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Zrcalna simetrija prvotno opisuje povezavo med dvema geometrijskima objektoma, ki
se imenujeta Calabi-Yau mnogoterosti. Izkaze se, da sta dani zrcalno simetri¢ni Calabi-
Yau mnogoterosti geometrijsko sicer razliéni, ¢e nanju pogledamo fizikalno s strani teorije
strun, pa vseeno ekvivalentni. Zrcalna simetrija ima veliko matemati¢nih formulacij in po-
splositev, ki gredo zunaj okvirja Calabi-Yau mnogoterosti. V tem ¢lanku bomo predstavili
en vidik zrcalne simetrije, ki ga lahko formuliramo z elementarno konveksno geometrijo.

MIRROR SYMMETRY AND LAURENT POLYNOMIALS

Mirror symmetry originally describes the connection between two geometric objects
called Calabi-Yau manifolds. If two Calabi-Yau manifolds are mirror symmetric they are
geometrically distinct yet equivalent when viewed from the physical side of string theory.
Mirror symmetry has many mathematical formulations and generalisations that go beyond
the Calabi-Yau manifolds. In this paper we will present one aspect of mirror symmetry
that can be formulated in terms of elementary convex geometry.

Uvod v zrcalno simetrijo

Prostor in ¢as sta temeljna koncepta, ki oblikujeta nase razumevanje vesolja.
V vsakdanjem zivljenju se zavedamo treh prostorskih razseznosti (dolzine,
Sirine in visine), ki nam omogoc¢ajo, da razumemo in opisujemo svet okoli
sebe. Poleg teh treh prostorskih razseznosti pa obstaja Se cetrta, ki jo
poznamo kot ¢as. V fiziki sta prostor in ¢as pogosto obravnavana kot enoten
koncept, znan kot prostor-c¢as, pri ¢emer so vsi dogodki opisani znotraj teh
Stirih razseznosti.

V poznih Sestdesetih letih prejSnjega stoletja se je zacela razvijati revo-
lucionarna teorija v fiziki, ki se imenuje teorija strun in ponuja elegantno
poenotenje vseh osnovnih sil in delcev. Temelji pa na ideji, da nase vesolje
ni omejeno le na §tiri razseznosti (treh prostorskih in ene casovne), ki jih
zaznavamo, temve¢ vkljuc¢uje Se Sest dodatnih razseznosti, ki jih do zdaj ni-
smo uspeli zaznati. Matemati¢na podlaga te (za sedaj Se nepotrjene) teorije
so Calabi-Yau mnogoterosti.

Opisimo sedaj bolj podrobno Calabi-Yau mnogoterosti s pomocjo me-
trike, ki se pojavi v Einsteinovi splosni teoriji relativnosti in meri, kako
volumen krogle na ukrivljenem prostoru (oziroma mnogoterosti) odstopa
od volumna krogle z istim polmerom v ravnem evklidskem prostoru. Da
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sta ta volumna na sploSnem razli¢na, si lahko predstavljamo na naslednjem
primeru. Ce stojimo na vrhu stozca in nariSemo majhen krog okoli sebe, bo
ta krog manjsi, kot ¢e bi na isti na¢in ta krog narisali na ravnem povrsju. Ta
metrika se imenuje Ricci metrika in glavna geometrijska lastnost Calabi-Yau
mnogoterosti je, da v tej metriki niso ukrivljene, torej so videti kot ravnine
v obic¢ajni evklidski metriki, s katero merimo razdalje v prostoru.

Poleg zgoraj omenjenih Calabi-Yau mnogoterosti poznamo e Fano mno-
goterosti in mnogoterosti sploSnega tipa. Za natanéne definicije teh mno-
goterosti glejte [5], glavna geometrijska lastnost teh mnogoterosti pa je, da
imajo Fano mnogoterosti pozitivno ukrivljenost v Ricci metriki, kot na pri-
mer sfera v obicajni evklidski metriki, mnogoterosti splosnega tipa pa imajo
negativno ukrivljenost v Ricci metriki.

Kot namiguje ze ime, je zelo malo znanega o klasifikaciji mnogoterosti
splosnega tipa in te mnogoterosti se izmed vseh treh tipov najmanj pojav-
ljajo v problemih iz matemati¢ne fizike. Po drugi strani pa je klasifikacija
Calabi-Yau in Fano mnogoterosti eden izmed najbolj perecih in Studiranih
problemov v geometriji in matemati¢ni fiziki. Najve¢ je znanega o glad-
kih (oziroma nesingularnih) Fano mnogoterostih, saj je njihova klasifikacija
poznana do vkljuéno razseznosti tri, v visjih pa je znano, da je v vsaki raz-
seznosti le konéno mnogo Fano mnogoterosti, klasifikacija le-teh pa je odprt
problem (glejte [6]).

