design…,” JLT 2019 [3] Z. Ma, “Paremeter extraction and inverse,” Optics Express 2020 [3] Karanov, “End-to-end deep learning…”, JLT 2018 [4] C. Hager, “Revisiting multi-step…,” ECOC 19 [5] F. Musemechi, “An overview on…,” IEEE Comm. survey, 2019 [6] F. N. Khan, “An optical communication persp…,” JLT 2019 D. Zibar et al., Nature Photonics, (11) 749-751, 2017 [7] G. Brajato, “Bayesian filtering…,” Optics Express, 2020 [8] U. C. de Moura, “Multi-band optical program. Amplifier,” JLT 2020 [9] K. Kojima, "Inverse Design of Nanophotonic Devices…", OFC 2020 [10] G. Genty, “Machine learning in ultrafast photonics,” Nat. Phot., 2020 Will machine learning be a game changer? DTU Fotonik 7 Research Highlights (2019-2021) • Record -sensitive and -accurate optical phase measurement1,2 (quantum limited operation) – Identification of fundamental laser linewidth – Identification of frequency comb noise sources – Optimum phase measurement in the presence of amplifier noise • Machine learning enabled ultra-wideband Raman amplifiers3,4,5,6 – Arbitrary gain profiles in S-C-L band – Gain and power profile shaping in distance and frequency – Noise figure prediction of Raman amplifiers 1. D. Zibar et al., Optica, 2021 2. G. Brajato et al. Opt. Express, 2020 • Learning optimum transmitter and receivers architectures7,8,9 3. D. Zibar, J. Ligtwave Technol., 2020 (top cited JLT paper in 2020) – Channel tailored constellation 4. M. Soltani, Optics Letters, 2021 – SNR and linewidth robust constellation 5. U. de Moura, J. Lightwave Technol., 2020 6. U. de Moura, Optics Letters, 2021 – Equalization of IM/DD using reservoir computing 7. R. Jones et al, ECOC 2019 8. O. Jovanovic et al., sub to JLT, 2021 9. F. Da Ros, IEEE J. Select. Topics Quant. El. 2020 DTU Fotonik 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 396/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 397/451 Challenges to be addressed • Fields focuses on the experimental demonstrations • ML benefits on experimental data should be ideally shown • Noise in experimental set-ups (non Gaussian, non additive) • Experimental-set ups are prone drifts and fluctuations • Automatizing experimental-set ups for training data acquisition (noise, drift,) • Training of NNs using gradients computation - challenging in experimental environments • Deep understanding of statistics, linear algebra, optimization and experimental set-up debugging necessary not to end in pitfalls DTU Fotonik 9 Application of multi-layer neural networks for design of Raman amplifiers [1] D. Zibar, A. M. Rosa Brusin, U. C. de Moura, F. Da Ros, V. Curri, Andrea Carena, “Inverse system design using machine learning: The Raman amplifier case,” Journal of Lightwave Technology, vol. 38, no. 4, 2020 [2] M. Soltani, F. Da Ros, A. Carena, D. Zibar, “Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks,” Optics Letters, vol. 46, no. 11, 2021 [3] A. M. Rosa Brusin, V. Curri, D. Zibar, and A. Carena, “An ultrafast method for gain and noise prediction of Raman amplifiers,” in proceedings of European Conference on Optical Communication, ECOC, 2019 [4] U. C. de Moura, F. Da Ros, A. M. Rosa Brusin, A. Carena, and D. Zibar, “Experimental demonstration of arbitrary Raman gain–profile designs using machine learning, ” in Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America), 2020 [5] U. C. de Moura, Md A. Iqbal, M. Kamalian, L. Krzczanowicz, F. Da Ros, A. M. Rosa Brusin, A. Carena, W. Forysiak, S. Turitsyn and D. Zibar, “Multi–band programmable gain Raman amplifier,” Journal of Lightwave Technology, 2020 DTU Fotonik 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 397/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 398/451 Increasing the bandwidth of optical systems (a) Future data projection (b) Channel capacity :capacity :spatial paths [b/s/Hz] :bandwidth :signal-to-noise ratio Significantly higher gains by increasing spatial paths than SNR DTU Fotonik 11 Ultra-wideband optical amplification Raman amplifiers [5, 6] Wavelength [nm] 1260 1360 1460 1530 1565 1625 O-band -b E-band E-band S-band C-band L-band EDFA + TDFA [1] EDFA EDFA SOA [3] BiDFA [2] OPA [4] [1] T. Sakamoto, JLT, vol. 24, no. 6, 2006 xDFA: doped fiber amplifier [2] Y. Wang, OFC 2020, Th4B.1 SOA: semiconductor optical amplifier [3] J. Renaudier, ECOC, 2018 [4] T. Kobayashi, OFC 2020, Th4C.7 OPA: optical parametric amplifier [5] J. Chen, IEEE Photonics Journal, vol. 10, 2018 [6] M. A. Iqbal, OFC 2020, W3E.4 DTU Fotonik 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 398/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 399/451 Arbitrary gain Raman amplifiers L-band C-band S-band Target Design (sum) New target Repeat N times Raman - High complexity due to Raman solver solver - Long convergence time - Restart optimization for new gain profile Parameter - Rely on evolutional algorithms optimization DTU Fotonik 13 Approximating Raman amplifier with NN th)ngle avewd an spectra er w Gain (po Pumps Neural network learns forward mapping, , using training data and perform predictions for new input data: DTU Fotonik 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 399/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 400/451 Learning inverse mapping Learning the inverse mapping Gain spectra th)ngle avelength) ave w w d Raman d an amplifier an er er w w (po (po Pumps Pumps Learning the inverse mapping allows for designing arbitrary gain profile DTU Fotonik 15 Building the model from the data Given N pumps generate M gain profiles Numerically λ1 ~ U[λ1,min; λ1,max] nm Experimentally λ2 ~ U[λ2,min; λ2,max] nm … Raman amplifier M gain profiles each with K points λN ~ U[λn,min; λn,max] nm P1 ~ U[P1,min; P1,max] W P2 ~ U[P2,min; P2,max] W … … PN ~ U[Pn,min; Pn,max] W P … 1 P2 Pn Training Data-set = , , … , , , , … , , , , … , | = 1, … , Validation DTU Fotonik 17 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 400/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 401/451 The machine learning framework Inverse mapping Direct mapping Target gain Pump powers P P 1P 3 2 Pn f f ( ) = X = Fine-optimization routine GD Predicted gain MSE f f MSE: mean squared error D. Zibar, J. Lightwave Technol. 