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Zrcalna simetrija prvotno opisuje povezavo med dvema geometrijskima objektoma, ki
se imenujeta Calabi-Yau mnogoterosti. Izkaže se, da sta dani zrcalno simetrični Calabi-
Yau mnogoterosti geometrijsko sicer različni, če nanju pogledamo fizikalno s strani teorije
strun, pa vseeno ekvivalentni. Zrcalna simetrija ima veliko matematičnih formulacij in po-
splošitev, ki gredo zunaj okvirja Calabi-Yau mnogoterosti. V tem članku bomo predstavili
en vidik zrcalne simetrije, ki ga lahko formuliramo z elementarno konveksno geometrijo.

MIRROR SYMMETRY AND LAURENT POLYNOMIALS

Mirror symmetry originally describes the connection between two geometric objects
called Calabi-Yau manifolds. If two Calabi-Yau manifolds are mirror symmetric they are
geometrically distinct yet equivalent when viewed from the physical side of string theory.
Mirror symmetry has many mathematical formulations and generalisations that go beyond
the Calabi-Yau manifolds. In this paper we will present one aspect of mirror symmetry
that can be formulated in terms of elementary convex geometry.

Uvod v zrcalno simetrijo

Prostor in čas sta temeljna koncepta, ki oblikujeta naše razumevanje vesolja.
V vsakdanjem življenju se zavedamo treh prostorskih razsežnosti (dolžine,
širine in vǐsine), ki nam omogočajo, da razumemo in opisujemo svet okoli
sebe. Poleg teh treh prostorskih razsežnosti pa obstaja še četrta, ki jo
poznamo kot čas. V fiziki sta prostor in čas pogosto obravnavana kot enoten
koncept, znan kot prostor-čas, pri čemer so vsi dogodki opisani znotraj teh
štirih razsežnosti.

V poznih šestdesetih letih preǰsnjega stoletja se je začela razvijati revo-
lucionarna teorija v fiziki, ki se imenuje teorija strun in ponuja elegantno
poenotenje vseh osnovnih sil in delcev. Temelji pa na ideji, da naše vesolje
ni omejeno le na štiri razsežnosti (treh prostorskih in ene časovne), ki jih
zaznavamo, temveč vključuje še šest dodatnih razsežnosti, ki jih do zdaj ni-
smo uspeli zaznati. Matematična podlaga te (za sedaj še nepotrjene) teorije
so Calabi-Yau mnogoterosti.

Opǐsimo sedaj bolj podrobno Calabi-Yau mnogoterosti s pomočjo me-
trike, ki se pojavi v Einsteinovi splošni teoriji relativnosti in meri, kako
volumen krogle na ukrivljenem prostoru (oziroma mnogoterosti) odstopa
od volumna krogle z istim polmerom v ravnem evklidskem prostoru. Da
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sta ta volumna na splošnem različna, si lahko predstavljamo na naslednjem
primeru. Če stojimo na vrhu stožca in narǐsemo majhen krog okoli sebe, bo
ta krog manǰsi, kot če bi na isti način ta krog narisali na ravnem površju. Ta
metrika se imenuje Ricci metrika in glavna geometrijska lastnost Calabi-Yau
mnogoterosti je, da v tej metriki niso ukrivljene, torej so videti kot ravnine
v običajni evklidski metriki, s katero merimo razdalje v prostoru.

Poleg zgoraj omenjenih Calabi-Yau mnogoterosti poznamo še Fano mno-
goterosti in mnogoterosti splošnega tipa. Za natančne definicije teh mno-
goterosti glejte [5], glavna geometrijska lastnost teh mnogoterosti pa je, da
imajo Fano mnogoterosti pozitivno ukrivljenost v Ricci metriki, kot na pri-
mer sfera v običajni evklidski metriki, mnogoterosti splošnega tipa pa imajo
negativno ukrivljenost v Ricci metriki.

Kot namiguje že ime, je zelo malo znanega o klasifikaciji mnogoterosti
splošnega tipa in te mnogoterosti se izmed vseh treh tipov najmanj pojav-
ljajo v problemih iz matematične fizike. Po drugi strani pa je klasifikacija
Calabi-Yau in Fano mnogoterosti eden izmed najbolj perečih in študiranih
problemov v geometriji in matematični fiziki. Največ je znanega o glad-
kih (oziroma nesingularnih) Fano mnogoterostih, saj je njihova klasifikacija
poznana do vključno razsežnosti tri, v vǐsjih pa je znano, da je v vsaki raz-
sežnosti le končno mnogo Fano mnogoterosti, klasifikacija le-teh pa je odprt
problem (glejte [6]).