V tem ¢lanku bomo obravnavali zanimivo teorijo, ki izvira iz fizike in
omogoca matematikom bolje razumeti klasifikacijo Fano in tudi Calabi-Yau
mnogoterosti. Ta teorija se imenuje zrcalna simetrija. Zgodnje primere zr-
calne simetrije so odkrili fiziki. Izraz zrcalna simetrija se je prvotno nanasal
na situacijo, v kateri sta dve Calabi-Yau mnogoterosti geometrijsko raz-
li¢éni, vendar sta kljub temu ekvivalentni, ko ju pogledamo fizikalno s strani
teorije strun. To pomeni, da strunske vibracije (ki predstavljajo delce) v
eni Calabi-Yau mnogoterosti ustrezajo strunskim vibracijam v drugi. Izraz
zrcalna simetrija izhaja iz ideje, da ti dve mnogoterosti odsevata dolocene
geometrijske lastnosti druga druge.

Matematiki so se za zrcalno simetrijo zaceli zanimati okoli leta 1990,
ko so Philip Candelas, Xenia de la Ossa, Paul Green in Linda Parkes [2]
pokazali, da jo je mogoce uporabiti kot orodje v enumerativni geometriji,
veji matematike, ki se ukvarja s Stetjem geometrijskih objektov. Ceprav
je prvotni pristop k zrcalni simetriji temeljil na fizikalnih idejah, ki niso
bile matemati¢no natan¢no razumljene, se je pozneje to spremenilo in danes
imamo ogromno napovedi iz zrcalne simetrije tudi matemati¢no dokazanih.

Zrcalna simetrija je pomembna raziskovalna tema v teoreti¢ni matema-
tiki, matematiki pa si prizadevajo razviti matemati¢no razumevanje tega
razmerja na podlagi intuicije fizikov. Zrcalna simetrija je tudi temeljno
orodje za izvajanje izracunov v teoriji strun. Pojem zrcalne simetrije je bil
pozneje posplosen na nekaj preostalih geometrijskih objektov, poleg zrcalno
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simetricnih Calabi-Yau mnogoterosti je najbolj znana domneva o zrcalno-
sti med Fanovimi mnogoterostmi in Laurentovimi polinomi z dolo¢enimi
lastnostmi (glejte [3]). Laurentovi polinomi so posplositev obi¢ajnih poli-
nomov in v tem ¢lanku jih bomo podrobneje analizirali. Spoznali bomo,
da lahko vsakemu Laurentovemu polinomu priredimo politop in definirali
operacijo, ki kombinatori¢no spreminja obliko tega politopa in ji pravimo
mutacija Laurentovega polinoma.

V stevilnih primerih proucevanje obeh zgoraj omenjenih vrst zrcalne si-
metrije vkljuc¢uje tori¢no geometrijo. Tori¢na geometrija proucuje posebne
vrste geometrijskih objektov, imenovane tori¢ne mnogoterosti. Te mnogote-
rosti imajo strukturo, ki jo lahko opisemo s pomocjo poliedrov ali politopov,
kar omogoca, da zapletene geometrijske lastnosti povezemo z enostavnimi,
bolj vizualnimi objekti. To zagotavlja skupni jezik za razumevanje obeh
vrst zrcalne simetrije. Za bolj podrobno definicijo tori¢nih mnogoterosti
glejte [5].

V [4, Conjecture A] smo navedli domnevo, ki je poseben primer zrcalne
simetrije. Na eni strani imamo Laurentove polinome, ki jih lahko mutiramo
v toc¢ko, kar pomeni, da je kon¢na oblika zgoraj omenjenega politopa, ki
pripada Laurentovemu polinomu, zgolj tocka. To stran bomo poblizje spo-
znali v tem delu. Izkaze se, da lahko te Laurentove polinome in njihove
mutacije razumemo le z elementarno konveksno geometrijo. Na drugi strani
imamo zapletene strukture, ki se uporabljajo v tori¢ni geometriji in jih v
tem ¢lanku ne bomo predstavili.

Glavni cilj tega clanka je, da z uporabo elementarne konveksne geome-
trije pokazemo dolocene lastnosti Laurentovih polinomov in njihovih mutacij
(glejte trditev 7). Kot posledico bomo razlozili pomen te trditve v toriéni
geometriji in uporabo za konstrukcijo Fano mnogoterosti.