38(4), 736–753 (2019) GD: gradient descent U. de Moura, J. Lightwave Technol. 39(4),1162–1170 (2021) DTU Fotonik 16 Experimental validation of the learned model Flat gains Target Pump gains Machine learning powers framework Raman inverse design GD G mse m e Tilted gains Numerical/Experiment Raman amplifier Measured gains Arbitrary gains* … P … 1 P2 Pn * Part from the acquired data not used on training DTU Fotonik 18 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 401/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 402/451 Flat gain profile design (C band) DTU Fotonik 19 Arbitrary gain profile design (C band) C band ]B O) [dG( C band C band 192 Frequency [THz] 196 ] ] B B d d er [ er [ w w Po Po Pumps 192 196 (O1,P1,…,O5,P5) 192 196 Frequency [THz] Frequency [THz] Raman amplifier DTU Fotonik 20 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 402/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 403/451 Arbitrary distance and gain profile Signal power profile = [ , … , ] Raman amplifier = [ , … , ] Desired power profile (e.g. Flat input) Pump setup Learn the inverse model = [ , … , ] ? = [ , … , ] DTU Fotonik 21 Power profile and gain shaping Quasi-lossless transmission with uniform distribution of power resulting in: • Minimizing the amplified spontaneous emission (ASE) noise level • Requirement for Nonlinear Fourier Transform (NFT) - NFT assumes lossless transmission Symmetric power distribution: • A requirement for nonlinearity mitigation using optical phase conjugation (OPC) DTU Fotonik 22 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 403/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 404/451 Bi-directional Raman amplifier Inverse model No closed-form solution! Repeat N times Raman - Long convergence time solver - Restart optimization for new gain profile - Usually based on evolutional algorithms Parameter optimization DTU Fotonik 23 Network architecture? Using State-of-the-art networks : • Requires vectorising the input without removing the spatial relevancy • Number of training parameters goes extremely high • High training time • Overfitting Using Convolutional Neural Networks (CNNs) • 2D power profile is resembled as an image • Extracts the spatial information and decrease the redundancy • Higher training speed and Extremely lower number of parameters DTU Fotonik 24 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 404/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 405/451 Proposed network for inverse design M. Soltani, Opt. Lett. 46, 2650-2653 (2021). DTU Fotonik 25 Simulation results - 1st order pumping test results DTU Fotonik 26 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 405/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 406/451 Simulation results – 2nd order pumping test results Pump parameters for 8 pumps case = . , = . Pumps Power range Wavelengths (fixed) 2nd order co-pump 0.2 – 1.2 W 1366 nm 2nd order counter-pump 0.2 – 1.2 W 1366 nm 3 1st co-pumps 5 – 150 mW [1425, 1455, 1475] 3 1st counter-pumps 5 – 150 mW [1425, 1455, 1475] DTU Fotonik 27 Conclusion and outlook • Multi-layer and convolutional neural networks can learn Raman amplifier direct and inverse mappings • Learned mappings useful for optimization of pump powers and wavelengths for: – Generation of arbitrary gain profiles – Generation of arbitrary power and gain profiles • Maximization of information rate for ultra-wideband optical networks requires power and gain optimization • The framework brings significant advantages for complex experimental optimization procedures • Machine-learning enabled inverse system design relevant for a variety of problems in photonics DTU Fotonik 28 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 406/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 407/451 Unifying framework for noise characterization of lasers and frequency combs [1] D. Zibar et al., “Ultra-sensitive phase and frequency noise measurement technique using Bayesian filtering,” Photonics Technology Letters, 2019 (invited paper) [2] D. Zibar et al., “Towards intelligence in photonic systems,” Optics & Photonics News, 2020 [3] G. Brajato et al., “Bayesian filtering framework for noise characterization of frequency combs,” Optics Express 2020 [4] H. M. Chin et al. “Machine learning aided carrier recovery in quantum key distribution,” npj Qunatum Inf. 2020 [5] N. Von Bandel et al., “Time-dependent laser linewidth: beat-note digital acquisition,” Optics Express, 2016 [6] X. Xie et al., “Phase noise characterization of sub-hertz linewidth lasers via digital cross correlation,” Opt. Lett. 2017 [7] D. Zibar et al., ”Optimum phase measurement in the presence of amplifier noise,” Optica 2021 (https://arxiv.org/abs/2106.03577) DTU Fotonik 29 Research question to be answered What is the impact of amplifier noise on signal phase? • Relevant for building high-power ultra-narrow linewidth lasers • Relevant for generation of optical frequency combs • Relevant for transmission of frequency standards • Relevant for noise characterization of lasers and frequency combs Surprisingly few works on the topic and no common agreement DTU Fotonik 1 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 407/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 408/451 Both papers derive that power and phase fluctuation due to amplifier noise are given by: Heffner and Haus assume input to the amplifier contains single frequency (Lasers have amplitude and phase noise) DTU Fotonik 2 Assumptions by Heffner and Haus Constant phase signal: In practice amplitude and phase are (randomly) time-varying : The implication of time-varying amplitude and phase: Measurement bandwidth needs to be carefully chosen DTU Fotonik 3 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 