V tem članku bomo obravnavali zanimivo teorijo, ki izvira iz fizike in
omogoča matematikom bolje razumeti klasifikacijo Fano in tudi Calabi-Yau
mnogoterosti. Ta teorija se imenuje zrcalna simetrija. Zgodnje primere zr-
calne simetrije so odkrili fiziki. Izraz zrcalna simetrija se je prvotno nanašal
na situacijo, v kateri sta dve Calabi-Yau mnogoterosti geometrijsko raz-
lični, vendar sta kljub temu ekvivalentni, ko ju pogledamo fizikalno s strani
teorije strun. To pomeni, da strunske vibracije (ki predstavljajo delce) v
eni Calabi-Yau mnogoterosti ustrezajo strunskim vibracijam v drugi. Izraz
zrcalna simetrija izhaja iz ideje, da ti dve mnogoterosti odsevata določene
geometrijske lastnosti druga druge.

Matematiki so se za zrcalno simetrijo začeli zanimati okoli leta 1990,
ko so Philip Candelas, Xenia de la Ossa, Paul Green in Linda Parkes [2]
pokazali, da jo je mogoče uporabiti kot orodje v enumerativni geometriji,
veji matematike, ki se ukvarja s štetjem geometrijskih objektov. Čeprav
je prvotni pristop k zrcalni simetriji temeljil na fizikalnih idejah, ki niso
bile matematično natančno razumljene, se je pozneje to spremenilo in danes
imamo ogromno napovedi iz zrcalne simetrije tudi matematično dokazanih.

Zrcalna simetrija je pomembna raziskovalna tema v teoretični matema-
tiki, matematiki pa si prizadevajo razviti matematično razumevanje tega
razmerja na podlagi intuicije fizikov. Zrcalna simetrija je tudi temeljno
orodje za izvajanje izračunov v teoriji strun. Pojem zrcalne simetrije je bil
pozneje posplošen na nekaj preostalih geometrijskih objektov, poleg zrcalno
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simetričnih Calabi-Yau mnogoterosti je najbolj znana domneva o zrcalno-
sti med Fanovimi mnogoterostmi in Laurentovimi polinomi z določenimi
lastnostmi (glejte [3]). Laurentovi polinomi so posplošitev običajnih poli-
nomov in v tem članku jih bomo podrobneje analizirali. Spoznali bomo,
da lahko vsakemu Laurentovemu polinomu priredimo politop in definirali
operacijo, ki kombinatorično spreminja obliko tega politopa in ji pravimo
mutacija Laurentovega polinoma.

V številnih primerih proučevanje obeh zgoraj omenjenih vrst zrcalne si-
metrije vključuje torično geometrijo. Torična geometrija proučuje posebne
vrste geometrijskih objektov, imenovane torične mnogoterosti. Te mnogote-
rosti imajo strukturo, ki jo lahko opǐsemo s pomočjo poliedrov ali politopov,
kar omogoča, da zapletene geometrijske lastnosti povežemo z enostavnimi,
bolj vizualnimi objekti. To zagotavlja skupni jezik za razumevanje obeh
vrst zrcalne simetrije. Za bolj podrobno definicijo toričnih mnogoterosti
glejte [5].

V [4, Conjecture A] smo navedli domnevo, ki je poseben primer zrcalne
simetrije. Na eni strani imamo Laurentove polinome, ki jih lahko mutiramo
v točko, kar pomeni, da je končna oblika zgoraj omenjenega politopa, ki
pripada Laurentovemu polinomu, zgolj točka. To stran bomo pobližje spo-
znali v tem delu. Izkaže se, da lahko te Laurentove polinome in njihove
mutacije razumemo le z elementarno konveksno geometrijo. Na drugi strani
imamo zapletene strukture, ki se uporabljajo v torični geometriji in jih v
tem članku ne bomo predstavili.

Glavni cilj tega članka je, da z uporabo elementarne konveksne geome-
trije pokažemo določene lastnosti Laurentovih polinomov in njihovih mutacij
(glejte trditev 7). Kot posledico bomo razložili pomen te trditve v torični
geometriji in uporabo za konstrukcijo Fano mnogoterosti.

Mutacije Laurentovih polinomov

Definicija 1. Afina hiperravnina v n-razsežnem vektorskem prostoru Rn je
množica točk oblike {

x ∈ Rn | ⟨x, z⟩ = a
}
,

za parametra z ∈ Rn, z ̸= 0 in a ∈ R, kjer ⟨·, ·⟩ označuje evklidski skalarni
produkt. Za ista parametra a in z je polprostor v Rn množica točk oblike{

x ∈ Rn | ⟨x, z⟩ ≤ a
}
.