Mutacije Laurentovih polinomov

Definicija 1. Afina hiperravnina v n-razseznem vektorskem prostoru R” je
mnozica tock oblike

{x eR" | (z,2) :a},

za parametra z € R", z # 0 in a € R, kjer (-,-) oznacuje evklidski skalarni
produkt. Za ista parametra a in z je polprostor v R™ mnozica tock oblike

{x eER" | (x,2) < a}.
Podmnozico tock v R™ imenujemo polieder, ¢e je presek konéno mnogo pol-
prostorov. Politop je omejen polieder in vsak politop je konveksna ovojnica

neke kon¢éne neprazne mnozice v R™.
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Slika 1. Newtonov politop od 7'y~ + 3y~ ' +3zy ' + 2%y + 22 ' + 2ty + 2.

Laurentov polinom v eni spremenljivki x je formalni izraz oblike

o0

f=> mat,

k=—o00

kjer je samo kon¢no mnogo koeficientov n; € R nenic¢elnih. Torej so Lau-
rentovi polinomi v eni spremenljivki posplo§itev obi¢ajnih polinomov, s tem
da ima lahko pri njih spremenljivka tudi negativen eksponent. Podobno so
Laurentovi polinomi v ve¢ spremenljivkah posplositev polinomov v vec spre-
menljivkah. Eksponent vsakega monoma Laurentovega polinoma f doloca
tocko v Z", kjer je n stevilo spremenljivk od f. Vsi eksponenti pri monomih
z nenic¢elnimi koeficienti torej dolo¢ajo konéno mnogo tock v Z" in njihovo
konveksno ovojnico imenujemo Newtonov politop, ki ga oznacujemo z A(f).

Primer 2. Primer Laurentovega polinoma v spremenljivkah = in y je
f=a "y 43y 43yt + 2%y 422 oy 4 2.
V tem primeru eksponenti dolo¢ajo naslednje tocke v Z2:
(=1, -1), (0, 1), (1, ~1), (2, ~1), (~1,0), (-1, 1), (0,0). (1)

Njihova konveksna ovojnica je Newtonov politop A(f), ki je narisan na sliki
1, kjer rdeca tocka oznacuje izhodisce (0,0), ¢rne pa oznacujejo preostale
tocke, navedene v (1).

Vsoto in mnozenje Laurentovih polinomov definiramo na enak nacin kot
pri obi¢ajnih polinomih. Spomnimo, da funkcijam ¢ : R” — R re¢emo afine,
¢e so oblike p(v) = (v,w) 4+ a za neka w € R" in a € R.

Definicija 3. Naj bo ¢ nekonstantna afina funkcija in naj bo g Laurentov

polinom, za katerega velja, da ima ¢ konstantno vrednost na celotnem A(g).
Pravimo, da je f mutiran s parom (¢, g), ¢e lahko zapisemo

F=> "t

I€EZ
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Slika 2. Laurentov polinom f ter njegova mutacija mut?, f.

kjer so f; taki Laurentovi polinomi, da A(f;) lezi v afini hiperravnini
{reR" [ o(r) =1}
fi

in velja, da je y Laurentov polinom, za vsak i € N (kar pomeni, da je

fi produkt g'h, kjer je h nek Laurentov polinom). Mutacija Laurentovega
polinoma f s parom (¢, g) je Laurentov polinom

fi
muty, f = Z ?
i€z
Primer 4. Naj bo
f=a Yy 43yt 43zt Fa?y 422 T ly 2

kot v primeru 2. Definirajmo Se h = 1 + z in afino funkcijo ¢(v) =
((0,-2),v) + 1. Ta funkcija doseze vrednost 3 na premici y = —1, vre-
dnost 1 na premici y = 0 in vrednost —1 na premici y = 1. Tako imamo

y el (1432 +322+1) 2712+ 212) r 1y
3 - =1
(1+x) 1+ (1+x)
=y et 2t ey 4y

muty, f =

Slika 2 podaja f in mut}, f, tako da pred vsako tocko v Z? od pripadajo-
¢ih Newtonovih polinomov zapisemo Se pripadajoc¢i koeficient. Rdeci tocki
ponovno oznacujeta izhodisce.

Pred naso glavno trditvijo potrebujemo Se naslednji definiciji.

Definicija 5. Konveksni poliedrski stoZec v Ny je mnozica oblike

o = Stoz(S) := { Z/\uu | A € [0,00)} CR",

u€esS
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kjer je S C R™ neka kon¢na mnozica tock.