408/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 409/451 Ultimate laser stability conditioned by measurement precision Laser Detector Frequency comb (Measurement device) Heisenberg uncertainty sets limit on how accurately photon number and phase can be measured: In spectral domain Heisenberg uncertainty translates to: A. Yariv, SPIE 1995 DTU Fotonik 4 Limit on measuring Relative Intensity Noise (RIN) Shot noise limit: DTU Fotonik 5 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 409/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 410/451 Limit on measuring phase noise Shot noise limit: DTU Fotonik 6 Conventional phase measurement Extract the angle of the complex number = cos Δ + + Angle + ∠ Discrete Hilbert transform mean ℋ = sin Δ + Total phase Remove the DC Reconstruct the component of the orthogonal quadrature signal component Remove constant and detrend Δ linear trend from the time sequence Intermediate frequency Phase noise periodogram Phase noise power spectral density DTU Fotonik 7 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 410/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 411/451 Conventional phase noise extraction From the downconverted comb, Parallel processing of all the frequency extraction of amplitude and phase lines (generalization of a single line) noise BP(1) BP(2) Bandpass filter for BP(M) each line ⋯ ⋯ ℋ Hilbert transform [⋅] ℋ[⋅] ⋯ ⋯ ℋ[⋅] atan[⋅] abs[⋅] atan[⋅] abs[⋅] Extract phase and amplitude atan[⋅] abs[⋅] ⋯ ⋯ information Linear detrend to characterize LD[⋅] LD[⋅] LD[⋅] LD[⋅] LD[⋅] LD[⋅] ⋯ only the noise ⋯ Problem! Measurement noise affect the comb noise estimation DTU Fotonik 8 Bayesian filtering based phase extraction = cos Δ + + Extended Kalman filter Phase noise mean Model parameter periodogram Remove the DC estimation component of the signal Phase noise power spectral density The model we are using The parameters: = + ∼ 0, Phase noise variance Measurement noise variance = cos Δ + + ∼ 0, Δ Intermediate angular frequency Average signal amplitude DTU Fotonik 9 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 411/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 412/451 Bayesian filtering for joint amplitude and phase noise estimation Hidden state: phase and amplitude noise of all lines Phase and amplitude model: Multidimensional Gaussian random walk With M lines, we have M phase EKF ( = 1 … ) noise sequences and M amplitude = = noise sequences ⋮ ⋮ EKS ( = … 1) n Converged? y EKF algorithm = + , with ∼ 0, , = . . . = ̅ 1 + cos Δ + + [1] G. Brajato et al, Optics Express 2020 DTU Fotonik 10 The concept of optimum detector Sub-optimum detector (tan-1) Laser Cavity Optimum detector (EKF) Ultimate performance limit governed by: Heisenberg uncertainty limit reached when: Detector uncertainty needs to be matched to amplifier uncertainty (optimum detector) H. Heffner, 1962 DTU Fotonik 11 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 412/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 413/451 The importance of optimum detector Sub-optimum detector (tan-1) Laser Cavity Optimum detector (EKF) Darko Zibar, Jens E. Pedersen, Poul Varming, Giovanni Brajato, Francesco Da Ros, "Approaching optimum phase measurement in the presence of amplifier noise," Optica 8, 1262-1267 (2021); DTU Fotonik 12 Minimum noise added by the amplifier Laser Detector Frequency comb (Measurement device) Amplifier Gaussian noise with zero mean and standard deviation Amplifier E. Desurvire, 1994 DTU Fotonik 13 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 413/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 414/451 Quantum limited phase detection (the best we can do) Phase Phase estimator estimator Frequency shifter Phase Phase estimator estimator LO LO Feedback H. M . Wiseman, 2002 DTU Fotonik 14 Minimum phase fluctuation due to amplifier noise Laser Phase Amplifier estimator LO Output of the amplifier: Gaussian noise term added by the amplifier with variance : Quantum limited (minimum) phase fluctuation due to amplifier noise DTU Fotonik 15 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 414/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 415/451 Optimum phase measurement for high SNR Laser Amplifier A/D tan-1(Q/I) LO Discrete-time signal after analogue-to-digital converter (A/D): Phase estimation method: Quantum limited (minimum) phase fluctuation due to amplifier noise: DTU Fotonik 16 Measuring at low and medium SNR is important • Technical noise dominates laser phase noise at low frequencies • Determining fundamental laser linewidth (quantum noise limited) requires measuring beyond MHz • Laser power may be low (output of the cavity) • Frequency comb lines may have low power • Several stages of amplification may reduce SNR Signal-to-noise ratio of beat signal after heterodyne detection: DTU Fotonik 17 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 415/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 416/451 Optimum filtering for wide-range of SNRs Laser Optimum Amplifier A/D filter LO Given discrete-time signal after analogue-to-digital converter (A/D): Optimum filter finds phase that is closest to for a given SNR For extracting signal from noise Bayesian filter is theoretically optimum filter Kalman filter is an approximation of Bayesian filter DTU Fotonik 18 Bayesian filtering: infer input x from noisy output y 16 25 14 Input: x 12 20 Output: y 10 15 8 10 6 [a.u.] 5 4 [a.u.] x y 2 0 0 -5 -2 -10 -4 -15 -6 0 20 40 60 80 100 0 20 40 60 80 100 Time [a.u.] Time [a.u.] States: amp., phase noise, PMD: D: Observations: Mapping function: Mapping function: Process noise: Measurement noise: S. Sarka, 2013 DTU Fotonik 19 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 416/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 417/451 Bayesian filtering: infer input x from noisy output y 15 10 5 0 -5 Evolution [a.u.] -10 Output: y Input: x (unknown) -15 Estimated: xest 0 20 40 60 80 100 Time [a.u.] Given a measurement: Compute: DTU Fotonik 20 Bayesian filtering equations Deterministic state space model: Probabilistic state space model: Use Kalman or particle filtering to solve: for t=1:T 1. Compute prior: 2. Compute posterior: end DTU Fotonik 21 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 417/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 418/451 Approaching optimum filtering with Kalman filter Laser Extended Amplifier A/D Kalman filter LO EKF based phase estimation approaches quantum limit: DTU Fotonik 22 Practical implication of random phase fluctuations Given a observation time T, laser phase noise variance is expressed as: The corresponding spectral broadening expressed as: The quantum limited spectral broadening due to amplifier noise : DTU Fotonik 23 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 418/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 419/451 Numerical results: phase fluctuation DTU Fotonik 24 Numerical results: phase PSD DTU Fotonik 25 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 419/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 420/451 Numerical results: spectral broadening DTU Fotonik 26 Experimental set-up Darko Zibar, Jens E. Pedersen, Poul Varming, Giovanni Brajato, Francesco Da Ros, "Approaching optimum phase measurement in the presence of amplifier noise," Optica 8, 1262-1267 (2021); https://www.osapublishing.org/optica/abstract.cfm?uri=optica-8-10-1262 DTU Fotonik 27 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 420/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 421/451 Experimental: phase-noise measurement DTU Fotonik 28 Experimental: spectral broadening DTU Fotonik 29 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 421/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 422/451 Characterization of frequency combs Dual comb multiheterodyne set-up Down-mixed digitized comb Local oscillator (LO) reference comb Δ + Source The noise of the down-mixed comb is given by the comb contribution of the reference comb and the source comb Δ It is possible to characterize the source comb when the Balanced reference contribution can be neglected or they equally receiver contribute The k-th sample of the down-digitized comb can be described in time domain as a summation of beating tones = ̅ 1 + cos Δ + + DTU Fotonik 46 Conventional phase noise extraction From the downconverted comb, Parallel processing of all the frequency extraction of amplitude and phase lines (generalization of a single line) noise BP(1) BP(2) Bandpass filter for BP(M) each line ⋯ ⋯ ℋ Hilbert transform [⋅] ℋ[⋅] ⋯ ⋯ ℋ[⋅] atan[⋅] abs[⋅] atan[⋅] abs[⋅] Extract phase and amplitude atan[⋅] abs[⋅] ⋯ ⋯ information Linear detrend to characterize LD[⋅] LD[⋅] LD[⋅] LD[⋅] LD[⋅] LD[⋅] ⋯ only the noise ⋯ Problem! Measurement noise affect the comb noise estimation DTU Fotonik 47 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 422/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 423/451 Bayesian filtering for joint amplitude and phase noise estimation Hidden state: phase and amplitude noise of all lines Phase and amplitude model: Multidimensional Gaussian random walk With M lines, we have M phase EKF ( = 1 … ) noise sequences and M amplitude = = noise sequences ⋮ ⋮ EKS ( = … 1) n Converged? y EKF algorithm = + , with ∼ 0, , = . . . = ̅ 1 + cos Δ + + [1] G. Brajato et al, Optics Express 2020 DTU Fotonik 48 Frequency comb phase noise correlation matrix DTU Fotonik 51 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 423/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 424/451 Combs lines phase variance (a) Simulations (b) Experimental Machine learning methods provides more accurate estimations DTU Fotonik 52 Conclusion and outlook • Machine learning toolbox brings significant advantages to photonics • Machine learning effective in learning complex mappings – Optical amplifier design – Communication over fiber-optic channel – Noise characterization of lasers and frequency combs – Quantum noise limited tracking • Many other problems could benefit from ML (e.g. component design, power allocation etc) • A lot of room for interesting research problems • ML toolbox part of electrical and photonics engineering curriculum • Lack of researchers that understand ML and optics to advance the field DTU Fotonik 56 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 424/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 425/451 Ministero dell’Istruzione, dell’Università e della Ricerca Acknowledgements (PRIN 2017, Project FIRST). CoG FRECOM (grant agreement no. 771878) Denmark Villum Foundations (VYI grant OPTIC-AI no.29344), DTU Fotonik 57 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 425/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 426/451 Quantum random number generation based on the times of photon detections Ágoston Kristóf Schranz BME - Budapest University of Technology and Economics, Hungary schranz.agoston@vik.bme.hu Abstract activities as a member of the Mobile Communications Quantum random number generation (QRNG) has and Quantum Technologies Laboratory. His research become an increasingly important field in the interests include optical communications, quantum key recent years, since it can provide uniformly distribution, and quantum random number generation. distributed, completely unpredictable bits by exploiting the entropy of quantum measurements. Optical phenomena are especially promising, as the emission and detection of photons is technologically well established. Several optical QRNG methods are discussed, focusing mainly on those that measure the times elapsed between photon detections to obtain random numbers. The importance of mathematical modelling and randomness testing is also outlined via examples, comparing slower but more robust schemes to faster ones, which are more sensitive towards changes in ambient factors. Author's biography Ágoston Schranz received the B.Sc., M.Sc. and