Podmnožico točk v Rn imenujemo polieder, če je presek končno mnogo pol-
prostorov. Politop je omejen polieder in vsak politop je konveksna ovojnica
neke končne neprazne množice v Rn.

45–52 47



Matej Filip

Slika 1. Newtonov politop od x−1y−1 + 3y−1 + 3xy−1 + x2y−1 + 2x−1 + x−1y + 2.

Laurentov polinom v eni spremenljivki x je formalni izraz oblike

f =

∞∑
k=−∞

nkx
k,

kjer je samo končno mnogo koeficientov nk ∈ R neničelnih. Torej so Lau-
rentovi polinomi v eni spremenljivki posplošitev običajnih polinomov, s tem
da ima lahko pri njih spremenljivka tudi negativen eksponent. Podobno so
Laurentovi polinomi v več spremenljivkah posplošitev polinomov v več spre-
menljivkah. Eksponent vsakega monoma Laurentovega polinoma f določa
točko v Zn, kjer je n število spremenljivk od f . Vsi eksponenti pri monomih
z neničelnimi koeficienti torej določajo končno mnogo točk v Zn in njihovo
konveksno ovojnico imenujemo Newtonov politop, ki ga označujemo z ∆(f).

Primer 2. Primer Laurentovega polinoma v spremenljivkah x in y je

f = x−1y−1 + 3y−1 + 3xy−1 + x2y−1 + 2x−1 + x−1y + 2.

V tem primeru eksponenti določajo naslednje točke v Z2:

(−1,−1), (0,−1), (1,−1), (2,−1), (−1, 0), (−1, 1), (0, 0). (1)

Njihova konveksna ovojnica je Newtonov politop ∆(f), ki je narisan na sliki
1, kjer rdeča točka označuje izhodǐsče (0, 0), črne pa označujejo preostale
točke, navedene v (1).

Vsoto in množenje Laurentovih polinomov definiramo na enak način kot
pri običajnih polinomih. Spomnimo, da funkcijam φ : Rn → R rečemo afine,
če so oblike φ(v) = ⟨v, w⟩+ a za neka w ∈ Rn in a ∈ R.

Definicija 3. Naj bo φ nekonstantna afina funkcija in naj bo g Laurentov
polinom, za katerega velja, da ima φ konstantno vrednost na celotnem ∆(g).
Pravimo, da je f mutiran s parom (φ, g), če lahko zapǐsemo

f =
∑
i∈Z

fi,
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Slika 2. Laurentov polinom f ter njegova mutacija mutgφ f .

kjer so fi taki Laurentovi polinomi, da ∆(fi) leži v afini hiperravnini

{r ∈ Rn | φ(r) = i}

in velja, da je fi
gi

Laurentov polinom, za vsak i ∈ N (kar pomeni, da je

fi produkt gih, kjer je h nek Laurentov polinom). Mutacija Laurentovega
polinoma f s parom (φ, g) je Laurentov polinom

mutgφ f :=
∑
i∈Z

fi
gi
.

Primer 4. Naj bo

f = x−1y−1 + 3y−1 + 3xy−1 + x2y−1 + 2x−1 + x−1y + 2

kot v primeru 2. Definirajmo še h = 1 + x in afino funkcijo φ(v) =
⟨(0,−2), v⟩ + 1. Ta funkcija doseže vrednost 3 na premici y = −1, vre-
dnost 1 na premici y = 0 in vrednost −1 na premici y = 1. Tako imamo

mutgφ f =
y−1x−1(1 + 3x+ 3x2 + 1)

(1 + x)3
+

x−1(2 + 2x)

1 + x
+

x−1y

(1 + x)−1

= y−1x−1 + 2x−1 + x−1y + y.

Slika 2 podaja f in mutgm f , tako da pred vsako točko v Z2 od pripadajo-
čih Newtonovih polinomov zapǐsemo še pripadajoči koeficient. Rdeči točki
ponovno označujeta izhodǐsče.

Pred našo glavno trditvijo potrebujemo še naslednji definiciji.

Definicija 5. Konveksni poliedrski stožec v NR je množica oblike

σ = Stož(S) :=

{∑
u∈S

λuu | λu ∈ [0,∞)

}
⊆ Rn,
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kjer je S ⊆ Rn neka končna množica točk.

Definicija 6. Za poliedra A in B v Rn definiramo njuno vsoto Minkowskega
kot

A+B = {a+ b | a ∈ A, b ∈ B} ⊂ Rn.

Za A (oziroma B) pravimo, da je sumand Minkowskega poliedra A+B.