Definicija 6. Za poliedra A in B v R™ definiramo njuno vsoto Minkowskega
kot
A+B={a+blacAbe B} CR"

Za A (oziroma B) pravimo, da je sumand Minkowskega poliedra A + B.

Vsakemu Laurentovemu polinomu f lahko priredimo poliedrski stozec
oy na naslednji nac¢in. Povecajmo nas vektorski prostor R" na R+ tako,
da dodamo Se eno komponento (projekcija na prvih n komponent je nas
originalni vektorski prostor R™) in tvorimo stozec

o = Stoz({(x1,...,xn, 1) | (#1,...,20) € A(f)}),

torej Newtonov politop A(f) vlozimo na nivo 1 in tvorimo stozec. Oznaéimo
z i: R" — R"! viozitev z + (2,1). Naj bo f mutiran s parom (y,g) in
naj bo A(f) vlozen na nivo 1 v R™"!. Afino funkcijo ¢ na A(f) dolo¢a nek
vektor m € R"*1, tako da za vsak v € A(f) C R velja p(v) = (i(v), m).
Ce velja, da je A(g) € R® € R™"! vsebovan v afini hiperravnini

{r e R™ | {m,7) =0},
potem pravimo, da je Laurentov polinom f mutiran s parom (m,g).

Trditev 7. Naj bo f Laurentov polinom v n spremenljivkah, ki je mutiran s
parom (m, g), kjer je m € R"L. Potem za pripadajoci stoZec oy velja, da
ima presek

orN{veR™™ | (v,m) =1}

sumand Minkowskega, ki je enak A(g).

Dokaz. Po konstrukeiji takoj opazimo, da je oy N {v € R | (v, m) = 1}
enak

A(h)

E
orN{ve R | (v,m) :0}+k0nv{T+7 HGZ}—!—A(Q),

kjer je E = (0,1) € R” @ R in konv oznac¢uje konveksno ovojnico. O

Omenimo uporabo zgornje trditve v algebrai¢ni geometriji, veji matema-
tike, ki proucuje geometrijske objekte dobljene kot mnozico nicel polinomov
v ve¢ spremenljivkah. Tem geometrijskim objektom pravimo algebrai¢ne
mnogoterosti. Toriéne mnogoterosti so algebrai¢ne mnogoterosti, pri katerih
polinome, ki jih dolo¢ajo kot mnozico ni¢el, dobimo iz objektov konveksne
geometrije, kot so na primer konveksni poliederski stozci. Za ve¢ informacij,
kako toéno dobimo te polinome, glejte [5].
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Presek stozca o z afino hiperravnino {v € R"*! | (v,m) = 1} je pomem-
ben geometrijski objekt v toriéni geometriji. Dejstvo, da smo nasli sumand,
ki je politop z ogliséi v Z™ (in ne v Z"*1), v toriéni geometriji pomeni, da
se tori¢na mnogoterost dobljena iz stozca oy lahko deformira (glejte [1]).

V kontekstu zrcalne simetrije to pomeni, da pricakujemo, da bomo dobili
Fano mnogoterost, ki po zrcalni simetriji pripada Laurentovemu polinomu,
z deformacijo zgornje tori¢ne mmnogoterosti.

Za konec omenimo Se, kaj pomeni, da se Laurentov polinom mutira v
tocko, kar smo navedli v uvodu. To pomeni, da obstajajo mutacije, ki f
zaporedoma mutirajo v nek Laurentov polinom h, za katerega velja, da je
A(h) tocka.

Primer 8. Pokazimo, da se na§ Laurentov polinom f iz prej$njih primerov
mutira v tocko. Pokazali smo ze, da velja

mut?, f = ety ot T ly oy

Oznaéimo zgornji Laurentov polinom z f; := y o' +2z '+~ y+y. Vze-
mimo Laurentov polinom g; := 1+y~! in afino funkcijo ¢; (v) = ((—2,0),v),
ki ima vrednost 2 na premici x = —1 in vrednost 0 na premici x = 0. Do-
bimo

rly(14+ 2y~ +y72)

(1+y™1)?

Zapisimo zgornji Laurentov polinom z f; := =1y +v in izberimo Laurentov
polinom g := 1+ 2~ ! in afino funkcijo ¢2(v) = ((1,0),v). Dobimo

mutsgp1 1= +y=zaty+uy.

1

mut?, fo =y

in A(mutd, f2) je tocka (0,1), kar pa smo zeleli pokazati.
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