Ph. D. degrees in electrical engineering from the Budapest University of Technology and Economics (BME), Budapest, Hungary, in 2015, 2017, and 2022, respectively. He is currently an associate professor at the Department of Networked Systems and Services, and he is involved in several research projects and teaching PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 426/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 427/451 QUANTUM RANDOM NUMBER GENERATION BASED ON THE TIMES OF PHOTON DETECTIONS 26th Seminar on Optical Communications Ljubljana Dr. Ágoston Schranz January 27, 2023 BME Department of Networked Systems and Services aschranz@hit.bme.hu © Department of Networked Systems and Services 1 Table of Contents www.hit.bme.hu Introduction to random number generation • Use cases • Pseudorandom and true random numbers • Quantum random number generation (QRNG) • Randomness testing and evaluation Optical quantum random number generators • Principles of operation • Photonic time-of-arrival generators Research at BME © Department of Networked Systems and Services 2 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 427/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 428/451 Introduction to RNGs © Department of Networked Systems and Services 3 Random numbers www.hit.bme.hu Applications • Symmetric-key cryptography • Monte Carlo simulations • Gambling What kind of randomness? Range of numbers? For the present discussion: sequences of uniformly distributed, independent bits . . . 011101010110110100010110101100101101001000. . . © Department of Networked Systems and Services 4 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 428/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 429/451 PRNGs and TRNGs www.hit.bme.hu For many applications, true randomness is not necessary, just the desired statistical properties • Pseudorandom RNGs (PRNGs): algorithmic, deterministic methods, e.g. linear feedback shift registers • Starting from a seed, their operation is periodic • Unsuitable for cryptography True RNGs • Sampling physical processes © Department of Networked Systems and Services 5 Quantum random number generation www.hit.bme.hu A subgroup of TRNGs operate based on quantum physical principles Utilizing the uncertainty of quantum measurements If tuned well, the resulting bits are uniformly distributed Quantum and classical noise components need to be analyzed and separated © Department of Networked Systems and Services 6 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 429/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 430/451 Randomness testing www.hit.bme.hu Main question: was a given bit sequence produced by a perfect RNG? • Impossible to decide with certainty! Two-way approach 1. Mathematical modelling, calculations involving probabilities, entropy estimation + experimental validation 2. Statistical hypothesis testing of the output bits Testing • Infinitely many aspects of randomness (relative frequency, number of runs, lack of periodic components, etc.) • Specially designed test suites with a multitude of tests (NIST STS, DieHarder, TestU01. . . ) © Department of Networked Systems and Services 7 Optical QRNGs © Department of Networked Systems and Services 8 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 430/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 431/451 Why optics? www.hit.bme.hu Early research (1970) targeted radioactive decay as a source of randomness • Low rates • Depleting source • Health concerns Advanced technology for creation, manipulation and detection of light • Simple and affordable hardware (telecom-grade devices) • Measurement technology • No health hazards (unless someone tries really hard. . . ) Methods can utilize the dual nature of light (wave–particle duality) © Department of Networked Systems and Services 9 Optical principles www.hit.bme.hu Branching path Photon number Time-of-arrival Amplified spontaneous emission Phase noise of lasers Vacuum fluctuations Raman scattering . . . © Department of Networked Systems and Services 10 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 431/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 432/451 Time-of-Arrival generators www.hit.bme.hu Coherent light: low-power quasi-monochromatic laser Poisson point process • Number of photons per unit time: Poisson distributed • Time elapsed between photon detections: exponentially distributed Attenuation and dead time of detectors push thermal statistics toward Poissonian Blumenstein, Sébastien. "Classical ghost imaging with opto-electronic light sources: novel and highly incoherent concepts." Ph.D. Dissertation, TU Darmstadt (2017) © Department of Networked Systems and Services 11 ToA generators: examples www.hit.bme.hu © Department of Networked Systems and Services 12 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 432/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 433/451 References (clockwise from top left) www.hit.bme.hu Michael A. Wayne, Evan R. Jeffrey, Gleb M. Akselrod, and Paul G. Kwiat, "Photon arrival time quantum random number generation", Journal of Modern Optics, 56:4, 516-522 (2009) K. S. Kravtsov, I. V. Radchenko, S. P. Kulik, and S. N. Molotkov, "Minimalist design of a robust real-time quantum random number generator," J. Opt. Soc. Am. B 32, 1743-1747 (2015) J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields , "A high speed, postprocessing free, quantum random number generator", Appl. Phys. Lett. 93, 031109 (2008) F. -X. Wang et al., "Robust Quantum Random Number Generator Based on Avalanche Photodiodes," Journal of Lightwave Technology, vol. 33, no. 15, pp. 3319-3326 (2015) © Department of Networked Systems and Services 13 Research at BME © Department of Networked Systems and Services 14 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 433/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 434/451 Method of interest www.hit.bme.hu M. Stipčević and B. Medved Rogina , "Quantum random number generator based on photonic emission in semiconductors", Review of Scientific Instruments 78, 045104 (2007) Compare two successive interarrival times • Bit assigned based on which is longer, equalities: discarded Robust against ambient fluctuations due to symmetry Main model parameters: photon rate λ, measurement precision τ, dead time τ d © Department of Networked Systems and Services 15 Notation, figures of merit www.hit.bme.hu Random variables (i.i.d. within a group) • Tj: j th exponentially distributed time between two detections • Xj: j th discretized time (no dead time – geometrical distribution) • Wi: sign of the difference X 2 i −X 2 i− 1, uniformly distributed after discarding each Wi = 0 Bit generation efficiency η R: average number of bits assigned per random event Bit generation rate R: average number of bits generated per unit time 1 − P[ X 1 − ∑∞ X 2 η η 2 i = X 2 i− 1] n=0 P j = n R R = = R = 2 2 E Tj © Department of Networked Systems and Services 16 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 434/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 435/451 Bit generation efficiency www.hit.bme.hu η R is maximal as either λ or τ → 0 © Department of Networked Systems and Services 17 Bit generation rate www.hit.bme.hu R is zero as λ → 0 © Department of Networked Systems and Services 18 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 435/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 436/451 Distorted distributions www.hit.bme.hu Introduce a dead time τ d = kτ + Δ τ = k + Δ ττ τ, k ∈ Z+ PMF P[ X = n] shifted to P[ X = n + k] ⇒ η R is unchanged (left-padding with zeros means invariance under infinite summation) © Department of Networked Systems and Services 19 Formula and simulations www.hit.bme.hu Bit generation rate depends on the whole dead time, as it reduces the output count rate 2 R( λ,τ,τ d = kτ + Δ τ) = 12 · λ 1 1 1+ λτ · − − e −λ( τ−Δ τ) − e2 λΔ τ(1 − e −λτ)2 d e2 λτ − 1 © Department of Networked Systems and Services 20 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 436/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 437/451 Continuously running clocks www.hit.bme.hu Restarting the clock is not always feasible Continuous clock: random phase at detections introduces correlations between measurements and bits © Department of Networked Systems and Services 21 Correlations and dependence www.hit.bme.hu At small λτ values the rates are close In the high-precision regime λτ 1: autocorrelation between successive bits remains negligible © Department of Networked Systems and Services 22 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 437/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 438/451 Experimental setup www.hit.bme.hu Driver O/E μ C SP 99% Laser VOA 1 VOA 2 PMT 1% Laser wavelength: 520 nm Time-to-Digital Converter (SP): dead time ∼ 2 ns, resolution 250 ps, continuous clock! Photomultiplier tube (PMT): max count rate 5 million/s, quantum efficiency @520 nm ∼ 22%, dark count rate: < 50 cps, output pulse width 1.5 ns FWHM © Department of Networked Systems and Services 23 Experimental setup www.hit.bme.hu © Department of Networked Systems and Services 24 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 438/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 439/451 Validation of theoretical results www.hit.bme.hu Measurements between 0.5 and 5 million output counts per second Excellent agreement, but restricted to the initial section of the graphs Up until 3 million cps: 188/188 randomness tests of the NIST STS passed; at 4 and 5 million, 187 and 186 © Department of Networked Systems and Services 25 Extended validity check www.hit.bme.hu For a more thorough check: software-based clock period adjustment Treating originally measured time differences as analog values; counting rising edges of a cruder, restartable clock signal within these intervals © Department of Networked Systems and Services 26 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 439/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 440/451 Work in progress www.hit.bme.hu Extended model based on discretized Markov chains: calculating the effects of the random clock phase at the detection Solving the problem of dependence and correlations: eliminating the effects of phase and unknown dead time at a price of a slightly reduced final bit rate © Department of Networked Systems and Services 27 Increase the efficiency! www.hit.bme.hu Robustness is great Efficiency and rate is quite limited Can we increase them by minor adjustments? • Yes, if we can maintain a specific value of λ very precisely! • No need for directly discarding values measured to be equal © Department of Networked Systems and Services 28 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 440/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 441/451 Grouping events: vector-valued RVs www.hit.bme.hu By forming groups of m = 2, the new distribution is still uniform, but on a sample space with 3 m = 9 elements ⇒ discard one outcome, keep 8. The available min-entropy H∞ < H∞ is increased! © Department of Networked Systems and Services 29 Which group length to choose? www.hit.bme.hu Bit generation efficiency: function of m m · log 2 m· log2(3) η 2 (3) R ( m) = · η 2 m R (2) = 0 . 667 , η R (7) = 0 . 