Vsakemu Laurentovemu polinomu f lahko priredimo poliedrski stožec
σf na naslednji način. Povečajmo naš vektorski prostor Rn na Rn+1 tako,
da dodamo še eno komponento (projekcija na prvih n komponent je naš
originalni vektorski prostor Rn) in tvorimo stožec

σf = Stož({(x1, ..., xn, 1) | (x1, ..., xn) ∈ ∆(f)}),

torej Newtonov politop ∆(f) vložimo na nivo 1 in tvorimo stožec. Označimo
z i : Rn → Rn+1 vložitev z 7→ (z, 1). Naj bo f mutiran s parom (φ, g) in
naj bo ∆(f) vložen na nivo 1 v Rn+1. Afino funkcijo φ na ∆(f) določa nek
vektor m ∈ Rn+1, tako da za vsak v ∈ ∆(f) ⊂ Rn+1 velja φ(v) = ⟨i(v),m⟩.
Če velja, da je ∆(g) ⊂ Rn ⊂ Rn+1 vsebovan v afini hiperravnini

{r ∈ Rn+1 | ⟨m, r⟩ = 0},

potem pravimo, da je Laurentov polinom f mutiran s parom (m, g).

Trditev 7. Naj bo f Laurentov polinom v n spremenljivkah, ki je mutiran s
parom (m, g), kjer je m ∈ Rn+1. Potem za pripadajoči stožec σf velja, da
ima presek

σf ∩ {v ∈ Rn+1 | ⟨v,m⟩ = 1}
sumand Minkowskega, ki je enak ∆(g).

Dokaz. Po konstrukciji takoj opazimo, da je σf ∩ {v ∈ Rn+1 | ⟨v,m⟩ = 1}
enak

σf ∩ {v ∈ Rn+1 | ⟨v,m⟩ = 0}+ konv
{∆

( fi
gi

)
i

+
E

i
| i ∈ Z

}
+∆(g),

kjer je E = (0, 1) ∈ Rn ⊕ R in konv označuje konveksno ovojnico. □
Omenimo uporabo zgornje trditve v algebraični geometriji, veji matema-

tike, ki proučuje geometrijske objekte dobljene kot množico ničel polinomov
v več spremenljivkah. Tem geometrijskim objektom pravimo algebraične
mnogoterosti. Torične mnogoterosti so algebraične mnogoterosti, pri katerih
polinome, ki jih določajo kot množico ničel, dobimo iz objektov konveksne
geometrije, kot so na primer konveksni poliederski stožci. Za več informacij,
kako točno dobimo te polinome, glejte [5].
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Presek stožca σf z afino hiperravnino {v ∈ Rn+1 | ⟨v,m⟩ = 1} je pomem-
ben geometrijski objekt v torični geometriji. Dejstvo, da smo našli sumand,
ki je politop z oglǐsči v Zn (in ne v Zn+1), v torični geometriji pomeni, da
se torična mnogoterost dobljena iz stožca σf lahko deformira (glejte [1]).

V kontekstu zrcalne simetrije to pomeni, da pričakujemo, da bomo dobili
Fano mnogoterost, ki po zrcalni simetriji pripada Laurentovemu polinomu,
z deformacijo zgornje torične mnogoterosti.

Za konec omenimo še, kaj pomeni, da se Laurentov polinom mutira v
točko, kar smo navedli v uvodu. To pomeni, da obstajajo mutacije, ki f
zaporedoma mutirajo v nek Laurentov polinom h, za katerega velja, da je
∆(h) točka.

Primer 8. Pokažimo, da se naš Laurentov polinom f iz preǰsnjih primerov
mutira v točko. Pokazali smo že, da velja

mutgφ f = x−1y−1 + 2x−1 + x−1y + y.

Označimo zgornji Laurentov polinom z f1 := y−1x−1+2x−1+x−1y+y. Vze-
mimo Laurentov polinom g1 := 1+y−1 in afino funkcijo φ1(v) = ⟨(−2, 0), v⟩,
ki ima vrednost 2 na premici x = −1 in vrednost 0 na premici x = 0. Do-
bimo

mutg1φ1
f1 =

x−1y(1 + 2y−1 + y−2)

(1 + y−1)2
+ y = x−1y + y.

Zapǐsimo zgornji Laurentov polinom z f2 := x−1y+y in izberimo Laurentov
polinom g2 := 1 + x−1 in afino funkcijo φ2(v) = ⟨(1, 0), v⟩. Dobimo

mutg2φ2
f2 = y

in ∆(mutg2φ2 f2) je točka (0, 1), kar pa smo želeli pokazati.
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