736 3 m η R,A( m) η R,B( m) © Department of Networked Systems and Services 30 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 441/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 442/451 Bit generation gain www.hit.bme.hu Bit generation gain: comparing the respective maxima of methods (with different parameter sets; shown for m = 2) Both methods in the new settings: new is more efficient and faster Both methods on the same hardware: new is more efficient and faster © Department of Networked Systems and Services 31 Error model: base distribution www.hit.bme.hu ε = P(0) − 13 Symmetric, as successive times of arrival are still i.i.d. Non-uniformity depends on λ, τ and τ d © Department of Networked Systems and Services 32 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 442/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 443/451 Error dispersion by grouping www.hit.bme.hu Grouping disperses the deviations from uniformity ( m = 2 shown here) © Department of Networked Systems and Services 33 Boundaries for the min-entropy www.hit.bme.hu Error bounds to keep the required min-entropy © Department of Networked Systems and Services 34 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 443/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 444/451 Bias-free coding www.hit.bme.hu B 2 = { 0 , 1 , 2 , 3 , 5 , 6 , 7 , 8 } a W 2 i− 1 W 2 i p( a) = P[ W 2 i− 1 ,W 2 i] Bits Weight wa 0 -1 -1 p 0 , 2 000 0 1 -1 0 p 1 , 2 001 1 2 -1 1 p 0 , 2 010 1 3 0 -1 p 1 , 2 011 2 4 0 0 p 2 , 2 - - 5 0 1 p 1 , 2 100 1 6 1 -1 p 0 , 2 101 2 7 1 0 p 1 , 2 110 2 8 1 1 p 0 , 2 111 3 A bias-free coding function for m=2 © Department of Networked Systems and Services 35 Experimental results www.hit.bme.hu Driver O/E μ C SP 99% Laser VOA 1 VOA 2 PMT 1% Optical power control to maintain the desired λ Software-defined measurement clock, periodically updated Measured error ε well within min-entropy bounds Passing 188/188 NIST STS tests @ m = 7 // at least 187/188 @ m = 2 On the given hardware, the generation rate showed a 47.25% increase compared to the old method. © Department of Networked Systems and Services 36 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 444/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 445/451 Future plans www.hit.bme.hu Different ToA generation schemes Improvement over previous models • In a figure of merit (efficiency, rate) • In robustness • In inherent uniformity New, extended mathematical analysis techniques Refinements of the hardware, potential extensions © Department of Networked Systems and Services 37 Thank you for your attention! © Department of Networked Systems and Services 38 PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 445/451 ZBORNIK 26. SEMINAR OPTIČNE KOMUNIKACIJE • LJUBLJANA • 25. do 27. JANUARJA 2023 446/451 PLAKATI POSTERS II. PROCEEDINGS 26. SEMINAR ON OPTICAL COMMUNICATIONS • LJUBLJANA • 25th to 27th JANUARY 2023 446/451 Analogna optična zveza za merjenje faznega šuma Andrej Lavrič, Boštjan Batagelj, Matjaž Vidmar Merjenje faznega šuma spada med zah- tevnejše meritve sodobnega inženirja ele- DUT τ k S φ v( f ) ktrotehnike. [1] Postopek s kasnilnim FFT vodom omogoča meritev brez kakovo- stne reference. Z mešanjem signala z la- stno zakasnjeno kopijo preslikamo fazni šum v osnovni pas, kjer dolžina zakasni- Sφ( f) = Sv( f) L ( f) = 1 S tve določa občutljivost za ceno manjše 4 k 2 φ( f ) φ| sin πτ f | 2 2 pasovne širine spektra šuma. Klasični električni prenosni vodi so s svojimi izgubami dolgo omejevali uporabnost postopka s kasnilnim vodom. S pojavom optičnega vlakna in razvojem mikrovalovne fotonike je postopek ponovno postal privlačen. [2] Optično vlakno s svojimi majhnimi izgubami omogoča dovolj dolgo zakasnitev za uporabne občutljivosti merilnega sistema. τ analogna optična zveza FFT PM DUT kφ = vcal m fcal zagotavljanje umerjanje kφ kvadrature kontrola Poleg zadostne zakasnitve sta za dobro meritev potrebna tudi pravilni režim delovanja in umerjanje. [3] Kvadratura na vhodu mešalnika zagotavlja, da ta deluje kot fazni detektor. Z umerjanjem pa določimo konstanto detektorja kφ. Samodejno nastavljanje in umerjanje merilnika z optičnim kasnilnim vodom je enostavno in cenovno dostopno. Z enosmernim signalom iz izhoda mešalnika preko povratne vezave krmilimo fazni sukalnik, tako da sta vhoda mešalnika v kvadraturi. Konstanto detektorja kφ določimo s fazno modulacijo merjenca z znanim modulacijskim indeksom m. [1] U. L. Rohde, A. K. Poddar and A. M. Apte, "Getting Its Measure: Oscillator Phase Noise Measurement Techniques and Limitations,"in IEEE Microwave Magazine, vol. 14, no. 6, pp. 73-86, Sept.-Oct. 2013, doi: 10.1109/MMM.2013.2269860 [2] E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, "Photonic-delay technique for phase-noise measurement of microwave oscillators,"J. Opt. Soc. Am. B 22, 987-997 (2005). https://doi.org/10.1364/JOSAB.22.000987 [3] Lavrič, A.; Batagelj, B.; Vidmar, M. Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line. Photonics 2022, 9, 533. https://doi.org/10.3390/photonics9080533 Strokovni seminar Optične komunikacije se je razvil iz izobraževalne dejavnosti, ki jo je pod O seminarju okriljem projekta TEMPUS JEN-04202 v letih 1993 do 1997 izvajala Fakulteta za elektrotehniko The seminar Univerze v Ljubljani. Seminar je namenjen strokovnemu izpopolnjevanju strokovnjakov optičnih komunikacij in drugih, ki jih to področje zanima. Vključen je v program izvajanja vseživljenjskega izobraževanja na Fakulteti za elektrotehniko v Ljubljani. Njegov namen je osveževanje, razširjanje izpopolnjevanje in poglabljanje znanja ter dvig strokovnosti zaposlenih strokovnjakov na področju optičnih komunikacij. Seminar obsega uvodni del, namenjen obnavljanju in razširjanju znanja, ter strokovni del, namenjen seznanjanju in poglabljanju v strokovna vprašanja o sistemih in njihovih sestavnih delih. Izvedenski del seminarja, ki ga izvajajo priznani vabljeni strokovnjaki, obsega nekatera pomembnejša razvojna vprašanja. Seminar on Optical Communications evolved from the activities running at the Faculty of Electrical Engineering University of Ljubljana, during the period from 1993 to 1997 under the auspices of the European project TEMPUS JEN-04202 granted for the same period. The seminar si intended to communication professionals and other involved into the field of optical communications. It is part of the continuing education programme at the Faculty of Electrical Engineering in Ljubljana. Its primer porpuse is to enhance the expertise of professionals in the field of optical communications. The seminar consists of two parts: one part is dedicated to basic technical topics aiming to refresh fundamental knowledge in optical communications, and the second part is intended to the latest research and development achievements and trends from spectrum regulation, standardization, systems and solutions, all from international and national experts. 10G-EPON, DWDM, EPON, F5.5G, Fabry-Periot laserska dioda, fazni šum, FTTH točka-točka, Ključna gesla FTTH točka-več točk, generiranje kvantnih naključnih števil, GPON, hitri vtični moduli, integriran Keywords polarizacijski razcepnik, integrirana fotonska vezja, integrirana optika, kvantna distribucija ključev, kvantni ključi, kvantno fotonsko integrirano vezje, kvantno šifriranje, mikroobročni resonator, NGPON2, OLT, ONU, OPGW, optična omrežja, optične modulacije, programirljivi PON, ROADM, sinhronizacija, strojno učenje, umetna inteligenca, večdimenzionalni modulacijski formati, vlakenski laserji, vlakenski oddajnik, XGS-PON, xPON, zaznavanje z optičnimi vlakni 10G-EPON, artificial inteligence, DWDM, EPON, F5.5G, Fabry-Periot laser diode, fast plug-in modules, fiber lasers, fiber optic transmitter, fiber sensing, GPON, integrated optics, integrated polarization splitter, machine learning, micro-ring resonator, multidimensional modulation formats, NG-PON2, OLT, ONU, OPGW, optical modulations, optical networks, P2MP FTTH, P2P FTTH, phase noise, photonic integrated circuits, quantum encryption, quantum key distribution, quantum keys, quantum photonic integrated circuit, quantum random number generation, ROADM, software defined PON, synchronization, XGS-PON, xPON Batagelj Boštjan, Debevc Andraž, Domesi Alfonso, Eržen Vesna, Knafelc Žan, Krč Janez, Lavrič Avtorji Andrej, Ljubič Mrzel Marija, Ljubotina Miloš, Lukan Peter, Mandelj Gorazd, Milojević Igor, Penko Authors Gorazd, Petrič Uroš, Pučko Andrej, Ramšak Anton, Ratkoceri Jakup, Reinhardt Peter, Samardžić Klaus, Sarić Milorad, Schranz Ágoston Kristóf, Škaljo Edvin, Štefl Jiří, Topič Marko, Vidmar Matjaž, Vuk Baliž Kristjan, Zibar Darko, Žitko Rok Document Outline ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 SO2023-naslovnica zbornika ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 02_CIP stran ZBORNIK SOK 2023 05_seznam prispevkov 06_table of contents ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 _vmesna stran prispevki ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 1-Boštjan Batagelj-info ZBORNIK SOK 2023 1-Batagelj ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 2-Žan Knafelc-info 2-Knafelc ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 3-Gorazd Penko-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 3-Penko ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 4-Andrej Pučko-info 4-Pučko ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 5-Milorad Sarić-info 5-Sarić ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 6-Rok Žitko-info 6-Žitko ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 7-Janez Krč-info 7-Krč ZBORNIK SOK 2023 ZBORNIK SOK 2023 8-Miloš Ljubotina-info ZBORNIK SOK 2023 8-Ljubotina ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 9-Andraž Debevc-info 9-Debevc ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 10-Vesna Eržen-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 10-Eržen ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 11-Kristjan Vuk Baliž-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 11-Vuk Baliž ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 12-Andrej Lavrič-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 12-Lavrič ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 13-Matjaž Vidmar-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 13-Vidmar ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 14-Klaus Samardžić-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 14-Samardžić ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 15-Domesi_Blažek-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 15-Domesi_Blažek ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 16-Uroš Petrič-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 16-Petrič ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 17-Gorazd Mandelj-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 17-Mandelj ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 18-Milorad Sarić-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 18-Sarič ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 19-Jiri Štefl-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 19-Štefl ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 20-Peter Lukan-info 20-Lukan ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 21-Marija Mrzel Ljubić-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 21-Mrzel_Ljubič ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 22-Peter Reinhardt-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 22-Reinhardt ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 23-Edvin Škaljo-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf 23-Škaljo ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 24-Jakub Ratkoceri-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 24-Ratkoceri ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 25-Igor Milojevic-info 25-Milojević ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 26-Darko Zibar-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 26-Zibar ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 27-Darko Zibar-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 27-Zibar ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 28-Aguston Schranz-info ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 28-Schranz ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 _vmesna stran plakati ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 1_Zorzut at al 2_Lavrič at al ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023.pdf ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 ZBORNIK SOK 2023 3_Podbregar at al 4_Zmrzlak at al 07_platnica zadnja stran